Sample records for salt lake region

  1. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    ... scheduled events are at city (indoor) locations, and five in mountain (outdoor) facilities. All ten can be found within the area contained ... Lake City is surrounded by mountains including the Wasatch Range to the east, and the temperature difference between the Great Salt Lake ...

  2. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  3. Spatial Distribution of Ammonia and its Contribution to Particulate Matter Formation in the Great Salt Lake Region in Winter

    NASA Astrophysics Data System (ADS)

    Moravek, A.; Murphy, J. G.; Baasandorj, M.; Fibiger, D. L.; Franchin, A.; Goldberger, L.; McDuffie, E. E.; McKeen, S. A.; Middlebrook, A. M.; Thornton, J. A.; Womack, C.; Brown, S. S.

    2017-12-01

    Winter air pollution in urban areas is a major global concern due to increased levels of fine particulate matter (PM) affecting public health. The Great Salt Lake region regularly experiences periods of high particulate matter during winter persistent cold air pool events (PCAPs), periods of atmospheric stagnation. Previous studies have shown that ammonium nitrate is responsible for up to 70% of PM2.5 (particulate matter with a diameter less than 2.5 microns) in the Great Salt Lake region during these periods. Ammonium nitrate is formed from ammonia (NH3) and nitric acid (HNO3); therefore understanding sources of NH3 and its role in the formation of particulate matter is crucial for mitigation of air pollution in this region. In this study, we measured NH3 aboard a Twin Otter aircraft within the Utah Winter Fine Particulate Study (UWFPS) using Quantum Cascade Laser Infrared Absorption Spectroscopy (QC-TILDAS). A total of 23 flights were performed in the period from 16 Jan to 12 Feb 2017 covering the Salt Lake City urban area, the Great Salt Lake and nearby valleys. The spatial distribution of NH3 during flights is presented and identifies major NH3 sources and their role in particle formation for the region. Substantial variation of NH3 was observed over the entire region with highest NH3 mixing ratios over agricultural areas and the lowest NH3 abundance over the Great Salt Lake. Regional WRF-Chem model simulations are used to compare the measurements to available NH3 emission inventories and to improve our understanding of the vertical distribution of NH3. The relative influence of the atmospheric stability for the formation of ammonium nitrate is investigated.

  4. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  5. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  6. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Image and Video Library

    1992-04-02

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  7. Wintertime Reactive Chlorine Sources and Speciation in the Great Salt Lake, UT Region

    NASA Astrophysics Data System (ADS)

    Goldberger, L.; Franchin, A.; Middlebrook, A. M.; Brown, S.; Womack, C.; Moravek, A.; McDuffie, E. E.; Fibiger, D. L.; Baasandorj, M.; Thornton, J. A.

    2017-12-01

    Several chlorine species were measured in both gas and particle phase using a high-resolution time of flight chemical ionization mass spectrometer (HRToF-CIMS) and an Aerosol Mass Spectrometer (AMS) aboard the NOAA Twin Otter aircraft as part of the Utah Winter Fine Particle Study (UWFPS). The abundance and speciation of gas-phase reactive chlorine species are presented, evaluated during both night and day flights across a range of meteorological conditions and repeated flight paths conducted over the Great Salt Lake region from January 16th to February 12th 2017. Mean, or background, concentrations of HCl, Cl2, ClNO2, and HOCl are measured near zero or on order of tens of ppt. Maximum concentrations of these species are found consistently in Tooele County on order of several ppb to ppm. Elevated levels of HCl and ClNO2 (at night) on order of hundreds of ppt have been observed over urban areas in Salt Lake and Utah Counties as well. Both of these species can form by heterogeneous reactions of acidic gases with sodium chloride in salt particles. The high concentrations of HCl and ClNO2 indicate large point sources of these species or acidic gases in the region, which are characterized by enhancement ratios of species to NOx and SO2 measured by the CIMS and a cavity ring down spectrometer also on board the aircraft. The emission fluxes of these point sources are characterized and their contribution to the regional background of reactive chlorine are evaluated.

  8. Early Holocene Great Salt Lake

    USGS Publications Warehouse

    Oviatt, Charles G.; Madsen, David B.; Miller, David; Thompson, Robert S.; McGeehin, John P.

    2015-01-01

    Shorelines and surficial deposits (including buried forest-floor mats and organic-rich wetland sediments) show that Great Salt Lake did not rise higher than modern lake levels during the earliest Holocene (11.5–10.2 cal ka BP; 10–9 14C ka BP). During that period, finely laminated, organic-rich muds (sapropel) containing brine-shrimp cysts and pellets and interbedded sodium-sulfate salts were deposited on the lake floor. Sapropel deposition was probably caused by stratification of the water column — a freshwater cap possibly was formed by groundwater, which had been stored in upland aquifers during the immediately preceding late-Pleistocene deep-lake cycle (Lake Bonneville), and was actively discharging on the basin floor. A climate characterized by low precipitation and runoff, combined with local areas of groundwater discharge in piedmont settings, could explain the apparent conflict between evidence for a shallow lake (a dry climate) and previously published interpretations for a moist climate in the Great Salt Lake basin of the eastern Great Basin.

  9. Space Radar Image of Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  10. Space Radar Image of Salt Lake City, Utah

    NASA Image and Video Library

    1999-04-15

    This radar image of Salt Lake City, Utah, illustrates the different land use patterns that are present in the Utah Valley. Salt Lake City lies between the shores of the Great Salt Lake (the dark area on the left side of the image) and the Wasatch Front Range (the mountains in the upper half of the image). The Salt Lake City area is of great interest to urban planners because of the combination of lake, valley and alpine environments that coexist in the region. Much of the southern shore of the Great Salt Lake is a waterfowl management area. The green grid pattern in the right center of the image is Salt Lake City and its surrounding communities. The Salt Lake City airport is visible as the brown rectangle near the center of the image. Interstate Highway 15 runs from the middle right edge to the upper left of the image. The bright white patch east of Interstate 15 is the downtown area, including Temple Square and the state capitol. The University of Utah campus is the yellowish area that lies at the base of the mountains, east of Temple Square. The large reservoir in the lower left center is a mine tailings pond. The semi-circular feature in the mountains at the bottom edge of the image is the Kennecott Copper Mine. The area shown is 60 kilometers by 40 kilometers (37 miles by 25 miles) and is centered at 40.6 degrees north latitude, 112.0 degrees west longitude. North is toward the upper left. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 10, 1994. The colors in this image represent the following radar channels and polarizations: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program. http

  11. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  12. View of the Salt Lake City, Utah area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An oblique view of the Salt Lake City, Utah area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Approximately two-thirds of the Great Salt Lake is in view. The smaller body of water south of Salt Lake City is Utah Lake. The Wasatch Range is on the east side of the Great Salt Lake.

  13. INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERSECTION OF 445 NORTH & 1040 EAST, SALT LAKE CITY, UT. VIEW LOOKING SOUTH. REPHOTOGRAPH OF HISTORIC SHIPLER PHOTO # 18272, UTAH STATE HISTORICAL SOCIETY COLLECTION. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  14. Evolution of salt and hydrocarbon migration: Sweet Lake area, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, J.A.; Sharpe, C.L.

    The interpretation of seismic, gravity, and well data in northern Cameron Parish, Louisiana suggest that lateral salt flow has influenced the area`s structural evolution, depositional patterns, and hydrocarbon migration. Sweet Lake Field has produced over 46 MMBO and 15 BCFG from Middle Miocene deltaic sands. The structural closure is a downthrown anticline on a fault controlled by the underlying salt feature. Sweet Lake Field overlies an allochthonous salt mass that was probably once part of an ancestral salt ridge extending from Hackberry to Big Lake fields. Nine wells encountering top of salt and several seismic lines define a detached saltmore » feature underlying over twenty square miles at depths from 8500-18,000 ft. Salt withdrawal in the East Hackberry-Big Lake area influenced the depositional patterns of the Oligocene lower Hackberry channel systems. Progradation of thick Middle Oligocene Camerina (A) and Miogypsinoides sands into the area caused salt thinning and withdrawal resulting in the development and orientation of the large Marginulina-Miogypsinoides growth fault northwest of Sweet Lake. Additional evidence for the southeast trend of the salt is a well approximately two miles southeast of Sweet Lake which encountered salt at approximately 19,800 ft. High quality 2-D and 3-D seismic data will continue to enhance the regional understanding of the evolving salt structures in the onshore Gulf Coast and the local understanding of hydrocarbon migration. Additional examples of lateral salt flow will be recognized and some may prove to have subsalt hydrocarbon potential.« less

  15. CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING NORTHEAST AT CHINESE PLAT MARKER AND BURNER. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  16. CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CHINESE PLAT, 1919 (L19 19 4 E, SALT LAKE CITY CEMETERY LOCATER), SALT LAKE CITY, UT. VIEW LOOKING NORTHEAST AT CHINESE PLAT MARKER, BURNER & CHINESE GRAVES. - Salt Lake City Cemetery, 200 N Street, Salt Lake City, Salt Lake County, UT

  17. Modeling salinization and recovery of road salt-impacted lakes in temperate regions based on long-term monitoring of Lake George, New York (USA) and its drainage basin.

    PubMed

    Sutherland, J W; Norton, S A; Short, J W; Navitsky, C

    2018-05-08

    Road salt mitigates winter highway icing but accumulates in watershed soils and receiving waters, affecting soil chemistry and physical, biological, and ecological processes. Despite efforts to reduce salt loading in watersheds, accumulated cations and Cl - continue to impact tributaries and lakes, and the recovery process is not well understood. Lake George, New York (USA) is typical of many temperate lakes at risk for elevated Cl - concentrations from winter deicing; the lake salt concentration increased by ~3.4% year -1 since 1980. Here, we evaluated the ionic composition in Finkle Brook, a major watershed draining to Lake George, studied intermittently since 1970 and typical of other salt-impacted Lake George tributaries. Salt loading in the Lake George basin since the 1940s displaced cations from exchange sites in basin soils; these desorbed cations follow a simple ion-exchange model, with lower sodium and higher calcium, magnesium and potassium fluxes in runoff. Reduced salt application in the Finkle Brook watershed during the low-snow winter of 2015-2016 led to a 30-40% decline of Cl - and base cations in the tributary, implying a Cl - soil half-life of 1-2 years. We developed a conceptual model that describes cation behavior in runoff from a watershed that received road salt loading over a long period of time, and then recovery following reduced salt loading. Next, we developed a dynamic model estimating time to steady-state for Cl - in Lake George with road salt loading starting in 1940, calibrating the model with tributary runoff and lake chemistry data from 1970 and 1980, respectively, and forecasting Cl - concentrations in Lake George based on various scenarios of salt loading and soil retention of Cl - . Our Lake George models are readily adaptable to other temperate lakes with drainage basins where road salt is applied during freezing conditions and paved roads cover a portion of the watershed. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. [Microbial diversity of salt lakes in Badain Jaran desert].

    PubMed

    Li, Lu; Hao, Chunbo; Wang, Lihua; Pei, Lixin

    2015-04-04

    We characterized procaryotic biodiversity, community structure and the relationship between the community structure and environmental factors of salt lakes in Badain Jaran desert, Inner Mongolia, China. We constructed 16S rRNA gene clone libraries by molecular biology techniques to analyze the procaryotic phylogenetic relationships, and used R language to compare the community structure of haloalkalophiles in the salt lakes. Water in this region has a high salinity ranging from 165 to 397 g/L. The water is strongly alkaline with pH value above 10. The microbial diversity and community structure of the salt lakes are obviously different. The diversity of bacteria is more abundant than that of archaea. The main categories of bacteria in the samples are Gammaproteobacteria, Bacteroidetes, Alphaproteobacteria, Firmicute and Verrucomicrobia, whereas all archaea only belong to Halobacteriaceae of Euryarchaeota. Salinity is the most important environmental factor influencing the bacterial community structure, whereas the archaea community structure was influenced comprehensively by multiple environmental factors.

  19. Analysis of seasonal characteristics of Sambhar Salt Lake, India, from digitized Space Shuttle photography

    NASA Technical Reports Server (NTRS)

    Lulla, Kamlesh P.; Helfert, Michael R.

    1989-01-01

    Sambhar Salt Lake is the largest salt lake (230 sq km) in India, situated in the northwest near Jaipur. Analysis of Space Shuttle photographs of this ephemeral lake reveals that water levels and lake basin land-use information can be extracted by both the digital and manual analysis techniques. Seasonal characteristics captured by the two Shuttle photos used in this study show that additional land use/cover categories can be mapped from the dry season photos. This additional information is essential for precise cartographic updates, and provides seasonal hydrologic profiles and inputs for potential mesoscale climate modeling. This paper extends the digitization and mensuration techniques originally developed for space photography and applied to other regions (e.g., Lake Chad, Africa, and Great Salt Lake, USA).

  20. OMI observations of bromine monoxide emissions from salt lakes

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Gonzalez Abad, G.; Kurosu, T. P.

    2015-12-01

    In this study, we analyze bromine monoxide (BrO) data from the Ozone Monitoring Instrument (OMI) over various salt lakes. We used OMI data from 2005 to 2014 to investigate BrO signatures from salt lakes. The salt lakes regions we cover include Dead Sea; Salt Lake City, US; Salar de Uyuni, Bolivia; and Namtso, Tibet. Elevated signatures of BrO was found in July and August BrO monthly averages over the Dead Sea. Similar results were found in the BrO monthly averages for August 2006 for the Bolivian Salt Flats. We present a detailed description of the retrieval algorithm for the OMI operational bromine monoxide (BrO) product. The algorithm is based on direct fitting of radiances from 319.0-347.5 nm, within the UV-2 channel of OMI. Radiances are modeled from the solar irradiance, attenuated by contributions from the target gas and interfering gases, rotational Raman scattering, additive and multiplicative closure polynomials and a common mode spectrum. The common mode spectra (one per cross-track position, computed on-line) are the average of several hundred fitting residuals. They include any instrument effects that are unrelated to molecular scattering and absorption cross sections. The BrO retrieval uses albedo- and wavelength-dependent air mass factors (AMFs), which have been pre-computed using climatological BrO profiles. The wavelength-dependent AMF is applied pre-fit to the BrO cross-sections so that vertical column densities are retrieved directly. We validate OMI BrO with ground-based measurements from three stations (Harestua, Lauder, and Barrow) and with chemical transport model simulations. We analyze the global distribution and seasonal variation of BrO and investigate BrO emissions from volcanoes and salt lakes.

  1. View of the Salt Lake City, Utah area

    NASA Image and Video Library

    1973-08-30

    SL3-22-0322 (July-September 1973) --- An oblique view of the Salt Lake City, Utah area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Approximately two-thirds of the Great Salt Lake is in view. The smaller body of water south of Salt Lake City is Utah Lake. The Wasatch Range is on the east side of the Great Salt Lake. Federal agencies participating with NASA on the EREP project are the Departments of Agriculture, Commerce, Interior, the Environmental Protection Agency and the Corps of Engineers. All EREP photography is available to the public through the Department of Interior?s Earth Resources Observations Systems Data Center, Sioux Falls, South Dakota, 57198. Photo credit: NASA

  2. Anaglyph, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This anaglyph image provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    The stereoscopic effect of this anaglyph was created by first draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model and then generating two differing perspectives, one for each eye. When viewed through special glasses, the result is a vertically exaggerated view of Earth's surface in its full three dimensions. Anaglyph glasses cover the left eye with a red filter and cover the right eye with a blue filter.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM

  3. Particle formation above natural and simulated salt lakes

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina; Ofner, Johannes; Sattler, Tobias; Krause, Torsten; Zetzsch, Cornelius; Held, Andreas

    2013-04-01

    Western Australia was originally covered by natural eucalyptus forests, but land-use has changed considerably after large scale deforestation from 1950 to 1970. Thus, the ground-water level rose and brought dissolved salts and minerals to the surface. Nowadays, Western Australia is known for a great plenty of salt lakes with pH levels reaching from 2.5 to 7.1. The land is mainly used for wheat farming and livestock and becomes drier due to the lack of rain periods. One possible reason could be the formation of ultrafine particles from salt lakes, which increases the number of cloud condensation nuclei and thus potentially suppresses precipitation. Several field campaigns have been conducted between 2006 and 2011 with car-based and airborne measurements, where new particle formation has been observed and has been related to the Western Australian salt lakes (Junkermann et al., 2009). To identify particle formation directly above the salt lakes, a 1.5 m³ Teflon chamber was set up above several lakes in 2012. Inside the chamber, photochemistry may take place whereas mixing through wind or advection of already existing particles is prevented. Salt lakes with a low pH level lead to strongly increased aerosol formation. As salt lakes have been identified as a source for reactive halogen species (RHS; Buxmann et al., 2012) and RHS seem to interact with precursors of secondary organic aerosol (SOA), they could be producers of halogen induced secondary organic aerosol (XOA) (Ofner et al., 2012). As reference experiments, laboratory based aerosol smog-chamber runs were performed to examine XOA formation under atmospheric conditions using simulated sunlight and the chemical composition of a chosen salt lake. After adding α-pinene to the simulated salt lake, a strong nucleation event began in the absence of ozone comparable to the observed events in Western Australia. First results from the laboratory based aerosol smog-chamber experiments indicate a halogen-induced aerosol

  4. Tree-ring reconstruction of the level of Great Salt Lake, USA

    Treesearch

    R. Justin DeRose; Shih-Yu Wang; Brendan M. Buckley; Matthew F. Bekker

    2014-01-01

    Utah's Great Salt Lake (GSL) is a closed-basin remnant of the larger Pleistocene-age Lake Bonneville. The modern instrumental record of the GSL-level (i.e. elevation) change is strongly modulated by Pacific Ocean coupled ocean/atmospheric oscillations at low frequency, and therefore reflects the decadalscale wet/dry cycles that characterize the region. A within-...

  5. Added value from 576 years of tree-ring records in the prediction of the Great Salt Lake level

    Treesearch

    Robert R. Gillies; Oi-Yu Chung; S.-Y. Simon Wang; R. Justin DeRose; Yan Sun

    2015-01-01

    Predicting lake level fluctuations of the Great Salt Lake (GSL) in Utah - the largest terminal salt-water lake in the Western Hemisphere - is critical from many perspectives. The GSL integrates both climate and hydrological variations within the region and is particularly sensitive to low-frequency climate cycles. Since most hydroclimate variable records cover...

  6. Hydrologic and climatologic data, 1965, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District. contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Release No. 11 contains data collected through 1964. This release contains climatologic and surface-water data for the 1965 water year (October 1964 to September 1965) and ground-water data collected during the 1965 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  7. Hydrologic and climatologic data, 1966, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1967-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11 and 12 contain data collected through 1965. This release contains climatologic and surface-water data for the 1966 water year (October 1965 to September 1966) and groundwater data collected during the 1966 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  8. Salt lakes of Western Australia - Natural abiotic formation of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Krause, T.; Studenroth, S.; Mulder, I.; Tubbesing, C.; Kotte, K.; Ofner, J.; Junkermann, W.; Schöler, H. F.

    2012-04-01

    Western Australia is a semi-/arid region that is heavily influenced by global climate change and agricultural land use. The area is known for its many ephemeral saline and hypersaline lakes with a wide range of hydrogeochemical parameters that have gradually changed over the last fifty years. Historically, the region was covered by eucalyptus trees and shrubs, but was cleared mainly within 10 years after WWII to make room for wheat and live stock. After the clearance of the deep rooted native plants the groundwater started to rise, bringing increased amounts of dissolved salts and minerals to the surface and discharging them into streams and lakes. Thus most of Western Australia is influenced by secondary salinisation (soil salting) [1]. Another problem is that the discharged minerals affect the pH of ground and surface water, which ranges from acidic to slightly basic. During the 2011 campaign surface water was measured with a pH between 2.5 and 7.1. Another phenomenon in Western Australia is the decrease of rainfall over the last decades assumed to be linked to the secondary salinisation. The rising saline and mineral rich groundwater increases the biotical and abiotical activity of the salt lakes. Halogenated and non-halogenated volatile organic compounds emitted from those lakes undergo fast oxidation and chemical reactions to form small particles modifying cloud microphysics and thus suppressing rain events [2]. Our objective is to gain a better understanding of this extreme environment with its hypersaline acidic lakes with regard to the potential abiotic formation of volatile organic compounds and its impact on the local climate. In spring 2011 fifty-three sediment samples from ten salt lakes in the Lake King region where taken, freeze-dried and ground. In order to simulate the abiotic formation of volatile organic compounds the soil samples were resuspended with water in gas-tight headspace vials. The headspace was measured using a purge and trap GC

  9. The Younger Dryas phase of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Oviatt, Charles G.; Miller, D.M.; McGeehin, J.P.; Zachary, C.; Mahan, S.

    2005-01-01

    Field investigations at the Public Shooting Grounds (a wildlife-management area on the northeastern shore of Great Salt Lake) and radiocarbon dating show that the Great Salt Lake rose to the Gilbert shoreline sometime between 12.9 and 11.2 cal ka. We interpret a ripple-laminated sand unit exposed at the Public Shooting Grounds, and dated to this time interval, as the nearshore sediments of Great Salt Lake deposited during the formation of the Gilbert shoreline. The ripple-laminated sand is overlain by channel-fill deposits that overlap in age (11.9-11.2 cal ka) with the sand, and by wetland deposits (11.1 to 10.5 cal ka). Consistent accelerator mass spectrometry radiocarbon ages were obtained from samples of plant fragments, including those of emergent aquatic plants, but mollusk shells from spring and marsh deposits yielded anomalously old ages, probably because of a variable radiocarbon reservoir effect. The Bonneville basin was effectively wet during at least part of the Younger Dryas global-cooling interval, however, conflicting results from some Great Basin locations and proxy records indicate that the regional effects of Younger Dryas cooling are still not well understood. ?? 2005 Elsevier B.V. All rights reserved.

  10. Particle formation above natural and simulated salt lakes

    NASA Astrophysics Data System (ADS)

    Kamilli, Katharina A.; Ofner, Johannes; Sattler, Tobias; Krause, Torsten; Held, Andreas

    2014-05-01

    Originally, Western Australia was covered with Eucalyptus trees. Large scale deforestation for agricultural purposes led to rising ground water levels and brought dissolved salts and minerals to the surface. Nowadays, Western Australia is known for a great plenty of salt lakes with pH levels reaching from 2.5 to 7.1. The land is mainly used for wheat farming and livestock and becomes drier due to the lack of rain periods. One possible reason could be the formation of ultrafine particles from salt lakes, which increases the number of cloud condensation nuclei, and thus potentially suppresses precipitation. Several field campaigns have been conducted between 2006 and 2011 with car-based and airborne measurements, where new particle formation has been observed and has been related to the Western Australian salt lakes (Junkermann et al., 2009). To identify particle formation directly above the salt lakes, a 2.35 m³ PTFE chamber was set up above several lakes in 2012 and 2013. Inside the chamber, photochemistry may take place whereas mixing through wind or advection of already existing particles is prevented. Salt lakes with a low pH level led to strongly increased aerosol formation. Also, the dependence on meteorological conditions has been examined. To obtain chemical information of the newly formed particles, during the chamber experiments also aerosol filter samples have been taken. The analysis of the anions by ion chromatography in 2012 showed an 8 to 17 times higher concentration of Cl- than SO42-, which led to the assumption that particle formation may have been influenced by halogens. As reference experiments, laboratory based aerosol smog-chamber runs were performed to examine halogen induced aerosol formation under atmospheric conditions using simulated sunlight and the simplified chemical composition of a salt lake. The mixture included FeSO4, NaCl and Na2SO4. After adding α-pinene to the simulated salt lake, a strong nucleation event began comparable to

  11. Stereo Pair, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This image pair provides a stereoscopic map view of north central Utah that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling and the nearby Snowbasin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City ski resort hosts the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    This stereoscopic image was generated by draping a Landsat satellite image over a Shuttle Radar Topography Mission digital elevation model. Two differing perspectives were then calculated, one for each eye. They can be seen in 3-D by viewing the left image with the right eye and the right image with the left eye (cross-eyed viewing or by downloading and printing the image pair and viewing them with a stereoscope. When stereoscopically merged, the result is a vertically exaggerated view of Earth's surface in its full three dimensions.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture

  12. Great Salt Lake, Utah, USA

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  13. Great Salt Lake, Utah, USA

    NASA Image and Video Library

    1990-03-04

    As seen from space, the Great Salt Lake, Utah, USA (41.5N, 112.5W) appears as two separate bodies of water with a narrow divider in the middle. At the turn of the century, a railroad bridge without culverts, was built across the lake and ever since, the water and salinity levels have been uneqal on either side. Fed by snowmelt from the nearby Wasatch Mountains, the lake in recent years has had record high water levels, threatening to flood the local areas.

  14. 75 FR 9476 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of intent. SUMMARY... be prepared for a proposed transportation improvement project in Salt Lake County, Utah. FOR FURTHER... 9A, Salt Lake City, UT 84118, Telephone: (801) 963-0182, E-mail: [email protected] . The Utah...

  15. Geochemical evolution of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Jones, B.F.; Naftz, D.L.; Spencer, R.J.; Oviatt, Charles G.

    2009-01-01

    The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays. ?? U.S. Geological Survey 2008.

  16. 75 FR 22892 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), USDOT. ACTION: Notice of Intent. SUMMARY... be prepared for a proposed transportation improvement project in Salt Lake County, Utah. FOR FURTHER... 4700 South, Suite 9A, Salt Lake City, UT 84118, telephone (801) 963-0182, e-mail [email protected

  17. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    PubMed

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  18. Mercury and selenium contamination in waterbird eggs and risk to avian reproduction at Great Salt Lake, Utah

    USGS Publications Warehouse

    Ackerman, Joshua T.; Herzog, Mark P.; Hartman, Christopher A.; Isanhart, John P.; Herring, Garth; Vaughn, Sharon; Cavitt, John F.; Eagles-Smith, Collin A.; Browers, Howard; Cline, Chris; Vest, Josh

    2015-01-01

    The wetlands of the Great Salt Lake ecosystem are recognized regionally, nationally, and hemispherically for their importance as breeding, wintering, and migratory habitat for diverse groups of waterbirds. Bear River Migratory Bird Refuge is the largest freshwater component of the Great Salt Lake ecosystem and provides critical breeding habitat for more than 60 bird species. However, the Great Salt Lake ecosystem also has a history of both mercury and selenium contamination, and this pollution could reduce the health and reproductive success of waterbirds. The overall objective of this study was to evaluate the risk of mercury and selenium contamination to birds breeding within Great Salt Lake, especially at Bear River Migratory Bird Refuge, and to identify the waterbird species and areas at greatest risk to contamination. We sampled eggs from 33 species of birds breeding within wetlands of Great Salt Lake during 2010 ̶ 2012 and focused on American avocets (Recurvirostra americana), black-necked stilts (Himantopus mexicanus), Forster’s terns (Sterna forsteri), white-faced ibis (Plegadis chihi), and marsh wrens (Cistothorus palustris) for additional studies of the effects of contaminants on reproduction.

  19. How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

    PubMed Central

    White, James S.; Null, Sarah E.; Tarboton, David G.

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  20. Movement of road salt to a small New Hampshire lake

    USGS Publications Warehouse

    Rosenberry, D.O.; Bukaveckas, P.A.; Buso, D.C.; Likens, G.E.; Shapiro, A.M.; Winter, T.C.

    1999-01-01

    Runoff of road salt from an interstate highway in New Hampshire has led to contamination of a lake and a stream that flows into the lake, in spite of the construction of a diversion berm to divert road salt runoff out of the lake drainage basin. Chloride concentration in the stream has increased by over an order of magnitude during the 23 yr since the highway was opened, and chloride concentration in the lake has tripled. Road salt moves to the lake primarily via the contaminated stream, which provides 53% of all the chloride to the lake and only 3% of the total streamflow to the lake. The stream receives discharge of salty water froth leakage through the diversion berm. Uncontaminated ground water dilutes the stream downstream of the berm. However, reversals of gradient during summer months, likely caused by transpiration from deciduous trees, result in flow of contaminated stream water into the adjacent ground water along the lowest 40-m reach of the stream. This contaminated ground water then discharges into the lake along a 70-m-wide segment of lake shore. Road salt is pervasive in the bedrock between the highway and the lake, but was not detected at all of the wells in the glacial overburden. Of the 500 m of shoreline that could receive discharge of saly ground water directly from the highway, only a 50-m-long segment appears to be contaminated.

  1. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  2. Hydrologic and climatologic data, 1967, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1968-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological Survey.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 contain data collected through 1966. This release contains climatologic and surfacewater data for the 1967 water year (October 1966 to September 1967) and ground-water data collected during the 1967 calendar year. A similar annual release will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  3. Hydrologic and climatologic data, 1968, Salt Lake County, Utah

    USGS Publications Warehouse

    1969-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological SurveyThe investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 and 15 contain data collected through 1967. This release contains climatologic and surface-water data for the 1968 water year (October 1967 to September 1968) and ground-water data collected during the 1968 calendar year. This is the final annual release of basic data for this investigation. Interpretive reports summarizing the results are in preparation. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  4. Volatile selenium flux from the great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.

    2009-01-01

    The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.

  5. Hydrologic and climatologic data collected through 1964, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, and Salt Lake City Chamber of Commerce contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. This basic-data report sets forth climatologic and surface-water data collected by project personnel and others during the water year beginning October 1, 1963, and ending September 30, 1964, and ground-water data collected by project personnel and others for the period July 1, 1963, through December 31, 1964. Included also are some earlier ground-water data not previously published. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables. Data collected during the period of investigation will be published in annual basic-data releases and an interpretative report will be published at the completion of the investigation.

  6. Microbial community structure and diversity within hypersaline Keke Salt Lake environments.

    PubMed

    Han, Rui; Zhang, Xin; Liu, Jing; Long, Qifu; Chen, Laisheng; Liu, Deli; Zhu, Derui

    2017-11-01

    Keke Salt Lake is located in the Qaidamu Basin of China. It is a unique magnesium sulfate-subtype hypersaline lake that exhibits a halite domain ecosystem, yet its microbial diversity has remained unstudied. Here, the microbial community structure and diversity was investigated via high-throughput sequencing of the V3-V5 regions of 16S rRNA genes. A high diversity of operational taxonomic units was detected for Bacteria and Archaea (734 and 747, respectively), comprising 21 phyla, 43 classes, and 201 genera of Bacteria and 4 phyla, 4 classes, and 39 genera of Archaea. Salt-saturated samples were dominated by the bacterial genera Bacillus (51.52%-58.35% relative abundance), Lactococcus (9.52%-10.51%), and Oceanobacillus (8.82%-9.88%) within the Firmicutes phylum (74.81%-80.99%), contrasting with other hypersaline lakes. The dominant Archaea belonged to the Halobacteriaceae family, and in particular, the genera (with an abundance of >10% of communities) Halonotius, Halorubellus, Halapricum, Halorubrum, and Natronomonas. Additionally, we report the presence of Nanohaloarchaeota and Woesearchaeota in Qinghai-Tibet Plateau lakes, which has not been previously documented. Total salinity (especially Mg 2+ , Cl - , Na + , and K + ) mostly correlated with taxonomic distribution across samples. These results expand our understanding of microbial resource utilization within hypersaline lakes and the potential adaptations of dominant microorganisms that allow them to inhabit such environments.

  7. Energy Efficient Buildings, Salt Lake County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model amore » third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through

  8. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  9. An Analysis of the Energy, Water, and Salt Balance of a Saline Lake in the Sandhills Region of Semi-Arid Western Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Ong, J.; Lenters, J. D.; Zlotnik, V. A.; Jones, S.

    2009-12-01

    temperatures, causing the mass transfer formulation to break down. Finally, we find that interannual variations in the energy, water, and salt balance of the lake are significant, suggesting that long-term monitoring of lakes in the Sandhills (and similar semi-arid regions) is required in order to establish a “representative” record.

  10. Cultural Meromixis: the Influence of Road Salt Deicers on Two Urban Kettle Lakes

    NASA Astrophysics Data System (ADS)

    Koretsky, C.; Sibert, R.; Wyman, D. A.; Griffey, D.; Krishnamurthy, R. V.

    2014-12-01

    The increasing global use of road salt deicers has led to an influx of salts, particularly NaCl and CaCl2, into urban surface waters. This influx has led to documented salinization of drinking water supplies, as well as damage to ecosystems. There is an increasing recognition that the influx of road salt deciers may also influence the physical mixing of lakes, with dramatic consequences for lake biogeochemistry. In this study, the water column chemistry of two kettle lakes in urban Kalamazoo, MI, USA was monitored for over a year. Woods Lake, an ~9.7 ha, 14 m max depth lake, receives most water from storm water sewers, whereas nearby Asylum Lake, an ~19.8 ha, 15.8 m max depth lake, is primarily groundwater fed. The water columns of both lakes are strongly redox stratified, but exhibit some significant differences in water chemistry. The input of road salt has caused Woods Lake to transition to meromixis, with permanently anoxic bottom waters and significant accumulations of dissolved Mn(II), Fe(II), NH3, PO4-3 and sometimes HS- in the hypolimnion. In contrast, Asylum Lake appears to be monomictic, with turnover occurring in fall, but not spring. During most seasons, the hypolimnion of Asylum Lake has significant levels of dissolved Mn(II), NH3, PO4-3, and sometimes HS-, but dissolved Fe(II) remains below detection limits. A comparison of δ18O and δD with the local meteoric water line demonstrates that both lakes undergo significant evaporation. Woods Lake is considerably more influenced by evaporation than Asylum Lake, presumably due to the longer residence time of water in Woods Lake. The longer residence time, together with the smaller volume of water in Woods Lake, likely explains the more rapid transition to meromixis compared to Asylum Lake. This study demonstrates that road salt deicers can significantly influence the biogeochemistry and physical function of urban lakes, and in some cases can result in dimictic lakes transitioning to cultural meromixis.

  11. Salt Lake City, Utah 2002

    NASA Image and Video Library

    2017-12-08

    Salt Lake City, Utah, Winter 2001 The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake. This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system. The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands

  12. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  13. Physicochemical studies on Uburu Salt Lake Ebonyi State-Nigeria.

    PubMed

    Akubugwo, I E; Ofoegbu, C J; Ukwuoma, C U

    2007-09-15

    Physicochemical properties of soil (sediment) and water from Uburu salt lake were evaluated and compared with control soil and surface water from the same community. Results showed significant (p < 0.05) higher values for the heavy metals cadmium, chromium, copper, lead and zinc in the lake water relative to the control. The values of these metals in the lake soil (sediments) however, were significantly (p < 0.05) lower than the control soil. Similar significant (p < 0.05) elevations were observed in the lake water temperature, salinity, pH, calcium, magnesium, sodium, potassium, nitrate, carbonate, sulphate and phosphate levels compared to the control. Significant (p < 0.05) changes were also noted in the lake soil's pH, exchangeable acidity, nitrogen, organic carbon, calcium and magnesium levels. Also the soil texture was affected relative to the control. In a number of cases, the values of the studied parameters were higher than the permissible WHO standards. In view of these findings, cautious use of the salt lake soil and water is advocated.

  14. Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine. Part I: Selected hydrologic data

    USGS Publications Warehouse

    Hahl, D.C.; Mitchell, C.G.

    1963-01-01

    This report presents the data collected for a study of the dissolved-mineral load contributed by surficial sources to Great Salt Lake, Utah. The study was conducted by the U.S. Geological Survey in cooperation with the University of Utah during the period from July 1959 through June 1962, and is part of an overall investigation of the Great Salt Lake basin by the University. Financial support for the study was provided by the U.S. Geological Survey and by the University of Utah Research Fund and Uniform School Fund. Some of the data presented in this report were obtained as part of cooperative programs between the Geological Survey and other agencies.

  15. 77 FR 49712 - Amendment to Class B Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-17

    ... operating in the vicinity of SLC. The modified Class B airspace areas were designed to ensure all instrument... final Salt Lake City Class B airspace design provides operational and safety benefits to all airspace... Salt Lake City Class B airspace design also incorporated reductions to the northern and southern...

  16. Perspective View with Landsat Overlay, Salt Lake City Olympics Venues, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This computer generated perspective image provides a northward looking 'view from space' that includes all of these Olympic sites. In the south, next to Utah Lake, Provo hosts the ice hockey competition. In the north, northeast of the Great Salt Lake, Ogden hosts curling, and the nearby Snow Basin ski area hosts the downhill events. In between, southeast of the Great Salt Lake, Salt Lake City hosts the Olympic Village and the various skating events. Further east, across the Wasatch Mountains, the Park City area ski resorts host the bobsled, ski jumping, and snowboarding events. The Winter Olympics are always hosted in mountainous terrain. This view shows the dramatic landscape that makes the Salt Lake City region a world-class center for winter sports.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM) and a Landsat 5 satellite image mosaic. Topographic expression is exaggerated four times.

    For a full-resolution, annotated version of this image, please select Figure 1, below: [figure removed for brevity, see original site]

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  17. Studies of Quaternary saline lakes-III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-01-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallizations and transformations, and they documented the sources and temperatures of waters involved in the reactions. Salts first crystallized as floating rafts on the lake surface. Natron and mirabilite, salts whose solubilities decrease greatly with lowering temperatures, crystallized late at night in winter, when surface-water temperatures reached their minima; trona, nahcolite, burkeite, and halite, salts with solubilities less sensitive to temperature, crystallized during the afternoon in summer, when surface salinities reached their maxima. However, different temperatures were generally associated with crystallization (at the surface) and accumulation (on the lake floor) because short-term temperature changes were transmitted to surface and bottom waters at different rates. Consequently, even when solubilities were exceeded at the surface, salts were preserved or not as a function of bottom-water temperatures. Halite, a nearly temperature-insensitive salt, was always preserved. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 ?? 106 tons of CO2 was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After

  18. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  19. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    USGS Publications Warehouse

    Domagalski, Joseph L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of Recent sediments, representing up to 1000 years of accumulation, were collected from three closed basin lakes (Mono Lake, CA, Walker Lake, NV, and Great Salt Lake, UT) to assess the effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO4 brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/cc) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. The organic carbon concentration stabilizes at 1.1 wt%. Mono Lake is an alkaline (Na-CO3-Cl-SO4) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Depletion of pore-fluid sulfate, near l m of core, results in a much higher accumulation of organic carbon, approximately 6 wt%. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies (13C) of humic substances and dissolved organic carbon provide information on the source of the Recent sedimentary organic carbon (aquatic vs. terrestrial), its relative state of decomposition, and its chemical structure. The spectra suggest an algal origin with little terrestrial signature at all three lakes. This is indicated by the ratio of aliphatic to

  20. Geochemistry of great Salt Lake, Utah II: Pleistocene-Holocene evolution

    USGS Publications Warehouse

    Spencer, R.J.; Eugster, H.P.; Jones, B.F.

    1985-01-01

    Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation. Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite. Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl- and SO42- are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input. ?? 1985.

  1. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  2. Large-eddy simulations of a Salt Lake Valley cold-air pool

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2017-09-01

    Persistent cold-air pools are often poorly forecast by mesoscale numerical weather prediction models, in part due to inadequate parameterization of planetary boundary-layer physics in stable atmospheric conditions, and also because of errors in the initialization and treatment of the model surface state. In this study, an improved numerical simulation of the 27-30 January 2011 cold-air pool in Utah's Great Salt Lake Basin is obtained using a large-eddy simulation with more realistic surface state characterization. Compared to a Weather Research and Forecasting model configuration run as a mesoscale model with a planetary boundary-layer scheme where turbulence is highly parameterized, the large-eddy simulation more accurately captured turbulent interactions between the stable boundary-layer and flow aloft. The simulations were also found to be sensitive to variations in the Great Salt Lake temperature and Salt Lake Valley snow cover, illustrating the importance of land surface state in modelling cold-air pools.

  3. Intelligent transportation systems at the 2002 Salt Lake City Olympic Games : traffic management and traveler information case study

    DOT National Transportation Integrated Search

    2003-04-01

    Utah Department of Transportation (UDOT) contracted for a series of evaluation efforts associated with the development, deployment, and operation of their Intelligent Transportation Systems (ITS) in the Salt Lake City Region, which are known as the C...

  4. Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Goldstein, Steven L.; Garcia-Veigas, Javier; Levy, Elan; Kushnir, Yochanan; Stein, Mordechai; Lazar, Boaz

    2017-04-01

    Thick halite intervals recovered by the Dead Sea Deep Drilling Project cores show evidence for severely arid climatic conditions in the eastern Mediterranean during the last three interglacials. In particular, the core interval corresponding to the peak of the last interglacial (Marine Isotope Stage 5e or MIS 5e) contains ∼30 m of salt over 85 m of core length, making this the driest known period in that region during the late Quaternary. This study reconstructs Dead Sea lake levels during the salt deposition intervals, based on water and salt budgets derived from the Dead Sea brine composition and the amount of salt in the core. Modern water and salt budgets indicate that halite precipitates only during declining lake levels, while the amount of dissolved Na+ and Cl- accumulates during wetter intervals. Based on the compositions of Dead Sea brines from pore waters and halite fluid inclusions, we estimate that ∼12-16 cm of halite precipitated per meter of lake-level drop. During periods of halite precipitation, the Mg2+ concentration increases and the Na+/Cl- ratio decreases in the lake. Our calculations indicate major lake-level drops of ∼170 m from lake levels of 320 and 310 m below sea level (mbsl) down to lake levels of ∼490 and ∼480 mbsl, during MIS 5e and the Holocene, respectively. These lake levels are much lower than typical interglacial lake levels of around 400 mbsl. These lake-level drops occurred as a result of major decreases in average fresh water runoff, to ∼40% of the modern value (pre-1964, before major fresh water diversions), reflecting severe droughts during which annual precipitation in Jerusalem was lower than 350 mm/y, compared to ∼600 mm/y today. Nevertheless, even during salt intervals, the changes in halite facies and the occurrence of alternating periods of halite and detritus in the Dead Sea core stratigraphy reflect fluctuations between drier and wetter conditions around our estimated average. The halite intervals include

  5. Late quaternary geomorphology of the Great Salt Lake region, Utah, and other hydrographically closed basins in the western United States: A summary of observations

    NASA Technical Reports Server (NTRS)

    Currey, Donald R.

    1989-01-01

    Attributes of Quaternary lakes and lake basins which are often important in the environmental prehistory of semideserts are discussed. Basin-floor and basin-closure morphometry have set limits on paleolake sizes; lake morphometry and basin drainage patterns have influenced lacustrine processes; and water and sediment loads have influenced basin neotectonics. Information regarding inundated, runoff-producing, and extra-basin spatial domains is acquired directly from the paleolake record, including the littoral morphostratigraphic record, and indirectly by reconstruction. Increasingly detailed hypotheses regarding Lake Bonneville, the largest late Pleistocene paleolake in the Great Basin, are subjects for further testing and refinement. Oscillating transgression of Lake Bonneville began about 28,000 yr B.P.; the highest stage occurred about 15,000 yr B.P., and termination occurred abruptly about 13,000 yr B.P. A final resurgence of perennial lakes probably occurred in many subbasins of the Great Basin between 11,000 and 10,000 yr B.P., when the highest stage of Great Salt Lake (successor to Lake Bonneville) developed the Gilbert shoreline. The highest post-Gilbert stage of Great Salt Lake, which has been one of the few permanent lakes in the Great Basin during Holocene time, probably occurred between 3,000 and 2,000 yr B.P.

  6. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a late spring view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution

  7. Radionuclides and mercury in the salt lakes of the Crimea

    NASA Astrophysics Data System (ADS)

    Mirzoyeva, Natalya; Gulina, Larisa; Gulin, Sergey; Plotitsina, Olga; Stetsuk, Alexandra; Arkhipova, Svetlana; Korkishko, Nina; Eremin, Oleg

    2015-11-01

    90Sr concentrations, resulting from the Chernobyl NPP accident, were determined in the salt lakes of the Crimea (Lakes Kiyatskoe, Kirleutskoe, Kizil-Yar, Bakalskoe and Donuzlav), together with the redistribution between the components of the ecosystems. The content of mercury in the waters of the studied reservoirs was also established. Vertical distributions of natural radionuclide activities (238U, 232Th, 226Ra, 210Pb, 40K) and anthropogenic 137Cs concentrations (as radiotracers) were determined in the bottom sediments of the Koyashskoe salt lake (located in the south-eastern Crimea) to evaluate the longterm dynamics and biogeochemical processes. Radiochemical and chemical analysis was undertaken and radiotracer and statistical methods were applied to the analytical data. The highest concentrations of 90Sr in the water of Lake Kiyatskoe (350.5 and 98.0 Bq/m3) and Lake Kirleutskoe (121.3 Bq/m3) were due to the discharge of the Dnieper water from the North-Crimean Canal. The high content of mercury in Lake Kiyatskoe (363.2 ng/L) and in seawater near Lake Kizil-Yar (364 ng/L) exceeded the maximum permissible concentration (3.5 times the maximum). Natural radionuclides provide the main contribution to the total radioactivity (artificial and natural combined) in the bottom sediments of Lake Koyashskoe. The significant concentration of 210Pb in the upper layer of bottom sediments of the lake indicates an active inflow of its parent radionuclide—gaseous 222Rn from the lower layers of the bottom sediment. The average sedimentation rates in Lake Koyashskoe, determined using 210Pb and 137Cs data, were 0.117 and 0.109 cm per year, respectively.

  8. Evaluation of Water Quality Change of Brackish Lake in Snowy Cold Regions Accompanying Climate Change

    NASA Astrophysics Data System (ADS)

    Kudo, K.; Hasegawa, H.; Nakatsugawa, M.

    2017-12-01

    This study addresses evaluation of water quality change of brackish lake based on the estimation of hydrological quantities resulting from long-term hydrologic process accompanying climate change. For brackish lakes, such as Lake Abashiri in Eastern Hokkaido, there are concerns about water quality deterioration due to increases in water temperature and salinity. For estimating some hydrological quantities in the Abashiri River basin, including Lake Abashiri, we propose the following methods: 1) MRI-NHRCM20, a regional climate model based on the Representative Concentration Pathways adopted by IPCC AR5, 2) generalized extreme value distribution for correcting bias, 3) kriging adopted variogram for downscaling and 4) Long term Hydrologic Assessment model considering Snow process (LoHAS). In addition, we calculate the discharge from Abashiri River into Lake Abashiri by using estimated hydrological quantities and a tank model, and simulate impacts on water quality of Lake Abashiri due to climate change by setting necessary conditions, including the initial conditions of water temperature and water quality, the pollution load from the inflow rivers, the duration of ice cover and salt pale boundary. The result of the simulation of water quality indicates that climate change is expected to raise the water temperature of the lake surface by approximately 4°C and increase salinity of surface of the lake by approximately 4psu, also if salt pale boundary in the lake raises by approximately 2-m, the concentration of COD, T-N and T-P in the bottom of the lake might increase. The processes leading to these results are likely to be as follows: increased river water flows in along salt pale boundary in lake, causing dynamic flow of surface water; saline bottom water is entrained upward, where it mixes with surface water; and the shear force acting at salt pale boundary helps to increase the supply of salts from bottom saline water to the surface water. In the future, we will

  9. Sources of inflow and nature of redistribution of 90Sr in the salt lakes of the Crimea.

    PubMed

    Mirzoyeva, N Yu; Arkhipova, S I; Kravchenko, N V

    2018-08-01

    At the first time for the period after the Chernobyl NPP accident the nature of the redistribution of the 90 Sr concentrations in components of the ecosystems of the salt lakes of the Crimea were identified and described. Concentration of 90 Sr in water of the salt lakes depends on the sources of the inflow this radionuclide into aquatic ecosystems and salinity level of lakes water. Until April 2014 the flow of the Dnieper river water through the Northern-Crimean canal was more important factor of contamination of salt lakes of the Crimea by 90 Sr, than atmospheric fallout of this radionuclide after the Chernobyl NPP accident. Concentrations of 90 Sr in water of the salt lakes of the Crimea exceeded 2.4-156.5 times its concentrations in their bottom sediments. The 90 Sr dose commitments to hydrophytes, which were sampled from the salt lakes of the Crimea have not reached values which could impact them during entire the after-accident period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Great Salt Lake Microbial Communities: The Foundation of a Terminal Lake Ecosystem

    NASA Astrophysics Data System (ADS)

    Baxter, B. K.; Acord, M.; Riddle, M. R.; Avery, B.

    2006-12-01

    Great Salt Lake (GSL) is a natural hypersaline ecosystem and a terminal lake of substantial size. The dramatic fluctuation in water levels and salinity creates an ecological backdrop selective for organisms with a high degree of adaptability. At the macro level, the biodiversity of the GSL ecosystem is simple, due to the limitations of an extreme saline environment: Birds eat the two invertebrates of the lake, and the invertebrates eat phytoplankton. However, analysis of the microbial level reveals an enormous diversity of species interacting with one another and the ecosystem as a whole. Our cultivation, biochemical tests, microscopy and DNA sequencing yielded data on dozens of isolates. These data demonstrate novel species, and possibly genera, living in the lake. In addition, we have discovered viruses (bacteriophage) that prey on the microorganisms. Preliminary data on bacteria dwelling in the gut of the brine shrimp, Artemia franciscana, link these prokaryotic organisms to the food chain for the first time. All of these results taken together open the door for the discussion of the significance of the microbial level of terminal lake ecosystem, particularly in light of lake water contamination and bioremediation possibilities.

  11. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  12. The Tiberias Basin salt deposits and their effects on lake salinity

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Rosenthal, Eliahu; Möller, Peter; Yellin-Dror, Annat; Guttman, Josef; Siebert, Christian; Magri, Fabien

    2015-04-01

    Lake Tiberias is situated in one of the pull-apart basins comprising the Dead Sea transform. The Tiberias basin extends along the northern boundary of the Lower Jordan Rift Valley (LJRV) which is known for its massive salt deposits, mostly at its southern end, at the Dead Sea basin. Nevertheless, prior to the drilling of Zemah-1 wildcat, drilled close to the southern shores of Lake Tiberias, the Tiberias Basin was considered rather shallow and free of salt deposits (Starinsky, 1974). In 1983, Zemah-1 wildcat penetrated 2.8 km thick sequence of sedimentary and magmatic rocks of which 980m are salt deposits (Marcus et al., 1984). Recent studies, including the presented geophysical investigations, lay out the mechanisms of salt deposition in the Tiberias basin and estimate its abundance. Supported by seismic data, our interpreted cross-sections display relatively thick salt deposits distributed over the entire basin. Since early days of hydrological research in the area, saline springs are known to exist at Lake Tiberias' surroundings. Water temperatures in some of the springs indicate their origin to be at depths of 2-3 km (Simon and Mero, 1992). In the last decade, several studies suggested that the salinity of springs may be attributed, at least partially, to the Zemah-1 salt deposits. Chemical justification was attributed to post-halite minerals which were thought to be present among those deposits. This hypothesis was never verified. Moreover, Möller et al. (2011) presented a calculation contradicting this theory. In addition to the geophysical investigations, numerical models of thermally driven flow, examine the possible fluid dynamics developing near salt deposits below the lake and their interactions with springs along the lakeshore (Magri et al., 2015). It is shown that leached halite is too heavy to reach the surface. However, salt diffusing from shallow salt crest may locally reach the western side of the lakeshore. References Magri, F., N. Inbar

  13. How salt lakes affect atmospheric new particle formation: A case study in Western Australia.

    PubMed

    Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A

    2016-12-15

    New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh -1 . The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to

  14. The springs of Lake Pátzcuaro: chemistry, salt-balance, and implications for the water balance of the lake

    USGS Publications Warehouse

    Bischoff, James L.; Israde-Alcántara, Isabel; Garduno-Monroy, Victor H.; Shanks, Wayne C.

    2004-01-01

    Lake Pa??tzcuaro, the center of the ancient Tarascan civilization located in the Mexican altiplano west of the city of Morelia, has neither river input nor outflow. The relatively constant lake-salinity over the past centuries indicates the lake is in chemical steady state. Springs of the south shore constitute the primary visible input to the lake, so influx and discharge must be via sub-lacustrine ground water. The authors report on the chemistry and stable isotope composition of the springs, deeming them representative of ground-water input. The springs are dominated by Ca, Mg and Na, whereas the lake is dominated by Na. Combining these results with previously published precipitation/rainfall measurements on the lake, the authors calculate the chemical evolution from spring water to lake water, and also calculate a salt balance of the ground-water-lake system. Comparing Cl and ??18O compositions in the springs and lake water indicates that 75-80% of the spring water is lost evaporatively during evolution toward lake composition. During evaporation Ca and Mg are lost from the water by carbonate precipitation. Each liter of spring water discharging into the lake precipitates about 18.7 mg of CaCO3. Salt balance calculations indicate that ground water input to the lake is 85.9??106 m3/a and ground water discharge from the lake is 23.0??106 m3/a. Thus, the discharge is about 27% of the input, with the rest balanced by evaporation. A calculation of time to reach steady-state ab initio indicates that the Cl concentration of the present day lake would be reached in about 150 a. ?? 2004 Elsevier Ltd. All rights reserved.

  15. STS-48 ESC Earth observation of southwestern corner of the Great Salt Lake

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-48 Earth observation of the southwestern corner of the Great Salt Lake, 308 nautical miles below Discovery, Orbiter Vehicle (OV) 103, was provided by the electronic still camera (ESC). While the image is mostly covered with a thin veil of cirrus clouds, many of the surface features can be recognized. The causeway linking the northern tip of the peninsula to the southwest shore of the lake is clearly visible as is the interstate highway. Considerable topographic detail is visible in the snow covered peaks to the south of the lake. The commercial salt pans between the peninsula and the interstate show high contrast with the brightness dependent on the concentration of the brackish water in the pan. Recent heavy rainfall has caused considerable runoff into the lake but the flooding hazard of a few years past no longer exists due to a pumping system that now transfers excess water to the Bonneville Salt Flats. The ESC image was stored on a removable hard disk or small optical disk and

  16. Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear

    NASA Astrophysics Data System (ADS)

    Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor

    2010-05-01

    Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by

  17. RadNet Air Data From Salt Lake City, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Salt Lake City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. The Economic Impact of Ten Cultural Institutions on the Economy of the Salt Lake SMSA.

    ERIC Educational Resources Information Center

    Cwi, David

    The impact of 10 cultural institutions on the Salt Lake City economy was determined by measuring their 1978 direct and indirect financial effects. The institutions are Ballet West, Pioneer Memorial Theatre, Repertory Dance Theatre, Salt Lake City Art Center, Theatre 138, Tiffany's Attic, Utah Museum of Fine Arts, Utah Symphony, Utah Opera Company,…

  19. Selected hydrologic data for Salt Lake Valley, Utah, October 1968 to October 1985

    USGS Publications Warehouse

    Seiler, R.L.

    1986-01-01

    This report contains hydrologic data collected in Salt Lake Valley from October 1968 to October 1985. The report area is bounded by the Wasatch Range on the east, the Oquirrh Mountains on the west, the Traverse Mountains on the south, and the boundary between Davis and Salt Lake Counties on the north. Hely and others (1971) defined two aquifers of major importance in the valley the principal aquifer and the shallow aquifer. The principal aquifer is a source of water for public supply and industry, whereas the shallow aquifer in many places contains water that is contaminated and is unsuitable for public supply (Seiler and Waddell, 1984). Most of the data in this report were collected by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Granger-Hunter Improvement District, Magna Water Co. and Improvement District, City of Midvale, Salt Lake City Department of Public Utilities, City of Sandyr City of South Salt Lake, Taylorsville Bennion Improvement District, City of West Jordan, Holladay Water Company, and White City Water Co. Some of the data were published previously by Hely, Mower, and Horr (1967, 1968, and 1969), lorns, Mower, and Horr (1966a and b), Marine and Price (1963), and Seiler and Waddell (1984).The purpose of this report is to provide hydrologic data for use by the general public and by officials who manage water resources and to supplement interpretive reports for the area. Information about wells, water levels in wells, and the chemical and physical properties of ground water is given in tables 1-4, and the well locations are shown on plate 1.

  20. 76 FR 28074 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Museum of Natural History, Salt Lake City, UT AGENCY: National Park Service, Interior. ACTION: Notice... of the Utah Museum of Natural History, Salt Lake City, UT. The human remains were removed from Snow... sole responsibility of the museum, institution, or Federal agency that has control of the Native...

  1. Issues of scale, location and geologic terrain related to Salt Lake City and Baltimore-Washington metropolitan areas

    USGS Publications Warehouse

    Cleaves, E.T.; Godfrey, A.E.; ,

    2004-01-01

    Planning and development of expanding metropolitan regions require consideration of earth science issues related to issues involving scale, space (location), geologic terrain and physiographic units, and information transfer. This paper explores these matters with examples from the Salt Lake City, Utah area and Mid-Atlantic region of Baltimore-Washington that include water supply and natural hazards (earthquakes, landslides, and sinkholes.) Information transfer methods using physiographic units at national, regional, local and site scales serve to communicate relevant geologic constraint and natural resource information.

  2. 78 FR 45848 - Amendment of Class E Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... Salt Lake City, UT, to accommodate aircraft using Area Navigation (RNAV) Global Positioning System (GPS) and Instrument Landing System (ILS) or Localizer (LOC) standard instrument approach procedures at Salt..., and makes a minor change to the legal description of Class E airspace extending upward from 1,200 feet...

  3. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Córdoba, Argentina)

    PubMed Central

    Stein, Ariel F.

    2016-01-01

    Starting in 2006, a new source of intense salt dust storms developed in Mar Chiquita (Córdoba, Argentina), the largest saline lake in South America. Storms originate from vast mudflats left by a 30-year expansion-retreat cycle of the lake due to changes in the regional rainfall regime. The annual frequency of salt dust storms correlated with the size of the salt mudflats. Events were restricted to the coldest months, and reached up to 800 km from the source. Occurrence of dust storms was associated with specific surface colors and textures easily identifiable in satellite images. High-emission surfaces were characterized by the presence of sodium sulfate hydrous/anhydrous crystals (mirabilite and thenardite), and a superficial and variable water table, which may result in the periodic development of a characteristic “fluffy” surface derived from salt precipitation-dissolution processes. HYSPLIT model simulation estimates a deposition maximum near the sources (of about 2.5 kg/ha/yr), and a decreasing trend from the emission area outwards, except for the relative secondary maximum modeled over the mountain ranges in southern Bolivia and northern Argentina due to an orographic effect. The 2009 total deposition of salt dust generated in Mar Chiquita was estimated at 6.5 million tons. PMID:27258088

  4. Large Salt Dust Storms Follow a 30-Year Rainfall Cycle in the Mar Chiquita Lake (Córdoba, Argentina).

    PubMed

    Bucher, Enrique H; Stein, Ariel F

    2016-01-01

    Starting in 2006, a new source of intense salt dust storms developed in Mar Chiquita (Córdoba, Argentina), the largest saline lake in South America. Storms originate from vast mudflats left by a 30-year expansion-retreat cycle of the lake due to changes in the regional rainfall regime. The annual frequency of salt dust storms correlated with the size of the salt mudflats. Events were restricted to the coldest months, and reached up to 800 km from the source. Occurrence of dust storms was associated with specific surface colors and textures easily identifiable in satellite images. High-emission surfaces were characterized by the presence of sodium sulfate hydrous/anhydrous crystals (mirabilite and thenardite), and a superficial and variable water table, which may result in the periodic development of a characteristic "fluffy" surface derived from salt precipitation-dissolution processes. HYSPLIT model simulation estimates a deposition maximum near the sources (of about 2.5 kg/ha/yr), and a decreasing trend from the emission area outwards, except for the relative secondary maximum modeled over the mountain ranges in southern Bolivia and northern Argentina due to an orographic effect. The 2009 total deposition of salt dust generated in Mar Chiquita was estimated at 6.5 million tons.

  5. a Map Mash-Up Application: Investigation the Temporal Effects of Climate Change on Salt Lake Basin

    NASA Astrophysics Data System (ADS)

    Kirtiloglu, O. S.; Orhan, O.; Ekercin, S.

    2016-06-01

    The main purpose of this paper is to investigate climate change effects that have been occurred at the beginning of the twenty-first century at the Konya Closed Basin (KCB) located in the semi-arid central Anatolian region of Turkey and particularly in Salt Lake region where many major wetlands located in and situated in KCB and to share the analysis results online in a Web Geographical Information System (GIS) environment. 71 Landsat 5-TM, 7-ETM+ and 8-OLI images and meteorological data obtained from 10 meteorological stations have been used at the scope of this work. 56 of Landsat images have been used for extraction of Salt Lake surface area through multi-temporal Landsat imagery collected from 2000 to 2014 in Salt lake basin. 15 of Landsat images have been used to make thematic maps of Normalised Difference Vegetation Index (NDVI) in KCB, and 10 meteorological stations data has been used to generate the Standardized Precipitation Index (SPI), which was used in drought studies. For the purpose of visualizing and sharing the results, a Web GIS-like environment has been established by using Google Maps and its useful data storage and manipulating product Fusion Tables which are all Google's free of charge Web service elements. The infrastructure of web application includes HTML5, CSS3, JavaScript, Google Maps API V3 and Google Fusion Tables API technologies. These technologies make it possible to make effective "Map Mash-Ups" involving an embedded Google Map in a Web page, storing the spatial or tabular data in Fusion Tables and add this data as a map layer on embedded map. The analysing process and map mash-up application have been discussed in detail as the main sections of this paper.

  6. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  7. Microbial Composition and Preliminary Age of Ooids from the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Piazza, O.; Corsetti, F. A.; Stamps, B. W.; Stevenson, B. S.; Bardsley, A.; Hammond, D. E.; Nunn, H. S.; Berelson, W.; Spear, J. R.

    2016-12-01

    Ooids (laminated coated grains) are common in the geologic record in lacustrine and marine systems. Traditionally interpreted as abiogenic precipitates, recent work suggests that microbial metabolism/byproducts may enhance the calcium carbonate precipitation of some ooids. Thus, the processes that govern ooid formation remain enigmatic, making it difficult to assess their significance as biosigntatures and environmental indicators in modern/ancient environments. The Great Salt Lake, Utah, provides a unique environment to assess the microbial community and growth rate of aragonitic ooids. Ooids collected near Antelope Island were first sieved into coarse, medium, and fine size fractions. One aliquot of each fraction was left untreated and another was washed with ethanol to remove the biomass/biofilm from the exterior. The microbial communities of each aliquot and the surrounding lake water were compared using small subunit rRNA gene sequencing. Since 50% of the ooids studied contain nuclei that were fecal pellets from the Great Salt Lake Artemia (brine shrimp), Artemia pellets were also collected and sequenced to compare to the ooids and the lake water. 228Ra/226Ra of ooids and lake water was measured to evaluate ooid age. Preliminary 228Ra/226Ra results indicate that ooid growth has occurred in the last few decades. Alphaproteobacteria, Deltaproteobacteria, Planctomycetes, and Bacteriodetes were the most abundant bacterial taxa present within ooid samples. In contrast, the lake water was significantly different in composition, dominated by the halophilic Halobacteria (Euryarchaeota). Both the treated and untreated ooids had a microbial community that more closely resembled the composition of the Artemia fecal pellets than the Great Salt Lake water. We conclude that 1) preliminary dating using a novel chronometer suggests very recent ooid formation, and 2) nuclei composition may skew the results when investigating ooid microbial communities.

  8. Estimating selenium removal by sedimentation from the Great Salt Lake, Utah

    USGS Publications Warehouse

    Oliver, W.; Fuller, C.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The mass of Se deposited annually to sediment in the Great Salt Lake (GSL) was estimated to determine the significance of sedimentation as a permanent Se removal mechanism. Lake sediment cores were used to qualitatively delineate sedimentation regions (very high to very low), estimate mass accumulation rates (MARs) and determine sediment Se concentrations. Sedimentation regions were defined by comparison of isopach contours of Holocene sediment thicknesses to linear sedimentation rates determined via analysis of 210Pb, 226Ra, 7Be and 137Cs activity in 20 short cores (<5 cm), yielding quantifiable results in 13 cores. MARs were developed via analysis of the same radioisotopes in eight long cores (>10 cm). These MARs in the upper 1-2 cm of each long core ranged from 0.019 to 0.105 gsed/cm2/a. Surface sediment Se concentrations in the upper 1 or 2 cm of each long core ranged from 0.79 to 2.47 mg/kg. Representative MARs and Se concentrations were used to develop mean annual Se removal by sedimentation in the corresponding sedimentation region. The spatially integrated Se sedimentation rate was estimated to be 624 kg/a within a range of uncertainty between 285 and 960 kg/a. Comparison to annual Se loading and other potential removal processes suggests burial by sedimentation is not the primary removal process for Se from the GSL. ?? 2009 Elsevier Ltd.

  9. Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars.

    PubMed

    Ruecker, A; Schröder, C; Byrne, J; Weigold, P; Behrens, S; Kappler, A

    2016-07-01

    Hypersaline lakes are characteristic for Western Australia and display a rare combination of geochemical and mineralogical properties that make these lakes potential analogues for past conditions on Mars. In our study, we focused on the geochemistry and mineralogy of Lake Orr and Lake Whurr. While both lakes are poor in organic carbon (<1%), the sediments' pH values differ and range from 3.8 to 4.8 in Lake Orr and from 5.4 to 6.3 in Lake Whurr sediments. Lake Whurr sediments were dominated by orange and red sediment zones in which the main Fe minerals were identified as hematite, goethite, and tentatively jarosite and pyrite. Lake Orr was dominated by brownish and blackish sediments where the main Fe minerals were goethite and another paramagnetic Fe(III)-phase that could not be identified. Furthermore, a likely secondary Fe(II)-phase was observed in Lake Orr sediments. The mineralogy of these two salt lakes in the sampling area is strongly influenced by events such as flooding, evaporation, and desiccation, processes that explain at least to some extent the observed differences between Lake Orr and Lake Whurr. The iron mineralogy of Lake Whurr sediments and the high salinity make this lake a suitable analogue for Meridiani Planum on Mars, and in particular the tentative identification of pyrite in Lake Whurr sediments has implications for the interpretation of the Fe mineralogy of Meridiani Planum sediments. Western Australia-Salt lakes-Jarosite-Hematite-Pyrite-Mars analogue. Astrobiology 16, 525-538.

  10. Salt Lake Skills Center Handicapped Advocacy Program. Summary Report.

    ERIC Educational Resources Information Center

    Hall, Bo; Armstrong, Terry L.

    The Handicapped Advocacy Program (HAP) is an advocacy service for individuals with disabilities who are sponsored in skills training by the Utah Division of Rehabilitation Services (DRS). It has developed a system whereby DRS clients can be tracked throughout their tenure at the Salt Lake Skills Center. Other services include Skills Center…

  11. Selenium mass balance in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Naftz, D.L.

    2009-01-01

    A mass balance for Se in the south arm of the Great Salt Lake was developed for September 2006 to August 2007 of monitoring for Se loads and removal flows. The combined removal flows (sedimentation and volatilization) totaled to a geometric mean value of 2079??kg Se/yr, with the estimated low value being 1255??kg Se/yr, and an estimated high value of 3143??kg Se/yr at the 68% confidence level. The total (particulates + dissolved) loads (via runoff) were about 1560??kg Se/yr, for which the error is expected to be ?? 15% for the measured loads. Comparison of volatilization to sedimentation flux demonstrates that volatilization rather than sedimentation is likely the major mechanism of selenium removal from the Great Salt Lake. The measured loss flows balance (within the range of uncertainties), and possibly surpass, the measured annual loads. Concentration histories were modeled using a simple mass balance, which indicated that no significant change in Se concentration was expected during the period of study. Surprisingly, the measured total Se concentration increased during the period of the study, indicating that the removal processes operate at their low estimated rates, and/or there are unmeasured selenium loads entering the lake. The selenium concentration trajectories were compared to those of other trace metals to assess the significance of selenium concentration trends. ?? 2008 Elsevier B.V.

  12. 78 FR 6832 - Notice of Mailing Address Change for the Utah State Office, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-31

    ...The mailing address for the Bureau of Land Management (BLM), Utah State Office, in Salt Lake City, Utah, will be changing from P.O. Box 45155-0155 to 440 West 200 South, Suite 500, Salt Lake City, Utah 84101-1345. The proposed date will be on or about February 1, 2013. The office location address remains the same.

  13. Changes in Rongbuk lake and Imja lake in the Everest region of Himalaya

    NASA Astrophysics Data System (ADS)

    Chen, W.; Doko, T.; Liu, C.; Ichinose, T.; Fukui, H.; Feng, Q.; Gou, P.

    2014-12-01

    The Himalaya holds the world record in terms of range and elevation. It is one of the most extensively glacierized regions in the world except the Polar Regions. The Himalaya is a region sensitive to climate change. Changes in the glacial regime are indicators of global climate changes. Since the second half of the last century, most Himalayan glaciers have melted due to climate change. These changes directly affected the changes of glacial lakes in the Himalayan region due to the glacier retreat. New glacial lakes are formed, and a number of them have expanded in the Everest region of the Himalayas. This paper focuses on the two glacial lakes which are Imja Lake, located at the southern slope, and Rongbuk Lake, located at the northern slope in the Mt. Everest region, Himalaya to present the spatio-temporal changes from 1976 to 2008. Topographical conditions between two lakes were different (Kruskal-Wallis test, p < 0.05). Rongbuk Lake was located at 623 m higher than Imja Lake, and radiation of Rongbuk Lake was higher than the Imja Lake. Although size of Imja Lake was larger than the Rongbuk Lake in 2008, the growth speed of Rongbuk Lake was accelerating since 2000 and exceeds Imja Lake in 2000-2008. This trend of expansion of Rongbuk Lake is anticipated to be continued in the 21st century. Rongbuk Lake would be the biggest potential risk of glacial lake outburst flood (GLOF) at the Everest region of Himalaya in the future.

  14. Salt Lake City, Utah, Winter 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This simulated natural color image presents a snowy, winter view of north central Utah that includes all of the Olympic sites. The image extends from Ogden in the north, to Provo in the south; and includes the snow-capped Wasatch Mountains and the eastern part of the Great Salt Lake.

    This image was acquired on February 8, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, along-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal

  15. Salt Lake City, Utah, Perspective View

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The 2002 Winter Olympics are hosted by Salt Lake City at several venues within the city, in nearby cities, and within the adjacent Wasatch Mountains. This 3-D perspective view, in simulated natural colors, presents a late spring view over Salt Lake City towards the snow-capped Wasatch Mountains to the east. The image was created by draping ASTER image data over digital topography data from the US Geological Survey's National Elevation Data.

    This image was acquired on May 28, 2000 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation

  16. Long-distance flights and high-risk breeding by nomadic waterbirds on desert salt lakes.

    PubMed

    Pedler, Reece D; Ribot, Raoul F H; Bennett, Andrew T D

    2018-02-01

    Understanding and conserving mobile species presents complex challenges, especially for animals in stochastic or changing environments. Nomadic waterbirds must locate temporary water in arid biomes where rainfall is highly unpredictable in space and time. To achieve this they need to travel over vast spatial scales and time arrival to exploit pulses in food resources. How they achieve this is an enduring mystery.  We investigated these challenges in the colonial-nesting Banded Stilt (Cladorhynchus leucocephalus), a nomadic shorebird of conservation concern. Hitherto, Banded Stilts were hypothesized to have only 1-2 chances to breed during their long lifetime, when flooding rain fills desert salt lakes, triggering mass-hatching of brine shrimp. Over 6 years, we satellite tagged 57 individuals, conducted 21 aerial surveys to detect nesting colonies on 14 Australian desert salt lakes, and analyzed 3 decades of Landsat and MODIS satellite imagery to quantify salt-lake flood frequency and extent. Within days of distant inland rainfall, Banded Stilts flew 1,000-2,000 km to reach flooded salt lakes. On arrival, females laid over half their body weight in eggs. We detected nesting episodes across the species' range at 7 times the frequency reported during the previous 80 years. Nesting colonies of thousands formed following minor floods, yet most were subsequently abandoned when the water rapidly evaporated prior to egg hatching. Satellite imagery revealed twice as many flood events sufficient for breeding-colony initiation as recorded colonies, suggesting that nesting at remote sites has been underdetected. Individuals took risk on uncertain breeding opportunities by responding to frequent minor flood events between infrequent extensive flooding, exemplifying the extreme adaptability and trade-offs of species exploiting unstable environments. The conservation challenges of nest predation by overabundant native gulls and anthropogenic modifications to salt lakes filling

  17. Third Project Evaluation Report--Summative for Salt Lake Community College.

    ERIC Educational Resources Information Center

    Siefer, Nancy; Latkiewicz, John

    Through a federal grant, Salt Lake Community College (Utah), in conjunction with two area industries, implemented a workplace literacy project to serve 225 employees. The training included work-related curriculum and instruction in reading, English as a Second Language, oral communication skills, written communication skills, mathematics, and…

  18. Techniques, analysis, and noise in a Salt Lake Valley 4D gravity experiment

    USGS Publications Warehouse

    Gettings, P.; Chapman, D.S.; Allis, R.

    2008-01-01

    Repeated high-precision gravity measurements using an automated gravimeter and analysis of time series of 1-Hz samples allowed gravity measurements to be made with an accuracy of 5 ??Gal or better. Nonlinear instrument drift was removed using a new empirical staircase function built from multiple station loops. The new technique was developed between March 1999 and September 2000 in a pilot study conducted in the southern Salt Lake Valley along an east-west profile of eight stations from the Wasatch Mountains to the Jordan River. Gravity changes at eight profile stations were referenced to a set of five stations in the northern Salt Lake Valley, which showed residual signals of <10 ??Gal in amplitude, assuming a reference station near the Great Salt Lake to be stable. Referenced changes showed maximum amplitudes of -40 through +40 ??Gal at profile stations, with minima in summer 1999, maxima in winter 1999-2000, and some decrease through summer 2000. Gravity signals were likely a composite of production-induced changes monitored by well-water levels, elevation changes, precipitation-induced vadose-zone changes, and local irrigation effects for which magnitudes were estimated quantitatively. ?? 2008 Society of Exploration Geophysicists. All rights reserved.

  19. Perspective View with Landsat Overlay, Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Most of the population of Utah lives just west of the Wasatch Mountains in the north central part of the state. This broad east-northeastward view shows that region with the cities of Ogden, Salt Lake City, and Provo seen from left to right. The Great Salt Lake (left) and Utah Lake (right) are quite shallow and appear greenish in this enhanced natural color view. Thousands of years ago ancient Lake Bonneville covered all of the lowlands seen here. Its former shoreline is clearly seen as a wave-cut bench and/or light colored 'bathtub ring' at several places along the base of the mountain front - evidence seen from space of our ever-changing planet.

    This 3-D perspective view was generated using topographic data from the Shuttle Radar Topography Mission (SRTM), a Landsat 5 satellite image mosaic, and a false sky. Topographic expression is exaggerated four times.

    Landsat has been providing visible and infrared views of the Earth since 1972. SRTM elevation data matches the 30-meter (98-foot) resolution of most Landsat images and will substantially help in analyzing the large and growing Landsat image archive, managed by the U.S. Geological Survey (USGS).

    Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter (approximately 200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory

  20. Questioning the Origin of the Great Salt Lake "Microbialites"

    NASA Astrophysics Data System (ADS)

    Frantz, C.; Matyjasik, M.; Newell, D. L.; Vanden Berg, M. D.; Park, C.

    2017-12-01

    The Great Salt Lake (GSL) of Utah contains abundant carbonate mounds that have been described in the literature as "biostromes", "bioherms", "stromatolites", and "microbialites". The structures are commonly cited as being rare examples of modern lacustrine microbialites, which implies that they are actively-forming and biogenic. Indeed, at least in some regions of the lake, the mounds are covered in a mixed community of cyanobacteria, algae, insect larval casings, microbial heterotrophs, and other organisms that is thought to contribute significantly to benthic primary productivity in GSL. However, the presence of a modern surface microbial community does not implicate a biogenic or modern origin for the mounds. The few studies to date GSL microbialites indicate that they are ancient, with radiocarbon calendar ages in the late Pleistocene and Holocene ( 13 - 3 cal ka). However, could they still be actively growing, and are the surface microbial communities playing a role? Here, we present results of a suite geochemical measurements used to constrain parameters—including groundwater seepage—influencing carbonate saturation and precipitation in the vicinity of one currently-submerged "microbialite reef" on the northern shore of Antelope Island in the South Arm of GSL. Our data suggests that calcium-charged brackish groundwater input to the lake through a permeable substratum in this location results in locally supersaturated conditions for aragonite, which could lead to modern, abiogenic mineralization. In addition, a series of laboratory experiments suggest that the modern surface microbial communities that coat the mounds do not appreciably facilitate carbonate precipitation in simulated GSL conditions, although they may serve as a template for precipitation when local waters become supersaturated.

  1. Salt Lake Clean Cities Coalition: Outstanding coalition director: Beverly Miller (Clean Cities alternative fuel information series fact sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, S.

    2000-04-26

    The Salt Lake metropolitan area faces some interesting economic and environmental challenges. It ranks eighth in the nation in population growth, so managing its increasing numbers without spoiling the beauty of its high mountain valley may seem to be a contradiction in goals. In addition, the 2002 Winter Olympics will attract almost 2 million visitors during February, when Salt Lake's unusual topography encourages its highest levels of air pollution. The Clean Cities Coalition is working with the Salt Lake Olympic Organizing Committee to find clean vehicles to transport visitors to and from the various Olympic venues. A major goal ofmore » the Coalition is to keep as many AFVs as possible in Utah after the Olympics.« less

  2. Trend Analysis of Soil Salinity in Different Land Cover Types Using Landsat Time Series Data (case Study Bakhtegan Salt Lake)

    NASA Astrophysics Data System (ADS)

    Taghadosi, M. M.; Hasanlou, M.

    2017-09-01

    Soil salinity is one of the main causes of desertification and land degradation which has negative impacts on soil fertility and crop productivity. Monitoring salt affected areas and assessing land cover changes, which caused by salinization, can be an effective approach to rehabilitate saline soils and prevent further salinization of agricultural fields. Using potential of satellite imagery taken over time along with remote sensing techniques, makes it possible to determine salinity changes at regional scales. This study deals with monitoring salinity changes and trend of the expansion in different land cover types of Bakhtegan Salt Lake district during the last two decades using multi-temporal Landsat images. For this purpose, per-pixel trend analysis of soil salinity during years 2000 to 2016 was performed and slope index maps of the best salinity indicators were generated for each pixel in the scene. The results of this study revealed that vegetation indices (GDVI and EVI) and also salinity indices (SI-1 and SI-3) have great potential to assess soil salinity trends in vegetation and bare soil lands respectively due to more sensitivity to salt features over years of study. In addition, images of May had the best performance to highlight changes in pixels among different months of the year. A comparative analysis of different slope index maps shows that more than 76% of vegetated areas have experienced negative trends during 17 years, of which about 34% are moderately and highly saline. This percent is increased to 92% for bare soil lands and 29% of salt affected soils had severe salinization. It can be concluded that the areas, which are close to the lake, are more affected by salinity and salts from the lake were brought into the soil which will lead to loss of soil productivity ultimately.

  3. Bathymetric map of the south part of Great Salt Lake, Utah, 2005

    USGS Publications Warehouse

    Baskin, Robert L.; Allen, David V.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Wildlife Resources, collected bathymetric data for the south part of Great Salt Lake during 2002–04 using a single beam, high-definition fathometer and real-time differential global positioning system. Approximately 7.6 million depth readings were collected along more than 1,050 miles of survey transects for construction of this map. Sound velocities were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping. Because of the shallow nature of the lake and the limitations of the instrumentation, contours above an altitude of 4,193 feet were digitized from existing USGS 1:24,000 source-scale digital line graph data.For additional information on methods used to derive the bathymetric contours for this map, please see Baskin, Robert L., 2005, Calculation of area and volume for the south part of Great Salt Lake, Utah, U.S. Geological Survey Open-File Report OFR–2005–1327.

  4. Fluctuation history of Great Salt Lake, Utah, during the last 13,000 years, part 2

    NASA Technical Reports Server (NTRS)

    Murchison, Stuart B.

    1989-01-01

    Great Salt Lake level fluctuations from 13,000 yr B.P. to the present were interpreted by examination of shoreline geomorphic features, shoreline deposits, archeologic sites, isotopic data, and palynologic data. After the conclusion of the Bonneville paleolake cycle, between 13,000 and 12,000 yr B.P. the lake regressed to levels low enough to deposit a littoral oxidized red bed stratum and a pelagic Glauber's salt layer. A late Pleistocene lake cycle occurred between 12,000 and 10,000 yr B.P. depositing several beaches, the highest reaching an altitude of about 4250 ft (1295.3 m). The lake regressed after 10,000 yr B.P., only to rise to 4230 ft (1289.2 m) between 9700 and 9400 yr B.P. and then gradually lower at least 15 ft (4.5 m) or more. Lake levels fluctuated between 4212 and 4180 ft (1284 and 1274 m) for the next 4000 years. A late Holocene lake cycle, constrained by radiocarbon ages between 3440 and 1400 yr B.P., is reported at a highest static level of 4221 ft (1286.5 m). After a lake level drop to altitudes ranging between 4210 and 4205 ft (1283.2 and 1281.6 m), a 4217 ft (1285.7 m) level was reached after 400 yr B.P. This level lowered to 4214 ft (1284.4 m) in the mid to late 1700 s A.D. The lake levels have since stabilized aroung a 4200 ft (1280 m) mean.

  5. The distribution, structure, and composition of freshwater ice deposits in Bolivian salt lakes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1988-01-01

    Freshwater ice deposits are described from seven, high elevation (4117-4730 m), shallow (mean depth <30 cm), saline (10-103 g l-1) lakes in the southwestern corner of Bolivia. The ice deposits range to several hundred meters in length and to 7 m in height above the lake or playa surface. They are located near the lake or salar margins; some are completely surrounded by water, others by playa deposits or salt crusts. Upper surfaces and sides of the ice deposits usually are covered by 20-40 cm of white to light brown, dry sedimentary materials. Calcite is the dominant crystalline mineral in these, and amorphous materials such as diatom frustules and volcanic glass are also often abundant. Beneath the dry overburden the ice occurs primarily as horizontal lenses 1-1000 mm thick, irregularly alternating with strata of frozen sedimentary materials. Ice represents from 10 to 87% of the volume of the deposits and yields freshwater (TFR <3 g l-1) when melted. Oxygen isotope ratios for ice are similar to those for regional precipitation and shoreline seeps but much lower than those for the lakewaters. Geothermal flux is high in the region as evidenced by numerous hot springs and deep (3.0-3.5 m) sediment temperatures of 5-10??C. This flux is one cause of the present gradual wasting away of these deposits. Mean annual air temperatures for the different lakes probably are all in the range of -2 to 4??C, and mean midwinter temperatures about 5??C lower. These deposits apparently formed during colder climatic conditions by the freezing of low salinity porewaters and the building up of segregation ice lenses. ?? 1988 Dr W. Junk Publishers.

  6. Spatiotemporal Patterns of Urban Trace Gases and Pollutants Observed with a Light Rail Vehicle Platform in Salt Lake City, UT

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Crosman, E.; Fasoli, B.; Leclair-Marzolf, L.; Jacques, A.; Horel, J.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2015-12-01

    Urban environments are characterized by both spatial complexity and temporal variability, each of which present challenges for measurement strategies aimed at constraining estimates of greenhouse gas emissions and air quality. To address these challenges we initiated a project in December 2014 to measure trace species (CO2, CH4, O3, and Particulate Matter) by way of a Utah Transit Authority (UTA) light rail vehicle whose route traverses the Salt Lake Valley in Utah on an hourly basis, retracing the same route through commercial, residential, suburban, and rural typologies. Light rail vehicles present advantages as a measurement platform, including the absence of in-situ fossil fuel emissions, repeated transects across a urban region that provides both spatial and temporal information, and relatively low operating costs. We present initial results from the first year of operations including the spatiotemporal patterns of greenhouse gases and pollutants across Salt Lake City, UT with an emphasis on criteria pollutants, identification of sources, and future applications of this measurement platform.

  7. Lateral spread hazard mapping of the northern Salt Lake Valley, Utah, for a M7.0 scenario earthquake

    USGS Publications Warehouse

    Olsen, M.J.; Bartlett, S.F.; Solomon, B.J.

    2007-01-01

    This paper describes the methodology used to develop a lateral spread-displacement hazard map for northern Salt Lake Valley, Utah, using a scenario M7.0 earthquake occurring on the Salt Lake City segment of the Wasatch fault. The mapping effort is supported by a substantial amount of geotechnical, geologic, and topographic data compiled for the Salt Lake Valley, Utah. ArcGIS?? routines created for the mapping project then input this information to perform site-specific lateral spread analyses using methods developed by Bartlett and Youd (1992) and Youd et al. (2002) at individual borehole locations. The distributions of predicted lateral spread displacements from the boreholes located spatially within a geologic unit were subsequently used to map the hazard for that particular unit. The mapped displacement zones consist of low hazard (0-0.1 m), moderate hazard (0.1-0.3 m), high hazard (0.3-1.0 m), and very high hazard (> 1.0 m). As expected, the produced map shows the highest hazard in the alluvial deposits at the center of the valley and in sandy deposits close to the fault. This mapping effort is currently being applied to the southern part of the Salt Lake Valley, Utah, and probabilistic maps are being developed for the entire valley. ?? 2007, Earthquake Engineering Research Institute.

  8. 76 FR 47613 - Board Meeting: September 13-14, 2011-Salt Lake City, UT; the U.S. Nuclear Waste Technical Review...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-05

    ... NUCLEAR WASTE TECHNICAL REVIEW BOARD Board Meeting: September 13-14, 2011--Salt Lake City, UT; the U.S. Nuclear Waste Technical Review Board Will Meet To Discuss DOE Plans for Used Fuel Disposition R... Amendments Act of 1987, the U.S. Nuclear Waste Technical Review Board will hold a public meeting in Salt Lake...

  9. Quality and sources of shallow ground water in areas of recent residential development in Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    Residential and commercial development of about 80 square miles that primarily replaced undeveloped and agricultural areas occurred in Salt Lake Valley, Utah, from 1963 to 1994. This study evaluates the occurrence and distribution of natural and anthropogenic compounds in shallow ground water underlying recently developed (post 1963) residential and commercial areas. Monitoring wells from 23 to 153 feet deep were installed at 30 sites. Water-quality data for the monitoring wells consist of analyses of field parameters, major ions, trace elements, nutrients, dissolved organic carbon, pesticides, and volatile organic compounds.Dissolved-solids concentration ranged from 134 to 2,910 milligrams per liter (mg/L) in water from the 30 monitoring wells. Dissolved arsenic concentration in water from 12 wells exceeded the drinking-water maximum contaminant level of 10 micrograms per liter. Water from monitoring wells in the northwestern part of the valley generally contained higher arsenic concentrations than did water from other areas. Nitrate concentration in water sampled from 26 of the 30 monitoring wells (86.7 percent) was higher than a background level of 2 mg/L, indicating a possible human influence. Nitrate concentrations ranged from less than 0.05 to 13.3 mg/L.Fifteen of the 104 pesticides and pesticide degradation products analyzed for were detected in 1 or more water samples from the monitoring wells. No pesticides were detected at concentrations that exceeded U.S. Environmental Protection Agency drinking-water standards or guidelines for 2002. The high detection frequency of atrazine, a restricted-use pesticide, in residential areas on the west side of Salt Lake Valley may be the result of application in agricultural or industrial areas that have been converted to residential uses or application in areas upgradient from the residential areas that was then transported by ground water.Fifteen of the 86 volatile organic compounds analyzed for were detected in 1 or

  10. Arsenophilic Bacterial Processes in Searles Lake: A Salt-saturated, Arsenic-rich, Alkaline Soda Lake.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Swizer Blum, J.; Stolz, J. F.

    2005-12-01

    Searles Lake, located in the Mojave Desert of California, is essentially a chemically-similar, concentrated version of Mono Lake, but having a much higher salinity (e.g., 340 vs. 90 g/L) and a greater dissolved inorganic arsenic content in its brine (e.g., 3.9 vs. 0.2 mM). The source of all this arsenic ultimately comes from hydrothermal spring inputs, thereby underscoring the importance of volcanic and fluvial processes in transporting this toxic element into these closed basin lakes. Nonetheless, the presence of microbial activities with regard to respiration of arsenate oxyanions under anaerobic conditions and the oxidation of arsenite oxyanions under aerobic conditions can be inferred from porewater profiles taken from handcores retrieved beneath Searles Lake's salt crust. Sediment slurry incubations confirmed biological arsenate respiration and arsenite oxidation, with the former processes notably enhanced by provision of the inorganic electron donor sulfide or H2. Hence, arsenic-linked chemo-autotrophy appears to be an important means of carbon fixation in this system. Subsequent efforts using 73As-arsenate as radiotracer detected dissimilatory arsenate reduction activity down the length of the core, but we were unable to detect any evidence for sulfate-reduction using 35S-sulfate. An extremely halophilic anaerobic bacterium of the order Haloanaerobiales [strain SLAS-1] was isolated from the sediments that grew via arsenate respiration using lactate or sulfide as its electron donors. These results show that, unlike sulfate-reduction, arsenic metabolism (i.e., both oxidation of arsenite and dissimilatory reduction of arsenate) is operative and even vigorous under the extreme conditions of salt-saturation and high pH. The occurrence of arsenophilic microbial processes in Searles Lake is relevant to the search for extant or extinct microbial life on Mars. It is evident from surface imagery that Mars had past episodes of volcanism, fluvial transport, and most

  11. Calculation of area and volume for the north part of Great Salt Lake, Utah

    USGS Publications Warehouse

    Baskin, Robert L.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single-beam, high-definition fathometer and real-time differential global positioning system. About 5.2 million depth measurements were collected along more than 765 miles (1,230 kilometers) of survey transects. Sound-velocity profiles were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping and calculation of area and volume. Area and volume calculations show a maximum area of about 385,000 acres (1,560 square kilometers) and a maximum volume of about 5,693,000 acre-feet (about 7 cubic kilometers) at a water-surface altitude of 4,200 feet (1,280 meters). Minimum natural water-surface altitude of the north part of Great Salt Lake is just below 4,167 feet (1,270 meters) in the area just north of the Union Pacific railroad causeway halfway between Saline and the western edge of the lake. The north part of Great Salt Lake generally grades gradually to the west and north and is bounded by steep scarps along its eastern border. Calculations for area and volume are based on a low altitude of 4,167 feet (1,270 meters) to a high altitude of 4,200 feet (1,280 meters).

  12. AN ALTERNATIVE FUTURES ANALYSIS OF FARMINGTON BAY WETLANDS IN THE GREAT SALT LAKE

    EPA Science Inventory

    An Alternative Futures Analysis (AFA) was conducted to evaluate tradeoffs between landscape design scenarios and ecological services for Farmington Bay, Great Salt Lake (GSL), wetlands. Model scenarios included plan trend and conservation "futures" scenarios projected to 2030. ...

  13. On the Salt Water Intrusion into the Durusu Lake, Istanbul: A Joint Central Loop TEM And Multi-Electrode ERT Field Survey

    NASA Astrophysics Data System (ADS)

    Ardali, Ayça Sultan; Tezkan, Bülent; Gürer, Aysan

    2018-02-01

    Durusu Lake is the biggest and most important freshwater source supplying drinking water to the European side of Istanbul. In this study, electrical resistivity tomography (ERT) and transient electromagnetic (TEM) measurements were applied to detect a possible salt water intrusion into the lake and to delineate the subsurface structure in the north of Durusu Lake. The ERT and TEM measurements were carried out along six parallel profiles extending from the sea coast to the lake shore on the dune barrier. TEM data were interpreted using different 1-D inversion methods such as Occam, Marquardt, and laterally constrained inversion (LCI). ERT data were interpreted using 2-D inversion techniques. The inversion results of ERT and TEM data were shown as resistivity depth sections including topography. The sand layer spreading over the basin has a resistivity of 150-400 Ωm with a thickness of 5-10 m. The sandy layer with clay, silt, and gravel has a resistivity of 15-100 Ωm and a thickness of 10-40 m followed by a clay layer of a resistivity below 10 Ωm. When the inversion of these data is interpreted along with the hydrogeology of the area, it is concluded that the salt water intrusion along the dune barrier is not common and occurs at a particular area where the distance between lake and sea is very close. Using information from boreholes around the lake, it was verified that the common conductive region at depths of 30 m or more consists of clay layers and clay lenses.

  14. Selected aquatic biological investigations in the Great Salt Lake basins, 1875-1998, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Giddings, Elise M.P.; Stephens, Doyle W.

    1999-01-01

    This report summarizes previous investigations of aquatic biological communities, habitat, and contaminants in streams and selected large lakes within the Great Salt Lake Basins study unit as part of the U.S. Geological Survey?s National Water-Quality Assessment Program (NAWQA). The Great Salt Lake Basins study unit is one of 59 such units designed to characterize water quality through the examination of chemical, physical, and biological factors in surface and ground waters across the country. The data will be used to aid in the planning, collection, and analysis of biological information for the NAWQA study unit and to aid other researchers concerned with water quality of the study unit. A total of 234 investigations conducted during 1875-1998 are summarized in this report. The studies are grouped into three major subjects: (1) aquatic communities and habitat, (2) contamination of streambed sediments and biological tissues, and (3) lakes. The location and a general description of each study is listed. The majority of the studies focus on fish and macroinvertebrate communities. Studies of algal communities, aquatic habitat, riparian wetlands, and contamination of streambed sediment or biological tissues are less common. Areas close to the major population centers of Salt Lake City, Provo, and Logan, Utah, are generally well studied, but more rural areas and much of the Bear River Basin are lacking in detailed information, except for fish populations..

  15. Alternative Futures Analysis Of Farmington Bay Wetlands In The Great Salt Lake Ecosystem

    EPA Science Inventory

    An Alternative Futures Analysis (AFA) was conducted to evaluate tradeoffs between landscape design scenarios and ecological services for Farmington Bay, Great Salt Lake (GSL), wetlands. Model scenarios included both plan trend and conservation "futures" projected to 2030. Scena...

  16. Changes in lake levels, salinity and the biological community of Great Salt Lake (Utah, USA), 1847-1987

    USGS Publications Warehouse

    Stephens, D.W.

    1990-01-01

    Great Salt Lake is the fourth largest terminal lake in the world, with an area of about 6000 square kilometers at its historic high elevation. Since its historic low elevation of 1277.52 meters in 1963, the lake has risen to a new historic high elevation of 1283.77 meters in 1986-1987, a net increase of about 6.25 meters. About 60 percent of this increase, 3.72 meters, has occurred since 1982 in response to greater than average precipitation and less than average evaporation. Variations in salinity have resulted in changes in the composition of the aquatic biological community which consists of bacteria, protozoa, brine shrimp and brine flies. These changes were particularly evident following the completion of a causeway in 1959 which divided the lake. Subsequent salinities in the north part of the lake have ranged from 16 to 29 percent and in the south part from 6 to 28 percent. Accompanying the rise in lake elevation from 1982 to 1987 have been large decreases in salinity of both parts of the lake. This has resulted in changes in the biota from obligate halophiles, such as Dunaliella salina and D. viridis, to opportunistic forms such as a blue-green alga (Nodularia spumigena). The distribution and abundance of brine shrimp (Artemia salina) in the lake also have followed closely the salinity. In 1986, when the salinity of the south part of the lake was about 6 percent, a population of brackish-water killifish (Lucania parva) was observed along the shore near inflow from a spring. ?? 1990 Kluwer Academic Publishers.

  17. Bathymetric map of the north part of Great Salt Lake, Utah, 2006

    USGS Publications Warehouse

    Baskin, Robert L.; Turner, Jane

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single beam, high-definition fathometer and real-time differential global positioning system. Approximately 5.2 million depth readings were collected along more than 765 miles of survey transects for construction of this map. Sound velocities were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed using commercial hydrographic software and exported into a geographic information system (GIS) software for mapping. Due to the shallow nature of the lake and the limitations of the instrumentation, contours above an altitude of 4,194 feet were digitized from existing USGS 1:24,000 source-scale digital line graph data. The Behrens Trench is approximately located.For additional information on methods used to derive the bathymetric contours for this map, please see Baskin, Robert L., 2006, Calculation of area and volume for the North Part of Great Salt Lake, Utah, U.S. Geological Survey Open-File Report OFR–2006–1359

  18. Usefulness of natural regions for lake management: Analysis of variation among lakes in northwestern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Omernik, James M.; Rohm, Christina M.; Lillie, Richard A.; Mesner, Nancy

    1991-03-01

    A map of summer total phosphorus in lakes was compiled recently for a three-state area of the upper Midwest for purposes of identifying regional patterns of total phosphorus in lakes and attainable lake trophic state. Spatial patterns in total phosphorus from approximately 3000 lakes were studied in conjunction with maps of geographic characteristics that tend to affect phosphorus balance in lakes to identify regions of similarity in phosphorus concentrations in lakes or similarity in the mosaic of values as compared to adjacent areas. While degrees of relative homogeneity are apparent at many scales, the map was designed at a scale that would yield regions with sufficient homogeneity to be useful for lake management throughout the area. In this study, data from 210 lakes in a 1560-mi2 area in northwestern Wisconsin, sampled by the Wisconsin Department of Natural Resources in the spring of 1988 (subsequent to the compilation of the phosphorus map), were examined to: (1) substantiate the existence of the regions depicted on the map in northwest Wisconsin, (2) determine the nature and relative precision of the regional boundaries, (3) determine the relative importance of natural and anthropogenic watershed characteristics, lake types, lake area, and lake depth in explaining within-region differences in lake phosphorus, and (4) demonstrate how the regions might be used by local lake managers.

  19. Salting our freshwater lakes.

    PubMed

    Dugan, Hilary A; Bartlett, Sarah L; Burke, Samantha M; Doubek, Jonathan P; Krivak-Tetley, Flora E; Skaff, Nicholas K; Summers, Jamie C; Farrell, Kaitlin J; McCullough, Ian M; Morales-Williams, Ana M; Roberts, Derek C; Ouyang, Zutao; Scordo, Facundo; Hanson, Paul C; Weathers, Kathleen C

    2017-04-25

    The highest densities of lakes on Earth are in north temperate ecosystems, where increasing urbanization and associated chloride runoff can salinize freshwaters and threaten lake water quality and the many ecosystem services lakes provide. However, the extent to which lake salinity may be changing at broad spatial scales remains unknown, leading us to first identify spatial patterns and then investigate the drivers of these patterns. Significant decadal trends in lake salinization were identified using a dataset of long-term chloride concentrations from 371 North American lakes. Landscape and climate metrics calculated for each site demonstrated that impervious land cover was a strong predictor of chloride trends in Northeast and Midwest North American lakes. As little as 1% impervious land cover surrounding a lake increased the likelihood of long-term salinization. Considering that 27% of large lakes in the United States have >1% impervious land cover around their perimeters, the potential for steady and long-term salinization of these aquatic systems is high. This study predicts that many lakes will exceed the aquatic life threshold criterion for chronic chloride exposure (230 mg L -1 ), stipulated by the US Environmental Protection Agency (EPA), in the next 50 y if current trends continue.

  20. Remote Sensing as a Tool to Track Algal Blooms in the Great Salt Lake, Utah, USA

    NASA Astrophysics Data System (ADS)

    Bradt, S. R.; Wurtsbaugh, W. A.; Naftz, D.; Moore, T.; Haney, J.

    2006-12-01

    The Great Salt Lake is a large hypersaline, terminal water body in northern Utah, USA. The lake has both a significant economic importance to the local community as a source of brine shrimp and mineral resources, as well as, an ecological importance to large numbers of migratory waterfowl. Due to nutrient input from sewage treatment plants, sections of the Great Salt Lake are subjected to highly eutrophic conditions. One of the main tributaries, Farmington Bay, experiences massive blooms of cyanobacteria which can reach concentrations in excess of 300 mg l-1 in the bay. Effects of these blooms can be observed stretching into the rest of the lake. The detrimental outcomes of the blooms include unsightly scums, foul odor and the danger of cyanobacterial toxins. While the blooms have an obvious effect on Farmington Bay, it is quite possible that the cyanobacteria impact a much wider area of the lake as currents move eutrophic water masses. Of particular interest is the reaction of brine shrimp to the plumes of cyanobacteria-rich water leaving Farmington Bay. We are employing remote sensing as a tool to map the distribution of algae throughout the lake and produce lake-wide maps of water quality on a regular basis. On-lake reflectance measurements have been coupled with MODIS satellite imagery to produce a time series of maps illustrating changes in algal distribution. The successes and shortcomings of our remote sensing technique will be a central topic of this presentation.

  1. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  2. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  3. Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache Valleys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope CA, I.I.I.

    This study assessed the association between respiratory hospital admissions and PM10 pollution in Utah, Salt Lake, and Cache valleys during April 1985 through March 1989. Utah and Salt Lake valleys had high levels of PM10 pollution that violated both the annual and 24-h standards issued by the Environmental Protection Agency (EPA). Much lower PM10 levels occurred in the Cache Valley. Utah Valley experienced the intermittent operation of its primary source of PM10 pollution: an integrated steel mill. Bronchitis and asthma admissions for preschool-age children were approximately twice as frequent in Utah Valley when the steel mill was operating versus whenmore » it was not. Similar differences were not observed in Salt Lake or Cache valleys. Even though Cache Valley had higher smoking rates and lower temperatures in winter than did Utah Valley, per capita bronchitis and asthma admissions for all ages were approximately twice as high in Utah Valley. During the period when the steel mill was closed, differences in per capita admissions between Utah and Cache valleys narrowed considerably. Regression analysis also demonstrated a statistical association between respiratory hospital admissions and PM10 pollution. The results suggest that PM10 pollution plays a role in the incidence and severity of respiratory disease.« less

  4. [Community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan salt lake on Qinghai-Tibet Plateau].

    PubMed

    Shen, Shuo

    2017-04-04

    I studied the community structure and diversity of culturable moderate halophilic bacteria isolated from Qrhan Salt Lake. I isolated and cultured the moderate halophilic bacteria on different selective media. After the 16S rRNA gene sequences was amplified and measured, I constructed the phylogenic tree, analyzed the community structure and calculated the diversity indexes according to the 16S rRNA gene information. A total of 421 moderate halophilic bacteria were isolated from water and mud samples in Qrhan Salt Lake. The 16S rRNA gene information showed that 4 potential novel species belonged to the family Bacillaceae. Eighty-three model strains belonged to 3 phylurms 6 families 16 genus. Among them, Bacillus sp., Oceanobacillus sp. and Halomonas sp. were dominant species. Diversity analysis showed that the diversity of strains isolated from water sample was higher than that from mud sample, but the dominance degree of strains isolated from mud sample was higher than that from water sample. The genetic diversity of moderate halophilic bacteria isolated from Qrhan Salt Lake was abundant. Also, there were dominant and novel species of culturable moderate halophilic bacteria in this lake.

  5. Salt Lake Community College Veterans Services: A Model of Serving Veterans in Higher Education

    ERIC Educational Resources Information Center

    Ahern, Aaron; Foster, Michael; Head, Darlene

    2015-01-01

    This chapter outlines the birth and growth of a veterans' program in Salt Lake City, Utah, and discusses next steps in spurring additional innovations and advancements to improve service for student veterans in community colleges.

  6. Business Use of Small Computers in the Salt Lake City, Utah Area.

    ERIC Educational Resources Information Center

    Homer, Michael M.

    In July 1981, Utah Technical College (UTC) conducted a survey of businesses in the Salt Lake City area to gather information for the development of a curriculum integrating computer applications with business course instruction. The survey sought to determine the status and usage of current micro/mini computer equipment, future data processing…

  7. The Advanced Placement English Program in Salt Lake and Granite School Districts.

    ERIC Educational Resources Information Center

    Stratopoulos, Irene Chachas

    The main purposes in examining and evaluating the Advanced Placement English Program in Salt Lake and Granite School Districts were to identify the essential curriculum features of the program, to make suggestions for curriculum improvement, and to determine whether or not the quality of the AP English Program surpassed that of the conventional…

  8. 78 FR 65356 - Notice of Mailing/Street Address Change for the BLM-Utah West Desert District and Salt Lake Field...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ...The mailing/street address for the Bureau of Land Management (BLM), West Desert District and Salt Lake Field Offices will be changing from 2370 South 2300 West, Salt Lake City, UT 84119-2022, to 2370 South Decker Lake Blvd., West Valley City, UT 84119-2022. Persons who use a telecommunications device for the deaf (TDD) may call the Federal Information Relay Service (FIRS) at 1-800-877-8339 to leave a message or question for the above individual. The FIRS is available 24 hours a day, seven days a week. Replies are provided during normal business hours.

  9. Wet trend continues for lakes

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    About 20% of the United States, including the regions of the Great Lakes and the Great Salt Lake, has entered a fourth year of record and near-record streamflow and lake levels, according to the U.S. Geological Survey (USGS). From June 3 until June 8, 1986, the Great Salt Lake stood at 1283.77 m above sea level, 0.076 m above the previous record, which was set in 1873. (Records have been kept for the lake since 1847.) On June 8, a dike south of the lake gave way during a windstorm, causing flooding of evaporation ponds used for mineral recovery.As a result of the breach, the lake's level dropped to 1283.65 m above sea level by June 10 but rose to 1283.68 m by June 20. The latest official reading, made on June 30, showed that the lake's level had dropped to 1283.63 m above sea level. According to Tom Ross, chief of the Current Water Conditions Group at the USGS National Center in Reston, Va., this drop represents “a normal seasonal decline brought on by evaporation.”

  10. Formation of Particulate Matter during Wintertime Inversions in the Salt Lake Valley.

    NASA Astrophysics Data System (ADS)

    Hrdina, A. I. H.; Baasandorj, M.; Lin, J. C.; Murphy, J. G.; McKeen, S. A.

    2017-12-01

    In the wintertime, the air quality in Salt Lake City is frequently impacted by inversions that cause high levels of particulate matter. An inversion describes a highly stable air mass, where a cold air pool (CAP) is trapped by warmer air aloft. In the right conditions, these CAPs can persist for several days allowing the accumulation of various pollutants, such as NOx and NH3, leading to secondary particle formation. Concentrations of reactive trace gases (HCl, HNO3, HONO, NH3, SO2) and particle phase constituents (Cl-, NO2-, NO3-, SO42-, Na+, NH4+, K+, Mg2+, Ca2+) from particles less than 2.5 microns in diameter (PM2.5) were continuously measured using an online ambient ion monitor ion chromatograph (AIM-IC) within the Salt Lake Valley, Utah, from Jan 17 - Feb 21 2017, as part of the Utah Fine Particulate Study (UWFPS 2017). A consistent diurnal pattern of ammonia mixing ratios was observed, with mixing ratios ranging from 0.1 - 7 ppb. Two persistent cold air pool events occurred during the measurement period during which the suppression of vertical mixing led to the buildup of PM2.5 in the valley. The total PM2.5 level in the valley was as high as 60 μg m-3 and was dominated by ammonium nitrate. The air pollution transport within the valley during the entire campaign period was examined using Stochastic Time-Inverted Lagrangian Transport (STILT) model. Calculated flux footprints, based on back-trajectories with 15 minute time steps at a grid resolution of 0.1 degree, highlight the potential source regions for PM2.5 precursors during the observed PCAP events. Observations were also compared to output from the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) simulations of the UWFPS campaign.

  11. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  12. A Dynamical Downscaling study over the Great Lakes Region Using WRF-Lake: Historical Simulation

    NASA Astrophysics Data System (ADS)

    Xiao, C.; Lofgren, B. M.

    2014-12-01

    As the largest group of fresh water bodies on Earth, the Laurentian Great Lakes have significant influence on local and regional weather and climate through their unique physical features compared with the surrounding land. Due to the limited spatial resolution and computational efficiency of general circulation models (GCMs), the Great Lakes are geometrically ignored or idealized into several grid cells in GCMs. Thus, the nested regional climate modeling (RCM) technique, known as dynamical downscaling, serves as a feasible solution to fill the gap. The latest Weather Research and Forecasting model (WRF) is employed to dynamically downscale the historical simulation produced by the Geophysical Fluid Dynamics Laboratory-Coupled Model (GFDL-CM3) from 1970-2005. An updated lake scheme originated from the Community Land Model is implemented in the latest WRF version 3.6. It is a one-dimensional mass and energy balance scheme with 20-25 model layers, including up to 5 snow layers on the lake ice, 10 water layers, and 10 soil layers on the lake bottom. The lake scheme is used with actual lake points and lake depth. The preliminary results show that WRF-Lake model, with a fine horizontal resolution and realistic lake representation, provides significantly improved hydroclimates, in terms of lake surface temperature, annual cycle of precipitation, ice content, and lake-effect snowfall. Those improvements suggest that better resolution of the lakes and the mesoscale process of lake-atmosphere interaction are crucial to understanding the climate and climate change in the Great Lakes region.

  13. Sources of dissolved salts in the central Murray Basin, Australia

    USGS Publications Warehouse

    Jones, B.F.; Hanor, J.S.; Evans, W.R.

    1994-01-01

    Large areas of the Australian continent contain scattered saline lakes underlain by shallow saline groundwaters of regional extent and debated origin. The normative salt composition of subsurface pore fluids extracted by squeezing cores collected during deep drilling at Piangil West 2 in the central Murray Basin in southeastern Australia, and of surface and shallow subsurface brines produced by subaerial evaporation in the nearby Lake Tyrrell systems, helps constrain interpretation of the origin of dissolved solutes in the groundwaters of this part of the continent. Although regional sedimentation in the Murray Basin has been dominantly continental except for a marine transgression in Oligocene-Pliocene time, most of the solutes in saline surface and subsurface waters in the central Murray Basin have a distinctly marine character. Some of the Tyrrell waters, to the southwest of Piangil West 2, show the increase in NaCl and decrease in sulfate salts expected with evaporative concentration and gypsum precipitation in an ephemeral saline lake or playa environment. The salt norms for most of the subsurface saline waters at Piangil West 2 are compatible with the dilution of variably fractionated marine bitterns slightly depleted in sodium salts, similar to the more evolved brines at Lake Tyrrell, which have recharged downward after evaporation at the surface and then dissolved a variable amount of gypsum at depth. Apparently over the last 0.5 Ma significant quantities of marine salt have been blown into the Murray Basin as aerosols which have subsequently been leached into shallow regional groundwater systems basin-wide, and have been transported laterally into areas of large evaporative loss in the central part of the basin. This origin for the solutes helps explain why the isotopic compositions of most of the subsurface saline waters at Piangil West 2 have a strong meteoric signature, whereas the dissolved salts in these waters appear similar to a marine assemblage

  14. Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine: Summary for water years 1960, 1961, and 1964

    USGS Publications Warehouse

    Hahl, D.C.

    1968-01-01

    The investigation of dissolved-mineral inflow to Great Salt Lake during the water years 1960, 1961, and 1964 was conducted during conditions of streamflow that were representative of the lowest and the average recorded during the water years 1934-64. The study conducted during the 1960 and 1961 water years was limited to defining surface-water inflow at sites close to the lakeshore, as well as at sites used in the 1960-6 study. From these comparative data, estimates of inflow at the lakeshore were made for the 1960 and 1961 water years. During the 1964 water year, when inflow to the lake was probably representative of the 31-year period, about 800,000 acre-feet of water containing 2,200,000 tons of dissolved solids entered the lake.During the years of average streamflow, about 500,000 acre-feet of water which might be developed for culinary use, passes the lowest sampling sites on the Bear and Weber Rivers. Also, more than 90 percent of the flow near the mouths of the Bear, Weber, and Jordan Rivers would be suitable for irrigation.Sources of inflow could be selected to provide a water supply for a fresh-water lake east of Antelope Island. The supply would range from 300,000 acre-feet of water containing 800 ppm (parts per million) of dissolved solids during periods of low streamflow to 1 million acre-feet containing 500 ppm during periods of average streamflow.

  15. Salinity and hydrology of closed lakes

    USGS Publications Warehouse

    Langbein, Walter Basil

    1961-01-01

    Lakes without outlets, called closed lakes, are exclusively features of the arid and semiarid zones where annual evaporation exceeds rainfall. The number of closed lakes increases with aridity, so there are relatively few perennial closed lakes, but "dry" lakes that rarely contain water are numerous.Closed lakes fluctuate in level to a much greater degree than the open lakes of the humid zone, because variations in inflow can be compensated only by changes in surface area. Since the variability of inflow increases with aridity, it is possible to derive an approximate relationship for the coefficient of variation of lake area in terms of data on rates of evaporation, lake area, lake depth, and drainage area.The salinity of closed lakes is highly variable, ranging from less than 1 percent to over 25 percent by weight of salts. Some evidence suggests that the tonnage of salts in a lake solution is substantially less than the total input of salts into the lake over the period of existence of the closed lake. This evidence suggests further that the salts in a lake solution represent a kind of long-term balance between factors of gain and loss of salts from the solution.Possible mechanisms for the loss of salts dissolved in the lake include deposition in marginal bays, entrapment in sediments, and removal by wind. Transport of salt from the lake surface in wind spray is also a contributing, but seemingly not major, factor.The hypothesis of a long-term balance between input to and losses from the lake solution is checked by deriving a formula for the equilibrium concentration and comparing the results with the salinity data. The results indicate that the reported salinities seemingly can be explained in terms of their geometric properties and hydrologic environment.The time for accumulation of salts in the lake solution the ratio between mass of salts in the solution and the annual input may also be estimated from the geometric and hydrologic factors, in the absence of

  16. A Five-Year Review of Student Class Evaluations at Salt Lake Community College.

    ERIC Educational Resources Information Center

    Cooney, Frank

    This report reviews the past five years of student class evaluations at Salt Lake Community College (SLCC). Included in the review are the Instructional Assessment System (IAS) student class evaluations, the results from the new, non-returning and graduating student surveys, and observations on the student comments in those surveys. The average…

  17. 78 FR 76781 - Proposed Modification of Class B Airspace; Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... City, UT AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking... City Class B airspace area by raising the floor of a small portion of Class B airspace between the Salt Lake City Class B surface area and the Hill Air Force Base (AFB) Class D airspace area. This action...

  18. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity

    USGS Publications Warehouse

    McCullough, Ian M.; Loftin, Cyndy; Sader, Steven A.

    2012-01-01

    Water clarity is a reliable indicator of lake productivity and an ideal metric of regional water quality. Clarity is an indicator of other water quality variables including chlorophyll-a, total phosphorus and trophic status; however, unlike these metrics, clarity can be accurately and efficiently estimated remotely on a regional scale. Remote sensing is useful in regions containing a large number of lakes that are cost prohibitive to monitor regularly using traditional field methods. Field-assessed lakes generally are easily accessible and may represent a spatially irregular, non-random sample of a region. We developed a remote monitoring program for Maine lakes >8 ha (1511 lakes) to supplement existing field monitoring programs. We combined Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) brightness values for TM bands 1 (blue) and 3 (red) to estimate water clarity (secchi disk depth) during 1990–2010. Although similar procedures have been applied to Minnesota and Wisconsin lakes, neither state incorporates physical lake variables or watershed characteristics that potentially affect clarity into their models. Average lake depth consistently improved model fitness, and the proportion of wetland area in lake watersheds also explained variability in clarity in some cases. Nine regression models predicted water clarity (R2 = 0.69–0.90) during 1990–2010, with separate models for eastern (TM path 11; four models) and western Maine (TM path 12; five models that captured differences in topography and landscape disturbance. Average absolute difference between model-estimated and observed secchi depth ranged 0.65–1.03 m. Eutrophic and mesotrophic lakes consistently were estimated more accurately than oligotrophic lakes. Our results show that TM bands 1 and 3 can be used to estimate regional lake water clarity outside the Great Lakes Region and that the accuracy of estimates is improved with additional model variables that reflect

  19. The aspen mortality summit; December 18 and 19, 2006; Salt Lake City, UT

    Treesearch

    Dale L. Bartos; Wayne D. Shepperd

    2010-01-01

    The USDA Forest Service Rocky Mountain Research Station sponsored an aspen summit meeting in Salt Lake City, Utah, on December 18 and19, 2006, to discuss the rapidly increasing mortality of aspen (Populus tremuloides) throughout the western United States. Selected scientists, university faculty, and managers from Federal, State, and non-profit agencies with experience...

  20. Elastic-wave propagation and site amplification in the Salt Lake Valley, Utah, from simulated normal faulting earthquakes

    USGS Publications Warehouse

    Benz, H.M.; Smith, R.B.

    1988-01-01

    The two-dimensional seismic response of the Salt Lake valley to near- and far-field earthquakes has been investigated from simulations of vertically incident plane waves and from normal-faulting earthquakes generated on the basin-bounding Wasatch fault. The plane-wave simulations were compared with observed site amplifications in the Salt Lake valley, based on seismic recordings from nuclear explosions in southern Nevada, that show 10 times greater amplification with the basin than measured values on hard-rock sites. Synthetic seismograms suggest that in the frequency band 0.3 to 1.5 Hz at least one-half the site amplitication can be attributed to the impedance contrast between the basin sediments and higher velocity basement rocks. -from Authors

  1. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982

    USGS Publications Warehouse

    McCormack, H.F.; Christensen, R.C.; Stephens, D.W.; Pyper, G.E.; Weigel, J.F.; Conroy, L.S.

    1983-01-01

    This report contains precipitation, atmospheric-deposition, water- discharge and water-quality data collected in Salt Lake County as part of two investigations by the U.S. Geological Survey. The purpose of this report is to release data collected mainly during the 1981 water year. Selected data collected during the 1980 water year not previously published or revised and the 1982 water year also are included in this report.The first investigation, which was carried out from September 1979 to August 1982, was an urban-runoff study done in cooperation with the Salt Lake County Division of Flood Control and Water Quality. The objectives of the urban-runoff study were to identify the impact of urban runoff on the quantity and quality of the water in the canals east of the Jordan River and on the major tributaries to the river.The second investigation, which was carried out from December 1979 to September 1983, is a study of water-quality problems in the Jordan River. The study was done primarily to provide information about toxic substances, dissolved-oxygen depletion, sanitary quality, and turbidity and suspended sediment in the Jordan River. It also was funded in part by the Salt Lake County Division of Flood Control and Water Quality.Several Salt Lake County employees assisted in the collection of water- quality samples from storm runoff. Of those employees, Lee R. Armstrong, Gilbert H. Heal, Steven J. Mitckes, and Ben Santistevan worked on a daily basis with the authors and made a significant contribution in the collection of the data contained in this report. Organizations that furnished data are acknowledged in the station descriptions in tables 1 and 4.Information for previously published water-discharge, water-quality, atmospheric-deposition, and precipitation data for Salt Lake County are reported by Pyper and others (1981); Dustin (1977); Hely and others (1971) and references that they cited; and Feth and others (1964). Additional water- discharge and water

  2. Satellite microwave observations of the Utah Great Salt Lake Desert

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Dellwig, L. F.; Schmugge, T.

    1975-01-01

    Microwave data acquired over the Great Salt Lake Desert area by sensors aboard Skylab and Nimbus 5 indicate that the microwave emission and backscatter were strongly influenced by contributions from subsurface layers of sediment saturated with brine. This phenomenon was observed by Skylab's S-194 radiometer operating at 1.4 GHz, S-193 RADSCAT (Radiometer-Scatterometer) operating at 13.9 GHz, and the Nimbus 5 ESMR (Electrically Scanning Microwave Radiometer) operating at 19.35 GHz. The availability of ESMR data over an 18-month period allowed an investigation of temporal variations.

  3. Potential Impacts of Climate Change in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.

    2011-12-01

    Climate change is projected to have substantial impacts in the Great Lakes region of the United States. One intent of this presentation is to introduce the Great Lakes Integrated Sciences and Assessments Center (GLISA), a recently-funded NOAA RISA center. The goals and unique organizational structure of GLISA will be described along with core activities that support impact and assessment studies in the region. Additionally, observed trends in temperature, precipitation including lake effect snowfall, and lake temperatures and ice cover will be summarized for the Great Lakes region, and vulnerabilities to, and potential impacts of, climate change will be surveyed for critical natural and human systems. These include forest ecosystems, water resources, traditional and specialized agriculture, and tourism/recreation. Impacts and vulnerabilities unique to the Great Lakes region are emphasized.

  4. GREAT LAKES REGIONAL ASSESSMENT: REPORT OF A WORKSHOP ON CLIMATE CHANGE IN THE UPPER GREAT LAKES REGION

    EPA Science Inventory

    The Upper Great Lakes workshop, sponsored by the U.S. Environmental Protection Agency (USEPA), was held at the University of Michigan in Ann Arbor, Michigan from 4-7 May 1998 to discuss some of the potential consequences of climate change in the Upper Great Lakes region (e.g., Mi...

  5. Calculation of area and volume for the south part of Great Salt Lake, Utah

    USGS Publications Warehouse

    Baskin, Robert L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Wildlife Resources, collected bathymetric data for the south part of Great Salt Lake during 2002-04 using a single-beam, high-definition fathometer and real-time differential global positioning system. About 7.6 million depth measurements were collected along more than 930 miles (1,690 kilometers) of survey transects. Sound-velocity profiles were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping and calculation of area and volume. Area and volume calculations show a maximum area of about 508,000 acres (2,056 square kilometers) and a maximum volume of about 9,257,000 acre-feet (11.42 cubic kilometers) at a water-surface altitude of 4,200 feet (1,280 meters). Minimum water-surface altitude of the south part of Great Salt Lake is just below 4,167 feet (1,279 meters) in the area just south of the Union Pacific railroad causeway halfway between Promontory Point and the western edge of the lake. At this altitude, and continuing up to about 4,176 feet (1,279 meters), the south part of the lake is separated into two areas by a ridge extending from Promontory Point to Hat Island. Calculations for area and volume are based on a low altitude of 4,167 feet (1,279 meters) to a high altitude of 4,200 feet (1,280 meters).

  6. Influence of Lake Malawi on regional climate from a double-nested regional climate model experiment

    NASA Astrophysics Data System (ADS)

    Diallo, Ismaïla; Giorgi, Filippo; Stordal, Frode

    2017-07-01

    We evaluate the performance of the regional climate model (RCM) RegCM4 coupled to a one dimensional lake model for Lake Malawi (also known as Lake Nyasa in Tanzania and Lago Niassa in Mozambique) in simulating the main characteristics of rainfall and near surface air temperature patterns over the region. We further investigate the impact of the lake on the simulated regional climate. Two RCM simulations, one with and one without Lake Malawi, are performed for the period 1992-2008 at a grid spacing of 10 km by nesting the model within a corresponding 25 km resolution run ("mother domain") encompassing all Southern Africa. The performance of the model in simulating the mean seasonal patterns of near surface air temperature and precipitation is good compared with previous applications of this model. The temperature biases are generally less than 2.5 °C, while the seasonal cycle of precipitation over the region matches observations well. Moreover, the one-dimensional lake model reproduces fairly well the geographical pattern of observed (from satellite measurements) lake surface temperature as well as its mean month-to-month evolution. The Malawi Lake-effects on the moisture and atmospheric circulation of the surrounding region result in an increase of water vapor mixing ratio due to increased evaporation in the presence of the lake, which combines with enhanced rising motions and low-level moisture convergence to yield a significant precipitation increase over the lake and neighboring areas during the whole austral summer rainy season.

  7. The impact of road salt runoff on methanogens and other lacustrine prokaryotes

    NASA Astrophysics Data System (ADS)

    Sprague, E.; Dupuis, D.; Koretsky, C.; Docherty, K. M.

    2017-12-01

    Road salt deicers are widely used in regions that experience icy winters. The resulting saline runoff can negatively impact freshwater lake ecosystems. Saline runoff can cause density stratification, resulting in persistently anoxic hypolimnia. This may result in a shift in the structure of the hypolimnetic prokaryotic community, with potential increases in anaerobic and halotolerant taxa. Specifically, anoxia creates a habitat suitable for the proliferation of obligately anaerobic Archaeal methanogens. As a result, more persistent and expanded anoxic zones due to road salt runoff have the potential to increase hypolimnetic methane concentrations. If a portion of this methane is released to the atmosphere, it could be a currently uncharacterized contributor to atmospheric greenhouse gas emissions. This study examines two urban, eutrophic lakes with significant road salt influx and one rural, eutrophic lake with little road salt influx. All three lakes are located in southwest Michigan. Samples were taken from the water column at every meter at the deepest part of each lake, with a sample from the sediment-water interface, in May, August, and November 2016 and February 2017. The V4 and V5 hypervariable regions of the 16S rRNA gene in Bacteria and Archaea were amplified and sequenced using an Illumina MiSeq approach. Abundance of the mcrA gene, a marker for Archaeal methyl coenzyme A reductase, was quantified using qPCR. Water column methane levels, sediment methane production, water surface methane flux and a suite of supporting geochemical parameters were measured to determine changes in redox stratification in each lake and across seasons. Results indicate significant changes in the 16S rRNA-based community associated with depth, season, salinity and lake. Cyanobacteria, Actinobacteria, and Proteobacteria were among the phyla with the highest overall relative abundance. Sediment samples had more copies of the mcrA gene than the water column samples. In most

  8. Landsat-based trend analysis of lake dynamics across northern permafrost regions

    USGS Publications Warehouse

    Nitze, Ingmar; Grosse, Guido; Jones, Benjamin M.; Arp, Christopher D.; Ulrich, Mathias; Federov, Alexander; Veremeeva, Alexandra

    2017-01-01

    Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.

  9. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  10. A Dendroclimatic Analysis of Fluctuations in the Great Salt Lake.

    DTIC Science & Technology

    1986-01-01

    in the Great Salt Lake drainage basin , and are therefore only an estimate of the amount of precipitation falling there; Tree ring indices end, for the...Express Nevada PONY Pinyon Pine 30 39 49’N 114 37’W 1400 - 1982 Uinta Mountains, Site D Utah UINTAD Pinyon Pine 8 40 37’N 109 57’W 1430 - 1971 Conners Pass...Single Leaf Pinyon 14 39 16’N 114 07’W 1610 - 1978 Uinta Mountains, North Utah UINTAN Englemann Spruce 18 40 57’N 110 26’W 1610 - 1971 Uinta Mountains

  11. Great Salt Lake Composition and Rare Earth Speciation Analysis

    DOE Data Explorer

    Jiao, Yongqin; Lammers, Laura; Brewer, Aaron

    2017-04-19

    We have conducted aqueous speciation analyses of the Great Salt Lake (GSL) brine sample (Table 1) and a mock geo sample (Table 2) spiked with 1 ppb Tb and 100 ppb Tb. The GSL speciation (Figure 1) aligns with our basic speciation expectations that strong carbonate complexes would form at mid to higher pH's. Although we expected strong aqueous complexes with fluorides at neutral pH and with chlorides, and hydroxides at low pH, we observe that the dominant species in the low to mid pH range to be Tb3+ as a free ion. Still, we do see the presence of fluoride and chloride complexes within the expected low to mid pH range.

  12. Detection of Critical LUCC Indices and Sensitive Watershed Regions Related to Lake Algal Blooms: A Case Study of Taihu Lake

    PubMed Central

    Lin, Chen; Ma, Ronghua; Su, Zhihu; Zhu, Qing

    2015-01-01

    Taihu Lake in China has suffered from severe eutrophication over the past 20 years which is partly due to significant land use/cover change (LUCC). There is an increasing need to detect the critical watershed region that significantly affects lake water degradation, which has great significance for environmental protection. However, previous studies have obtained conflicting results because of non–uniform lake indicators and inadequate time periods. To identify the sensitive LUCC indices and buffer distance regions, three lake divisions (Meiliang Lake, Zhushan Lake and Western Coastal region) and their watershed region within the Taihu Lake basin were chosen as study sites, the algal area was used as a uniform lake quality indicator and modeled with LUCC indices over the whole time series. Results showed that wetland (WL) and landscape index such as Shannon diversity index (SHDI) appeared to be sensitive LUCC indices when the buffer distance was less than 5 km, while agricultural land (AL) and landscape fragmentation (Ci) gradually became sensitive indices as buffer distances increased to more than 5 km. For the relationship between LUCC and lake algal area, LUCC of the WC region seems to have no significant effect on lake water quality. Conversely, LUCC within ML and ZS region influenced algal area of corresponding lake divisions greatly, while the most sensitive regions were found in 3 km to 5 km, rather than the whole catchment. These results will be beneficial for the further understanding of the relationship between LUCC and lake water quality, and will provide a practical basis for the identification of critical regions for lake. PMID:25642691

  13. Anthropogenically driven changes in chloride complicate interpretation of base cation trends in lakes recovering from acidic deposition.

    PubMed

    Rosfjord, Catherine H; Webster, Katherine E; Kahl, Jeffrey S; Norton, Stephen A; Fernandez, Ivan J; Herlihy, Alan T

    2007-11-15

    Declines in Ca and Mg in low ANC lakes recovering from acidic deposition are widespread across the northern hemisphere. We report overall increases between 1984 and 2004 in the concentrations of Ca + Mg and Cl in lakes representing the statistical population of nearly 4000 low ANC lakes in the northeast U.S. Increases in Cl occurred in nearly all lakes in urbanized southern New England, but only 18% of lakes in more remote Maine had Cl increases. This spatial pattern implicates road salt application as the major source of the increased Cl salts. Among the 48% of the lake population classified as salt-affected, the median changes in Cl (+133 microeq/L) and Ca + Mg (+47 microeq/ L) were large and positive in direction over the 20 years. However, in the unaffected lakes, Cl remained stable and Ca + Mg decreased (-3 microeq/L), consistent with reported long-term trends in base cations of acid-sensitive lakes. This discrepancy between the Cl groups suggests that changes in ion exchange processes in salt-affected watersheds have altered the geochemical cycling of Ca and Mg. One policy-relevant implication is that waters influenced by Cl salts complicate regional assessments of surface water recovery from "acid rain" related to the passage of the Clean Air Act.

  14. Investigation of salt loss from the Bonneville Salt Flats, northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer.A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  15. The importance of ground water in the Great Lakes Region

    USGS Publications Warehouse

    Grannemann, N.G.; Hunt, R.J.; Nicholas, J.R.; Reilly, T.E.; Winter, T.C.

    2000-01-01

    Ground water is a major natural resource in the Great Lakes Region that helps link the Great Lakes and their watershed. This linkage needs to be more fully understood and quantified before society can address some of the important water-resources issues in the Great Lakes. The Great Lakes constitute the largest concentration of unfrozen fresh surface water in the western hemisphere—about 5,440 mi3. Because the quantity of water in the lakes is so large, ground water in the Great Lakes Basin is often overlooked when evaluating the hydrology of the region. Ground water, however, is more important to the hydrology of the Great Lakes and to the health of ecosystems in the watershed than is generally recognized.Although more than 1,000 mi3 of ground water are stored in the basin—a volume of water that is approximately equal to that of Lake Michigan—development of the groundwater resource must be carefully planned. Development of the ground-water resource removes water from storage and alters the paths of ground-water flow. Ground water that normally discharges to streams, lakes, and wetlands can be captured by pumping (the most common form of development), which may deplete or reduce inflows to the Great Lakes.Ground water is important to ecosystems in the Great Lakes Region because it is, in effect, a large, subsurface reservoir from which water is released slowly to provide a reliable minimum level of water flow to streams, lakes, and wetlands. Ground-water discharge to streams generally provides good quality water that, in turn, promotes habitat for aquatic animals and sustains aquatic plants during periods of low precipitation. Because of the slow movement of ground water, the effects of surface activities on ground-water flow and quality can take years to manifest themselves. As a result, issues relative to ground water are often seemingly less dire than issues related to surface water alone.Ground water is a major natural resource in the Great Lakes Region

  16. 78 FR 2434 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Natural History Museum of Utah has completed an inventory of human... culturally affiliated with the human remains and associated funerary objects may contact the Natural History...

  17. 78 FR 2430 - Notice of Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-11

    ... Inventory Completion: Natural History Museum of Utah, Salt Lake City, UT AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Natural History Museum of Utah has completed an inventory of human... culturally affiliated with the human remains and associated funerary objects may contact the Natural History...

  18. Depositional history and neotectonics in Great Salt Lake, Utah, from high-resolution seismic stratigraphy

    USGS Publications Warehouse

    Colman, Steven M.; Kelts, K.R.; Dinter, D.A.

    2002-01-01

    High-resolution seismic-reflection data from Great Salt Lake show that the basinal sediment sequence is cut by numerous faults with N-S and NE-SW orientations. This faulting shows evidence of varied timing and relative offsets, but includes at least three events totaling about 12 m following the Bonneville phase of the lake (since about 13.5 ka). Several faults displace the uppermost sediments and the lake floor. Bioherm structures are present above some faults, which suggests that the faults served as conduits for sublacustrine discharge of fresh water. A shallow, fault-controlled ridge between Carrington Island and Promontory Point, underlain by a well-cemented pavement, separates the main lake into two basins. The pavement appears to be early Holocene in age and younger sediments lap onto it. Onlap-offlap relationships, reflection truncations, and morphology of the lake floor indicate a low lake, well below the present level, during the early Holocene, during which most of the basin was probably a playa. This low stand is represented by irregular reflections in seismic profiles from the deepest part of the basin. Other prominent reflectors in the profiles are correlated with lithologic changes in sediment cores related to the end of the Bonneville stage of the lake, a thick mirabilite layer in the northern basin, and the Mazama tephra. Reflections below those penetrated by sediment cores document earlier lacustrine cycles. ?? 2002 Elsevier Science B.V. All rights reserved.

  19. Prediction of lake depth across a 17-state region in the United States

    USGS Publications Warehouse

    Oliver, Samantha K.; Soranno, Patricia A.; Fergus, C. Emi; Wagner, Tyler; Winslow, Luke A.; Scott, Caren E.; Webster, Katherine E.; Downing, John A.; Stanley, Emily H.

    2016-01-01

    Lake depth is an important characteristic for understanding many lake processes, yet it is unknown for the vast majority of lakes globally. Our objective was to develop a model that predicts lake depth using map-derived metrics of lake and terrestrial geomorphic features. Building on previous models that use local topography to predict lake depth, we hypothesized that regional differences in topography, lake shape, or sedimentation processes could lead to region-specific relationships between lake depth and the mapped features. We therefore used a mixed modeling approach that included region-specific model parameters. We built models using lake and map data from LAGOS, which includes 8164 lakes with maximum depth (Zmax) observations. The model was used to predict depth for all lakes ≥4 ha (n = 42 443) in the study extent. Lake surface area and maximum slope in a 100 m buffer were the best predictors of Zmax. Interactions between surface area and topography occurred at both the local and regional scale; surface area had a larger effect in steep terrain, so large lakes embedded in steep terrain were much deeper than those in flat terrain. Despite a large sample size and inclusion of regional variability, model performance (R2 = 0.29, RMSE = 7.1 m) was similar to other published models. The relative error varied by region, however, highlighting the importance of taking a regional approach to lake depth modeling. Additionally, we provide the largest known collection of observed and predicted lake depth values in the United States.

  20. Lake States regional forest resources assessment: technical papers.

    Treesearch

    Henry H. Webster; J. Michael Vasievich

    1997-01-01

    Contains 21 technical working papers prepared for the Lake States regional forest resources assessment, Lake States Forestry Alliance 1995. They represent significant contributions from many individuals and organizations and form the technical background for the assessment.

  1. Analysis and Application of Airborne Thermal Data at the Local Level Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    Dudley-Murphy, Elizabeth A.

    1999-01-01

    Expanding cities are transforming periurban environments such as agricultural land, natural grasslands, forests, wetlands, and and land, into urban surfaces, such as asphalt and concrete. This transformation is part of a process defined as "urban heat island". The urban surfaces get much hotter during the daylight hours in the summer than the natural or vegetated environment. The heat builds up creating a dome effect over the city making it many degrees hotter than it's surrounding area. The impacts from this, which include higher usage of air conditioners, water, etc., are numerous and costly. As cities expand, this problem is exacerbated. It is necessary to incorporate better quality data into urban analysis and for establishing methods that systematically and objectively monitor growth and change due to increased urbanization. NASA initiated Project Atlanta in 1997 "as an interdisciplinary remote sensing study to observe and measure the growth and development of the urban heat island effect over Atlanta, and its associated impacts". This project has recently included Salt Lake City, among others, in the study of the development and effects of "urban heat islands". NASA has made available to Salt Lake City, high resolution, 10 meter, multispectral thermal data collected in June 1998. The data collection was part of a special NASA over-flight, a mission supported by the U.S. EPA in conjunction with their Urban Heat Island (UHI) Mitigation Initiative. Salt Lake City is one of three pilot cities selected to participate in this unique initiative. Hence, this project constitutes a rare opportunity to capitalize upon state-of-the-art NASA technology and link it to an urban community very concerned about rapid growth and development. This data will enhance existing data and be used for improving technical tools used to plan for Utah's future.

  2. Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari, Hashem; Rose, L. Shea

    2001-02-28

    Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four majormore » land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.« less

  3. Physical Monitoring of Flow Into and Within Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Kenney, T. A.; Naftz, D. L.; Perschon, W. C.

    2006-12-01

    Great Salt Lake (GSL) is the hydrologic terminus for the eastern part of the Great Basin. As the largest inland waterbody in the Western United States, GSL plays a critical ecologic role for many migratory bird species. In terms of harvest quantity and quality, the brine shrimp (Artemia) fishery of GSL is among the strongest in the world. The characteristic of GSL as a hydrologic sink amplifies anthropogenic activities throughout the basin, most specifically activities that occur along its eastern and southern shores, the urban corridor of the Wasatch Front. In 1959 GSL was divided into north and south parts by a rock-fill railroad causeway. Since then, an extreme density gradient between the north and south part exists as a result of limited conveyance of water from the south part where more than 95 percent of the total freshwater input occurs (Loving, and others, 2000). To date, little is known about the loading and cycling of various chemical constituents associated with human activities including nutrients, selenium, and mercury. Hydroacoustic technology, specifically acoustic Doppler technology, is currently being used to obtain a better physical understanding of GSL. Since 1999, stratified bi-directional discharge has been measured at the causeway breach with an acoustic Doppler current profiler. From these measurements, net flow components to the north and south have been used to assess the movement of water and salt through the causeway. Low hydraulic gradients and variable backwater conditions at the two largest inflows to GSL required the deployment of in-situ acoustic Doppler velocity meters to accurately compute continuous discharge, critical for constituent loading analyses. These discharge records, computed using the index velocity method, show sensitivity to large wind events that can lead to a complete reversal of flow. Velocity profiles acquired during two multi-day water-quality synoptic sampling runs with acoustic Doppler current profilers have

  4. The Great Lakes Information Network: the region's Internet information service.

    PubMed

    Ratza, C A

    1996-01-01

    Communication is the cornerstone of ecosystem protection and sustainable development efforts in the binational Great Lakes region of North America. Great Lakes environmental protection, remediation, and pollution prevention efforts bring together individuals from across the public sector, business and industry, citizens groups, and academia. The region is now working to enhance communications between these groups and the rest of the world, through the Internet-based Great Lakes Information Network (GLIN). Diverse regional data, information, and human resources located at key agencies and organizations are accessible via GLIN. These online resources span environmental quality, human health effects and other research, resource management, transportation, demographic, and economic data, as well as other resources in the Great Lakes region of the United States and Canada. Federal, state, provincial, and regional agencies and a range of citizen, business, and research organizations are cooperating with the lead agency, the Great Lakes Commission, in developing GLIN into the region's shared Internet resource. GLIN resources are accessible to users of ubiquitous Internet research tools including World Wide Web and Gopher. Statistical information on usage and the region's response to ongoing efforts to build the GLIN system and solicit contributions of data and information indicate that we can continue to build GLIN into a truly regional resource which enhances communication among researchers, policy makers, students, and the general public.

  5. Microplastic Pollution in Table Salts from China.

    PubMed

    Yang, Dongqi; Shi, Huahong; Li, Lan; Li, Jiana; Jabeen, Khalida; Kolandhasamy, Prabhu

    2015-11-17

    Microplastics have been found in seas all over the world. We hypothesize that sea salts might contain microplastics, because they are directly supplied by seawater. To test our hypothesis, we collected 15 brands of sea salts, lake salts, and rock/well salts from supermarkets throughout China. The microplastics content was 550-681 particles/kg in sea salts, 43-364 particles/kg in lake salts, and 7-204 particles/kg in rock/well salts. In sea salts, fragments and fibers were the prevalent types of particles compared with pellets and sheets. Microplastics measuring less than 200 μm represented the majority of the particles, accounting for 55% of the total microplastics, and the most common microplastics were polyethylene terephthalate, followed by polyethylene and cellophane in sea salts. The abundance of microplastics in sea salts was significantly higher than that in lake salts and rock/well salts. This result indicates that sea products, such as sea salts, are contaminated by microplastics. To the best of our knowledge, this is the first report on microplastic pollution in abiotic sea products.

  6. Saline Lakes: Platforms for Place-Based Scientific Inquiry by K-12 Students

    NASA Astrophysics Data System (ADS)

    Godsey, H. S.; Chapman, D. S.; Hynek, S. A.; Jarrell, E.; Johnson, W. P.; Naftz, D. L.; Neuman, C. R.; Uno, K.

    2006-12-01

    WEST (Water, the Environment, Science and Teaching) is an NSF-funded GK-12 program at the University of Utah. WEST partners graduate students in the sciences with K-12 teachers to enhance inquiry and place- based science teaching in the Salt Lake City urban area. This region is unique in that habitats relating to the entire local hydrologic cycle are accessible within 30 minutes drive of the city. Great Salt Lake, a large closed-basin lake northwest of the city, generates lake-effect snows that fall on the mountains to the east and serves as the terminal point for rivers and streams that drain over 89,000 km2. The lake's salinity ranges from 14-25% and only a few halophilic species are able to survive in its waters. Despite the low diversity, brine shrimp, brine flies, algae and bacteria are abundant in Great Salt Lake and provide the basis of the food chain for millions of migratory shorebirds and waterfowl that feed in the open water, wetlands and saline flats. WEST has teamed up with researchers from the University of Utah, the USGS, the Utah State Dept. of Environmental Quality, local advocacy groups and a private consulting firm to develop a series of projects that involve K-12 students in an actual research project to study the effects of anthropogenic influences on the lake. The study will produce site-specific water-quality standards to protect the invertebrates, shorebirds, and waterfowl that utilize Great Salt Lake. Students will participate in a research cruise on the lake, collecting samples and data to contribute to an online database that will be shared among participating schools. Students will learn about navigation tools, collect and examine brine shrimp, and measure concentrations of optical brighteners and cyanobacteria as indicators of anthropogenic influences to Great Salt Lake. Parts of the southern arm of the lake are stratified into an upper and lower brine layer and the interface between the two layers can be identified by abrupt changes in

  7. Data Assimilation to Improve CMAQ Model Estimates of Particulate Matter Pollution during Wintertime Persistent Cold Air Pool Events in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Ivey, C. E.; Balachandran, S.; Russell, A. G.; Hu, Y.; Holmes, H.

    2017-12-01

    More than one million people live in Salt Lake Valley, Utah, where wintertime pollution reaches unhealthy levels due to the unique meteorology and orography of the region. Persistent cold air pool (PCAP) events occur when high pressure ridges create stagnant conditions over a valley, which hampers large-scale advection and reduces surface wind speeds. During PCAP periods the fraction of incoming solar radiation that reaches the valley floor is also reduced, leading to temperature inversions that allow pollution to build. Pollution levels continue to climb until a washout event removes the pollutants from the valley. Washout events include high winds or precipitation events with advection or wet deposition related removal processes, respectively. In this work, novel data assimilation and source apportionment techniques are applied for January and February 2007 to analyze CMAQ-modeled source composition and source impacts for the Salt Lake Valley during PCAP events. First, a hybrid source-oriented apportionment model is applied over continental U.S. to determine observation and model-based impacts from 20 sources, including agricultural activities, fossil fuel combustion, dust, and metals processing. Then, a secondary bias correction method is applied to better quantify the source impacts on secondary PM2.5, which constitutes the majority of the PM2.5 mass. Revised concentrations reflect what was previously reported in studies of PCAP pollution in the Salt Lake Valley, where the dominant aerosol was found to be ammonium nitrate. Further, gasoline and natural gas combustion were found to be the greatest contributing sources to aerosol concentrations during the PCAP events. The benefit of the data assimilation methods is the availability of spatially and temporally resolved model estimates of source impacts that better reflect observed concentrations.

  8. 75 FR 57288 - Notice of Inventory Completion: Utah Museum of Natural History, Salt Lake City, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... the human remains was made by the Utah Museum of Natural History professional staff and a report sent... DEPARTMENT OF THE INTERIOR National Park Service Notice of Inventory Completion: Utah Museum of... possession and control of the Utah Museum of Natural History, Salt Lake City, UT. The human remains and...

  9. Regionalization of precipitation characteristics in Iran's Lake Urmia basin

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Uvo, Cintia Bertacchi; Madani, Kaveh; Kløve, Bjørn

    2018-04-01

    Lake Urmia in northwest Iran, once one of the largest hypersaline lakes in the world, has shrunk by almost 90% in area and 80% in volume during the last four decades. To improve the understanding of regional differences in water availability throughout the region and to refine the existing information on precipitation variability, this study investigated the spatial pattern of precipitation for the Lake Urmia basin. Daily rainfall time series from 122 precipitation stations with different record lengths were used to extract 15 statistical descriptors comprising 25th percentile, 75th percentile, and coefficient of variation for annual and seasonal total precipitation. Principal component analysis in association with cluster analysis identified three main homogeneous precipitation groups in the lake basin. The first sub-region (group 1) includes stations located in the center and southeast; the second sub-region (group 2) covers mostly northern and northeastern part of the basin, and the third sub-region (group 3) covers the western and southern edges of the basin. Results of principal component (PC) and clustering analyses showed that seasonal precipitation variation is the most important feature controlling the spatial pattern of precipitation in the lake basin. The 25th and 75th percentiles of winter and autumn are the most important variables controlling the spatial pattern of the first rotated principal component explaining about 32% of the total variance. Summer and spring precipitation variations are the most important variables in the second and third rotated principal components, respectively. Seasonal variation in precipitation amount and seasonality are explained by topography and influenced by the lake and westerly winds that are related to the strength of the North Atlantic Oscillation. Despite using incomplete time series with different lengths, the identified sub-regions are physically meaningful.

  10. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee-Escanaba (Michigan)-Marinette (Wisconsin) Interstate Air Quality Control Region has been renamed the Lake Michigan Intrastate Air Quality Control Region (Wisconsin) and revised to consist of the territorial area...

  11. Eighteen Years of the Great Lakes Regional Counseling Psychology Conference: Revisiting the Need for Regional Conferences

    ERIC Educational Resources Information Center

    Delgado-Romero, Edward A.; Bowman, Sharon L.; Gerstein, Lawrence H.

    2006-01-01

    The Great Lakes Regional Conference on Counseling Psychology is the only conference to continuously fulfill the 1987 mandate issued by Division 17 for regional counseling conferences. The rationale for regional conferences is reviewed, and the 18-year history of the Great Lakes Regional Conference is examined. The authors conclude by noting the…

  12. Salt budget for West Pond, Utah, April 1987 to June 1989

    USGS Publications Warehouse

    Wold, S.R.; Waddell, K.M.

    1994-01-01

    During operation of the West Desert pumping project, April 10. 1987, to June 30, 1989, data were collected as part of a monitoring program to evaluate the effects of pumping brine from Great Salt Lake into West Pond in northern Utah. The removal of brine from Great Sail was part of an effort to lower the level of Great Salt Lake when the water level was at a high in 1986. These data were used to prepare a salt budget that indicates about 695 million tons of salt or about 14.2 percent of salt contained in Great Salt Lake was pumped into West Pond. Of the 695 million tons of salt pumped into West Pond, 315 million tons (45 percent) were dissolved in West Pond, 71 million tons (10.2 percent) formed a salt crust at the bottom of the pond, 10 million tons (1.4 percent) infiltrated the subsurface areas inundated by storage in the pond, 88 million tons (12.7 percent) were withdrawn by American Magnesium Corporation, and 123 million tons (17.7 percent) discharged from the pond through the Newfoundland weir. About 88 million tons (13 percent) of the salt pumped from the lake could not be accounted for in the salt budget. About 94 million tons of salt (1.9 percent of the total salt in Great Salt Lake) flowed back to Great Salt Lake.

  13. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication--A Case Study in the Taihu Lake Basin (China).

    PubMed

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-12-24

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r² was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality.

  14. Identifying Watershed Regions Sensitive to Soil Erosion and Contributing to Lake Eutrophication—A Case Study in the Taihu Lake Basin (China)

    PubMed Central

    Lin, Chen; Ma, Ronghua; He, Bin

    2015-01-01

    Taihu Lake in China is suffering from severe eutrophication partly due to non-point pollution from the watershed. There is an increasing need to identify the regions within the watershed that most contribute to lake water degradation. The selection of appropriate temporal scales and lake indicators is important to identify sensitive watershed regions. This study selected three eutrophic lake areas, including Meiliang Bay (ML), Zhushan Bay (ZS), and the Western Coastal region (WC), as well as multiple buffer zones next to the lake boundary as the study sites. Soil erosion intensity was designated as a watershed indicator, and the lake algae area was designated as a lake quality indicator. The sensitive watershed region was identified based on the relationship between these two indicators among different lake divisions for a temporal sequence from 2000 to 2012. The results show that the relationship between soil erosion modulus and lake quality varied among different lake areas. Soil erosion from the two bay areas was more closely correlated with water quality than soil erosion from the WC region. This was most apparent at distances of 5 km to 10 km from the lake, where the r2 was as high as 0.764. Results indicate that soil erosion could be used as an indicator for identifying key watershed protection areas. Different lake areas need to be considered separately due to differences in geographical features, land use, and the corresponding effects on lake water quality. PMID:26712772

  15. Salt lake Laguna de Fuente de Piedra (S-Spain) as Late Quaternary palaeoenvironmental archive

    NASA Astrophysics Data System (ADS)

    Höbig, Nicole; Melles, Martin; Reicherter, Klaus

    2014-05-01

    This study deals with Late Quaternary palaeoenvironmental variability in Iberia reconstructed from terrestrial archives. In southern Iberia, endorheic basins of the Betic Cordilleras are relatively common and contain salt or fresh-water lakes due to subsurface dissolution of Triassic evaporites. Such precipitation or ground-water fed lakes (called Lagunas in Spanish) are vulnerable to changes in hydrology, climate or anthropogenic modifications. The largest Spanish salt lake, Laguna de Fuente de Piedra (Antequera region, S-Spain), has been investigated and serves as a palaeoenvironmental archive for the Late Pleistocene to Holocene time interval. Several sediment cores taken during drilling campaigns in 2012 and 2013 have revealed sedimentary sequences (up to 14 m length) along the shoreline. A multi-proxy study, including sedimentology, geochemistry and physical properties (magnetic susceptibility) has been performed on the cores. The sedimentary history is highly variable: several decimetre thick silty variegated clay deposits, laminated evaporites, and even few-centimetre thick massive gypsum crystals (i.e., selenites). XRF analysis was focussed on valuable palaeoclimatic proxies (e.g., S, Zr, Ti, and element ratios) to identify the composition and provenance of the sediments and to delineate palaeoenvironmental conditions. First age control has been realized by AMS-radiocarbon dating. The records start with approximately 2-3 m Holocene deposits and reach back to the middle of MIS 3 (GS-3). The sequences contain changes in sedimentation rates as well as colour changes, which can be summarized as brownish-beige deposits at the top and more greenish-grey deposits below as well as highly variegated lamination and selenites below ca. 6 m depth. The Younger Dryas, Bølling/Allerød, and the so-called Mystery Interval/Last Glacial Maximum have presumably been identified in the sediment cores and aligned to other climate records. In general, the cores of the Laguna de

  16. Design and evaluation of expanded polystyrene geofoam embankments for the I-15 reconstruction project, Salt Lake City, Utah.

    DOT National Transportation Integrated Search

    2012-10-01

    The report discusses the design and 10-year performance evaluations of Expanded Polystyrene (EPS) Geofoam embankment constructed for the I-15 Reconstruction Project in Salt Lake City, Utah between 1998 and 2002. It contains methods to evaluate the al...

  17. Sedimentology of the saline lakes of the Cariboo Plateau, Interior British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Long, Peter R.

    1989-10-01

    There are several hundred saline lakes in Interior British Columbia, including muddy siliciclastic playas, saline playas, perennial lakes (including meromictic sulphate lakes), and ephemeral lakes, some with permanent salts. The lake waters have highly variable compositions, with Na-CO 3-Cl, Na-CO 3-(SO 4)-Cl, Mg-Na-SO 4 and Na-Mg-SO 4, the dominant types of brine. On the Cariboo Plateau, where they are most abundant, the saline lakes are small, shallow, and occupy depressions within glacial and glacio-fluvial deposits. Most are groundwater-fed. The region is characterized by extremely cold winters and short hot summers. Dense coniferous forest mantles much of the plateau and surrounds most of the lakes. Most basins comprise three main subenvironments—hillslope, mudflat (saline and dry) and lake (ephemeral or perennial). Fluvial sediments are of little significance. Mudflats are primarily a zone of extensive interstitial carbonate precipitation from shallow groundwaters, including abundant magnesite and hydromagnesite. The amount of carbonate formed varies with groundwater composition. Some mudflats are carbonate-dominated; others are predominantly siliciclastic with only highly soluble interstitial salts forming. Sedimentary structures are disrupted by carbonate precipitation and displacive salt crystallization. Springs and ephemeral seepages are locally present. Microbial mats form extensively along many littoral zones and around springs; laminates are preserved in some cores. Efflorescent salt crusts cover saline mudflats around most lakes and playas. Subaqueous salts (including natron, epsomite, bloedite, mirabilite) are precipitated during late summer, autumn and winter in several hypersaline lakes, some by evaporative concentration, others by brine cooling and freeze-out. Several hypersaline, ephemeral lakes have an unusual "spotted" morphology, with hundreds of individual brine pools within carbonate-siliciclastic muds. Most recent sedimentation in the

  18. Evaluating Urban Methane Emissions with a Light Rail Vehicle Platform in Salt Lake City, UT

    NASA Astrophysics Data System (ADS)

    Mitchell, L.; Fasoli, B.; Crosman, E.; Lin, J. C.; Bowling, D. R.; Ehleringer, J. R.

    2016-12-01

    Urban environments are characterized by both spatial complexity and temporal variability, each of which present challenges for measurement strategies aimed at constraining estimates of greenhouse gas emissions and air quality. To address these challenges we initiated a project in December 2014 to measure trace species (CO2, CH4, O3, and Particulate Matter) by way of a Utah Transit Authority (UTA) electricity-powered light rail vehicle whose route traverses the metropolitan Salt Lake Valley in Utah, USA on an hourly basis, retracing the same route through commercial, residential, suburban, and rural typologies. Light rail vehicles present advantages as a measurement platform, including the absence of in-situ fossil fuel emissions, regular repeated transects across an urban region that provide both spatial and temporal information, and relatively low operating costs. We will present initial results investigating methane point sources and evaluating the magnitude and temporal characteristics of these emissions.

  19. Halotolerant extremophile bacteria from the Great Salt Lake for recycling pollutants in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Grattieri, Matteo; Suvira, Milomir; Hasan, Kamrul; Minteer, Shelley D.

    2017-07-01

    The treatment of hypersaline wastewater (approximately 5% of the wastewater worldwide) cannot be performed by classical biological techniques. Herein the halotolerant extremophile bacteria obtained from the Great Salt Lake (Utah) were explored in single chamber microbial fuel cells with Pt-free cathodes for more than 18 days. The bacteria samples collected in two different locations of the lake (Stansbury Bay and Antelope Island) showed different electrochemical performances. The maximum achieved power output of 36 mW m-2 was from the microbial fuel cell based on the sample originated from Stansbury Bay, at a current density of 820 mA m-2. The performances throughout the long-term operation are discussed and a bioelectrochemical mechanism is proposed.

  20. Regional variability among nonlinear chlorophyll-phosphorus relationships in lakes

    USGS Publications Warehouse

    Filstrup, Christopher T.; Wagner, Tyler; Soranno, Patricia A.; Stanley, Emily H.; Stow, Craig A.; Webster, Katherine E.; Downing, John A.

    2014-01-01

    The relationship between chlorophyll a (Chl a) and total phosphorus (TP) is a fundamental relationship in lakes that reflects multiple aspects of ecosystem function and is also used in the regulation and management of inland waters. The exact form of this relationship has substantial implications on its meaning and its use. We assembled a spatially extensive data set to examine whether nonlinear models are a better fit for Chl a—TP relationships than traditional log-linear models, whether there were regional differences in the form of the relationships, and, if so, which regional factors were related to these differences. We analyzed a data set from 2105 temperate lakes across 35 ecoregions by fitting and comparing two different nonlinear models and one log-linear model. The two nonlinear models fit the data better than the log-linear model. In addition, the parameters for the best-fitting model varied among regions: the maximum and lower Chl aasymptotes were positively and negatively related to percent regional pasture land use, respectively, and the rate at which chlorophyll increased with TP was negatively related to percent regional wetland cover. Lakes in regions with more pasture fields had higher maximum chlorophyll concentrations at high TP concentrations but lower minimum chlorophyll concentrations at low TP concentrations. Lakes in regions with less wetland cover showed a steeper Chl a—TP relationship than wetland-rich regions. Interpretation of Chl a—TP relationships depends on regional differences, and theory and management based on a monolithic relationship may be inaccurate.

  1. Contamination of table salts from Turkey with microplastics.

    PubMed

    Gündoğdu, Sedat

    2018-05-01

    Microplastics (MPs) pollution has become a problem that affects all aquatic, atmospheric and terrestial environments in the world. In this study, we looked into whether MPs in seas and lakes reach consumers through table salt. For this purpose, we obtained 16 brands of table salts from the Turkish market and determined their MPs content with microscopic and Raman spectroscopic examination. According to our results, the MP particle content was 16-84 item/kg in sea salt, 8-102 item/kg in lake salt and 9-16 item/kg in rock salt. The most common plastic polymers were polyethylene (22.9%) and polypropylene (19.2%). When the amounts of MPs and the amount of salt consumed by Turkish consumers per year are considered together, if they consume sea salt, lake salt or rock salt, they consume 249-302, 203-247 or 64-78 items per year, respectively. This is the first time this concerning level of MPs content in table salts in the Turkish market has been reported.

  2. Weather and eared grebe winter migration near the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Williams, Augusta A.; Laird, Neil F.

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s-1 and a westerly, cross-flight wind of 5.0 m s-1 while having an average flight speed at cruising altitude of 16.9 m s-1, or 61 km h-1. In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  3. Effects of lake trout refuges on lake whitefish and cisco in the Apostle Islands Region of Lake Superior

    USGS Publications Warehouse

    Zuccarino-Crowe , Chiara M.; Taylor, William W.; Hansen, Michael J.; Seider, Michael J.; Krueger, Charles C.

    2016-01-01

    Lake trout refuges in the Apostle Islands region of Lake Superior are analogous to the concept of marine protected areas. These refuges, established specifically for lake trout (Salvelinus namaycush) and closed to most forms of recreational and commercial fishing, were implicated as one of several management actions leading to successful rehabilitation of Lake Superior lake trout. To investigate the potential significance of Gull Island Shoal and Devils Island Shoal refuges for populations of not only lake trout but also other fish species, relative abundances of lake trout, lake whitefish (Coregonus clupeaformis), and cisco (Coregonus artedi) were compared between areas sampled inside versus outside of refuge boundaries. During 1982–2010, lake trout relative abundance was higher and increased faster inside the refuges, where lake trout fishing was prohibited, than outside the refuges. Over the same period, lake whitefish relative abundance increased faster inside than outside the refuges. Both evaluations provided clear evidence that refuges protected these species. In contrast, trends in relative abundance of cisco, a prey item of lake trout, did not differ significantly between areas inside and outside the refuges. This result did not suggest indirect or cascading refuge effects due to changes in predator levels. Overall, this study highlights the potential of species-specific refuges to benefit other fish species beyond those that were the refuges' original target. Improved understanding of refuge effects on multiple species of Great Lakes fishes can be valuable for developing rationales for refuge establishment and predicting associated fish community-level effects.

  4. Total Mercury and Methylmercury Response in Water, Sediment, and Biota to Destratification of the Great Salt Lake, Utah, United States.

    PubMed

    Valdes, Carla; Black, Frank J; Stringham, Blair; Collins, Jeffrey N; Goodman, James R; Saxton, Heidi J; Mansfield, Christopher R; Schmidt, Joshua N; Yang, Shu; Johnson, William P

    2017-05-02

    Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning the Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more-saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in the replacement of the formerly stratified water column in the south arm with one that was vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81% and methylmercury concentrations in deep waters decreased by roughly 86% due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment, whereas there was no change observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.

  5. Evaluation of transit signal priority strategies for 400 south light rail line in Salt Lake County, UT : part II.

    DOT National Transportation Integrated Search

    2010-11-01

    The goal of this study is to evaluate light rail priority strategies along the 400 S / 500 S corridor in Salt Lake County through analyzing benefits and impacts of the priority on transit and vehicular traffic through microsimulation. The field of st...

  6. Decadal oscillation of lakes and aquifers in the upper Great Lakes region of North America: hydroclimatic implications

    USGS Publications Warehouse

    Watras, C.J.; Read, J.S.; Holman, K.D.; Liu, Z.; Song, Y.-Y.; Watras, A.J.; Morgan, S.; Stanley, E.H.

    2014-01-01

    We report a unique hydrologic time-series which indicates that water levels in lakes and aquifers across the upper Great Lakes region of North America have been dominated by a climatically-driven, near-decadal oscillation for at least 70 years. The historical oscillation (~13y) is remarkably consistent among small seepage lakes, groundwater tables and the two largest Laurentian Great Lakes despite substantial differences in hydrology. Hydrologic analyses indicate that the oscillation has been governed primarily by changes in the net atmospheric flux of water (P-E) and stage-dependent outflow. The oscillation is hypothetically connected to large-scale atmospheric circulation patterns originating in the mid-latitude North Pacific that support the flux of moisture into the region from the Gulf of Mexico. Recent data indicate an apparent change in the historical oscillation characterized by a ~12y downward trend beginning in 1998. Record low water levels region-wide may mark the onset of a new hydroclimatic regime.

  7. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    USGS Publications Warehouse

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  8. The Lake Urmia environmental disaster in Iran: A look at aerosol pollution.

    PubMed

    Hossein Mardi, Ali; Khaghani, Ali; MacDonald, Alexander B; Nguyen, Phu; Karimi, Neamat; Heidary, Parisa; Karimi, Nima; Saemian, Peyman; Sehatkashani, Saviz; Tajrishy, Massoud; Sorooshian, Armin

    2018-08-15

    Lake Urmia (LU) once was the second largest hypersaline lake in the world, covering up to 6000km 2 , but has undergone catastrophic desiccation in recent years resulting in loss of 90% of its area and extensive coverage by playas and marshlands that represent a source of salt and dust. This study examines daily Aerosol Optical Depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2001 and 2015 over northwestern Iran, which encompasses LU. Intriguingly, salt emissions from the LU surface associated with ongoing desiccation do not drive the study region's AOD profile, whereas pollution transported from other regions and emissions around LU are more important. Signatures of increasing local crustal emissions are most evident outside of the peak dust season (January, February, and October) and on the periphery of LU. AOD has generally increased in the latter half of the study period with the onset of the AOD ramp-up starting a month earlier in the spring season when comparing 2009-2015 versus earlier years. Results indicate that suppression of emissions on the LU border is critical as the combined area of salt and salty soil bodies around LU have increased by two orders of magnitude in the past two decades, and disturbing these areas via activities such as grazing and salt harvesting on the lake surface can have more detrimental impacts on regional pollution as compared to benefits. These results have important implications for public health, climate, the hydrological cycle, and pollution control efforts. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Great Salt Lake basins study unit

    USGS Publications Warehouse

    Waddell, Kidd M.; Baskin, Robert L.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment (NAWQA) Program.The long-term goals of the NAWQA Program are to describe the status and trends in the quality of a large, representative part of the Nation’s surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors that affect the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at Federal, State, and local levels.A major design feature of the NAWQA Program will enable water-quality information at different areal scales to be integrated. A major component of the program is study-unit investigations, which ae the principal building blocks of the program upon which national-level assessment activities will be based. The 60 study-unit investigations that make up the program are hydrologic systems that include principal river basins and aquifer systems throughout the Nation. These study units cover areas from less than 1.000 to greater than 60,000 mi2 and incorporate from about 60 to 70 percent of the Nation’s water use and population served by public water supply. In 1993, assessment activities began in the Great Salt Lake Basins NAWQA study unit.

  10. Ecophysiology of "Halarsenatibacter silvermanii" strain SLAS-1T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California.

    PubMed

    Blum, Jodi Switzer; Han, Sukkyun; Lanoil, Brian; Saltikov, Chad; Witte, Brian; Tabita, F Robert; Langley, Sean; Beveridge, Terry J; Jahnke, Linda; Oremland, Ronald S

    2009-04-01

    Searles Lake occupies a closed basin harboring salt-saturated, alkaline brines that have exceptionally high concentrations of arsenic oxyanions. Strain SLAS-1(T) was previously isolated from Searles Lake (R. S. Oremland, T. R. Kulp, J. Switzer Blum, S. E. Hoeft, S. Baesman, L. G. Miller, and J. F. Stolz, Science 308:1305-1308, 2005). We now describe this extremophile with regard to its substrate affinities, its unusual mode of motility, sequenced arrABD gene cluster, cell envelope lipids, and its phylogenetic alignment within the order Halanaerobacteriales, assigning it the name "Halarsenatibacter silvermanii" strain SLAS-1(T). We also report on the substrate dynamics of an anaerobic enrichment culture obtained from Searles Lake that grows under conditions of salt saturation and whose members include a novel sulfate reducer of the order Desulfovibriales, the archaeon Halorhabdus utahensis, as well as a close homolog of strain SLAS-1(T).

  11. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation

    NASA Astrophysics Data System (ADS)

    Yakimov, Michail M.; La Cono, Violetta; Slepak, Vladlen Z.; La Spada, Gina; Arcadi, Erika; Messina, Enzo; Borghini, Mireno; Monticelli, Luis S.; Rojo, David; Barbas, Coral; Golyshina, Olga V.; Ferrer, Manuel; Golyshin, Peter N.; Giuliano, Laura

    2013-12-01

    Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [14C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.

  12. Geography of Alaska Lake Districts: Identification, Description, and Analysis of Lake-Rich Regions of a Diverse and Dynamic State

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.

    2009-01-01

    Lakes are abundant landforms and important ecosystems in Alaska, but are unevenly distributed on the landscape with expansive lake-poor regions and several lake-rich regions. Such lake-rich areas are termed lake districts and have landscape characteristics that can be considered distinctive in similar respects to mountain ranges. In this report, we explore the nature of lake-rich areas by quantitatively identifying Alaska's lake districts, describing and comparing their physical characteristics, and analyzing how Alaska lake districts are naturally organized and correspond to climatic and geophysical characteristics, as well as studied and managed by people. We use a digital dataset (National Hydrography Dataset) of lakes greater than 1 hectare, which includes 409,040 individual lakes and represents 3.3 percent of the land-surface area of Alaska. The selection criteria we used to identify lake districts were (1) a lake area (termed limnetic ratio, in percent) greater than the mean for the State, and (2) a lake density (number of lakes per unit area) greater than the mean for the State using a pixel size scaled to the area of interest and number of lakes in the census. Pixels meeting these criteria were grouped and delineated and all groups greater than 1,000 square kilometers were identified as Alaska's lake districts. These lake districts were described according to lake size-frequency metrics, elevation distributions, geology, climate, and ecoregions to better understand their similarities and differences. We also looked at where lake research and relevant ecological monitoring has occurred in Alaska relative to lake districts and how lake district lands and waters are currently managed. We identified and delineated 20 lake districts in Alaska representing 16 percent of the State, but including 65 percent of lakes and 75 percent of lake area. The largest lake districts identified are the Yukon-Kuskokwim Delta, Arctic Coastal Plain, and Iliamna lake districts with

  13. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  14. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  15. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  16. 40 CFR 81.67 - Lake Michigan Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Lake Michigan Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.67 Lake Michigan Intrastate Air Quality Control Region. The Menominee...

  17. Weather and eared grebe winter migration near the Great Salt Lake, Utah.

    PubMed

    Williams, Augusta A; Laird, Neil F

    2018-03-01

    This study provides insight from the use of weather radar observations to understand the characteristics of the eared grebe migration near the Great Salt Lake (GSL) and provides unique information on weather conditions connected to these migration events. Doppler weather radar measurements from the Salt Lake City, Utah WSR-88D radar site (KMTX), along with meteorological surface and rawinsonde data, were used to identify and examine 281 eared grebe migration events across 15 winters from 1997/1998 through 2011/2012. An average of about 19 migration events occurred each winter with considerable interannual variability, as well as large variance in the spatial area and number of birds departing the GSL during each event. The migration events typically occurred during clear sky conditions in the presence of surface high pressure and colder than average surface temperatures. Migration events began 55 min after sunset, on average across the winter seasons, and in one case we demonstrate that an extended, nonstop flight was initiated of the departing eared grebes to northern Mexico. Eared grebes leaving the GSL largely flew above the freezing level with a mean northerly tailwind at flight altitude of 3.1 m s -1 and a westerly, cross-flight wind of 5.0 m s -1 while having an average flight speed at cruising altitude of 16.9 m s -1 , or 61 km h -1 . In addition to determining the variability of meteorological conditions during migration events across the 15 winters, atmospheric conditions during the largest migration event observed are presented and discussed.

  18. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  19. Great Lakes nearshore-offshore: Distinct water quality regions

    EPA Science Inventory

    We compared water quality of nearshore regions in the Laurentian Great Lakes to water quality in offshore regions. Sample sites for the nearshore region were from the US EPA National Coastal Condition Assessment and based on a criteria or sample-frame of within the 30-m depth co...

  20. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysismore » of principal and selected minor dissolved constituents.« less

  1. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Liscum, Fred

    1980-01-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes, in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.

  2. Climate Change in Africa: Impacts and Effects on the Inhabitants of the Lake Chad Region.

    NASA Astrophysics Data System (ADS)

    Abubakar, B.; Tahir, S. M.; Olisa, O.

    2009-05-01

    The Department of Energy and Climate Change defined climate as the average weather experienced over a long period. This includes temperature, wind and rainfall patterns. The climate of the Earth is not static, and has changed many times in response to a variety of natural causes. Due to human activities in emmiting green house gases has resulted the Earth to get warmed by 0.74°C over the last hundred years. Around 0.4°C of this warming has occurred since the 1970s. Climate is now one of the major phenomenon threatening lives and humanity in general since the beginning of industrial revolution. Climate exerts a profound influence on the lives of poor populations in the Lake Chad region of Africa who depend on fishing and crop cultivation for livelihood and sustenance, who are unprotected against climate-related diseases, who lacked secure access to water and food and who are vulnerable to hydro meteorological hazard. The effects of climate change on the study area are many and include diminishing resources and conflicts over the available limited water resources. The Lake Chad region is a fragile area with high climate variability and extremes of weather. As this inland water is used for domestic and agricultural purposes, salt mining, as well as transportation by Nigerians, Nigeriens, Chadian and Cameroonians, it is an area of trans-boundary water conflicts. This paper examines the part played by climate change in the decline of fishery resources and livelihood activities in the Lake Chad region. Data from field studies, structured interview and secondary sources show that fish catches and livelihood activities have declined tremendously in recent times due to several factors including overexploitation and increasing demands on the aquatic resources. Findings from the study show that droughty periods have resulted in the reduction of open lake water surface from about 25,000 km2 in 1973 to less than 2,000 km2 in the 1990s. This has led to the diminishing aquatic

  3. Understanding the behavior of carbon dioxide and surface energy fluxes in semiarid Salt Lake Valley, Utah, USA

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Prathap

    This dissertation reports the findings from the Salt Lake Valley flux study. The Salt Lake Valley flux study was designed to improve our understanding of the complex land-atmosphere interactions in urban areas. The flux study used the eddy covariance technique to quantify carbon dioxide and surface energy budget in the semiarid Salt Lake Valley. Apart from quantifying fluxes, the study has also added new insight into the nature of turbulent scalar transport in urban areas and has addressed some of the complications in using Eddy Covariance technique in urban areas. As part of this experiment, eddy fluxes of CO2 and surface energy fluxes were measured at two sites, with distinct urban landforms; One site was located in a suburban neighborhood with substantial vegetative cover, prototypical of many residential neighborhoods in the valley. The other CO2 site was in a preurban surrounding that resembled the Salt Lake Valley before it was urbanized. The two sites were intentionally chosen to illustrate the impact of urbanization on CO 2 and surface energy flux cycles. Results indicate that the suburban site acted as a sink of CO2 during the midday period due to photosynthesis and acted as a source of CO2 during the evening and nighttime periods. The vegetative cover around the suburban site also had a significant impact on the surface energy fluxes. Contribution from latent heat flux was substantially high at the suburban site during the summer months compared to sensible heat. The turbulence investigation found that the general behavior of turbulence was very much influenced by local factors and the statistics did not always obey Monin-Obukhov Similarity parameters. This investigation also found that the scalar (co)spectra observed at the suburban site were characterized by multiple peaks and were different compared to (co)spectra reported over forest and crop canopies. The study also observed multiscale CO2 transport at the suburban site during the convective period

  4. Quality of drinking water from ponds in villages of Kolleru Lake region.

    PubMed

    Rao, A S; Rao, P R; Rao, N S

    2001-01-01

    Kolleru Lake is the largest natural freshwater lake in the districts of East and West Godavari of Andhra Pradesh. The major population centres in the Kolleru Lake region are the 148 villages of which 50 bed villages and 98 belt villages. All bed and belt villages in lake region have at least one drinking water pond. Drinking water ponds are filled with lake water during monsoon season and directly supplied to the public throughout the year. The water samples were collected from village drinking water ponds in a year by covering three seasons and analysed for different physico-chemical parameters to assess the quality of drinking water.

  5. Historical land cover changes in the Great Lakes Region

    USGS Publications Warehouse

    Cole, K.L.; Davis, M.B.; Stearns, F.; Guntenspergen, G.; Walker, K.; Sisk, Thomas D.

    1999-01-01

    Two different methods of reconstructing historical vegetation change, drawing on General Land Office (GLO) surveys and fossil pollen deposits, are demonstrated by using data from the Great Lakes region. Both types of data are incorporated into landscape-scale analyses and presented through geographic information systems. Results from the two methods reinforce each other and allow reconstructions of past landscapes at different time scales. Changes to forests of the Great Lakes region during the last 150 years were far greater than the changes recorded over the preceding 1,000 years. Over the last 150 years, the total amount of forested land in the Great Lakes region declined by over 40%, and much of the remaining forest was converted to early successional forest types as a result of extensive logging. These results demonstrate the utility of using GLO survey data in conjunction with other data sources to reconstruct a generalized 'presettlement' condition and assess changes in landcover.

  6. Regional Monitoring of Acidic Lakes and Streams

    EPA Pesticide Factsheets

    This asset provides data on the acid-base status of lakes and streams. Key chemical indicators measured include: sulfate, nitrate, ammonium, chloride, Acid Neutralizing Capacity (ANC), pH, base cations, dissolved organic carbon (DOC), total aluminum. TIME and LTM are part of EPA's Environmental Monitoring and Assessment Program (EMAP). Long-term monitoring of the acid-base status (pH, ANC, SO4, NO3, NH4, DOC, base cations, Al) in lakes and streams. Monitoring is conducted in acid sensitive regions of the Eastern U.S.

  7. Hydrogeology of shallow basin-fill deposits in areas of Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    A study of recently developed residential/commercial areas of Salt Lake Valley, Utah, was done from 1999 to 2001 in areas in which shallow ground water has the potential to move to a deeper aquifer that is used for public supply. Thirty monitoring wells were drilled and sampled in 1999 as part of the study. The ground water was either under unconfined or confined conditions, depending on depth to water and the presence or absence of fine-grained deposits. The wells were completed in the shallowest water-bearing zone capable of supplying water. Monitoring-well depths range from 23 to 154 feet. Lithologic, geophysical, hydraulic-conductivity, transmissivity, water-level, and water-temperature data were obtained for or collected from the wells.Silt and clay layers noted on lithologic logs correlate with increases in electrical conductivity and natural gamma radiation shown on many of the electromagnetic-induction and natural gamma logs. Relatively large increases in electrical conductivity, determined from the electromagnetic-induction logs, with no major changes in natural gamma radiation are likely caused by increased dissolved-solids content in the ground water. Some intervals with high electrical conductivity correspond to areas in which water was present during drilling.Unconfined conditions were present at 7 of 20 monitoring wells on the west side and at 2 of 10 wells on the east side of Salt Lake Valley. Fine-grained deposits confine the ground water. Anthropogenic compounds were detected in water sampled from most of the wells, indicating a connection with the land surface. Data were collected from 20 of the monitoring wells to estimate the hydraulic conductivity and transmissivity of the shallow ground-water system. Hydraulic-conductivity values of the shallow aquifer ranged from 30 to 540 feet per day. Transmissivity values of the shallow aquifer ranged from 3 to 1,070 feet squared per day. There is a close linear relation between transmissivity determined

  8. Ecophysiology of "halarsenatibacter silvermanii" strain SLAS-1T, gen. nov., sp. nov., a facultative chemoautotrophic arsenate respirer from salt-saturated Searles Lake, California

    USGS Publications Warehouse

    Blum, J.S.; Han, S.; Lanoil, B.; Saltikov, C.; Witte, B.; Tabita, F.R.; Langley, S.; Beveridge, T.J.; Jahnke, L.; Oremland, R.S.

    2009-01-01

    Searles Lake occupies a closed basin harboring salt-saturated, alkaline brines that have exceptionally high concentrations of arsenic oxyanions. Strain SLAS-1T was previously isolated from Searles Lake (R. S. Oremland, T. R. Kulp, J. Switzer Blum, S. E. Hoeft, S. Baesman, L. G. Miller, and J. F. Stolz, Science 308:1305-1308, 2005). We now describe this extremophile with regard to its substrate affinities, its unusual mode of motility, sequenced arrABD gene cluster, cell envelope lipids, and its phylogenetic alignment within the order Halanaero-bacteriales, assigning it the name "Halarsenatibacter silvermanii" strain SLAS-1T. We also report on the substrate dynamics of an anaerobic enrichment culture obtained from Searles Lake that grows under conditions of salt saturation and whose members include a novel sulfate reducer of the order Desulfovibriales, the archaeon Halorhabdus utahensis, as well as a close homolog of strain SLAS-1T. Copyright ?? 2009, American Society for Microbiology. All Rights Reserved.

  9. Climatic forcing of carbon-oxygen isotopic covariance in temperate-region marl lakes

    NASA Technical Reports Server (NTRS)

    Drummond, C. N.; Patterson, W. P.; Walker, J. C.

    1995-01-01

    Carbon and oxygen stable isotopic compositions of lacustrine carbonate from a southeastern Michigan marl lake display linear covariance over a range of 4.0% Peedee belemnite (PDB) in oxygen and 3.9% (PDB) in carbon. Mechanisms of delta 13 C-delta 18 O coupling conventionally attributed to lake closure in arid-region basins are inapplicable to hydrologically open lake systems. Thus, an alternative explanation of isotopic covariance in temperate region dimictic marl lakes is required. We propose that isotopic covariance is a direct record of change in regional climate. In short-residence-time temperate-region lake basins, summer meteoric precipitation is enriched in 18O relative to winter values, and summer organic productivity enriches epilimnic dissolved inorganic carbon in 13C. Thus, climate change toward longer summers and/or shorter winters could result in greater proportions of warm-month meteoric precipitation, longer durations of warm-month productivity, and net long-term enrichment in carbonate 18O and 13C. Isotopic covariance observed in the Michigan marl lake cores is interpreted to reflect postglacial warming from 10 to 3 ka followed by cooler mean annual temperature, a shift toward greater proportions of seasonal summer precipitation, a shortening of the winter season, or some combination of these three factors.

  10. Studies of quaternary saline lakes-II. Isotopic and compositional changes during desiccation of the brines in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Friedman, I.; Smith, G.I.; Hardcastle, Kenneth G.

    1976-01-01

    Owens Lake is an alkaline salt lake in a closed basin in southeast California. It is normally nearly dry, but in early 1969, an abnormal runoff from the Sierra Nevada flooded it to a maximum depth of 2??4 m. By late summer of 1971, the lake was again nearly dry and the dissolved salts recrystallized. Changes in the chemistry, pH, and deuterium content were monitored during desiccation. During flooding, salts (mostly trona, halite, and burkeite) dissolved slowly from the lake floor. Their concentration in the lake waters increased as evaporation removed water and salts again crystallized, but winter temperatures caused precipitation of some salts and the following summer warming caused their solution, resulting in seasonal variations in the concentration patterns of some ions. The pH values (9??4-10??4) changed with time but showed no detectable diurnal pattern. The deuterium concentration increased during evaporation and appeared to be in equilibrium with vapor leaving the lake according to the Rayleigh equation. The effective ??(D/H in liquid/D/H in vapor) decreased as salinity increased; the earliest measured value was 1??069 [as total dissolved solids (TDS) of lake waters changed from 136,200 to 250,400 mg/1]and the last value (calc.) was 1??025 (as TDS changed from 450,000 to 470,300 mg/1). Deuterium exchange with the atmosphere was apparently small except during late desiccation stages when the isotopic contrast became great. Eventually, atmospheric exchange, combined with decreasing ?? and lake size and increasing salinity, stopped further deuterium concentration in the lake. The maximum contrast between atmospheric vapor and lake deuterium contents was about 110%. ?? 1976.

  11. New explorations along the northern shores of Lake Bonneville

    USGS Publications Warehouse

    Oviatt, Charles G.; Miller, D.M.

    1997-01-01

    This field trip begins in Salt Lake City and makes a clockwise circuit of Great Salt Lake, with primary objectives to observe stratigraphie and geomorphic records of Lake Bonneville. Stops include Stansbury Island, Puddle Valley, gravel pits at Lakeside and the south end of the Hogup Mountains, several stops in Curlew Valley and Hansel Valley, and a final stop at the north end of Great Salt Lake east of the Promontory Mountains. Stratigraphie observations at gravel-pit and natural exposures will be linked to interpretations of lake-level change, which were caused by climate change. Evidence of paleoseismic and volcanic activity will be discussed at several sites, and will be tied to the lacustrine stratigraphic record. The trip provides an overview of the history of Lake Bonneville and introduces participants to some new localities with excellent examples of Lake Bonneville landforms and stratigraphy.

  12. Wildlife in the Upper Great Lakes Region: a community profile.

    Treesearch

    Janine M. Benyus; Richard R. Buech; Mark D. Nelson

    1992-01-01

    Wildlife habitat data from seven Great Lakes National Forests were combined into a wildlife-habitat matrix named NORTHWOODS. The composite NORTHWOODS data base is summarized. Multiple queries of NORTHWOODS were used to profile the wildlife community of the Upper Great Lakes region.

  13. Paleogeographic implications of Late Miocene lacustrine and nonmarine evaporite deposits in the Lake Mead region: Immediate precursors to the Colorado River

    USGS Publications Warehouse

    Faulds, James E.; Schreiber, Charlotte; Langenheim, Victoria; Hinz, Nicholas H.; Shaw, Tom; Heizler, Matthew T.; Perkins, Michael E; El Tabakh, Mohammed; Kunk, Michael J.

    2016-01-01

    northern Grand Wash, Mesquite, southern Detrital, and northeastern Las Vegas basins. New tephrochronologic data indicate that the upper part of the halite in the Hualapai basin is ca. 5.6 Ma, with rates of deposition of ∼190–450 m/m.y., assuming that deposition ceased approximately coincidental with the arrival of the Colorado River. A 2.5-km-thick halite sequence in the Hualapai basin may have accumulated in ∼5–7 m.y. or ca. 12–5 Ma, which coincides with lacustrine limestone deposition near the present course of the Colorado River in the region.The distribution and similar age of the limestone and evaporite deposits in the region suggest a system of late Miocene axial lakes and extensive continental playas and salt pans. The playas and salt pans were probably fed by both groundwater discharge and evaporation from shallow lakes, as evidenced by sedimentary textures. The elevated terrain of the Colorado Plateau was likely a major source of water that fed the lakes and playas. The physical relationships in the Lake Mead region suggest that thick nonmarine evaporites are more likely to be late synextensional and accumulate in basins with relatively large catchments proximal to developing river systems or broad elevated terranes. Other basins adjacent to the lower Colorado River downstream of Lake Mead, such as the Dutch Flat, Blythe-McCoy, and Yuma basins, may also contain thick halite deposits.

  14. Geological applications of LANDSAT-1 imagery to the Great Salt Lake area

    NASA Technical Reports Server (NTRS)

    Anderson, A. T.; Smith, A. F.

    1975-01-01

    The ERTS program has been designed as a research and development tool to demonstrate that remote sensing from orbital altitudes is a feasible and practical approach to efficient management of earth resources. From this synoptic view and repetitive coverage provided by ERTS imagery of the Great Salt Lake area, large geological and structural features, trends, and patterns have been identified and mapped. A comparative analysis of lineaments observed in September and December data was conducted, existing mineral locations were plotted, and areas considered prospective for mineralization based on apparent structure-mineralization relationships were defined. The additional information obtained using ERTS data provides an added source of information to aid in the development of more effective mineral exploration programs.

  15. An Equation of State for Hypersaline Water in Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Millero, F.J.; Jones, B.F.; Green, W.R.

    2011-01-01

    Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (??) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ?? of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L-1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (?? = ?? 0.32 kg m-3): ?? - ??0 = 184.01062 + 1.04708 * S - 1.21061*T + 3.14721E - 4*S2 + 0.00199T2 where ??0 is the density of pure water in kg m-3, S is conductivity salinity g L-1, and T is water temperature in degrees Kelvin. ?? 2011 U.S. Government.

  16. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  17. Ecological risk of methylmercury to piscivorous fish of the Great Lakes region.

    PubMed

    Sandheinrich, Mark B; Bhavsar, Satyendra P; Bodaly, R A; Drevnick, Paul E; Paul, Eric A

    2011-10-01

    Contamination of fish populations with methylmercury is common in the region of the Laurentian Great Lakes as a result of atmospheric deposition and methylation of inorganic mercury. Using fish mercury monitoring data from natural resource agencies and information on tissue concentrations injurious to fish, we conducted a screening-level risk assessment of mercury to sexually mature female walleye (Sander vitreus), northern pike (Esox lucius), smallmouth bass (Micropterus dolomieu), and largemouth bass (Micropterus salmoides) in the Great Lakes and in interior lakes, impoundments, and rivers of the Great Lakes region. The assessment included more than 43,000 measurements of mercury in fish from more than 2000 locations. Sexually mature female fish that exceeded threshold-effect tissue concentrations of 0.20 μg g(-1) wet weight in the whole body occurred at 8% (largemouth bass) to 43% (walleye) of sites. Fish at 3% to 18% of sites were at risk of injury and exceeded 0.30 μg g(-1) where an alteration in reproduction or survival is predicted to occur. Most fish at increased risk were from interior lakes and impoundments. In the Great Lakes, no sites had sexually mature fish that exceeded threshold-effect concentrations. Results of this screening-level assessment indicate that fish at a substantive number of locations within the Great Lakes region are potentially at risk from methylmercury contamination and would benefit from reduction in mercury concentrations.

  18. Decadal-to-centennial-scale climate variability: Insights into the rise and fall of the Great Salt Lake

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Lall, Upmanu; Saltzman, Barry

    1995-01-01

    We demonstrate connections between decadal and secular global climatic variations, and historical variations in the volume of the Great Salt Lake. The decadal variations correspond to a low-frequency shifting of storm tracks which influence winter precipitation and explain nearly 18% of the interannual and longer-term variance in the record of monthly volume change. The secular trend accounts for a more modest approximately 1.5% of the variance.

  19. Reaching Regional and Local Learners via a Great Lakes MOOC

    NASA Astrophysics Data System (ADS)

    Mooney, M. E.; Ackerman, S. A.

    2015-12-01

    The Cooperative Institute of Meteorological Satellite Studies (CIMSS) took a regional approach to climate change education in a 4-week MOOC (Massive Open On-line Course) on the Changing Weather and Climate in the Great Lakes Region launched in February 2015. Featuring a different season each week, this Great Lakes MOOC includes lectures about seasonal weather conditions, observed changes, and societal impacts of regional climate change, as well as actions with co-benefits to slow future climate change. To better connect with learners, CIMSS facilitated 21 discussion groups at public libraries around Wisconsin each week. Participants discussed climate change impacts in their communities as well as strategies to mitigate climate change. Not surprisingly, initial survey results show library participants were more committed, engaged, climate literate, and community minded. This session will share lessons learned and survey results from the Great Lakes MOOC which remains open and accessible on Coursera through February 2016 at https://www.coursera.org/course/greatlakesclimate.

  20. Radial ooids from Great Salt Lake (Utah) as paleoenvironmental archives: Insights from radiocarbon chronology and stable isotopes

    NASA Astrophysics Data System (ADS)

    Paradis, O. P.; Corsetti, F. A.; Bardsley, A.; Hammond, D. E.; Xu, X.; Walker, J. C.

    2017-12-01

    Ooids (laminated, carbonate coated grains) are ubiquitous in the geologic record in marine and lacustrine settings, and thus remain a common target for geochemical analysis to understand modern and ancient aqueous environments. However, the processes governing ooid formation remain unclear. Recently, radiocarbon dating has revealed that modern marine ooids grow slowly (Beaupre et al. 2015), and laboratory experiments have highlighted the importance of sediment transport and abrasion on net growth rates and ooid size (Trower et al. 2017). Ooid cortex structure includes micritic, tangential and/or radially oriented fabrics. Most modern marine ooids have tangential or micritic cortices, whereas many ancient ooids have radial cortices—thus, there is a need to understand how radial ooids in ancient rocks might inform us about their depositional environment. The Great Salt Lake (GSL), Utah, provides a unique environment to assess the growth rate of primary radial aragonitic ooids. Ooids collected near Antelope Island in the south arm of GSL were sieved, the 355-500 µm fraction was sequentially leached, and 14C of the evolved gas was analyzed to provide a time series of growth. The oldest inorganic carbon of this size fraction has an apparent 14C age of 6600 yr BP, with subsequent growth spanning over 6,000 years. Closed-basin lakes are particularly susceptible to a "reservoir effect" which results in anomalously old apparent radiocarbon ages. The 14C age of the modern dissolved inorganic carbon (DIC) of the south arm was measured to be 295 yr BP, a reservoir age comparable to estimates from lacustrine cave carbonates (McGee et al. 2012). Net growth rate of south arm ooids ranges between 0.01-0.025 µm per year. The δ13C of the outermost cortex suggests that the ooids resemble the modern DIC in the south arm water, suggesting ooids precipitate in equilibrium with lake water. Finer-scale structure in the δ13C of the ooid cortex through time suggests lake level changed

  1. The Effect of Lake Temperatures and Emissions on Ozone Exposure in the Western Great Lakes Region

    Treesearch

    Jerome D. Fast; Warren E. Heilman

    2003-01-01

    A meteorological-chemical model with a 12-km horizontal grid spacing was used to simulate the evolution of ozone over the western Great Lakes region during a 30-day period in the summer of 1999. Lake temperatures in the model were based on analyses derived from daily satellite measurements. The model performance was evaluated using operational surface and upper-air...

  2. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  3. 2016 Federal Green Challenge Award Winners in the Great Lakes Region

    EPA Pesticide Factsheets

    2016 FGC award winners in the Great Lakes region: Mpls. Veterans Affairs (VA) Healthcare System, MN National Guard, U.S. EPA Mid-Continent Ecology Division, U.S. Customs and Border Protection Detroit Field Office, and Naval Station Great Lakes.

  4. Regional cooperation and bike/ped and transit connections : a regional models of cooperation peer exchange summary report

    DOT National Transportation Integrated Search

    2016-10-01

    This report summarizes the presentations, key themes, and recommendations identified at a Regional Models of Cooperation peer exchange on October 24, 2016 in Salt Lake City, Utah. The Utah Transit Authority hosted peers from the Los Angeles Metropoli...

  5. Map showing flood and surface water information in the Sugar House quadrangle, Salt Lake County, Utah

    USGS Publications Warehouse

    Van Horn, Richard; Fields, F.K.

    1974-01-01

    In the past man has built on land that might be covered by floodwaters, with little consideration of the consequences. The result has been disastrous to those in the path of floodwaters and has cost the loss of thousands of lives and untold billions of dollars in property damage in the United States. Salt Lake County, of which the Sugar House quadrangle is a part, has had many floods in the past and can be expected to have more in the future. Construction has taken place in filled or dried-up marshes and lakes, in spring areas, and even in stream channels. Lack of prior knowledge of these and other forms of surface water (water at the surface of the ground) can increase construction and maintenance costs significantly.The map shows the area that probably will be covered by floods at least once in every 100 years on the long-term average (unit IRF, intermediate regional flood), the area that probably will be covered by floods from the worst possible combination of very wet weather and high streamflow reasonably expected of the area (unit SPF, standard project flood), the mapped extent of streamflow by channel shifting or flooding in the past 5,000 years (unit fa), and the probable maximum extent of damaging flash floods and mudflows from small valleys in the Wasatch Range. The map also shows the location of water at the surface of the ground: lakes, streams, springs, weep holes, canals, and reservoirs. Lakes and marshes that existed within the past 100 years, but now are drained, filled, or dried up, are also shown.The following examples show that the presence of water can be desirable or undesirable, depending on how the water occurs. Floods, the most spectacular form of surface water, may result in great property damage and loss of life. Lakes normally are beneficial, in that they may support plant growth and provide habitats for fish and other wildlife, provide water for livestock, and can be used for recreation. Springs may or may not be desirable: they may

  6. Structural evolution of Grand Lake field, Cameron Parish, Louisiana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johanson, D.B.

    Detailed analysis of sedimentary thicknesses at Grand Lake field has revealed that hydrocarbon accumulation was controlled by faulting that was related to diapiric uplift of shale. Grand Lake field is located in the northeastern corner of Cameron Parish, Louisiana. This area contains about 12,000 ft of Miocene and younger fluviodeltaic sediments. Structurally, the field is a northwest-trending anticline. Diapiric shale in the western part of the field may be salt related although, to date, no salt has been penetrated. A major down-to-the-south regional growth fault crosses the top of the structure, striking roughly northwest. Several down-to-the-north faults are antithetic tomore » this master fault. Second and third generation antithetic faults also are present in the field. Diapiric uplift in Grand Lake field was initiated in the early Miocene by an influx of relatively heavy deltaic sands onto undercompacted shales. The master fault in the field formed almost immediately after the onset of uplift, and movement was essentially uninterrupted until the Pliocene-Pleistocene.« less

  7. The Oligochaeta (Annelida, Clitellata) of the St. Lawrence Great Lakes region: An update

    USGS Publications Warehouse

    Spencer, Douglas R.; Hudson, Patrick L.

    2003-01-01

    An updated oligochaete species list for the Great Lakes region is provided. The list was developed through the reexamination of the taxa reported in a previous report in 1980, addition of new taxa or records collected from the region since 1980, and an update of taxonomy commensurate with systematic and nomenclatural changes over the intervening years since the last review. The authors found 74 papers mentioning Great Lakes oligochaete species. The majority of these papers were published in the 1980s. The literature review and additional collections resulted in 15 species being added to the previous list. Nine taxa were removed from the previous list due to misidentification, synonymies, level of identification, or inability to confirm the identity. Based on this review, 101 species of Oligochaeta are now known from the St. Lawrence Great Lakes watershed. Of these, 95 species are known from the St. Lawrence Great Lakes proper, with an additional 6 species recorded from the inland waters of the watershed. The greatest diversity of oligochaete species was found in the inland waters of the region (81) followed by Lake Huron (72), Lake Ontario (65), Lake Erie (64), Lake Superior (63), Lake Michigan (62), St. Marys River (60), Niagara River (49), Saginaw Bay (44), St. Clair River (37), Lake St. Clair (36), St. Lawrence River (27), and the Detroit River (21). Three species are suspected of being introduced, Branchiura sowerbyi, Gianius aquaedulcisand Ripistes parasita, and two are believed to be endemic, Thalassodrilus hallae andTeneridrilus flexus.

  8. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales

    USGS Publications Warehouse

    Collins, Sarah M.; Oliver, Samantha K.; Lapierre, Jean-Francois; Stanley, Emily H.; Jones, John R.; Wagner, Tyler; Soranno, Patricia A.

    2017-01-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  9. 75 FR 73983 - Proposed Modification of the Salt Lake City, UT, Class B Airspace Area; Public Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-30

    ...This notice announces three fact-finding informal airspace meetings to solicit information from airspace users and others concerning a proposal to revise the Class B airspace area at Salt Lake City, UT. The purpose of these meetings is to provide interested parties an opportunity to present views, recommendations, and comments on the proposal. All comments received during these meetings will be considered prior to any revision or issuance of a notice of proposed rulemaking.

  10. Effects of land use on lake nutrients: The importance of scale, hydrologic connectivity, and region

    USGS Publications Warehouse

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales.

  11. Regional pattern of snow characteristics around Antarctic Lake Vostok

    NASA Astrophysics Data System (ADS)

    Vladimirova, Diana; Ekaykin, Alexey; Popov, Sergey; Shibaev, Yuriy; Kozachek, Anna; Lipenkov, Vladimir

    2015-04-01

    Since 1998 Russian Antarctic Expedition has organized several scientific traverses in the region of subglacial Lake Vostok mainly devoted to the radar echo and seismic sounding of the glacier and water (the results have been published elsewhere). Along with the geophysical studies, a number of glaciological investigations have been carried out: snow pit digging, installation of accumulation stakes, snow sampling to study the stable water isotope content. Here we for the first time present a synthesis of these works and demonstrate a series of maps that characterize the snow density, isotope content and accumulation rate the studied region. A general tendency of the snow accumulation rate and isotope content is a significant increase from south (south-west) to north (north-east) from 35 to 23 mm w.e. per year and from -53,3 ‰ to -57,3 ‰ for delta oxygen-18 respectively, which likely reflects the continental-scale pattern, i.e., increase from inland to the coast. Deuterium excess varies from 11,7 ‰ to 16,3 ‰ is negatively correlated with the isotope content, which is typical for central Antarctica. The snow density demonstrate different pattern: higher values offshore the lake (up to 0,356 g/cm^3), and lower values within the lake's shoreline (lower limit is 0,328 g/cm^3). We suggest that this is related to the katabatic wind activity: very flat nearly horizontal surface of the glacier above the lake is not favorable for the strong winds, which leads to lower surface snow density. Superimposed on the main trend is the regional pattern, namely, curved contour lines in the middle part of the lake. We suggest that it may be related to the local anomalies of the snow drift by wind. Indeed, on the satellite images of the lake one can easily see a snowdrift stretching from the lake's western shore downwind in the middle part of the lake. The isolines of delta oxygen-18 and deuterium excess become perpendicular to each other in the north part of the lake which also

  12. Isotopic structure of Lake Whitefish in Lake Huron: Evidence for regional and local populations based on resource use

    USGS Publications Warehouse

    Eberts, Rebecca L.; Wissel, Bjorn; Simpson, Gavin L.; Crawford, Stephen S.; Stott, Wendylee; Hanner, Robert H.; Manzon, Richard G.; Wilson, Joanna Y.; Boreham, Douglas R.; Somers, Christopher M.

    2017-01-01

    Lake Whitefish Coregonus clupeaformis is the most commercially valuable species in Lake Huron. The fishery for this species has historically been managed based on 25 management units (17 in Canada, 8 in the USA). However, congruence between the contemporary population structure of Lake Whitefish and management units is poorly understood. We used stable isotopes of carbon (δ13C) and nitrogen (δ15N), food web markers that reflect patterns in resource use (i.e., prey, location, habitat), to assess the population structure of spawning-phase Lake Whitefish collected from 32 sites (1,474 fish) across Lake Huron. We found large isotopic variation among fish from different sites (ranges: δ13C = 10.2‰, δ15N = 5.5‰) and variable niche size and levels of overlap (standard ellipse area = 1.0–4.3‰2). Lake Huron contained spawning-phase fish from four major isotopic clusters largely defined by extensive variation in δ13C, and the isotopic composition of fish sampled was spatially structured both within and between lake basins. Based on cluster compositions, we identified six putative regional groups, some of which represented sites of high diversity (three to four clusters) and others with less (one to two clusters). Analysis of isotopic values from Lake Whitefish collected from summer feeding locations and baseline prey items showed similar isotopic variation and established spatial linkage between spawning-phase and summer fish. Our results show that summer feeding location contributes strongly to the isotopic structure we observed in spawning-phase fish. One of the regional groups we identified in northern Georgian Bay is highly distinct based on isotopic composition and possibly ecologically unique within Lake Huron. Our findings are congruent with several previous studies using different markers (genetics, mark–recapture), and we conclude that current management units are generally too small and numerous to reflect the population structure of Lake Whitefish

  13. [Ecological compensation standard in Dongting Lake region of returning cropland to lake based on emergy analysis].

    PubMed

    Mao, De-Hua; Hu, Guang-Wei; Liu, Hui-Jie; Li, Zheng-Zui; Li, Zhi-Long; Tan, Zi-Fang

    2014-02-01

    The annual emergy and currency value of the main ecological service value of returning cropland to lake in Dongting Lake region from 1999 to 2010 was calculated based on emergy analysis. The calculation method of ecological compensation standard was established by calculating annual total emergy of ecological service function increment since the starting year of returning cropland to lake, and the annual ecological compensation standard and compensation area were analyzed from 1999 to 2010. The results indicated that ecological compensation standard from 1999 to 2010 was 40.31-86.48 yuan x m(-2) with the mean of 57.33 yuan x m(-2). The ecological compensation standard presented an increase trend year by year due to the effect of eco-recovery of returning cropland to lake. The ecological compensation standard in the research area presented a swift and steady growth trend after 2005 mainly due to the intensive economy development of Hunan Province, suggesting the value of natural ecological resources would increase along with the development of society and economy. Appling the emergy analysis to research the ecological compensation standard could reveal the dynamics of annual ecological compensation standard, solve the abutment problem of matter flow, energy flow and economic flow, and overcome the subjective and arbitrary of environment economic methods. The empirical research of ecological compensation standard in Dongting Lake region showed that the emergy analysis was feasible and advanced.

  14. Using radiocarbon to constrain black and organic carbon aerosol sources in Salt Lake City

    NASA Astrophysics Data System (ADS)

    Mouteva, Gergana O.; Randerson, James T.; Fahrni, Simon M.; Bush, Susan E.; Ehleringer, James R.; Xu, Xiaomei; Santos, Guaciara M.; Kuprov, Roman; Schichtel, Bret A.; Czimczik, Claudia I.

    2017-09-01

    Black carbon (BC) and organic carbon (OC) aerosols are important components of fine particulate matter (PM2.5) in polluted urban environments. Quantifying the contribution of fossil fuel and biomass combustion to BC and OC concentrations is critical for developing and validating effective air quality control measures and climate change mitigation policy. We used radiocarbon (14C) to measure fossil and contemporary biomass contributions to BC and OC at three locations in Salt Lake City, Utah, USA, during 2012-2014, including during winter inversion events. Aerosol filters were analyzed with the Swiss_4S thermal-optical protocol to isolate BC. We measured fraction modern (fM) of BC and total carbon in PM2.5 with accelerator mass spectrometry and derived the fM of OC using isotope mass balance. Combined with 14C information of end-member composition, our data set of 31 14C aerosol measurements provided a baseline of the fossil and contemporary biomass components of carbonaceous aerosol. We show that fossil fuels were the dominant source of carbonaceous aerosol during winter, contributing 88% (80-98%) of BC and 58% (48-69%) of OC. While the concentration of both BC and OC increased during inversion events, the relative source contributions did not change. The sources of BC also did not vary throughout the year, while OC had a considerably higher contemporary biomass component in summer at 62% (49-76%) and was more variable. Our results suggest that in order to reduce PM2.5 levels in Salt Lake City to meet national standards, a more stringent policy targeting mobile fossil fuel sources may be necessary.

  15. Satellite Observations of Tropospheric BrO over Salt Lakes and Northern High Latitudes from EOS/OMI and SNPP/OMPS

    NASA Astrophysics Data System (ADS)

    Kurosu, T. P.; Stutz, J.; Brockway, N.; Saiz-Lopez, A.; Suleiman, R. M.; Natraj, V.; Jaross, G.; Seftor, C. J.

    2017-12-01

    We present observations of tropospheric bromine monoxide (BrO) derived from two satellite instruments: the Ozone Monitoring Instrument (OMI) on EOS-Aura, and the Nadir Mapper component of the Ozone Mapping and Profiler Suite (OMPS) on Suomi/NPP. BrO observations from OMPS constitute a new and experimental measurement that we first report on here and compare with the standard BrO data product from OMI. BrO is a halogen oxide present mostly in the lower stratosphere, where it catalytically destroys ozone with about 25 times the efficiency of ClO. BrO also has a tropospheric component, where it is released from sea surfaces, at the interface of ocean water and sea ice in the polar spring, in volcanic plumes, and in the vicinity of salt lakes. Tropospheric BrO has been linked to mercury (Hg) deposition through BrO-induced conversion of gaseous Hg to reactive Hg, which is then deposited on the surface and enters the food chain, ultimately affecting human health. As part of NASA's Aura Science Team, we are developing an OMI Tropospheric BrO data product that provides a unique global data set on BrO spatial and vertical distribution in the troposphere and stratosphere. Information of this kind is currently unavailable from any of the past and present bromine-monitoring instruments. In this presentation, we focus on multi-year time series of BrO released from a range of salt lakes - the Rann of Kutch, Salar de Uyuni, the Aral Sea, and others. We quantify the amount of bromine released from the lakes and investigate the possibility of lake desiccation monitoring based on independent BrO observations. The quality and limits of OMI and OMPS tropospheric BrO observations is investigated by comparison with ground-based MAX-DOAS observations over central Greenland.

  16. Geothermal constraints on enrichment of boron and lithium in salt lakes: An example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China

    NASA Astrophysics Data System (ADS)

    Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang

    2012-06-01

    Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.

  17. Lake nutrient stoichiometry is less predictable than nutrient concentrations at regional and sub-continental scales.

    PubMed

    Collins, Sarah M; Oliver, Samantha K; Lapierre, Jean-Francois; Stanley, Emily H; Jones, John R; Wagner, Tyler; Soranno, Patricia A

    2017-07-01

    Production in many ecosystems is co-limited by multiple elements. While a known suite of drivers associated with nutrient sources, nutrient transport, and internal processing controls concentrations of phosphorus (P) and nitrogen (N) in lakes, much less is known about whether the drivers of single nutrient concentrations can also explain spatial or temporal variation in lake N:P stoichiometry. Predicting stoichiometry might be more complex than predicting concentrations of individual elements because some drivers have similar relationships with N and P, leading to a weak relationship with their ratio. Further, the dominant controls on elemental concentrations likely vary across regions, resulting in context dependent relationships between drivers, lake nutrients and their ratios. Here, we examine whether known drivers of N and P concentrations can explain variation in N:P stoichiometry, and whether explaining variation in stoichiometry differs across regions. We examined drivers of N:P in ~2,700 lakes at a sub-continental scale and two large regions nested within the sub-continental study area that have contrasting ecological context, including differences in the dominant type of land cover (agriculture vs. forest). At the sub-continental scale, lake nutrient concentrations were correlated with nutrient loading and lake internal processing, but stoichiometry was only weakly correlated to drivers of lake nutrients. At the regional scale, drivers that explained variation in nutrients and stoichiometry differed between regions. In the Midwestern U.S. region, dominated by agricultural land use, lake depth and the percentage of row crop agriculture were strong predictors of stoichiometry because only phosphorus was related to lake depth and only nitrogen was related to the percentage of row crop agriculture. In contrast, all drivers were related to N and P in similar ways in the Northeastern U.S. region, leading to weak relationships between drivers and stoichiometry

  18. Effects of Land Use on Lake Nutrients: The Importance of Scale, Hydrologic Connectivity, and Region

    PubMed Central

    Soranno, Patricia A.; Cheruvelil, Kendra Spence; Wagner, Tyler; Webster, Katherine E.; Bremigan, Mary Tate

    2015-01-01

    Catchment land uses, particularly agriculture and urban uses, have long been recognized as major drivers of nutrient concentrations in surface waters. However, few simple models have been developed that relate the amount of catchment land use to downstream freshwater nutrients. Nor are existing models applicable to large numbers of freshwaters across broad spatial extents such as regions or continents. This research aims to increase model performance by exploring three factors that affect the relationship between land use and downstream nutrients in freshwater: the spatial extent for measuring land use, hydrologic connectivity, and the regional differences in both the amount of nutrients and effects of land use on them. We quantified the effects of these three factors that relate land use to lake total phosphorus (TP) and total nitrogen (TN) in 346 north temperate lakes in 7 regions in Michigan, USA. We used a linear mixed modeling framework to examine the importance of spatial extent, lake hydrologic class, and region on models with individual lake nutrients as the response variable, and individual land use types as the predictor variables. Our modeling approach was chosen to avoid problems of multi-collinearity among predictor variables and a lack of independence of lakes within regions, both of which are common problems in broad-scale analyses of freshwaters. We found that all three factors influence land use-lake nutrient relationships. The strongest evidence was for the effect of lake hydrologic connectivity, followed by region, and finally, the spatial extent of land use measurements. Incorporating these three factors into relatively simple models of land use effects on lake nutrients should help to improve predictions and understanding of land use-lake nutrient interactions at broad scales. PMID:26267813

  19. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    USGS Publications Warehouse

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  20. Assessment of salt concentration in bread commonly consumed in the Eastern Mediterranean Region.

    PubMed

    Al Jawaldeh, Ayoub; Al-Khamaiseh, Manal

    2018-04-05

    Hypertension is the most important cardiovascular risk factor in the World Health Organization (WHO) Eastern Mediterranean Region. Excessive salt and sodium intake is directly related to hypertension, and its reduction is a priority of WHO. Bread is the leading staple food in the Region; therefore, reducing the amount of salt added to bread could be an effective measure for reducing salt intake. The study sought to determine the levels of sodium and salt in locally produced staple bread from 8 countries in the Region. Bread samples were collected randomly from bakeries located in the capital cities of the selected countries. The samples were analysed for sodium content using atomic absorption spectroscopy. The mean salt content of breads varied from 4.28 g/kg in Jordan to 12.41 g/kg in Tunisia. The mean salt and sodium content in bread for all countries was 7.63 (SD 3.12) and 3.0 (SD 1.23) g/kg, respectively. The contribution of bread to daily salt intake varied considerably between countries, ranging from 1.3 g (12.5%) in Jordan to 3.7 g (33.5%) in Tunisia. Interventions to reduce population salt intake should target reduction of salt in bread in all countries. The amount of salt added to bread should be standardized and relevant legislation developed to guide bakers. Setting an upper limit for salt content in flat bread (pita or Arabic bread) at 0.5% is strongly recommended. However, salt levels at ≤ 1% would be appropriate for other kind of breads. Copyright © World Health Organization (WHO) 2018. Some rights reserved. This work is available under the CC BY-NC-SA 3.0 IGO license (https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

  1. Evidence for regional nitrogen stress on chlorophyll a in lakes across large landscape and climate gradients

    USGS Publications Warehouse

    Filstrup, Christopher T.; Wagner, Tyler; Oliver, Samantha K.; Stow, Craig A.; Webster, Katherine E.; Stanley, Emily H.; Downing, John A.

    2018-01-01

    Nitrogen (N) and phosphorus (P) commonly stimulate phytoplankton production in lakes, but recent observations from lakes from an agricultural region suggest that nitrate may have a subsidy‐stress effect on chlorophyll a (Chl a). It is unclear, however, how generalizable this effect might be. Here, we analyzed a large water quality dataset of 2385 lakes spanning 60 regions across 17 states in the Northeastern and Midwestern U.S. to determine if N subsidy‐stress effects on phytoplankton are common and to identify regional landscape characteristics promoting N stress effects in lakes. We used a Bayesian hierarchical modeling framework to test our hypothesis that Chl a–total N (TN) threshold relationships would be common across the central agricultural region of the U.S. (“the Corn Belt”), where lake N and P concentrations are high. Data aggregated across all regions indicated that high TN concentrations had a negative effect on Chl a in lakes with concurrent high total P. This large‐scale pattern was driven by relationships within only a subset of regions, however. Eight regions were identified as having Chl a–TN threshold relationships, but only two of these regions located within the Corn Belt clearly demonstrated this subsidy‐stress relationship. N stress effects were not consistent across other intense agricultural regions, as we hypothesized. These findings suggest that interactions among regional land use and land cover, climate, and hydrogeology may be important in determining the synergistic conditions leading to N subsidy‐stress effects on lake phytoplankton.

  2. [Spatial Distribution of Stable Isotope from the Lakes in Typical Temperate Glacier Region].

    PubMed

    Shi, Xiao-yi; Pu, Tao; He, Yuan-qing; Lu, Hao; Niu, He-wen; Xia, Dun-sheng

    2016-05-15

    We focused mainly on the spatial variation and influencing factors of hydrogen and oxygen stable isotopes between water samples collected at the surface and different depths in the Lashi Lake in August, 2014. Hydrological supply characteristics of the lake in typical temperate glacier region were discussed. The results showed that the values of δ¹⁸O and δD in the Lashi Lake ranged from -12.98 per thousand to -8.16 per thousand with the mean of -9.75 per thousand and from -99.42 per thousand to -73.78 per thousand with the mean of -82.23 per thousand, respectively. There was a reversed spatial variation between δ¹⁸O and d. Relatively low values of δ¹⁸O with high values of d were found at the edge of the lake where the rivers drained into. Meanwhile, the values of d in the vertical profile varied little with depth, suggesting that the waters mixed sufficiently in the vertical direction. The d values increased at first and then decreased from east to west at different layers, but both increase and decrease exhibited different velocities, which were related to the river distribution, the locality of the lake and environmental conditions etc. River water and atmospheric precipitation were the main recharge sources of the Lashi Lake, and the melt-water of snow and ice might also be the supply resource. The δ¹⁸O values of lake water in glacier region decreased along the elevation (except for Lashi Lake), generally, this phenomenon was called "altitude effect". Moreover, high isotopic values of the lake water from non-glacier region were due to the evaporation effect.

  3. THE MEASUREMENT OF PM2.5, INCLUDING SEMI-VOLATILE COMPONENTS, IN THE EMPACT PROGRAM: RESULTS FROM THE SALT LAKE CITY STUDY. (R827993)

    EPA Science Inventory

    The Salt Lake City EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) project, initiated in October 1999, is designed to evaluate the usefulness of a newly developed real-time continuous monitor (RAMS) for total (non-volatile plus semi-volatile) PM<...

  4. Streptomyces lonarensis sp. nov., isolated from Lonar Lake, a meteorite salt water lake in India.

    PubMed

    Sharma, Trupti K; Mawlankar, Rahul; Sonalkar, Vidya V; Shinde, Vidhya K; Zhan, Jing; Li, Wen-Jun; Rele, Meenakshi V; Dastager, Syed G; Kumar, Lalitha Sunil

    2016-02-01

    A novel alkaliphilic actinomycete, strain NCL716(T), was isolated from a soil sample collected from the vicinity of Lonar Lake, an alkaline salt water meteorite lake in Buldhana district of Maharashtra State in India. The strain was characterised using a polyphasic taxonomic approach which confirmed that it belongs to the genus Streptomyces. Growth was observed over a pH range of 7-11 at 28 °C. The cell wall was found to contain LL-diaminopimelic acid and traces of meso-diaminopimelic acid. The major fatty acid components were identified as iso-C16:0 (46.8 %), C17:1 (12.4 %), anteiso-C15:0 (5.1 %) and anteiso-C17:1 (4.8 %). The major polar lipids were identified as diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylinositol. The major menaquinones were determined to be MK-9 (H6) (70.3 %), MK-9 (H4) (15.5 %) and MK-9 (H8) (7.2 %). The G+C content of the DNA of the type strain was determined to be 71.4 mol %. The 16S rRNA gene sequence has been deposited in GenBank with accession number FJ919811. Although the 16S rRNA gene sequence analysis revealed that strain NCL716(T) shares >99 % similarity with that of Streptomyces bohaiensis strain 11A07(T), DNA-DNA hybridization revealed only 33.2 ± 3.0 % relatedness between them. Moreover, these two strains can be readily distinguished by some distinct phenotypic characteristics. Hence, on the basis of phenotypic and genetic analyses, it is proposed that strain NCL716(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces lonarensis sp. nov., is proposed. The type strain is NCL 716(T) (=DSM 42084(T) = MTCC 11708(T) = KCTC 39684(T)).

  5. Lake Ice Cover of Shallow Lakes and Climate Interactions in Arctic Regions (1950-2011): SAR Data Analysis and Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Surdu, C.; Duguay, C.; Brown, L.; Fernàndez-Prieto, D.; Samuelsson, P.

    2012-12-01

    Lake ice cover is highly correlated with climatic conditions and has, therefore, been demonstrated to be an essential indicator of climate variability and change. Recent studies have shown that the duration of the lake ice cover has decreased, mainly as a consequence of earlier thaw dates in many parts of the Northern Hemisphere over the last 50 years, mainly as a feedback to increased winter and spring air temperature. In response to projected air temperature and winter precipitation changes by climate models until the end of the 21st century, the timing, duration, and thickness of ice cover on Arctic lakes are expected to be impacted. This, in turn, will likely alter the energy, water, and bio-geochemical cycling in various regions of the Arctic. In the case of shallow tundra lakes, many of which are less than 3-m deep, warmer climate conditions could result in a smaller fraction of lakes that fully freeze to the bottom at the time of maximum winter ice thickness since thinner ice covers are predicted to develop. Shallow thermokarst lakes of the coastal plain of northern Alaska, and of other similar Arctic regions, have likely been experiencing changes in seasonal ice phenology and thickness over the last few decades but these have not yet been comprehensively documented. Analysis of a 20-year time series of ERS-1/2 synthetic aperture radar (SAR) data and numerical lake ice modeling were employed to determine the response of ice cover (thickness, freezing to bed, and phenology) on shallow lakes of the North Slope of Alaska (NSA) to climate conditions over the last three decades. New downscaled data specific to the Arctic domain (at a resolution of 0.44 degrees using ERA Interim Reanalysis as boundary condition) produced by the Rossby Centre Regional Atmospheric Climate Model (RCA4) was used to drive the Canadian Lake Ice Model (CLIMo) for the period 1950-2011. In order to assess and integrate the SAR-derived observed changes into a longer historical context, and

  6. Late quaternary changes in lakes, vegetation, and climate in the Bonneville Basin reconstructed from sediment cores from Great Salt Lake: Chapter 11

    USGS Publications Warehouse

    Thompson, Robert S.; Oviatt, Charles G.; Honke, Jeffrey S.; McGeehin, John

    2016-01-01

    Sediment cores from Great Salt Lake (GSL) provide the basis for reconstructing changes in lakes, vegetation, and climate for the last ~ 40 cal ka. Initially, the coring site was covered by a shallow saline lake and surrounded by Artemisia steppe or steppe-tundra under a cold and dry climate. As Lake Bonneville began to rise (from ~ 30 to 28 cal ka), Pinus and subalpine conifer pollen percentages increased and Artemisia declined, suggesting the onset of wetter conditions. Lake Bonneville oscillated near the Stansbury shoreline between ~ 26 and ~ 24 cal ka, rose to the Bonneville shoreline by ~ 18 cal ka, and then fell to the Provo shoreline, which it occupied until ~ 15 cal ka. Vegetation changed during this time span, albeit not always with the same direction or amplitude as the lake. The pollen percentages of Pinus and subalpine conifers were high from ~ 25 to 21.5 cal ka, indicating cool and moist conditions during the Stansbury oscillation and for much of the rise toward the Bonneville shoreline. Pinus percentages then decreased and Artemisia became codominant, suggesting drier and perhaps colder conditions from ~ 21 to ~ 15 cal ka, when Lake Bonneville was at or near its highest levels.Lake Bonneville declined to a low level by ~ 13 cal ka, while Pinus pollen percentages increased, indicating that conditions remained cooler and moister than today. During the Younger Dryas interval, the brief Gilbert episode rise in lake level was followed by a shallow lake with a stratified water column. This lake rise occurred as Pinus pollen percentages were declining and those of Artemisia were rising (reflecting increasingly dry conditions), after which Artemisia pollen was at very high levels (suggesting cold and dry conditions) for a brief period.Since ~ 10.6 cal ka lacustrine conditions have resembled those of present-day GSL. Pollen spectra for the period from ~ 10.6 to 7.2 cal ka have low levels of conifer pollen and high (for the

  7. Salamander colonization of Chase Lake, Stutsman County, North Dakota

    USGS Publications Warehouse

    Mushet, David M.; McLean, Kyle I.; Stockwell, Craig A.

    2013-01-01

    Salt concentrations in lakes are dynamic. In the western United States, water diversions have caused significant declines in lake levels resulting in increased salinity, placing many aquatic species at risk (Galat and Robinson 1983, Beutel et al. 2001). Severe droughts can have similar effects on salt concentrations and aquatic communities (Swanson et al. 2003). Conversely, large inputs of water can dilute salt concentrations and contribute to community shifts (Euliss et al. 2004).

  8. The Great Lakes' regional climate regimes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki

    For the last couple of decades, the Great Lakes have undergone rapid surface warming. In particular, the magnitude of the summer surface-warming trends of the Great Lakes have been much greater than those of surrounding land (Austin and Colman, 2007). Among the Great Lakes, the deepest Lake Superior exhibited the strongest warming trend in its annual, as well as summer surface water temperature. We find that many aspects of this behavior can be explained in terms of the tendency of deep lakes to exhibit multiple regimes characterized, under the same seasonally varying forcing, by the warmer and colder seasonal cycles exhibiting different amounts of wintertime lake-ice cover and corresponding changes in the summertime lake-surface temperatures. In this thesis, we address the problem of the Great Lakes' warming using one-dimensional lake modeling to interpret diverse observations of the recent lake behavior. (Abstract shortened by ProQuest.).

  9. Quality and sources of ground water used for public supply in Salt Lake Valley, Salt Lake County, Utah, 2001

    USGS Publications Warehouse

    Thiros, Susan A.; Manning, Andrew H.

    2004-01-01

    Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range

  10. Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia) under Aerobic Conditions

    PubMed Central

    Hedi, Abdeljabbar; Sadfi, Najla; Fardeau, Marie-Laure; Rebib, Hanene; Cayol, Jean-Luc; Ollivier, Bernard; Boudabous, Abdellatif

    2009-01-01

    Bacterial and archaeal aerobic communities were recovered from sediments from the shallow El-Djerid salt lake in Tunisia, and their salinity gradient distribution was established. Six samples for physicochemical and microbiological analyses were obtained from 6 saline sites in the lake for physico-chemical and microbiological analyses. All samples studied were considered hypersaline with NaCl concentration ranging from 150 to 260 g/L. A specific halophilic microbial community was recovered from each site, and characterization of isolated microorganisms was performed via both phenotypic and phylogenetic approaches. Only one extreme halophilic organism, domain Archaea, was isolated from site 4 only, whereas organisms in the domain Bacteria were recovered from the five remaining sampling sites that contained up to 250 g/L NaCl. Members of the domain Bacteria belonged to genera Salicola, Pontibacillus, Halomonas, Marinococcus, and Halobacillus, whereas the only member of domain Archaea isolated belonged to the genus Halorubrum. The results of this study are discussed in terms of the ecological significance of these microorganisms in the breakdown of organic matter in Lake El-Djerid and their potential for industry applications. PMID:20066169

  11. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  12. Rare Earth Element Biomining from the Great Salt Lake Brine Using Engineered E. Coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yongqin; Park, Dan; Brewer, Aaron

    This data describes rare earth element adsorption onto E. coli cells engineered to express a lanthanide binding tag (LBT). We used a Great Salt Lake synthetic solution as the background matrix with Tb added to 1-10,000 ppb, concentrations much lower than the competing ions present. Our results showed that Tb binds to LBT, even in the presence of high concentrations of competing metals. We also tested REE adsorption at elevated temperatures (up to 100 degrees Celsius), and observed that Tb adsorption increases with temperature of to 70 degrees Celsius, and then remains constant until 100 degrees Celsius. Data analyses weremore » performed using an ICP-MS at UCSC.« less

  13. Exotic scolytids of the Great Lakes region

    Treesearch

    Robert A. Haack

    2001-01-01

    There are at least 44 exotic species of Scolytidae established in North America north of Mexico, of which 16 species can be found in the Great Lakes region (see Table). Scolytids occupy many niches, but the two most common groups are the true bark beetles and the ambrosia beetles (Poland and Haack 1998). Adult bark beetles, as their name implies, construct galleries...

  14. Hydrology and simulation of ground-water flow, Lake Point, Tooele County, Utah

    USGS Publications Warehouse

    Brooks, Lynette E.

    2006-01-01

    Water for new residential development in Lake Point, Utah may be supplied by public-supply wells completed in consolidated rock on the east side of Lake Point. Ground-water flow models were developed to help understand the effect the proposed withdrawal will have on water levels, flowing-well discharge, spring discharge, and ground-water quality in the study area. This report documents the conceptual and numerical ground-water flow models for the Lake Point area.The ground-water system in the Lake Point area receives recharge from local precipitation and irrigation, and from ground-water inflow from southwest of the area. Ground water discharges mostly to springs. Discharge also occurs to evapotranspiration, wells, and Great Salt Lake. Even though ground water discharges to Great Salt Lake, dense salt water from the lake intrudes under the less-dense ground water and forms a salt-water wedge under the valley. This salt water is responsible for some of the high dissolved-solids concentrations measured in ground water in Lake Point.A steady-state MODFLOW-2000 ground-water model of Tooele Valley adequately simulates water levels, ground-water discharge, and ground-water flow direction observed in Lake Point in 1969 and 2002. Simulating an additional 1,650 acre-feet per year withdrawal from wells causes a maximum projected drawdown of about 550 feet in consolidated rock near the simulated wells and drawdown exceeding 80 feet in an area encompassing most of the Oquirrh Mountains east of Lake Point. Drawdown in most of Lake Point ranges from 2 to 10 ft, but increases to more than 40 feet in the areas proposed for residential development. Discharge to Factory Springs, flowing wells, evapotranspiration, and Great Salt Lake is decreased by about 1,100 acre-feet per year (23 percent).The U.S. Geological Survey SUTRA variable-density ground-water-flow model generates a reasonable approximation of 2002 dissolved-solids concentration when simulating 2002 withdrawals. At most

  15. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    NASA Astrophysics Data System (ADS)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  16. A multi-proxy approach to understanding complex responses of salt-lake catchments to climate variability and human pressure: A Late Quaternary case study from south-eastern, Spain

    NASA Astrophysics Data System (ADS)

    Jones, Samantha Elsie; Burjachs, Francesc; Ferrer-García, Carlos; Giralt, Santiago; Schulte, Lothar; Fernández-López de Pablo, Javier

    2018-03-01

    This article focuses on a former salt lake in the upper Vinalopó Valley in south-eastern Spain. The study spans the Late Pleistocene through to the Late Holocene, although with particular focus on the period between 11 ka cal BP and 3000 ka cal BP (which spans the Mesolithic and part of the Bronze Age). High resolution multi-proxy analysis (including pollen, non pollen palynomorphs, grain size, X-ray fluorescence and X-ray diffraction) was undertaken on the lake sediments. The results show strong sensitivity to both long term and small changes in the evaporation/precipitation ratio, affecting the surrounding vegetation composition, lake-biota and sediment geochemistry. To summarise the key findings the main general trends identified include: 1) Hyper-saline conditions and low lake levels at the end of the Late Glacial 2) Increasing wetness and temperatures which witnessed an expansion of mesophilic woodland taxa, lake infilling and the establishment of a more perennial lake system at the onset of the Holocene 3) An increase in solar insolation after 9 ka cal BP which saw the re-establishment of pine forests 4) A continued trend towards increasing dryness (climatic optimum) at 7 ka cal BP but with continued freshwater input 5) An increase in sclerophyllous open woody vegetation (anthropogenic?), and increasing wetness (climatic?) is represented in the lake record between 5.9 and 3 ka cal BP 6) The Holocene was also punctuated by several aridity pulses, the most prominent corresponding to the 8.2 ka cal BP event. These events, despite a paucity of well dated archaeological sites in the surrounding area, likely altered the carrying capacity of this area both regionally and locally, particularly during the Mesolithic-Neolithic transition, in terms of fresh water supply for human/animal consumption, wild plant food reserves and suitable land for crop growth.

  17. Delineating a road-salt plume in lakebed sediments using electrical resistivity, piezometers, and seepage meters at Mirror Lake, New Hampshire, U.S.A

    USGS Publications Warehouse

    Toran, Laura; Johnson, Melanie; Nyquist, Jonathan E.; Rosenberry, Donald O.

    2010-01-01

    Electrical-resistivity surveys, seepage meter measurements, and drive-point piezometers have been used to characterize chloride-enriched groundwater in lakebed sediments of Mirror Lake, New Hampshire, U.S.A. A combination of bottom-cable and floating-cable electrical-resistivity surveys identified a conductive zone (<100ohm-m)">(<100ohm-m)(<100ohm-m) overlying resistive bedrock (<1000ohm-m)">(<1000ohm-m)(<1000ohm-m)beneath the lake. Shallow pore-water samples from piezometers in lakebed sediments have chloride concentrations of 200–1800μeq/liter">200–1800μeq/liter200–1800μeq/liter, and lake water has a chloride concentration of 104μeq/liter">104μeq/liter104μeq/liter. The extent of the plume was estimated and mapped using resistivity and water-sample data. The plume (20×35m">20×35m20×35m wide and at least 3m">3m3m thick) extends nearly the full length and width of a small inlet, overlying the top of a basin formed by the bedrock. It would not have been possible to mapthe plume's shape without the resistivity surveys because wells provided only limited coverage. Seepage meters were installed approximately 40m">40m40m from the mouth of a small stream discharging at the head of the inlet in an area where the resistivity data indicated lake sediments are thin. These meters recorded in-seepage of chloride-enriched groundwater at rates similar to those observed closer to shore, which was unexpected because seepage usually declines away from shore. Although the concentration of road salt in the northeast inlet stream is declining, the plume map and seepage data indicate the groundwater contribution of road salt to the lake is not declining. The findings demonstrate the benefit of combining geophysical and hydrologic data to characterize discharge of a plume beneath Mirror Lake. The extent of the plume in groundwater beneath the lake and stream indicate there will likely be a long-term source of chloride to the lake from groundwater.

  18. Hydroclimatic variability in the Lake Mondsee region and its relationships with large-scale climate anomaly patterns

    NASA Astrophysics Data System (ADS)

    Rimbu, Norel; Ionita, Monica; Swierczynski, Tina; Brauer, Achim; Kämpf, Lucas; Czymzik, Markus

    2017-04-01

    Flood triggered detrital layers in varved sediments of Lake Mondsee, located at the northern fringe of the European Alps (47°48'N,13°23'E), provide an important archive of regional hydroclimatic variability during the mid- to late Holocene. To improve the interpretation of the flood layer record in terms of large-scale climate variability, we investigate the relationships between observational hydrological records from the region, like the Mondsee lake level, the runoff of the lake's main inflow Griesler Ache, with observed precipitation and global climate patterns. The lake level shows a strong positive linear trend during the observational period in all seasons. Additionally, lake level presents important interannual to multidecadal variations. These variations are associated with distinct seasonal atmospheric circulation patterns. A pronounced anomalous anticyclonic center over the Iberian Peninsula is associated with high lake levels values during winter. This center moves southwestward during spring, summer and autumn. In the same time, a cyclonic anomaly center is recorded over central and western Europe. This anomalous circulation extends southwestward from winter to autumn. Similar atmospheric circulation patterns are associated with river runoff and precipitation variability from the region. High lake levels are associated with positive local precipitation anomalies in all seasons as well as with negative local temperature anomalies during spring, summer and autumn. A correlation analysis reveals that lake level, runoff and precipitation variability is related to large-scale sea surface temperature anomaly patterns in all seasons suggesting a possible impact of large-scale climatic modes, like the North Atlantic Oscillation and Atlantic Multidecadal Oscillation on hydroclimatic variability in the Lake Mondsee region. The results presented in this study can be used for a more robust interpretation of the long flood layer record from Lake Mondsee sediments

  19. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  20. Evaluation of regional climate simulations over the Great Lakes region driven by three global data sets

    Treesearch

    Shiyuan Zhong; Xiuping Li; Xindi Bian; Warren E. Heilman; L. Ruby Leung; William I. Jr. Gustafson

    2012-01-01

    The performance of regional climate simulations is evaluated for the Great Lakes region. Three 10-year (1990-1999) current-climate simulations are performed using the MM5 regional climate model (RCM) with 36-km horizontal resolution. The simulations employed identical configuration and physical parameterizations, but different lateral boundary conditions and sea-...

  1. Monitoring lake level changes by altimetry in the arid region of Central Asia

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Liao, J. J.; Shen, G. Z.; Zhang, X. L.

    2017-07-01

    The study of lake level changes in arid region of Central Asia not only has important significance for the management and sustainable development of inland water resources, but also provides the basis for further study on the response of lakes to climate change and human activities. Therefore, in this paper, eleven typical lakes in Central Asia were observed. The lake edges were obtained through image interpretation using the quasi-synchronous MODIS image, and then water level information with long period (2002-2015) was acquired using ENVISAT/RA-2 and Cryosat-2 satellite borne radar altimeter data. The results show that these 11 lakes all have obvious seasonal changes of water level in a year with a high peak at different month. During 2002 - 2015, their water levels present decreased trend generally except Sarygamysh Lake, Alakol Lake and North Aral Sea. The alpine lakes are most stables, while open lakes’ levels change the most violently and closed lakes change diversely among different lakes.

  2. Characterize the hydrogeological properties and probe the stress field in Salt Lake Valley, Utah using SAR imagery

    NASA Astrophysics Data System (ADS)

    Hu, X.; Lu, Z.; Barbot, S.; Wang, T.

    2017-12-01

    Aquifer skeletons deform actively in response to the groundwater redistribution and hydraulic head changes with varied time scales of delay and sensitivity, that can also, in some instances, trigger earthquakes. However, determining the key hydrogeological properties and understanding the interactions between aquifer and seismicity generally requires the analysis of dense water level data combined with expensive drilling data (borehole breakouts). Here we investigate the spatiotemporal correlation among ground motions, hydrological changes, earthquakes, and faults in Salt Lake Valley, Utah, based on InSAR observations from ENVISAT ASAR (2004-2010) and Sentinel-1A (2015-2016). InSAR results show a clear seasonal and long-term correlation between surface uplift/subsidence and groundwater recharge/discharge, with evidence for an average net uplift of 15 mm/yr for a period of 7 years. The long-term uplift, remarkably bounded by faults, reflects a net increase in pore pressure associated with prolonged water recharge probably decades ago. InSAR-derived ground deformation and its correlation with head variations allow us to quantify hydrogeological properties - decay coefficient, storage coefficient, and bulk compressibility. We also model the long-term deformation using a shallow vertical shearing reservoir to constrain its thickness and strain rate. InSAR-derived deformation help reveal the coupled hydrological and tectonic processes in Salt Lake Valley: the embedded faults disrupt the groundwater flow and partition the hydrological units, and the pore pressure changes rearrange the aquifer skeleton and modulate the stress field, which may affect the basin-wide seismicity.

  3. Characterization of brines and evaporites of Lake Katwe, Uganda

    NASA Astrophysics Data System (ADS)

    Kasedde, Hillary; Kirabira, John Baptist; Bäbler, Matthäus U.; Tilliander, Anders; Jonsson, Stefan

    2014-03-01

    Lake Katwe brines and evaporites were investigated to determine their chemical, mineralogical and morphological composition. 30 brine samples and 3 solid salt samples (evaporites) were collected from different locations of the lake deposit. Several analytical techniques were used to determine the chemical composition of the samples including Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), Inductively Coupled Plasma-Sector Field Mass Spectrometry (ICP-SFMS), ion chromatography, and potentiometric titration. The mineralogical composition and morphology of the evaporites was determined using X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Physical parameters of the lake brines such as density, electrical conductivity, pH, and salinity were also studied. The results show that the lake brines are highly alkaline and rich in Na+, Cl-, CO32-, SO42-, and HCO3- with lesser amounts of K+, Mg2+, Ca2+, Br-, and F- ions. The brines show an intermediate transition between Na-Cl and Na-HCO3 water types. Among the trace metals, the lake brines were found to be enriched in B, I, Sr, Fe, Mo, Ba, and Mn. The solid salts are composed of halite mixed with other salts such as hanksite, burkeite and trona. It was also observed that the composition of the salts varies considerably even within the same grades.

  4. Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85

    USGS Publications Warehouse

    Waddell, K.M.; Seiler, R.L.; Solomon, D.K.

    1986-01-01

    During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from

  5. The Arsenic Cycle in Searles Lake, California: An Arsenic-Rich, Salt-Saturated Soda Lake. II. Isolation of Arsenic-Metabolizing Microbes.

    NASA Astrophysics Data System (ADS)

    Switzer Blum, J.; Hoeft, S. E.; Stolz, J. F.; Langley, S.; Beveridge, T. J.; Kulp, T. R.; Oremland, R. S.

    2004-12-01

    The motivation for isolating arsenic-metabolizing prokaryotes from Searles Lake was to characterize the physiology of microbes that can cope simultaneously with at least 3 environmental extremes: saturating salt concentration, high pH, and high dissolved inorganic arsenic. A secondary motivation was to find extremely halophilc Archaea that could respire As(V), as this has only been reported for the Crenarchaea. Enrichment cultures of arsenate [As(V)]-respirers were established by inoculating Searles Lake mud into an anaerobic, alkaline (pH = 9.8) artificial medium containing 346 g/L dissolved salts, with lactate as the electron donor and As(V) as the electron acceptor. After about 6 months of bi-weekly transfers, the enrichment was purified by serial dilution, with the highest growth-positive dilution tube exhibiting motile cells having uniform morphology (curved rods). This culture, strain SLAS-1, grew by oxidizing lactate to acetate plus carbon dioxide while reducing As(V) to arsenite [As(III)]. The doubling time was 48 hours at 346 g/L salinity, and nearly equivalent growth rates were observed over a salinity range of 200 to 346 g/l, with no growth evident below 200 g/L. The pH range was 8.5 to 10, with an optimum at 9.5. Strain SLAS-1 has an unusual motility that can be characterized as a "fish-like" swimming motion. Thin section electron micrographs revealed the presence of an internal cytoplasmic filament that runs the full length of the microorganism. We suggest that this filament may be involved in cellular motility. However, taxonomic classification of SLAS-1 made by 16S rRNA gene sequences aligned it in the order Haloanaerobacteriales of the Domain Bacteria. In a further effort to isolate haloalkaliphilic Archaea, a similar enrichment strategy was employed as above, but cell-wall antibiotics were added to the medium to discourage the growth of Bacteria. An enrichment culture, designated Serl-Ab, was established that oxidized lactate to acetate plus carbon

  6. Electromagnetic Surveying in the Mangrove Lakes Region of Everglades National Park

    NASA Astrophysics Data System (ADS)

    Whitman, D.; Price, R.; Frankovich, T.; Fourqurean, J.

    2015-12-01

    The Mangrove Lakes are an interconnected set of shallow (~ 1m), brackish lake and creek systems on the southern margin of the Everglades adjacent to Florida Bay. Current efforts associated with the Comprehensive Everglades Restoration Plan (CERP) aim to increase freshwater flow into this region. This study describes preliminary results of geophysical surveys in the lakes conducted to assess changes in the groundwater chemistry as part of a larger hydrologic and geochemical study in the Everglades Lakes region. Marine geophysical profiles were conducted in Alligator Creek (West Lake) and McCormick Creek systems in May, 2014. Data included marine electromagnetic (EM) profiles and soundings, water depth measurements, surface water conductivity and salinity measurements. A GSSI Profiler EMP-400 multi-frequency EM conductivity meter continuously recorded in-phase and quadrature field components at 1, 8, and 15 KHz. The system was deployed in a flat bottomed plastic kayak towed behind a motorized skiff. Lake water depths were continuously measured with a sounder/chart plotter which was calibrated with periodic sounding rod measurements. At periodic intervals during the survey, the profiling was stopped and surface water conductivity, temperature and salinity are recorded with a portable YSI probe on the tow boat. Over 40,000 discrete 3-frequency EM measurements were collected. The data were inverted to 2-layer models representing the water layer thickness and conductivity and the lake bottom conductivity. At spot locations, models were constrained with water depth soundings and surface water conductivity measurements. At other locations along the profiles, the water depth and conductivity were allowed to be free, but the free models were generally consistent with the constrained models. Multilayer sub-bottom models were also explored but were found to be poorly constrained. In West Lake, sub-bottom conductivities decreased from 400 mS/m in the west to 200 mS/m in the

  7. Increased piscivory by lake whitefish in Lake Huron

    USGS Publications Warehouse

    Pothoven, Steven A.; Madenjian, Charles P.

    2013-01-01

    We evaluated the diet of Lake Whitefish Coregonus clupeaformis in Lake Huron during 2002–2011 to determine the importance of Round Goby Neogobius melanostomus and other fish as prey items. Lake Whitefish that had reached approximately 400 mm in length incorporated fish into their diets. The overall percentage of adult Lake Whitefish in Lake Huron that had eaten fish increased from 10% in 2002–2006 to 20% in 2007–2011, with a corresponding decrease in the frequency of Lake Whitefish that ate Dreissena spp. from 52% to 33%. During 2002–2006, Round Goby (wet mass, 38%), sculpins (Cottidae) (34%), and Ninespine Stickleback Pungitius pungitius (18%) were the primary fish eaten, whereas Round Goby accounted for 92% of the fish eaten in 2007–2011. Overall, Round Goby were found in the fewest Lake Whitefish stomachs in the north region of Lake Huron (6%) and in the most in the central (23%) and south (19%) regions of the lake. In the central region, Round Goby were eaten during all seasons that were sampled (spring through fall). In the south region, Round Goby were eaten only in the winter and spring but not in the summer when Dreissena spp. and spiny water flea Bythotrephes longimanus dominated the diet. Based on the 2007–2011 diet composition, an individual Lake Whitefish would need to have increased their consumption relative to that in 1983–1994 by 6% in the north region, 12% in the central region, and 41% in the southern region in order to achieve the same growth that was observed before dreissenid mussels arrived. However, Lake Whitefish weight adjusted for length only increased by 2% between 2002–2006 and 2007–2011 in the central region, decreased by 4% in the northern region, and remained constant in the southern region. This suggests that a shift toward more frequent piscivory does not necessarily improve the condition of a generalist feeder like Lake Whitefish.

  8. IMPLICATIONS FOR EDUCATION OF PROSPECTIVE CHANGES IN SOCIETY, REPORTS PREPARED FOR THE AREA CONFERENCE (2D, SALT LAKE CITY, OCTOBER 24-26, 1966).

    ERIC Educational Resources Information Center

    MORPHET, EDGAR L.; RYAN, CHARLES O.

    AT A CONFERENCE IN SALT LAKE CITY, UTAH, OCTOBER 24-26, 1966, SPONSORED BY EIGHT ROCKY MOUNTAIN STATES, SIXTEEN PAPERS AND FOUR SUPPLEMENTARY STATEMENTS WERE GIVEN BY EDUCATIONAL AUTHORITIES TO DEFINE PROSPECTIVE CHANGES IN SOCIETY BY 1980 AND TO CONSIDER THEIR IMPLICATIONS FOR EDUCATION. FACTORS INFLUENCING EDUCATIONAL CHANGE INCLUDE POPULATION…

  9. Lake seasonality across the Tibetan Plateau and their varying relationship with regional mass changes and local hydrology

    NASA Astrophysics Data System (ADS)

    Lei, Yanbin; Yao, Tandong; Yang, Kun; Sheng, Yongwei; Kleinherenbrink, Marcel; Yi, Shuang; Bird, Broxton W.; Zhang, Xiaowen; Zhu, La; Zhang, Guoqing

    2017-01-01

    The recent growth and deepening of inland lakes in the Tibetan Plateau (TP) may be a salient indicator of the consequences of climate change. The seasonal dynamics of these lakes is poorly understood despite this being potentially crucial for disentangling contributions from glacier melt and precipitation, which are all sensitive to climate, to lake water budget. Using in situ observations, satellite altimetry and gravimetry data, we identified two patterns of lake level seasonality. In the central, northern, and northeastern TP, lake levels are characterized by considerable increases during warm seasons and decreases during cold seasons, which is consistent with regional mass changes related to monsoon precipitation and evaporation. In the northwestern TP, however, lake levels exhibit dramatic increases during both warm and cold seasons, which deviate from regional mass changes. This appears to be more connected with high spring snowfall and large summer glacier melt. The variable lake level response to different drivers indicates heterogeneous sensitivity to climate change between the northwestern TP and other regions.

  10. Regional economic impacts of water management alternatives: the case of Devils Lake, North Dakota, USA.

    PubMed

    Leistritz, F Larry; Leitch, Jay A; Bangsund, Dean A

    2002-12-01

    Devils Lake, located in a closed basin in northeastern North Dakota has over a century-long history of highly fluctuating water levels. The lake has risen nearly 25 feet (7.7 m) since 1993, more than doubling its surface area. Rising water levels have affected rural lands, transportation routes, and communities near the lake. In response to rising lake levels, Federal, state and local agencies have adopted a three-part approach to flood damage reduction, consisting of (1) upper basin water management to reduce the amount of water reaching the lake, (2) protection for structures and infrastructure if the lake continues to rise, and (3) developing an emergency outlet to release some lake water. The purpose of this study was to provide information about the net regional economic effects of a proposed emergency outlet for Devils Lake. An input-output model was used to estimate the regional economic effects of the outlet, under two scenarios: (1) the most likely future situation (MLS) and (2) a best case situation (BCS) (i.e., where the benefits from the outlet would be greatest), albeit an unlikely one. Regional economic effects of the outlet include effects on transportation (road and railroad construction), agriculture (land kept in production, returned to production sooner, or kept in production longer), residential relocations, and outlet construction expenditures. Effects are measured as changes in gross business volume (gross receipts) for various sectors, secondary employment, and local tax collections. The net regional economic effects of the proposed outlet would be relatively small, and consideration of these economic impacts would not strengthen the case for an outlet.

  11. ASTER measurement of supraglacial lakes in the Mount Everest region of the Himalaya

    USGS Publications Warehouse

    Wessels, R.L.; Kargel, J.S.; Kieffer, H.H.

    2002-01-01

    We demonstrate an application of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images to detect and monitor supraglacial lakes on glaciers in the Mount Everest region in Tibet (Xizang) and Nepal. ASTER offers powerful capabilities to monitor supraglacial lakes in terms of (1) surface area, growth and disappearance (spatial resolution = 15 m), (2) turbidity (15 m resolution), and (3) temperature (90 m resolution). Preliminary results show an overall similarity of supraglacial lakes on three glaciers. Lakes have widely varying turbidity as indicated by color in visible/near-infrared bands 1-3, the largest lakes being bright blue (highly turbid), cold (near 0??C) and hydrautically connected with other lakes and supraglacial streams, while small lakes are mostly dark blue (relatively clear water), warmer (>4??C), and appear hydrautically isolated. High levels of turbidity in supraglacial lakes indicate high rates of meltwater input from streams or erosion of ice cliffs, and thus are an indirect measure relating to the activity and hydraulic integration of the lake with respect to other lakes and streams in the glacier.

  12. Geospatial analysis of lake and landscape interactions within the Toolik Lake region, North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Pathak, Prasad A.

    The Arctic region of Alaska is experiencing severe impacts of climate change. The Arctic lakes ecosystems are bound to undergo alterations in its trophic structure and other chemical properties. However, landscape factors controlling the lake influxes were not studied till date. This research has examined the currently existing lake landscape interactions using Remote Sensing and GIS technology. The statistical modeling was carried out using Regression and CART methods. Remote sensing data was applied to derive the required landscape indices. Remote sensing in the Arctic Alaska faces many challenges including persistent cloud cover, low sun angle and limited snow free period. Tundra vegetation types are interspersed and intricate to classify unlike managed forest stands. Therefore, historical studies have remained underachieved with respect thematic accuracies. However, looking at vegetation communities at watershed level and the implementation of expert classification system achieved the accuracies up to 90%. The research has highlighted the probable role of interactions between vegetation root zones, nutrient availability within active zone, as well as importance of permafrost thawing. Multiple regression analyses and Classification Trees were developed to understand relationships between landscape factors with various chemical parameters as well as chlorophyll readings. Spatial properties of Shrubs and Riparian complexes such as complexity of individual patches at watershed level and within proximity of water channels were influential on Chlorophyll production of lakes. Till-age had significant impact on Total Nitrogen contents. Moreover, relatively young tills exhibited significantly positive correlation with concentration of various ions and conductivity of lakes. Similarly, density of patches of Heath complexes was found to be important with respect to Total Phosphorus contents in lakes. All the regression models developed in this study were significant at 95

  13. Miscellaneous High-Resolution Seismic Imaging Investigations in Salt Lake and Utah Valleys for Earthquake Hazards

    USGS Publications Warehouse

    Stephenson, W.J.; Williams, R.A.; Odum, J.K.; Worley, D.M.

    2007-01-01

    Introduction In support of earthquake hazards and ground motion studies by researchers at the Utah Geological Survey, University of Utah, Utah State University, Brigham Young University, and San Diego State University, the U.S. Geological Survey Geologic Hazards Team Intermountain West Project conducted three high-resolution seismic imaging investigations along the Wasatch Front between September 2003 and September 2005. These three investigations include: (1) a proof-of-concept P-wave minivib reflection imaging profile in south-central Salt Lake Valley, (2) a series of seven deep (as deep as 400 m) S-wave reflection/refraction soundings using an S-wave minivib in both Salt Lake and Utah Valleys, and (3) an S-wave (and P-wave) investigation to 30 m at four sites in Utah Valley and at two previously investigated S-wave (Vs) minivib sites. In addition, we present results from a previously unpublished downhole S-wave investigation conducted at four sites in Utah Valley. The locations for each of these investigations are shown in figure 1. Coordinates for the investigation sites are listed in Table 1. With the exception of the P-wave common mid-point (CMP) reflection profile, whose end points are listed, these coordinates are for the midpoint of each velocity sounding. Vs30 and Vs100, also shown in Table 1, are defined as the average shear-wave velocities to depths of 30 and 100 m, respectively, and details of their calculation can be found in Stephenson and others (2005). The information from these studies will be incorporated into components of the urban hazards maps along the Wasatch Front being developed by the U.S. Geological Survey, Utah Geological Survey, and numerous collaborating research institutions.

  14. 33 CFR 162.132 - Connecting waters from Lake Huron to Lake Erie; communications rules.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (2) Channel 12 (156.60 mhz) between Lake St. Clair Light and Detroit River Light. (b) Radiotelephone... Cut Light “7” Lake Huron Cut Lighted Buoy “1” Report. Report St. Clair/Black River Junction Light Report. Stag Island Upper Light Report. Report Marine City Salt Dock Light Report. Report Grande Pointe...

  15. Image-based terrain modeling with thematic mapper applied to resolving the limit of Holocene Lake expansion in the Great Salt Lake Desert, Utah, part 1

    NASA Technical Reports Server (NTRS)

    Merola, John A.

    1989-01-01

    The LANDSAT Thematic Mapper (TM) scanner records reflected solar energy from the earth's surface in six wavelength regions, or bands, and one band that records emitted energy in the thermal region, giving a total of seven bands. Useful research was extracted about terrain morphometry from remote sensing measurements and this information is used in an image-based terrain model for selected coastal geomorphic features in the Great Salt Lake Desert (GSLD). Technical developments include the incorporation of Aerial Profiling of Terrain System (APTS) data in satellite image analysis, and the production and use of 3-D surface plots of TM reflectance data. Also included in the technical developments is the analysis of the ground control point spatial distribution and its affects on geometric correction, and the terrain mapping procedure; using satellite data in a way that eliminates the need to degrade the data by resampling. The most common approach for terrain mapping with multispectral scanner data includes the techniques of pattern recognition and image classification, as opposed to direct measurement of radiance for identification of terrain features. The research approach in this investigation was based on an understanding of the characteristics of reflected light resulting from the variations in moisture and geometry related to terrain as described by the physical laws of radiative transfer. The image-based terrain model provides quantitative information about the terrain morphometry based on the physical relationship between TM data, the physical character of the GSLD, and the APTS measurements.

  16. Land use impacts on lake water quality in Alytus region (Lithuania)

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Laukonis, Rymvidas

    2016-04-01

    Land use has important impacts on soils, surface and ground water quality. Urban agricultural areas are an important source of pollutants, which can reach lakes through surface runoff and underground circulation. Human intervention in the landscape is one of the major causes pollution and land degradation, thus it is very important to understand the impacts of and use on environment and if they have some spatial pattern (Pereira et al., 2013, 2015; Brevik et al., 2016). The identification of the spatial pattern of lakes pollution is in Alytus area (Lithuania) is fundamental, since they provide an important range of ecosystem services to local communities, including food and recreational activities. Thus, the degradation of these environments can induce important economic losses. In this context, it is import to identify the areas with high pollutant accumulation and the environmental and human factors responsible for it. The objective of this work is to study identify the amount of some important nutrients resultant from human activities in lake water quality in Alytus region (Lithuania). Alytus region is located in southern part of Lithuania and has an approximate area of 40 km2. Inside this region we analyzed several water quality parameters of 55 lakes, including, pH, electrical conductivity (EC), suspended materials (SM), water clarity (WC) biochemical oxygen demand (BDO), total phosphorous (TP), total Nitrogen (TN), dissolved organic carbon (DOC), as other environmental variables as altitude, lake maximum deep (MD), lake area and land use according Corine land cover classification (CLC2006). Previous to data analysis, data normality and homogeneity of the variances, was assessed with the Shapiro-wilk and Leven's test, respectively. The majority of the data did not respect the Gaussian distribution and the heteroscedasticity, even after a logarithmic, and box-cox transformation. Thus, in this work we used the logarithmic transformed data to do a principal

  17. Late Pleistocene Hansel Valley basaltic ash, northern Lake Bonneville, Utah, USA

    USGS Publications Warehouse

    Miller, D.M.; Oviatt, Charles G.; Nash, B.P.

    2008-01-01

    The Hansel Valley ash bed lies within 5 cm of the base of deposits of Lake Bonneville (???28 ka) in the vicinity of Great Salt Lake and provides a useful stratigraphic marker for this area of the lake basin. However, it has not been matched to an eruptive edifice, presumably because such an edifice was eroded by waves of Lake Bonneville. We present data for the chemical composition of the tephra and for possible matching lavas and tephras of the region, as well as grain size data for the tephra in an attempt to identify the location of the eruption. Matches with other tephras are negative, but lavas near the coarsest ash deposits match well with the distinctive high values of TiO2 and P2O5 of the ash. Neither chemistry nor grain size data points uniquely to a source area, but an area near the northwest shore of Great Salt Lake and within Curlew Valley is most likely. The Hansel Valley ash is an example of an ash that has no direct numerical date from proximal deposits, despite considerable study, yet nonetheless is useful for stratigraphic studies by virtue of its known stratigraphic position and approximate age. Basaltic tephras commonly are not as widespread as their rhyolitic counterparts, and in some cases apparently are produced by eruptive sources that are short lived and whose edifices are not persistent. ?? 2007 Elsevier Ltd and INQUA.

  18. The Economic Impact of Ten Cultural Institutions on the Economy of the Salt Lake SMSA. Technical Supplement. Volume I [and] Volume II--Appendices.

    ERIC Educational Resources Information Center

    Cwi, David; Smith, D. Alden

    The research methods, procedures, and data for determining the impact of 10 cultural institutions on the Salt Lake City economy (1978) are outlined. A 30-equation model was used to identify a variety of effects on local businesses, government, and individuals. Researchers examined internal records of the 10 institutions as well as local, state,…

  19. Water resources of the Lake Erie shore region in Pennsylvania

    USGS Publications Warehouse

    Mangan, John William; Van Tuyl, Donald W.; White, Walter F.

    1952-01-01

    An abundant supply of water is available to the Lake Erie Shore region in Pennsylvania. Lake i£rie furnishes an almost inexhaustible supply of water of satisfactory chemical quality. Small quantities of water are available from small streams in the area and from the ground. A satisfactory water supply is one of the factors that affect the economic growth of a region. Cities and towns must have adequate amounts of pure water for human consumption. Industries must have suitable water ih sufficient quantities for all purposes. In order to assure. success and economy, the development of water resources should be based on adequate knowledge of the quantity and quality of the water. As a nation, we can not afford to run the risk of dissipating our resources, especially in times of national emergency, by building projects that are not founded on sound engineering and adequate water-resources information. The purpose of this report is to summarize and interpret all available water-resources information for the Lake Erie Shore region in Pennsylvania. The report will be useful for initial guidance in the location or expansion of water facilities for defense and nondefense industries and the municipalities upon which they are dependent. It will also be useful in evaluating the adequacy of the Geological Survey's part of the basic research necessary to plan the orderly development of the water resources of the Lake Erie Shore region. Most of the data contained inthis report have been obtained'by the U. S. Geological Survey in cooperation with the Pennsylvania Department of Forests and Waters, the Pennsylvania Department of Internal Affairs, and the Pennsylvania State Planning Board, Department of Commerce. The Pennsylv~nia Department of Health furnished information on water pollution. The report was prepared in the Water Resources Division of the U. S. Geological Survey b:y John W. Mangan (Surface Water). Donald W. VanTuyl (Ground Water). and Walter F. White, Jr. (Quality of

  20. Spatial analysis of groundwater electrical conductivity using ordinary kriging and artificial intelligence methods (Case study: Maharlu-Bakhtegan and Tashk salt lakes basin, Iran)

    NASA Astrophysics Data System (ADS)

    Ghader, Fatemeh; Aljoumani, Basem; Tröger, Uwe

    2017-04-01

    The main resources of fresh water are the groundwater. In Iran, the quality and quantity of groundwater is affected significantly by rapid population growth and unsustainable water management in the agricultural and industrial sectors. in Maharlu-Bakhtegan and Tashk salt lakes basin, the overexploitation of groundwater for irrigation purpose caused the salt water intrusion from the lakes to the area's aquifers, moreover, the basin is located in south of Iran with semiarid climate, faces a significant decline in rainfall. All these reasons cause the degradation of ground water quality. For this study, geographical coordinates of 406 observation wells will be defined as inputs and groundwater electrical conductivities (EC) will be set as output. Ordinary kriging (OK) and artificial neural networks (ANN) will be investigated for modeling groundwater salinity. Eighty percent of data will be randomly selected to train and develop mentioned models and twenty percent of data will be used for testing and validating. Finally, the outputs of models will be compared with the corresponding measured values in observation wells.

  1. Metropolitan centers : evaluating local implementation of regional plans and policies : final report

    DOT National Transportation Integrated Search

    2017-03-01

    The Denver and Salt Lake City Metropolitan Planning Organizations (MPOs) have embarked upon regional visioning strategies that promote : development around higher density, mixed use centers with current or future access to transit. This study examine...

  2. Regional ontogeny of New England salt marsh die-off.

    PubMed

    Coverdale, Tyler C; Bertness, Mark D; Altieri, Andrew H

    2013-10-01

    Coastal areas are among the world's most productive and highly affected ecosystems. Centuries of human activity on coastlines have led to overexploitation of marine predators, which in turn has led to cascading ecosystem-level effects. Human effects and approaches to mediating them, however, differ regionally due to gradients in biotic and abiotic factors. Salt marsh die-off on Cape Cod, Massachusetts (U.S.A.), triggered by a recreational-fishing-induced trophic cascade that has released herbivorous crabs from predator control, has been ongoing since 1976. Similar salt marsh die-offs have been reported in Long Island Sound and Narragansett Bay (U.S.A.), but the driving mechanism of these die-offs has not been examined. We used field experiments to assess trophic interactions and historical reconstructions of 24 New England marshes to test the hypotheses that recreational fishing and predator depletion are a regional trigger of salt marsh die-off in New England and that die-offs in Long Island Sound and Narragansett Bay are more recent than those on Cape Cod. Predator depletion was the general trigger of marsh die-off and explained differences in herbivorous crab abundance and the severity of die-off across regions. Die-offs in Long Island Sound and Narragansett Bay are following a trajectory similar to die-off on Cape Cod, but are approximately 20 years behind those on Cape Cod. As a result, die-off currently affects 31.2% (SE 2.2) of low-marsh areas in Long Island Sound and Narragansett Bay, less than half the severity of die-off on Cape Cod. Our results contribute to the growing evidence that recreational fishing is an increasing threat to coastal ecosystems and that studying the effects of human activity at regional scales can provide insight into local effects and aid in early detection and potential remediation. © 2013 Society for Conservation Biology.

  3. Salt lakes of La Mancha (Central Spain): A hot spot for tiger beetle (Carabidae, Cicindelinae) species diversity

    PubMed Central

    Rodríguez-Flores, Paula C.; Gutiérrez-Rodríguez, Jorge; Aguirre-Ruiz, Ernesto F.; García-París, Mario

    2016-01-01

    Abstract The tiger beetle assemblage of the wetlands of La Mancha (central Spain) comprises nine species: Calomera littoralis littoralis, Cephalota maura maura, Cephalota circumdata imperialis, Cephalota dulcinea, Cicindela campestris campestris, Cicindela maroccana, Cylindera paludosa, Lophyra flexuosa flexuosa, and Myriochila melancholica melancholica. This assemblage represents the largest concentration of tiger beetles in a single 1º latitude / longitude square in Europe. General patterns of spatial and temporal segregation among species are discussed based on observations of 1462 specimens registered during an observation period of one year, from April to August. The different species of Cicindelini appear to be distributed over space and time, with little overlapping among them. Three sets of species replace each other phenologically as the season goes on. Most of the species occupy drying or dried salt lakes and salt marshes, with sparse vegetation cover. Spatial segregation is marked in terms of substrate and vegetation use. Calomera littoralis and Myriochila melancholica have been observed mainly on wet soils; Cephalota circumdata on dry open saline flats; Cephalota dulcinea and Cylindera paludosa in granulated substrates with typical halophytic vegetation; Cephalota maura is often present in man-modified areas. Cephalota circumdata and Cephalota dulcinea are included as species of special interest in the list of protected species in Castilla–La Mancha. Conservation problems for the Cicindelini assemblage arise from agricultural activities and inadequate use of sport vehicles. Attempts at restoring the original habitat, supressing old semi-industrial structures, may affect the spatial heterogeneity of the lakes, and have an effect on Cicindelinae diversity. PMID:27006617

  4. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced bymore » Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.« less

  5. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced bymore » Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.« less

  6. Projecting the impact of regional land-use change and water management policies on lake water quality: an application to periurban lakes and reservoirs.

    PubMed

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies' 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making.

  7. Projecting the Impact of Regional Land-Use Change and Water Management Policies on Lake Water Quality: An Application to Periurban Lakes and Reservoirs

    PubMed Central

    Catherine, Arnaud; Mouillot, David; Maloufi, Selma; Troussellier, Marc; Bernard, Cécile

    2013-01-01

    As the human population grows, the demand for living space and supplies of resources also increases, which may induce rapid change in land-use/land-cover (LULC) and associated pressures exerted on aquatic habitats. We propose a new approach to forecast the impact of regional land cover change and water management policies (i.e., targets in nutrient loads reduction) on lake and reservoir water eutrophication status using a model that requires minimal parameterisation compared with alternative methods. This approach was applied to a set of 48 periurban lakes located in the Ile de France region (IDF, France) to simulate catchment-scale management scenarios. Model outputs were subsequently compared to governmental agencies’ 2030 forecasts. Our model indicated that the efforts made to reduce pressure in the catchment of seepage lakes might be expected to be proportional to the gain that might be obtained, whereas drainage lakes will display little improvement until a critical level of pressure reduction is reached. The model also indicated that remediation measures, as currently planned by governmental agencies, might only have a marginal impact on improving the eutrophication status of lakes and reservoirs within the IDF region. Despite the commitment to appropriately managing the water resources in many countries, prospective tools to evaluate the potential impacts of global change on freshwater ecosystems integrity at medium to large spatial scales are lacking. This study proposes a new approach to investigate the impact of region-scale human-driven changes on lake and reservoir ecological status and could be implemented elsewhere with limited parameterisation. Issues are discussed that relate to model uncertainty and to its relevance as a tool applied to decision-making. PMID:23991066

  8. Selenium and trace element mobility affected by periodic displacement of stratification in the Great Salt Lake, Utah

    USGS Publications Warehouse

    Beisner, K.; Naftz, D.L.; Johnson, W.P.; Diaz, X.

    2009-01-01

    The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24 h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.

  9. Malaria Elimination Campaigns in the Lake Kariba Region of Zambia: A Spatial Dynamical Model

    PubMed Central

    Nikolov, Milen; Bever, Caitlin A.; Upfill-Brown, Alexander; Hamainza, Busiku; Miller, John M.; Eckhoff, Philip A.; Wenger, Edward A.; Gerardin, Jaline

    2016-01-01

    As more regions approach malaria elimination, understanding how different interventions interact to reduce transmission becomes critical. The Lake Kariba area of Southern Province, Zambia, is part of a multi-country elimination effort and presents a particular challenge as it is an interconnected region of variable transmission intensities. In 2012–13, six rounds of mass test-and-treat drug campaigns were carried out in the Lake Kariba region. A spatial dynamical model of malaria transmission in the Lake Kariba area, with transmission and climate modeled at the village scale, was calibrated to the 2012–13 prevalence survey data, with case management rates, insecticide-treated net usage, and drug campaign coverage informed by surveillance. The model captured the spatio-temporal trends of decline and rebound in malaria prevalence in 2012–13 at the village scale. Various interventions implemented between 2016–22 were simulated to compare their effects on reducing regional transmission and achieving and maintaining elimination through 2030. Simulations predict that elimination requires sustaining high coverage with vector control over several years. When vector control measures are well-implemented, targeted mass drug campaigns in high-burden areas further increase the likelihood of elimination, although drug campaigns cannot compensate for insufficient vector control. If infections are regularly imported from outside the region into highly receptive areas, vector control must be maintained within the region until importations cease. Elimination in the Lake Kariba region is possible, although human movement both within and from outside the region risk damaging the success of elimination programs. PMID:27880764

  10. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics

  11. Birth Outcomes across Three Rural-Urban Typologies in the Finger Lakes Region of New York

    ERIC Educational Resources Information Center

    Strutz, Kelly L.; Dozier, Ann M.; van Wijngaarden, Edwin; Glantz, J. Christopher

    2012-01-01

    Purpose: The study is a descriptive, population-based analysis of birth outcomes in the New York State Finger Lakes region designed to determine whether perinatal outcomes differed across 3 rural typologies. Methods: Hospital birth data for the Finger Lakes region from 2006 to 2007 were used to identify births classified as low birthweight (LBW),…

  12. Radiocarbon analysis of halophilic microbial lipids from an Australian salt lake

    NASA Astrophysics Data System (ADS)

    Bray, P. Sargent; Jones, Claudia M.; Fallon, Stewart J.; Brocks, Jochen J.; George, Simon C.

    2012-01-01

    Assigning accurate dates to hypersaline sediments opens important terrestrial records of local and regional paleoecologies and paleoclimatology. However, as of yet no conventional method of dating hypersaline systems has been widely adopted. Biomarker, mineralogical, and radiocarbon analyses of sediments and organic extracts from a shallow (13 cm) core from a hypersaline playa, Lake Tyrrell, southeastern Australia, produce a coherent age-depth curve beginning with modern microbial mats and extending to ~ 7500 cal yr BP. These analyses are furthermore used to identify and constrain the timing of the most recent change in hydrological regime at Lake Tyrrell, a shift from a clay deposit to the precipitation of evaporitic sands occurring at some time between ~ 4500 and 7000 yr. These analyses show the potential for widespread dating of hypersaline systems integrating the biomarker approach, reinforce the value of the radiocarbon content of biomarkers in understanding the flow of carbon in modern ecologies, and validate the temporal dimension of data provided by biomarkers when dating late Quaternary sediments.

  13. A Survey and Analysis of Socio-Economic, Reading, and Library Use Factors Influencing the Rose Park Branch of the Salt Lake Public Library.

    ERIC Educational Resources Information Center

    Heath, Janeth L.; Johnson, Kent B.

    The purpose of this study was to survey and analyze Rose Park, a residential area in the north-west part of Salt Lake City. A questionnaire was used to solicit information. The questions were formed through analysis of other surveys by means of an extensive literature search. Questionnaires were distributed randomly to 215 families and were…

  14. Monitoring the dynamics of glacial lakes in the High Mountain Asia region through time series Landsat images

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Chen, F.

    2017-12-01

    Glacial lakes have been developing dramatically in the High Mountain Asia (HMA) region associated with human activities and persistent climatic warming. This leads to increased probability of glacial lake outburst floods (GLOF), pose potential threats to the downstream lives and properties of people. However, comprehensive information is lacking about the annual distribution, evolution and the driving mechanism of glacial lakes in the entire HMA due to the low accessibility and harsh natural conditions, with most studies focused either on certain portion of this region or at most several time intervals effort at monitoring glacial lakes at coarse resolution remote sensing. In this research, we produce yearly map of glacial lake extents in HMA from 2008 to 2016 using Landsat series satellites images, and further study the formation, distribution and dynamics of glacial lakes. In total 6197 and 8256 glacial lakes were detected in 2008 and 2016, respectively, mainly located at altitudes between 4400 m and 5600 m. The annual expansion rate is approximately 4.68 % from 2008 to 2016. To explore the cause of rapid expansion for some typical glacial lakes, we investigated their changing patterns through long-term expansion rates measured from change in shoreline positions. The results show that glacial lake expansion rates at some points change substantially (> 30 m/yr) and the formation of proglacial lakes may be dominated by different orientation-driving forces from parent glacier. The accelerating rate of ice and snow melting from glacier caused by global warming are primary contributor to glacial lake growth. The results may provide information for understanding the mechanism of lake dynamics, which also facilitate the scientific recognition of the potential glacial lakes hazards in this region.

  15. Potential for Waterborne and Invertebrate Transmission of West Nile Virus in the Great Salt Lake, Utah.

    PubMed

    Lund, Melissa; Shearn-Bochsler, Valerie; Dusek, Robert J; Shivers, Jan; Hofmeister, Erik

    2017-07-15

    In November and December of 2013, a large mortality event involving 15,000 to 20,000 eared grebes ( Podiceps nigricollis ) occurred at the Great Salt Lake (GSL), UT. The onset of the outbreak in grebes was followed by a mortality event in >86 bald eagles ( Haliaeetus leucocephalus ). During the die-off, West Nile virus (WNV) was detected by reverse transcription-PCR (RT-PCR) or viral culture in the carcasses of grebes and eagles submitted to the National Wildlife Health Center. However, no activity of mosquitoes, the primary vectors of WNV, was detected by the State of Utah's WNV monitoring program. The transmission of WNV has rarely been reported during the winter in North America in the absence of known mosquito activity; however, the size of this die-off, the habitat in which it occurred, and the species involved are unique. We experimentally investigated whether WNV could survive in water with a high salt content, as found at the GSL, and whether brine shrimp, the primary food of migrating eared grebes on the GSL, could have played a role in the transmission of WNV to feeding birds. We found that WNV can survive up to 72 h at 4°C in water containing 30 to 150 ppt NaCl, and brine shrimp incubated with WNV in 30 ppt NaCl may adsorb WNV to their cuticle and, through feeding, infect epithelial cells of their gut. Both mechanisms may have potentiated the WNV die-off in migrating eared grebes on the GSL. IMPORTANCE Following a major West Nile virus die-off of eared grebes and bald eagles at the Great Salt Lake (GSL), UT, in November to December 2013, this study assessed the survival of West Nile virus (WNV) in water as saline as that of the GSL and whether brine shrimp, the major food for migrating grebes, could have played a role as a vector for the virus. While mosquitoes are the major vector of WNV, under certain circumstances, transmission may occur through contaminated water and invertebrates as food. Copyright © 2017 American Society for Microbiology.

  16. Do neighboring lakes share common taxa of bacterioplankton? Comparison of 16S rDNA fingerprints and sequences from three geographic regions.

    PubMed

    Lindström, E S; Leskinen, E

    2002-07-01

    Bacterioplankton community composition was studied in 12 lakes in three different geographic regions in Scandinavia using denaturing gradient gel electrophoresis (DGGE) and sequencing of 16S rDNA. Area-specific abundant taxa were found in the lakes in two of the regions. In the region of Uppland the lakes had an alpha-proteobacterium, belonging to the subgroup Alpha V in common. The Alpha V bacteria appeared to be favored by neutral or higher pH values. The lakes in Lappland were found to harbor Actinobacteria, which appeared to be favored in bog lakes. No abundant taxon was found to be in common for the lakes in Svalbard, the third region studied.

  17. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  18. Water in the oceanic lithosphere: Salt Lake Crater xenoliths, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Peslier, A. H.; Bizimis, M.

    2010-12-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient ( 2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx

  19. Finger Lake Region, NY State, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This view of the central portion of upstate New York, centers on the Finger Lakes. The large city on the shore of Lake Ontario, is Rochester. Although the city, being a business, educational and technical center, has no heavy industry, the outline of the city shows fairly well in the snow, but not as well as the outlines of industrial cities elsewhere in the world. The Finger Lakes are large linear lakes carved out by glaciers during the last ice age.

  20. The origin of brines and salts in Chilean salars: a hydrochemical review

    NASA Astrophysics Data System (ADS)

    Risacher, François; Alonso, Hugo; Salazar, Carlos

    2003-11-01

    Northern Chile is characterized by a succession of north-south-trending ranges and basins occupied by numerous saline lakes and salt crusts, collectively called salars. Fossil salt crusts are found to the west in the extremely arid Central Valley, while active salars receiving permanent inflows fill many intravolcanic basins to the east in the semiarid Cordillera. Sea salts and desert dust are blown eastward over the Cordillera, where they constitute an appreciable fraction of the solute load of very dilute waters (salt content<0.1 g/l). The weathering of volcanic rocks contributes most components to inflow waters with salt content ranging from 0.1 to 0.6 g/l. However, the average salt content of all inflows is much higher: about 3.2 g/l. Chemical composition, Cl/Br ratio, and 18O- 2H isotope contents point to the mixing of very dilute meteoric waters with present lake brines for the origin of saline inflows. Ancient gypsum in deep sedimentary formations seems to be the only evaporitic mineral recycled in present salars. Saline lakes and subsurface brines are under steady-state regime. The average residence time of conservative components ranges from a few years to some thousands years, which indicates a permanent leakage of the brines through bottom sediments. The infiltrating brines are recycled in the hydrologic system where they mix with dilute meteoric waters. High heat flow is the likely driving force that moves the deep waters in this magmatic arc region. Active Chilean salars cannot be considered as terminal lakes nor, strictly speaking, as closed basin lakes. Almost all incoming salts leave the basin and are transported elsewhere. Moreover, the dissolution of fossil salt crusts in some active salars also carries away important fluxes of components in percolating brines. Evaporative concentration of inflow waters leads to sulfate-rich or calcium-rich, near-neutral brines. Alkaline brines are almost completely lacking. The alkalinity/calcium ratio of inflow

  1. Streptomyces salilacus sp. nov., an actinomycete isolated from a salt lake.

    PubMed

    Luo, Xiao-Xia; Gao, Guang-Bin; Xia, Zhan-Feng; Chen, Zheng-Jun; Wan, Chuan-Xing; Zhang, Li-Li

    2018-05-01

    The taxonomic position of a novel actinomycete, strain TRM 41337 T , isolated from sediment of a salt lake, Xiaoerkule Lake, Xinjiang, China, was determined by a polyphasic approach. Strain TRM 41337 T grew optimally at 28 °C and in the presence of 1 % (w/v) NaCl. It grew at up to pH 12. The whole-cell sugars of strain TRM 41337 T were ribose and xylose. The diagnostic diamino acid contained ll-diaminopimelic acid. The polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositolmannoside and two other unidentified phospholipids. The predominant menaquinones were MK-9(H8), MK-9, MK-9(H4) and MK-9(H6). The major fatty acids were iso-C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 1 H. Based on morphological and chemotaxonomic characteristics, the isolate was determined to belong to the genus Streptomyces. The phylogenetic tree based on its nearly complete 16S rRNA gene sequence (1498 nt) with representative strains showed that the strain consistently falls into a distinct phyletic lineage together with Streptomyces barkulensis DSM 42082 T (97.48 % similarity) and a subclade consisting of Streptomyces fenghuangensis GIMN 4.003 T (97.20 %), Streptomyces macrosporus NBRC 14748 T (97.14 %) and Streptomyces radiopugnans R97 T (97.01 %). On the basis of these data, strain TRM 41337 T should be designated as a representative of a novel species of the genus Streptomyces, for which the name Streptomyces salilacus sp. nov. is proposed. The type strain is TRM 41337 T (=CCTCC AA 2015030 T =KCTC 39726 T ).

  2. Ancient ice islands in salt lakes of the Central Andes

    USGS Publications Warehouse

    Hurlbert, S.H.; Chang, Cecily C.Y.

    1984-01-01

    Massive blocks of freshwater ice and frozen sediments protrude from shallow, saline lakes in the Andes of southwestern Bolivia and northeastern Chile. These ice islands range up to 1.5 kilometers long, stand up to 7 meters above the water surface, and may extend out tens of meters and more beneath the unfrozen lake sediments. The upper surfaces of the islands are covered with dry white sediments, mostly aragonite or calcite. The ice blocks may have formed by freezing of the fresh pore water of lake sediments during the "little ice age." The largest blocks are melting rapidly because of possibly recent increases in geothermal heat flux through the lake bottom and undercutting by warm saline lake water during the summer.

  3. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    NASA Astrophysics Data System (ADS)

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin; Sannel, A. Britta K.; Sjöberg, Ylva; Günther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, Juri; Siewert, Matthias B.; Riley, William J.; Koven, Charles D.; Boike, Julia

    2017-06-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002-2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km-2. Ponds are the dominant waterbody type by number in all landscapes representing 45-99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including

  4. Identification of nitrogen sources to four small lakes in the agricultural region of Khorezm, Uzbekistan

    USGS Publications Warehouse

    Shanafield, M.; Rosen, M.; Saito, L.; Chandra, S.; Lamers, J.; Nishonov, Bakhriddin

    2010-01-01

    Pollution of inland waters by agricultural land use is a concern in many areas of the world, and especially in arid regions, where water resources are inherently scarce. This study used physical and chemical water quality and stable nitrogen isotope (δ15N) measurements from zooplankton to examine nitrogen (N) sources and concentrations in four small lakes of Khorezm, Uzbekistan, an arid, highly agricultural region, which is part of the environmentally-impacted Aral Sea Basin. During the 2-year study period, ammonium concentrations were the highest dissolved inorganic N species in all lakes, with a maximum of 3.00 mg N l−1 and an average concentration of 0.62 mg N l−1. Nitrate levels were low, with a maximum concentration of 0.46 mg N l−1 and an average of 0.05 mg N l−1 for all four lakes. The limited zooplankton δ15N values did not correlate with the high loads of synthetic fertilizer applied to local croplands during summer months. These results suggest that the N cycles in these lakes may be more influenced by regional dynamics than agricultural activity in the immediate surroundings. The Amu-Darya River, which provides the main source of irrigation water to the region, was identified as a possible source of the primary N input to the lakes.

  5. Regional Photonics Initiative at the College of Lake County

    ERIC Educational Resources Information Center

    Dulmes, Steven; Kellerhals, William

    2017-01-01

    The College of Lake County Regional Photonics Initiative project was motivated in part by the hiring of out-of-state technicians for local Photonics industry positions. Fifteen high paying employment opportunities during the recent recession could not be filled from the locally available workforce. Research on the current demand and future growth…

  6. VARIABILITY, PATTERN, AND SENSITIVITY OF ECOLOGICAL INDICAORS FOR NEARSHORE REGIONS OF THE GREAT LAKES

    EPA Science Inventory

    Associated with the Great Lakes Environmental Indicators (GLEI) project of the EaGLe program, we are evaluating a suite of indicators of ecological condition for the nearshore region of U.S. shorelines of the Great Lakes. The evaluation includes sampling conducted at limited fix...

  7. Regional analysis of the effect of paved roads on sodium and chloride in lakes.

    PubMed

    Kelting, Daniel L; Laxson, Corey L; Yerger, Elizabeth C

    2012-05-15

    Salinization of surface water from sodium chloride (road salt) applied to paved roads is a widely recognized environmental concern in the northern hemisphere, yet practical information to improve winter road management to reduce the environmental impacts of this deicer is lacking. The purpose of our study was to provide such information by developing baseline concentrations for sodium and chloride for lakes in watersheds without paved roads, and then determining the relationship between these ions and density, type, and proximity of paved roads to shoreline. We used average summer (June-September) sodium and chloride data for 138 lakes combined in a watershed based analysis of paved road networks in the Adirondack Park of New York, U.S.A. The watersheds used in our study represented a broad range in paved road density and type, 56 of which had no paved roads. Median lake sodium and chloride concentrations in these 56 watersheds averaged 0.55 and 0.24 mg/L, respectively. In contrast, the median sodium and chloride concentrations for the 82 lakes in watersheds with paved roads were 3.60 and 7.22 mg/L, respectively. Paved road density (lane-km/km(2)) was positively correlated with sodium and chloride concentrations, but only state roads were significantly correlated with sodium and chloride while local roads were not. State road density alone explained 84 percent of the variation in both ions. We also successfully modeled the relationship between road proximity to shoreline and sodium and chloride concentrations in lakes, which allowed us to identify sections of road that contributed more to explaining the variation in sodium and chloride in lakes. This model and our approach could be used as part of larger efforts to identify environmentally sensitive areas where alternative winter road management treatments should be applied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko

    2018-03-01

    A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

  9. State and regional water-quality characteristics and trophic conditions of Michigan's inland lakes, 2001-2005

    USGS Publications Warehouse

    Fuller, L.M.; Minnerick, R.J.

    2008-01-01

    The U.S. Geological Survey and the Michigan Department of Environmental Quality are jointly monitoring selected water-quality constituents of inland lakes through 2015 as part of Michigan’s Lake Water Quality Assessment program. During 2001–2005, 433 lake basins from 364 inland lakes were monitored for baseline water-quality conditions and trophic status. This report summarizes the water-quality characteristics and trophic conditions of those monitored lake basins throughout the State. Regional variation of water quality in lake basins was examined by grouping on the basis of the five Omernik level III ecoregions within Michigan. Concentrations of most constituents measured were significantly different between ecoregions. Less regional variation of phosphorus concentrations was noted between Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions during summer possibly because water samples were collected when lake productivity was high; hence the utilization of the limited amount of phosphorus by algae and macrophytes may have resulted in the more uniform concentrations between these two ecoregions. Concentrations of common ions (calcium, magnesium, potassium, sodium, chloride, and sulfate) measured in the spring typically were higher in the Michigan southern Lower Peninsula in the Eastern Corn Belt Plains (55), Southern Michigan/Northern Indiana Drift Plains (56), and Huron/Erie Lake Plains (57) ecoregions. Most ions whose concentrations were less than the minimum reporting levels or were nondetectable were from lakes in the Michigan northern Lower Peninsula and the Upper Peninsula in the Northern Lakes and Forests (50) and North Central Hardwoods (51) ecoregions. Chlorophyll a concentrations followed a similar distribution pattern. Measured properties such as pH and specific conductance (indicative of dissolved solids) also showed a regional relation. The lakes with the lowest pH and specific conductance were generally in the western

  10. The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes

    NASA Astrophysics Data System (ADS)

    Pietikäinen, Joni-Pekka; Markkanen, Tiina; Sieck, Kevin; Jacob, Daniela; Korhonen, Johanna; Räisänen, Petri; Gao, Yao; Ahola, Jaakko; Korhonen, Hannele; Laaksonen, Ari; Kaurola, Jussi

    2018-04-01

    The regional climate model REMO was coupled with the FLake lake model to include an interactive treatment of lakes. Using this new version, the Fenno-Scandinavian climate and lake characteristics were studied in a set of 35-year hindcast simulations. Additionally, sensitivity tests related to the parameterization of snow albedo were conducted. Our results show that overall the new model version improves the representation of the Fenno-Scandinavian climate in terms of 2 m temperature and precipitation, but the downside is that an existing wintertime cold bias in the model is enhanced. The lake surface water temperature, ice depth and ice season length were analyzed in detail for 10 Finnish, 4 Swedish and 2 Russian lakes and 1 Estonian lake. The results show that the model can reproduce these characteristics with reasonably high accuracy. The cold bias during winter causes overestimation of ice layer thickness, for example, at several of the studied lakes, but overall the values from the model are realistic and represent the lake physics well in a long-term simulation. We also analyzed the snow depth on ice from 10 Finnish lakes and vertical temperature profiles from 5 Finnish lakes and the model results are realistic.

  11. Hydrochemistry and controlling mechanism of lakes in permafrost regions along the Qinghai-Tibet Engineering Corridor, China

    NASA Astrophysics Data System (ADS)

    Gao, Zeyong; Lin, Zhanju; Niu, Fujun; Luo, Jing; Liu, Minghao; Yin, Guoan

    2017-11-01

    Lakes are the main water resource for migrating animals and herdsmen in permafrost regions along the Qinghai-Tibet Engineering Corridor (QTEC) and play a crucial role in regulating the balance between regional surface water and groundwater. Hydrochemical properties also affect the soil environment, ecological conditions, and hydrological cycle. In this study, 127 water samples were collected from lakes to analyze hydrochemistry characteristics. The results are discussed in the context of relationships between water chemistry and local conditions including climate, topography, and geology. The results showed that 43.3% of lakes are fresh, 19.7% are brackish, 18.9% are saline, 17.3% are brine, and only 0.8% are bitter. The dominant cation is Na+, followed by Mg2 +, Ca2 +, and K+. The dominant anion is Cl-, followed by SO42 - and HCO3- in the northern section of study region; whereas Ca2 +, Na+, and HCO3- are the dominant ions in the lakes of the southern section. The higher concentrations of carbonate in the southern lakes reflect contributions from groundwater discharge. In contrast, the higher concentrations of sodium, chloride, and sulfate in the northern section indicate that they are dominated by the interaction of evaporates. Additionally, cation exchange, precipitation, and dissolution have also modified the distribution of hydrochemical compositions. Thermokarst processes, in particular, have induced changes in the hydrochemistry of lake waters in the permafrost regions of the QTEC, in that the ion concentrations are closely related to ground ice content. In the context of persistent climatic warming and steadily increasing anthropogenic activities, the salinity of lakes along the QTEC is likely to increase in the future.

  12. Air pollution and environmental justice in the Great Lakes region

    NASA Astrophysics Data System (ADS)

    Comer, Bryan

    While it is true that air quality has steadily improved in the Great Lakes region, air pollution remains at unhealthy concentrations in many areas. Research suggests that vulnerable and susceptible groups in society -- e.g., minorities, the poor, children, and poorly educated -- are often disproportionately impacted by exposure to environmental hazards, including air pollution. This dissertation explores the relationship between exposure to ambient air pollution (interpolated concentrations of fine particulate matter, PM2.5) and sociodemographic factors (race, housing value, housing status, education, age, and population density) at the Census block-group level in the Great Lakes region of the United States. A relatively novel approach to quantitative environmental justice analysis, geographically weighted regression (GWR), is compared with a simplified approach: ordinary least squares (OLS) regression. While OLS creates one global model to describe the relationship between air pollution exposure and sociodemographic factors, GWR creates many local models (one at each Census block group) that account for local variations in this relationship by allowing the value of regression coefficients to vary over space, overcoming OLS's assumption of homogeneity and spatial independence. Results suggest that GWR can elucidate patterns of potential environmental injustices that OLS models may miss. In fact, GWR results show that the relationship between exposure to ambient air pollution and sociodemographic characteristics is non-stationary and can vary geographically and temporally throughout the Great Lakes region. This suggests that regulators may need to address environmental justice issues at the neighborhood level, while understanding that the severity of environmental injustices can change throughout the year.

  13. Importance of Local and Regional Scales in Shaping Mycobacterial Abundance in Freshwater Lakes.

    PubMed

    Roguet, Adélaïde; Therial, Claire; Catherine, Arnaud; Bressy, Adèle; Varrault, Gilles; Bouhdamane, Lila; Tran, Viet; Lemaire, Bruno J; Vincon-Leite, Brigitte; Saad, Mohamed; Moulin, Laurent; Lucas, Françoise S

    2018-05-01

    Biogeographical studies considering the entire bacterial community may underestimate mechanisms of bacterial assemblages at lower taxonomic levels. In this context, the study aimed to identify factors affecting the spatial and temporal dynamic of the Mycobacterium, a genus widespread in aquatic ecosystems. Nontuberculous mycobacteria (NTM) density variations were quantified in the water column of freshwater lakes at the regional scale (annual monitoring of 49 lakes in the Paris area) and at the local scale (2-year monthly monitoring in Créteil Lake) by real-time quantitative PCR targeting the atpE gene. At the regional scale, mycobacteria densities in water samples ranged from 6.7 × 10 3 to 1.9 × 10 8 genome units per liter. Density variations were primarily explained by water pH, labile iron, and dispersal processes through the connection of the lakes to a river. In Créteil Lake, no spatial variation of mycobacterial densities was noticed over the 2-year monthly survey, except after large rainfall events. Indeed, storm sewer effluents locally and temporarily increased NTM densities in the water column. The temporal dynamic of the NTM densities in Créteil Lake was associated with suspended solid concentrations. No clear seasonal variation was noticed despite a shift in NTM densities observed over the 2012-2013 winter. Temporal NTM densities fluctuations were well predicted by the neutral community model, suggesting a random balance between loss and gain of mycobacterial taxa within Créteil Lake. This study highlights the importance of considering multiple spatial scales for understanding the spatio-temporal dynamic of bacterial populations in natural environments.

  14. Bioadvection of mercury from the Great Salt Lake to surrounding terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Black, F.; Goodman, J.; Collins, J.; Saxton, H.; Mansfield, C.

    2015-12-01

    The Great Salt Lake (GSL), Utah, USA, is a hypersaline terminal lake that is home to some of the highest concentrations of methylmercury (MeHg) ever measured in natural waters. While terrestrial organisms typically have very low concentrations of MeHg because it is produced almost exclusively in sub-oxic aquatic environments, we documented elevated concentrations of MeHg in brine flies (Ephydra spp.) and spiders along the shores of the GSL. We hypothesized that brine flies, with their larval and pupal stages in the GSL, act as vectors that transfer Hg from the lake to surrounding terrestrial ecosystems as flying adults where they are eaten by spiders and other organisms. The GSL is visited annually by millions of migratory birds, and a major food source for both resident and migratory birds at the GSL are brine flies, so brine flies may represent an important source of Hg to birds here. We conducted a spatial and temporal study of HgT and MeHg in surface waters, brine flies, spiders, and Loggerhead Shrikes (Lanius ludovicianus) a predatory terrestrial songbird of conservation concern, and investigated sublethal effects due to Hg exposure on Antelope Island in the GSL. Samples were also analyzed for their stable carbon and nitrogen isotopic ratios. While HgT and MeHg concentrations in surface waters were elevated, they varied relatively little throughout the year and exhibited no clear seasonal trends. However, seasonal maxima in concentrations of HgT and MeHg in brine flies and spiders occurred in spring and fall, periods of peak migratory bird numbers at the GSL. Approximately 20% of adult/juvenile shrikes had blood HgT concentrations above thresholds previously shown to reduce breeding success in other songbirds, with these concentrations increasing after the annual appearance of orb weaving spiders. HgT concentrations of shrikes decreased with increasing distance from the shoreline and decreasing brine fly abundance, again suggesting the GSL is the ultimate

  15. Great Lakes O shore Wind Project: Utility and Regional Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadi, Amirhossein; Loparo, Kenneth A.; D'Aquila, Robert

    This project aims to identify transmission system upgrades needed to facilitate offshore wind projects as well as operational impacts of offshore generation on operation of the regional transmission system in the Great Lakes region. A simulation model of the US Eastern Interconnection was used as the test system as a case study for investigating the impact of the integration of a 1000MW offshore wind farm operating in Lake Erie into FirstEnergy/PJM service territory. The findings of this research provide recommendations on offshore wind integration scenarios, the locations of points of interconnection, wind profile modeling and simulation, and computational methods tomore » quantify performance, along with operating changes and equipment upgrades needed to mitigate system performance issues introduced by an offshore wind project.« less

  16. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years.

    PubMed

    Bai, Jie; Chen, Xi; Li, Junli; Yang, Liao; Fang, Hui

    2011-07-01

    Inland lakes are major surface water resource in arid regions of Central Asia. The area changes in these lakes have been proved to be the results of regional climate changes and recent human activities. This study aimed at investigating the area variations of the nine major lakes in Central Asia over the last 30 years. Firstly, multi-temporal Landsat imagery in 1975, 1990, 1999, and 2007 were used to delineate lake extents automatically based on Normalized Difference Water Index (NDWI) threshold segmentation, then lake area variations were detailed in three decades and the mechanism of these changes was analyzed with meteorological data and hydrological data. The results indicated that the total surface areas of these nine lakes had decreased from 91,402.06 km(2) to 46,049.23 km(2) during 1975-2007, accounting for 49.62% of their original area of 1975. Tail-end lakes in flat areas had shrunk dramatically as they were induced by both climate changes and human impacts, while alpine lakes remained relatively stable due to the small precipitation variations. With different water usage of river outlets, the variations of open lakes were more flexible than those of other two types. According to comprehensive analyses, different types of inland lakes presented different trends of area changes under the background of global warming effects in Central Asia, which showed that the increased human activities had broken the balance of water cycles in this region.

  17. Quantitative assessment of Urmia Lake water using spaceborne multisensor data and 3D modeling.

    PubMed

    Jeihouni, Mehrdad; Toomanian, Ara; Alavipanah, Seyed Kazem; Hamzeh, Saeid

    2017-10-18

    Preserving aquatic ecosystems and water resources management is crucial in arid and semi-arid regions for anthropogenic reasons and climate change. In recent decades, the water level of the largest lake in Iran, Urmia Lake, has decreased sharply, which has become a major environmental concern in Iran and the region. The efforts to revive the lake concerns the amount of water required for restoration. This study monitored and assessed Urmia Lake status over a period of 30 years (1984 to 2014) using remotely sensed data. A novel method is proposed that generates a lakebed digital elevation model (LBDEM) for Urmia Lake based on time series images from Landsat satellites, water level field measurements, remote sensing techniques, GIS, and 3D modeling. The volume of water required to restore the Lake water level to that of previous years and the ecological water level was calculated based on LBDEM. The results indicate a marked change in the area and volume of the lake from its maximum water level in 1998 to its minimum level in 2014. During this period, 86% of the lake became a salt desert and the volume of the lake water in 2013 was just 0.83% of the 1998 volume. The volume of water required to restore Urmia Lake from benchmark status (in 2014) to ecological water level (1274.10 m) is 12.546 Bm 3 , excluding evaporation. The results and the proposed method can be used by national and international environmental organizations to monitor and assess the status of Urmia Lake and support them in decision-making.

  18. Water Quality and Evaluation of Pesticides in Lakes in the Ridge Citrus Region of Central Florida

    USGS Publications Warehouse

    Choquette, Anne F.; Kroening, Sharon E.

    2009-01-01

    Water chemistry, including major inorganic constituents, nutrients, and pesticide compounds, was compared between seven lakes surrounded by citrus agriculture and an undeveloped lake on the Lake Wales Ridge (herein referred to as the Ridge) in central Florida. The region has been recognized for its vulnerability to the leaching of agricultural chemicals into the subsurface due to factors including soils, climate, and land use. About 40 percent of Florida's citrus cultivation occurs in 'ridge citrus' areas characterized by sandy well drained soils, with the remainder in 'flatwoods citrus' characterized by high water tables and poorly drained soils. The lakes on the Ridge are typically flow-through lakes that exchange water with adjacent and underlying aquifer systems. This study is the first to evaluate the occurrence of pesticides in lakes on the Ridge, and also represents one of the first monitoring efforts nationally to focus on regional-scale assessment of current-use pesticides in small- to moderate-sized lakes (5 to 393 acres). The samples were collected between December 2003 and September 2005. The lakes in citrus areas contained elevated concentrations of major inorganic constituents (including alkalinity, total dissolved solids, calcium, magnesium, sodium, potassium, chloride, and sulfate), total nitrogen, pH, and pesticides compared to the undeveloped lake. Nitrate (as N) and total nitrogen concentrations were typically elevated in the citrus lakes, with maximum values of 4.70 and 5.19 mg/L (milligrams per liter), respectively. Elevated concentrations of potassium, nitrate, and other inorganic constituents in the citrus lakes likely reflect inputs from the surficial ground-water system that originated predominantly from agricultural fertilizers, soil amendments, and inorganic pesticides. A total of 20 pesticide compounds were detected in the lakes, of which 12 compounds exceeded the standardized reporting level of 0.06 ug/L (microgram per liter). Those

  19. Map showing the thickness of loosely packed sediments and the depth to bedrock in the Sugar House quadrangle, Salt Lake County, Utah

    USGS Publications Warehouse

    McGregor, Edward E.; Van Horn, Richard; Arnow, Ted

    1974-01-01

    This map provides information on the location and distribution of three general types of geologic materials in part of Salt Lake County, including the southeastern part of Salt Lake City, Utah. These materials have different physical properties that are pertinent to comprehensive planning and zoning, land-use studies, and engineering usage. The map should be of use in preliminary studies to determine the depth to different  general types of foundation material and to determine the potential for settlement of the ground surface during major earthquakes, which could result in damage to waterlines, gaslines, large buildings, and other major engineering structures.The lines on the map are generalized. Lines showing the thickness of loosely packed sediments are based on drillers’ logs of 27 water wells in and near the 35-square-mile part of the quadrangle west of the mountains – less than one data point for each square mile. Lines showing the depth to bedrock are based on indirect geophysical data, and the data points are more widely scattered. The map may be useful as a general guide in planning, but investigations by qualified specialists should be made for detailed evaluations of specific areas.references to other reports of possible interest to the reader are included at the end of this text.

  20. PeRL: A circum-Arctic Permafrost Region Pond and Lake database

    USGS Publications Warehouse

    Muster, Sina; Roth, Kurt; Langer, Moritz; Lange, Stephan; Cresto Aleina, Fabio; Bartsch, Annett; Morgenstern, Anne; Grosse, Guido; Jones, Benjamin M.; Sannel, A.B.K.; Sjoberg, Ylva; Gunther, Frank; Andresen, Christian; Veremeeva, Alexandra; Lindgren, Prajna R.; Bouchard, Frédéric; Lara, Mark J.; Fortier, Daniel; Charbonneau, Simon; Virtanen, Tarmo A.; Hugelius, Gustaf; Palmtag, J.; Siewert, Matthias B.; Riley, William J.; Koven, Charles; Boike, Julia

    2017-01-01

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( <  300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps

  1. Holocene and latest Pleistocene paleoseismology of the Salt Lake City segment of the Wasatch Fault Zone, Utah, at the Penrose Drive Trench Site

    USGS Publications Warehouse

    DuRoss, Christopher B.; Hylland, Michael D.; McDonald, Greg N.; Crone, Anthony J.; Personius, Stephen F.; Gold, Ryan D.; Mahan, Shannon

    2014-01-01

    The Salt Lake City segment (SLCS) of the Wasatch fault zone (WFZ) and the West Valley fault zone (WVFZ) compromise Holocene-active normal faults that bound a large intrabasin graben in northern Salt Lake Valley and have evidence of recurrent, large-magnitude (M ~6-7) surface-faulting earthquakes. However, at the time of this investigation, questions remained regarding the timing, displacement, and recurrence of latest Pleistocene and Holocene earthquakes on the northern SLCS and WVFZ , and whether the WVFZ is seismically independent of, or moves coseismically with, the SLCS. To improve paleoseismic data for the SLCS, we conducted a fault-trench investigation at the Penrose Drive site on the northern SLCS. Two trenches, excavated across an 11-m-high scarp near the northern end of the East Bench fault, exposed colluvial-wedge evidence for fize of six (preferred) surface-faulting earthquakes postdating to Provo-phase shoreline of Lake Bonneville (~14-18 ka). Radiocarbon and luminescence ages support earthquake times at 4.0 ± 0.5 ka (2σ) (PD1), 5.9 ± 0.7 ka (PD2), 7.5 ± 0.8 ka (PD3a), 9.7 ± 1.1 ka (PD3b), 10.9 ± 0.2 ka (PD4), and 12.1 ± 1.6 ka (PD5). At least one additional earthquake occurred at 16.5 ± 1.9 ka (PD6) based on an erosional unconformity that separates deformed Lake Bonneville sily and flat-lying Provo-phase shoreline gravel. Earthquakes PD5-PD1 yield latest Pleistocene (post-Provo) and Holocene mean recurrence intervals of ~1.6 kyr and ~1.7-1.9 kyr, respectively. Using 1.0-1.4 m of per-event vertical displacement for PD5-PD3b corroborate previously identified SLCS earthquakes at 4-10 ka. PD4 and PD5 occurred within an ~8-kyr *17-9 ka) time interval on the SLCS previously interpreted as a period of seismic quiescence, and PD6 possibly corresponds with a previously identified earthquake at ~17 ka (although both events have large timing uncertainties). The Penrose data, when combined with previous paleoseismic results, improve the latest Pleistocene

  2. Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60

    USGS Publications Warehouse

    Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.

    1968-01-01

    to harm fish. Data on alpha and beta particle activities in Devils Lake were insufficient to determine if present activities are less than, equal to, or more than activities before nuclear tests began.Miscellaneous surface waters not in the Devils Lake chain contained dissolved solids that ranged from 239 to 61,200 ppm. The lakes that spill infrequently and have little or no ground-water inflow and outflow generally contain high concentrations of dissolved solids.Salt balance computations for Devils Lake for 1952-60 indicate that a net of as much as 89,000 tons of salts was removed from the bed by the water in some years and as much as 35,000 tons was added to the bed in other years. For the 9-year period, the tons removed exceeded the tons added; the net removed averaged 2.7 tons per acre per year. Pickup of these salts from the bed increased the dissolved solids in the lake water an average of 193 ppni per year. Between 1952 and 1960, 201,000 tons of salt was added to the bed of East Devils Lake, 15,100 tons to the bed of western Stump Lake, and 421,000 tons to the bed of eastern Stump Lake.Laboratory examination of shore and bed material indicated that the shore contained less weight of salt per unit weight of dry, inorganic material than the bed. Calcium and bicarbonate were the chief constituents dissolved from bed material of Devils Lake, whereas sodium and sulfate were the chief constituents dissolved from bed material of East Bay, East Devils Lake, and eastern and western Stump Lakes. Generally, calcium and bicarbonate were the chief constitutents dissolved from shore material of all these lakes.Evidence indicates that not more than 20 percent of the salt that "disappeared" from the water of Devils Lake west of State Route 20 as the lake altitudes decreased years ago will redissolve if the lake altitude is restored.

  3. Late Pleistocene paleoclimatic history documented by an oxygen isotope record from carbonate sediments in Qarhan Salt Lake, NE Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Fan, QiShun; Ma, HaiZhou; Wei, HaiCheng; Shan, FaShou; An, FuYuan; Xu, LiMing; Madsen, David B.

    2014-05-01

    Late Pleistocene paleoclimatic variability on the northeastern Qinghai-Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90-80 ka, 52-38 ka and 10-9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ˜44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.

  4. Village-based spatio-temporal cluster analysis of the schistosomiasis risk in the Poyang Lake Region, China.

    PubMed

    Xia, Congcong; Bergquist, Robert; Lynn, Henry; Hu, Fei; Lin, Dandan; Hao, Yuwan; Li, Shizhu; Hu, Yi; Zhang, Zhijie

    2017-03-08

    The Poyang Lake Region, one of the major epidemic sites of schistosomiasis in China, remains a severe challenge. To improve our understanding of the current endemic status of schistosomiasis and to better control the transmission of the disease in the Poyang Lake Region, it is important to analyse the clustering pattern of schistosomiasis and detect the hotspots of transmission risk. Based on annual surveillance data, at the village level in this region from 2009 to 2014, spatial and temporal cluster analyses were conducted to assess the pattern of schistosomiasis infection risk among humans through purely spatial (Local Moran's I, Kulldorff and Flexible scan statistic) and space-time scan statistics (Kulldorff). A dramatic decline was found in the infection rate during the study period, which was shown to be maintained at a low level. The number of spatial clusters declined over time and were concentrated in counties around Poyang Lake, including Yugan, Yongxiu, Nanchang, Xingzi, Xinjian, De'an as well as Pengze, situated along the Yangtze River and the most serious area found in this study. Space-time analysis revealed that the clustering time frame appeared between 2009 and 2011 and the most likely cluster with the widest range was particularly concentrated in Pengze County. This study detected areas at high risk for schistosomiasis both in space and time at the village level from 2009 to 2014 in Poyang Lake Region. The high-risk areas are now more concentrated and mainly distributed at the river inflows Poyang Lake and along Yangtze River in Pengze County. It was assumed that the water projects including reservoirs and a recently breached dyke in this area were partly to blame. This study points out that attempts to reduce the negative effects of water projects in China should focus on the Poyang Lake Region.

  5. Mineralogic Causes of Variations in Magnetic Susceptibility of Late Pleistocene and Holocene Sediment from Great Salt Lake, Utah

    USGS Publications Warehouse

    Reynolds, Richard L.; Rosenbaum, Joseph G.; Thompson, Robert S.

    2008-01-01

    We describe here results of magnetic susceptibility (MS) measurements and magnetic mineralogy of sediments sampled in three cores from the south basin of Great Salt Lake. The cores were obtained in 1996 with a Kullenburg-type piston corer at sites in close proximity: core 96-4 at 41 deg 01.00' N, 112 deg 28.00' W and cores 96-5 and 96-6 at 41 deg 00.09' N, 112 deg 23.05' W. Cores 96-5 (2.16 m long) and -6 combine to make a composite 11.31-m sediment record. Sediments in core 96-4 (5.54 m long) correspond to the approximate depth interval of 3.9-9.6 m in the composite core of 96-5 and -6 based on similarities in the MS records as described below. The central goal of the research was to provide a sediment record of paleoenvironmental change in the northeastern Basin and Range Province over the past 40,000 years. Specific targets included a sedimentologic record of lake-level change combined with a pollen record of climatic change.

  6. Predicting exotic earthworm distribution in the northern Great Lakes region

    Treesearch

    Lindsey M. Shartell; Erik A. Lilleskov; Andrew J. Storer

    2013-01-01

    Identifying influences of earthworm invasion and distribution in the northern Great Lakes is an important step in predicting the potential extent and impact of earthworms across the region. The occurrence of earthworm signs, indicating presence in general, and middens, indicating presence of Lumbricus terrestris exclusively, in the Huron Mountains...

  7. Learning about War and Peace in the Great Lakes Region of Africa

    ERIC Educational Resources Information Center

    Bird, Lyndsay

    2007-01-01

    Two-thirds of the world's conflicts are in Africa. In particular, the Great Lakes region (Rwanda, Burundi, Democratic Republic of Congo, Uganda and Tanzania) continues to see conflicts that are complex, extreme and seemingly intractable. By exploring the narrative experiences of those most affected by the conflicts in the region--specifically…

  8. Digital Data for Volcano Hazards in the Crater Lake Region, Oregon

    USGS Publications Warehouse

    Schilling, S.P.; Doelger, S.; Bacon, C.R.; Mastin, L.G.; Scott, K.E.; Nathenson, M.

    2008-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. The USGS Open-File Report 97-487 (Bacon and others, 1997) describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The geographic information system (GIS) volcano hazard data layers used to produce the Crater Lake earthquake and volcano hazard map in USGS Open-File Report 97-487 are included in this data set. USGS scientists created one GIS data layer, c_faults, that delineates these faults and one layer, cballs, that depicts the downthrown side of the faults. Additional GIS layers chazline, chaz, and chazpoly were created to show 1)the extent of pumiceous pyroclastic-flow deposits of the caldera forming Mount Mazama eruption, 2)silicic and mafic vents in the Crater Lake region, and 3)the proximal hazard zone around the caldera rim, respectively.

  9. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine

  10. Atmospheric Transference of the Toxic Burden of Atmosphere-Surface Exchangeable Pollutants to the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Perlinger, J. A.; Giang, A.; Zhang, H.; Selin, N. E.; Wu, S.

    2016-12-01

    Toxic pollutants that share certain chemical properties undergo repeated emission and deposition between Earth's surfaces and the atmosphere. Following their emission through anthropogenic activities, they are transported locally, regionally or globally through the atmosphere, are deposited, and impact local ecosystems, in some cases as a result of bioaccumulation in food webs. We call them atmosphere-surface exchangeable pollutants or "ASEPs", wherein this group is comprised of thousands of chemicals. We are studying potential future contamination in the Great Lakes region by modeling scenarios of the future for three compounds/compound classes, mercury, polychlorinated biphenyl compounds, and polycyclic aromatic hydrocarbons. In this presentation we focus on mercury and future scenarios of contamination of the Great Lake region. The atmospheric transport of mercury under specific scenarios will be discussed. The global 3-D chemical transport model GEOS-Chem has been applied to estimate future atmospheric concentrations and deposition rates of mercury in the Great Lakes region for selected future scenarios of emissions and climate. We find that, assuming no changes in climate, annual mean net deposition flux of mercury to the Great Lakes Region may increase by approximately 50% over 2005 levels by 2050, without global or regional policies addressing mercury, air pollution, and climate. In contrast, we project that the combination of global and North American action on mercury could lead to a 21% reduction in deposition from 2005 levels by 2050. US action alone results in a projected 18% reduction over 2005 levels by 2050. We also find that, assuming no changes in anthropogenic emissions, climate change and biomass burning emissions would, respectively, cause annual mean net deposition flux of mercury to the Great Lakes Region to increase by approximately 5% and decrease by approximately 2% over 2000 levels by 2050.

  11. Introduction to paleoenvironments of Bear Lake, Utah and Idaho, and its catchment

    USGS Publications Warehouse

    Rosenbaum, Joseph G.; Kaufman, Darrell S.

    2009-01-01

    In 1996 a group led by the late Kerry Kelts (University of Minnesota) and Robert Thompson (U.S. Geological Survey) acquired three piston cores (BL96-1, -2, and -3) from Bear Lake. The coring arose from their recognition of Bear Lake as a potential repository of long records of paleoenvironmental change. They recognized that the lake is located in an area that is sensitive to changes in regional climate patterns (Dean et al., this volume), that the lake basin is long lived (see Colman, 2006; Kaufman et al., this volume), and that, unlike many lakes in the Great Basin, Bear Lake was never dry during warm dry periods. Bear Lake lies in the northeastern Great Basin to the northeast of Great Salt Lake, just south of the Snake River drainage, and a short distance west of the Green River drainage that makes up part of the Upper Colorado River Basin (Fig. 1). Similarity among the historic Bear Lake and Great Salt Lake hydrographs and flows on the Green River indicates that the hydrology of Bear Lake reflects regional precipitation (Fig. 2). Therefore, paleorecords from Bear Lake are important to understanding past climate for a large region, including the Upper Colorado River Basin, the source of much of the water for the southwestern United States. Initially, paleoenvironmental studies of Bear Lake sediments focused on cores BL96-1, -2, and -3. Additional coring was conducted to elucidate the spatial distribution of sedimentary units and to extend the record back in time. The study was also expanded to include extensive study of the catchment, including the properties of catchment materials and the processes that could potentially affect the delivery of catchment materials to the lake. Cores BL96-1, -2, and -3 were taken with a Kullenburg piston corer along an east–west profile in roughly 50, 40, and 30 m of water, respectively (Table 1, Fig. 3). These three cores, each taken as a single 4- to 5-m-long segment, provide a nearly complete composite section from ca. 26 cal

  12. Analysis of Thermal Structure of Arctic Lakes at Local and Regional Scales Using in Situ and Multidate Landsat-8 Data

    NASA Astrophysics Data System (ADS)

    Huang, Yan; Liu, Hongxing; Hinkel, Kenneth; Yu, Bailang; Beck, Richard; Wu, Jianping

    2017-11-01

    The Arctic coastal plain is covered with numerous thermokarst lakes. These lakes are closely linked to climate and environmental change through their heat and water budgets. We examined the intralake thermal structure at the local scale and investigated the water temperature pattern of lakes at the regional scale by utilizing extensive in situ measurements and multidate Landsat-8 remote sensing data. Our analysis indicates that the lake skin temperatures derived from satellite thermal sensors during most of the ice-free summer period effectively represent the lake bulk temperature because the lakes are typically well-mixed and without significant vertical stratification. With the relatively high-resolution Landsat-8 thermal data, we were able to quantitatively examine intralake lateral temperature differences and gradients in relation to geographical location, topography, meteorological factors, and lake morphometry for the first time. Our results suggest that wind speed and direction not only control the vertical stratification but also influences lateral differences and gradients of lake surface temperature. Wind can considerably reduce the intralake temperature gradient. Interestingly, we found that geographical location (latitude, longitude, distance to the ocean) and lake morphometry (surface size, depth, volume) not only control lake temperature regionally but also affect the lateral temperature gradient and homogeneity level within each individual lake. For the Arctic coastal plain, at regional scales, inland and southern lakes tend to have larger horizontal temperature differences and gradients compared to coastal and northern lakes. At local scales, large and shallow lakes tend to have large lateral temperature differences relative to small and deep lakes.

  13. US-Canada Great Lakes Regional Specimen Bank Feasibility Study.

    PubMed

    Kerry, A; Edmonds, C J; Landon, L; Yonker, T L

    1993-11-01

    A study to examine the feasibility of establishing a Regional Specimen Bank in the Great Lakes area of the United States and Canada has recently been initiated by the Michigan Audubon Society. There are several existing formal and informal specimen banking facilities active in the region but their combined adequacy has not been evaluated. This feasibility study will establish the need and use of a regional bank and the institution(s) necessary to satisfy this need will be recommended. The study will address the scope required to meet present and future needs including the types of specimens to be represented in the bank, geographic coverage and protocols for collection, shipping, processing, analysis and storage. A management policy of the bank will be developed encompassing business operation, costs, governing structure and personnel requirements. The legal requirements of the bank will be determined with regards to the acquisition of samples, transport across national boundaries, access to specimens and information, and liability during operation. An effective information dissemination network will be recommended that is compatible with national and international partners, will facilitate technology and information transfer and support the quality and status of the bank. Determination of secure, long-term funding sources will be one of the key elements to ensuring a safe repository. This feasibility study is funded by the Great Lakes Protection Fund.

  14. Measurement of Great Salt Lake Loading by the BARGEN Continuous GPS Network

    NASA Astrophysics Data System (ADS)

    Elósegui, P.; Davis, J. L.; Mitrovica, J. X.; Wernicke, B. P.; Bennett, R. A.

    2002-12-01

    The northernmost segment of the Basin and Range Geodetic network (BARGEN) forms an east-west transect from western Utah to eastern California between the latitudes of N~40° and N~41°. Two of our GPS sites, COON and CEDA, are located within 20~km south of the Great Salt Lake (GSL), which extends NNW for a length of ~100~km. Lake level records for GSL during the period of the operation of BARGEN (mid-1996 to present) indicate seasonal elevation variations of ~0.5~m amplitude superimposed on a roughly ``decadal'' feature of amplitude ~1~m. Using an elastic Green's function based on PREM and a simplified load geometry for GSL, we calculate that these elevation variations translate into vertical crustal loading signals of +/-0.5~mm (seasonal) and +/- 1~mm (decadal). The calculated maximum horizontal loading signals are roughly a factor of two smaller. Despite the small size of the expected loading signals, we conclude that we can observe them using time series for the three-dimensional coordinates of COON and CEDA. For CEDA, the variations in the time series are in phase with, and the same magnitude as, both the predicted seasonal and decadal variations. For COON, we obtain a similar match for the decadal variations, but the observed seasonal variations, although in-phase with the predicted variations, are a factor of 3--4 larger. We speculate that this difference may be caused by some combination of local precipitation-induced site motion, unmodeled loading from other nearby sources, errors in the GSL load geometry, and atmospheric errors. We will present these results, and also discuss the loading effect as an error source for estimates of long-term site velocity.

  15. 2017 Federal Green Challenge Award Winners in the Great Lakes Region

    EPA Pesticide Factsheets

    2017 FGC award winners in the Great Lakes region:the VA Minneapolis Health Care System, the EPA National Vehicle and Fuel Emissions Laboratory, the DOE Argonne National Lab, and the DHS U.S. Customs and Border Protection Detroit Field Office.

  16. Experimental evaluation of atmospheric effects on radiometric measurements using the EREP of Skylab. [Salton Sea and Great Salt Lake

    NASA Technical Reports Server (NTRS)

    Chang, D. T. (Principal Investigator); Isaacs, R. G.

    1975-01-01

    The author has identified the following significant results. Test sites were located near the Great Salt Lake and the Salton Sea. Calculations were performed for a set of atmospheric models corresponding to the test sites, in addition to standard models for summer and winter midlatitude atmospheres with respective integrated water vapor amount of 2.4 g/sq cm and 0.9 g/sq cm. Each atmosphere was found to contain an average amount of continental aerosol. Computations were valid for high solar elevation angles. Atmospheric attenuation quantities were computed in addition to simulated EREP S192 radiances.

  17. GLOBAL CHANGE RESEARCH NEWS #23: PUBLICATION ANNOUNCEMENT - CLIMATE CHANGES IN THE UPPER GREAT LAKES REGION; A WORKSHOP REPORT

    EPA Science Inventory

    The Global Change Research Program is pleased to announce the publication of the first report from the Great Lakes Regional Assessment that is being conducted as part of the First U.S. National Assessment. The report is entitled, Climate Changes in the Upper Great Lakes Region --...

  18. Fluctuations of Lake Eyre, South Australia

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Eyre is a large salt lake situated between two deserts in one of Australia's driest regions. However, this low-lying lake attracts run-off from one of the largest inland drainage systems in the world. The drainage basin is very responsive to rainfall variations, and changes dramatically with Australia's inter-annual weather fluctuations. When Lake Eyre fills,as it did in 1989, it is temporarily Australia's largest lake, and becomes dense with birds, frogs and colorful plant life. The Lake responds to extended dry periods (often associated with El Nino events) by drying completely.

    These four images from the Multi-angle Imaging SpectroRadiometer contrast the lake area at the start of the austral summers of 2000 and 2002. The top two panels portray the region as it appeared on December 9, 2000. Heavy rains in the first part of 2000 caused both the north and south sections of the lake to fill partially and the northern part of the lake still contained significant standing water by the time these data were acquired. The bottom panels were captured on November 29, 2002. Rainfall during 2002 was significantly below average ( http://www.bom.gov.au/ ), although showers occurring in the week before the image was acquired helped alleviate this condition slightly.

    The left-hand panels portray the area as it appeared to MISR's vertical-viewing (nadir) camera, and are false-color views comprised of data from the near-infrared, green and blue channels. Here, wet and/or moist surfaces appear blue-green, since water selectively absorbs longer wavelengths such as near-infrared. The right-hand panels are multi-angle composites created with red band data from MISR's 60-degree forward, nadir and 60-degree backward-viewing cameras, displayed as red, green and blue, respectively. In these multi-angle composites, color variations serve as a proxy for changes in angular reflectance, and indicate textural properties of the surface related to roughness and/or moisture

  19. Spatial and Temporal Trends of Snowfall in Central New York - A Lake Effect Dominated Region

    NASA Astrophysics Data System (ADS)

    Hartnett, Justin Joseph

    Central New York is located in one of the snowiest regions in the United States, with the city of Syracuse, New York the snowiest metropolis in the nation. Snowfall in the region generally begins in mid-November and lasts until late-March. Snow accumulation occurs from a multitude of conditions: frontal systems, mid-latitude cyclones, Nor'easters, and most notably lake-effect storms. Lake effect snowfall (LES) is a difficult parameter to forecast due to the isolated and highly variable nature of the storm. Consequently, studies have attempted to determine changes in snowfall for lake-effect dominated regions. Annual snowfall patterns are of particular concern as seasonal snowfall totals are vital for water resources, winter businesses, agriculture, government and state agencies, and much more. Through the use of snowfall, temperature, precipitation, and location data from the National Weather Service's Cooperative Observer Program (COOP), spatial and temporal changes in snowfall for Central New York were determined. In order to determine climatic changes in snowfall, statistical analyses were performed (i.e. least squares estimation, correlations, principal component analyses, etc.) and spatial maps analyzed. Once snowfall trends were determined, factors influencing the trends were examined. Long-term snowfall trends for CNY were positive for original stations (˜0.46 +/- 0.20 in. yr -1) and homogenously filtered stations (0.23 +/- 0.20 in. yr -1). However, snowfall trends for shorter time-increments within the long-term period were not consistent, as positive, negative, and neutral trends were calculated. Regional differences in snowfall trends were observed for CNY as typical lake-effect areas (northern counties, the Tug Hill Plateau and the Southern Hills) experienced larger snowfall trends than areas less dominated by LES. Typical lake-effect months (December - February) experienced the greatest snowfall trend in CNY compared to other winter months. The

  20. Climate change impacts on the nutrient losses of two watersheds in the Great Lakes region

    USDA-ARS?s Scientific Manuscript database

    Non-point sources (NPS) of agricultural chemical pollution are one major reason for the degradation of water quality in the Great Lakes. This study focuses on quantifying the impacts of climate change on nutrient (Nitrogen and Phosphorus) losses from NPS in the Great Lakes region through the end of ...

  1. Possible future lakes resulting from continued glacier shrinkage in the Aosta Valley Region (Western Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Viani, Cristina; Machguth, Horst; Huggel, Christian; Godio, Alberto; Perotti, Luigi; Giardino, Marco

    2017-04-01

    Aosta Valley (NW-Alps, Italy) is the region with the largest glaciarized area of Italy (133.73 km2). Like the other alpine regions it has shown a significant glacier retreat starting from the end of the Little Ice Age (LIA, ca. 1850 AD), by losing about 60% of its glaciarized area. As a direct consequence of glacier shrinkage, within glacially-sculpted landscapes, glacier-bed overdeepenings become exposed, offering suitable conditions for glacier lakes formation. In the Aosta Valley region, about 200 glacier lakes have been recognized in different time periods within LIA maximum extent boundaries, mainly dammed by bedrock landforms. With respect to human activities, glacier lakes represent both opportunities (e.g. Miage lake for tourism) and risks (e.g. outburst flood of the Gran Croux lake above Cogne in August 2016) in such a densely populated and developed region. The objective of this contribution is to assess locations of possible future glacier lakes in the Aosta Valley by using the GlabTop2 model (Glacier Bed Topography model version 2). Understanding where future lakes will appear is of fundamental importance for the identification of potential hazards and the interpretation of conditioning factors and dynamics. We first assessed ice thickness and consequently glacier bed topography over large glaciated areas of the region, by using both glaciers outlines related to 1999 (provided by the GlaRiskAlp project) and the regional DEM of 1990 (provided by the Aosta Valley Region) as input data. We performed several runs by varying different input parameters (e,g.: pixel size and basal shear stress). Then we compared modelled results on selected test glaciers (Rutor and Grand Etrèt) with available GPR data. As a validation, we also carried out a GPR survey during summer 2016 on the central area of Indren Glacier (Monte Rosa massif) where GlabTop2 shows the presence of a possible subglacial overdeepening morphology. We found that ice thickness and consequently the

  2. Density-stratified flow events in Great Salt Lake, Utah, USA: implications for mercury and salinity cycling

    USGS Publications Warehouse

    Naftz, David L.; Carling, Gregory T.; Angeroth, Cory; Freeman, Michael; Rowland, Ryan; Pazmiño, Eddy

    2014-01-01

    Density stratification in saline and hypersaline water bodies from throughout the world can have large impacts on the internal cycling and loading of salinity, nutrients, and trace elements. High temporal resolution hydroacoustic and physical/chemical data were collected at two sites in Great Salt Lake (GSL), a saline lake in the western USA, to understand how density stratification may influence salinity and mercury (Hg) distributions. The first study site was in a causeway breach where saline water from GSL exchanges with less saline water from a flow restricted bay. Near-surface-specific conductance values measured in water at the breach displayed a good relationship with both flow and wind direction. No diurnal variations in the concentration of dissolved (total and MeHg loadings was observed during periods of elevated salinity. The second study site was located on the bottom of GSL where movement of a high-salinity water layer, referred to as the deep brine layer (DBL), is restricted to a naturally occurring 1.5-km-wide “spillway” structure. During selected time periods in April/May, 2012, wind-induced flow reversals in a railroad causeway breach, separating Gunnison and Gilbert Bays, were coupled with high-velocity flow pulses (up to 55 cm/s) in the DBL at the spillway site. These flow pulses were likely driven by a pressure response of highly saline water from Gunnison Bay flowing into the north basin of Gilbert Bay. Short-term flow reversal events measured at the railroad causeway breach have the ability to move measurable amounts of salt and Hg from Gunnison Bay into the DBL. Future disturbance to the steady state conditions currently imposed by the railroad causeway infrastructure could result in changes to the existing chemical balance between Gunnison and Gilbert Bays. Monitoring instruments were installed at six additional sites in the DBL during October 2012 to assess impacts from any future modifications to the railroad causeway.

  3. Tectonic controls on magmatism in the Geysers-Clear Lake region: Evidence from new geophysical models

    USGS Publications Warehouse

    Stanley, W.D.; Benz, H.M.; Walters, M.A.; Villasenor, A.; Rodriguez, B.D.

    1998-01-01

    In order to study magmatism and geothermal systems in The Geysers-Clear Lake region, we developed a detailed three-dimensional tomographic velocity model based on local earthquakes. This high-resolution model resolves the velocity structure of the crust in the region to depths of approximately 12 km. The most significant velocity contrasts in The Geysers-Clear Lake region occur in the steam production area, where high velocities are associated with a Quaternary granitic pluton, and in the Mount Hannah region, where low velocities occur in a 5-km-thick section of Mesozoic argillites. In addition, a more regional tomographic model was developed using traveltimes from earthquakes covering most of northern California. This regional model sampled the whole crust, but at a lower resolution than the local model. The regional model outlines low velocities at depths of 8-12 km in The Geysers-Clear Lake area, which extend eastward to the Coast Range thrust. These low velocities are inferred to be related to unmetamorphosed Mesozoic sedimentary rocks. In addition, the regional velocity model indicates high velocities in the lower crust beneath the Clear Lake volcanic field, which we interpret to be associated with mafic underplating. No large silicic magma chamber is noted in either the local or regional tomographic models. A three-dimensional gravity model also has been developed in the area of the tomographic imaging. Our gravity model demonstrates that all density contrasts can be accounted for in the upper 5-7 km of the crust. Two-dimensional magnetotelluric models of data from a regional, east-west profile indicate high resistivities associated with the granitic pluton in The Geysers production area and low resistivities in the low-velocity section of Mesozoic argillites near Mount Hannah. No indication of midcrustal magma bodies is present in the magnetotelluric data. On the basis of heat flow and geologic evidence, Holocene intrusive activity is thought to have

  4. Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia).

    PubMed

    Namsaraev, Zorigto; Samylina, Olga; Sukhacheva, Marina; Borisenko, Gennadii; Sorokin, Dimitry Y; Tourova, Tatiana

    2018-04-16

    Bitter-1 is a shallow hypersaline soda lake in Kulunda Steppe (Altai region, Russia). During a study period between 2005 and 2016, the salinity in the littoral area of the lake fluctuated within the range from 85 to 400 g/L (in July of each year). Light-dependent nitrogen fixation occurred in this lake up to the salt-saturating conditions. The rates increased with a decrease in salinity, both under environmental conditions and in laboratory simulations. The salinities below 100 g/L were favorable for light-dependent nitrogen fixation, while the process was dramatically inhibited above 200 g/L salts. The analysis of nifH genes in environmental samples and in enrichment cultures of diazotrophic phototrophs suggested that anaerobic fermenting and sulfate-reducing bacteria could participate in the dark nitrogen fixation process up to soda-saturating conditions. However, we cannot exclude the possibility that haloalkaliphilic nonheterocystous cyanobacteria (Euhalothece sp. and Geitlerinema sp.) and anoxygenic purple sulfur bacteria (Ectothiorhodospira sp.) might also play a role in the process at light conditions. The heterocystous cyanobacterium Nodularia sp. develops at low salinity (below 80 g/L) that is not characteristic for Bitter-1 Lake and thus does not make a significant contribution to the nitrogen fixation in this lake.

  5. Land use inventory of Salt Lake County, Utah from color infrared aerial photography 1982

    NASA Technical Reports Server (NTRS)

    Price, K. P.; Willie, R. D.; Wheeler, D. J.; Ridd, M. K.

    1983-01-01

    The preparation of land use maps of Salt Lake County, Utah from high altitude color infrared photography is described. The primary purpose of the maps is to aid in the assessment of the effects of urban development on the agricultural land base and water resources. The first stage of map production was to determine the categories of land use/land cover and the mapping unit detail. The highest level of interpretive detail was given to the land use categories found in the agricultural or urbanized portions of the county; these areas are of primary interest with regard to the consumptive use of water from surface streams and wells. A slightly lower level of mapping detail was given to wetland environments; areas to which water is not purposely diverted by man but which have a high consumptive rate of water use. Photos were interpreted on the basis of color, tone, texture, and pattern, together with features of the topographic, hydrologic, and ecological context.

  6. Quantitative Development and Distribution of Zooplankton in Medium Lakes of the Kostanay Region (North Kazakhstan Region)

    ERIC Educational Resources Information Center

    Aubakirova, Gulzhan A.; Syzdykov, Kuanysh N.; Kurzhykayev, Zhumagazy; Uskenov, Rashit B.; Narbayev, Serik; Begenova, Ainagul B.; Zhumakayeva, Aikumys N.; Sabdinova, Dinara K.; Akhmedinov, Serikbay N.

    2016-01-01

    The assessment of water resources plays an important environmental and economic role, since it allows developing an effective program of regional development with regard to the environmental load. The hydro-chemical regime of lakes includes water temperature, content of biogenic elements, total mineralization, oxygen regime, and other parameters…

  7. Contaminants in fish tissue from US lakes and reservoirs: A national probabilistic study

    EPA Science Inventory

    An unequal probability design was used to develop national estimates for 268 persistent, bioaccumulative, and toxic chemicals in fish tissue from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake). Predator (fillet) ...

  8. Basin-floor Lake Bonneville stratigraphic section as revealed in paleoseismic trenches at the Baileys Lake site, West Valley fault zone, Utah

    USGS Publications Warehouse

    Hylland, Michael D.; DuRoss, Christopher B.; McDonald, Greg N.; Olig, Susan S.; Oviatt, Charles G.; Mahan, Shannon; Crone, Anthony J.; Personius, Stephen

    2012-01-01

     Recent paleoseismic trenching on the Granger fault of the West Valley fault zone in Salt Lake County, Utah, exposed a nearly complete section of late Pleistocene Lake Bonneville deposits, and highlights challenges related to accurate interpretation of basin-floor stratigraphy in the absence of numerical age constraints. We used radiocarbon and luminescence dating as well as ostracode biostratigraphy to provide chronostratigraphic control on the Lake Bonneville section exposed at the Baileys Lake trench site. The fault trenches exposed folded and faulted pre- to post- Bonneville sediments, including about 0.7 m of pre-Bonneville wetland/fluvial-marsh deposits, a nearly complete Bonneville section 2.5–4.0 m thick, and 0.4–1.0 m of post-Bonneville deposits consisting primarily of loess with minor scarp-derived colluvium. The relatively thin Bonneville section compares favorably with basin-floor Bonneville sections documented in boreholes and seismic reflection profiles beneath Great Salt Lake. Distinctive features of the Bonneville section at the Baileys Lake site include a sequence of turbidites in the upper part of the Bonneville transgressive deposits, evidence for an earthquake during Provo-shoreline time that disturbed lake-bottom sediments and destroyed any stratigraphic signature of the Bonneville Flood, tufa deposition associated with Gilbert-phase shoreline transgression, and stratigraphic evidence for two Gilbert transgressions across the site.

  9. Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1981-10-01

    The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, propertymore » ownership, and surface geology, and a geologic cross section were presented for each dome.« less

  10. Expanded spatial extent of the Medieval Climate Anomaly revealed in lake-sediment records across the boreal region in northwest Ontario.

    PubMed

    Laird, Kathleen R; Haig, Heather A; Ma, Susan; Kingsbury, Melanie V; Brown, Thomas A; Lewis, C F Michael; Oglesby, Robert J; Cumming, Brian F

    2012-09-01

    Multi-decadal to centennial-scale shifts in effective moisture over the past two millennia are inferred from sedimentary records from six lakes spanning a ~250 km region in northwest Ontario. This is the first regional application of a technique developed to reconstruct drought from drainage lakes (open lakes with surface outlets). This regional network of proxy drought records is based on individual within-lake calibration models developed using diatom assemblages collected from surface sediments across a water-depth gradient. Analysis of diatom assemblages from sediment cores collected close to the near-shore ecological boundary between benthic and planktonic diatom taxa indicated this boundary shifted over time in all lakes. These shifts are largely dependent on climate-driven influences, and can provide a sensitive record of past drought. Our lake-sediment records indicate two periods of synchronous signals, suggesting a common large-scale climate forcing. The first is a period of prolonged aridity during the Medieval Climate Anomaly (MCA, c. 900-1400 CE). Documentation of aridity across this region expands the known spatial extent of the MCA megadrought into a region that historically has not experienced extreme droughts such as those in central and western north America. The second synchronous period is the recent signal of the past ~100 years, which indicates a change to higher effective moisture that may be related to anthropogenic forcing on climate. This approach has the potential to fill regional gaps, where many previous paleo-lake depth methods (based on deeper centrally located cores) were relatively insensitive. By filling regional gaps, a better understanding of past spatial patterns in drought can be used to assess the sensitivity and realism of climate model projections of future climate change. This type of data is especially important for validating high spatial resolution, regional climate models. © 2012 Blackwell Publishing Ltd.

  11. Characterising flow regime and interrelation between surface-water and ground-water in the Fuente de Piedra salt lake basin by means of stable isotopes, hydrogeochemical and hydraulic data

    NASA Astrophysics Data System (ADS)

    Kohfahl, Claus; Rodriguez, Miguel; Fenk, Cord; Menz, Christian; Benavente, Jose; Hubberten, Hans; Meyer, Hanno; Paul, Liisa; Knappe, Andrea; López-Geta, Juan Antonio; Pekdeger, Asaf

    2008-03-01

    SummaryThis research reports the characterisation of ground- and surface-water interaction in the Fuente de Piedra Salt lake basin in southern Spain by a combined approach using hydraulic, hydrogeochemical and stable isotope data. During three sampling campaigns (February 2004, 2005 and October 2005) ground- and surface-water samples were collected for stable isotope studies ( 18O, D) and for major and minor ion analysis. Hydraulic measurements at multilevel piezometers were carried out at four different locations around the lake edge. Conductivity logs were performed at four piezometers located along a profile at the northern lake border and at two deeper piezometers in the Miocene basin at a greater distance from the lake. To describe processes that control the brine evolution different hydrogeochemical simulations were performed. Hydrogeochemical data show a variety of brines related to thickness variations of lacustrine evaporites around the lake. Salinity profiles in combination with stable isotope and hydraulic data indicate the existence of convection cells and recycled brines. Furthermore restricted ground-water inflow into the lake was detected. Dedolomitisation processes were identified by hydrogeochemical simulations and different brine origins were reproduced by inverse modelling approaches.

  12. Regional assessment of lake ecological states using Landsat: A classification scheme for alkaline-saline, flamingo lakes in the East African Rift Valley

    NASA Astrophysics Data System (ADS)

    Tebbs, E. J.; Remedios, J. J.; Avery, S. T.; Rowland, C. S.; Harper, D. M.

    2015-08-01

    In situ reflectance measurements and Landsat satellite imagery were combined to develop an optical classification scheme for alkaline-saline lakes in the Eastern Rift Valley. The classification allows the ecological state and consequent value, in this case to Lesser Flamingos, to be determined using Landsat satellite imagery. Lesser Flamingos depend on a network of 15 alkaline-saline lakes in East African Rift Valley, where they feed by filtering cyanobacteria and benthic diatoms from the lakes' waters. The classification developed here was based on a decision tree which used the reflectance in Landsat ETM+ bands 2-4 to assign one of six classes: low phytoplankton biomass; suspended sediment-dominated; microphytobenthos; high cyanobacterial biomass; cyanobacterial scum and bleached cyanobacterial scum. The classification accuracy was 77% when verified against in situ measurements. Classified imagery and timeseries were produced for selected lakes, which show the different ecological behaviours of these complex systems. The results have highlighted the importance to flamingos of the food resources offered by the extremely remote Lake Logipi. This study has demonstrated the potential of high spatial resolution, low spectral resolution sensors for providing ecologically valuable information at a regional scale, for alkaline-saline lakes and similar hypereutrophic inland waters.

  13. Great Lakes

    USGS Publications Warehouse

    Edsall, Thomas A.; Mac, Michael J.; Opler, Paul A.; Puckett Haecker, Catherine E.; Doran, Peter D.

    1998-01-01

    The Great Lakes region, as defined here, includes the Great Lakes and their drainage basins in Minnesota, Wisconsin, Illinois, Indiana, Ohio, Pennsylvania, and New York. The region also includes the portions of Minnesota, Wisconsin, and the 21 northernmost counties of Illinois that lie in the Mississippi River drainage basin, outside the floodplain of the river. The region spans about 9º of latitude and 20º of longitude and lies roughly halfway between the equator and the North Pole in a lowland corridor that extends from the Gulf of Mexico to the Arctic Ocean.The Great Lakes are the most prominent natural feature of the region (Fig. 1). They have a combined surface area of about 245,000 square kilometers and are among the largest, deepest lakes in the world. They are the largest single aggregation of fresh water on the planet (excluding the polar ice caps) and are the only glacial feature on Earth visible from the surface of the moon (The Nature Conservancy 1994a).The Great Lakes moderate the region’s climate, which presently ranges from subarctic in the north to humid continental warm in the south (Fig. 2), reflecting the movement of major weather masses from the north and south (U.S. Department of the Interior 1970; Eichenlaub 1979). The lakes act as heat sinks in summer and heat sources in winter and are major reservoirs that help humidify much of the region. They also create local precipitation belts in areas where air masses are pushed across the lakes by prevailing winds, pick up moisture from the lake surface, and then drop that moisture over land on the other side of the lake. The mean annual frost-free period—a general measure of the growing-season length for plants and some cold-blooded animals—varies from 60 days at higher elevations in the north to 160 days in lakeshore areas in the south. The climate influences the general distribution of wild plants and animals in the region and also influences the activities and distribution of the human

  14. West Nile Virus transmission in winter: the 2013 Great Salt Lake Bald Eagle and Eared Grebes Mortality event

    USGS Publications Warehouse

    Ip, Hon S.; Van Wettere, Arnaud J.; McFarlan, Leslie; Shearn-Bochsler, Valerie I.; Dickson, Sammie L.; Baker, JoDee; Hatch, Gary; Cavender, Kimberly; Long, Renee Romaine; Bodenstein, Barbara L.

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites.

  15. Geologic hypotheses of Lake Tanganyika region, Zaire, drawn from ERTS imagery

    NASA Technical Reports Server (NTRS)

    Wolyce, U.; Ilunga, S.

    1974-01-01

    Based on initial work in the Lake Tanganyika area of eastern Zaire, it has been concluded that ERTS imagery is extremely useful for reconnaissance level geologic mapping and analysis in this region of the humid tropics. In particular, ERTS imagery has proven useful for recognizing and mapping regional structural units, for recognizing major structural features, and for arriving at some preliminary hypotheses about the mineral potential of the area. Results so far indicate that ERTS imagery can make a major contribution to the development of the mineral resources of the country. Research has concentrated on applications of ERTS imagery in the field of cartography, geology, forestry, hydrology and agriculture. For the work in geology, a test site was chosen in eastern Zaire on the shore of Lake Tanganyika in the vicinity of the Lukuga River. This area was selected because of its varied geology and the existence of two frames of cloud-free ERTS imagery.

  16. INSAR Study Of Landslides In The Region Of Lake Sevan-Armenia

    NASA Astrophysics Data System (ADS)

    Lazarov, A.; Minchev, D.

    2012-01-01

    The region of Lake Sevan in Armenia is of theoretical and practical interest due to its very high landslide phenomena caused by metrological and hydrological reasons. Based on the ESA Principal Investigator Number C1P-6051 and requested data from ASAR instrument of ESA ENVISAT satellite four single look complex images including two images from 2008 and two images from 2009 of the region of the Sevan Lake in Armenia are obtained and thoroughly investigated. The one of the images is pointed out as a master and the rest of them, three images as slaves. Hence, three interferometric pairs are produced. Then data of NASA SRTM mission is applied to the interferometric pairs in order to remove topography from the interferograms. Three interferograms generated illustrate decreasing of coherence caused by high temporary decorelation, which means decreasing the level of coincidence of SLC’s in each interferometric pair, according to the time of acquisition each of them.

  17. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Russell, Lynn M.; Burrows, Susannah M.

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrowmore » during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.« less

  18. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  19. Reconstruction of Late Pleistocene Paleoenvironments using bulk geochemistry of paleosols from the Lake Victoria Region

    NASA Astrophysics Data System (ADS)

    Beverly, Emily J.; Peppe, Daniel J.; Driese, Steven G.; Blegen, Nick; Faith, J. Tyler; Tryon, Christian A.; Stinchcomb, Gary E.

    2017-11-01

    The impact of changing environments on the evolution and dispersal of Homo sapiens is highly debated, but few data are available from equatorial Africa. Lake Victoria is the largest freshwater lake in the tropics and is currently a biogeographic barrier between the eastern and western branches of the East African Rift. The lake has previously desiccated at 17 ka and again at 15 ka, but little is known from this region prior to the Last Glacial Maximum. The Pleistocene terrestrial deposits on the northeast coast of Lake Victoria (94 to 36 ka) are ideal for paleoenvironmental reconstructions where volcaniclastic deposits (tuffs), fluvial deposits, tufa, and paleosols are exposed, which can be used to reconstruct Critical Zones (CZ) of the past (paleo-CZs). The paleo-CZ is a holistic concept that reconstructs the entire landscape using geologic records of the atmosphere, hydrosphere, lithosphere, biosphere, and pedosphere (the focus of this study). New paleosol-based mean annual precipitation (MAP) proxies from Karungu, Rusinga Island, and Mfangano Island indicate an average MAP of 750108 mm yr-1 (CALMAG), 800182 mm yr-1 (CIA-K), and 1010228 mm yr-1 (PPM1.0) with no statistical difference throughout the 11 m thick sequence. This corresponds to between 54 and 72% of modern precipitation. Tephras bracketing these paleosols have been correlated across seven sites, and sample a regional paleo-CZ across a 55 km transect along the eastern shoreline of the modern lake. Given the sensitivity of Lake Victoria to precipitation, it is likely that the lake was significantly smaller than modern between 94 ka and 36 ka. This would have removed a major barrier for the movement of fauna (including early modern humans) and provided a dispersal corridor across the equator and between the rifts. It is also consistent with the associated fossil faunal assemblage indicative of semi-arid grasslands. During the Late Pleistocene, the combined geologic and paleontological evidence suggests a

  20. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China.

    PubMed

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-07

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  1. Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica

    NASA Astrophysics Data System (ADS)

    Castendyk, Devin N.; Obryk, Maciej K.; Leidman, Sasha Z.; Gooseff, Michael; Hawes, Ian

    2016-09-01

    Lake Vanda is a perennially ice-covered, meromictic, endorheic lake located in the McMurdo Dry Valleys of Antarctica, and an exceptional sentinel of climate change within the region. Lake levels rose 15 m over the past 68 years in response to climate-driven variability in ice-cover sublimation, meltwater production, and annual discharge of the Onyx River, the main source of water to the lake. Evidence from a new bathymetric map and water balance model combined with annual growth laminations in benthic mats suggest that the most recent filling trend began abruptly 80 years ago, in the early 1930s. This change increased lake volume by > 50%, triggered the formation of a new, upper, thermohaline convection cell, and cooled the lower convection cell by at least 2 °C and the bottom-most waters by at > 4 °C. Additionally, the depth of the deep chlorophyll a maximum rose by > 2 m, and deep-growing benthic algal mats declined while shallow benthic mats colonized freshly inundated areas. We attribute changes in hydrology to regional variations in air flow related to the strength and position of the Amundsen Sea Low (ASL) pressure system which have increased the frequency of down-valley, föhn winds associated with surface air temperature warming in the McMurdo Dry Valleys. The ASL has also been implicated in the recent warming of the Antarctic Peninsula, and provides a common link for climate-related change on opposite sides of the continent. If this trend persists, Lake Vanda should continue to rise and cool over the next 200 years until a new equilibrium lake level is achieved. Most likely, future lake rise will lead to isothermal conditions not conducive to thermohaline convection, resulting in a drastically different physical, biogeochemical, and biological structure than observed today.

  2. ANALYSIS OF MERCURY IN VERMONT AND NEW HAMPSHIRE LAKES: EVALUATION OF THE REGIONAL MERCURY CYCLING MODEL

    EPA Science Inventory

    An evaluation of the Regional Mercury Cycling Model (R-MCM, a steady-state fate and transport model used to simulate mercury concentrations in lakes) is presented based on its application to a series of 91 lakes in Vermont and New Hampshire. Visual and statistical analyses are pr...

  3. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  4. Spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region (Alberta, Canada)

    NASA Astrophysics Data System (ADS)

    Cooke, Colin A.; Kirk, Jane L.; Muir, Derek C. G.; Wiklund, Johan A.; Wang, Xiaowa; Gleason, Amber; Evans, Marlene S.

    2017-12-01

    The mining and processing of the Athabasca oil sands (Alberta, Canada) has been occurring for decades; however, a lack of consistent regional monitoring has obscured the long-term environmental impact. Here, we present sediment core results to reconstruct spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region. Early mining operations (during the 1970s and 1980s) led to elevated V and Pb inputs to lakes located <50 km from mining operations. Subsequent improvements to mining and upgrading technologies since the 1980s have reduced V and Pb loading to near background levels at many sites. In contrast, Hg deposition increased by a factor of ~3 to all 20 lakes over the 20th century, reflecting global-scale patterns in atmospheric Hg emissions. Base cation deposition (from fugitive dust emissions) has not measurably impacted regional lake sediments. Instead, results from a principal components analysis suggest that the presence of carbonate bedrock underlying lakes located close to development appears to exert a first-order control over lake sediment base cation concentrations and overall lake sediment geochemical composition. Trace element concentrations generally did not exceed Canadian sediment quality guidelines, and no spatial or temporal trends were observed in the frequency of guideline exceedence. Our results demonstrate that early mining efforts had an even greater impact on trace element cycling than has been appreciated previously, placing recent monitoring efforts in a critical long-term context.

  5. Characterization of Vibrio cholerae bacteriophages isolated from the environmental waters of the Lake Victoria region of Kenya.

    PubMed

    Maina, Alice Nyambura; Mwaura, Francis B; Oyugi, Julius; Goulding, David; Toribio, Ana L; Kariuki, Samuel

    2014-01-01

    Over the last decade, cholera outbreaks have become common in some parts of Kenya. The most recent cholera outbreak occurred in Coastal and Lake Victoria region during January 2009 and May 2010, where a total of 11,769 cases and 274 deaths were reported by the Ministry of Public Health and Sanitation. The objective of this study is to isolate Vibrio cholerae bacteriophages from the environmental waters of the Lake Victoria region of Kenya with potential for use as a biocontrol for cholera outbreaks. Water samples from wells, ponds, sewage effluent, boreholes, rivers, and lakes of the Lake Victoria region of Kenya were enriched for 48 h at 37 °C in broth containing a an environmental strain of V. cholerae. Bacteriophages were isolated from 5 out of the 42 environmental water samples taken. Isolated phages produced tiny, round, and clear plaques suggesting that these phages were lytic to V. cholerae. Transmission electron microscope examination revealed that all the nine phages belonged to the family Myoviridae, with typical icosahedral heads, long contractile tails, and fibers. Head had an average diameter of 88.3 nm and tail of length and width 84.9 and 16.1 nm, respectively. Vibriophages isolated from the Lake Victoria region of Kenya have been characterized and the isolated phages may have a potential to be used as antibacterial agents to control pathogenic V. cholerae bacteria in water reservoirs.

  6. Mapping lake level changes using ICESat/GLAS satellite laser altimetry data: a case study in arid regions of central Asia

    NASA Astrophysics Data System (ADS)

    Li, JunLi; Fang, Hui; Yang, Liao

    2011-12-01

    Lakes in arid regions of Central Asia act as essential components of regional water cycles, providing sparse but valuable water resource for the fragile ecological environments and human lives. Lakes in Central Asia are sensitive to climate change and human activities, and great changes have been found since 1960s. Mapping and monitoring these inland lakes would improve our understanding of mechanism of lake dynamics and climatic impacts. ICESat/GLAS satellite laser altimetry provides an efficient tool of continuously measuring lake levels in these poorly surveyed remote areas. An automated mapping scheme of lake level changes is developed based on GLAS altimetry products, and the spatial and temporal characteristics of 9 typical lakes in Central Asia are analyzed to validate the level accuracies. The results show that ICESat/GLAS has a good performance of lake level monitoring, whose patterns of level changes are the same as those of field observation, and the max differences between GLAS and field data is 3cm. Based on the results, it is obvious that alpine lakes are increasing greatly in lake levels during 2003-2009 due to climate change, while open lakes with dams and plain endorheic lakes decrease dramatically in water levels due to human activities, which reveals the overexploitation of water resource in Central Asia.

  7. Carbon-14 analyses reveal fine structure of the urban carbon dioxide dome in the Salt Lake Valley, Utah, USA

    NASA Astrophysics Data System (ADS)

    Ehleringer, J. R.; Hopkins, F. M.; Xu, X.; Barnette, J.; Randerson, J. T.; Bush, S.; Lai, C.

    2013-12-01

    Carbon-14 analyses of mature deciduous tree leaves (aspen and cottonwood) were used to measure the increases in atmospheric carbon dioxide within the expansive urbanizing Salt Lake Valley, Utah, USA associated with fossil fuel combustion. Our objectives were twofold: to understand the fine scale spatial structure of elevated carbon dioxide levels in this urban environment and to relate these observations to actual carbon dioxide observations collected using both long-term monitoring sites and a mobile measurement vehicle. Paired observations of aspen and cottonwood at sites across the valley showed that there was no significant difference in carbon-14 values, allowing spatial pattern evaluations at sites where one but not the other species was present. Statistically significant patterns were observed over a two-year measurement period, with elevated carbon dioxide levels associated with carbon-14 depleted leaves, particularly in regions with higher vehicle travel. Carbon-14 content of leaves was significantly lower on 4-lane roads than on nearby 2-lane roads in both residential and commercial zones, consistent with atmospheric carbon dioxide observations. The analysis of spatial patterns in the carbon-14 in leaves was then used to evaluate how well these observations compared to instantaneous and long-term observations of carbon dioxide using traditional infrared gas analyzer approaches.

  8. Analysis of the seismicity in the region of Mirovo salt mine after 8 years monitoring

    NASA Astrophysics Data System (ADS)

    Dimitrova, Liliya; Solakov, Dimcho; Simeonova, Stela; Aleksandrova, Irena; Georgieva, Gergana

    2015-04-01

    Mirovo salt deposit is situated in the NE part of Bulgaria and 5 kilometers away from the town of Provadiya. The mine is in operation since 1956. The salt is produced by dilution and extraction of the brine to the surface. A system of chambers-pillars is formed within the salt body as a result of the applied technology. The mine is situated in a seismically quiet part of the state. The region is characterized with complex geological structure and several faults. During the last 3 decades a large number of small and moderate earthquakes (M<4.5) are realized in the close vicinity of the salt deposit. Local seismological network (LSN) is deployed in the region to monitor the local seismicity. It consists of 6 three component digital stations. A real-time data transfer from LSN stations to National Data Center (in Sofia) is implemented using the VPN and MAN networks of the Bulgarian Telecommunication Company. Common processing and interpretation of the data from LSN and the national seismic network is performed. Real-time and interactive data processing are performed by the Seismic Network Data Processor (SNDP) software package. More than 700 earthquakes are registered by the LSN within 30km region around the mine during the 8 years monitoring. First we processed the data and compile a catalogue of the earthquakes occur within the studied region (30km around the salt mine). Spatial pattern of seismicity is analyzed. A large number of the seismic events occurred within the northern and north-western part of the salt body. Several earthquakes occurred in close vicinity of the mine. Concerning that the earthquakes could be tectonic and/or induced an attempt is made to find criteria to distinguish natural from induced seismicity. To characterize and distinguish the main processes active in the area we also made waveform and spectral analysis of a number of earthquakes.

  9. Controls on the geochemical evolution of Prairie Pothole Region lakes and wetlands over decadal time scales

    USGS Publications Warehouse

    Goldhaber, Martin B.; Mills, Christopher T.; Mushet, David M.; McCleskey, R. Blaine; Rover, Jennifer

    2016-01-01

    One hundred sixty-seven Prairie Pothole lakes, ponds and wetlands (largely lakes) previously analyzed chemically during the late 1960’s and early to mid-1970’s were resampled and reanalyzed in 2011–2012. The two sampling periods differed climatically. The earlier sampling took place during normal to slightly dry conditions, whereas the latter occurred during and immediately following exceptionally wet conditions. As reported previously in Mushet et al. (2015), the dominant effect was expansion of the area of these lakes and dilution of their major ions. However, within that context, there were significant differences in the evolutionary pathways of major ions. To establish these pathways, we employed the inverse modeling computer code NetpathXL. This code takes the initial and final lake composition and, using mass balance constrained by the composition of diluting waters, and input and output of phases, calculates plausible geochemical evolution pathways. Despite the fact that in most cases major ions decreased, a subset of the lakes had an increase in SO42−. This distinction is significant because SO42− is the dominant anion in a majority of Prairie Pothole Region wetlands and lakes. For lakes with decreasing SO42−, the proportion of original lake water required for mass balance was subordinate to rainwater and/or overland flow. In contrast, lakes with increasing SO42− between the two sampling episodes tended to be dominated by original lake water. This suite of lakes tended to be smaller and have lower initial SO42−concentrations such that inputs of sulfur from dissolution of the minerals gypsum or pyrite had a significant impact on the final sulfur concentration given the lower dilution factors. Thus, our study provides context for how Prairie Pothole Region water bodies evolve geochemically as climate changes. Because wetland geochemistry in turn controls the ecology of these water bodies, this research contributes to the prediction of the

  10. Abrupt lake-level changes in the Rocky Mountains and surrounding regions since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Shuman, B. N.; Serravezza, M.

    2016-12-01

    The paleohydrologic record of western North America since the last glacial maximum reveals a wide range of hydroclimatic variability and distinctive patterns associated with abrupt climate changes. To evaluate the sequence of abrupt hydroclimatic shifts and centennial-to-millennial hydrologic variability in western North America over the past 17 ka, we reconstruct lake-level histories from two high-elevation lakes in the Beartooth and Bighorn Mountains. The lakes represent the headwaters of the Missouri River drainage in northern Wyoming, but also have the potential to capture regional hydroclimate variability that links the northern Rocky Mountains to the mid-continent, Pacific Northwest, and the Great Basin. We first discuss the stratigraphic record of lake-level changes in small mid-latitude lakes and then use ground-penetrating radar (GPR) and sediment cores to track the elevations of shoreline sediments within the lakes through time. We compare the stratigraphies to the records from four other lakes in Wyoming and Colorado, and find widespread evidence for a Terminal Pleistocene Drought from 15-11 ka, an early Holocene humid period from 11-8 ka, and a period of severe mid-Holocene aridity from 8-5.7 ka. The northern Wyoming lakes also provide evidence of high levels before ca. 15 ka, including rapid hydroclimatic changes at ca. 16.8 ka during Heinrich Event 1. We place the changes in a broad context by summarizing and mapping water-level changes from 107 additional, previously studied lakes. Important patterns include 1) extensive drying across the western U.S. after 15 ka; 2) coherent sub-regional differences during the Younger Dryas and Pleistocene-Holocene transition; 3) a north-south contrast from 9-6 ka consistent with a northward shift in storm tracks as the influence of the Laurentide Ice Sheet diminished; and 4) rapid increases in effective moisture across much of western North America from 6-4 ka.

  11. Preliminary Gravity and Magnetic Data of the Lake Pillsbury Region, Northern Coast Ranges, California

    USGS Publications Warehouse

    Langenheim, V.E.; Jachens, Robert C.; Morin, Robert L.; McCabe, Craig A.

    2007-01-01

    The Lake Pillsbury region is transected by the Bartlett Springs Fault zone, one of the main strike-slip faults of the San Andreas system north of San Francisco Bay, California. Gravity and magnetic data were collected to help characterize the geometry and offset of the fault zone as well as determine the geometry of the Gravelly Valley pull-apart basin and Potter Valley, an alluvial intermontane basin southwest of Lake Pillsbury. The Bartlett Springs fault zone lies at the base of a significant gravity gradient. Superposed on the gradient is a small gravity low centered over Lake Pillsbury and Gravelly Valley. Another small gravity low coincides with Potter Valley. Inversion of gravity data for basin thickness indicates a maximum thickness of 400 and 440 m for the Gravelly and Potter Valley depressions, respectively. Ground magnetic data indicate that the regional aeromagnetic data likely suffer from positional errors, but that large, long-wavelength anomalies, sourced from serpentinite, may be offset 8 km along the Bartlett Springs Fault zone. Additional gravity data collected either on the lake surface or bottom and in Potter Valley would better determine the shape of the basins. A modern, high-resolution aeromagnetic survey would greatly augment the ability to map and model the fault geometry quantitatively.

  12. Ecology of playa lakes

    USGS Publications Warehouse

    Haukos, David A.; Smith, Loren M.

    1992-01-01

    Between 25,000 and 30,000 playa lakes are in the playa lakes region of the southern high plains (Fig. 1). Most playas are in west Texas (about 20,000), and fewer, in New Mexico, Oklahoma, Kansas, and Colorado. The playa lakes region is one of the most intensively cultivated areas of North America. Dominant crops range from cotton in southern areas to cereal grains in the north. Therefore, most of the native short-grass prairie is gone, replaced by crops and, recently, grasses of the Conservation Reserve Program. Playas are the predominant wetlands and major wildlife habitat of the region.More than 115 bird species, including 20 species of waterfowl, and 10 mammal species have been documented in playas. Waterfowl nest in the area, producing up to 250,000 ducklings in wetter years. Dominant breeding and nesting species are mallards and blue-winged teals. During the very protracted breeding season, birds hatch from April through August. Several million shorebirds and waterfowl migrate through the area each spring and fall. More than 400,000 sandhill cranes migrate through and winter in the region, concentrating primarily on the larger saline lakes in the southern portion of the playa lakes region.The primary importance of the playa lakes region to waterfowl is as a wintering area. Wintering waterfowl populations in the playa lakes region range from 1 to 3 million birds, depending on fall precipitation patterns that determine the number of flooded playas. The most common wintering ducks are mallards, northern pintails, green-winged teals, and American wigeons. About 500,000 Canada geese and 100,000 lesser snow geese winter in the playa lakes region, and numbers of geese have increased annually since the early 1980’s. This chapter describes the physiography and ecology of playa lakes and their attributes that benefit waterfowl.

  13. [Ecosystem services valuation of Qinghai Lake].

    PubMed

    Jiang, Bo; Zhang, Lu; Ouyang, Zhi-yun

    2015-10-01

    Qinghai Lake is the largest inland and salt water lake in China, and provides important ecosystem services to beneficiaries. Economic valuation of wetland ecosystem services from Qinghai Lake can reveal the direct contribution of lake ecosystems to beneficiaries using economic data, which can advance the incorporation of wetland protection of Qinghai Lake into economic tradeoffs and decision analyses. In this paper, we established a final ecosystem services valuation system based on the underlying ecological mechanisms and regional socio-economic conditions. We then evaluated the eco-economic value provided by the wetlands at Qinghai Lake to beneficiaries in 2012 using the market value method, replacement cost method, zonal travel cost method, and contingent valuation method. According to the valuation result, the total economic values of the final ecosystem services provided by the wetlands at Qinghai Lake were estimated to be 6749.08 x 10(8) yuan RMB in 2012, among which the value of water storage service and climate regulation service were 4797.57 x 10(8) and 1929.34 x 10(8) yuan RMB, accounting for 71.1% and 28.6% of the total value, respectively. The economic value of the 8 final ecosystem services was ranked from greatest to lowest as: water storage service > climate regulation service > recreation and tourism service > non-use value > oxygen release service > raw material production service > carbon sequestration service > food production service. The evaluation result of this paper reflects the substantial value that the wetlands of Qinghai Lake provide to beneficiaries using monetary values, which has the potential to help increase wetland protection awareness among the public and decision-makers, and inform managers about ways to create ecological compensation incentives. The final ecosystem service evaluation system presented in this paper will offer guidance on separating intermediate services and final services, and establishing monitoring programs for

  14. An Economic History of Indian Treaties in the Great Lakes Region

    ERIC Educational Resources Information Center

    American Indian Journal, 1978

    1978-01-01

    An attempt to do what has rarely been done in the 19th century, this article examines the actual economic resources and values associated with United States Indian treaties and agreements in the Great Lakes region (land, trade, timber, maple sugar, fish and game, water resources, military posts and roads, and annuities). (JC)

  15. Visualizing the geology of lake trout spawning sites, northern Lake Michigan

    USGS Publications Warehouse

    Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen

    2004-01-01

    Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island

  16. Visualizing the geology of lake trout spawning sites; northern Lake Michigan

    USGS Publications Warehouse

    Dartnell, Peter; Barnes, Peter; Gardner, James V.; Lee, Kristen

    2006-01-01

    Geologists and biologists are working together to understand the links between lake floor geology (composition and shape) and the distribution of lake trout throughout their life cycle. Lake floor geology is one of the main factors determining where lake trout spawn, feed, and hide. In support of ongoing research to study Lake Michigan trout habitats, the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers mapped the morphology of principle lake trout spawning sites. Using the Army Corps of Engineer's SHOALS airborne lidar (Light Detection and Ranging) system we mapped six regions in Northern Lake Michigan in order to identify ideal spawning regions composed of shallow, clean, gravel/cobble substrate, adjacent to deeper water. Lidar mapping systems, which use laser pulses to measure water depths from an airplane, are now available to map the nearshore lake morphology at meter-scale detail. Maps generated from the bathymetric data are used to define regions with smooth homogeneous substrate, regions with higher relief, and mixed regions with both smooth and rough relief. This morphologic information combined with sediment samples and direct bottom observations enable geologists to map areas with rougher relief composed of rock outcrop, boulders, and cobbles, as well as smooth regions covered with sand or mud. This information helps biologists, fishery managers, and ecologists visualize the lake floor in significant detail which promotes better fishery management, species protection, and habitat identification. These maps present the maps and discuss the geology of the six lake trout spawning sites mapped by the lidar system. Where the mapping approached land, aerial photography of the land is combined with the bathymetric data to help visualize the scale of the offshore features. Map and perspective views of Boulder Reef, Hog Island Reef, and Little Traverse Bay are shown on sheet 1, whereas map and perspective views of Trout and High Island

  17. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    PubMed Central

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-01-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively. PMID:26947748

  18. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    NASA Astrophysics Data System (ADS)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  19. Recruitment synchrony of yellow perch (Perca flavescens, Percidae) in the Great Lakes region, 1966–2008

    USGS Publications Warehouse

    Honsey, Andrew E.; Bunnell, David B.; Troy, Cary D.; Fielder, David G.; Thomas, Michael V.; Knight, Carey T.; Chong, Stephen; Hook, Tomas O.

    2016-01-01

    Population-level reproductive success (recruitment) of many fish populations is characterized by high inter-annual variation and related to annual variation in key environmental factors (e.g., climate). When such environmental factors are annually correlated across broad spatial scales, spatially separated populations may display recruitment synchrony (i.e., the Moran effect). We investigated inter-annual (1966–2008) variation in yellow perch (Perca flavescens, Percidae) recruitment using 16 datasets describing populations located in four of the five Laurentian Great Lakes (Erie, Huron, Michigan, and Ontario) and Lake St. Clair. We indexed relative year class strength using catch-curve residuals for each year-class across 2–4 years and compared relative year-class strength among sampling locations. Results indicate that perch recruitment is positively synchronized across the region. In addition, the spatial scale of this synchrony appears to be broader than previous estimates for both yellow perch and freshwater fish in general. To investigate potential factors influencing relative year-class strength, we related year-class strength to regional indices of annual climatic conditions (spring-summer air temperature, winter air temperature, and spring precipitation) using data from 14 weather stations across the Great Lakes region. We found that mean spring-summer temperature is significantly positively related to recruitment success among Great Lakes yellow perch populations.

  20. Foods of white-tailed deer in the Upper Great Lakes Region -- a review.

    Treesearch

    Lynn L. Rogers; Jack J. Mooty; Deanna Dawson

    1981-01-01

    Available information on year-round food habits of white-tailed deer in the Upper Great Lakes Region (UGLR) is summarized. Problems of deer in that region are discussed. There is a need for additional information on year-round diet, but new study techniques must be developed if a complete picture of diet is to be obtained.

  1. Microbial Diversity in a Hypersaline Sulfate Lake: A Terrestrial Analog of Ancient Mars

    PubMed Central

    Pontefract, Alexandra; Zhu, Ting F.; Walker, Virginia K.; Hepburn, Holli; Lui, Clarissa; Zuber, Maria T.; Ruvkun, Gary; Carr, Christopher E.

    2017-01-01

    Life can persist under severe osmotic stress and low water activity in hypersaline environments. On Mars, evidence for the past presence of saline bodies of water is prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here we investigate Spotted Lake (British Columbia, Canada), a hypersaline lake with extreme (>3 M) levels of sulfate salts as an exemplar of the conditions thought to be associated with ancient Mars. We provide the first characterization of microbial structure in Spotted Lake sediments through metagenomic sequencing, and report a bacteria-dominated community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well as diverse extremophiles. Microbial abundance and functional comparisons reveal similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom waters. Our analysis suggests that hypersaline-associated species occupy niches characterized foremost by differential abundance of Archaea, uncharacterized Bacteria, and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically the likelihood of a strong sulfur isotopic fractionation record within the sediments due to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which sulfate salt deposits may have offered periodically habitable environments, and could have concentrated and preserved organic materials or their biomarkers over geologic time. PMID:29018418

  2. Microbial Diversity in a Hypersaline Sulfate Lake: A Terrestrial Analog of Ancient Mars.

    PubMed

    Pontefract, Alexandra; Zhu, Ting F; Walker, Virginia K; Hepburn, Holli; Lui, Clarissa; Zuber, Maria T; Ruvkun, Gary; Carr, Christopher E

    2017-01-01

    Life can persist under severe osmotic stress and low water activity in hypersaline environments. On Mars, evidence for the past presence of saline bodies of water is prevalent and resulted in the widespread deposition of sulfate and chloride salts. Here we investigate Spotted Lake (British Columbia, Canada), a hypersaline lake with extreme (>3 M) levels of sulfate salts as an exemplar of the conditions thought to be associated with ancient Mars. We provide the first characterization of microbial structure in Spotted Lake sediments through metagenomic sequencing, and report a bacteria-dominated community with abundant Proteobacteria, Firmicutes, and Bacteroidetes, as well as diverse extremophiles. Microbial abundance and functional comparisons reveal similarities to Ace Lake, a meromictic Antarctic lake with anoxic and sulfidic bottom waters. Our analysis suggests that hypersaline-associated species occupy niches characterized foremost by differential abundance of Archaea, uncharacterized Bacteria, and Cyanobacteria. Potential biosignatures in this environment are discussed, specifically the likelihood of a strong sulfur isotopic fractionation record within the sediments due to the presence of sulfate reducing bacteria. With its high sulfate levels and seasonal freeze-thaw cycles, Spotted Lake is an analog for ancient paleolakes on Mars in which sulfate salt deposits may have offered periodically habitable environments, and could have concentrated and preserved organic materials or their biomarkers over geologic time.

  3. Regional Climate Models as a Tool for Assessing Changes in the Laurentian Great Lakes Net Basin Supply

    NASA Astrophysics Data System (ADS)

    Music, B.; Mailhot, E.; Nadeau, D.; Irambona, C.; Frigon, A.

    2017-12-01

    Over the last decades, there has been growing concern about the effects of climate change on the Great Lakes water supply. Most of the modelling studies focusing on the Laurentian Great Lakes do not allow two-way exchanges of water and energy between the atmosphere and the underlying surface, and therefore do not account for important feedback mechanisms. Moreover, energy budget constraint at the land surface is not usually taken into account. To address this issue, several recent climate change studies used high resolution Regional Climate Models (RCMs) for evaluating changes in the hydrological regime of the Great Lakes. As RCMs operate on the concept of water and energy conservation, an internal consistency of the simulated energy and water budget components is assured. In this study we explore several recently generated Regional Climate Model (RCM) simulations to investigate the Great Lakes' Net Basin Supply (NBS) in a changing climate. These include simulations of the Canadian Regional Climate Model (CRCM5) supplemented by simulations from several others RCMs participating to the North American CORDEX project (CORDEX-NA). The analysis focuses on the NBS extreme values under nonstationary conditions. The results are expected to provide useful information to the industries in the Great Lakes that all need to include accurate climate change information in their long-term strategy plans to better anticipate impacts of low and/or high water levels.

  4. A novel cold-adapted and highly salt-tolerant esterase from Alkalibacterium sp. SL3 from the sediment of a soda lake

    PubMed Central

    Wang, Guozeng; Wang, Qiaohuang; Lin, Xianju; Bun Ng, Tzi; Yan, Renxiang; Lin, Juan; Ye, Xiuyun

    2016-01-01

    A novel esterase gene (estSL3) was cloned from the Alkalibacterium sp. SL3, which was isolated from the sediment of soda lake Dabusu. The 636-bp full-length gene encodes a polypeptide of 211 amino acid residues that is closely related with putative GDSL family lipases from Alkalibacterium and Enterococcus. The gene was successfully expressed in E. coli, and the recombinant protein (rEstSL3) was purified to electrophoretic homogeneity and characterized. rEstSL3 exhibited the highest activity towards pNP-acetate and had no activity towards pNP-esters with acyl chains longer than C8. The enzyme was highly cold-adapted, showing an apparent temperature optimum of 30 °C and remaining approximately 70% of the activity at 0 °C. It was active and stable over the pH range from 7 to 10, and highly salt-tolerant up to 5 M NaCl. Moreover, rEstSL3 was strongly resistant to most tested metal ions, chemical reagents, detergents and organic solvents. Amino acid composition analysis indicated that EstSL3 had fewer proline residues, hydrogen bonds and salt bridges than mesophilic and thermophilic counterparts, but more acidic amino acids and less hydrophobic amino acids when compared with other salt-tolerant esterases. The cold active, salt-tolerant and chemical-resistant properties make it a promising enzyme for basic research and industrial applications. PMID:26915906

  5. "The Effect of Alternative Representations of Lake Temperatures and Ice on WRF Regional Climate Simulations"

    EPA Science Inventory

    Lakes can play a significant role in regional climate, modulating inland extremes in temperature and enhancing precipitation. Representing these effects becomes more important as regional climate modeling (RCM) efforts focus on simulating smaller scales. When using the Weathe...

  6. Total- and Methyl-mercury Response to Causeway Closure in the Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Valdes, C. A.; Tingey, C.; Frederick, L.; Black, F.; Stringham, B.; Johnson, W. P.

    2015-12-01

    In 2007, high mercury (Hg) concentrations were measured in various waterfowl species residing at the Great Salt Lake (GSL), Utah. During this time high monomethylmercury (MMHg, the toxic bioaccumulative form of Hg) concentrations were also determined in the anoxic deep brine layer (DBL) of the GSL, ranging from 0.8 to >30 ng-L-1. The DBL is therefore suspected as a source of MMHg to the surrounding ecosystem; however, the pathways by which MMHg is able to propagate from the DBL upward into the higher trophic levels of the GSL ecosystem is unknown. The DBL has recently retreated from the southernmost basin of the GSL following the closure of culverts in the causeway separating the north and south arms of the lake. Anoxic, reductive conditions and high dissolved organic matter (DOM) content in the DBL allow the persistence of MMHg, thus the retreat of the DBL could affect total mercury (THg) and MMHg concentrations in brine and sediment, as well as the Hg burdens in invertebrates and waterfowl. Because the extent of the DBL depends on flux of north arm brine through causeway openings, this temporary closing of flow provides a unique opportunity to monitor the response of Hg concentrations in the DBL, sediment, and biota during this transient. Waterfowl and invertebrate tissues, plant, sediment, and brine samples were collected before and after the culvert closure. Biota and sediment samples were digested, and all samples were analyzed using cold vapor adsorption atomic fluorescence spectroscopy (CVAFS). The samples from pre- and post-closure will be compared and described in order to deduce the role of the DBL as a potential reservoir of MMHg in the GSL.

  7. A National Probabilistic Study of Polybrominated Diphenyl Ethers in Fish from US Lakes and Reservoirs

    EPA Science Inventory

    National estimates were developed for polybrominated diphenyl ethers (PBDEs) in fish from lakes and reservoirs of the conterminous United States (excluding the Laurentian Great Lakes and Great Salt Lake) using an unequal probability design. Predator (fillet) and bottom-dweller (w...

  8. Trace elements and organic compounds in sediment and fish tissue from the Great Salt Lake basins, Utah, Idaho, and Wyoming, 1998-99

    USGS Publications Warehouse

    Waddell, Kidd M.; Giddings, Elise M.

    2004-01-01

    A study to determine the occurrence and distribution of trace elements, organochlorine pesticides, polychlorinated biphenyls (PCBs), and semivolatile organic compounds in sediment and in fish tissue was conducted in the Great Salt Lake Basins study unit of the National Water-Quality Assessment (NAWQA) program during 1998-99. Streambed-sediment and fish-tissue samples were collected concurrently at 11 sites and analyzed for trace-element concentration. An additional four sites were sampled for streambed sediment only and one site for fish tissue only. Organic compounds were analyzed from streambed-sediment and fish-tissue samples at 15 sites concurrently.Bed-sediment cores from lakes, reservoirs, and Farmington Bay collected by the NAWQA program in 1998 and by other researchers in 1982 were used to examine historical trends in trace-element concentration and to determine anthropogenic sources of contaminants. Cores collected in 1982 from Mirror Lake, a high-mountain reference location, showed an enrichment of arsenic, cadmium, copper, lead, tin, and zinc in the surface sediments relative to the deeper sediments, indicating that enrichment likely began after about 1900. This enrichment was attributed to atmospheric deposition during the period of metal-ore mining and smelting. A core from Echo Reservoir, in the Weber River Basin, however, showed a different pattern of trace-element concentration that was attributed to a local source. This site is located downstream from the Park City mining district, which is the most likely historical source of trace elements. Cores collected in 1998 from Farmington Bay show that the concentration of lead began to increase after 1842 and peaked during the mid-1980s and has been in decline since. Recent sediments deposited during 1996-98 indicate a 41- to 62-percent reduction since the peak in the mid-1980s.The concentration of trace elements in streambed sediment was greatest at sites that have been affected by historic mining

  9. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    DOE PAGES

    Muster, Sina; Roth, Kurt; Langer, Moritz; ...

    2017-06-06

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1.0 × 10 4 m 2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 withmore » a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1.4 × 10 6 km 2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1.0 ×10 6 m 2 down to 1.0 ×10 2 m 2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1.0 ×10 to 9.4 × 10 1 km –2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. In conclusion, the implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands.« less

  10. PeRL: a circum-Arctic Permafrost Region Pond and Lake database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muster, Sina; Roth, Kurt; Langer, Moritz

    Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1.0 × 10 4 m 2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 withmore » a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1.4 × 10 6 km 2 across the Arctic, about 17 % of the Arctic lowland ( < 300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1.0 ×10 6 m 2 down to 1.0 ×10 2 m 2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1.0 ×10 to 9.4 × 10 1 km –2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. In conclusion, the implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands.« less

  11. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  12. Regional patterns and local variability of dry and occult deposition strongly influence sulfate concentrations in Maine lakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norton, S.A.; Kahl, J.S.; Brakke, D.F.

    1988-01-01

    There is great uncertainty and large cost in making dry deposition measurements. The authors present evidence based on wet deposition, evapotranspiration, S storage in lake sediments, and sulfate concentrations in lakes and streams in Maine that the dry deposition flux of sulfur to drainage basins of lakes in Maine ranges from nearly 0% to more than 100% of wet deposition, even in small areas. The regional pattern of sulfate concentrations in Maine lakes is due to gradients in both wet and dry deposition and variation in evapotranspiration. Patterns are modified locally by lakes hydrologic type, elevation, vegetation, and terrestrial drainagemore » basin aspect. (Copyright (c) 1988 Elsevier Science Publishers B.V.)« less

  13. Microbial and diagenetic steps leading to the mineralisation of Great Salt Lake microbialites

    NASA Astrophysics Data System (ADS)

    Pace, Aurélie; Bourillot, Raphaël; Bouton, Anthony; Vennin, Emmanuelle; Galaup, Serge; Bundeleva, Irina; Patrier, Patricia; Dupraz, Christophe; Thomazo, Christophe; Sansjofre, Pierre; Yokoyama, Yusuke; Franceschi, Michel; Anguy, Yannick; Pigot, Léa; Virgone, Aurélien; Visscher, Pieter T.

    2016-08-01

    Microbialites are widespread in modern and fossil hypersaline environments, where they provide a unique sedimentary archive. Authigenic mineral precipitation in modern microbialites results from a complex interplay between microbial metabolisms, organic matrices and environmental parameters. Here, we combined mineralogical and microscopic analyses with measurements of metabolic activity in order to characterise the mineralisation of microbial mats forming microbialites in the Great Salt Lake (Utah, USA). Our results show that the mineralisation process takes place in three steps progressing along geochemical gradients produced through microbial activity. First, a poorly crystallized Mg-Si phase precipitates on alveolar extracellular organic matrix due to a rise of the pH in the zone of active oxygenic photosynthesis. Second, aragonite patches nucleate in close proximity to sulfate reduction hotspots, as a result of the degradation of cyanobacteria and extracellular organic matrix mediated by, among others, sulfate reducing bacteria. A final step consists of partial replacement of aragonite by dolomite, possibly in neutral to slightly acidic porewater. This might occur due to dissolution-precipitation reactions when the most recalcitrant part of the organic matrix is degraded. The mineralisation pathways proposed here provide pivotal insight for the interpretation of microbial processes in past hypersaline environments.

  14. Regional trends in evaporation loss and water yield based on stable isotope mass balance of lakes: The Ontario Precambrian Shield surveys

    NASA Astrophysics Data System (ADS)

    Gibson, J. J.; Birks, S. J.; Jeffries, D.; Yi, Y.

    2017-01-01

    Stable isotopes of water, oxygen-18 and deuterium, were measured in water samples collected from a network of 300 lakes sampled in six ∼100 km2 blocks (centred at 49.72°N, 91.46°W; 48.49°N, 91.58°W; 50.25°N, 86.62°W; 49.78°N, 83.98°W; 48.24°N, 85.49°W; 47.73, 84.52°W) within Precambrian shield drainages in the vicinity of Lake Superior, northern Ontario, Canada. Additional sampling was also conducted within the Turkey Lakes watershed (47.03°N, 84.38°W), a research basin situated in the Algoma region located 50 km north of Sault Saint Marie, Ontario. The studies were undertaken to gain a better understanding of hydrology and geochemistry of watersheds in the region in order to better predict acid sensitivity of lakes. The main objective of this paper is to describe the hydrologic variations observed based on stable isotope results. Evaporative isotopic enrichment of lake water was found to be systematic across the region, and its deviation from the isotopic composition of precipitation was used to estimate the evaporation/inflow to the lakes as well as runoff (or water yield) based on a simple isotope mass balance model. The analysis illustrates significant variability in the water yield to lakes and reveals a pattern of positively skewed distributions in all six widely spaced blocks, suggesting that a high proportion of lakes have relatively limited runoff whereas relatively few have greater runoff. Such basic information on the drainage structure of an area can be valuable for site-specific hydrologic assessments but also has significant implications for critical loads assessment, as low runoff systems tend to be less buffered and therefore are more sensitive to acidification. Importantly, the Turkey Lakes sampling program also suggests that isotope-based water yield is comparable in magnitude to hydrometric gauging estimates, and also establishes that uncertainty related to stratification can be as high as ±20% or more for individual lakes

  15. Subsurface stratigraphy and geochemistry of late Quaternary evaporites, Searles Lake, California, with a section on radiocarbon ages of stratigraphic units

    USGS Publications Warehouse

    Smith, George I.; Stuiver, Minze

    1979-01-01

    Searles Lake is a dry salt pan, about 100 km 2 in area, that lies on the floor of Searles Valley, in the desert of southeast California. Several salt bodies of late Quaternary age lie beneath the surface, mostly composed of sodium and potassium carbonate, sulfate, chloride, and borate minerals. Mud layers separate the salt bodies, which contain interstitial brine that is the source of large quantities of industrial chemicals. The value of annual production from the deposit exceeds $30 million; total production to date exceeds $1 billion. The salts and muds were deposited during Pleistocene and Holocene times by a series of large lakes (200 m maximum depth, 1,000 km 2 maximum area) that fluctuated in size in response to climatic change. Salts were deposited during major dry (interpluvial) episodes, muds during wet (pluvial) episodes that correlate with glacial advances in other parts of North America and the world. Data based on cores from the deposit are used in this paper to establish the stratigraphy of the deposit, the chemical and mineral compositions of successive units, and the total quantities of components contained by them. These parameters are then used to determine the geochemical evolution of the sedimentary layers. The results provide a refined basis for reconstructing the limnology of Searles Lake and the regional climate during late Quaternary time. Six main stratigraphic units were distinguished and informally named earlier on the basis of their dominant composition: Unit Typical thickness 14C age, uncorrected (in meters) (years B.P.) Overburden Mud 7 0 to >3,500 Upper Salt 15 >3,500 to 10,500 Parting Mud 4 10,500 to 24,000 Lower Salt 12 24,000 to 32,500 Bottom Mud 30 32,500 to 130,000 Mixed Layer 200+ > 130,000 (The age of 130,000 years for the Mixed Layer is based on extrapolated sedimentation rates.) The Lower Salt is subdivided into seven salt units (S-l to S-7) and six mud units (M-2 to M-7), the Mixed Layer into six units (A to F). For each

  16. The regional and global significance of nitrogen removal in lakes and reservoirs

    USGS Publications Warehouse

    Harrison, J.A.; Maranger, R.J.; Alexander, Richard B.; Giblin, A.E.; Jacinthe, P.-A.; Mayorga, Emilio; Seitzinger, S.P.; Sobota, D.J.; Wollheim, W.M.

    2009-01-01

    Human activities have greatly increased the transport of biologically available nitrogen (N) through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N year-1 from watersheds globally. Small lakes (<50 km2) were critical in the analysis, retaining almost half (9.3 Tg N year -1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially at the half-degree scale (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain ~33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area:lake or reservoir surface area), higher apparent settling velocities for N, and greater average N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale. ?? 2008 Springer Science

  17. Petrologic considerations for hot dry rock geothermal site selection in the Clear Lake Region, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimac, J.; Goff, F.; Hearn, B.C. Jr.

    1992-01-01

    The Clear Lake area is well known for anomalous heat flow, thermal springs, hydrothermal mineral deposits, and Quaternary volcanism. These factors, along with the apparent lack of a large reservoir of geothermal fluid north of Collayomi fault make the Clear Lake area an attractive target for hot dry rock (HDR) geothermal development. Petrologic considerations provide some constraints on site selection for HDR development. Spatial and temporal trends in volcanism in the Coast Ranges indicate that magmatism has migrated to the north with time, paralleling passage of the Mendocino triple junction and propagation of the San Andreas fault. Volcanism in themore » region may have resulted from upwelling of hot asthenosphere along the southern margin of the subducted segment of the Gorda plate. Spatial and temporal trends of volcanism within the Clear Lake volcanic field are similar to larger-scale trends of Neogene volcanism in the Cost Ranges. Volcanism (especially for silicic compositions) shows a general migration to the north over the {approximately}2 Ma history of the field, with the youngest two silicic centers located at Mt. Konocti and Borax Lake. The Mt. Konocti system (active from {approximately} 0.6 to 0.3 Ma) was large and long-lived, whereas the Borax Lake system is much smaller but younger (0.09 Ma). Remnants of silicic magma bodies under Mt. Konocti may be in the latter stages of cooling, whereas a magma body centered under Borax Lake may be in the early stages of development. The existence of an upper crustal silicic magma body of under Borax Lake has yet to be demonstrated by passive geophysics, however, subsurface temperatures in the area as high (> 200{degrees}C at 2000 m) as those beneath the Mt. Konocti area. Based on petrologic considerations alone, the Mt. Konocti-Borax Lake area appears to be the most logical choice for HDR geothermal development in the region.« less

  18. Decline of the world's saline lakes

    NASA Astrophysics Data System (ADS)

    Wurtsbaugh, Wayne A.; Miller, Craig; Null, Sarah E.; Derose, R. Justin; Wilcock, Peter; Hahnenberger, Maura; Howe, Frank; Moore, Johnnie

    2017-11-01

    Many of the world's saline lakes are shrinking at alarming rates, reducing waterbird habitat and economic benefits while threatening human health. Saline lakes are long-term basin-wide integrators of climatic conditions that shrink and grow with natural climatic variation. In contrast, water withdrawals for human use exert a sustained reduction in lake inflows and levels. Quantifying the relative contributions of natural variability and human impacts to lake inflows is needed to preserve these lakes. With a credible water balance, causes of lake decline from water diversions or climate variability can be identified and the inflow needed to maintain lake health can be defined. Without a water balance, natural variability can be an excuse for inaction. Here we describe the decline of several of the world's large saline lakes and use a water balance for Great Salt Lake (USA) to demonstrate that consumptive water use rather than long-term climate change has greatly reduced its size. The inflow needed to maintain bird habitat, support lake-related industries and prevent dust storms that threaten human health and agriculture can be identified and provides the information to evaluate the difficult tradeoffs between direct benefits of consumptive water use and ecosystem services provided by saline lakes.

  19. The regional abundance and size distribution of lakes and reservoirs in the United States and implication for estimates of global lake extent

    USGS Publications Warehouse

    McDonald, Cory P.; Rover, Jennifer; Stets, Edward G.; Striegl, Robert G.

    2012-01-01

    We analyzed complete geospatial data for the 3.5 million lakes and reservoirs larger than 0.001 km2, with a combined surface area of 131,000 km2, in the contiguous United States (excluding the Laurentian Great Lakes) and identified their regional distribution characteristics. For Alaska, we also analyzed (1) incomplete data that suggest that the state contains 1–2.5 million lakes larger than 0.001 km2 covering over 50,000 km2 and (2) localized high-resolution (5 m) data that suggest that the number of very small water bodies (< 0.001 km2) may be comparable with the number of lakes > 0.001 km2 in some areas. The Pareto distribution cannot accurately describe the lake abundance-size relationship across the entire size spectrum, and extrapolation of this density function to small size classes has likely resulted in the overestimation of the number of small lakes in the world. While small water bodies dominate in terms of numbers, they are not numerous enough to dominate in terms of surface area, as has been previously suggested. Extending our results to the global scale suggests that there are on the order of 64 million water bodies larger than 0.001 km2 in the world, with a total surface area of approximately 3.8 million km2.

  20. Effects of urbanization on benthic macroinvertebrate assemblages in contrasting environmental settings: Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah

    USGS Publications Warehouse

    Cuffney, T.F.; Zappia, H.; Giddings, E.M.P.; Coles, J.F.

    2005-01-01

    Responses of invertebrate assemblages along gradients of urban intensity were examined in three metropolitan areas with contrasting climates and topography (Boston, Massachusetts; Birmingham, Alabama; Salt Lake City, Utah). Urban gradients were defined using an urban intensity index (UII) derived from basin-scale population, infrastructure, land-use, land-cover, and socioeconomic characteristics. Responses based on assemblage metrics, indices of biotic integrity (B-IBI), and ordinations were readily detected in all three urban areas and many responses could be accurately predicted simply using regional UIIs. Responses to UII were linear and did not indicate any initial resistance to urbanization. Richness metrics were better indicators of urbanization than were density metrics. Metrics that were good indicators were specific to each study except for a richness-based tolerance metric (TOLr) and one B-IBI. Tolerances to urbanization were derived for 205 taxa. These tolerances differed among studies and with published tolerance values, but provided similar characterizations of site conditions. Basin-scale land-use changes were the most important variables for explaining invertebrate responses to urbanization. Some chemical and instream physical habitat variables were important in individual studies, but not among studies. Optimizing the study design to detect basin-scale effects may have reduced the ability to detect local-scale effects. ?? 2005 by the American Fisheries Society.

  1. Mysis diluviana and Hemimysis anomala: reviewing the roles of a native and invasive mysid in the Laurentian Great Lakes region

    USGS Publications Warehouse

    Walsh, Maureen G.; Boscarino, Brent T.; Marty, Jérôme; Johannsson, Ora E.

    2012-01-01

    Mysis diluviana and Hemimysis anomala are the only two species of mysid shrimps in the order Mysidacea that are present in the Laurentian Great Lakes of North America. M. diluviana has inhabited the deep, cold waters of this region since Pleistocene-era glacial retreat and is widely considered to have a central role in the functioning of offshore food webs in systems they inhabit. More recently, the Great Lakes were invaded by the Ponto-Caspian native Hemimysis, a species that inhabits warmer water and shallower depths relative to M. diluviana. Hemimysis has rapidly expanded throughout the Great Lakes region and has become integrated into nearshore food webs as both food for planktivorous fish and predators and competitors of zooplankton. This special issue is composed of 14 papers that represent the most recent advances in our understanding of the ecological importance of both species of mysids to lake and river ecosystems in the Great Lakes region of North America. Topics discussed in this special issue will inform future research in all systems influenced by mysid ecology.

  2. Rapid increase of lakes in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ren, H.; Fan, W.; Yao, Y., Sr.; Tian, D.; MA, B.; LIU, R.; Qin, Q.

    2016-12-01

    The Tibetan Plateau, covered with a huge area of snow, glaciers and lakes, feeds several large rivers, incluidng Yangtze River, Yellow River, Yarlung Tsangpo River and Lancang River. Climate change can cause lakes to expand and bring floods and mudflows, and the response of lakes in this plateau to global climate change is very crucial. Using time-series Landsats clear-sky images in summer from the late 1980s to 2015, we established a new finer-resolution (30m) database of lakes in the plateau among five stages (1980s, 1995, 2000, 2005 and 2015), analyzed lake changes in the past three decades, and explored the possible driving forces. Results and discussions(1) Changes in lakes > 1km2 between 1980s and 2015The changes of lake numbers and surface areas were investigated between 1980s and 2015. The lakes were identified by visual interpretation and classified to several different sizes: small (1-10km2), medium (10-50km2), large (50-100km2) and huge (>100km2) lakes. A total of 1375 lakes (>1km2) were detected in 2015, in which the small, medium, large and huge lakes respectively account for 97, 74, 262 and 942 (Fig.1 and Table 1). The numbers of lakes (> 1km2 ) has increased by 384 from 991 in 1980s (Fig.2 a, b). Meanwhile, a rapid increase of lake surface area also occurred: increased by 28.2% from 37711.0km2 in 1980s to 48335.2km2 in 2015 (Fig.2c and Table 1). (2) Temporal changes in lakes > 10km2 between 1980s and 2015Temporal variation in all lakes > 10km2 were investigated at the five stages. Most lakes have expanded (Fig.3). The water surface area of large and huge lakes increased by 13.7% from a total area of 32056.7km2 in 1980s to 36437.0km2 in 2015. For example, Siling Co, which is the largest lake in Tibet region and second largest lake in Tibetan Plateau, has increased by 702.1 km2 (41.0%) to 2416.08 km2 since 1980s with an rate about 28 km2 /a. Some new lakes or water bodies appeared due to melting glaciers or anthropogenic intervention. A few of small

  3. Hydrogeology and Simulated Ground-Water Flow in the Salt Pond Region of Southern Rhode Island

    USGS Publications Warehouse

    Masterson, John P.; Sorenson, Jason R.; Stone, Janet R.; Moran, S. Bradley; Hougham, Andrea

    2007-01-01

    The Salt Pond region of southern Rhode Island extends from Westerly to Narragansett Bay and forms the natural boundary between the Atlantic Ocean and the shallow, highly permeable freshwater aquifer of the South Coastal Basin. Large inputs of fresh ground water coupled with the low flushing rates to the open ocean make the salt ponds particularly susceptible to eutrophication and bacterial contamination. Ground-water discharge to the salt ponds is an important though poorly quantified source of contaminants, such as dissolved nutrients. A ground-water-flow model was developed and used to delineate the watersheds to the salt ponds, including the areas that contribute ground water directly to the ponds and the areas that contribute ground water to streams that flow into ponds. The model also was used to calculate ground-water fluxes to these coastal areas for long-term average conditions. As part of the modeling analysis, adjustments were made to model input parameters to assess potential uncertainties in model-calculated watershed delineations and in ground-water discharge to the salt ponds. The results of the simulations indicate that flow to the salt ponds is affected primarily by the ease with which water is transmitted through a glacial moraine deposit near the regional ground-water divide, and by the specified recharge rate used in the model simulations. The distribution of the total freshwater flow between direct ground-water discharge and ground-water-derived surface-water (streamflow) discharge to the salt ponds is affected primarily by simulated stream characteristics, including the streambed-aquifer connection and the stream stage. The simulated position of the ground-water divide and, therefore, the model-calculated watershed delineations for the salt ponds, were affected only by changes in the transmissivity of the glacial moraine. Selected changes in other simulated hydraulic parameters had substantial effects on total freshwater discharge and the

  4. Deformation of allochthonous salt and evolution of related salt-structural systems, eastern Louisiana Gulf Coast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuster, D.C.

    1996-12-31

    Salt tectonics in the northern Gulf of Mexico involves both vertical diapirism and lateral silling or flow of salt into wings and tablets (sheets). Combinations of these two modes of salt deformation, concurrent with sediment loading and salt evacuation, have produced complex structures in the coastal and offshore region of southeastern Louisiana, a prolific oil and gas province. Many large growth faults and salt domes in the study area root into intra-Tertiary salt welds that were formerly occupied by allochthonous salt tablets. Two end-member structural systems involving evacuation of former tabular salt are recognized: roho systems and stepped counter-regional systems.more » Both end-member systems share a similar multi-staged evolution, including (1) initial formation of a south-leaning salt dome or wall sourced from the Jurassic salt level; (2) progressive development into a semi-tabular allochthonous salt body; and (3) subsequent loading, evacuation, and displacement of the tabular salt into secondary domes. In both systems, it is not uncommon to find salt displaced as much as 16-24 km south of its autochthonous source, connected by a horizontal salt weld to an updip, deflated counter-regional feeder. Although both end-member structural systems may originate before loading of allochthonous salt having grossly similar geometry, their final structural configurations after loading and salt withdrawal are distinctly different. Roho systems are characterized by large-displacement, listric, south-dipping growth faults that sole into intra-Tertiary salt welds marked by high-amplitude reflections continuous with residual salt masses. Salt from the former salt tablets has been loaded and squeezed laterally and downdip. Stepped counter-regional systems, in contrast, comprise large salt domes and adjacent large-displacement, north-dipping growth faults that sole into intra-Tertiary salt welds before stepping down again farther north.« less

  5. Dissolved-oxygen regime of the Jordan River, Salt Lake County, Utah

    USGS Publications Warehouse

    Stephens, D.W.

    1984-01-01

    Concentrations of dissolved oxygen in the Jordan River in Salt Lake County decrease considerably as the river flows northward. Mean concentrations of dissolved oxygen decreased from 8.1 milligrams per liter at the Jordan Narrows to 4.7 milligrams per liter at 500 North Street during April 1981 to September 1982. Coincident with the decrease, the biochemical-oxygen demand increased from 5 to 7 milligrams per liter. About 50 percent of the dissolved-oxygen concentrations and 90 percent of the 5-day biochemical-oxygen demand measured downstream from 1700 South Street exceeded the State intended-use standards. An estimated 6. million pounds of oxygen-demanding substances as measured by 5-day biochemical-oxygen demand were discharged to the Jordan River during 1981 from point sources downstream from 9000 South Street. Seven wastewater-treatment plants contributed 77 percent of this load, nonstorm base flows contributed 22 percent, and storm flows less than 1 percent. The Surplus Canal diversion at 2100 South Street removed about 70 percent of this load, and travel time of about 1 day also decreased the actual effects of the load on the river. Reaeration rates during September and October were quite high (average K2 at 20 degrees Celsius was about 12 per day) between the Jordan Narrows and 9000 South Street, but they decreased to 2.4 per day in the reach from 1330 South to 1800 North Streets. (USGS)

  6. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  7. West Nile Virus Transmission in Winter: The 2013 Great Salt Lake Bald Eagle and Eared Grebes Mortality Event

    PubMed Central

    Ip, Hon S.; Van Wettere, Arnaud J.; McFarlane, Leslie; Shearn-Bochsler, Valerie; Dickson, Sammie Lee; Baker, JoDee; Hatch, Gary; Cavender, Kimberly; Long, Renee; Bodenstein, Barbara

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites. PMID:24761310

  8. Kiswahili as Vehicle of Unity and Development in the Great Lakes Region

    ERIC Educational Resources Information Center

    Kishe, Anna M.

    2003-01-01

    This paper discusses the potentiality of Kiswahili in accelerating social, political, economic and cultural integration within the Great Lakes Region. Presently, Kiswahili is a "de facto" lingua franca spoken by almost 100 million people in the world (Ntakirutimana, 2000). This is an indication of its viability in promoting unity among…

  9. Environmental Indicators for the Coastal Region of North American Great Lakes: Introduction and Prospectus

    EPA Science Inventory

    Environmental indicators are benchmarks for the current conditions of the Great Lakes coastal region and provide measurable endpoints to assess the success of future management, conservation, protection, and restoration of this important resource.

  10. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  11. Evidence of offshore lake trout reproduction in Lake Huron

    USGS Publications Warehouse

    DeSorcie, Timothy J.; Bowen, Charles A.

    2003-01-01

    Six Fathom Bank-Yankee Reef, an offshore reef complex, was an historically important spawning area believed to represent some of the best habitat for the rehabilitation of lake trout Salvelinus namaycush in Lake Huron. Since 1986, lake trout have been stocked on these offshore reefs to reestablish self-sustaining populations. We sampled with beam trawls to determine the abundance of naturally reproduced age-0 lake trout on these offshore reefs during May-July in 1994-1998 and 2000-2002. In total, 123 naturally reproduced lake trout fry were caught at Six Fathom Bank, and 2 naturally reproduced lake trout fry were caught at nearby Yankee Reef. Our findings suggest that this region of Lake Huron contains suitable habitat for lake trout spawning and offers hope that lake trout rehabilitation can be achieved in the main basin of Lake Huron.

  12. Changsha area showing Tung Ting Lake region photographed during MA-9 22 orbit

    NASA Image and Video Library

    1963-05-16

    S63-06438 (15-16 May 1963) --- Changsha area in China, showing Tung Ting lake region, as photographed from the Mercury-Atlas 9 (MA-9) capsule by astronaut L. Gordon Cooper Jr., during his 22-orbit MA-9 spaceflight. Photo credit: NASA

  13. Size and elemental distributions of nano- to micro-particulates in the geochemically-stratified Great Salt Lake

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Fernandez, D.; Naftz, D.L.

    2009-01-01

    The characterization of trace elements in terms of their apportionment among dissolved, macromolecular, nano- and micro-particulate phases in the water column of the Great Salt Lake carries implications for the potential entry of toxins into the food web of the lake. Samples from the anoxic deep and oxic shallow brine layers of the lake were fractionated using asymmetric flow field-flow fractionation (AF4). The associated trace elements were measured via online collision cell inductively-coupled plasma mass spectrometry (CC-ICP-MS). Results showed that of the total (dissolved + particulate) trace element mass, the percent associated with particulates varied from negligible (e.g. Sb), to greater than 50% (e.g. Al, Fe, Pb). Elements such as Cu, Zn, Mn, Co, Au, Hg, and U were associated with nanoparticles, as well as being present as dissolved species. Particulate-associated trace elements were predominantly associated with particulates larger than 450 nm in size. Among the smaller nanoparticulates (<450 nm), some trace elements (Ni, Zn, Au and Pb) showed higher percent mass (associated with nanoparticles) in the 0.9-7.5 nm size range relative to the 10-250 nm size range. The apparent nanoparticle size distributions were similar between the two brine layers; whereas, important differences in elemental associations to nanoparticles were discerned between the two layers. Elements such as Zn, Cu, Pb and Mo showed increasing signal intensities from oxic shallow to anoxic deep brine, suggesting the formation of sulfide nanoparticles, although this may also reflect association with dissolved organic matter. Aluminum and Fe showed greatly increased concentration with depth and equivalent size distributions that differed from those of Zn, Cu, Pb and Mo. Other elements (e.g. Mn, Ni, and Co) showed no significant change in signal intensity with depth. Arsenic was associated with <2 nm nanoparticles, and showed no increase in concentration with depth, possibly indicating

  14. Great Lakes Literacy Principles

    NASA Astrophysics Data System (ADS)

    Fortner, Rosanne W.; Manzo, Lyndsey

    2011-03-01

    Lakes Superior, Huron, Michigan, Ontario, and Erie together form North America's Great Lakes, a region that contains 20% of the world's fresh surface water and is home to roughly one quarter of the U.S. population (Figure 1). Supporting a $4 billion sport fishing industry, plus $16 billion annually in boating, 1.5 million U.S. jobs, and $62 billion in annual wages directly, the Great Lakes form the backbone of a regional economy that is vital to the United States as a whole (see http://www.miseagrant.umich.edu/downloads/economy/11-708-Great-Lakes-Jobs.pdf). Yet the grandeur and importance of this freshwater resource are little understood, not only by people in the rest of the country but also by many in the region itself. To help address this lack of knowledge, the Centers for Ocean Sciences Education Excellence (COSEE) Great Lakes, supported by the U.S. National Science Foundation and the National Oceanic and Atmospheric Administration, developed literacy principles for the Great Lakes to serve as a guide for education of students and the public. These “Great Lakes Literacy Principles” represent an understanding of the Great Lakes' influences on society and society's influences on the Great Lakes.

  15. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite

  16. Studies of geology and hydrology in the Basin and Range Province, Southwestern United States, for isolation of high-level radioactive waste - Characterization of the Bonneville region, Utah and Nevada

    USGS Publications Warehouse

    Bedinger, M.S.; Sargent, K.A.; Langer, William H.

    1990-01-01

    The Bonneville region of the Basin and Range province in westcentral Utah and adjacent Nevada includes several basins lying south of the Great Salt Lake Desert. Physiographically, the region consists of linear, north-trending mountain ranges separated by valleys, many of which are closed basins underlain by thick sequences of fill. Surface drainage of open basins and ground-water flow is to the Great Salt Lake Desert. In structure and composition the ranges are faulted Paleozoic rocks, locally intruded by Mesozoic and Tertiary plugs and stocks. In the southern and northeastern parts of the region, volcanic rocks are widespread and form large parts of some mountain ranges. The Paleozoic sedimentary rocks include great thicknesses of carbonate rocks which compose a significant aquifer in the regionMedia considered to have potential for isolation of high-level radioactive waste in the region include intrusive rocks, such as granite; ash-flow tuff; and basalt and basaltic andesite lava flows. These rock types, basin fill, and possibly other rock types, may have potential as host media in the unsaturated zone. Quaternary tectonism in the region is evidenced by seismic activity, local areas of above-normal geothermal heat flow, Quaternary faulting, late Cenozoic volcanic activity, and active vertical crustal movement. The Bonneville region is part of a large ground-water flow system that is integrated partly through basin-fill deposits, but largely through an underlying carbonate-rock sequence. The region includes: (1) several topographically closed basins with virtually no local surface discharge that are drained by the underlying carbonate-rock aquifer; (2) closed basins with local surface discharge by evapotranspiration; and (3) basins open to the Great Salt Lake Desert that discharge by groundwater underflow and evapotranspiration. The carbonate-rock aquifer discharges to large springs in the Desert and in basins tributary to the Desert. The climate is arid to

  17. Glacial lake inventory and lake outburst potential in Uzbekistan.

    PubMed

    Petrov, Maxim A; Sabitov, Timur Y; Tomashevskaya, Irina G; Glazirin, Gleb E; Chernomorets, Sergey S; Savernyuk, Elena A; Tutubalina, Olga V; Petrakov, Dmitriy A; Sokolov, Leonid S; Dokukin, Mikhail D; Mountrakis, Giorgos; Ruiz-Villanueva, Virginia; Stoffel, Markus

    2017-08-15

    Climate change has been shown to increase the number of mountain lakes across various mountain ranges in the World. In Central Asia, and in particular on the territory of Uzbekistan, a detailed assessment of glacier lakes and their evolution over time is, however lacking. For this reason we created the first detailed inventory of mountain lakes of Uzbekistan based on recent (2002-2014) satellite observations using WorldView-2, SPOT5, and IKONOS imagery with a spatial resolution from 2 to 10m. This record was complemented with data from field studies of the last 50years. The previous data were mostly in the form of inventories of lakes, available in Soviet archives, and primarily included localized in-situ data. The inventory of mountain lakes presented here, by contrast, includes an overview of all lakes of the territory of Uzbekistan. Lakes were considered if they were located at altitudes above 1500m and if lakes had an area exceeding 100m 2 . As in other mountain regions of the World, the ongoing increase of air temperatures has led to an increase in lake number and area. Moreover, the frequency and overall number of lake outburst events have been on the rise as well. Therefore, we also present the first outburst assessment with an updated version of well-known approaches considering local climate features and event histories. As a result, out of the 242 lakes identified on the territory of Uzbekistan, 15% are considered prone to outburst, 10% of these lakes have been assigned low outburst potential and the remainder of the lakes have an average level of outburst potential. We conclude that the distribution of lakes by elevation shows a significant influence on lake area and hazard potential. No significant differences, by contrast, exist between the distribution of lake area, outburst potential, and lake location with respect to glaciers by regions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Forest land cover change (1975-2000) in the Greater Border Lakes region

    Treesearch

    Peter T. Wolter; Brian R. Sturtevant; Brian R. Miranda; Sue M. Lietz; Phillip A. Townsend; John Pastor

    2012-01-01

    This document and accompanying maps describe land cover classifications and change detection for a 13.8 million ha landscape straddling the border between Minnesota, and Ontario, Canada (greater Border Lakes Region). Land cover classifications focus on discerning Anderson Level II forest and nonforest cover to track spatiotemporal changes in forest cover. Multi-...

  19. CO2 and CH4 emissions from streams in a lake-rich landscape: Patterns, controls, and regional significance

    USGS Publications Warehouse

    Crawford, John T.; Lottig, Noah R.; Stanley, Emily H.; Walker, John F.; Hanson, Paul C.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Aquatic ecosystems are important components of landscape carbon budgets. In lake-rich landscapes, both lakes and streams may be important sources of carbon gases (CO2 and CH4) to the atmosphere, but the processes that control gas concentrations and emissions in these interconnected landscapes have not been adequately addressed. We use multiple data sets that vary in their spatial and temporal extent during 2001–2012 to investigate the carbon gas source strength of streams in a lake-rich landscape and to determine the contribution of lakes, metabolism, and groundwater to stream CO2 and CH4. We show that streams emit roughly the same mass of CO2 (23.4 Gg C yr−1; 0.49 mol CO2 m−2 d−1) as lakes at a regional scale (27 Gg C yr−1) and that stream CH4 emissions (189 Mg C yr−1; 8.46 mmol CH4 m−2 d−1) are an important component of the regional greenhouse gas balance. Gas transfer velocity variability (range = 0.34 to 13.5 m d−1) contributed to the variability of gas flux in this landscape. Groundwater inputs and in-stream metabolism control stream gas supersaturation at the landscape scale, while carbon cycling in lakes and deep groundwaters does not control downstream gas emissions. Our results indicate the need to consider connectivity of all aquatic ecosystems (lakes, streams, wetlands, and groundwater) in lake-rich landscapes and their connections with the terrestrial environment in order to understand the full nature of the carbon cycle.

  20. Dispersion of Perfluorocarbon Tracers within the Salt Lake Valley during VTMX 2000

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Allwine, K. Jerry; Dietz, Russell N.; Clawson, Kirk L.; Torcolini, Joel C.

    2006-06-01

    Six perfluorocarbon tracer experiments were conducted in Salt Lake City, Utah, during October 2000 as part of the Vertical Transport and Mixing (VTMX) field campaign. Four tracers were released at different sites to obtain information on dispersion during stable conditions within down-valley flow, canyon outflow, and interacting circulations in the downtown area. Some of the extensive tracer data that were collected are presented in the context of the meteorological field campaign measurements. Tracer measurements at building-top sites in the downtown area and along the lower slopes of the Wasatch Front indicated that vertical mixing processes transported material up to at least 180 m above the valley floor, although model simulations suggest that tracers were transported upward to much higher elevations. Tracer data provided evidence of downward mixing of canyon outflow, upward mixing within down-valley flow, horizontal transport above the surface stable layer, and transport within horizontal eddies produced by the interaction of canyon and down-valley flows. Although point meteorological measurements are useful in evaluating the forecasts produced by mesoscale models, the tracer data provide valuable information on how the time-varying three-dimensional mean and turbulent motions over urban and valley spatial scales affect dispersion. Although the mean tracer transport predicted by the modeling system employed in this study was qualitatively similar to the measurements, improvements are needed in the treatment of turbulent vertical mixing.

  1. Petrogenic organic carbon and PAHs in snow deposited on Athabasca oil sands region lakes

    NASA Astrophysics Data System (ADS)

    Ahad, J. M.; Pakdel, H.; Gammon, P. R.; Savard, M. M.

    2017-12-01

    Fugitive dust associated with surface mining activities is one of the principal vectors for transport of airborne contaminants in Canada's Athabasca oil sands (AOS) region. The two main sources for mining-related dust - unprocessed oil sand and petroleum coke (petcoke) - contain high levels of bitumen-derived organic contaminants such as polycyclic aromatic hydrocarbons (PAHs). Here, we report the radiocarbon (14C) contents of solvent-extractable organics in snow particulates deposited during the winter of 2016-17 on fourteen lakes across the AOS region to quantify the contribution of anthropogenic dust transported directly to these ecosystems. Concentrations of parent and alkylated PAHs were determined in both dissolved and particulate fractions of snow. Radiocarbon isotope ratios (Δ14C) ranged from -805 to -177‰, indicating a significant contribution of petrogenic or fossil (i.e., Δ14C = -1000‰) carbon in snowpack dust at some sites. More negative Δ14C values were generally found in samples containing higher levels of particulate matter and at lakes closer to the geographic center of AOS mining operations. Concentrations of PAHs > 2 rings were significantly higher in the particulate phase and in samples with the largest petrogenic carbon components. Relatively high levels of PAHs at some distal sites associated with less negative Δ14C values pointed to an important modern carbon contribution, potentially ash originating from the 1.5 million acre 2016 Fort McMurray wildfire. As demonstrated here, fugitive dust in snow covering AOS region lakes can contain significant petrogenic organic carbon and high levels of PAHs, particularly in areas close (i.e., < 25 km) to the center of AOS mining operations. The spring snowmelt thus provides a direct pathway for mining-related contaminants to lake sediments.

  2. THE MEASUREMENT OF PM2.5, INCLUDING SEMI-VOLATILE COMPONENTS, IN THE EMPACT PROGRAM: RESULTS FROM THE SALT LAKE CITY STUDY AND IMPLICATIONS FOR PUBLIC AWARENESS, HEALTH EFFECTS, AND CONTROL STRATEGIES (R827993)

    EPA Science Inventory

    The Salt Lake City EPA Environmental

    Monitoring for Public Access and Community Tracking (EMPACT) project,

    initiated in October 1999, is designed to evaluate the usefulness of a

    newly developed real-time continuous monitor (RAMS) for total

    (non-volatil...

  3. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.

    2016-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  5. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is

  6. Evaluation of a rural demonstration program to increase seat belt use in the Great Lakes Region.

    DOT National Transportation Integrated Search

    2009-03-01

    Six States in the Great Lakes Region (Region 5) participated in a Rural Demonstration Program to increase seat belt : use in rural areas and among high-risk occupants, such as young males and occupants of pickup trucks. These : efforts, which include...

  7. Hydraulic fracturing and the Crooked Lake Sequences: Insights gleaned from regional seismic networks

    NASA Astrophysics Data System (ADS)

    Schultz, Ryan; Stern, Virginia; Novakovic, Mark; Atkinson, Gail; Gu, Yu Jeffrey

    2015-04-01

    Within central Alberta, Canada, a new sequence of earthquakes has been recognized as of 1 December 2013 in a region of previous seismic quiescence near Crooked Lake, ~30 km west of the town of Fox Creek. We utilize a cross-correlation detection algorithm to detect more than 160 events to the end of 2014, which is temporally distinguished into five subsequences. This observation is corroborated by the uniqueness of waveforms clustered by subsequence. The Crooked Lake Sequences have come under scrutiny due to its strong temporal correlation (>99.99%) to the timing of hydraulic fracturing operations in the Duvernay Formation. We assert that individual subsequences are related to fracturing stimulation and, despite adverse initial station geometry, double-difference techniques allow us to spatially relate each cluster back to a unique horizontal well. Overall, we find that seismicity in the Crooked Lake Sequences is consistent with first-order observations of hydraulic fracturing induced seismicity.

  8. Ethnic Traditions and the Family: Asian, Black, Greek, Native American, Polynesian and Hispanic Culture. Proceedings of a Symposium (Salt Lake City, Utah, April 30, May 1, 7-8 and 14-15, 1980).

    ERIC Educational Resources Information Center

    Lewy, Rafael, Ed.; Henry, Alberta, Ed.

    Presentations from a symposium series sponsored by the Salt Lake City School District and the Utah Endowment for the Humanities in the spring of 1980 describe the family customs and ethnic traditions of Asians, Blacks, Greeks, Native Americans, Polynesians, and Hispanics. The first presentation notes the differences between Asians who have been in…

  9. Historical changes to Lake Washington and route of the Lake Washington Ship Canal, King County, Washington

    USGS Publications Warehouse

    Chrzastowski, Michael J.

    1983-01-01

    Lake Washington, in the midst of the greater Seattle metropolitan area of the Puget Sound region (fig. 1), is an exceptional commercial, recreational, and esthetic resource for the region . In the past 130 years, Lake Washington has been changed from a " wild " lake in a wilderness setting to a regulated lake surrounded by a growing metropolis--a transformation that provides an unusual opportunity to study changes to a lake's shoreline and hydrologic characteristics -resulting from urbanization.

  10. Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern Alps

    PubMed Central

    Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptáčník, Robert

    2017-01-01

    Abstract Lakes in the Alps represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well studied, less knowledge is available on large-scale patterns essential to general understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic zone of 54 oligotrophic lakes in the montane region of the Alps (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bythotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bythotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness, as was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28824797

  11. Zooplankton communities and Bythotrephes longimanus in lakes of the montane region of the northern Alps

    PubMed Central

    Horváth, Zsófia; Vad, Csaba F.; Preiler, Christian; Birtel, Julia; Matthews, Blake; Ptáčníková, Radka; Ptacnik, Robert

    2017-01-01

    Lakes in the Alps represent a considerable fraction of nutrient-poor lakes in Central Europe, with unique biodiversity and ecosystem properties. Although some individual lakes are well-studied, less knowledge is available on large-scale patterns essential to generalise the understanding of their functioning. Here, we aimed to describe crustacean zooplankton communities (Cladocera, Copepoda) and identify their environmental drivers in the pelagic zone of 54 oligotrophic lakes in the montane region of the Alps (400–1200 m) in Austria, Germany, and Switzerland, covering a spatial scale of 650 km. Moreover, we aimed to provide data on the distribution and ecological requirements of the North American invader Bytotrephes longimanus in its Central European native range. Communities were mainly dominated by widespread species typical of lowland habitats, and only a few true specialists of oligotrophic alpine lakes were present. The most frequent taxa were the Daphnia longispina complex and Eudiaptomus gracilis, with 48 and 45 occurrences, respectively. Species richness decreased with altitude and increased with lake area. The main structuring factors of community composition were chlorophyll a concentration and depth, which drove an apparent separation of mesotrophic and oligotrophic communities. Bytotrephes had 13 occurrences, showing a preference for deep oligotrophic lakes. Its presence was not coupled with lower crustacean species richness as it was repeatedly observed in North America. Additionally, it frequently co-occurred with the other large predatory cladoceran, Leptodora kindtii. B. longimanus might be considered a truly montane species in Central Europe, given its absence in lowland and alpine lakes. PMID:28649318

  12. Conference Proceedings: Seed Ecology III - The Third International Society for Seed Science Meeting on Seeds and the Environment - "Seeds and Change"; June 20-June 24, 2010; Salt Lake City, Utah, USA

    Treesearch

    Rosemary Pendleton; Susan Meyer; Bitsy Schultz

    2010-01-01

    Seed Ecology III was held in Salt Lake City, Utah in June 2010, sharing the latest research on all aspects of seed ecology. Our meeting was organized around the theme "Seeds and Change." We welcomed contributions in any area of seed ecology. Our agenda also aimed to create bridges between seed ecology and plant conservation, restoration ecology, and global...

  13. Energy Savings Calculations for Heat Island Reduction Strategies in Baton Rouge, Sacramento and Salt Lake City

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konopacki, S.; Akbari, H.

    2000-03-01

    In 1997, the US Environmental Protection Agency (EPA) established the ''Heat Island Reduction Initiative'', to quantify the potential benefits of Heat Island Reduction (HIR) strategies (i.e., shade trees, reflective roofs, reflective pavements and urban vegetation) to reduce cooling energy use in buildings, lower the ambient air temperature and improve urban air quality in cities, and reduce CO2 emissions from power plants. Under this initiative, the Urban Heat Island Pilot Project (UHIPP) was created with the objective to investigate the potential of HIR strategies in residential and commercial buildings in three initial UHIPP cities: Baton Rouge, Sacramento and Salt Lake City.more » This paper summarizes our efforts to calculate the annual energy savings, peak power avoidance and annual C02 reduction of HIR strategies in the three initial cities. In this analysis, we focused on three building types that offer most savings potential: single-family residence, office and retail store. Each building type was characterized in detail by old or new construction and with a gas furnace or an electric heat pump. We defined prototypical building characteristics for each building type and simulated the impact of HIR strategies on building cooling and heating energy use and peak power demand using the DOE-2.IE model. Our simulations included the impact of (1) strategically-placed shade trees near buildings [direct effect], (2) use of high-albedo roofing material on building [direct effect], (3) combined strategies I and 2 [direct effect], (4) urban reforestation with high-albedo pavements and building surfaces [indirect effect] and (5) combined strategies 1, 2 and 4 [direct and indirect effects]. We then estimated the total roof area of air-conditioned buildings in each city using readily obtainable data to calculate the metropolitan-wide impact of HIR strategies. The results show, that in Baton Rouge, potential annual energy savings of $15M could be realized by rate

  14. Asynchrony in the inter-annual recruitment of lake whitefish Coregonus clupeaformis in the Great Lakes region

    USGS Publications Warehouse

    Zischke, Mitchell T.; Bunnell, David B.; Troy, Cary D.; Berglund, Eric K.; Caroffino, David C.; Ebener, Mark P.; He, Ji X.; Sitar, Shawn P.; Hook, Tomas O.

    2017-01-01

    Spatially separated fish populations may display synchrony in annual recruitment if the factors that drive recruitment success, particularly abiotic factors such as temperature, are synchronised across broad spatial scales. We examined inter-annual variation in recruitment among lake whitefish (Coregonus clupeaformis) populations in lakes Huron, Michigan and Superior using fishery-dependent and -independent data from 1971 to 2014. Relative year-class strength (RYCS) was calculated from catch-curve residuals for each year class across multiple sampling years. Pairwise comparison of RYCS among datasets revealed no significant associations either within or between lakes, suggesting that recruitment of lake whitefish is spatially asynchronous. There was no consistent correlation between pairwise agreement and the distance between datasets, and models to estimate the spatial scale of recruitment synchrony did not fit well to these data. This suggests that inter-annual recruitment variation of lake whitefish is asynchronous across broad spatial scales in the Great Lakes. While our method primarily evaluated year-to-year recruitment variation, it is plausible that recruitment of lake whitefish varies at coarser temporal scales (e.g. decadal). Nonetheless, our findings differ from research on some other Coregonus species and suggest that local biotic or density-dependent factors may contribute strongly to lake whitefish recruitment rather than inter-annual variability in broad-scale abiotic factors.

  15. Hydrologic reconnaissance of the southern Great Salt Lake Desert and summary of the hydrology of west-central Utah

    USGS Publications Warehouse

    Gates, Joseph S.; Kruer, Stacie A.

    1981-01-01

    This report is the last of 19 hydrologic reconnaissances of the basins in western Utah. The purposes of this series of studies are (1) to analyze available hydrologic data and describe the hydrologic system, (2) to evaluate existing and potential water-resources development, and (3) to identify additional studies that might be needed. Part 1 of this report gives an estimate of recharge and discharge, an estimate of the potential for water-resources development, and a statement on the quality of water in the southern Great Salt Lake Desert part of west-central Utah. Part 2 deals with the same aspects of west-central Utah as a whole. Part 2 also summarizes the evidence of interbasin ground-water flow in west-central Utah and presents a theory for the origin of the water discharged from Fish Springs.

  16. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    PubMed

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate

  17. Testing a high resolution CO2 and CO emission inventory against atmospheric observations in Salt Lake City, Utah for policy applications

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Gurney, K. R.; Patarasuk, R.; Mallia, D. V.; Fasoli, B.; Bares, R.; Catharine, D.; O'Keeffe, D.; Song, Y.; Huang, J.; Horel, J.; Crosman, E.; Hoch, S.; Ehleringer, J. R.

    2016-12-01

    We address the need for robust highly-resolved emissions and trace gas concentration data required for planning purposes and policy development aimed at managing pollutant sources. Adverse health effects resulting from urban pollution exposure are the result of proximity to emission sources and atmospheric mixing, necessitating models with high spatial and temporal resolution. As urban emission sources co-emit carbon dioxide (CO2) and criteria air pollutants (CAPs), efforts to reduce specific pollutants would synergistically reduce others. We present a contemporary (2010-2015) emissions inventory and modeled CO2 and carbon monoxide (CO) concentrations for Salt Lake County, Utah. We compare emissions transported by a dispersion model against stationary measurement data and present a systematic quantification of uncertainties. The emissions inventory for CO2 is based on the Hestia emissions data inventory that resolves emissions at hourly, building and road-link resolutions, as well as on an hourly gridded scale. The emissions were scaled using annual Energy Information Administration (EIA) fuel consumption data. We derived a CO emissions inventory using methods similar to Hestia, downscaling total county emissions from the 2011 Environmental Protection Agency's (EPA) National Emissions Inventory (NEI). The gridded CO emissions were compared against the Hestia CO2 gridded data to characterize spatial similarities and differences between them. Correlations were calculated at multiple scales of aggregation. The Stochastic Time-Inverted Lagrangian Trasport (STILT) dispersion model was used to transport emissions and estimate pollutant concentrations at an hourly resolution. Modeled results were compared against stationary measurements in the Salt Lake County area. This comparison highlights spatial locations and hours of high variability and uncertainty. Sensitivity to biological fluxes as well as to specific economic sectors was tested by varying their contributions to

  18. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Johnson, William P.; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Gregory; Fernandez, Diego P.; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark C.

    2015-01-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible ‘reactive’ Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values ofkmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation.

  19. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes.

    PubMed

    Worni, Raphael; Huggel, Christian; Stoffel, Markus

    2013-12-01

    Glacial lake hazards and glacial lake distributions are investigated in many glaciated regions of the world, but comparably little attention has been given to these topics in the Indian Himalayas. In this study we present a first area-wide glacial lake inventory, including a qualitative classification at 251 glacial lakes >0.01 km(2). Lakes were detected in the five states spanning the Indian Himalayas, and lake distribution pattern and lake characteristics were found to differ significantly between regions. Three glacial lakes, from different geographic and climatic regions within the Indian Himalayas were then selected for a detailed risk assessment. Lake outburst probability, potential outburst magnitudes and associated damage were evaluated on the basis of high-resolution satellite imagery, field assessments and through the use of a dynamic model. The glacial lakes analyzed in the states of Jammu and Kashmir and Himachal Pradesh were found to present moderate risks to downstream villages, whereas the lake in Sikkim severely threatens downstream locations. At the study site in Sikkim, a dam breach could trigger drainage of ca. 16×10(6)m(3) water and generate maximum lake discharge of nearly 7000 m(3) s(-). The identification of critical glacial lakes in the Indian Himalayas and the detailed risk assessments at three specific sites allow prioritizing further investigations and help in the definition of risk reduction actions. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Hydrology of Crater, East and Davis Lakes, Oregon; with section on Chemistry of the Lakes

    USGS Publications Warehouse

    Phillips, Kenneth N.; Van Denburgh, A.S.

    1968-01-01

    Crater, East, and Davis Lakes are small bodies of fresh water that occupy topographically closed basins in Holocene volcanic terrane. Because the annual water supply exceeds annual evaporation, water must be lost by seepage from each lake. The seepage rates vary widely both in volume and in percentage of the total water supply. Crater Lake loses about 89 cfs (cubic feet per second), equivalent to about 72 percent of its average annual supply. East Lake loses about 2.3 cfs, or about 44 percent of its estimated supply. Davis Lake seepage varies greatly with lake level, but the average loss is about 150 cfs, more than 90 percent of its total supply. The destination of the seepage loss is not definitely known for any of the lakes. An approximate water budget was computed for stationary level for each lake, by using estimates 'by the writer to supplement the hydrologic data available. The three lake waters are dilute. Crater Lake contains about 80 ppm, (parts per million) of dissolved solids---mostly silica, sodium, and bicarbonate, and lesser amounts of calcium, sulfate, and chloride. Much of the dissolved-solids content of Crater Lake---especially the sulfate and chloride---may be related to fumarole and thermal-spring activity that presumably followed the collapse of Mount Mazama. Although Grater Lake loses an estimated 7,000 tons of its 1.5million-ton salt content each year by leakage, the chemical character of the lake did not change appreciably between 1912 and 1964. East Lake contains 200 ppm of dissolved solids, which includes major proportions of calcium, sodium, bicarbonate, and sulfate, but almost no chloride. The lake apparently receives much of its dissolved solids from subsurface thermal springs. Annual solute loss from East Lake by leakage is about 450 tons, or 3 percent of the lake's 15,000-ton estimated solute content. Davis Lake contains only 48 ppm of dissolved solids, much of which is silica and bicarbonate; chloride is almost completely absent

  1. A needs assessment for climate change education in the Great Lakes region

    NASA Astrophysics Data System (ADS)

    Rutherford, S.; Schneider, L. B.; Walters, H.

    2011-12-01

    The National Science Foundation funded Great Lakes Climate Change Science and Education Systemic Network project is implementing a two year planning effort to create innovative education programs to benefit the public, formal and informal educators, scientists, and journalists in the region. The current partners include Eastern Michigan University, NOAA's Great Lakes Environmental Research Lab, University of Michigan, Michigan State University, Knight Center for Environmental Journalism, Ashland University, Ann Arbor Hands-On Museum, and the College of Exploration. To create a network we are planning to bring together different stakeholders to write two white papers, one from the scientists' perspective and the other from the educators'(both formal and informal) perspective. The current partners' key personnel have produced a list of possible people/institutions to include in a stakeholder survey. Some of the key personnel developed their databases from scratch. Some used listserves, and others tried a snowball email. To identify the best strategy that will inform these various stakeholders and the public regarding the science of climate change in the Great Lakes Region, a survey was developed for each of the different stakeholders. The survey is divided into three parts: 1) questions which convey some understanding of climate science and climate change 2) demographic questions, and finally 3) questions that pertain to the professional concerns or perspectives of the various stakeholders. This survey is being used to provide the project team with a "needs assessment" from the interested members of those stakeholders. The results from this process will be summarized.

  2. Regional environment and hydrology changes documented by lake sediments from Lake Dalianhai, northeastern Tibetan Plateau since the last glacial maximum and their relationship with Asian summer monsoon variability

    NASA Astrophysics Data System (ADS)

    Wu, D.; Chen, F.; Zhou, A.; Abbott, M. B.

    2016-12-01

    Variability of the Asian summer monsoon (ASM) significantly affects environment and hydrology conditions within its area of influence, as well as economic and social development. Thus it is important to investigate the variability of the ASM on various time-scales and to explore its underlying forcing mechanisms, in order to improve our ability to predict the long-term trends of regional and global climate. Northeastern Tibetan Plateau, a margin area of modern ASM, is sensitive to summer monsoon changes. Existing paleoclimate records from this region contain conflicting evidence for the timing of summer monsoon advance into this region: an early arrival pre-Younger Dryas or a late arrival at the beginning of the Holocene. In addition, it is also debated that whether the Holocene ASM maximum in this region occurred during the early Holocene or the middle Holocene. Here we present a high-resolution record of a 52-m drilling core from Lake Dalianhai in this region. Multiply geochemistry indexes were obtained from the sediment core. 22 AMS 14C data from plant remains and bulk organic matters illustrate that the upper 52 m core covered the whole period since the last glacial maximum (LGM). The results generally indicate that the Lake Dalianhai was occupied by very shallow water body with eolian sand surrounding the lake from 20 to 15 ka BP (1ka=1000 cal yr). With the beginning of the B/A warm period, the sedimentary sequence changed to grey lacustrine clay abruptly. The sedimentary environment was relatively stable under a high lake level state during the B/A period which was marked with fine mean grain size, and high exogenous detrital element content (such as Al, K, Ti and Rb), but with low organic matter content. This perhaps was caused by the increasing of ASM precipitation. Increased contents of element Ca, Sr, and Br, as well as TOC and TN, highlight the increase of ASM during the Holocene. However, reddish lacustrine clay with lower magnetic susceptibility and

  3. Occurrence and levels of glyphosate and AMPA in shallow lakes from the Pampean and Patagonian regions of Argentina.

    PubMed

    Castro Berman, M; Marino, D J G; Quiroga, María Victoria; Zagarese, Horacio

    2018-06-01

    Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum systemic herbicide used to kill weeds that compete with commercial crops. In Argentina, the use of glyphosate-based herbicides increased dramatically (up to ∼200,000 tons on 2012) since the introduction of glyphosate-resistant crops, such as transgenic soy and resistant corn, and the adoption of non-till practices in the 1990's. Sallow lakes within the Pampa region may be potentially impacted by continuous herbicide usage. We surveyed 52 shallow lakes from the Pampa region (Buenos Aires Province, Argentina) to assess the occurrence and concentrations of glyphosate and its main degradation product (AMPA). For comparison, we also sampled 24 shallow lakes from an area with no agricultural use of glyphosate (Northern Patagonia). Glyphosate and AMPA were analyzed by UPLC-MS/MS ESI (±) in lake water, suspended particulate matter (SPM), and sediment samples. Within the Pampa region, glyphosate residues were detected in >40% of samples. Glyphosate residues were detected more frequently in sediment and surface water than in SPM samples. The mean (maximum) concentrations of glyphosate were 2.11 (4.52) μg l -1 for surface water; 0.10 (0.13) μg l -1 for SPM and 10.47 (20.34) μg kg -1 for sediment samples, respectively. Whereas, mean (maximum) concentrations of AMPA were 0.84 and (0.90) μg l -1 for surface water; 0.07 (0.07) μg l -1 for SPM; and 22.53 (32.89) μg kg -1 for sediment samples. The herbicide was not detected in samples from the Patagonian region. To our knowledge, this is the first study reporting the occurrence and concentrations of the herbicide in freshwater lakes of Argentina. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Land use in the lake states region: an analysis of past trends and projections of future changes.

    Treesearch

    Thomas E. Mauldin; Andrew J. Plantinga; Ralph J. Alig

    1999-01-01

    This paper presents the historic trends and future projections of forest, farm, and urban land uses for the Lake States of Michigan, Minnesota, and Wisconsin. Since the 1950s, forest and farm land have been decreasing, and urban and other land uses have been increasing throughout the Lake States. Forest, crop, and pasture land have decreased in the region by 3.2, 5.4...

  5. A REGIONAL ANALYSIS OF LAKE ACIDIFICATION TRENDS FOR THE NORTHEASTEN U.S., 1982-1994

    EPA Science Inventory

    Acidic deposition is a regional phenomenon, but its effects have traditionally been studied using site-specific, intensive monitoring. We present trends information for 36 lakes of high-to-moderate acid sensitivity (defined as acid neutralizing capacity [ANC] < 100 eq L-1),and 1...

  6. High pollution events in the Great Salt Lake Basin and its adjacent valleys. Insights on mechanisms and spatial distribution of the formation of secondary aerosol.

    NASA Astrophysics Data System (ADS)

    Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.; Fibiger, D. L.; Goldberger, L.; McDuffie, E. E.; Moravek, A.; Murphy, J. G.; Thornton, J. A.; Womack, C.

    2017-12-01

    High pollution events are common in many locations in the U.S.A. and around the world. They can last several days or up to weeks and they negatively affect human health, deteriorate visibility, and increase premature mortality. The main causes for high pollution events are related to meteorology and sources. They often happen in the winter, when high emissions, stagnation and reduced mixing, due to a shallow boundary layer, cause high concentrations of pollutants to accumulate. In the last decades, the air quality in the U.S. has seen an overall improvement, due to the reductions in particulate and gaseous pollutants. However, some areas remain critical. The Great Salt Lake Basin and its adjacent valleys are currently areas where high pollution events are a serious environmental problem involving more than 2.4 million people. We will present the results of the Utah Wintertime Fine Particulate Study (UWFPS) that took place in winter 2017. During UWFPS, we carried out airborne measurements of aerosol chemical composition and precursor vapor concentrations over the Great Salt Lake Basin and its adjacent valleys. We will give insights into how and under which conditions conversion of precursor vapors into aerosol particles takes place in the area. We will also present a comparison of our measurements with models that will provide an insight of the mechanisms that lead to the formation of secondary aerosol particles. With the results of our work, we aim to inform strategies for pollution control in the future.

  7. Shifts in the Source and Composition of Dissolved Organic Matter in Southwest Greenland Lakes Along a Regional Hydro-climatic Gradient

    NASA Astrophysics Data System (ADS)

    Osburn, Christopher L.; Anderson, Nicholas J.; Stedmon, Colin A.; Giles, Madeline E.; Whiteford, Erika J.; McGenity, Terry J.; Dumbrell, Alex J.; Underwood, Graham J. C.

    2017-12-01

    Dissolved organic matter (DOM) concentration and quality were examined from Arctic lakes located in three clusters across south-west (SW) Greenland, covering the regional climatic gradient: cool, wet coastal zone; dry inland interior; and cool, dry ice-marginal areas. We hypothesized that differences in mean annual precipitation between sites would result in a reduced hydrological connectivity between lakes and their catchments and that this concentrates degraded DOM. The DOM in the inland lake group was characterized by a lower aromaticity and molecular weight, a low soil-like fluorescence, and carbon stable isotope (δ13C-DOC) values enriched by 2‰ relative to the coastal group. DOC-specific absorbance (SUVA254) and DOC-specific soil-like fluorescence (SUVFC1) revealed seasonal and climatic gradients across which DOM exhibited a dynamic we term "pulse-process": Pulses of DOM exported from soils to lakes during snow and ice melt were followed by pulses of autochthonous DOM inputs (possibly from macrophytes), and their subsequent photochemical and microbial processing. These effects regulated the dynamics of DOM in the inland lakes and suggested that if circumpolar lakes currently situated in cool wetter climatic regimes with strong hydrological connectivity have reduced connectivity under a drier future climate, they may evolve toward an end-point of large stocks of highly degraded DOC, equivalent to the inland lakes in the present study. The regional climatic gradient across SW Greenland and its influence on DOM properties in these lakes provide a model of possible future changes to lake C cycling in high-latitude systems where climatic changes are most pronounced.

  8. Using Satellite Imagery to Monitor the Major Lakes; Case Study Lake Hamun

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Islam, R.; Bah, A.; AghaKouchak, A.

    2015-12-01

    Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes would provide invaluable information for policy-makers and local people. As part of a comprehensive study, we aim to monitor the land-cover/ land-use changes in the world's major lakes using satellite observations. As a case study, Hamun Lake which is a pluvial Lake, also known as shallow Lake, located on the south-east of Iran and adjacent to Afghanistan, and Pakistan borders is investigated. The Lake is the main source of resources (agriculture, fishing and hunting) for the people around it and politically important in the region since it is shared among three different countries. The purpose of the research is to find the Lake's area from 1972 to 2015 and to see if any drought or water resources management has affected the lake. Analyzing satellites imagery from Landsat shows that the area of the Lake changes seasonally and intra-annually. Significant seasonal effects are found in 1975,1977, 1987, 1993, 1996, 1998, 2000, 2009 and 2011, as well as, substantial amount of shallow water is found throughout the years. The precipitation records as well as drought historical records are studied for the lake's basin. Meteorological studies suggest that the drought, decrease of rainfalls in the province and the improper management of the Lake have caused environmental, economic and geographical consequences. The results reveal that lake has experienced at least two prolong dryings since 1972 which drought cannot solely be blamed as main forcing factor.Proper lakes function can ease the impact of floods and drought especially in arid and semi-arid regions. They are important environmentally and can directly affect human lives. Better understanding of the effect of climate change and human-driven changes on lakes

  9. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    NASA Astrophysics Data System (ADS)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  10. Crystals May Have Formed in Drying Martian Lake

    NASA Image and Video Library

    2014-12-08

    Lozenge-shaped crystals are evident in this magnified view of a Martian rock target called Mojave, taken on Nov. 15, 2014, by NASA Curiosity Mars rover. These features record concentration of dissolved salts, possibly in a drying lake.

  11. Microbial communities and their predicted metabolic functions in a desiccating acid salt lake.

    PubMed

    Zaikova, Elena; Benison, Kathleen C; Mormile, Melanie R; Johnson, Sarah Stewart

    2018-05-01

    The waters of Lake Magic in Western Australia are among the most geochemically extreme on Earth. This ephemeral saline lake is characterized by pH as low as 1.6 salinity as high as 32% total dissolved solids, and unusually complex geochemistry, including extremely high concentrations of aluminum, silica, and iron. We examined the microbial composition and putative function in this extreme acid brine environment by analyzing lake water, groundwater, and sediment samples collected during the austral summer near peak evapoconcentration. Our results reveal that the lake water metagenome, surprisingly, was comprised of mostly eukaryote sequences, particularly fungi and to a lesser extent, green algae. Groundwater and sediment samples were dominated by acidophilic Firmicutes, with eukaryotic community members only detected at low abundances. The lake water bacterial community was less diverse than that in groundwater and sediment, and was overwhelmingly represented by a single OTU affiliated with Salinisphaera. Pathways associated with halotolerance were found in the metagenomes, as were genes associated with biosynthesis of protective carotenoids. During periods of complete desiccation of the lake, we hypothesize that dormancy and entrapment in fluid inclusions in halite crystals may increase long-term survival, leading to the resilience of complex eukaryotes in this extreme environment.

  12. Post-glacial recolonization of the Great Lakes region by the common gartersnake (Thamnophis sirtalis) inferred from mtDNA sequences.

    PubMed

    Placyk, John S; Burghardt, Gordon M; Small, Randall L; King, Richard B; Casper, Gary S; Robinson, Jace W

    2007-05-01

    Pleistocene events played an important role in the differentiation of North American vertebrate populations. Michigan, in particular, and the Great Lakes region, in general, were greatly influenced by the last glaciation. While several hypotheses regarding the recolonization of this region have been advanced, none have been strongly supported. We generated 148 complete ND2 mitochondrial DNA (mtDNA) sequences from common gartersnake (Thamnophis sirtalis) populations throughout the Great Lakes region to evaluate phylogeographic patterns and population structure and to determine whether the distribution of haplotypic variants is related to the post-Pleistocene retreat of the Wisconsinan glacier. The common gartersnake was utilized, as it is believed to have been one of the primary vertebrate invaders of the Great Lakes region following the most recent period of glacial retreat and because it has been a model species for a variety of evolutionary, ecological, behavioral, and physiological studies. Several genetically distinct evolutionary lineages were supported by both genealogical and molecular population genetic analyses, although to different degrees. The geographic distribution of the majority of these lineages is interpreted as reflecting post-glacial recolonization dynamics during the late Pleistocene. These findings generally support previous hypotheses of range expansion in this region.

  13. Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert A.

    1950-01-01

    Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.

  14. New structural/tectonical model and its implication on hydrological thinking and groundwater management - the Lake Tiberias, Jordan Rift Valley

    NASA Astrophysics Data System (ADS)

    Inbar, Nimrod; Magri, Fabien; Yellin-Dror, Annat; Rosenthal, Eliahu; Möller, Peter; Siebert, Christian; Guttman, Josef

    2014-05-01

    Lake Tiberias is a fresh water lake located at the Kinneret basin which is approximately 30 km long and 10 km wide. It comprises a link in the chain of pull-apart basins that characterizes the structure of the conspicuous Jordan Rift Valley (JRV). The basin surface is about 200 m below mean sea level (msl) and basin-fill attains a thickness of up to 8 km. Until recently, studies focused mainly on the upper strata of basin fill. Consequently, a complete three dimensional geological model, including clear view of the tectonic framework at the Kinneret Basin was incomplete. This situation imposes great difficulty in understanding the local hydrological system and as consequence enforce constrains on groundwater management of the regional aquifers that flows towards the lake. A recently proposed structural/tectonical model (Inbar, 2012) enables revaluation of several geohydrological aspects at Sea of Galilee and its surroundings and a new hydrological model based on those findings aims to clarify those aspects with relation to groundwater management. The deep-seated stratigraphical units were seismically studied at the Kinnarot Valley (southern part of Kinneret basin) where sufficient information is available (Inbar, 2012). This study shows the subsidence and northwestward tilting of the basin floor (pre-rift formations) and the flow of thick Late Miocene salt accumulation accordingly. Furthermore, shallower seismic data, collected at the lake itself, shows a suspected salt dome close to the western boundary fault of the basin (Resnikov et al., 2004). Salt flow is now suggested to be a substantial factor in the tectonic play. At the lake surroundings there are several springs and boreholes where brine immerges from an estimated depth of about 2-3 kilometers. Significant differences in brine characteristics raised questions regarding the location of brine traps, flow mechanism and the mixture process between the fresh water and the brine. However, the effect of the

  15. Task Order 2 enhanced preliminary assessment, Fort Douglas, Salt Lake City, Utah. Final report, October-December 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirchandani, M.G.; Johnson, G.M.; Bove, L.J.

    1989-12-01

    An enhanced preliminary assessment (PA) of air pollution was conducted at Fort Douglas (FD) under the Base Closure Program. FD is an active military installation located in Salt Lake City, Utah. The Fort consists of the U.S. Army and Navy Reserve Centers, family housing units, a military museum, a chapel, clubs, swimming pool, a cemetery and various other support buildings. 50.8 acres of the 119 acres owned by FD are proposed to be excessed. Based on information obtained during the onsite visit and from available drawings and reports, three environmentally significant operations (ESOs) have been identified. These include asbestos, radonmore » and transformers. No immediate action has been recommended for any of the ESOs. Site investigations have been recommended for asbestos and the transformers. A radon sampling program is currently underway at FD. This radon sampling program is being conducted by Fort Carson; the results should be evaluated as they become available, and the appropriate actions taken.« less

  16. Sublake geologic structure from high-resolution seismic-reflection data from four sinkhole lakes in the Lake Wales Ridge, Central Florida

    USGS Publications Warehouse

    Tihansky, A.B.; Arthur, J.D.; DeWitt, D.W.

    1996-01-01

    Seismic-reflection profiles from Lake Wales, Blue Lake, Lake Letta, and Lake Apthorp located along the Lake Wales Ridge in central Florida provide local detail within the regional hydrogeologic framework as described by litho- and hydrostratigraphic cross sections. Lakes located with the mantled karst region have long been considered to be sinkhole lakes, originating from subsidence activity. High-resolution seismic- reflection data confirm this origin for these four lakes. The geologic framework of the Lake Wales Ridge has proven to be a suitable geologic setting for continuous high-resolution seismic-reflection profiling in lakes; however, the nature of the lake-bottom sediments largely controls the quality of the seismic data. In lakes with significant organic-rich bottom deposits, interpretable record was limited to areas where organic deposits were minimal. In lakes with clean, sandy bottoms, the seismic-reflection methods were highly successful in obtaining data that can be correlated with sublake subsidence features. These techniques are useful in examining sublake geology and providing a better understanding of how confining units are affected by subsidence in a region where their continuity is of significant importance to local lake hydrology. Although local geologic control around each lake generally corresponds to the regional geologic framework, local deviations from regional geologic trends occur in sublake areas affected by subsidence activity. Each of the four lakes examined represents a unique set of geologic controls and provides some degree of structural evidence of subsidence activity. Sublake geologic structures identified include: (1) marginal lake sediments dipping into bathymetric lows, (2) lateral discontinuity of confining units including sags and breaches, (3) the disruption and reworking of overlying unconsolidated siliciclastic sediments as they subside into the underlying irregular limestone surface, and (4) sublake regions where

  17. Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, David L.

    2017-01-01

    Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

  18. Cooperation control strategies for China's cross-region pollution in a lake basin based on green reduction cost.

    PubMed

    Li, Changmin; Sun, Dong; Xie, Xiaoqiang; Xue, Jian

    2016-05-01

    The cross-region water pollution issue has always been the widespread concern around the world. It becomes especially critical for China due to the imbalance relates to environmental costs that have accompanied rapid growth of economy. Though the government makes great efforts to improve it, the potential for water pollution conflict is still great. We consider the problem of determining combined control strategies for China's cross-region lake pollution based on the environmental green costs. The problem is first formulated as a generalized bilevel mathematical program where the upper level consists in each region that reduces environmental green costs including three parts: the reduction cost, pollution permit trade cost and cost of environment damage, while the lower level is represented by pollution permit equilibrium market. Finally, we take an empirical analysis in Taihu lake. The numerical study shows that the minimum costs of both total and regional are obviously superior to the current processing costs, which provides theoretical basis for the price of emission permits. Today, China's rapid gross domestic product (GDP) growth has come at a very high cost, as real estate prices have skyrocketed, the wealth gap has widened, and environmental pollution has worsened. China's central government is urged to correct the GDP-oriented performance evaluation system that is used to judge administrative region leaders. The cross-region water pollution issue has become a troubling issue that urgently needs to be resolved in China. This paper will not only actively aid efforts to govern Lake Taihu and other cross-region valleys, but it will also provide a supplement for theoretical research on cross-region pollution issues.

  19. Regional nitrogen budget of the Lake Victoria Basin, East Africa: syntheses, uncertainties and perspectives

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Brandt, Patric; Pelster, David; Rufino, Mariana C.; Robinson, Timothy; Butterbach-Bahl, Klaus

    2014-10-01

    Using the net anthropogenic nitrogen input (NANI) approach we estimated the N budget for the Lake Victoria Basin in East Africa. The NANI of the basin ranged from 887 to 3008 kg N km-2 yr-1 (mean: 1827 kg N km-2 yr-1) for the period 1995-2000. The net nitrogen release at basin level is due primarily to livestock and human consumption of feed and foods, contributing between 69% and 85%. Atmospheric oxidized N deposition contributed approximately 14% to the NANI of the Lake Victoria Basin, while either synthetic N fertilizer imports or biological N fixations only contributed less than 6% to the regional NANI. Due to the low N imports of feed and food products (<20 kg N km-2 yr-1), nitrogen release to the watershed must be derived from the mining of soil N stocks. The fraction of riverine N export to Lake Victoria accounted for 16%, which is much lower than for watersheds located in Europe and USA (25%). A significant reduction of the uncertainty of our N budget estimate for Lake Victoria Basin would be possible if better data on livestock systems and riverine N export were available. Our study indicates that at present soil N mining is the main source of nitrogen in the Lake Victoria Basin. Thus, sustainable N management requires increasing agricultural N inputs to guarantee food security and rehabilitation and protection of soils to minimize environmental costs. Moreover, to reduce N pollution of the lake, improving management of human and animal wastes needs to be carefully considered in future.

  20. Late Pleistocene and Holocene vegetation and climate changes in the Lake Baikal region

    NASA Astrophysics Data System (ADS)

    Demske, D.; Heumann, G.; Granoszewski, W.; Mamakowa, K.; Piotrowska, N.; Bluszcz, A.; Goslar, T.

    2003-04-01

    Palynological high-resolution records from Lake Baikal sediments document strong vegetational changes during the transitions from an open landscape to Late Glacial shrublands and Holocene forests. For three core sites, investigated within EU-Project CONTINENT, sporomorph concentrates were used for AMS 14C dating of environmental changes. The pollen record from the northern lake site, located in vicinity to the Barguzin Mountains, shows pronounced maxima of Salix and Picea corresponding to late Pleistocene warming. A peak maximum in Alnus fruticosa during the Younger Dryas cooling coincided with low abundance of green algae in the lake and a decline in Picea trees. Fern-rich forests with Picea, Larix and Betula developed during early Holocene. With an abrupt expansion of Pteridium ferns Abies appeared in the northeastern Baikal region, reflecting optimum conditions for dark taiga. Among pines Pinus sibirica prevailed prior to the spread of P. sylvestris. Expansion of pines points to a distinct decrease in precipitation. A palynological sequence from the same site reflects the vegetation development during the last interglacial, with differences indicated by higher abundance of Abies. The upper part of the interglacial record comprises the transition to stadial conditions. Further pollen spectra are probably equivalent to first interstadials of the early glacial period (Zyryansk). Comparison with southern sites, in vicinity to the Selenga Delta and the Khamar-Daban Mountains, reveals that regional and temporal differentiation of Holocene vegetation development and climate conditions was closely related to the distribution of mountain ranges.

  1. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California

  2. Fault Activity in the Terrebonne Trough, Southeastern Louisiana: A Continuation of Salt-Withdrawal Fault Activity from the Miocene into the late Quaternary and Implication for Subsidence Hot-Spots

    NASA Astrophysics Data System (ADS)

    Akintomide, A. O.; Dawers, N. H.

    2017-12-01

    The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date

  3. Chemical quality of surface waters in Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has

  4. A synthesis of thermokarst lake water balance in high-latitude regions of North America from isotope tracers

    USGS Publications Warehouse

    MacDonald, Lauren A.; Wolfe, Brent B.; Turner, Kevin W.; Anderson, Lesleigh; Arp, Christopher D.; Birks, Jean; Bouchard, Frédéric; Edwards, Thomas W.D.; Farquharson, Nicole; Hall, Roland I.; McDonald, Ian; Narancic, Biljana; Ouimet, Chantal; Pienitz, Reinhard; Tondu, Jana; White, Hilary

    2017-01-01

    Numerous studies utilizing remote sensing imagery and other methods have documented that thermokarst lakes are undergoing varied hydrological transitions in response to recent climate changes, from surface area expansion to drainage and evaporative desiccation. Here, we provide a synthesis of hydrological conditions for 376 lakes of mainly thermokarst origin across high-latitude North America. We assemble surface water isotope compositions measured during the past decade at five lake-rich landscapes including Arctic Coastal Plain (Alaska), Yukon Flats (Alaska), Old Crow Flats (Yukon), northwestern Hudson Bay Lowlands (Manitoba), and Nunavik (Quebec). These landscapes represent the broad range of thermokarst environments by spanning gradients in meteorological, permafrost, and vegetation conditions. An isotope framework was established based on flux-weighted long-term averages of meteorological conditions for each lake to quantify water balance metrics. The isotope composition of source water and evaporation-to-inflow ratio for each lake were determined, and the results demonstrated a substantial array of regional and subregional diversity of lake hydrological conditions. Controls on lake water balance and how these vary among the five landscapes and with differing environmental drivers are assessed. Findings reveal that lakes in the Hudson Bay Lowlands are most vulnerable to evaporative desiccation, whereas those in Nunavik are most resilient. However, we also identify the complexity in predicting hydrological responses of these thermokarst landscapes to future climate change.

  5. Epidemiological Features and Effectiveness of Schistosomiasis Control Programme in Lake and Marshland Region in The People's Republic of China.

    PubMed

    Zhang, S-Q; Sun, C-S; Wang, M; Lin, D-D; Zhou, X-N; Wang, T-P

    2016-01-01

    Schistosomiasis is one of neglected tropical diseases in the world. The People's Republic of China has made great achievements in schistosomiasis control through integrated interventions. Although the morbidity and mortality have been reduced to the lowest level in all three endemic regions, namely lake and marshland regions, hilly and mountainous regions and plains with waterway networks regions, the endemic status in lake and marshland region is still that of implementing the interventions in the higher endemicity areas towards elimination of schistosomiasis transmission. This review explores and analyses the endemic characteristics, control measures and its effectiveness in the course of schistosomiasis control programme, in order to provide more theoretical information and experiences for development of appropriate strategies leading to schistosomiasis elimination in the next stage in the country. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Use of wetlands for water quality improvement under the USEPA Region V Clean Lakes Program

    NASA Astrophysics Data System (ADS)

    Landers, Judith C.; Knuth, Barbara A.

    1991-03-01

    The United States Environmental Protection Agency (USEPA) Region V Clean Lakes Program employs artificial and modified natural wetlands in an effort to improve the water quality of selected lakes. We examined use of wetlands at seven lake sites and evaluated the physical and institutional means by which wetland projects are implemented and managed, relative to USEPA program goals and expert recommendations on the use of wetlands for water quality improvement. Management practices recommended by wetlands experts addressed water level and retention, sheet flow, nutrient removal, chemical treatment, ecological and effectiveness monitoring, and resource enhancement. Institutional characteristics recommended included local monitoring, regulation, and enforcement and shared responsibilities among jurisdictions. Institutional and ecological objectives of the National Clean Lakes Program were met to some degree at every site. Social objectives were achieved to a lesser extent. Wetland protection mechanisms and appropriate institutional decentralization were present at all sites. Optimal management techniques were employed to varying degrees at each site, but most projects lack adequate monitoring to determine adverse ecological impacts and effectiveness of pollutant removal and do not extensively address needs for recreation and wildlife habitat. There is evidence that the wetland projects are contributing to improved lake water quality; however, more emphasis needs to be placed on wetland protection and long-term project evaluation.

  7. Diurnal trends in methylmercury concentration in a wetland adjacent to Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Cederberg, J.R.; Krabbenhoft, D.P.; Beisner, K.R.; Whitehead, J.; Gardberg, J.

    2011-01-01

    A 24-h field experiment was conducted during July 2008 at a wetland on the eastern shore of Great Salt Lake (GSL) to assess the diurnal cycling of methylmercury (MeHg). Dissolved (<0.45??m) MeHg showed a strong diurnal variation with consistently decreasing concentrations during daylight periods and increasing concentrations during non-daylight periods. The proportion of MeHg relative to total Hg in the water column consistently decreased with increasing sunlight duration, indicative of photodegradation. During the field experiment, measured MeHg photodegradation rates ranged from 0.02 to 0.06ngL-1h-1. Convective overturn of the water column driven by nighttime cooling of the water surface was hypothesized as the likely mechanism to replace the MeHg in the water column lost via photodegradation processes. A hydrodynamic model of the wetland successfully simulated convective overturn of the water column during the field experiment. Study results indicate that daytime monitoring of selected wetlands surrounding GSL may significantly underestimate the MeHg content in the water column. Wetland managers should consider practices that maximize the photodegradation of MeHg during daylight periods. ?? 2011.

  8. Bark beetles and fungal associates colonizing white spruce in the Great Lakes region.

    Treesearch

    Kirsten E. Haberkern; Barbara L. Illman; Kenneth F. Raffa

    2002-01-01

    We examined the major bark beetles and associated fungi colonizing subcortical tissues of white spruce (Picea glauca (Moench) Voss) in the Great Lakes region. Trees were felled at one northwestern Wisconsin site in a preliminary study in 1997 and at 10 sites throughout northern Wisconsin, Minnesota, and Michigan in 1998. Fungal isolations were made from beetles...

  9. Hydrography and circulation of ice-marginal lakes at Bering Glacier, Alaska, U.S.A.

    USGS Publications Warehouse

    Josberger, E.G.; Shuchman, R.A.; Meadows, G.A.; Savage, S.; Payne, J.

    2006-01-01

    An extensive suite of physical oceanographic, remotely sensed, and water quality measurements, collected from 2001 through 2004 in two ice-marginal lakes at Bering Glacier, Alaska-Berg Lake and Vitus Lake-show that each has a unique circulation controlled by their specific physical forcing within the glacial system. Conductivity profiles from Berg Lake, perched 135 m a.s.l., show no salt in the lake, but the temperature profiles indicate an apparently unstable situation, the 4??C density maximum is located at 10 m depth, not at the bottom of the lake (90 m depth). Subglacial discharge from the Steller Glacier into the bottom of the lake must inject a suspended sediment load sufficient to marginally stabilize the water column throughout the lake. In Vitus Lake, terminus positions derived from satellite imagery show that the glacier terminus rapidly retreated from 1995 to the present resulting in a substantial expansion of the volume of Vitus Lake. Conductivity and temperature profiles from the tidally influenced Vitus Lake show a complex four-layer system with diluted (???50%) seawater in the bottom of the lake. This lake has a complex vertical structure that is the result of convection generated by ice melting in salt water, stratification within the lake, and freshwater entering the lake from beneath the glacier and surface runoff. Four consecutive years, from 2001 to 2004, of these observations in Vitus Lake show little change in the deep temperature and salinity conditions, indicating limited deep water renewal. The combination of the lake level measurements with discharge measurements, through a tidal cycle, by an acoustic Doppler Current Profiler (ADCP) deployed in the Seal River, which drains the entire Bering system, showed a strong tidal influence but no seawater entry into Vitus Lake. The ADCP measurements combined with lake level measurements established a relationship between lake level and discharge, which when integrated over a tidal cycle, gives a

  10. The 24 July 2008 outburst flood of Zyndan glacier lake, Ysyk-Köl region, Kyrgyzstan

    NASA Astrophysics Data System (ADS)

    Narama, C.; Duishonakonov, M.; Kääb, A.; Abdrakhmatov, K.

    2009-04-01

    On 24 July 2008, a glacial lake outburst flood (GLOF) occurred in the Zyndan River, the Ysyk-Köl region, Kyrgyzstan. The flood killed three people and many livestock (horse, sheep, fish), and caused heavy damage destroying a bridge, road, two homes, and crops of agriculture fields. We researched the damege after two days of the GLOF. Using kinematic GPS we measured the decrease of the glacier lake area, and the according drop of the water level through the outburst. Glacier lake area of about 0.03 km2 reduced after the collapse, more than 400,000 m3 of water were discharged. While the initial flood discharge was relatively small, it increased substantially and was carrying large boulders after 30 minutes. When spreading further downstream, the dirty waters trapped eight people on islands between the stream branches. The flood discharge continued to rise until midnight and began to decrease again around 3 AM the next morning. The lake at 3771 m asl is located in front of the west Zyndan glacier at the head of the Zyndan River basin. The glacier lake had developed rapidly due to glacier shrinkage caused by recent atmospheric warming. Reasons for the outburst included melting of dead ice inside the moraine that dammed the lake. The villages downstream escaped heavy damage, because the main flood changed its direction, away from the water reservoir along the village and towards another river.

  11. Uncertainty in the Himalayan energy-water nexus: estimating regional exposure to glacial lake outburst floods

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Worni, Raphael; Huggel, Christian; Stoffel, Markus; Korup, Oliver

    2016-07-01

    Himalayan water resources attract a rapidly growing number of hydroelectric power projects (HPP) to satisfy Asia’s soaring energy demands. Yet HPP operating or planned in steep, glacier-fed mountain rivers face hazards of glacial lake outburst floods (GLOFs) that can damage hydropower infrastructure, alter water and sediment yields, and compromise livelihoods downstream. Detailed appraisals of such GLOF hazards are limited to case studies, however, and a more comprehensive, systematic analysis remains elusive. To this end we estimate the regional exposure of 257 Himalayan HPP to GLOFs, using a flood-wave propagation model fed by Monte Carlo-derived outburst volumes of >2300 glacial lakes. We interpret the spread of thus modeled peak discharges as a predictive uncertainty that arises mainly from outburst volumes and dam-breach rates that are difficult to assess before dams fail. With 66% of sampled HPP are on potential GLOF tracks, up to one third of these HPP could experience GLOF discharges well above local design floods, as hydropower development continues to seek higher sites closer to glacial lakes. We compute that this systematic push of HPP into headwaters effectively doubles the uncertainty about GLOF peak discharge in these locations. Peak discharges farther downstream, in contrast, are easier to predict because GLOF waves attenuate rapidly. Considering this systematic pattern of regional GLOF exposure might aid the site selection of future Himalayan HPP. Our method can augment, and help to regularly update, current hazard assessments, given that global warming is likely changing the number and size of Himalayan meltwater lakes.

  12. Variability in methane emissions from West Siberia's shallow boreal lakes on a regional scale and its environmental controls

    NASA Astrophysics Data System (ADS)

    Sabrekov, Aleksandr F.; Runkle, Benjamin R. K.; Glagolev, Mikhail V.; Terentieva, Irina E.; Stepanenko, Victor M.; Kotsyurbenko, Oleg R.; Maksyutov, Shamil S.; Pokrovsky, Oleg S.

    2017-08-01

    Small lakes represent an important source of atmospheric CH4 from northern wetlands. However, spatiotemporal variations in flux magnitudes and the lack of knowledge about their main environmental controls contribute large uncertainty into the global CH4 budget. In this study, we measured methane fluxes from small lakes using chambers and bubble traps. Field investigations were carried out in July-August 2014 within the West Siberian middle and southern taiga zones. The average and median of measured methane chamber fluxes were 0.32 and 0.30 mgCH4 m-2 h-1 for middle taiga lakes and 8.6 and 4.1 mgCH4 m-2 h-1 for southern taiga lakes, respectively. Pronounced flux variability was found during measurements on individual lakes, between individual lakes and between zones. To analyze these differences and the influences of environmental controls, we developed a new dynamic process-based model. It shows good performance with emission rates from the southern taiga lakes and poor performance for individual lakes in the middle taiga region. The model shows that, in addition to well-known controls such as temperature, pH and lake depth, there are significant variations in the maximal methane production potential between these climatic zones. In addition, the model shows that variations in gas-filled pore space in lake sediments are capable of controlling the total methane emissions from individual lakes. The CH4 emissions exhibited distinct zonal differences not only in absolute values but also in their probability density functions: the middle taiga lake fluxes were best described by a lognormal distribution while the southern taiga lakes followed a power-law distribution. The latter suggests applicability of self-organized criticality theory for methane emissions from the southern taiga zone, which could help to explain the strong variability within individual lakes.

  13. HISTORICAL SNOW AMOUNTS IN THE LAKE EFFECT REGION OF LAKE SUPERIOR: EVIDENCE OF CLIMATE CHANGE IN THE GREAT LAKES

    EPA Science Inventory

    Recent studies (Levitus et al., .2000) suggest a warming of the world ocean over the past 50 years. This could be occurring in the Great Lakes also but thermal measurements are lacking. Historical trends in natural phenomena, such as the duration of ice cover on lakes, provide in...

  14. Landslide susceptibility in the Tully Valley area, Finger Lakes region, New York

    USGS Publications Warehouse

    Jager, Stefan; Wieczorek, Gerald E.

    1994-01-01

    As a consequence of a large landslide in the Tully Valley, Onondaga County, New York, an investigation was undertaken to determine the factors responsible for the landslide in order to develop a model for regional landslide susceptibility. The April 27, 1993 Tully Valley landslide occurred within glacial lake clays overlain by till and colluvium on gentle slopes of 9-12 degrees. The landslide was triggered by extreme climatic events of prolonged heavy rainfall combined with rapid melting of a winter snowpack. A photoinventory and field checking of landslides within a 415 km2 study area, including the Tully Valley, revealed small recently-active landslides and other large dormant prehistoric landslides, probably Pleistocene in age. Similar to the larger Tully Valley landslide, the smaller recently-active landslides occurred in red, glacial lake clays very likely triggered by seasonal rainfall. The large dormant landslides have been stable for long periods as evidenced by slope denudational processes that have modified the landslides. These old and ancient landslides correspond with proglacial lake levels during the Pleistocene, suggesting that either inundation or rapid drainage was responsible for triggering these landslides. A logistic regression analysis was performed within a Geographic Information System (GIS) environment to develop a model of landslide susceptibility for the Tully Valley study area. Presence of glacial clays, slope angle, and glacial lake levels were used as explanatory variables for landslide incidence. The spatial probability of landsliding, categorized as low, moderate and high, is portrayed within 90-m square cells on the susceptibility map.

  15. Coupling socioeconomic and lake systems for sustainability: a conceptual analysis using Lake St. Clair region as a case study.

    PubMed

    Mavrommati, Georgia; Baustian, Melissa M; Dreelin, Erin A

    2014-04-01

    Applying sustainability at an operational level requires understanding the linkages between socioeconomic and natural systems. We identified linkages in a case study of the Lake St. Clair (LSC) region, part of the Laurentian Great Lakes system. Our research phases included: (1) investigating and revising existing coupled human and natural systems frameworks to develop a framework for this case study; (2) testing and refining the framework by hosting a 1-day stakeholder workshop and (3) creating a causal loop diagram (CLD) to illustrate the relationships among the systems' key components. With stakeholder assistance, we identified four interrelated pathways that include water use and discharge, land use, tourism and shipping that impact the ecological condition of LSC. The interrelationships between the pathways of water use and tourism are further illustrated by a CLD with several feedback loops. We suggest that this holistic approach can be applied to other case studies and inspire the development of dynamic models capable of informing decision making for sustainability.

  16. Huguangyan Maar Lake (SE China): A solid record of atmospheric mercury pollution history in a non-remote region

    NASA Astrophysics Data System (ADS)

    Zeng, Yan; Chen, Jingan; Yang, Yongqiong; Wang, Jianxu; Zhu, Zhengjie; Li, Jian

    2017-10-01

    Mercury is a highly toxic metal that can cause harm to environment and human health. As atmospheric deposition is the main source of total Hg input to aquatic system in remote and pristine regions, almost all the studies on atmospheric Hg pollution history concentrated in these areas, while the studies in non-remote areas are much limited, especially for the long history records. In this study, Huguangyan Maar Lake, an undisturbed lake system at low altitude in China, was selected to reconstruct the atmospheric mercury pollution history. Variation patterns of TOC, Hg and non-residual Sr in the sediment core indicated that, compared to the direct atmospheric Hg deposition, the effect of either Hg scavenging from water column by algae or the catchment inputs of previously deposited Hg on the Hg accumulation in the lake sediment was limited. The sediment Hg content in Huguangyan Lake was mainly controlled by the atmospheric Hg deposition, and thus accurately reflected the atmospheric Hg pollution history. The Hga (Hg content from atmospheric deposition) in Huguangyan Lake presented a comparable variation pattern to that in remote sites. It had the same variation trend as the global atmospheric Hg before 1950 CE, which could be attributed to the Industrial Revolution. After that, it was mainly controlled by Hg emissions from Asian countries. The variation of Hga also indicated that atmospheric Hg deposition accelerated significantly since 2000 CE. This study, along with other investigations in remote sites in China, showed that the sediment Hg in Huguangyan Lake responded to the atmospheric Hg pollution more sensitively than in the alpine regions. It should be noted that, the more intensive acceleration of Hg deposition in Huguangyan Lake may imply that the South of China suffered from much more serious atmospheric Hg pollution than previous studies revealed.

  17. Analysis of elements in lake sediment samples by PIXE spectrometry

    NASA Astrophysics Data System (ADS)

    Chelarescu, E. D.; Radulescu, C.; Stihi, C.; Bretcan, P.; Tanislav, D.; Dulama, I. D.; Stirbescu, R. M.; Teodorescu, S.; Bucurica, I. A.; Andrei, R.; Morarescu, C.

    2017-09-01

    This work aims to determine the concentrations of several elements (e.g. Pb, Ni, Zn, Mn, Cr, and Fe) from lake sediments, in order to characterize their origin and evolution. Particle Induced X-ray Emission (PIXE) technique using the 3 MV Tandetron™ particle accelerator from National Institute for R&D in Physics and Nuclear Engineering "Horia Hulubei" (IFIN-HH), Magurele-Bucharest, Romania, was applied. Sediment cores from different salt lakes from Romania (i.e. Amara Lake, Caineni Lake, and Movila Miresii Lake) were collected, in August 2015. The content of Pb, Cr, Mn, Fe, and Ni from sediment samples show similarities with other data presented in literature and international regulation. The Zn was the only element with a higher content in all samples (e.g. maximum 401.7-517.3 mg/kg d.w.).

  18. Methyl-methionine as a precursor for methyl chloride and dimethyl sulphide produced in terrestrial salt lakes

    NASA Astrophysics Data System (ADS)

    Mulder, I.; Krause, T.; Studenroth, S.; Tubbesing, C.; Kotte, K.; Schöler, H. F.

    2012-04-01

    Volatile organic halocarbons (VOX) play an important role in the photochemical processes of the lower atmosphere and information on the geogenic origin of these compounds will help to understand global VOX budgets and fluxes. However, investigations concerned with occurrence of VOX in fluid inclusions of rocks and minerals are scarce (Harnisch and Eisenhauer, 1998; Svensen et al., 2009). The composition of volatile organic carbons (VOC) trapped in fluid inclusions of halite crystals deposited in recent salt pans was analysed using a purge and trap GC-MS technique. Besides an array of identified volatile compounds we noticed the occurrence of chloromethane (MeCl), dimethylsulfide (DMS) or both in most of a divers set of samples. Methyl chloride with an atmospheric burden of 4 to 5 Tg, is the most abundant halocarbon in the atmosphere. It plays a significant role in chlorine-catalyzed ozone destruction in the stratosphere (Keppler et al., 2005; Montzka and Frazer, 2003). DMS is the major natural, mainly marine, source of sulphur in the atmosphere and contributes to both the tropospheric burden of sulphur as well as cloud properties via oxidation to acidic aerosols (Kloster et al., 2006; Sievert et al., 2007). It is also known that a conversion of methionine (MET) to dimethylsulfonium-propionate by phytoplankton takes place, which in turn serves as the main precursor for DMS emission from the surface ocean to the atmosphere (Sievert et al., 2007). In search of a possible precursor for the above mentioned two compounds we hypothesize that the compounds trapped in the fluid inclusions represent compounds originally formed in the immediately subjacent sediment. MET, as one of three sulfur containing amino acids, could potentially serve as a precursor for MeCl and DMS formed in salt lake environments. To test these hypotheses, we measured selected sediment samples that correspond to the previously measured salt samples. Separately, we studied the temperature dependence of

  19. Winter diet of lake herring (Coregonus artedi) in western Lake Superior

    USGS Publications Warehouse

    Link, Jason; Selgeby, James H.; Hoff, Michael H.; Haskell, Craig

    1995-01-01

    Lake herring (Coregonus artedi) and zooplankton samples were simultaneously collected through the ice in the Apostle Islands region of western Lake Superior to provide information on the winter feeding ecology of lake herring. Zooplankton constituted the entire diet of the 38 lake herring collected for this study. We found no evidence of piscivory, although it has been reported by anglers. Diet selectivities were calculated using a Wilcoxon signed-ranks test and showed a preference of lake herring for larger zooplankton, especially Diaptomus sicilis, whereas the smaller copepod,Cyclops bicuspidatus thomasi, and immature copepod stages were selected against. These data document that overwintering copepods are food for a broad size range of lake herring in winter.

  20. Morphological variation of siscowet lake trout in Lake Superior

    USGS Publications Warehouse

    Bronte, C.R.; Moore, S.A.

    2007-01-01

    Historically, Lake Superior has contained many morphologically distinct forms of the lake trout Salvelinus namaycush that have occupied specific depths and locations and spawned at specific times of the year. Today, as was probably the case historically, the siscowet morphotype is the most abundant. Recent interest in harvesting siscowets to extract oil containing omega-3 fatty acids will require additional knowledge of the biology and stock structure of these lightly exploited populations. The objective of this study was to determine whether shape differences exist among siscowet populations across Lake Superior and whether these shape differences can be used to infer stock structure. Morphometric analysis (truss protocol) was used to differentiate among siscowets sampled from 23 locations in Lake Superior. We analyzed 31 distance measurements among 14 anatomical landmarks taken from digital images of fish recorded in the field. Cluster analysis of size-corrected data separated fish into three geographic groups: The Isle Royale, eastern (Michigan), and western regions (Michigan). Finer scales of stock structure were also suggested. Discriminant function analysis demonstrated that head measurements contributed to most of the observed variation. Cross-validation classification rates indicated that 67–71% of individual fish were correctly classified to their region of capture. This is the first study to present shape differences associated with location within a lake trout morphotype in Lake Superior.

  1. Great Lakes: Chemical Monitoring

    ERIC Educational Resources Information Center

    Delfino, Joseph J.

    1976-01-01

    The Tenth Great Lakes Regional Meeting of the American Chemical Society met to assess current Chemical Research activity in the Great Lakes Basin, and addressed to the various aspects of the theme, Chemistry of the Great Lakes. Research areas reviewed included watershed studies, atmospheric and aquatic studies, and sediment studies. (BT)

  2. Early evolution of salt structures in north Louisiana salt basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobao, J.J.; Pilger, R.H. Jr.

    1986-05-01

    Several salt diapirs and pillows in southern and central north Louisiana have been studied using approximately 355 mi (570 km) of seismic reflection data and information from 57 deep well holes. Using seismic profiles with deep well-hole data is the most advantageous method to document regional salt tectonism through time. The following conclusions were reached on diapirism in the North Louisiana Salt basin. (1) The diapiric event began early (early Coahuilan) in the southern and central part of the basin, and later (late Coahuilan to Comanchean) in the northern part. (2) The initial diapiric event is much more abrupt andmore » intense in the southern and central diapirs when compared with the later diapiric event in the northern diapirs. (3) Regional depocenter shifting, relative sea level, local erosion with salt extrusion, and rapid depositional loading of sediments are the major controls on diapirism in the basin.« less

  3. Juliana Lake: A Benghazi Wetland In Distress!

    NASA Astrophysics Data System (ADS)

    Abdulsamad, Esam O.; Elbabour, Mansour M.

    2013-04-01

    Of all the remaining natural habitats of Benghazi's urban area (NE Libya), perhaps the most threatened are its karst lakes and coastal salt marshes (locally known as Sebkhas). Juliana Lake stands out as one example of a fragile ecosystem that is steadily shrinking and exposed to dredging and, consequently, possible damage to its aquatic organisms, and the inevitable loss of its renowned biodiversity. Several 19th & 20th-century traveler's sketches and maps, soil maps, photographs and satellite images provide the bases for change in the size and magnitude of the lake and its adjacent areas over time. The study also includes an assessment of the sediment composition and texture of material accumulating at the bottom of the lake. These sediments are composed essentiality of mixtures of Sebkha sediments such as salty clay, silt, and clayey sand. The sediments at the surface and around the Juliana Lake, however, are represented by quite soft whitish to yellowish and scattered patchy limestones of unknown affinity. Terra-rossa (reddish soil) and Quaternary caliche are present also but calcarenites (clastic limestone) cover considerable part of the studied area. The bio-micro components of these sediments are described and a number of small-sized benthic foraminifera have been identified. Macrofauna, which are primarily presented by recent benthic seashells belonging to phylum mollusca, have also been investigated and several species have been identified to the species level wherever possible. Other calcareous biotic components are predominantly shell fragments of molluscs, bryozoans, echinoderms and calcareous coralline red algae. It is concluded that the distribution, diversity and abundance of the total benthic organisms recovered in this survey reflect that the local habitat of the Juliana Lake were rich in nutrients and consequently providing an important food source for fishes, birds, and mammals. In fact, without these benthic organisms, these larger animals would

  4. Dust emission at Franklin Lake Playa, Mojave Desert (USA): Response to meteorological and hydrologic changes 2005-2008

    USGS Publications Warehouse

    Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James

    2009-01-01

    Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (< 4 m). These areas are sources of atmospheric dust because of continuous or episodic replenishment of wind-erodible salts and disruption of the ground surface during salt formation by evaporation of ground water. Dust emission at Franklin Lake playa was monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly

  5. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system

    USGS Publications Warehouse

    Hart, W.S.; Quade, Jay; Madsen, D.B.; Kaufman, D.S.; Oviatt, Charles G.

    2004-01-01

    Lakes in the Bonneville basin have fluctuated dramatically in response to changes in rainfall, temperature, and drainage diversion during the Quaternary. We analyzed tufas and shells from shorelines of known ages in order to develop a relation between 87Sr/86Sr ratio of carbonates and lake level, which then can be used as a basis for constraining lake level from similar analyses on carbonates in cores. Carbonates from the late Quaternary shorelines yield the following average 87Sr/86Sr ratios: 0.71173 for the Stansbury shoreline (22-20 14C ka; 1350 m), 0.71153 for the Bonneville shoreline (15.5-14.5 14C ka; 1550 m), 0.71175 for the Provo shoreline (14.4-14.0 14C ka; 1450 m), 0.71244 for the Gilbert shoreline (???10.3-10.9 14C ka; 1300 m), and 0.71469 for the modern Great Salt Lake (1280 m). These analyses show that the 87Sr/86Sr ratio of lacustrine carbonates changes substantially at low- to mid-lake levels but is invariant at mid- to high-lake levels. Sr-isotope mixing models of Great Salt Lake and the Bonneville paleolake system were constructed to explain these variations in 87Sr/86Sr ratios with change in lake level. Our model of the Bonneville system produced a 87Sr/86Sr ratio of 0.71193, very close to the observed ratios from high-shoreline tufa and shell. The model verifies that the integration of the southern Sevier and Beaver rivers with the Bear and others rivers in the north is responsible for the lower 87Sr/86Sr ratios in Lake Bonneville compared to the modern Great Salt Lake. We also modeled the 87Sr/86Sr ratio of Lake Bonneville with the upper Bear River diverted into the Snake River basin and obtained an 87Sr/86Sr ratio of 0.71414. Coincidentally, this ratio is close to the observed ratio for Great Salt Lake of 0.71469. This means that 87Sr/86Sr ratios of >0.714 for carbonate can be produced by climatically induced low-lake conditions or by diversion of the upper Bear River out of the Bonneville basin. This model result also demonstrates that the

  6. Sanctuaries for lake trout in the Great Lakes

    USGS Publications Warehouse

    Stanley, Jon G.; Eshenroder, Randy L.; Hartman, Wilbur L.

    1987-01-01

    Populations of lake trout, severely depleted in Lake Superior and virtually extirpated from the other Great Lakes because of sea lamprey predation and intense fishing, are now maintained by annual plantings of hatchery-reared fish in Lakes Michigan, Huron, and Ontario and parts of Lake Superior. The extensive coastal areas of the Great Lakes and proximity to large populations resulted in fishing pressure on planted lake trout heavy enough to push annual mortality associated with sport and commercial fisheries well above the critical level needed to reestablish self-sustaining stocks. The interagency, international program for rehabilitating lake trout includes controlling sea lamprey abundance, stocking hatchery-reared lake trout, managing the catch, and establishing sanctuaries where harvest is prohibited. Three lake trout sanctuaries have been established in Lake Michigan: the Fox Island Sanctuary of 121, 500 ha, in the Chippewa-Ottawa Treaty fishing zone in the northern region of the lake; the Milwaukee Reef Sanctuary of 160, 000 ha in midlake, in boundary waters of Michigan and Wisconsin; and Julian's Reef Sanctuary of 6, 500 ha, in Illinois waters. In northern Lake Huron, Drummond Island Sanctuary of 55, 000 ha is two thirds in Indian treaty-ceded waters in Michigan and one third in Ontario waters of Canada. A second sanctuary, Six Fathom Bank-Yankee Reef Sanctuary, in central Lake Huron contains 168, 000 ha. Sanctuary status for the Canadian areas remains to be approved by the Provincial government. In Lake Superior, sanctuaries protect the spawning grounds of Gull Island Shoal (70, 000 ha) and Devils Island Shoal (44, 000 ha) in Wisconsin's Apostle Island area. These seven sanctuaries, established by the several States and agreed upon by the States, Indian tribes, the U.S. Department of the Interior, and the Province of Ontario, contribute toward solving an interjurisdictional fishery problem.

  7. Volcano and earthquake hazards in the Crater Lake region, Oregon

    USGS Publications Warehouse

    Bacon, Charles R.; Mastin, Larry G.; Scott, Kevin M.; Nathenson, Manuel

    1997-01-01

    Crater Lake lies in a basin, or caldera, formed by collapse of the Cascade volcano known as Mount Mazama during a violent, climactic eruption about 7,700 years ago. This event dramatically changed the character of the volcano so that many potential types of future events have no precedent there. This potentially active volcanic center is contained within Crater Lake National Park, visited by 500,000 people per year, and is adjacent to the main transportation corridor east of the Cascade Range. Because a lake is now present within the most likely site of future volcanic activity, many of the hazards at Crater Lake are different from those at most other Cascade volcanoes. Also significant are many faults near Crater Lake that clearly have been active in the recent past. These faults, and historic seismicity, indicate that damaging earthquakes can occur there in the future. This report describes the various types of volcano and earthquake hazards in the Crater Lake area, estimates of the likelihood of future events, recommendations for mitigation, and a map of hazard zones. The main conclusions are summarized below.

  8. Glacial lakes of the Central and Patagonian Andes

    NASA Astrophysics Data System (ADS)

    Wilson, Ryan; Glasser, Neil F.; Reynolds, John M.; Harrison, Stephan; Anacona, Pablo Iribarren; Schaefer, Marius; Shannon, Sarah

    2018-03-01

    The prevalence and increased frequency of high-magnitude Glacial Lake Outburst Floods (GLOFs) in the Chilean and Argentinean Andes suggests this region will be prone to similar events in the future as glaciers continue to retreat and thin under a warming climate. Despite this situation, monitoring of glacial lake development in this region has been limited, with past investigations only covering relatively small regions of Patagonia. This study presents new glacial lake inventories for 1986, 2000 and 2016, covering the Central Andes, Northern Patagonia and Southern Patagonia. Our aim was to characterise the physical attributes, spatial distribution and temporal development of glacial lakes in these three sub-regions using Landsat satellite imagery and image datasets available in Google Earth and Bing Maps. Glacial lake water volume was also estimated using an empirical area-volume scaling approach. Results reveal that glacial lakes across the study area have increased in number (43%) and areal extent (7%) between 1986 and 2016. Such changes equate to a glacial lake water volume increase of 65 km3 during the 30-year observation period. However, glacial lake growth and emergence was shown to vary sub-regionally according to localised topography, meteorology, climate change, rate of glacier change and the availability of low gradient ice areas. These and other factors are likely to influence the occurrence of GLOFs in the future. This analysis represents the first large-scale census of glacial lakes in Chile and Argentina and will allow for a better understanding of lake development in this region, as well as, providing a basis for future GLOF risk assessments.

  9. Characterization and simulation of the quantity and quality of water in the Highland Lakes, Texas, 1983-92

    USGS Publications Warehouse

    Raines, Timothy H.; Rast, Walter

    1999-01-01

    Results from the simulations indicate that saline inflows to the Highland Lakes similar to those of the releases from Natural Dam Salt Lake during 1987–89 are unlikely to cause large increases in future concentrations of dissolved solids, chloride, and sulfate in the Highland Lakes. The results also indicate that high-salinity water will continue to be diluted as it is transported downstream through the Highland Lakes, even during extended dry periods.

  10. Water-Sediment Partition of Polycyclic Aromatic Hydrocarbons (PAHs) in Nansi Lake

    NASA Astrophysics Data System (ADS)

    Zhang, Guizhai; Diao, Youjiang

    2018-06-01

    Based on field data of polycyclic aromatic hydrocarbons (PAHs) in water and sediment in Nansi Lake. The concentrations and the partitioning characteristic of PAHs in the water and sediment were studied. The lgKd of high molecular weight PAHs were higher than the low molecular weight PAHs. The most of PAHs Kd values were negligible correlated with TOC, soluble salt, clay and pH of the sediment in Nansi Lake.

  11. Assessing the influence of water level on schistosomiasis in Dongting Lake region before and after the construction of Three Gorges Dam.

    PubMed

    Li, Zhongwu; Nie, Xiaodong; Zhang, Yan; Huang, Jinquan; Huang, Bin; Zeng, Guangming

    2016-01-01

    Schistosomiasis is a severe public health problem in the Dongting Lake region, and its distribution, prevalence, and intensity of infection are particularly sensitive to environmental changes. In this study, the human and bovine schistosomiasis variations in the Dongting Lake region were studied from 1996 to 2010, and the relationships between schistosomiasis and water level were examined. Furthermore, based on these results, the potential effects of the Three Gorges Dam (TGD) on schistosomiasis were investigated. Results showed an increase in human schistosomiasis and in the scope of seriously affected regions, along with a decrease in bovine schistosomiasis. Human schistosomiasis was negatively correlated with water level during wet season (from May to October), particularly the average water level in October. This finding indicated that the decreasing water level may be highly related to the increasing of human schistosomiasis in the Dongting Lake region. Based on this result and the variation of schistosomiasis before and after the construction and operation of TGD, the impoundment of the Three Gorges reservoir is believed to decrease the water level and increase the contact between people and schistosomiasis. Therefore, the TGD, which is operated by regulating water and scheduling water operations, is not good for the control of human schistosomiasis in the Dongting Lake region. Although the extent of the influence of the TGD on schistosomiasis remains unclear, the influence of the TGD on preventing and controlling schistosomiasis should not be ignored.

  12. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes

    USGS Publications Warehouse

    Kulp, T.R.; Han, S.; Saltikov, C.W.; Lanoil, B.D.; Zargar, K.; Oremland, R.S.

    2007-01-01

    Salinity effects on microbial community structure and on potential rates of arsenate reduction, arsenite oxidation, sulfate reduction, denitrification, and methanogenesis were examined in sediment slurries from two California soda lakes. We conducted experiments with Mono Lake and Searles Lake sediments over a wide range of salt concentrations (25 to 346 g liter-1). With the exception of sulfate reduction, rates of all processes demonstrated an inverse relationship to total salinity. However, each of these processes persisted at low but detectable rates at salt saturation. Denaturing gradient gel electrophoresis analysis of partial 16S rRNA genes amplified from As(V) reduction slurries revealed that distinct microbial populations grew at low (25 to 50 g liter-1), intermediate (100 to 200 g liter-1), and high (>300 g liter-1) salinity. At intermediate and high salinities, a close relative of a cultivated As-respiring halophile was present. These results suggest that organisms adapted to more dilute conditions can remain viable at high salinity and rapidly repopulate the lake during periods of rising lake level. In contrast to As reduction, sulfate reduction in Mono Lake slurries was undetectable at salt saturation. Furthermore, sulfate reduction was excluded from Searles Lake sediments at any salinity despite the presence of abundant sulfate. Sulfate reduction occurred in Searles Lake sediment slurries only following inoculation with Mono Lake sediment, indicating the absence of sulfate-reducing flora. Experiments with borate-amended Mono Lake slurries suggest that the notably high (0.46 molal) concentration of borate in the Searles Lake brine was responsible for the exclusion of sulfate reducers from that ecosystem. Copyright ?? 2007, American Society for Microbiology. All Rights Reserved.

  13. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA.

    PubMed

    Johnson, William P; Swanson, Neil; Black, Brooks; Rudd, Abigail; Carling, Greg; Fernandez, Diego P; Luft, John; Van Leeuwen, Jim; Marvin-DiPasquale, Mark

    2015-04-01

    We examined mercury (Hg) speciation in water and sediment of the Great Salt Lake and surrounding wetlands, a locale spanning fresh to hypersaline and oxic to anoxic conditions, in order to test the hypothesis that spatial and temporal variations in Hg concentration and methylation rates correspond to observed spatial and temporal trends in Hg burdens previously reported in biota. Water column, sediment, and pore water concentrations of methylmercury (MeHg) and total mercury (THg), as well as related aquatic chemical parameters were examined. Inorganic Hg(II)-methylation rates were determined in selected water column and sediment subsamples spiked with inorganic divalent mercury (204Hg(II)). Net production of Me204Hg was expressed as apparent first-order rate constants for methylation (kmeth), which were also expanded to MeHg production potential (MPP) rates via combination with tin reducible 'reactive' Hg(II) (Hg(II)R) as a proxy for bioavailable Hg(II). Notable findings include: 1) elevated Hg concentrations previously reported in birds and brine flies were spatially proximal to the measured highest MeHg concentrations, the latter occurring in the anoxic deep brine layer (DBL) of the Great Salt Lake; 2) timing of reduced Hg(II)-methylation rates in the DBL (according to both kmeth and MPP) coincides with reduced Hg burdens among aquatic invertebrates (brine shrimp and brine flies) that act as potential vectors of Hg propagation to the terrestrial ecosystem; 3) values of kmeth were found to fall within the range reported by other studies; and 4) MPP rates were on the lower end of the range reported in methodologically comparable studies, suggesting the possibility that elevated MeHg in the anoxic deep brine layer results from its accumulation and persistence in this quasi-isolated environment, due to the absence of light (restricting abiotic photo demethylation) and/or minimal microbiological demethylation. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Bromine species fluxes from Lake Constance’s catchment, and a preliminary lake mass balance

    NASA Astrophysics Data System (ADS)

    Gilfedder, B. S.; Petri, M.; Wessels, M.; Biester, H.

    2011-06-01

    Bromine was historically termed a cyclic salt in terrestrial freshwater environments due to its perceived conservative cycling between the oceans and the continents. This basic assumption has been challenged recently, with evidence that bromine is involved in dynamic chemical cycles in soils and freshwaters. We present here a study on dissolved bromine species (bromide, organically bound bromine, DOBr) concentrations and fluxes as well as sediment trap bromine levels and fluxes in Lake Constance, a large lake in southern Germany. Water samples were obtained from all major and some minor inflows and outflows over one year, where-after dissolved bromine species were measured by a combination of ICP-MS and ion chromatography coupled to an ICP-MS (IC-ICP-MS). Sediment traps were deployed at two locations for two years with Br, Ti and Zr levels being measured by μ-XRF. 190 t yr -1 of total dissolved bromine (TDBr) was delivered to the lake via 14 rivers and precipitation, with the rivers Alpenrhein (84 t TDBr yr -1) and the Schussen (50 t TDBr yr -1) providing the largest sources. The estimated particulate bromine flux contributed an extra 24-26 t Br yr -1. In comparison, only 40 t TDBr yr -1 was deposited to the lake's catchment by precipitation, and thus ˜80% of the riverine TDBr flux came from soils and rocks. Bromide was the dominant species accounting for, on average, 78% of TDBr concentrations and 93% of TDBr flux to the lake. Despite some high concentrations in the smaller lowland rivers, DOBr was only a minor component of the total riverine bromine flux (˜12 t yr -1, 7%), most of which came from the rivers Schussen, Bregenzer Ach and Argen. In contrast, most of the bromine in the sediment traps was bound to organic matter, and showed a clear seasonal pattern in concentrations, with a maximum in winter and minimum in summer. The summer minimum is thought to be due to dilution of a high Br autochthonous component by low bromine mineral and organic material from

  15. Health-hazard evaluation report HETA 91-075-2122, University of Utah Medical Center, Salt Lake City, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammon, C.S.

    In response to a request from the Department of Public Safety of the University of Utah, an evaluation was undertaken of possible hazardous conditions at the University Medical Center (SIC-8062), in Salt Lake City. The two buildings of concern were the School of Medicine and the University of Utah Hospital. In the former, concern centered around the Ophthalmology Center where employees complained about sneezing and stuffy noses plus a lack of air movement. The heating, ventilation, and air conditioning systems in all areas were found to be well maintained and functioning as designed. The carbon-monoxide (630080) (CO) levels did notmore » exceed 5 parts per million. A bulk air sample revealed no unusual organic compounds, with the total organic concentration being less than 1.0mg/cu m. The author concludes that no airborne contaminant was identified which would constitute a health hazard; however, upper respiratory symptoms were reported by a high percentage of workers. The author recommends specific measures to be taken to help alleviate some of these complaints.« less

  16. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia

    NASA Astrophysics Data System (ADS)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-11-01

    Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180-218 days band (~6-7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  17. Class 1 overview of cultural resources for the Western Area Power Administration Salt Lake City Area Integrated Projects electric power marketing environmental impact statement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, K.L.; Malinowski, L.M.; Hoffecker, J.F.

    1993-11-01

    Argonne National Laboratory conducted an inventory of known archaeological and historic sites in areas that could be affected by the hydropower operation alternatives under analysis in the power marketing environmental impact statement for the Western Area Power Administration`s Salt Lake City Area Integrated Projects. The study areas included portions of the Green River (Flaming Gorge Dam to Cub Creek) in Utah and Colorado and the Gunnison River (Blue Mesa Reservoir to Crystal Dam) in Colorado. All previous archaeological surveys and previously recorded prehistoric and historic sites, structures, and features were inventoried and plotted on maps (only survey area maps aremore » included in this report). The surveys were classified by their level of intensity, and the sites were classified according to their age, type, and contents. These data (presented here in tabular form) permit a general assessment of the character and distribution of archaeological remains in the study areas, as well as an indication of the sampling basis for such an assessment. To provide an adequate context for the descriptions of the archaeological and historic sites, this report also presents overviews of the environmental setting and the regional prehistory, history, and ethnography for each study area.« less

  18. Long-term chloride concentrations in North American and European freshwater lakes

    PubMed Central

    Dugan, Hilary A.; Summers, Jamie C.; Skaff, Nicholas K.; Krivak-Tetley, Flora E.; Doubek, Jonathan P.; Burke, Samantha M.; Bartlett, Sarah L.; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C.; Weathers, Kathleen C.

    2017-01-01

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future. PMID:28786983

  19. Long-term chloride concentrations in North American and European freshwater lakes.

    PubMed

    Dugan, Hilary A; Summers, Jamie C; Skaff, Nicholas K; Krivak-Tetley, Flora E; Doubek, Jonathan P; Burke, Samantha M; Bartlett, Sarah L; Arvola, Lauri; Jarjanazi, Hamdi; Korponai, János; Kleeberg, Andreas; Monet, Ghislaine; Monteith, Don; Moore, Karen; Rogora, Michela; Hanson, Paul C; Weathers, Kathleen C

    2017-08-08

    Anthropogenic sources of chloride in a lake catchment, including road salt, fertilizer, and wastewater, can elevate the chloride concentration in freshwater lakes above background levels. Rising chloride concentrations can impact lake ecology and ecosystem services such as fisheries and the use of lakes as drinking water sources. To analyze the spatial extent and magnitude of increasing chloride concentrations in freshwater lakes, we amassed a database of 529 lakes in Europe and North America that had greater than or equal to ten years of chloride data. For each lake, we calculated climate statistics of mean annual total precipitation and mean monthly air temperatures from gridded global datasets. We also quantified land cover metrics, including road density and impervious surface, in buffer zones of 100 to 1,500 m surrounding the perimeter of each lake. This database represents the largest global collection of lake chloride data. We hope that long-term water quality measurements in areas outside Europe and North America can be added to the database as they become available in the future.

  20. Geologic map of Lake Mead and surrounding regions, southern Nevada, southwestern Utah, and northwestern Arizona

    USGS Publications Warehouse

    Felger, Tracey J.; Beard, Sue

    2010-01-01

    Regional stratigraphic units and structural features of the Lake Mead region are presented as a 1:250,000 scale map, and as a Geographic Information System database. The map, which was compiled from existing geologic maps of various scales, depicts geologic units, bedding and foliation attitudes, faults and folds. Units and structural features were generalized to highlight the regional stratigraphic and tectonic aspects of the geology of the Lake Mead region. This map was prepared in support of the papers presented in this volume, Special Paper 463, as well as to facilitate future investigations in the region. Stratigraphic units exposed within the area record 1800 million years of geologic history and include Proterozoic crystalline rocks, Paleozoic and Mesozoic sedimentary rocks, Mesozoic plutonic rocks, Cenozoic volcanic and intrusive rocks, sedimentary rocks and surfi cial deposits. Following passive margin sedimentation in the Paleozoic and Mesozoic, late Mesozoic (Sevier) thrusting and Late Cretaceous and early Tertiary compression produced major folding, reverse faulting, and thrust faulting in the Basin and Range, and resulted in regional uplift and monoclinal folding in the Colorado Plateau. Cenozoic extensional deformation, accompanied by sedimentation and volcanism, resulted in large-magnitude high- and low-angle normal faulting and strike-slip faulting in the Basin and Range; on the Colorado Plateau, extension produced north-trending high-angle normal faults. The latest history includes integration of the Colorado River system, dissection, development of alluvial fans, extensive pediment surfaces, and young faulting.