Sample records for salt mixture melts

  1. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  2. High electrical resistivity Nd-Fe-B die-upset magnet doped with eutectic DyF3-LiF salt mixture

    NASA Astrophysics Data System (ADS)

    Kim, K. M.; Kim, J. Y.; Kwon, H. W.; Kim, D. H.; Lee, J. G.; Yu, J. H.

    2017-05-01

    Nd-Fe-B-type die-upset magnet with high electrical resistivity was prepared by doping of eutectic DyF3-LiF salt mixture. Mixture of melt-spun Nd-Fe-B flakes (MQU-F: Nd13.6Fe73.6Co6.6Ga0.6B5.6) and eutectic binary (DyF3-LiF) salt (25 mol% DyF3 - 75 mol% LiF) was hot-pressed and then die-upset. By adding the eutectic salt mixture (> 4 wt%), electrical resistivity of the die-upset magnet was enhanced to over 400 μ Ω .cm compared to 190 μ Ω .cm of the un-doped magnet. Remarkable enhancement of the electrical resistivity was attributed to homogeneous and continuous coverage of the interface between flakes by the easily melted eutectic salt dielectric mixture. It was revealed that active substitution of the Nd atoms in neighboring flakes by the Dy atoms from the added (DyF3-LiF) salt mixture had occurred during such a quick thermal processing of hot-pressing and die-upsetting. This Dy substitution led to coercivity enhancement in the die-upset magnet doped with the eutectic (DyF3-LiF) salt mixture. Coercivity and remanence of the die-upset magnet doped with (DyF3-LiF) salt mixture was as good as those of the DyF3-doped magnet.

  3. A Binary Eutectic Mixture of TNAZ and R-Salt Explosives

    NASA Astrophysics Data System (ADS)

    Sandstrom, Mary; Manner, Virginia; Pemberton, Steven; Lloyd, Joseph; Tappan, Bryce

    2011-06-01

    TNAZ is a high performing explosive that is melt castable. However, the casting process can be problematic since TNAZ has a high vapor pressure exacerbated by a fairly high melting temperature. In order to mitigate the ill effects of its high vapor pressure, including a lower melting explosive was explored by making a series of mixtures of TNAZ and R-Salt. Initially, a eutectic temperature and composition was theoretically determined. Then a phase diagram was constructed from a series and mixtures by differential scanning calorimetery (DSC). The vapor pressure of the eutectic composition was determined by thermogravimetric analysis (TGA). Cylinder testing of the eutectic composition was carried out in copper tubes, 5'' long with 1/2 ``inner diameter and 1/16'' thick walls. The detonation velocity was measured using wire switches along the cylinder length and the expanding wall velocity was measured using PDV gauges. A rough evaluation of JWL equation-of-state parameters has been carried out. A more detailed evaluation is in progress.

  4. Low-melting point inorganic nitrate salt heat transfer fluid

    DOEpatents

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  5. Estimated heats of fusion of fluoride salt mixtures suitable for thermal energy storage applications

    NASA Technical Reports Server (NTRS)

    Misra, A. K.; Whittenberger, J. D.

    1986-01-01

    The heats of fusion of several fluoride salt mixtures with melting points greater than 973 K were estimated from a coupled analysis of the available thermodynamic data and phase diagrams. Simple binary eutectic systems with and without terminal solid solutions, binary eutectics with congruent melting intermediate phases, and ternary eutectic systems were considered. Several combinations of salts were identified, most notable the eutectics LiF-22CaF2 and NaF-60MgF2 which melt at 1039 and 1273 K respectively which posses relatively high heats of fusion/gm (greater than 0.7 kJ/g). Such systems would seemingly be ideal candidates for the light weight, high energy storage media required by the thermal energy storage unit in advanced solar dynamic power systems envisioned for the future space missions.

  6. Properties of sugar-based low-melting mixtures

    NASA Astrophysics Data System (ADS)

    Fischer, Veronika; Kunz, Werner

    2014-05-01

    Physico-chemical properties of ternary sugar-based low-melting mixtures were determined. Choline chloride, urea and glucose or sorbitol, serving as sugars, were blended in various compositions. The refractive index, density, viscosity, decomposition temperatures and glass transition temperatures were measured. Further, the influence of temperature and water content was investigated. The results show that the mixtures are liquid below room temperature and the viscosity and density are dependent on the temperature and composition. Moreover, the viscosity decreases with increasing water content. These mixtures are biodegradable, low toxic, non-volatile, non-reactive with water and can be accomplished with low-cost materials. In consideration of these advantages and a melting point below room temperature, these low-melting mixtures can be a good alternative to ionic liquids as well as environmentally unfriendly and toxic solvents.

  7. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    PubMed

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  8. Electrochemical concentration measurements for multianalyte mixtures in simulated electrorefiner salt

    NASA Astrophysics Data System (ADS)

    Rappleye, Devin Spencer

    The development of electroanalytical techniques in multianalyte molten salt mixtures, such as those found in used nuclear fuel electrorefiners, would enable in situ, real-time concentration measurements. Such measurements are beneficial for process monitoring, optimization and control, as well as for international safeguards and nuclear material accountancy. Electroanalytical work in molten salts has been limited to single-analyte mixtures with a few exceptions. This work builds upon the knowledge of molten salt electrochemistry by performing electrochemical measurements on molten eutectic LiCl-KCl salt mixture containing two analytes, developing techniques for quantitatively analyzing the measured signals even with an additional signal from another analyte, correlating signals to concentration and identifying improvements in experimental and analytical methodologies. (Abstract shortened by ProQuest.).

  9. Molten Salt Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Maru, H. C.; Dullea, J. F.; Kardas, A.; Paul, L.; Marianowski, L. G.; Ong, E.; Sampath, V.; Huang, V. M.; Wolak, J. C.

    1978-01-01

    The feasibility of storing thermal energy at temperatures of 450 C to 535 C in the form of latent heat of fusion was examined for over 30 inorganic salts and salt mixtures. Alkali carbonate mixtures were chosen as phase-change storage materials in this temperature range because of their relatively high storage capacity and thermal conductivity, moderate cost, low volumetric expansion upon melting, low corrosivity, and good chemical stability. Means of improving heat conduction through the solid salt were explored.

  10. Inorganic salt mixtures as electrolyte media in fuel cells

    NASA Technical Reports Server (NTRS)

    Angell, Charles Austen (Inventor); Francis-Gervasio, Dominic (Inventor); Belieres, Jean-Philippe (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  11. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.

    PubMed

    Mazzobre, M F; Longinotti, M P; Corti, H R; Buera, M P

    2001-11-01

    Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties. Copyright 2001 Elsevier Science (USA).

  12. Vacancy structures and melting behavior in rock-salt GeSbTe

    DOE PAGES

    Zhang, Bin; Wang, Xue -Peng; Shen, Zhen -Ju; ...

    2016-05-03

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) atmore » an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Furthermore, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe.« less

  13. Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe

    PubMed Central

    Zhang, Bin; Wang, Xue-Peng; Shen, Zhen-Ju; Li, Xian-Bin; Wang, Chuan-Shou; Chen, Yong-Jin; Li, Ji-Xue; Zhang, Jin-Xing; Zhang, Ze; Zhang, Sheng-Bai; Han, Xiao-Dong

    2016-01-01

    Ge-Sb-Te alloys have been widely used in optical/electrical memory storage. Because of the extremely fast crystalline-amorphous transition, they are also expected to play a vital role in next generation nonvolatile microelectronic memory devices. However, the distribution and structural properties of vacancies have been one of the key issues in determining the speed of melting (or amorphization), phase-stability, and heat-dissipation of rock-salt GeSbTe, which is crucial for its technological breakthrough in memory devices. Using spherical aberration-aberration corrected scanning transmission electron microscopy and atomic scale energy-dispersive X-ray mapping, we observe a new rock-salt structure with high-degree vacancy ordering (or layered-like ordering) at an elevated temperature, which is a result of phase transition from the rock-salt phase with randomly distributed vacancies. First-principles calculations reveal that the phase transition is an energetically favored process. Moreover, molecular dynamics studies suggest that the melting of the cubic rock-salt phases is initiated at the vacancies, which propagate to nearby regions. The observation of multi-rock-salt phases suggests another route for multi-level data storage using GeSbTe. PMID:27140674

  14. Food-grade submicrometer particles from salts prepared using ethanol-in-oil mixtures.

    PubMed

    Paques, Jerome P; van der Linden, Erik; Sagis, Leonard M C; van Rijn, Cees J M

    2012-08-29

    A simple method for preparing food-grade particles in the submicrometer range of ethanol soluble salts using ethanol-in-oil (E/O) mixtures is described. Salts CaCl2·2H2O and MgCl2·6H2O were dissolved in ethanol that subsequently was mixed with a medium-chain triglyceride oil phase. It was found that type and concentration of salt have a significant influence on the miscibility of ethanol and oil phase and on the stability of E/O mixtures. The ethanol phase was evaporated from the mixture at elevated temperatures, and salt particles with dimensions in the submicrometer range (6-400 nm) remained suspended in the oil phase. It was found that the concentration of salt and volume fraction of ethanol in MCT oil have a significant influence on the size distribution of salt particles. The size of CaCl2 and MgCl2 submicrometer particles was ascertained by scanning electron microscopy and dynamic light scattering.

  15. Removal of nanoaerosol during the bubbling of the salt melt of beryllium and lithium fluorides for the preparation of reactor radioisotopes

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Chuvilin, D. Yu.

    2010-06-01

    The parameters of aerosol particles formed in the course of the spontaneous thermal condensation of vapors and bubbling a 66LiF-34BeF2 (mol %) eutectic salt mixture with helium have been studied. For this purpose, a vertical bubbling mode at T ≈ 900 K and an ampule device for obtaining reactor radioisotopes for medical applications were used. The rate of the bulk removal and the chemical composition of aerosols were measured. The size distribution of the aerosol particles was bimodal, and the mass concentration of the particles exceeded by far the maximum permissible concentration (MPC). The characteristics of regenerated nickel multilayer nanofilters for ultrahigh filtration of aerosols from the salt liquid melt were analyzed.

  16. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  17. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

  18. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reducemore » the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with

  19. Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Williams, Thomas J.; Candela, Philip A.; Piccoli, Philip M.

    Experiments were performed in the three-phase system high-silica rhyolite melt + low-salinity aqueous vapor + hydrosaline brine, to investigate the exchange equilibria for hydrogen, potassium, and sodium in magmatic-hydrothermal systems at 800 °C and 100 MPa, and 850 °C and 50 MPa. The Kaqm/meltH,Na and Kaqm/meltH,K for hydrogen-sodium exchange between a vapor + brine mixture and a silicate melt are inversely proportional to the total chloride concentration (ΣCl) in the vapor + brine mixture indicating that HCl/NaCl and HCl/KCl are higher in the low-salinity aqueous vapor relative to high-salinity brine. The equilibrium constants for vapor/melt and brine/melt exchange were extracted from regressions of Kaqm/meltH,Na and Kaqm/meltH,K versus the proportion of aqueous vapor relative to brine in the aqueous mixture (Faqv) at P and T, expressed as a function of ΣCl. No significant pressure effect on the empirically determined exchange constants was observed for the range of pressures investigated. Model equilibrium constants are: Kaqv/meltH,Na(vapor/melt)=26(+/-1.3) at 100 MPa (800 °C), and 19( +/- 7.0) at 50 MPa (850 °C) Kaqv/meltH,K=14(+/-1.1) at 100 MPa (800 °C), and 24(+/-12) at 50 MPa (850 °C) Kaqb/meltH,b(brine/melt)= 1.6(+/-0.7) at 100 MPa (800 °C), and 3.9(+/-2.3) at 50 MPa (850 °C) and Kaqb/meltH,K=2.7(+/-1.2) at 100 MPa (800 °C) and 3.8(+/-2.3) at 50 MPa (850 °C). Values for Kaqv/meltH,K and Kaqb/meltH,K were used to calculate KCl/HCl in the aqueous vapor and brine as a function of melt aluminum saturation index (ASI: molar Al2O3/(K2O+Na2O+CaO) and pressure. The model log KCl/HCl values show that a change in melt ASI from peraluminous (ASI = 1.04) to moderately metaluminous (ASI = 1.01) shifts the cooling pathway (in temperature-log KCl/HCl space) of the aqueous vapor toward the andalusite+muscovite+K-feldspar reaction point.

  20. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima.

    PubMed

    Swapnil, Prashant; Rai, Ashwani K

    2018-05-01

    Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na 2 SO 4 ). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na 2 SO 4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na + concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na + and Ca 2+ and leakage of K + in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca 2+ under different salt treatments, ratio of Ca 2+ /Na + remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.

  1. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    NASA Astrophysics Data System (ADS)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  2. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    PubMed

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  3. An innovative spraying setup to obtain uniform salt(s) mixture deposition to investigate hot corrosion

    NASA Astrophysics Data System (ADS)

    Mannava, Venkateswararao; Swaminathan, A. Vignesh; Kamaraj, M.; Kottada, Ravi Sankar

    2016-02-01

    A hot corrosion study via molten salt deposition and its interaction with creep/fatigue play a critical role in predicting the life of gas turbine engine components. To do systematic hot corrosion studies, deposition of molten salts on specimens should be uniform with good adherence. Thus, the present study describes an in-house developed spraying setup that produces uniform and reliable molten salt deposition in a repeatable fashion. The efficacy of the present method was illustrated by depositing 90 wt. % Na2SO4 + 5 wt. % NaCl + 5 wt. % NaV O3 salt mixture on hot corrosion coupons and on creep specimens, and also by comparing with other deposition methods.

  4. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  5. Polymorphic Transformation in Mixtures of High- and Low-Melting Fractions of Milk Fat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cisneros,A.; Mazzanti, G.; Campos, R.

    2006-01-01

    The kinetics of crystallization of high-melting fraction (HMF) and a mixture of 40% HMF and 60% low-melting fraction (LMF) of milk fat were studied at 5 C by time-resolved in-situ synchrotron X-ray diffraction. HMF crystallized in the {alpha} polymorph, had a longer lifetime than the ones previously reported in pure milk fat, and was almost completely solid. The HMF/LMF mixture crystallized initially in the {alpha} form and transformed into the {beta}' polymorph, with a solid fat content much lower than that of HMF. The polymorphic change was therefore attributed to a delayed sudden formation of {beta}' mixed crystals from themore » uncrystallized melt. These findings are important for the food industry and as fundamental knowledge to improve our understanding of the origin of the macroscopic physical properties of solid milk fat fractions used in many manufacturing processes.« less

  6. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    NASA Astrophysics Data System (ADS)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-11-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  7. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOEpatents

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  8. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  9. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts

    NASA Technical Reports Server (NTRS)

    Nagelberg, A. S.; Hamilton, J. C.

    1985-01-01

    The extent of surface destabilization of ZrO2 - 8 wt percent Y2O3 ceramic disks was determined after exposure to molten salt mixtures of sodium sulfate containing up to 15 mole percent sodium metavanadate (NaVO3) at 1173 K. The ceramic surface was observed to transform from the cubic/tetragonal to monoclinic phase, concurrent with chemical changes in the molten salt layer in contact with the ceramic. Significant attack rates were observed in both pure sulfate and metavanadate sulfate melts. The rate of attack was found to be quite sensitive to the mole fraction of vanadate in the molten salt solution and the partial pressure of sulfur trioxide in equilibrium with the salt melt. The observed parabolic rate of attack is interpreted to be caused by a reaction controlled by diffusion in the salt that penetrates into the porous layer formed by the destabilization. The parabolic rate constant in mixed sodium metavanadate - sodium sulfate melts was found to be proportional to the SO3 partial pressure and the square of the metavanadate concentration. In-situ Raman spectroscopic measurements allowed simultaneous observations of the ceramic phases and salt chemistry during the attack process.

  10. Separation of CsCl from a Ternary CsCl-LiCl-KCl Salt via a Melt Crystallization Technique for Pyroprocessing Waste Minimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ammon Williams; Supathorn Phongikaroon; Michael Simpson

    A parametric study has been conducted to identify the effects of several parameters on the separation of CsCl from molten LiCl-KCl salt via a melt crystallization process. A reverse vertical Bridgman technique was used to grow the salt crystals. The investigated parameters were: (1) the advancement rate, (2) the crucible lid configuration, (3) the amount of salt mixture, (4) the initial composition of CsCl, and (5) the temperature difference between the high and low furnace zones. From each grown crystal, samples were taken axially and analyzed using inductively coupled plasma mass spectrometry (ICP-MS). Results show that CsCl concentrations at themore » top of the crystals were low and increased to a maximum at the bottom of the salt. Salt (LiCl-KCl) recycle percentages for the experiments ranged from 50% to 75% and the CsCl composition in the waste salt was low. To increase the recycle percentage and the concentration of CsCl in the waste form, the possibility of using multiple crystallization stages was explored to further optimize the process. Results show that multiple crystallization stages are practical and the optimal experimental conditions should be operated at 5.0 mm/hr rate with a lid configuration and temperature difference of 200 °C for a total of five crystallization stages. Under these conditions, up to 88% of the salt can be recycled.« less

  11. Quality improvement of melt extruded laminar systems using mixture design.

    PubMed

    Hasa, D; Perissutti, B; Campisi, B; Grassi, M; Grabnar, I; Golob, S; Mian, M; Voinovich, D

    2015-07-30

    This study investigates the application of melt extrusion for the development of an oral retard formulation with a precise drug release over time. Since adjusting the formulation appears to be of the utmost importance in achieving the desired drug release patterns, different formulations of laminar extrudates were prepared according to the principles of Experimental Design, using a design for mixtures to assess the influence of formulation composition on the in vitro drug release from the extrudates after 1h and after 8h. The effect of each component on the two response variables was also studied. Ternary mixtures of theophylline (model drug), monohydrate lactose and microcrystalline wax (as thermoplastic binder) were extruded in a lab scale vertical ram extruder in absence of solvents at a temperature below the melting point of the binder (so that the crystalline state of the drug could be maintained), through a rectangular die to obtain suitable laminar systems. Thanks to the desirability approach and a reliability study for ensuring the quality of the formulation, a very restricted optimal zone was defined within the experimental domain. Among the mixture components, the variation of microcrystalline wax content played the most significant role in overall influence on the in vitro drug release. The formulation theophylline:lactose:wax, 57:14:29 (by weight), selected based on the desirability zone, was subsequently used for in vivo studies. The plasma profile, obtained after oral administration of the laminar extruded system in hard gelatine capsules, revealed the typical trend of an oral retard formulation. The application of the mixture experimental design associated to a desirability function permitted to optimize the extruded system and to determine the composition space that ensures final product quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila

    2017-10-01

    Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal

  13. Beyond the Melting Pot Three Decades Later: Recent Immigrants and New York's New Ethnic Mixture.

    ERIC Educational Resources Information Center

    Foner, Nancy

    2000-01-01

    Discusses the 1963 book, "Beyond the Melting Pot," which challenged the melting pot myth in New York City. Comments on new features of New York's ethnic and racial mixture (characteristics of new immigrant groups, the changing city context, and the new global interconnections), noting where insights from the book can help in…

  14. Characteristic of molten fluoride salt system LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) as coolant and fuel carrier in molten salt reactor (MSR)

    NASA Astrophysics Data System (ADS)

    Bahri, Che Nor Aniza Che Zainul; Al-Areqi, Wadee'ah Mohd; Ruf, Mohd'Izzat Fahmi Mohd; Majid, Amran Ab.

    2017-01-01

    Interest of fluoride salts have recently revived due to the high temperature application in nuclear reactors. Molten Salt Reactor (MSR) was designed to operate at high temperature in range 700 - 800°C and its fuel is dissolved in a circulating molten fluoride salt mixture. Molten fluoride salts are stable at high temperature, have good heat transfer properties and can dissolve high concentration of actinides and fission product. The aim of this paper was to discuss the physical properties (melting temperature, density and heat capacity) of two systems fluoride salt mixtures i.e; LiF-BeF2 (Flibe) and LiF-NaF-KF (Flinak) in terms of their application as coolant and fuel solvent in MSR. Both of these salts showed almost same physical properties but different applications in MSR. The advantages and the disadvantages of these fluoride salt systems will be discussed in this paper.

  15. Low-melting point heat transfer fluid

    DOEpatents

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  16. Hydrated multivalent cations are new class of molten salt mixtures

    NASA Technical Reports Server (NTRS)

    Angell, C. A.

    1967-01-01

    Electrical conductance and activation energy measurements on mixtures of calcium and potassium nitrate show the hydrated form to be a new class of molten salt. The theoretical glass transition temperature of the hydrate varied in a manner opposite to that of the anhydrous system.

  17. The effect of salt on the melting of ice: A molecular dynamics simulation study.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-09-28

    The effect of added salt (NaCl) on the melting of ice is studied using molecular dynamics simulations. The equilibrium freezing point depression observed in the simulations is in good agreement with experimental data. The kinetic aspects of melting are investigated in terms of the exchange of water molecules between ice and the liquid phase. The ice/liquid equilibrium is a highly dynamic process with frequent exchange of water molecules between ice and the liquid phase. The balance is disturbed when ice melts and the melting proceeds in two stages; the inhibition of the association of water molecules to the ice surface at short times, followed by the increased dissociation of water molecules from the ice surface at longer times. We also find that Cl(-) ions penetrate more deeply into the interfacial region than Na(+) ions during melting. This study provides an understanding of the kinetic aspects of melting that could be useful in other processes such as the inhibition of ice growth by antifreeze proteins.

  18. Stability of Drugs of Abuse in Urine Samples at Room Temperature by Use of a Salts Mixture.

    PubMed

    Pellegrini, Manuela; Graziano, Silvia; Mastrobattista, Luisa; Minutillo, Adele; Busardo, Francesco Paolo; Scarsella, Gianfranco

    2017-01-01

    It has long been recognized that ensuring analyte stability is of crucial importance in the use of any quantitative bioanalytical method. As analyses are usually not performed directly after collection of the biological samples, but after these have been processed and stored, it is essential that analyte stability can be maintained at storage conditions to ensure that the obtained concentration results adequately reflect those directly after sampling. The conservation of urine samples in refrigerated/ frozen conditions is strongly recommended; but not always feasible. The aim of this study was to assess the stability of some well-known drugs of abuse methamphetamine (MA), 11-nor-9-carboxy-Δ9- tetrahydrocannabinol (THC-COOH), benzoylecgonine (BE), and morphine (MOR) in urine samples kept at room temperature by adding a salt mixture (sodium citrate, sodium ascorbate, borax). Two different urine samples were prepared with and without salt mixture, stored at room temperature and then analyzed by gas chromatography-mass spectrometry at 0, 1, 7, 15, and 30 days after collection/preparation to look for eventual analyte degradation. Methamphetamine showed no significant changes with respect to the time of collection/ preparation (T0) up to 7 days later (T7), with or without salt mixture addiction. Then a significant degradation occurred in both salted and non salted urine. BE decrease was observed starting from day 1 after sample collection in salted and not salted samples, respectively. Salt addition seemed to reduce at least the initial BE degradation, with a significant difference (p<0.001) at 7 and 15 days of storage. However, the degradation was not more prevented in salted samples at 30 days of storage. A 20% decrease of MOR concentration was observed starting from day 1 after collection/preparation, both in salted and not salted samples with no subsequent decrease. With regard to THCCOOH, a significant decrease was observed starting from 7 days after collection

  19. The effect of a solid surface on the segregation and melting of salt hydrates.

    PubMed

    Zhang, Yu; Anim-Danso, Emmanuel; Dhinojwala, Ali

    2014-10-22

    Considering the importance of salt and water on earth, the crystallization of salt hydrates next to solid surfaces has important implications in physical and biological sciences. Heterogeneous nucleation is driven by surface interactions, but our understanding of hydrate formation near surfaces is limited. Here, we have studied the hydrate formation of three commonly prevalent salts, MgCl2, CaCl2, and NaCl, next to a sapphire substrate using surface sensitive infrared-visible sum frequency generation (SFG) spectroscopy. SFG spectroscopy can detect the crystallization and melting of salt hydrates at the interface by observing the changes in the intensity and the location of the cocrystallized water hydroxyl peaks (3200-3600 cm(-1)). The results indicate that the surface crystal structures of these three hydrates are similar to those in the bulk. For the NaCl solution, the brine solution is segregated next to the sapphire substrate after the formation of the ice phase. In contrast, the MgCl2 and CaCl2 surface hydrate crystals are interdispersed with nanometer-size ice crystals. The nanosize ice crystals melt at much lower temperatures than bulk ice crystals. For NaCl and MgCl2 solution, the NaCl hydrates prefer to crystallize next to the sapphire substrate instead of the ice crystals and MgCl2 hydrates.

  20. Brines formed by multi-salt deliquescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, S; Rard, J; Alai, M

    2005-11-04

    The FY05 Waste Package Environment testing program at Lawrence Livermore National Laboratory focused on determining the temperature, relative humidity, and solution compositions of brines formed due to the deliquescence of NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures. Understanding the physical and chemical behavior of these brines is important because they define conditions under which brines may react with waste canister surfaces. Boiling point experiments show that NaCl-KNO{sub 3}-NaNO{sub 3} and NaCl-KNO{sub 3}-NaNO{sub 3}-Ca(NO{sub 3}){sub 2} salt mixtures form brines that transform to hydrous melts that do not truly 'dry out' until temperatures exceed 300 and 400more » C, respectively. Thus a conducting solution is present for these salt assemblages over the thermal history of the repository. The corresponding brines form at lower relative humidity at higher temperatures. The NaCl-KNO{sub 3}-NaNO{sub 3} salt mixture has a mutual deliquescence relative humidity (MDRH) of 25.9% at 120 C and 10.8% at 180 C. Similarly, the KNO{sub 3}-NaNO{sub 3} salt mixture has MDRH of 26.4% at 120 C and 20.0% at 150 C. The KNO{sub 3}-NaNO{sub 3} salt mixture salts also absorb some water (but do not appear to deliquesce) at 180 C and thus may also contribute to the transfer of electrons at interface between dust and the waste package surface. There is no experimental evidence to suggest that these brines will degas and form less deliquescent salt assemblages. Ammonium present in atmospheric and tunnel dust (as the chloride, nitrate, or sulfate) will readily decompose in the initial heating phase of the repository, and will affect subsequent behavior of the remaining salt mixture only through the removal of a stoichiometric equivalent of one or more anions. Although K-Na-NO{sub 3}-Cl brines form at high temperature and low relative humidity, these brines are dominated by nitrate, which is known to inhibit corrosion at lower

  1. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gómez-González, Víctor; Docampo-Álvarez, Borja; Gallego, Luis J.

    2015-09-28

    We report a molecular dynamics study of the structure and single-particle dynamics of mixtures of a protic (ethylammonium nitrate) and an aprotic (1-butyl-3-methylimidazolium hexaflurophosphate [BMIM][PF{sub 6}]) room-temperature ionic liquids doped with magnesium and calcium salts with a common anion at 298.15 K and 1 atm. The solvation of these divalent cations in dense ionic environments is analyzed by means of apparent molar volumes of the mixtures, radial distribution functions, and coordination numbers. For the protic mixtures, the effect of salt concentration on the network of hydrogen bonds is also considered. Moreover, single-particle dynamics of the salt cations is studied by means ofmore » their velocity autocorrelation functions and vibrational densities of states, explicitly analyzing the influence of salt concentration, and cation charge and mass on these magnitudes. The effect of the valency of the salt cation on these properties is considered comparing the results with those for the corresponding mixtures with lithium salts. We found that the main structural and dynamic features of the local solvation of divalent cations in ionic liquids are similar to those of monovalent salts, with cations being localized in the polar nanoregions of the bulk mixture coordinated in monodentate and bidentate coordination modes by the [NO{sub 3}]{sup −} and [PF{sub 6}]{sup −} anions. However, stronger electrostatic correlations of these polar nanoregions than in mixtures with salts with monovalent cations are found. The vibrational modes of the ionic liquid (IL) are seen to be scarcely affected by the addition of the salt, and the effect of mass and charge on the vibrational densities of states of the dissolved cations is reported. Cation mass is seen to exert a deeper influence than charge on the low-frequency vibrational spectra, giving a red shift of the vibrational modes and a virtual suppression of the higher energy vibrational modes for the heavier Ca

  2. Investigation of nitrate salts for solar latent heat storage

    NASA Astrophysics Data System (ADS)

    Kamimoto, M.; Tanaka, T.; Tani, T.; Horigome, T.

    1980-01-01

    The properties of heat transfer in the discharging of a model solar latent heat storage unit based on various nitrate salts and salt mixtures are investigated. A shell-and-tube-type passive heat exchanger containing NaNO3 or eutectic or off-eutectic mixtures of NaNO3 with KNO3 and Ca(NO3)2 was heated to 40 K above the melting temperature of the salt, when air was made to flow through a heat transfer tube at a constant flow rate, and heat transfer material and air temperatures were monitored. Thermal conductivity and the apparent heat transfer coefficient are estimated from the heat extraction rate and temperature profiles, and it is found that although the thermal conductivities of the materials are similar, the off-eutectic salts exhibit higher heat transfer coefficients. Temperature distributions in the NaNO3-KNO3 mixtures are found to be in fairly good agreement with those predicted by numerical solutions of a one-dimensional finite difference equation, and with approximate analytical solutions. It is observed that the temperature of the heat transfer surface drops rapidly after the appearance of a solid phase, due to the low thermal conductivity of the salts, and means of avoiding this temperature drop are considered.

  3. High-Melting Lipid Mixtures and the Origin of Detergent-Resistant Membranes Studied with Temperature-Solubilization Diagrams

    PubMed Central

    Sot, Jesús; Manni, Marco M.; Viguera, Ana R.; Castañeda, Verónica; Cano, Ainara; Alonso, Cristina; Gil, David; Valle, Mikel; Alonso, Alicia; Goñi, Félix M.

    2014-01-01

    The origin of resistance to detergent solubilization in certain membranes, or membrane components, is not clearly understood. We have studied the solubilization by Triton X-100 of binary mixtures composed of egg sphingomyelin (SM) and either ceramide, diacylglycerol, or cholesterol. Solubilization has been assayed in the 4–50°C range, and the results are summarized in a novel, to our knowledge, form of plots, that we have called temperature-solubilization diagrams. Despite using a large detergent excess (lipid/detergent 1:20 mol ratio) and extended solubilization times (24–48 h) certain mixtures were not amenable to Triton X-100 solubilization at one or more temperatures. DSC of all the lipid mixtures, and of all the lipid + detergent mixtures revealed that detergent resistance was associated with the presence of gel domains at the assay temperature. Once the system melted down, solubilization could occur. In general adding high-melting lipids limited the solubilization, whereas the addition of low-melting lipids promoted it. Lipidomic analysis of Madin-Darby canine kidney cell membranes and of the corresponding detergent-resistant fraction indicated a large enrichment of the nonsolubilized components in saturated diacylglycerol and ceramide. SM-cholesterol mixtures were special in that detergent solubilization was accompanied, for certain temperatures and compositions, by an independent phenomenon of reassembly of the partially solubilized lipid bilayers. The temperature at which lysis and reassembly prevailed was ∼25°C, thus for some SM-cholesterol mixtures solubilization occurred both above and below 25°C, but not at that temperature. These observations can be at the origin of the detergent resistance effects observed with cell membranes, and they also mean that cholesterol-containing detergent-resistant membrane remnants cannot correspond to structures existing in the native membrane before detergent addition. PMID:25517149

  4. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  5. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  6. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 - 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  7. Sulphate removal from sodium sulphate-rich brine and recovery of barium as a barium salt mixture.

    PubMed

    Vadapalli, Viswanath R K; Zvimba, John N; Mulopo, Jean; Motaung, Solly

    2013-01-01

    Sulphate removal from sodium sulphate-rich brine using barium hydroxide and recovery of the barium salts has been investigated. The sodium sulphate-rich brine treated with different dosages of barium hydroxide to precipitate barium sulphate showed sulphate removal from 13.5 g/L to less than 400 mg/L over 60 min using a barium to sulphate molar ratio of 1.1. The thermal conversion of precipitated barium sulphate to barium sulphide achieved a conversion yield of 85% using coal as both a reducing agent and an energy source. The recovery of a pure mixture of barium salts from barium sulphide, which involved dissolution of barium sulphide and reaction with ammonium hydroxide resulted in recovery of a mixture of barium carbonate (62%) and barium hydroxide (38%), which is a critical input raw material for barium salts based acid mine drainage (AMD) desalination technologies. Under alkaline conditions of this barium salt mixture recovery process, ammonia gas is given off, while hydrogen sulfide is retained in solution as bisulfide species, and this provides basis for ammonium hydroxide separation and recovery for reuse, with hydrogen sulfide also recoverable for further industrial applications such as sulfur production by subsequent stripping.

  8. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.

    PubMed

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-07

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  9. Effect of calcium and phosphorus, residual lactose, and salt-to-moisture ratio on the melting characteristics and hardness of cheddar cheese during ripening.

    PubMed

    Chevanan, N; Muthukumarappan, K

    2007-05-01

    Meltability, melt profile parameters, and hardness of cheddar cheese prepared with varying levels of calcium (Ca) and phosphorus (P) content, residual lactose content, and salt-to-moisture ratio were studied at 0, 1, 2, 4, 6, and 8 mo of ripening. Meltability, melt profile parameters, and hardness of cheddar cheeses measured at 0, 1, 2, 4, 6, and 8 mo of ripening showed significant interaction between the levels of Ca and P, residual lactose, salt-to-moisture ratio, and ripening time for most of the properties studied. cheddar cheese prepared with high Ca and P (0.67% Ca and 0.53% P) resulted in up to 6.2%, 4.5%, 9.6%, 5.0%, and 22.8% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 23.5%, 9.6%, and 3.2% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low Ca and P (0.53% Ca and 0.39% P). cheddar cheese prepared with high lactose (1.4%) content resulted in up to 7.7%, 7.0%, 4.9%, 4.2%, and 24.6% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 14.7%, 12.7%, and 2.8% decrease in meltability, flow rate, and extent of flow respectively compared to the cheddar cheese prepared with low lactose (0.78%) content. cheddar cheese prepared with high salt-to-moisture ratio (6.4%) resulted in up to 21.8%, 11.3%, 12.9%, 4.1%, and 29.4% increase in softening time, softening temperature, melting time, melting temperature, and hardness, respectively, and 13.2%, 28.6%, and 2.6% decrease in meltability, flow rate, and extent of flow, respectively, compared to the cheddar cheese prepared with low salt-to-moisture ratio (4.8%) during ripening.

  10. Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions.

    PubMed

    Oliveira, Filipe S; Cabrita, Eurico J; Todorovic, Smilja; Bernardes, Carlos E S; Lopes, José N Canongia; Hodgson, Jennifer L; MacFarlane, Douglas R; Rebelo, Luís P N; Marrucho, Isabel M

    2016-01-28

    In this work, we explore the interactions between the ionic liquid 1-ethyl-3-methylimidazolim acetate and different inorganic salts belonging to two different cation families, those based on ammonium and others based on sodium. NMR and Raman spectroscopy are used to screen for changes in the molecular environment of the ions in the ionic liquid + inorganic salt mixtures as compared to pure ionic liquid. The ion self-diffusion coefficients are determined from NMR data, allowing the discussion of the ionicity values of the ionic liquid + inorganic salt mixtures calculated using different methods. Our data reveal that preferential interactions are established between the ionic liquid and ammonium-based salts, as opposed to sodium-based salts. Computational calculations show the formation of aggregates between the ionic liquid and the inorganic salt, which is consistent with the spectroscopic data, and indicate that the acetate anion of the ionic liquid establishes preferential interactions with the ammonium cation of the inorganic salts, leaving the imidazolium cation less engaged in the media.

  11. Fluoride salts and container materials for thermal energy storage applications in the temperature range 973 to 1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.; Whittenberger, J. Daniel

    1987-01-01

    Multicomponent fluoride salt mixtures were characterized for use as latent heat of fusion heat storage materials in advanced solar dynamic space power systems with operating temperatures in the range of 973 to 1400 K. The melting points and eutectic composition for many systems with published phase diagrams were verified, and several new eutectic compositions were identified. Additionally, the heats of fusion of several binary and ternary eutectics and congruently melting intermediate compounds were measured by differential scanning calorimetry. The extent of corrosion of various metals by fluoride melts was estimated from thermodynamic considerations, and equilibrium conditions inside a containment vessel were calculated as functions of the initial moisture content of the salt and free volume above the molten salt. Preliminary experimental data on the corrosion of commercial, high-temperature alloys in LiF-19.5CaF2 and NaF-27CaF2-36MgF2 melts are presented and compared to the thermodynamic predictions.

  12. Destruction of decabromodiphenyl ether (BDE-209) in a ternary carbonate molten salt reactor.

    PubMed

    Yao, Zhi-tong; Li, Jin-hui; Zhao, Xiang-yang

    2013-09-30

    Soil contamination by PBDEs has become a significant environmental concern and requires appropriate remediation technologies. In this study, the destruction of decabromodiphenyl ether (BDE-209) in a ternary molten salt (Li, Na, K)2 CO3 reactor was evaluated. The effects of reaction temperature, additive amount of BDE-209 and salt mixture, on off-gas species, were investigated. The salt mixture after reaction was characterized by XRD analysis and a reaction pathway proposed. The results showed that the amounts of C2H6, C2H4, C4H8 and CH4 in the off-gas decreased with increases in temperature, while the CO2 level increased. When the reaction temperature reached 750 °C, incomplete combustion products (PICs) were no longer detected. Increasing BDE-209 loading was not helpful for the reaction, as more PICs were produced. Larger amounts of salt mixture were helpful for the reaction and PICs were not observed with the mole ratio 1: 2000 of BDE-209 to carbonate melt. XRD analysis confirmed the capture of bromine in BDE-209 by the molten salt. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effect of Sodium Sulfate, Ammonium Chloride, Ammonium Nitrate, and Salt Mixtures on Aqueous Phase Partitioning of Organic Compounds.

    PubMed

    Wang, Chen; Lei, Ying Duan; Wania, Frank

    2016-12-06

    Dissolved inorganic salts influence the partitioning of organic compounds into the aqueous phase. This influence is especially significant in atmospheric aerosol, which usually contains large amounts of ions, including sodium, ammonium, chloride, sulfate, and nitrate. However, empirical data on this salt effect are very sparse. Here, the partitioning of numerous organic compounds into solutions of Na 2 SO 4 , NH 4 Cl, and NH 4 NO 3 was measured and compared with existing data for NaCl and (NH 4 ) 2 SO 4 . Salt mixtures were also tested to establish whether the salt effect is additive. In general, the salt effect showed a decreasing trend of Na 2 SO 4 > (NH) 2 SO 4 > NaCl > NH 4 Cl > NH 4 NO 3 for the studied organic compounds, implying the following relative strength of the salt effect of individual anions: SO 4 2- > Cl - > NO 3 - and of cations: Na + > NH 4 + . The salt effect of different salts is moderately correlated. Predictive models for the salt effect were developed based on the experimental data. The experimental data indicate that the salt effect of mixtures may not be entirely additive. However, the deviation from additivity, if it exists, is small. Data of very high quality are required to establish whether the effect of constituent ions or salts is additive or not.

  14. Vacuum distillation of a mixture of LiCl-KCl eutectic salts and RE oxidative precipitates and a dechlorination and oxidation of RE oxychlorides.

    PubMed

    Eun, Hee Chul; Yang, Hee Chul; Cho, Yung Zun; Lee, Han Soo; Kim, In Tae

    2008-12-30

    In this study, a vacuum distillation of a mixture of LiCl-KCl eutectic salt and rare-earth oxidative precipitates was performed to separate a pure LiCl-KCl eutectic salt from the mixture. Also, a dechlorination and oxidation of the rare-earth oxychlorides was carried out to stabilize a final waste form. The mixture was distilled under a range of 710-759.5Torr of a reduced pressure at a fixed heating rate of 4 degrees C/min and the LiCl-KCl eutectic salt was completely separated from the mixture. The required time for the salt distillation and the starting temperature for the salt vaporization were lowered with a reduction in the pressure. Dechlorination and oxidation of the rare-earth oxychlorides was completed at a temperature below 1300 degrees C and this was dependent on the partial pressure of O2. The rare-earth oxychlorides (NdOCl/PrOCl) were transformed to oxides (Nd2O3/PrO2) during the dechlorination and oxidation process. These results will be utilized to design a concept for a process for recycling the waste salt from an electrorefining process.

  15. Thermodynamic Investigation of the Eutectic Mixture of the LiNO3-NaNO3-KNO3-Ca(NO3)2 System

    NASA Astrophysics Data System (ADS)

    Peng, Qiang; Ding, Jing; Wei, Xiaolan; Jiang, Gan

    2017-09-01

    Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the LiNO3-NaNO3-KNO3-Ca(NO3)2 system is determined by conformal ionic solution theory according to the solid-liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is 93.17 {°}C, which is close to the experimental value of 93.22 {°}C obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches 50 {°}C, and the degree of melting increases with temperature. The mixture is completely melted at 130 {°}C. The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.

  16. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination ofmore » the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.« less

  17. Explosion investigation of asphalt-salt mixtures in a reprocessing plant.

    PubMed

    Hasegawa, K; Li, Y

    2000-12-15

    Cause investigation of a fire and explosion at the nuclear fuel waste reprocessing plant indicated that self-heating ignition of an asphalt-salt-waste, bituminized, mixture (AS) caused the disaster. A 220l drum was filled with the AS at a temperature of about 180 degrees C. About 20h later the drum ignited and burned as it was being cooled. It is estimated that the AS contained approximately 55wt.% blown asphalt, 25wt.% NaNO(3), 5wt.% NaNO(2), 8wt.% Na(2)CO(3), 2wt.% NaH(2)PO(4), 1wt.% Ba (OH)(2), 1wt.% K(4)[Fe(CN)(6)], and possibly 3wt.% of other materials. To determine the reaction promoting factors and pertinent chemical reaction rates, self-reaction of the AS has been investigated by the use of a C80D heat flux reaction calorimeter. The oxidizing reactions with asphalt are ruled by NaNO(2) rather than by NaNO(3), in spite of a lower concentration of NaNO(2). The kinetic rates of the interfacial reaction between salt particles and asphalt for the reaction controlled and diffusion controlled steps have been formulated as a function of salt particle size for both NaNO(2) and NaNO(3). Numerical solution of the heat balance equations formulating the heterogeneous reaction scheme indicates that a runaway reaction occurs when the AS-filling temperature is 208 degrees C for a drum filled with an AS mixture produced under standard operating conditions. Molecules containing intramolecular hydrogen, such as Na(2)HPO(4) and NaHCO(3), do not oxidize asphalt directly, however, their presence chemically promotes the oxidizing reaction of NaNO(2). Moreover, NaHCO(3) decomposition which produces gases creates many micro holes in the interior of the salt particles. This in turn promotes the oxidizing reactions that are diffusion controlled. Finally, the consequence of a runaway reaction at 180 degrees C or lower is qualitatively explained by taking into account the chemical effect of intramolecular hydrogen and the physical effect of the NaHCO(3) decomposition gases.

  18. Intermolecular interactions at early stage of protein/detergent particle association induced by salt/polyethylene glycol mixtures.

    PubMed

    Odahara, Takayuki; Odahara, Koji

    2016-04-01

    Mixtures of neutral salts and polyethylene glycol are used for various purposes in biological studies. Although the effects of each component of the mixtures are theoretically well investigated, comprehension of their integrated effects remains insufficient. In this work, their roles and effects as a precipitant were clarified by studying dependence of precipitation curves on salt concentration for integral membrane protein/detergent particles of different physicochemical properties. The dependence of precipitation curves was reasonably related to intermolecular interactions among relevant molecules such as protein, detergent and polyethylene glycol by considering their physicochemical properties. The obtained relationships are useful as basic information to learn the early stage of biological macromolecular associations. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Facile preparation of highly pure KF-ZrF4 molten salt

    NASA Astrophysics Data System (ADS)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  20. Salt melt synthesis of curved nitrogen-doped carbon nanostructures: ORR kinetics boost

    NASA Astrophysics Data System (ADS)

    Rybarczyk, Maria K.; Gontarek, Emilia; Lieder, Marek; Titirici, Maria-Magdalena

    2018-03-01

    Implementing metal-free electrocatalysts for the oxygen reduction reaction (ORR) and revealing crucial chemical or topographical parameters driving their activity are vital for the development of power cells. The carbon-based catalysts are very often synthesized through carbonization of biopolymers, in particular, those one containing nitrogen groups such as chitosan. Unfortunately, the resulting carbonaceous materials usually lack specific porosity and exhibit low catalytic activity. Here, we demonstrate that pyrolysis of chitosan in a ZnCl2 melt assisted by the presence of LiCl results not only in a highly porous activated carbon material with a specific surface area of 1317.97 m2/g and the total nitrogen content of 6.5%, but also induces unexpected curvature in the grown graphitic layers. This is the first work that shows curved graphene layers obtained from a biopolymer precursor by its pyrolytic decomposition in the melted salt media. On the other hand, a carbonaceous material obtained from chitosan but without the salts has very low specific surface area of 7.8 m2/g, possesses no specific structural features, and contains 4.7% of nitrogen. The electrochemical studies show, that the former material is highly active towards four-electron pathway of the ORR in terms of an onset potential (0.89 V vs RHE) and the turnover frequency (TOFmax = 0.095 e site-1 s-1). We attribute this high catalytic performance to the presence of the pyridinic and pyrrolic sites in the structure. The ORR kinetics is probably further promoted by curvature in the graphitic layers.

  1. Low-melting point heat transfer fluid

    DOEpatents

    Cordaro, Joseph G [Oakland, CA; Bradshaw, Robert W [Livermore, CA

    2011-04-12

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  2. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.

    1981-04-01

    This paper presents an overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program. The experimental programs are concentrating on molten nitrate salts which have been proposed as heat transfer and energy storage medium. The salt composition of greatest interest is drawsalt, nominally a 50-50 molar mixture of NaNO3 and KNO3 with a melting point of 220 C. Several technical uncertainties have been identified that must be resolved before nitrate based solar plants can be commercialized. Research programs at Sandia National Laboratories, universities, and industrial suppliers have been implemented to resolve these technical uncertainties. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications such as the repowering/industrial retrofit and cogeneration program are presented.

  3. Progress in modeling solidification in molten salt coolants

    NASA Astrophysics Data System (ADS)

    Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier

    2017-10-01

    Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.

  4. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.

    PubMed

    Dutcher, Cari S; Wexler, Anthony S; Clegg, Simon L

    2010-11-25

    A semiempirical model is presented that predicts surface tensions (σ) of aqueous electrolyte solutions and their mixtures, for concentrations ranging from infinitely dilute solution to molten salt. The model requires, at most, only two temperature-dependent terms to represent surface tensions of either pure aqueous solutions, or aqueous or molten mixtures, over the entire composition range. A relationship was found for the coefficients of the equation σ = c(1) + c(2)T (where T (K) is temperature) for molten salts in terms of ion valency and radius, melting temperature, and salt molar volume. Hypothetical liquid surface tensions can thus be estimated for electrolytes for which there are no data, or which do not exist in molten form. Surface tensions of molten (single) salts, when extrapolated to normal temperatures, were found to be consistent with data for aqueous solutions. This allowed surface tensions of very concentrated, supersaturated, aqueous solutions to be estimated. The model has been applied to the following single electrolytes over the entire concentration range, using data for aqueous solutions over the temperature range 233-523 K, and extrapolated surface tensions of molten salts and pure liquid electrolytes: HCl, HNO(3), H(2)SO(4), NaCl, NaNO(3), Na(2)SO(4), NaHSO(4), Na(2)CO(3), NaHCO(3), NaOH, NH(4)Cl, NH(4)NO(3), (NH(4))(2)SO(4), NH(4)HCO(3), NH(4)OH, KCl, KNO(3), K(2)SO(4), K(2)CO(3), KHCO(3), KOH, CaCl(2), Ca(NO(3))(2), MgCl(2), Mg(NO(3))(2), and MgSO(4). The average absolute percentage error between calculated and experimental surface tensions is 0.80% (for 2389 data points). The model extrapolates smoothly to temperatures as low as 150 K. Also, the model successfully predicts surface tensions of ternary aqueous mixtures; the effect of salt-salt interactions in these calculations was explored.

  5. Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raade, Justin; Roark, Thomas; Vaughn, John

    2013-07-22

    Concentrating solar power (CSP) facilities are comprised of many miles of fluid-filled pipes arranged in large grids with reflective mirrors used to capture radiation from the sun. Solar radiation heats the fluid which is used to produce steam necessary to power large electricity generation turbines. Currently, organic, oil-based fluid in the pipes has a maximum temperature threshold of 400 °C, allowing for the production of electricity at approximately 15 cents per kilowatt hour. The DOE hopes to foster the development of an advanced heat transfer fluid that can operate within higher temperature ranges. The new heat transfer fluid, when usedmore » with other advanced technologies, could significantly decrease solar electricity cost. Lower costs would make solar thermal electricity competitive with gas and coal and would offer a clean, renewable source of energy. Molten salts exhibit many desirable heat transfer qualities within the range of the project objectives. Halotechnics developed advanced heat transfer fluids (HTFs) for application in solar thermal power generation. This project focused on complex mixtures of inorganic salts that exhibited a high thermal stability, a low melting point, and other favorable characteristics. A high-throughput combinatorial research and development program was conducted in order to achieve the project objective. Over 19,000 candidate formulations were screened. The workflow developed to screen various chemical systems to discover salt formulations led to mixtures suitable for use as HTFs in both parabolic trough and heliostat CSP plants. Furthermore, salt mixtures which will not interfere with fertilizer based nitrates were discovered. In addition for use in CSP, the discovered salt mixtures can be applied to electricity storage, heat treatment of alloys and other industrial processes.« less

  6. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  7. Assessment of a Novel Ternary Eutectic Chloride Salt for Next Generation High-Temperature Sensible Heat Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vidal, Judith C; Mohan, Gowtham; Venkataraman, Mahesh

    A novel ternary eutectic salt mixture for high-temperature sensible heat storage, composed of sodium chloride, potassium chloride and magnesium chloride (NaKMg-Cl) was developed based on a phase diagram generated with FactSage(R). The differential scanning calorimetry (DSC) technique was used to experimentally validate the predicted melting point of the ternary eutectic composition, which was measured as 387 degrees C, in good agreement with the prediction. The ternary eutectic was compared to two binary salts formulated based on prediction of the eutectic composition by FactSage, but unfortunately DSC measurements showed that neither binary salt composition was eutectic. Nonetheless, the measured thermo-physical propertiesmore » of the ternary and the two binary mixtures are compared. Liquid heat capacities of both the ternary and binary salts were determined by using DSC with sapphire as the standard reference. The average heat capacity of the ternary mixture was recorded as 1.18 J g-1 K-1. The mass loss of the molten eutectic salts was studied up to 1000 degrees C using a thermogravimetric analyser in nitrogen, argon and air. The results showed a significant mass loss due to vaporisation in an open system, particularly above 700 degrees C. However, simulation of mass loss in a closed system with an inert cover gas indicates storage temperatures above 700 degrees C may be feasible, and highlights the importance of the design of the storage tank system. In terms of storage material cost, the NaKMg-Cl mixture is approximately 4.5 USD/kWh, which is 60% cheaper than current state-of-the-art nitrate salt mixtures.« less

  8. Pairing Heterocyclic Cations with closo-Icosahedral Borane and Carborane Anions, II: Benchtop Alternative Synthetic Methodologies for Binary Triazolium and Tetrazolium Salts with Significant Water Solubility (POSTPRINT)

    DTIC Science & Technology

    2012-01-01

    interesting property, eutectic melting-point depression. Recrystallization of ternary salts 12–14 was not attempted because of a concern that a cation... recrystallization solvent mixture for these powders, and while some individual successes resulted, a general efficient solvent system for all salt...product recrystallizations could not be found. So, rather than recrystallizing each individual adduct, spectroscopic examination of the amorphous solids was

  9. Effect of composition in the development of carbamazepine hot-melt extruded solid dispersions by application of mixture experimental design.

    PubMed

    Djuris, Jelena; Ioannis, Nikolakakis; Ibric, Svetlana; Djuric, Zorica; Kachrimanis, Kyriakos

    2014-02-01

    This study investigates the application of hot-melt extrusion for the formulation of carbamazepine (CBZ) solid dispersions, using polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer (Soluplus, BASF, Germany) and polyoxyethylene-polyoxypropylene block copolymer (Poloxamer 407). In agreement with the current Quality by Design principle, formulations of solid dispersions were prepared according to a D-optimal mixture experimental design, and the influence of formulation composition on the properties of the dispersions (CBZ heat of fusion and release rate) was estimated. Prepared solid dispersions were characterized using differential scanning calorimetry, attenuated total reflectance infrared spectroscopy and hot stage microscopy, as well as by determination of the dissolution rate of CBZ from the hot-melt extrudates. Solid dispersions of CBZ can be successfully prepared using the novel copolymer Soluplus. Inclusion of Poloxamer 407 as a plasticizer facilitated the processing and decreased the hardness of hot-melt extrudates. Regardless of their composition, all hot-melt extrudates displayed an improvement in the release rate compared to the pure CBZ, with formulations having the ratio of CBZ : Poloxamer 407 = 1 : 1 showing the highest increase in CBZ release rate. Interactions between the mixture components (CBZ and polymers), or quadratic effects of the components, play a significant role in overall influence on the CBZ release rate. © 2013 Royal Pharmaceutical Society.

  10. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors.

    PubMed

    Lei, Weiwei; Portehault, David; Dimova, Rumiana; Antonietti, Markus

    2011-05-11

    A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440-528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics. © 2011 American Chemical Society

  11. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  12. Resistance of Coatings for Boiler Components of Waste-to-Energy Plants to Salt Melts Containing Copper Compounds

    NASA Astrophysics Data System (ADS)

    Galetz, Mathias Christian; Bauer, Johannes Thomas; Schütze, Michael; Noguchi, Manabu; Cho, Hiromitsu

    2013-06-01

    The accelerating effect of heavy metal compounds on the corrosive attack of boiler components like superheaters poses a severe problem in modern waste-to-energy plants (WTPs). Coatings are a possible solution to protect cheap, low alloyed steel substrates from heavy metal chloride and sulfate salts, which have a relatively low melting point. These salts dissolve many alloys, and therefore often are the limiting factor as far as the lifetime of superheater tubes is concerned. In this work the corrosion performance under artificial salt deposits of different coatings, manufactured by overlay welding, thermal spraying of self-fluxing as well as conventional systems was investigated. The results of our studies clearly demonstrate the importance of alloying elements such as molybdenum or silicon. Additionally, the coatings have to be dense and of a certain thickness in order to resist the corrosive attack under these severe conditions.

  13. Power plant I - Fused salt

    NASA Astrophysics Data System (ADS)

    Roche, M.

    A solar thermal power plant using fused salt as the heat transfer fluid for steam power generation is analyzed for the feasibility of economic operation. The salt is also stored in a tank reservoir for maintaining the primary heat loop at temperatures high enough for the salts to remain liquid, and also to provide reserve power for the steam generator. Initial studies were with eutectic (hitec) salt comprising Na, KOH, and nitrites melting at 146 C, and further studies were performed employing draw salt, which has no nitrite, is more stable at high temperature, and melts at 225 C. The use of draw salt was found to allow a 5 percent reduction in storage capacity. Further examinations of the effects of the hitec salts on corrosion and composition degradation at high temperatures are indicated. The molten salt system is projected to offer an efficiency of 26 percent.

  14. Nitrogen conservation in simulated food waste aerobic composting process with different Mg and P salt mixtures.

    PubMed

    Li, Yu; Su, Bensheng; Liu, Jianlin; Du, Xianyuan; Huang, Guohe

    2011-07-01

    To assess the effects of three types of Mg and P salt mixtures (potassium phosphate [K3PO4]/magnesium sulfate [MgSO4], potassium dihydrogen phosphate [K2HPO4]/MgSO4, KH2PO4/MgSO4) on the conservation of N and the biodegradation of organic materials in an aerobic food waste composting process, batch experiments were undertaken in four reactors (each with an effective volume of 30 L). The synthetic food waste was composted of potatoes, rice, carrots, leaves, meat, soybeans, and seed soil, and the ratio of C and N was 17:1. Runs R1-R3 were conducted with the addition of K3PO4/ MgSO4, K2HPO4/MgSO4, and KH2PO4/MgSO4 mixtures, respectively; run R0 was a blank performed without the addition of Mg and P salts. After composting for 25 days, the degrees of degradation of the organic materials in runs R0-R3 were 53.87, 62.58, 59.14, and 49.13%, respectively. X-ray diffraction indicated that struvite crystals were formed in runs R1-R3 but not in run R0; the gaseous ammonia nitrogen (NH3-N) losses in runs R0-R3 were 21.2, 32.8, 12.6, and 3.5% of the initial total N, respectively. Of the tested Mg/P salt mixtures, the K2HPO4/ MgSO4 system provided the best combination of conservation of N and biodegradation of organic materials in this food waste composting process.

  15. Fermentation profiles of Manzanilla-Aloreña cracked green table olives in different chloride salt mixtures.

    PubMed

    Bautista-Gallego, J; Arroyo-López, F N; Durán-Quintana, M C; Garrido-Fernández, A

    2010-05-01

    NaCl plays an important role in table olive processing affecting the flavour and microbiological stability of the final product. However, consumers demand foods low in sodium, which makes necessary to decrease levels of this mineral in fruits. In this work, the effects of diverse mixtures of NaCl, CaCl(2) and KCl on the fermentation profiles of cracked directly brined Manzanilla-Aloreña olives, were studied by means of response surface methodology based in a simplex lattice mixture design with constrains. All salt combinations led to lactic acid processes. The growth of Enterobacteriaceae populations was always limited and partially inhibited by the presence of CaCl(2). Only time to reach half maximum populations and decline rates of yeasts, which were higher as concentrations of NaCl or KCl increased, were affected, and correspondingly modelled, as a function of salt mixtures. However, lactic acid bacteria growth parameters could not be related to initial environmental conditions. They had a longer lag phase, slower growth and higher population levels than yeasts. Overall, the presence of CaCl(2) led to a slower Enterobacteriaceae and lactic acid bacteria growth than the traditional NaCl brine but to higher yeast activity. The presence of CaCl(2) in the fermentation brines also led to higher water activity, lower pH and combined acidity as well as a faster acidification while NaCl and KCl had fairly similar behaviours. Apparently, NaCl may be substituted in diverse proportions with KCl or CaCl(2) without substantially disturbing water activity or the usual fermentation profiles while producing olives with lower salt content. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  16. Nonequimolar Mixture of Organic Acids and Bases: An Exception to the Rule of Thumb for Salt or Cocrystal.

    PubMed

    Pratik, Saied Md; Datta, Ayan

    2016-08-04

    Formation of salt and/or cocrystal from organic acid-base mixtures has significant consequences in the pharmaceutical industry and its related intellectual property rights (IPR). On the basis of calculations using periodic dispersion corrected DFT (DFT-D2) on formic acid-pyridine adduct, we have demonstrated that an equimolar stoichiometric ratio (1:1) exists as a neutral cocrystal. On the other hand, the nonequimolar stoichiometry (4:1) readily forms an ionic salt. While the former result is in agreement with the ΔpKa rule between the base and the acid, the latter is not. Calculations reveal that, within the equimolar manifold (n:n; n = 1-4), the mixture exists as a hydrogen bonded complex in a cocrystal-like environment. However, the nonequimolar mixture in a ratio of 5:1 and above readily forms salt-like structures. Because of the cooperative nature of hydrogen bonding, the strength of the O-H···N hydrogen bond increases and eventually transforms into O(-)···H-N(+) (complete proton transfer) as the ratio of formic acid increases and forms salt as experimentally observed. Clearly, an enhanced polarization of formic acid on aggregation increases its acidity and, hence, facilitates its transfer to pyridine. Motion of the proton from formic acid to pyridine is shown to follow a relay mechanism wherein the proton that is far away from pyridine is ionized and is subsequently transferred to pyridine via hopping across the neutral formic acid molecules (Grotthuss type pathway). The dynamic nature of protons in the condensed phase is also evident for cocrystals as the barrier of intramolecular proton migration in formic acid (leading to tautomerism), ΔH(⧧)tautomer = 17.1 kcal/mol in the presence of pyridine is half of that in free formic acid (cf. ΔH(⧧)tautomer = 34.2 kcal/mol). We show that an acid-base reaction can be altered in the solid state to selectively form a cocrystal or salt depending on the strength and nature of aggregation.

  17. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  18. Hot melt extrusion versus spray drying: hot melt extrusion degrades albendazole.

    PubMed

    Hengsawas Surasarang, Soraya; Keen, Justin M; Huang, Siyuan; Zhang, Feng; McGinity, James W; Williams, Robert O

    2017-05-01

    The purpose of this study was to enhance the dissolution properties of albendazole (ABZ) by the use of amorphous solid dispersions. Phase diagrams of ABZ-polymer binary mixtures generated from Flory-Huggins theory were used to assess miscibility and processability. Forced degradation studies showed that ABZ degraded upon exposure to hydrogen peroxide and 1 N NaOH at 80 °C for 5 min, and the degradants were albendazole sulfoxide (ABZSX), and ABZ impurity A, respectively. ABZ was chemically stable following exposure to 1 N HCl at 80 °C for one hour. Thermal degradation profiles show that ABZ, with and without Kollidon ® VA 64, degraded at 180 °C and 140 °C, respectively, which indicated that ABZ could likely be processed by thermal processing. Following hot melt extrusion, ABZ degraded up to 97.4%, while the amorphous ABZ solid dispersion was successfully prepared by spray drying. Spray-dried ABZ formulations using various types of acids (methanesulfonic acid, sulfuric acid and hydrochloric acid) and polymers (Kollidon ® VA 64, Soluplus ® and Eudragit ® E PO) were studied. The spray-dried ABZ with methanesulfonic acid and Kollidon ® VA 64 substantially improved non-sink dissolution in acidic media as compared to bulk ABZ (8-fold), physical mixture of ABZ:Kollidon ® VA 64 (5.6-fold) and ABZ mesylate salt (1.6-fold). No degradation was observed in the spray-dried product for up to six months and less than 5% after one-year storage. In conclusion, amorphous ABZ solid dispersions in combination with an acid and polymer can be prepared by spray drying to enhance dissolution and shelf-stability, whereas those made by melt extrusion are degraded.

  19. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    PubMed

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  20. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  1. Coordinated Hard Sphere Mixture (CHaSM): A fast approximate model for oxide and silicate melts at extreme conditions

    NASA Astrophysics Data System (ADS)

    Wolf, A. S.; Asimow, P. D.; Stevenson, D. J.

    2015-12-01

    Recent first-principles calculations (e.g. Stixrude, 2009; de Koker, 2013), shock-wave experiments (Mosenfelder, 2009), and diamond-anvil cell investigations (Sanloup, 2013) indicate that silicate melts undergo complex structural evolution at high pressure. The observed increase in cation-coordination (e.g. Karki, 2006; 2007) induces higher compressibilities and lower adiabatic thermal gradients in melts as compared with their solid counterparts. These properties are crucial for understanding the evolution of impact-generated magma oceans, which are dominated by the poorly understood behavior of silicates at mantle pressures and temperatures (e.g. Stixrude et al. 2009). Probing these conditions is difficult for both theory and experiment, especially given the large compositional space (MgO-SiO2-FeO-Al2O3-etc). We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme P-T conditions (Wolf et al., 2015). The Coordinated Hard Sphere Mixture (CHaSM) extends the Hard Sphere mixture model, accounting for the range of coordination states for each cation in the liquid. Using approximate analytic expressions for the hard sphere model, this fast statistical method compliments classical and first-principles methods, providing accurate thermodynamic and structural property predictions for melts. This framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide P-T range. Typical Mg-coordination numbers are predicted to evolve continuously from 5.25 (0 GPa) to 8.5 (250 GPa), comparing favorably with first-principles Molecular Dynamics (MD) simulations. We begin extending the model to a simplified mantle chemistry using empirical potentials (generally accurate over moderate pressure ranges, <~30 GPa), yielding predictions rooted in statistical representations of melt structure

  2. Organic Electrochemistry in Aluminum Chloride Melts.

    DTIC Science & Technology

    1976-08-15

    establishing a new, room temperature molten salt system. The low temperature fused salt was prepared by combining aluminum...narrow (600 mY) potential range. Organic electrosynthesis was conducted in a 50-50 by volume molten salt - benzene solution. This mixed solvent...room temperature molten salt system, namely a 67:33 mole percent aluminum chloride: ethylpyridinium bromide melt and in a 50-50 by volume solution of the

  3. Structure and stability of charged colloid-nanoparticle mixtures

    NASA Astrophysics Data System (ADS)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  4. Coordinated Hard Sphere Mixture (CHaSM): A simplified model for oxide and silicate melts at mantle pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Wolf, Aaron S.; Asimow, Paul D.; Stevenson, David J.

    2015-08-01

    We develop a new model to understand and predict the behavior of oxide and silicate melts at extreme temperatures and pressures, including deep mantle conditions like those in the early Earth magma ocean. The Coordinated Hard Sphere Mixture (CHaSM) is based on an extension of the hard sphere mixture model, accounting for the range of coordination states available to each cation in the liquid. By utilizing approximate analytic expressions for the hard sphere model, this method is capable of predicting complex liquid structure and thermodynamics while remaining computationally efficient, requiring only minutes of calculation time on standard desktop computers. This modeling framework is applied to the MgO system, where model parameters are trained on a collection of crystal polymorphs, producing realistic predictions of coordination evolution and the equation of state of MgO melt over a wide range of pressures and temperatures. We find that the typical coordination number of the Mg cation evolves continuously upward from 5.25 at 0 GPa to 8.5 at 250 GPa. The results produced by CHaSM are evaluated by comparison with predictions from published first-principles molecular dynamics calculations, indicating that CHaSM is accurately capturing the dominant physics controlling the behavior of oxide melts at high pressure. Finally, we present a simple quantitative model to explain the universality of the increasing Grüneisen parameter trend for liquids, which directly reflects their progressive evolution toward more compact solid-like structures upon compression. This general behavior is opposite that of solid materials, and produces steep adiabatic thermal profiles for silicate melts, thus playing a crucial role in magma ocean evolution.

  5. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data: LIBS OF CL, C, S IN SALT-BASALT MIXTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D. E.; Ehlmann, B. L.; Forni, O.

    Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less

  6. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data: LIBS OF CL, C, S IN SALT-BASALT MIXTURES

    DOE PAGES

    Anderson, D. E.; Ehlmann, B. L.; Forni, O.; ...

    2017-04-24

    Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. Here, we performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate saltsmore » found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. The data then indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. Our results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.« less

  7. MD simulations of the formation of stable clusters in mixtures of alkaline salts and imidazolium-based ionic liquids.

    PubMed

    Méndez-Morales, Trinidad; Carrete, Jesús; Bouzón-Capelo, Silvia; Pérez-Rodríguez, Martín; Cabeza, Óscar; Gallego, Luis J; Varela, Luis M

    2013-03-21

    Structural and dynamical properties of room-temperature ionic liquids containing the cation 1-butyl-3-methylimidazolium ([BMIM](+)) and three different anions (hexafluorophosphate, [PF6](-), tetrafluoroborate, [BF4](-), and bis(trifluoromethylsulfonyl)imide, [NTf2](-)) doped with several molar fractions of lithium salts with a common anion at 298.15 K and 1 atm were investigated by means of molecular dynamics simulations. The effect of the size of the salt cation was also analyzed by comparing these results with those for mixtures of [BMIM][PF6] with NaPF6. Lithium/sodium solvation and ionic mobilities were analyzed via the study of radial distribution functions, coordination numbers, cage autocorrelation functions, mean-square displacements (including the analysis of both ballistic and diffusive regimes), self-diffusion coefficients of all the ionic species, velocity and current autocorrelation functions, and ionic conductivity in all the ionic liquid/salt systems. We found that lithium and sodium cations are strongly coordinated in two different positions with the anion present in the mixture. Moreover, [Li](+) and [Na](+) cations were found to form bonded-like, long-lived aggregates with the anions in their first solvation shell, which act as very stable kinetic entities within which a marked rattling motion of salt ions takes place. With very long MD simulation runs, this phenomenon is proved to be on the basis of the decrease of self-diffusion coefficients and ionic conductivities previously reported in experimental and computational results.

  8. Predicting melt rheology for hot-melt extrusion by means of a simple Tg-measurement.

    PubMed

    Bochmann, Esther S; Üstüner, Elgin E; Gryczke, Andreas; Wagner, Karl G

    2017-10-01

    The feasibility of predicting melt rheology by using the glass transition temperature (T g ) of a desired amorphous solid dispersion (ASD) for hot-melt extrusion (HME) and other melt based processes is presented. Three groups of three different active pharmaceutical ingredients (APIs) or plasticizer/copovidone mixtures, with identical glass transition in rheological testing, were used. Their rheological behavior as a function of temperature and frequency were analyzed by means of small amplitude oscillatory shear (SAOS) on an oscillatory rheometer. The zero-shear viscosity (η 0 ) identified at 150°C was compared to T g , measured by differential scanning calorimetry (DSC) and SAOS. A strong correlation between η 0 and T g was identified, independent of the API or plasticizer used to achieve T g of the mixture. To evaluate and rate the discrepancy in η 0 of the different mixtures at same T g , hot-melt extrusion trials were conducted to measure torque and mean residence time. In this paper, carbamazepine, dipyridamole, indomethacin, ibuprofen, polyethylene glycol (PEG 1500) in vinylpyrrolidone-vinyl acetate copolymer (copovidone) as matrix polymer were used. Copyright © 2017. Published by Elsevier B.V.

  9. Emulsification Of Eutectic Salt Mixtures In Fluid Vehicles

    NASA Astrophysics Data System (ADS)

    Vanderhoff, J. W.; El-Aasser, M. S.; Hawkins, T. W.

    1988-05-01

    High-internal-phase-volume emulsions of 75 volt 3/18/79 potassium iodide/sodium iodide/ urea model eutectic salt mixture in 83.5/16.5 Sartomer R-45HT hydroxy-terminated polybutadi-ene/Nujol mineral oil binder mixture were prepared at 60°C using water-in-oil emulsifiers and cured with isophorone diisocyanate or Desmodur N-100. The Nujol mineral oil enhanced the emulsification with a negligible reduction in the tensile properties of the cured elastomer. The average emulsion droplet sizes were ca. 200 nm initially, but increased slowly during curing to 500-1000 nm. The coalescence of the emulsion droplets followed the second-order dependence predicted by the von Smoluchowski diffusion-controlled flocculation; the rate constants were 1.05x10-18 and 9.58x10-18 cc/droplet-sec for dirnethyldioctadecylammonium bromide and Span 85 sorbitan trioleate, respectively. The isophorone diisocyanate reacted with emulsifiers containing primary hydroxyl or amine groups, to give unstable emulsions or no emulsions at all. Dimethyldioctadecylammonium bromide with no primary hydroxyl or amine groups, however, did not react with isocyanates and gave stable emulsions. The reaction of the R-45HT hydroxy-terminated polybutadiene with isophorone diisocyanate followed the expec-ted second-order kinetics with a rate constant of 3.42x10-4 liters/mole-sec at 60°C. The tensile properties of the cured elastomers and emulsions generally increased with increasing NCO/OH ratio up to 1.6/1.0. With increasing volume fraction of dispersed phase, the maximum stress (tensile strength) decreased, the maximum strain (percent elongation) increased, and the initial modulus (tensile modulus) decreased, in contrast to the behavior of conventional filled polymer systems; however, the maximum stresses were in accord with theoretical values for a filled polymer in which the filler particles bear no load, the initial moduli were in accord with the predictions of an isostrain model, and the maximum strain increased

  10. Mineral and sensory profile of seasoned cracked olives packed in diverse salt mixtures.

    PubMed

    Moreno-Baquero, J M; Bautista-Gallego, J; Garrido-Fernández, A; López-López, A

    2013-05-01

    This work studies the effect of packing cracked seasoned olives with NaCl, KCl, and CaCl(2) mixture brines on their mineral nutrients and sensory attributes, using RSM methodology. The Na, K, Ca, and residual natural Mn contents in flesh as well as saltiness, bitterness and fibrousness were significantly related to the initial concentrations of salts in the packing solution. This new process led to table olives with a significantly lower sodium content (about 31%) than the traditional product but fortified in K and Ca. High levels of Na and Ca in the flesh led to high scores of acidity and saltiness (the first descriptor) and bitterness (the second) while the K content was unrelated to any sensory descriptor. The new presentations using moderate proportions of alternative salts will therefore have improved nutritional value and healthier characteristics but only a slightly modified sensory profile. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  12. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  13. Using a low melting solvent mixture to extract value from wood biomass

    NASA Astrophysics Data System (ADS)

    Hiltunen, Jaakko; Kuutti, Lauri; Rovio, Stella; Puhakka, Eini; Virtanen, Tommi; Ohra-Aho, Taina; Vuoti, Sauli

    2016-09-01

    Green chemistry, sustainability and eco-efficiency are guiding the development of the next generation of industrial chemical processes. The use of non-edible lignocellulosic biomass as a source of chemicals and fuels has recently raised interest due to the need for an alternative to fossil resources. Valorisation mainly focuses on cellulose, which has been used for various industrial scale applications for decades. However, creating an economically more viable value chain would require the exploitation of the other main components, hemicellulose and lignin. Here, we present a new low melting mixture composition based in boric acid and choline chloride, and demonstrate its efficiency in the fractionation of wood-based biomass for the production of non-condensed lignin, suitable for further use in the search for sustainable industrial applications, and for the selective conversion of hemicelluloses into valuable platform chemicals.

  14. Salt-hydrate thermal-energy-storage system for space heating and air conditioning

    NASA Astrophysics Data System (ADS)

    MacCracken, C. D.; Armstrong, J. M.; MacCracken, M. M.; Silvetti, B. M.

    1980-07-01

    Latent heat storage equipment using three different salts was developed. The salts are: sodium sulfate pentahydrate which melts at 460 C, magnesium chloride hexahydrate which melts at 1150 C, and a eutectic combination of seven different materials which melts at 70 C. Stirring pumps, tanks, and tubing materials, and field filling of the salts into their tanks are developed. good performance for the tank/heat exchangers with all three salts is reported. Both the 1150 C and 460 C salts are almost equivalent in volume storage to water/ice. The 79.0 C salt, however, begins at about 56% of the BTU's per cubic foot of water/ice and declines due to separation to 40% after repeated cycling.

  15. The mechanics of pressed-pellet separators in molten salt batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Kevin Nicholas; Roberts, Christine Cardinal; Roberts, Scott Alan

    2014-06-01

    We present a phenomenological constitutive model that describes the macroscopic behavior of pressed-pellet materials used in molten salt batteries. Such materials include separators, cathodes, and anodes. The purpose of this model is to describe the inelastic deformation associated with the melting of a key constituent, the electrolyte. At room temperature, all constituents of these materials are solid and do not transport cations so that the battery is inert. As the battery is heated, the electrolyte, a constituent typically present in the separator and cathode, melts and conducts charge by flowing through the solid skeletons of the anode, cathode, and separator.more » The electrochemical circuit is closed in this hot state of the battery. The focus of this report is on the thermal-mechanical behavior of the separator, which typically exhibits the most deformation of the three pellets during the process of activating a molten salt battery. Separator materials are composed of a compressed mixture of a powdered electrolyte, an inert binder phase, and void space. When the electrolyte melts, macroscopically one observes both a change in volume and shape of the separator that depends on the applied boundary conditions during the melt transition. Although porous flow plays a critical role in the battery mechanics and electrochemistry, the focus of this report is on separator behavior under flow-free conditions in which the total mass of electrolyte is static within the pellet. Specific poromechanics effects such as capillary pressure, pressure-saturation, and electrolyte transport between layers are not considered. Instead, a phenomenological model is presented to describe all such behaviors including the melting transition of the electrolyte, loss of void space, and isochoric plasticity associated with the binder phase rearrangement. The model is appropriate for use finite element analysis under finite deformation and finite temperature change conditions. The model

  16. Prediction of the thermophysical properties of molten salt fast reactor fuel from first-principles

    NASA Astrophysics Data System (ADS)

    Gheribi, A. E.; Corradini, D.; Dewan, L.; Chartrand, P.; Simon, C.; Madden, P. A.; Salanne, M.

    2014-05-01

    Molten fluorides are known to show favourable thermophysical properties which make them good candidate coolants for nuclear fission reactors. Here we investigate the special case of mixtures of lithium fluoride and thorium fluoride, which act both as coolant and as fuel in the molten salt fast reactor concept. By using ab initio parameterised polarisable force fields, we show that it is possible to calculate the whole set of properties (density, thermal expansion, heat capacity, viscosity and thermal conductivity) which are necessary for assessing the heat transfer performance of the melt over the whole range of compositions and temperatures. We then deduce from our calculations several figures of merit which are important in helping the optimisation of the design of molten salt fast reactors.

  17. Molecular association of normal alkanoic acids with their thallium(I) salts: a new homologous series of fatty acid metal soaps.

    PubMed

    Fernández-García, M; García, M V; Redondo, M I; Cheda, J A; Fernández-García, M; Westrum, E F; Fernández-Martín, F

    1997-02-01

    A new homologous series of thallium(I) hydrogen dialkanoates, fatty acid thallium soaps, from the dipropane up to the ditetradecane is reported for the first time. This association with 1:1 stoichiometry is the only one exhibited by the thallium derivatives. They have been prepared by solidification of molten mixtures with equimolar proportions of acid and corresponding neutral salt, through crystallization from an anhydrous ethanolic solution of the mixture has also been successful in getting pure compounds with largest chain lengths. Vibrational spectroscopies clearly characterize these crystalline compounds as very strong hydrogen bonding systems. Assignations of active modes in proton and carbon nuclear magnetic resonance spectrometry (NMR) (in ethanol) and infrared (IR) and Raman spectra (in solid state) are reported. According to X-ray diffraction (XRD) they have monomolecular lamellar structures with the acyl chains arranged up and down to the cation/H-bond network in a methyl-to-methyl fashion, and vertically oriented to the basal plane. The acyl chains present all-trans conformation and alternating configuration (perpendicular orthorhombic subcell), like the beta'-phases of other kinds of lipids. Lamellar thickness is reported for the six room-temperature crystalline members. The molecular compounds present polymorphism, one crystal/crystal transition at temperatures close to the peritectical melting. Phase transition thermodynamics are also given and discussed with respect to their acid and salt parents. Their incongruent melting involves nearly 90% of the total enthalpic increments of both constituents' melting processes, making these compounds potential thermal energy storage materials.

  18. Melt processing of Bi--2212 superconductors using alumina

    DOEpatents

    Holesinger, Terry G.

    1999-01-01

    Superconducting articles and a method of forming them, where the superconducting phase of an article is Bi.sub.2 Sr.sub.2 CaCu.sub.2 O.sub.y (Bi-2212). Alumina is combined with Bi-2212 powder or Bi-2212 precursor powder and, in order to form an intimate mixture, the mixture is melted and rapidly cooled to form a glassy solid. The glassy solid is comminuted and the resulting powder is combined with a carrier. An alternative to melting is to form the mixture of nanophase alumina and material having a particle size of less than about 10 microns. The powder, with the carrier, is melt processed to form a superconducting article.

  19. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  20. Observations of brine plumes below melting Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Peterson, Algot K.

    2018-02-01

    In sea ice, interconnected pockets and channels of brine are surrounded by fresh ice. Over time, brine is lost by gravity drainage and flushing. The timing of salt release and its interaction with the underlying water can impact subsequent sea ice melt. Turbulence measurements 1 m below melting sea ice north of Svalbard reveal anticorrelated heat and salt fluxes. From the observations, 131 salty plumes descending from the warm sea ice are identified, confirming previous observations from a Svalbard fjord. The plumes are likely triggered by oceanic heat through bottom melt. Calculated over a composite plume, oceanic heat and salt fluxes during the plumes account for 6 and 9 % of the total fluxes, respectively, while only lasting in total 0.5 % of the time. The observed salt flux accumulates to 7.6 kg m-2, indicating nearly full desalination of the ice. Bulk salinity reduction between two nearby ice cores agrees with accumulated salt fluxes to within a factor of 2. The increasing fraction of younger, more saline ice in the Arctic suggests an increase in desalination processes with the transition to the new Arctic.

  1. Experimental study and numerical simulation of the salinity effect on water-freezing point and ice-melting rate

    NASA Astrophysics Data System (ADS)

    Qin, N.; Wu, Y.; Wang, H. W.; Wang, Y. Y.

    2017-12-01

    In this paper, based on the background of snowmelt de-icing tools, we studied the effect of salt on freezing point and melting rate of ice through laboratory test and FLUENT numerical simulation analysis. It was confirmed that the freezing point is inversely proportional to the salt solid content, and with the salt solid content increasing, the freezing process of salt water gradually accepts the curing rule of non-crystal solids. At the same temperature, an increase in the salt solid content, the ice melting rate increase by the empirical formula linking the melting time with temperature and salt content. The theoretical aspects of solid/fluid transformation are discussed in detail.

  2. Effects of molten-salt/ionic-liquid mixture on extraction of docosahexaenoic acid (DHA)-rich lipids from Aurantiochytrium sp. KRS101.

    PubMed

    Choi, Sun-A; Jung, Joo-Young; Kim, Kyochan; Kwon, Jong-Hee; Lee, Jin-Suk; Kim, Seung Wook; Park, Ji-Yeon; Yang, Ji-Won

    2014-11-01

    In this study, lipid extraction from Aurantiochytrium sp. was performed using a molten-salt/ionic-liquid mixture. The total fatty acid content of Aurantiochytrium sp. was 478.8 mg/g cell, from which 145 mg/g cell (30.3% of total fatty acids) of docosahexaenoic acid (DHA) was obtained. FeCl3·6H2O showed a high lipid extraction yield (207.9 mg/g cell), when compared with that of [Emim]OAc, which was only 118.1 mg/g cell; notably however, when FeCl3·6H2O was mixed with [Emim]OAc (5:1, w/w), the yield was increased to 478.6 mg/g cell. When lipid was extracted by the FeCl3·6H2O/[Emim]OAc mixture at a 5:1 (w/w) blending ratio under 90 °C, 30 min reaction conditions, the fatty acid content of the extracted lipid was a high purity 997.7 mg/g lipid, with most of the DHA having been extracted (30.2% of total fatty acids). Overall, lipid extraction from Aurantiochytrium sp. was enhanced by the synergistic effects of the molten-salt/ionic-liquid mixture with different ions.

  3. Freezing and melting of salt hydrates next to solid surfaces probed by infrared-visible sum frequency generation spectroscopy.

    PubMed

    Anim-Danso, Emmanuel; Zhang, Yu; Dhinojwala, Ali

    2013-06-12

    Understanding the freezing of salt solutions near solid surfaces is important in many scientific fields. Here we use sum frequency generation (SFG) spectroscopy to study the freezing of a NaCl solution next to a sapphire substrate. During cooling we observe two transitions. The first corresponds to segregation of concentrated brine next to the sapphire surface as we cool the system down to the region where ice and brine phases coexist. At this transition, the intensity of the ice-like peak decreases, suggesting the disruption of hydrogen-bonding by sodium ions. The second transition corresponds to the formation of NaCl hydrates with abrupt changes in both the SFG intensity and the sharpness of spectral peaks. The similarity in the position of the SFG peaks with those observed using IR and Raman spectroscopy indicates the formation of NaCl·2H2O crystals next to the sapphire substrate. The melting temperatures of the hydrates are very similar to those reported for bulk NaCl·2H2O. This study enhances our understanding of nucleation and freezing of salt solutions on solid surfaces and the effects of salt ions on the structure of interfacial ice.

  4. Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts

    NASA Astrophysics Data System (ADS)

    Yan, Xiao Y.

    2008-04-01

    A novel molten salt process was investigated, where Al, as metal or contained in Al2O3 and AlN, was recovered from Al dross by chemical or direct electrochemical reduction in electrolytic cells. Electrolysis experiments were carried out under argon at temperatures from 1123 to 1243 K. In order to better understand the reduction behavior, the as-received Al dross was simulated using simplified systems, including pure Al2O3, pure AlN, an Al2O3/AlN binary mixture, and an Al2O3/AlN/Al ternary mixture. The reduction of the as-received dross was also studied experimentally. The studies showed that solid Al2O3 was chemically reduced by the Ca in a Ca-saturated Ca-CaCl2 melt to form Al2Ca or electrochemically reduced to Al-rich Al-Ca alloys and that the Al value in the Al2O3 was easily recovered from the Al drosses. It was found experimentally that solid AlN in the drosses could not be calciothermically reduced to any extent, consistent with thermodynamic evaluations. It was also found that the direct electrochemical reduction of the AlN in the drosses was confined to three phase boundaries (3PBs) between the AlN, the electrolyte, and the current collector and could not be enhanced by using the LiCl-containing chloride melt or the chloride-fluoride melts studied. The presence of Al powder in the Al2O3/AlN mixture facilitated the direct electrochemical reduction of both Al2O3 and AlN. The reduction mechanisms are discussed based upon the present experimental observations. Flow sheets for recovering the metallic Al and the Al in the Al2O3 and AlN from Al dross are finally proposed.

  5. Crystallization and melting properties of mixtures of milk fat stearin and omega-3 rich oils.

    PubMed

    Li, Bing-Zheng; Truong, Tuyen; Bhandari, Bhesh

    2017-03-01

    Solid milk fat stearin (S 25 ) can be a promising oxidation retarder due to its capacity to entrap liquid oils, especially for incorporating omega-3 (ω-3) rich oils into dairy products. Thermal properties of S 25 /ω-3 rich oil mixtures are necessary for such application. The effects of S 25 on the crystallization and melting behaviours of ω-3 rich oils, namely fish oil (FO), linseed oil (LO) and krill oil (KO), were investigated by differential scanning calorimetry (DSC). Thermograms showed that with S 25 concentration increasing, transitions of FO and LO shifted to lower and largely to higher temperatures, respectively, while crystallization temperature of KO slightly decreased. Negative, positive and low values of interaction enthalpy (ΔH int ) suggested the adverse, beneficial and limited effect of S 25 on the crystallization of S 25 /FO, S 25 /LO and S 25 /KO mixtures, respectively. LO could have the best oxidative stability upon the addition of S 25 since their interactions facilitated earlier and stronger crystallization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reactive Melt Extrusion To Improve the Dissolution Performance and Physical Stability of Naproxen Amorphous Solid Dispersions.

    PubMed

    Liu, Xu; Zhou, Lin; Zhang, Feng

    2017-03-06

    The purpose of this study was to investigate the reaction between naproxen (NPX) and meglumine (MEG) at elevated temperature and to study the effect of this reaction on the physical stabilities and in vitro drug-release properties of melt-extruded naproxen amorphous solid dispersions (ASDs). Differential scanning calorimetry, hot-stage polarized light microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses demonstrated that in situ salt formation with proton transfer between NPX and MEG occurred at elevated temperature during the melt extrusion process. The amorphous NPX-MEG salt was physically most stable when two components were present at a 1:1 molar ratio. Polymeric carriers, including povidone, copovidone, and SOLUPLUS, did not interfere with the reaction between NPX and MEG during melt extrusion. Compared to the traditional NPX ASDs consisting of NPX and polymer only, NPX-MEG ASDs were physically more stable and remained amorphous following four months storage at 40 °C and 75% RH (relative humidity). Based on nonsink dissolution testing and polarized light microscopy analyses, we concluded that the conventional NPX ASDs composed of NPX and polymers failed to improve the NPX dissolution rate due to the rapid recrystallization of NPX in contact with aqueous medium. The dissolution rate of NPX-MEG ASDs was two times greater than the corresponding physical mixtures and conventional NPX ASDs. This study demonstrated that the acid-base reaction between NPX and MEG during melt extrusion significantly improved the physical stability and the dissolution rate of NPX ASDs.

  7. Separation of CsCl and SrCl2 from a ternary CsCl-SrCl2-LiCl via a zone refining process for waste salt minimization of pyroprocessing

    NASA Astrophysics Data System (ADS)

    Shim, Moonsoo; Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon; Lee, Jong Hyeon

    2016-11-01

    The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The keff of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively.

  8. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  9. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  10. Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Zheng, Jianming; Engelhard, Mark H.

    The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of Li metal batteries were systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) were chosen for this study and compared with the conventional LiPF6 salt. The cycling stability of the Li metal cells with the electrolytes follows the order from good to poor as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiPF6 > LiFSI-LiBOB > LiFSI-LiDFOB, indicating that LiTFSI behaves better than LiFSI and LiBOB over LiDFOB in these four dual-salt mixtures. Themore » LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. Computational calculations indicate that the chemical and electrochemical stabilities also follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiBOB > LiFSI-LiDFOB. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.« less

  11. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    NASA Astrophysics Data System (ADS)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-01

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  12. Insight into the Li2CO3-K2CO3 eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics.

    PubMed

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-03-14

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

  13. A Comparative Study of the Corrosion Behavior of Three Stainless Steels in an Eutectic (Li,Na,K)2CO3 Melt with and without (Na,K)Cl Additives at 973K in Air

    NASA Astrophysics Data System (ADS)

    Zeng, C. L.; Liu, Y.

    2011-04-01

    The ternary carbonate eutectic mixture of Li2CO3, K2CO3 and Na2CO3 as a heat transfer and storage medium has excellent thermophysical properties, but with high viscidity as compared with some other inorganic salts such as chlorides and nitrates. The addition of chlorides or fluorides to molten carbonates may improve their fluidity, but possibly making the melt become more corrosive. In this study, the corrosion behavior of type 304, 310 and 316 stainless steels in an eutectic (Li,Na,K)2CO3 melt with and without an eutectic mixture of NaCl and KCl at 973K in air have been examined. The experimental results indicated that 310 steel shows a much better corrosion resistance in molten carbonates than both 304 and 316 steels, due to the formation of a continuous LiCrO2 scale. The addition of chlorides to carbonates melt accelerated the corrosion of the steels, especially 310 steel, producing scales with more porosity.

  14. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  15. Co-settling of Chromite and Sulfide Melt Droplets and Trace Element Partitioning between Sulfide and Silicate Melts

    NASA Astrophysics Data System (ADS)

    Manoochehri, S.; Schmidt, M. W.; Guenther, D.

    2013-12-01

    Gravitational settling of immiscible, dense sulfide melt droplets together with other cumulate phases such as chromite, combined with downward percolation of these droplets through a cumulate pile, is thought to be one of the possible processes leading to the formation of PGE rich sulfide deposits in layered mafic intrusions. Furthermore some chromitite seams in the Merensky Reef (Bushveld Complex) are considered to be acting as a filter or barrier for further downward percolation of sulfide melts into footwall layers. To investigate the feasibility of such mechanical processes and to study the partitioning behavior of 50 elements including transition metals and REEs (but not PGEs) between a silicate and a sulfide melt, two separate series of high temperature (1250-1380 °C) centrifuge-assisted experiments at 1000 g, 0.4-0.6 GPa were conducted. A synthetic silicate glass with a composition representative of the parental magma of the Bushveld Complex (~ 55 wt% SiO2) was mixed with pure FeS powder. For the first series of experiments, 15 or 25 wt% natural chromite with average grain sizes of ~ 5 or 31 μm were added to a mixture of silicate glass and FeS (10 wt%) adding 1 wt% water. For the second series, a mixture of the same glass and FeS was doped with 50 trace elements. These mixtures were first statically equilibrated and then centrifuged. In the first experimental series, sulfide melt droplets settled together with, but did not segregate from chromite grains even after centrifugation at 1000 g for 12 hours. A change in initial chromite grain size and proportions didn't have any effect on segregation. Without chromite, the starting mixture resulted in the formation of large sulfide melt pools together with finer droplets still disseminated through the silicate glass and both at the bottom of the capsule. The incomplete segregation of sulfide melt is interpreted as being due to high interfacial energies between sulfide and silicate melts/crystals which hinder

  16. Stabilization of molten salt materials using metal chlorides for solar thermal storage.

    PubMed

    Dunlop, T O; Jarvis, D J; Voice, W E; Sullivan, J H

    2018-05-29

    The effect of a variety of metal-chlorides additions on the melting behavior and thermal stability of commercially available salts was investigated. Ternary salts comprised of KNO 3, NaNO 2, and NaNO 3 were produced with additions of a variety of chlorides (KCl, LiCl, CaCl 2 , ZnCl 2 , NaCl and MgCl 2 ). Thermogravimetric analysis and weight loss experiments showed that the quaternary salt containing a 5 wt% addition of LiCl and KCl led to an increase in short term thermal stability compared to the ternary control salts. These additions allowed the salts to remain stable up to a temperature of 630 °C. Long term weight loss experiments showed an upper stability increase of 50 °C. A 5 wt% LiCl addition resulted in a weight loss of only 25% after 30 hours in comparison to a 61% loss for control ternary salts. Calorimetry showed that LiCl additions allow partial melting at 80 °C, in comparison to the 142 °C of ternary salts. This drop in melting point, combined with increased stability, provided a molten working range increase of almost 100 °C in total, in comparison to the control ternary salts. XRD analysis showed the oxidation effect of decomposing salts and the additional phase created with LiCl additions to allow melting point changes to occur.

  17. Influence of mixtures of calcium-chelating salts on the physicochemical properties of casein micelles.

    PubMed

    Kaliappan, S; Lucey, J A

    2011-09-01

    Calcium-chelating salts (CCS), such as phosphates and citrates, are often added to milk systems to modify physical properties like heat stability. The objective of this study was to investigate the effect of binary CCS mixtures on the properties of casein (CN) micelles including the distribution of Ca between the soluble and CN-bound states. Six binary CCS mixtures were prepared from 4 different types of CCS [i.e., trisodium citrate (TSC), disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), and sodium hexameta phosphate (SHMP)] by combining 2 CCS at a time in 5 different proportions (8.3:91.7, 29.2:70.8, 50:50, 70.8:29.2, and 91.7:8.3). Different concentrations of these mixtures (0, 0.1, 0.3, 0.5, and 0.7% wt/wt) were added to milk protein concentrate solutions (5% wt/wt) at pH 5.8. The ability of CCS to disperse CN particles and its interaction with Ca were assessed from turbidity measurements, acid-base titration behavior, and the quantity of CN-bound Ca and inorganic phosphate (Pi). Turbidity and the buffering peak at pH ∼5.0 during acid titration decreased with an increasing concentration of CCS. This was due to the chelation of Ca and the dispersion of CN micelles. The presence of TSC in mixtures decreased the amount of CN-bound Ca and Pi; however, the presence of TSPP in mixtures increased CN-bound Ca and Pi. When DSP was present at high proportions in mixtures of CCS, the CN-bound Ca and Pi slightly increased. When SHMP was used in mixtures of CCS, CN-bound Ca and Pi increased with the use of a low proportion of SHMP but decreased when SHMP was used at high proportions in the mixture. Combinations of DSP-TSPP used in the proportions 29.2:70.8, 50:50, and 70.8:29.2 resulted in the gelation of milk protein concentrates when the total CCS concentration was ≥0.3%. These results indicated that the type of CCS present in a mixture modified CN properties by various mechanisms, including chelation of Ca, dispersion of CN micelles, and formation of new

  18. New iodide-based molten salt systems for high temperature molten salt batteries

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Kato, Fumio; Watanabe, Syouichiro; Inaba, Minoru; Tasaka, Akimasa

    Novel multi-component molten salt systems containing iodides, LiF-LiBr-LiI, LiF-NaBr-LiI, and LiF-LiCl-LiBr-LiI, were investigated for use as electrolytes in high temperature molten salt batteries to improve the discharge rate-capability. The iodide-based molten salts showed higher ionic conductivity (∼3 S cm -1 at 500 °C) than conventional LiCl-KCl, and had low enough melting points (below 400 °C) that can be used in practical high temperature molten salt batteries. The iodide-based salts showed instability at temperatures higher than 280 °C in dried air. The decomposition mechanism of iodide-based molten salts was discussed, and it was found that elimination of oxygen from the environment is effective to stabilize the iodide-based molten salts at high temperatures.

  19. Structural and viscoelastic characterization of ternary mixtures of sunflower oil, saturated monoglycerides and aqueous phases containing different bases.

    PubMed

    Valoppi, Fabio; Calligaris, Sonia; Barba, Luisa; Nicoli, Maria Cristina

    2015-08-01

    The structure at different length scales and the viscoelastic properties of ternary mixtures composed of saturated monoglycerides, sunflower oil and aqueous solutions of weak bases (KHCO 3 , NaHCO 3 , and NH 4 HCO 3 ) or strong bases (NaOH and KOH) were investigated. The characteristics of ternary mixtures were studied systematically by using polarized light microscopy, differential scanning calorimetry (DSC), synchrotron X-ray diffraction (XRD) and rheological analysis. Results showed that the base type and concentration greatly affected the structure of the mixtures. The use of strong bases allowed gelled systems to be obtained only at low concentrations (<10mM). On the contrary, the presence of weak bases induced gelling at all concentrations considered (from 1 to 1000mM). The increase of base concentration led to a reduction of the mean droplet diameter and melting temperature. At the same time, the viscoelastic characteristics as a function of base concentration followed a more complex behavior: G' and G″ progressively decreased as the salt concentration increased in a concentration range from 1 to 100mM, while the rheological parameters increased when salt concentration increased from 100 to 1000mM. The structural and viscoelastic behavior of systems prepared with different salts were commonly independent of the cation present in the medium. Results highlight that it is possible to tailor the structure of these gels by using specific bases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Intergranular tellurium cracking of nickel-based alloys in molten Li, Be, Th, U/F salt mixture

    NASA Astrophysics Data System (ADS)

    Ignatiev, Victor; Surenkov, Alexander; Gnidoy, Ivan; Kulakov, Alexander; Uglov, Vadim; Vasiliev, Alexander; Presniakov, Mikhail

    2013-09-01

    In Russia, R&D on Molten Salt Reactor (MSR) are concentrated now on fast/intermediate spectrum concepts which were recognized as long term alternative to solid fueled fast reactors due to their attractive features: strong negative feedback coefficients, easy in-service inspection, and simplified fuel cycle. For high-temperature MSR corrosion of the metallic container alloy in primary circuit is the primary concern. Key problem receiving current attention include surface fissures in Ni-based alloys probably arising from fission product tellurium attack. This paper summarizes results of corrosion tests conducted recently to study effect of oxidation state in selected fuel salt on tellurium attack and to develop means of controlling tellurium cracking in the special Ni-based alloys recently developed for molten salt actinide recycler and tranforming (MOSART) system. Tellurium corrosion of Ni-based alloys was tested at temperatures up to 750 °C in stressed and unloaded conditions in molten LiF-BeF2 salt mixture fueled by about 20 mol% of ThF4 and 2 mol% of UF4 at different [U(IV)]/[U(III)] ratios: 0.7, 4, 20, 100 and 500. Following Ni-based alloys (in mass%): HN80М-VI (Mo—12, Cr—7.6, Nb—1.5), HN80МТY (Mo—13, Cr—6.8, Al—1.1, Ti—0.9), HN80МТW (Mo—9.4, Cr—7.0, Ti—1.7, W—5.5) and ЕМ-721 (W—25.2, Cr—5.7, Ti—0.17) were used for the study in the corrosion facility. If the redox state the fuel salt is characterized by uranium ratio [U(IV)]/[U(III)] < 1 the alloys' specimens get a more negative stationary electrode potential than equilibrium electrode potentials of some uranium intermetallic compounds and alloys with nickel and molybdenum. This leads to spontaneous behavior of alloy formation processes on the specimens' surface and further diffusion of uranium deep into the metallic phase. As consequence of this films of intermetallic compounds and alloys of nickel, molybdenum, tungsten with uranium are formed on the alloys specimens' surface

  1. Melting icebergs to produce fresh water and mechanical energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camirand, W.M.; Hautala, E.; Randall, J.M.

    1981-10-20

    Fresh water and mechanical energy are obtained from melting of icebergs. Warm surface seawater is contacted with a fluid, which is vaporized. The resulting vapor is used to generate mechanical energy and then is condensed by contacting it with cold melt water from the iceberg. The fluid is regenerated with a concomitant elevation in the temperature of the melt water. The warmer melt water is cycled to the body of the iceberg to facilitate its melting and produce additional cold melt water, which is apportioned as fresh water and water cycled to condense the aforesaid vapor. In an alternate embodimentmore » of the invention warm seawater is evaporated at reduced pressure. Mechanical energy is generated from the vapor, which is then condensed by direct and intimate contact with cold melt water from the iceberg. The resultant fresh water is a mixture of condensed vapor and melt water from the iceberg and has a temperature greater than the cold melt water. This fresh water mixture is contacted with the body of the iceberg to further melt it; part of the cold melt water is separated as fresh water and the remainder is cycled for use in condensing the vapor from the warm surface seawater.« less

  2. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  3. Anisotropic surface melting in lyotropic cubic crystals: part 2: facet-by-facet melting at Ia3d/vapor interfaces.

    PubMed

    Leroy, S; Grenier, J; Rohe, D; Even, C; Pieranski, P

    2006-05-01

    From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.

  4. Do group 1 metal salts form deep eutectic solvents?

    PubMed

    Abbott, A P; D'Agostino, C; Davis, S J; Gladden, L F; Mantle, M D

    2016-09-14

    Mixtures of metal salts such as ZnCl 2 , AlCl 3 and CrCl 3 ·6H 2 O form eutectic mixtures with complexing agents, such as urea. The aim of this research was to see if alkali metal salts also formed eutectics in the same way. It is shown that only a limited number of sodium salts form homogeneous liquids at ambient temperatures and then only with glycerol. None of these mixtures showed eutectic behaviour but the liquids showed the physical properties similar to the group of mixtures classified as deep eutectic solvents. This study focussed on four sodium salts: NaBr, NaOAc, NaOAc·3H 2 O and Na 2 B 4 O 7 ·10H 2 O. The ionic conductivity and viscosity of these salts with glycerol were studied, and it was found that unlike previous studies of quaternary ammonium salts with glycerol, where the salt decreased the viscosity, most of the sodium salts increased the viscosity. This suggests that sodium salts have a structure making effect on glycerol. This phenomenon is probably due to the high charge density of Na + , which coordinates to the glycerol. 1 H and 23 Na NMR diffusion and relaxation methods have been used to understand the molecular dynamics in the glycerol-salt mixtures, and probe the effect of water on some of these systems. The results reveal a complex dynamic behaviour of the different species within these liquids. Generally, the translational dynamics of the 1 H species, probed by means of PFG NMR diffusion coefficients, is in line with the viscosity of these liquids. However, 1 H and 23 Na T 1 relaxation measurements suggest that the Na-containing species also play a crucial role in the structure of the liquids.

  5. Effect of Sulfate on Rhenium Partitioning during Melting of Low-Activity Waste Glass Feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Kim, Dong-Sang; Schweiger, Michael J.

    2015-10-01

    The volatile loss of technetium-99 (99Tc) is a major concern of the low-activity waste (LAW) vitrification at Hanford. We investigated the incorporation and volatile loss of Re (a nonradioactive surrogate for 99Tc) during batch-to-glass conversion up to 1100°C. The AN-102 feed, which is one of the representative Hanford LAW feeds, containing 0.59 wt% of SO3 (in glass if 100% retained) was used. The modified sulfate-free AN-102_0S feed was also tested to investigate the effect of sulfate on Re partitioning and retention during melting. After heating of the dried melter feed (mixture of LAW simulant and glass forming/modifying additives) to differentmore » temperatures, the heat-treated samples were quenched. For each heat-treated sample, the salts (soluble components in room temperature leaching), early glass forming melt (soluble components in 80°C leaching), and insoluble solids were separated by a two-step leaching and the chemical compositions of each phase were quantitatively analyzed. The final retention ratio of AN-102 and AN-102_0S in glass (insoluble solids) are 32% and 63% respectively. The presence of sulfate in the salt phase between 600 and 800°C leads to a significantly higher Re loss via volatilization from the salt layer. At ≥800°C, for both samples, there is no more incorporation of Re into the insoluble phase because: for AN-102_0S there is no salt left i.e., the split into the insoluble and gas phases is complete by 800°C and for AN-102 all the Re contained in the remaining salt phase is lost through volatilization. The present results on the effect of sulfate, although not directly applicable to LAW vitrification in the melter, will be used to understand the mechanism of Re incorporation into glass to eventually develop the methods that can increase the 99Tc retention during LAW vitrification at Hanford.« less

  6. Improved Heat-of-Fusion Energy Storage

    NASA Technical Reports Server (NTRS)

    Chen, K. H.; Manvi, R.

    1982-01-01

    Alkali metal/alkali-halide mixtures proposed for preventing solid buildup during energy recovery. When mixture melts (by absorption of heat of fusion), it forms two immiscible liquids. Salt-rich phase is heavier and has higher melting/recrysallization temperature; so during energy recovery salt crystallizes in this phase first. Since heat exchanger for energy recovery is in lighter metal-rich phase, solids do not form and there is no reduction of heat-recovery efficiency.

  7. Delicious ice cream, why does salt thaw ice?

    NASA Astrophysics Data System (ADS)

    Bagnoli, Franco

    2016-03-01

    Plain Awful is an imaginary valley on the Andes populated by a highly-imitative, cubical people for which the most criminal offence is to exhibit round objects. The duck family (Scrooge, Donald and nephews) are teaming against Scrooge's worst enemy, Flintheart Glomgold, trying to buy the famous Plain Awful square eggs. Inadvertently, Scrooge violates the taboo, showing his Number One Dime, and is imprisoned in the stone quarries. He can be released only after the presentation of an ice cream soda to the President of Plain Awful. Donald and his nephews fly with Flintheart to deliver it, but Scrooge's enemy, of course, betrays the previous agreement after getting the ice cream, forcing the ducks into making an emergence replacement on the spot. Using dried milk, sugar and chocolate from their ration packs, plus some snow and salt for cooling they are able make the ice cream, and after dressing it with the carbonated water from a fire extinguisher they finally manage to produce the desired dessert. This comic may serve as an introduction to the "mysterious" phenomenon that added salt melts the ice and, even more surprising, does it by lowering the temperature of the mixture.

  8. Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes.

    PubMed

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-11-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene-polyethylene oxide (PS-PEO) block copolymer (BCP) electrolytes doped with LiPF 6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  9. Method of Preparing Polymers with Low Melt Viscosity

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor)

    2001-01-01

    This invention is an improvement in standard polymerizations procedures, i.e., addition-type and step-growth type polymerizations, wherein monomers are reacted to form a growing polymer chain. The improvement includes employing an effective amount of a trifunctional monomer (such as a trifunctional amine anhydride, or phenol) in the polymerization procedure to form a mixture of polymeric materials consisting of branced polymers, star-shaped polymers, and linear polymers. This mixture of polymeric materials has a lower melt temperature and a lower melt viscosity than corresponding linear polymeric materials of equivalent molecular weight.

  10. Effects of Cations on Corrosion of Inconel 625 in Molten Chloride Salts

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Ma, Hongfang; Wang, Mingjing; Wang, Zhihua; Sharif, Adel

    2016-04-01

    Hot corrosion of Inconel 625 in sodium chloride, potassium chloride, magnesium chloride, calcium chloride and their mixtures with different compositions is conducted at 900°C to investigate the effects of cations in chloride salts on corrosion behavior of the alloy. XRD, SEM/EDS were used to analyze the compositions, phases, and morphologies of the corrosion products. The results showed that Inconel 625 suffers more severe corrosion in alkaline earth metal chloride molten salts than alkaline metal chloride molten salts. For corrosion in mixture salts, the corrosion rate increased with increasing alkaline earth metal chloride salt content in the mixture. Cations in the chloride molten salts mainly affect the thermal and chemical properties of the salts such as vapor pressure and hydroscopicities, which can affect the basicity of the molten salt. Corrosion of Inconel 625 in alkaline earth metal chloride salts is accelerated with increasing basicity.

  11. Research opportunities in salt hydrates for thermal energy storage

    NASA Astrophysics Data System (ADS)

    Braunstein, J.

    1983-11-01

    The state of the art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed. Phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrate are summarized. The development of efficient, reliable inexpensive systems based on phase change materials, especially salt hydrates for the storage (and retrieval) of thermal energy for residential heating is outlined. The use of phase change material thermal energy storage systems is not yet widespread. Additional basic research is needed in the areas of crystallization and melting kinetics, prediction of phase behavior in ternary systems, thermal diffusion in salt hydrate systems, and in the physical properties pertinent to nonequilibrium and equilibrium transformations in these systems.

  12. High-Performance Polymers Having Low Melt Viscosities

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.

    2005-01-01

    High-performance polymers that have improved processing characteristics, and a method of making them, have been invented. One of the improved characteristics is low (relative to corresponding prior polymers) melt viscosities at given temperatures. This characteristic makes it possible to utilize such processes as resin-transfer molding and resin-film infusion and to perform autoclave processing at lower temperatures and/or pressures. Another improved characteristic is larger processing windows that is, longer times at low viscosities. Other improved characteristics include increased solubility of uncured polymer precursors that contain reactive groups, greater densities of cross-links in cured polymers, improved mechanical properties of the cured polymers, and greater resistance of the cured polymers to chemical attack. The invention is particularly applicable to poly(arylene ether)s [PAEs] and polyimides [PIs] that are useful as adhesives, matrices of composite materials, moldings, films, and coatings. PAEs and PIs synthesized according to the invention comprise mixtures of branched, linear, and star-shaped molecules. The monomers of these polymers can be capped with either reactive end groups to obtain thermosets or nonreactive end groups to obtain thermoplastics. The synthesis of a polymeric mixture according to the invention involves the use of a small amount of a trifunctional monomer. In the case of a PAE, the trifunctional monomer is a trihydroxy- containing compound for example, 1,3,5-trihydroxybenzene (THB). In the case of a PI, the trifunctional monomer is a triamine for example, triamino pyrimidine or melamine. In addition to the aforementioned trifunctional monomer, one uses the difunctional monomers of the conventional formulation of the polymer in question (see figure). In cases of nonreactive end caps, the polymeric mixtures of the invention have melt viscosities and melting temperatures lower than those of the corresponding linear polymers of equal

  13. New molten salt systems for high-temperature molten salt batteries: LiF-LiCl-LiBr-based quaternary systems

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Inaba, Minoru; Tasaka, Akimasa

    To develop novel multi-component molten salt systems more effectively, we developed a simulative technique using the CALPHAD (Calculation of Phase Diagram and Thermodynamics) method to estimate the ionic conductivity and the melting point. The validity of this new simulative technique was confirmed by comparing the simulated ionic conductivities and melting points of typical high-temperature molten salts, such as LiF-LiCl-LiBr, LiF-LiBr-KBr, LiCl-LiBr-KBr, and LiCl-LiBr-LiI, with those reported data in the literature or experimentally obtained. This simulative technique was used to develop new quaternary molten salt systems for use as electrolytes in high-temperature molten salt batteries (called thermal batteries). The targets of the ionic conductivity and the melting point were set at 2.0 S cm -1 and higher at 500 °C, and in the range of 350-430 °C, respectively, to replace the LiCl-KCl system (1.85 S cm -1 at 500 °C) within the conventional design of the heat generation system for thermal batteries. Using the simulative method, six kinds of novel quaternary systems, LiF-LiCl-LiBr-MX (M = Na and K; X = F, Cl, and Br), which contain neither environmentally instable anions such as iodides nor expensive cations such as Rb + and Cs +, were proposed. Experimental results showed that the LiF-LiCl-LiBr-0.10NaX (X = Cl and Br) and LiF-LiCl-LiBr-0.10KX (X = F, Cl, and Br) systems meet our targets of both the ionic conductivity and the melting point.

  14. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures.

    PubMed

    Lasfargues, Mathieu; Geng, Qiao; Cao, Hui; Ding, Yulong

    2015-06-29

    In this study, the effect of nanoparticle concentration was tested for both CuO and TiO₂ in eutectic mixture of sodium and potassium nitrate. Results showed an enhancement in specific heat capacity ( C p ) for both types of nanoparticles (+10.48% at 440 °C for 0.1 wt % CuO and +4.95% at 440 °C for 0.5 wt % TiO₂) but the behavior toward a rise in concentration was different with CuO displaying its highest enhancement at the lowest concentration whilst TiO₂ showed no concentration dependence for three of the four different concentrations tested. The production of cluster of nanoparticles was visible in CuO but not in TiO₂. This formation of nanostructure in molten salt might promote the enhancement in C p . However, the size and shape of these structures will most likely impact the energy density of the molten salt.

  15. Barium iodide and strontium iodide crystals and scintillators implementing the same

    DOEpatents

    Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold

    2016-09-13

    In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.

  16. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo

    2010-07-01

    Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.

  17. Purification of tantalum by plasma arc melting

    DOEpatents

    Dunn, Paul S.; Korzekwa, Deniece R.

    1999-01-01

    Purification of tantalum by plasma arc melting. The level of oxygen and carbon impurities in tantalum was reduced by plasma arc melting the tantalum using a flowing plasma gas generated from a gas mixture of helium and hydrogen. The flowing plasma gases of the present invention were found to be superior to other known flowing plasma gases used for this purpose.

  18. Novel binary deep eutectic electrolytes for rechargeable Li-ion batteries based on mixtures of alkyl sulfonamides and lithium perfluoroalkylsulfonimide salts

    NASA Astrophysics Data System (ADS)

    Geiculescu, O. E.; DesMarteau, D. D.; Creager, S. E.; Haik, O.; Hirshberg, D.; Shilina, Y.; Zinigrad, E.; Levi, M. D.; Aurbach, D.; Halalay, I. C.

    2016-03-01

    Ionic liquids (IL's) were proposed for use in Li-ion batteries (LIBs), in order to mitigate some of the well-known drawbacks of LiPF6/mixed organic carbonates solutions. However, their large cations seriously decrease lithium transference numbers and block lithium insertion sites at electrode-electrolyte interfaces, leading to poor LIB rate performance. Deep eutectic electrolytes (DEEs) (which share some of the advantages of ILs but possess only one cation, Li+), were then proposed, in order to overcome the difficulties associated with ILs. We report herein on the preparation, thermal properties (melting, crystallization, and glass transition temperatures), transport properties (specific conductivity and viscosity) and thermal stability of binary DEEs based on mixtures of lithium bis(trifluoromethane)sulfonimide or lithium bis(fluoro)sulfonimide salts with an alkyl sulfonamide solvent. Promise for LIB applications is demonstrated by chronoamperometry on Al current collectors, and cycling behavior of negative and positive electrodes. Residual current densities of 12 and 45 nA cm-2 were observed at 5 V vs. Li/Li+ on aluminum, 1.5 and 16 nA cm-2 at 4.5 V vs. Li/Li+, respectively for LiFSI and LiTFSI based DEEs. Capacities of 220, 130, and 175 mAh· g-1 were observed at low (C/13 or C/10) rates, respectively for petroleum coke, LiMn1/3Ni1/3Co1/3O2 (a.k.a. NMC 111) and LiAl0.05Co0.15Ni0.8O2 (a.k.a. NCA).

  19. Electrochemical ion separation in molten salts

    DOEpatents

    Spoerke, Erik David; Ihlefeld, Jon; Waldrip, Karen; Wheeler, Jill S.; Brown-Shaklee, Harlan James; Small, Leo J.; Wheeler, David R.

    2017-12-19

    A purification method that uses ion-selective ceramics to electrochemically filter waste products from a molten salt. The electrochemical method uses ion-conducting ceramics that are selective for the molten salt cations desired in the final purified melt, and selective against any contaminant ions. The method can be integrated into a slightly modified version of the electrochemical framework currently used in pyroprocessing of nuclear wastes.

  20. The Corrosion Behavior of Stainless Steel 316L in Novel Quaternary Eutectic Molten Salt System

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Mantha, Divakar; Reddy, Ramana G.

    2017-03-01

    In this article, the corrosion behavior of stainless steel 316L in a low melting point novel LiNO3-NaNO3-KNO3-NaNO2 eutectic salt mixture was investigated at 695 K which is considered as thermally stable temperature using electrochemical and isothermal dipping methods. The passive region in the anodic polarization curve indicates the formation of protective oxides layer on the sample surface. After isothermal dipping corrosion experiments, samples were analyzed using SEM and XRD to determine the topography, corrosion products, and scale growth mechanisms. It was found that after long-term immersion in the LiNO3-NaNO3-KNO3-NaNO2 molten salt, LiFeO2, LiFe5O8, Fe3O4, (Fe, Cr)3O4 and (Fe, Ni)3O4 oxides were formed. Among these corrosion products, LiFeO2 formed a dense and protective layer which prevents the SS 316L from severe corrosion.

  1. New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Inaba, Minoru; Tasaka, Akimasa

    Using a new simulative technique developed by us, we systematically investigated new ternary or quaternary molten salt systems, which are based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr binary systems, for use as electrolytes in thermal batteries, and evaluated their ionic conductivities and melting points experimentally. It was confirmed experimentally that LiF-LiBr-KF (melting point: 425 °C, ionic conductivity at 500 °C: 2.52 S cm -1), LiCl-LiBr-KF (405 °C, 2.56 S cm -1), LiCl-LiBr-NaF-KF (425 °C, 3.11 S cm -1), LiCl-LiBr-NaCl-KCl (420 °C, 2.73 S cm -1), and LiCl-LiBr-NaBr-KBr (420 °C, 2.76 S cm -1) meet our targets for both melting point (350-430 °C) and ionic conductivity (2.0 S cm -1 and higher at 500 °C). A single cell using the newly developed LiCl-LiBr-NaCl-KCl molten salt as an electrolyte was prepared, and the DC-IR of the cell decreased by 20% than that of a single cell using the conventional LiCl-KCl molten salt. It was therefore concluded that the use of new quaternary molten salt systems can improve the discharge rate-capability in practical battery applications because of their high ionic conductivities.

  2. Mechanical Dispersion of Nanoparticles and Its Effect on the Specific Heat Capacity of Impure Binary Nitrate Salt Mixtures

    PubMed Central

    Lasfargues, Mathieu; Geng, Qiao; Cao, Hui; Ding, Yulong

    2015-01-01

    In this study, the effect of nanoparticle concentration was tested for both CuO and TiO2 in eutectic mixture of sodium and potassium nitrate. Results showed an enhancement in specific heat capacity (Cp) for both types of nanoparticles (+10.48% at 440 °C for 0.1 wt % CuO and +4.95% at 440 °C for 0.5 wt % TiO2) but the behavior toward a rise in concentration was different with CuO displaying its highest enhancement at the lowest concentration whilst TiO2 showed no concentration dependence for three of the four different concentrations tested. The production of cluster of nanoparticles was visible in CuO but not in TiO2. This formation of nanostructure in molten salt might promote the enhancement in Cp. However, the size and shape of these structures will most likely impact the energy density of the molten salt. PMID:28347056

  3. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  4. Determination of Activities of Niobium in Cu-Nb Melts Containing Dilute Nb

    NASA Astrophysics Data System (ADS)

    Wang, Daya; Yan, Baijun; Sichen, Du

    2015-04-01

    The activity coefficients of niobium in Cu-Nb melts were measured by equilibrating solid NbO2 with liquid copper under controlled oxygen potentials in the temperature range of 1773 K to 1898 K (1500 °C to 1625 °C). Either CO-CO2 gas mixture or H2-CO2 gas mixture was employed to obtain the desired oxygen partial pressures. Cu-Nb system was found to follow Henry's law in the composition range studied. The temperature dependence of Henry's constant in the Cu-Nb melts could be expressed as follows: The partial molar excess Gibbs energy change of niobium in Cu-Nb melts can be expressed as follows:

  5. Crystallization of rhenium salts in a simulated low-activity waste borosilicate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; McCloy, John S.; Goel, Ashutosh

    2013-04-01

    This study presents a new method for looking at the solubility of volatile species in simulated low-activity waste glass. The present study looking at rhenium salts is also applicable to real applications involving radioactive technetium salts. In this synthesis method, oxide glass powder is mixed with the volatiles species, vacuum-sealed in a fused quartz ampoule, and then heat-treated under vacuum in a furnace. This technique restricts the volatile species to the headspace above the melt but still within the sealed ampoule, thus maximizing the volatile concentration in contact with the glass. Various techniques were used to measure the solubility ofmore » rhenium in glass and include energy dispersive spectroscopy, wavelength dispersive spectroscopy, laser ablation inductively-coupled plasma mass spectroscopy, and inductively-coupled plasma optical emission spectroscopy. The Re-solubility in this glass was determined to be ~3004 parts per million Re atoms. Above this concentration, the salts separated out of the melt as inclusions and as a low viscosity molten salt phase on top of the melt observed during and after cooling. This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali perrhenate and alkali sulfate.« less

  6. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  7. Injector nozzle for molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  8. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    PubMed Central

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin. PMID:26839810

  9. Corrosion of Mullite by Molten Salts

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Lee, Kang N.; Yoshio, Tetsuo

    1996-01-01

    The interaction of molten salts of different Na2O activities and mullite is examined with furnace and burner tests. The more-acidic molten salts form small amounts of Al2O3; the more-basic molten salts form various Na2O-Al2O3-SiO2 compounds. The results are interpreted using the Na2O-Al203-SiO2 ternary phase diagram, and some possible diffusion paths are discussed. The generally higher melting points of Na2O-Al2O3-SiO2 compounds lead to better behavior of mullite in molten salts, as compared to SiO2-protected ceramics such as SiC. Mullite-coated SiC is discussed, and the corrosion behavior is evaluated.

  10. Molten Chloride Salts for Heat Transfer in Nuclear Systems

    NASA Astrophysics Data System (ADS)

    Ambrosek, James Wallace

    2011-12-01

    A forced convection loop was designed and constructed to examine the thermal-hydraulic performance of molten KCl-MgCl2 (68-32 at %) salt for use in nuclear co-generation facilities. As part of this research, methods for prediction of the thermo-physical properties of salt mixtures for selection of the coolant salt were studied. In addition, corrosion studies of 10 different alloys were exposed to the KCl-MgCl2 to determine a suitable construction material for the loop. Using experimental data found in literature for unary and binary salt systems, models were found, or developed to extrapolate the available experimental data to unstudied salt systems. These property models were then used to investigate the thermo-physical properties of the LINO3-NaNO3-KNO 3-Ca(NO3), system used in solar energy applications. Using these models, the density, viscosity, adiabatic compressibility, thermal conductivity, heat capacity, and melting temperatures of higher order systems can be approximated. These models may be applied to other molten salt systems. Coupons of 10 different alloys were exposed to the chloride salt for 100 hours at 850°C was undertaken to help determine with which alloy to construct the loop. Of the alloys exposed, Haynes 230 had the least amount of weight loss per area. Nickel and Hastelloy N performed best based on maximum depth of attack. Inconel 625 and 718 had a nearly uniform depletion of Cr from the surface of the sample. All other alloys tested had depletion of Cr along the grain boundaries. The Nb in Inconel 625 and 718 changed the way the Cr is depleted in these alloys. Grain-boundary engineering (GBE) of Incoloy 800H improved the corrosion resistance (weight loss and maximum depth of attack) by nearly 50% as compared to the as-received Incoloy 800H sample. A high temperature pump, thermal flow meter, and pressure differential device was designed, constructed and tested for use in the loop, The heat transfer of the molten chloride salt was found to

  11. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs.

    PubMed

    David, S E; Timmins, P; Conway, B R

    2012-01-01

    Salt formation is a widely used approach to improve the physicochemical and solid state properties of an active pharmaceutical ingredient. In order to better understand the relationships between the active drug, the selected counterion and the resultant salt form, crystalline salts were formed using four different carboxylic acid drugs and a closely related series of amine counterions. Thirty-six related crystalline salts were prepared, characterized and the relationship between solubility and dissolution behaviour and other properties of the salt and the counterion studied. Salts of four model acid drugs, gemfibrozil, flurbiprofen, ibuprofen and etodolac were prepared using the counterions butylamine, hexylamine, octylamine, benzylamine, cyclohexylamine, tert-butylamine, 2-amino-2-methylpropan-1-ol, 2-amino-2-methylpropan-1,3-diol and tris(hydroxymethyl)aminomethane. Salt formation was confirmed, the salts were characterized and their corresponding solubilities determined and rationalized with respect to the counterions' properties. The properties of the salt highly dependent on the nature of the counterion and, although there is considerable variation, some general conclusion can be drawn. For the alkyl amines series, increasing chain length leads to a reduction in solubility across all the acidic drugs studied and a reduction in melting point, thus contradicting simplistic relationships between solubility and melting point. Small, compact counterions consistently produce crystalline salts with high melting point accompanied with a modest improvement in solubility and the nature of hydrogen bonding between the ions has a major impact on the solubility.

  12. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  13. Diclofenac Salts. V. Examples of Polymorphism among Diclofenac Salts with Alkyl-hydroxy Amines Studied by DSC and HSM

    PubMed Central

    Fini, Adamo; Cavallari, Cristina; Ospitali, Francesca

    2010-01-01

    Nine diclofenac salts prepared with alkyl-hydroxy amines were analyzed for their properties to form polymorphs by DSC and HSM techniques. Thermograms of the forms prepared from water or acetone are different in most cases, suggesting frequent examples of polymorphism among these salts. Polymorph transition can be better highlighted when analysis is carried out by thermo-microscopy, which in most cases made it possible to observe the processes of melting of the metastable form and re-crystallization of the stable one. Solubility values were qualitatively related to the crystal structure of the salts and the molecular structure of the cation. PMID:27721347

  14. Thermal Characterization of Lauric-Stearic Acid/Expanded Graphite Eutectic Mixture as Phase Change Materials.

    PubMed

    Zhu, Hua; Zhang, Peng; Meng, Zhaonan; Li, Ming

    2015-04-01

    The eutectic mixture of lauric acid (LA) and stearic acid (SA) is a desirable phase change material (PCM) due to the constant melting temperature and large latent heat. However, its poor thermal conductivity has hampered its broad utilization. In the present study, pure LA, SA and the mixtures with various mass fractions of LA-SA were used as the basic PCMs, and 10 wt% expanded graphite (EG) was added to enhance the thermal conductivities. The phase change behaviors, microstructural analysis, thermal conductivities and thermal stabilities of the mixtures of PCMs were investigated by differential scanning calorimetry (DSC), scanning electronic microscope (SEM), transient plane source (TPS) and thermogravimetric analysis (TGA), respectively. The results show that the LA-SA binary mixture of mixture ratio of 76.3 wt%: 23.7 wt% forms an eutectic mixture, which melts at 38.99 °C and has a latent heat of 159.94 J/g. The melted fatty acids are well absorbed by the porous network of EG and they have a good thermal stability. Furthermore, poor thermal conductivities can be well enhanced by the addition of EG.

  15. Heat storage with an incongruently melting salt hydrate as storage medium based on the extra water principle

    NASA Astrophysics Data System (ADS)

    Furbo, S.

    1980-12-01

    The extra water principle, a heat of fusion storage method, is described. The extra water principle uses an inorganic, incongruently melting salt hydrate as a reliable and stable storage medium in an inexpensive way. Different heat storages using the extra water principle are described. The advantages of using a heat fusion storage unit based on Na2S2O(3).5H2O and the extra water principle instead of a traditional hot water tank in small solar heating systems for domestic hot water supply are shown. In small solar heating systems the heat fusion storage supplies all the wanted hot water in the summer during longer periods than an ordinary hot water storage. It is concluded that the heat of fusion storage is favourable in domestic hot water supply systems with an auxiliary energy source which during the summer have a large energy consumption compared with the energy demands for the hot water supply.

  16. Elaboration of garlic and salt spice with reduced sodium intake.

    PubMed

    Rodrigues, Jéssica F; Junqueira, Gabriela; Gonçalves, Carla S; Carneiro, João D S; Pinheiro, Ana Carla M; Nunes, Cleiton A

    2014-12-01

    Garlic and salt spice is widely used in Brazilian cookery, but it has a high sodium content; as high sodium intake has been strongly correlated to the incidence of chronic diseases. This study aimed to develop a garlic and salt spice with reduced sodium intake. Sensory evaluation was conducted by applying the spices to cooked rice. First, the optimal concentration of spice added during rice preparation was determined. Subsequently, seasonings (3:1) were prepared containing 0%, 50% and 25% less NaCl using a mixture of salts consisting of KCl and monosodium glutamate; a seasoning with a 0% NaCl reduction was established as a control. Three formulations of rice with different spices were assessed according to sensory testing acceptance, time-intensity and temporal domain of sensations. The proportions of salts used in the garlic and salt spice did not generate a strange or bad taste in the products; instead, the mixtures were less salty. However, the seasonings with lower sodium levels (F2 and F3) were better accepted in comparison to the traditional seasoning (F1). Therefore, a mixture of NaCl, KCl and monosodium glutamate is a viable alternative to develop a garlic and salt spice with reduced sodium intake.

  17. Separation of Cs and Sr from LiCl-KCl eutectic salt via a zone-refining process for pyroprocessing waste salt minimization

    NASA Astrophysics Data System (ADS)

    Shim, Moonsoo; Choi, Ho-Gil; Choi, Jeong-Hun; Yi, Kyung-Woo; Lee, Jong-Hyeon

    2017-08-01

    The purification of a LiCl-KCl salt mixture was carried out by a zone-refining process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone-refining method was used to grow pure LiCl-KCl salt ingots from a LiCl-KCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. From each zone-refined salt ingot, samples were collected axially along the salt ingot and the concentrations of Sr and Cs were determined. Experimental results show that the Sr and Cs concentrations at the initial region of the ingot were low and increased to a maximum at the final freezing region of the salt ingot. Concentration results of the zone-refined salt were compared with theoretical results furnished by the proposed model to validate its predictions. The keff values for Sr and Cs were 0.55 and 0.47, respectively. The correlation between the salt composition and separation behavior was also investigated. The keff values of the Sr in LiCl-KCl-SrCl2 and the Cs in LiCl-KCl-CsCl were found to be 0.53 and 0.44, respectively, by fitting the experimental data into the proposed model.

  18. Local melting in Al-Mg-Zn-alloys

    NASA Astrophysics Data System (ADS)

    Droenen, Per-Erik; Ryum, Nils

    1994-03-01

    The internal melting of several Al-Mg-Zn-alloys has been studied by rapid upquenching in a salt bath of specimens slowly cooled at a rate of 2 °C/h down to 375 °C. The melting reaction was studied metallographically in the light- and electron-scanning microscope, and local concentrations were measured in the microprobe. Local melting of both the equilibrium phases T and η was observed to occur. There were, however, essential differences between the melting kinetics for the two phases. While the T-phase particles melted spontaneously at temperatures at or above the invariant temperature, 489 °C, and after some period of time at lower temperatures, the η-phase particles either melted spontaneously at or above the invariant temperature, T - 475 °C, or dissolved into the matrix at temperatures below 475 °C. This difference in behavior can be accounted for if the α(Al)-η section is not a quasi-binary section. The industrial implications of the internal melting in these alloys are discussed and compared to the same reaction in the Al-Mg-Si alloys. A model is developed in the Appendix to quantify the different behaviors of these two classes of alloys.

  19. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  20. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    PubMed

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  1. Insight into the Li{sub 2}CO{sub 3}–K{sub 2}CO{sub 3} eutectic mixture from classical molecular dynamics: Thermodynamics, structure, and dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corradini, Dario; Vuilleumier, Rodolphe, E-mail: rodolphe.vuilleumier@ens.fr; Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, 75005 Paris

    We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li{sub 2}CO{sub 3}–K{sub 2}CO{sub 3} (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900–1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, wemore » present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture’s self-diffusion coefficients, viscosity, and ionic conductivity.« less

  2. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  3. Metal-halide mixtures for latent heat energy storage

    NASA Astrophysics Data System (ADS)

    Chen, K.; Manvi, R.

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  4. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.

  5. NON-AQUEOUS DISSOLUTION OF MASSIVE PLUTONIUM

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Walsh, K.A.

    1959-05-12

    A method is presented for obtaining non-aqueous solutions or plutonium from massive forms of the metal. In the present invention massive plutonium is added to a salt melt consisting of 10 to 40 weight per cent of sodium chloride and the balance zinc chloride. The plutonium reacts at about 800 deg C with the zinc chloride to form a salt bath of plutonium trichloride, sodium chloride, and metallic zinc. The zinc is separated from the salt melt by forcing the molten mixture through a Pyrex filter.

  6. Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems.

    PubMed

    An, Ni; Zhuang, Bilin; Li, Minglun; Lu, Yuyuan; Wang, Zhen-Gang

    2015-08-20

    We propose a simple theoretical formula for describing the refractive indices in binary liquid mixtures containing salt ions. Our theory is based on the Clausius-Mossotti equation; it gives the refractive index of the mixture in terms of the refractive indices of the pure liquids and the polarizability of the ionic species, by properly accounting for the volume change upon mixing. The theoretical predictions are tested by extensive experimental measurements of the refractive indices for water-acetonitrile-salt systems for several liquid compositions, different salt species, and a range of salt concentrations. Excellent agreement is obtained in all cases, especially at low salt concentrations, with no fitting parameters. A simplified expression of the refractive index for low salt concentration is also given, which can be the theoretical basis for determination of salt concentration using refractive index measurements.

  7. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Han, Hong-Bo; Zhou, Si-Si; Zhang, Dai-Jun; Feng, Shao-Wei; Li, Li-Fei; Liu, Kai; Feng, Wen-Fang; Nie, Jin; Li, Hong; Huang, Xue-Jie; Armand, Michel; Zhou, Zhi-Bin

    Lithium bis(fluorosulfonyl)imide (LiFSI) has been studied as conducting salt for lithium-ion batteries, in terms of the physicochemical and electrochemical properties of the neat LiFSI salt and its nonaqueous liquid electrolytes. Our pure LiFSI salt shows a melting point at 145 °C, and is thermally stable up to 200 °C. It exhibits far superior stability towards hydrolysis than LiPF 6. Among the various lithium salts studied at the concentration of 1.0 M (= mol dm -3) in a mixture of ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (3:7, v/v), LiFSI shows the highest conductivity in the order of LiFSI > LiPF 6 > Li[N(SO 2CF 3) 2] (LiTFSI) > LiClO 4 > LiBF 4. The stability of Al in the high potential region (3.0-5.0 V vs. Li +/Li) has been confirmed for high purity LiFSI-based electrolytes using cyclic voltammetry, SEM morphology, and chronoamperometry, whereas Al corrosion indeed occurs in the LiFSI-based electrolytes tainted with trace amounts of LiCl (50 ppm). With high purity, LiFSI outperforms LiPF 6 in both Li/LiCoO 2 and graphite/LiCoO 2 cells.

  8. CO2 capture from simulated fuel gas mixtures using semiclathrate hydrates formed by quaternary ammonium salts.

    PubMed

    Park, Sungwon; Lee, Seungmin; Lee, Youngjun; Seo, Yongwon

    2013-07-02

    In order to investigate the feasibility of semiclathrate hydrate-based precombustion CO2 capture, thermodynamic, kinetic, and spectroscopic studies were undertaken on the semiclathrate hydrates formed from a fuel gas mixture of H2 (60%) + CO2 (40%) in the presence of quaternary ammonium salts (QASs) such as tetra-n-butylammonium bromide (TBAB) and fluoride (TBAF). The inclusion of QASs demonstrated significantly stabilized hydrate dissociation conditions. This effect was greater for TBAF than TBAB. However, due to the presence of dodecahedral cages that are partially filled with water molecules, TBAF showed a relatively lower gas uptake than TBAB. From the stability condition measurements and compositional analyses, it was found that with only one step of semiclathrate hydrate formation with the fuel gas mixture from the IGCC plants, 95% CO2 can be enriched in the semiclathrate hydrate phase at room temperature. The enclathration of both CO2 and H2 in the cages of the QAS semiclathrate hydrates and the structural transition that results from the inclusion of QASs were confirmed through Raman and (1)H NMR measurements. The experimental results obtained in this study provide the physicochemical background required for understanding selective partitioning and distributions of guest gases in the QAS semiclathrate hydrates and for investigating the feasibility of a semiclathrate hydrate-based precombustion CO2 capture process.

  9. Identification of mothball powder composition by float tests and melting point tests.

    PubMed

    Tang, Ka Yuen

    2018-07-01

    The aim of the study was to identify the composition, as either camphor, naphthalene, or paradichlorobenzene, of mothballs in the form of powder or tiny fragments by float tests and melting point tests. Naphthalene, paradichlorobenzene and camphor mothballs were blended into powder and tiny fragments (with sizes <1/10 of the size of an intact mothball). In the float tests, the mothball powder and tiny fragments were placed in water, saturated salt solution and 50% dextrose solution (D50), and the extent to which they floated or sank in the liquids was observed. In the melting point tests, the mothball powder and tiny fragments were placed in hot water with a temperature between 53 and 80 °C, and the extent to which they melted was observed. Both the float and melting point tests were then repeated using intact mothballs. Three emergency physicians blinded to the identities of samples and solutions visually evaluated each sample. In the float tests, paradichlorobenzene powder partially floated and partially sank in all three liquids, while naphthalene powder partially floated and partially sank in water. Naphthalene powder did not sink in D50 or saturated salt solution. Camphor powder floated in all three liquids. Float tests identified the compositions of intact mothball accurately. In the melting point tests, paradichlorobenzene powder melted completely in hot water within 1 min while naphthalene powder and camphor powder did not melt. The melted portions of paradichlorobenzene mothballs were sometimes too small to be observed in 1 min but the mothballs either partially or completely melted in 5 min. Both camphor and naphthalene intact mothballs did not melt in hot water. For mothball powder, the melting point tests were more accurate than the float tests in differentiating between paradichlorobenzene and non-paradichlorobenzene (naphthalene or camphor). For intact mothballs, float tests performed better than melting point tests. Float tests can

  10. 21 CFR 172.863 - Salts of fatty acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) FOOD ADDITIVES PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Multipurpose Additives § 172.863 Salts of fatty acids. The food additive salts of fatty acids may be safely... conditions: (a) The additive consists of one or any mixture of two or more of the aluminum, calcium...

  11. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  12. Hydrated salt minerals on Europa's Surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Matson, D.L.; Johnson, T.V.; Crowley, J.K.; Fanale, F.P.; Carlson, R.W.; Smythe, W.D.; Martin, P.D.; Hibbitts, C.A.; Granahan, J.C.; Ocampo, A.

    1999-01-01

    We reported evidence of heavily hydrated salt minerals present over large areas of Europa's surface from analysis of reflectance spectra returned by the Galileo mission near infrared mapping spectrometer (NIMS) [McCord et al., 1997a, b, 1998a, b]. Here we elaborate on this earlier evidence, present spatial distributions of these minerals, examine alternate water-ice interpretations, expand on our hydrated-salts interpretation, consider salt mineral stability on Europa, and discuss the implications. Extensive well-defined areas on Europa show distinct, asymmetric water-related absorption bands in the 1 to 2.5-??m region. Radiative transfer modeling of water ice involving different particle sizes and layers at Europa temperatures does not reproduce the distinctive Europa water bands. However, ice near its melting temperature, such as in terrestrial environments, does have some characteristics of the Europa spectrum. Alternatively, some classes of heavily hydrated minerals do exhibit such water bands. Among plausible materials, heavily hydrated salt minerals, such as magnesium and sodium sulfates, sodium carbonate and their mixtures, are preferred. All Europa spectral features are present in some salt minerals and a very good match to the Europa spectrum can be achieved by mixing several salt spectra. However, no single or mix of salt mineral spectra from the limited library available has so far been found to perfectly match the Europa spectrum in every detail. The material is concentrated at the lineaments and in chaotic terrain, which are technically disrupted areas on the trailing side. Since the spectrum of the material on Europa is nearly the same everywhere so-far studied, the salt or salt-mixture composition may be nearly uniform. This suggests similar sources and processes over at least a near-hemispheric scale. This would suggest that an extensive subsurface ocean containing dissolved salts is the source, and several possible mechanisms for deposit

  13. Transport Properties of Ionic Liquid Mixtures Containing Heterodications

    DOE PAGES

    Lall-Ramnarine, S.; Fernandez, E.; Rodriguez, C.; ...

    2016-08-30

    This report discusses the transport properties of ionic liquid mixtures that incorporate a series of asymmetrical dications, including heterodications. The dicationic ILs combine either triphenylphosphonium and trimethylammonium cationic sites that are bridged to methylimidazolium or methylpyrrolidinium cationic sites. Mixtures were made of the dicationic bis(trifluoromethylsulfonyl)amide ionic liquids with N-ethoxyethyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)amide. The IL mixtures were characterized for their transport properties (temperature dependent conductivity and viscosity) and thermal properties (melting point and glass transition point).

  14. Various Particulate Matter Effects on Glacial Melting Rates in the Himalayan Mountain Range

    NASA Astrophysics Data System (ADS)

    Barwegen, S.

    2017-12-01

    Due to increased human activity and the impact of global warming in the Himalayas, glaciers are melting at alarming rates. It is hypothesized that by the year 2100, about 5,500 glaciers located in the Hindu-Kush will melt by up to 70%-90%. This will be severely detrimental to farmers as well as lessen the potential to harness hydropower, which requires the glaciers to be fully present (Vidal 2015). The melting of these glaciers is accelerating, in part, due to the deposition of particulate matter onto the snow, which lowers the albedo and causes the glaciers to absorb more heat. The Himalayan glaciers, specifically, are melting due to intense human movement over the snow, movement of particulate matter from storms, the increase in temperatures due to global warming, and soot deposited from forest fires (Dimmick 2014). This whole mountain range needs to retain glaciers in order to support the population of people living there by providing water. This project investigated the effect of both different types and amounts of particulate matter (PM) on ice melting rates. It was a model simulating the impact of PM of varying sizes and sources on glacial melting rates in the Himalayan glaciers. The impact of eight different types of PM (charcoal, pumice, sand/organic soil mixture, peat moss/soil, gravel/soil, soot, and soil), at two different masses (0.1g and 0.3g) on the melting rate of ice was assessed. Ice cubes were covered in PM and placed 5 cm away from a 50W incandescent bulb, with mass measured at regular intervals as they melted. Mass loss was recorded at 3, 6, 9, and 15 minutes and each sample type was repeated in triplicate. Over the course of the experiment, the ice cubes with 0.1 gram of PM were observed to be melting at a slower rate. Of the ice cubes with .3 g of PM on top, the ice covered in the sand and organic soil mixture had the lowest mass loss (3.4 g over 15 minutes), while the gravel and potting soil (4.9 g over 15 minutes) resulted in the highest (4

  15. Axial vibration control of melt structure of sodium nitrate in crystal growth process

    NASA Astrophysics Data System (ADS)

    Sadovskiy, Andrey; Sukhanova, Ekaterina; Belov, Stanislav; Kostikov, Vladimir; Zykova, Marina; Artyushenko, Maxim; Zharikov, Evgeny; Avetissov, Igor

    2015-05-01

    The melt structure evolution under the action of the low-frequency axial vibration control (AVC) technique was studied in situ by Raman spectroscopy for several complex chemical compound melts: sodium nitrate, margarine acid, paraffin mixture (C17-C20). The measurements were conducted in the temperature range from the melting point up to 60 °C above. Comparison of crystallization heats for AVC activated and steady melts with melting heats of AVC-CZ and conventional CZ produced powders allowed to propose the energy diagram of NaNO3 states for activated and non-activated melts and crystals based on DTA, XRD, DSC and Raman experimental data.

  16. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  17. Method and apparatus for melting metals

    DOEpatents

    Moore, Alan F.; Schechter, Donald E.; Morrow, Marvin Stanley

    2006-03-14

    A method and apparatus for melting metals uses microwave energy as the primary source of heat. The metal or mixture of metals are placed in a ceramic crucible which couples, at least partially, with the microwaves to be used. The crucible is encased in a ceramic casket for insulation and placed within a microwave chamber. The chamber may be evacuated and refilled to exclude oxygen. After melting, the crucible may be removed for pouring or poured within the chamber by dripping or running into a heated mold within the chamber. Apparent coupling of the microwaves with softened or molten metal produces high temperatures with great energy savings.

  18. Increasing the endurance of electrodes of heating salt tanks

    NASA Astrophysics Data System (ADS)

    Kulikov, A. I.

    1997-05-01

    Electrodes used for heating, melting, and sustaining the requisite temperature regime in salt tanks for heat treatment of metals and alloys operate under severe conditions (heating to 1300°C, aggressive medium of the melts of salts of alkali and alkali-earth metals). This causes early failure of the electrodes, and the heat treatment unit is stopped for repair. For example, the design service life of electrodes for SVS 2.3/13I tanks is two months, but as a rule it does not exceed one month of continuous operation. The replacement of conventional low-carbon electrode steel (for example, of grade 10) by a more expensive heat- and corrosion-resistant steel has not proved effective but rather increased the cost of the electrodes and hence the cost of the produced parts. In this connection, it is interesting to get acquainted with works devoted to increasing the service life of salt-tank electrodes for heat treatment shops of machine-building and tool plants. The present paper describes such an attempt.

  19. Ecology of Great Salt Pond, Block Island

    EPA Science Inventory

    Great Salt Pond is an island of estuarine water on Block Island, which sits in the middle of the Northwest Atlantic Continental Shelf. When the last continental glaciers retreated, they left a high spot on a terminal moraine. The rising sea from melting glaciers formed two island...

  20. An experimental investigation of agglutinate melting mechanisms - Shocked mixtures of sodium and potassium feldspars

    NASA Technical Reports Server (NTRS)

    Simon, S. B.; Papike, J. J.; Horz, F.; See, T. H.

    1985-01-01

    The results of an experiment designed to test the validity of the model for agglutinate formation involving fusion of the finest fraction or F3 are reported. Impact glasses were formed from various mixes of orthoclase and albite powders, which were used as analogs for soils with chemically constrasting coarse and fine fractions. The results showed that the single most important factor displacing the composition of a small-scale impact melt from the bulk composition of the source regolith is the fractionated composition of the finest soil fraction. Volatile loss and the amount of melting, which in turn are determined by the degree of shock, are also important. As predicted by the model, the lower pressure melts are the most fractionated, and higher pressure is accompanied by increased melting causing glass compositions to approach the bulk. In general, the systematics predicted by the model are observed; the model appears to be valid.

  1. Optimization of glibenclamide tablet composition through the combined use of differential scanning calorimetry and D-optimal mixture experimental design.

    PubMed

    Mura, P; Furlanetto, S; Cirri, M; Maestrelli, F; Marras, A M; Pinzauti, S

    2005-02-07

    A systematic analysis of the influence of different proportions of excipients on the stability of a solid dosage form was carried out. In particular, a d-optimal mixture experimental design was applied for the evaluation of glibenclamide compatibility in tablet formulations, consisting of four classic excipients (natrosol as binding agent, stearic acid as lubricant, sorbitol as diluent and cross-linked polyvinylpyrrolidone as disintegrant). The goal was to find the mixture component proportions which correspond to the optimal drug melting parameters, i.e. its maximum stability, using differential scanning calorimetry (DSC) to quickly obtain information about possible interactions among the formulation components. The absolute value of the difference between the melting peak temperature of pure drug endotherm and that in each analysed mixture and the absolute value of the difference between the enthalpy of the pure glibenclamide melting peak and that of its melting peak in the different analyzed mixtures, were chosen as indexes of the drug-excipient interaction degree.

  2. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi

    1994-01-01

    A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  3. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi.

    1994-08-23

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  4. Salt-induced enhancement of antifreeze protein activity: a salting-out effect.

    PubMed

    Kristiansen, Erlend; Pedersen, Sindre Andre; Zachariassen, Karl Erik

    2008-10-01

    Antifreeze proteins are a structurally diverse group of proteins characterized by their unique ability to cause a separation of the melting- and growth-temperatures of ice. These proteins have evolved independently in different kinds of cold-adapted ectothermic animals, including insects and fish, where they protect against lethal freezing of the body fluids. There is a great variability in the capacity of different kinds of antifreeze proteins to evoke the antifreeze effect, but the basis of these differences is not well understood. This study reports on salt-induced enhancement of the antifreeze activity of an antifreeze protein from the longhorn beetle Rhagium inquisitor (L.). The results imply that antifreeze activity is predetermined by a steady-state distribution of the antifreeze protein between the solution and the ice surface region. The observed salt-induced enhancement of the antifreeze activity compares qualitatively and quantitatively with salt-induced lowering of protein solubility. Thus, salts apparently enhance antifreeze activity by evoking a solubility-induced shift in the distribution pattern of the antifreeze proteins in favour of the ice. These results indicate that the solubility of antifreeze proteins in the solution surrounding the ice crystal is a fundamental physiochemical property in relation to their antifreeze potency.

  5. Ash chemistry and sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Backman, R.; Hupa, Mikko

    1996-12-31

    The thermal behavior of a fuel ash is one important factor to consider when fireside slagging and fouling problems in steam boilers are addressed. It is well known that different types of chemical reactions and melts in deposits play an important role in the build-up of problematic fireside deposits. Low viscous melts occur in steam boilers mainly when salt mixtures are present in the ash. Such are Merent mixtures of alkali and earth alkali sulfates, chlorides and carbonates. These mixtures do not melt at a certain temperature but form a melt in a temperature range which in some cases maymore » be several hundreds of degrees. The amount of melt is crucial for the deposit build-up. For some boilers it has been found that roughly 10 - 20 weight-% melt in an ash mixture would be enough to cause extensive deposit formation, while 60 - 80 weight-% melt would already cause the ash to be so wet it would flow down a vertical tube and not cause any further deposit growth.« less

  6. Effect of Melting Point on the Physical Properties of Anhydrous Milk Fat

    NASA Astrophysics Data System (ADS)

    Wang, Yunna; Li, Yang; Han, Jie; Li, Yan; Zhang, Liebing

    2017-12-01

    The effect of melting point on the physical properties of anhydrous milk fat were investigated. The results showed that high melting fractions (HMF) (S30,S35) were enriched in long-chain fatty acids, whereas low melting fractions (LMF)(S5,S10,S15) were enriched in short-chain and unsaturated fatty acids. From S5 to S35, enthalpy value was gradually increased on both crystallization and melting condition, so as SFC on different temperature. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of different fraction of AMF.

  7. Protein thermal stability enhancement by designing salt bridges: a combined computational and experimental study.

    PubMed

    Lee, Chi-Wen; Wang, Hsiu-Jung; Hwang, Jenn-Kang; Tseng, Ching-Ping

    2014-01-01

    Protein thermal stability is an important factor considered in medical and industrial applications. Many structural characteristics related to protein thermal stability have been elucidated, and increasing salt bridges is considered as one of the most efficient strategies to increase protein thermal stability. However, the accurate simulation of salt bridges remains difficult. In this study, a novel method for salt-bridge design was proposed based on the statistical analysis of 10,556 surface salt bridges on 6,493 X-ray protein structures. These salt bridges were first categorized based on pairing residues, secondary structure locations, and Cα-Cα distances. Pairing preferences generalized from statistical analysis were used to construct a salt-bridge pair index and utilized in a weighted electrostatic attraction model to find the effective pairings for designing salt bridges. The model was also coupled with B-factor, weighted contact number, relative solvent accessibility, and conservation prescreening to determine the residues appropriate for the thermal adaptive design of salt bridges. According to our method, eight putative salt-bridges were designed on a mesophilic β-glucosidase and 24 variants were constructed to verify the predictions. Six putative salt-bridges leaded to the increase of the enzyme thermal stability. A significant increase in melting temperature of 8.8, 4.8, 3.7, 1.3, 1.2, and 0.7°C of the putative salt-bridges N437K-D49, E96R-D28, E96K-D28, S440K-E70, T231K-D388, and Q277E-D282 was detected, respectively. Reversing the polarity of T231K-D388 to T231D-D388K resulted in a further increase in melting temperatures by 3.6°C, which may be caused by the transformation of an intra-subunit electrostatic interaction into an inter-subunit one depending on the local environment. The combination of the thermostable variants (N437K, E96R, T231D and D388K) generated a melting temperature increase of 15.7°C. Thus, this study demonstrated a novel

  8. Centrifugal air-assisted melt agglomeration for fast-release "granulet" design.

    PubMed

    Wong, Tin Wui; Musa, Nafisah

    2012-07-01

    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. [Utilization of a transferred arc-plasma rotating furnace to melt and found oxide mixtures at around 2000 degrees C (presentation of the film VULCANO)].

    PubMed

    Cognet, G; Laffont, G; Jegou, C; Pierre, J; Journeau, C; Sudreau, F; Roubaud, A

    1999-03-01

    Unless security measures are taken, a hypothetical accident resulting from the loss of the cooling circuit in a pressurized water nuclear reactor could cause the heart of the reactor to melt forming a bath, called the corium, mainly composed of uranium, zirconium and iron oxides as well as the structural steel. This type of situation would be similar to the Three Mile Island accident in 1979. In order to limit the consequences of such an accident, the Atomic Energy Commission has implemented a large study program [1] to improve our understanding of corium behavior and determine solutions to stabilize it and avoid its propagation outside the unit. The VULCANO installation was designed in order to perform the trials using real materials which are indispensable to study all the phenomena involved. A film on the VULCANO trials was presented at the Henri Moissan commemorative session organized by the French National Academy of Pharmacy. The rotating furnace used to melt and found the mixture simulating the corium is a direct descendant of the pioneer work by Henri Moissan. An electrical arc is directed at the center of the load to melt which is maintained against the walls by centrifugal force. After six high-temperature trials performed with compositions without uranium oxide, the first trial with real corium showed that the magma spread rather well, a result which is quite favorable for cooling.

  10. An experimental investigation of agglutinate melting mechanisms - Shocked mixtures of Apollo 11 and 16 soils

    NASA Technical Reports Server (NTRS)

    Simon, S. B.; Papike, J. J.; Horz, F.; See, T. H.

    1986-01-01

    Mixtures of chemically contrasting lunar soils have been shocked at pressures ranging from 18.2-62.0 GPa. Other than the generation of impact melts, modal and textural changes caused by shock include destruction of pore space and fused soil clasts and conversion of plagioclase to maskelynite. The loss of the fused soil component in these runs indicates that low agglutinate contents in shocked and/or compacted regolith breccias cannot be considered by themselves to be evidence of formation from immature regolith. From the petrographic and chemical data it appears that the impact glass formed mainly from the fine fraction and the fused soil component in the target, with relatively minor contributions from the other coarse clasts. The impact glasses exhibit the same chemical enrichments and depletions as their corresponding fine fractions and plot on or near a mixing line between the bulk and fine fraction of the soil in which they were formed. From this as well as several other studies it appears that the fusion of the finest fraction model is valid and that it accurately predicts the chemical systematics of impact glass formed from lunar soil. In addition, fusion of agglutinates present in the target soil is an important process.

  11. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrialmore » uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.« less

  12. Improvement of enalapril maleate chemical stability by high shear melting granulation.

    PubMed

    de Oliveira, Ana Paula Montandon; Cunha, Talita Amorim; Serpa, Raphael Caixeta; Taveira, Stephânia Fleury; Lima, Eliana Martins; Almeida Diniz, Danielle Guimarães; de Freitas, Luis Alexandre Pedro; Marreto, Ricardo Neves

    2014-09-18

    Abstract Enalapril maleate is a widely used drug, which is chemically unstable when mixed with excipients resulting in enalaprilat and diketopiperazine as the main degradation products. The preparation of enalapril sodium salt has been used to improve drug stability in solid dosage forms; however, product rejection is observed when the chemical reaction for obtaining the sodium salt is not completely finished before packaging. In this study, granules were prepared by melting granulation using stearic acid or glyceryl monostearate, with a view to developing more stable enalapril maleate solid dosage forms. The granules were prepared in a laboratory-scale high shear mixer and compressed in a rotary machine. Size distribution, flow properties, in vitro drug release and enalapril maleate chemical stability were evaluated and compared with data obtained from tablets prepared without hydrophobic binders. All formulations showed good physical properties and immediate drug release. The greatest improvement in the enalapril maleate stability was observed in formulations containing stearic acid. This study showed that hot melting granulation could be successfully used to prepare enalapril maleate granules which could substitute the in situ formation of enalapril sodium salt, since they provided better enalapril stability in solid dosage forms.

  13. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  14. Partial melting kinetics of plagioclase-diopside pairs

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Akira

    1985-09-01

    Partial melting experiments on plagioclase (An60) and diopside have been carried out using pairs of large crystals to investigate textures and kinetics of melting. The experiments were done at one atmosphere pressure as a function of temperature (1,190 1,307° C) and time (1.5 192 h). Melting took place mainly at the plagioclase-diopside contact planes. Reaction zones composed of fine mixtures of calcic plagioclase and melt were developed from the surface of the plagioclase crystal inward. There exists a critical temperature, below which only a few % melting can occur over the duration of the experiments. This sluggish melting is caused by slow NaSi-CaAl diffusion in plagioclase, because the plagioclase crystal must change its composition to produce albite-rich cotectic melts. Diffusion in the solid also affects the chemical composition of the melts. During initial melting, potassium is preferentially extracted from plagioclase because K-Na diffusion in plagioclase is faster than that of NaSi-CaAl. This also causes a shift in the cotectic compositions. Above the “critical temperature”, on the other hand, melting is promoted by a metastable reaction in which the plagioclase composition does not change, and which produces melts with compositional gradients along the original An60-diopside tie line. The critical temperature is determined by the intersection of the cotectic and the An60-diopside tie line. Interdiffusion coefficients of plagioclase-diopside components in the melt are estimated from melting rates above the critical temperature by using a simplified steady-state diffusion model (e.g., 10-8 cm2/sec at 1,300° C). Many examples of reaction zones due to partial melting have been described as spongy or fingerprint-like textures in xenoliths. Metastable melting above the critical temperature is considered to take place in natural melting where there is a high degree of melting. However, we cannot exclude the possibility of disequilibrium created by

  15. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, T.

    1992-01-01

    This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  16. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  17. Molten salt battery having inorganic paper separator

    DOEpatents

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  18. Thermoelectric converters for monitoring the temperature of salt baths

    NASA Astrophysics Data System (ADS)

    Spektor, Yu. A.

    1985-02-01

    It is recommended to use RTEC in lieu of a radiational pyrometer and an STEC to monitor and maintain the temperature automatically in high-temperature salt melts; this contributes to a marked improvement in the quality of heat-treated components.

  19. Method for removing semiconductor layers from salt substrates

    DOEpatents

    Shuskus, Alexander J.; Cowher, Melvyn E.

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  20. Optimization of natural lipstick formulation based on pitaya (Hylocereus polyrhizus) seed oil using D-optimal mixture experimental design.

    PubMed

    Kamairudin, Norsuhaili; Gani, Siti Salwa Abd; Masoumi, Hamid Reza Fard; Hashim, Puziah

    2014-10-16

    The D-optimal mixture experimental design was employed to optimize the melting point of natural lipstick based on pitaya (Hylocereus polyrhizus) seed oil. The influence of the main lipstick components-pitaya seed oil (10%-25% w/w), virgin coconut oil (25%-45% w/w), beeswax (5%-25% w/w), candelilla wax (1%-5% w/w) and carnauba wax (1%-5% w/w)-were investigated with respect to the melting point properties of the lipstick formulation. The D-optimal mixture experimental design was applied to optimize the properties of lipstick by focusing on the melting point with respect to the above influencing components. The D-optimal mixture design analysis showed that the variation in the response (melting point) could be depicted as a quadratic function of the main components of the lipstick. The best combination of each significant factor determined by the D-optimal mixture design was established to be pitaya seed oil (25% w/w), virgin coconut oil (37% w/w), beeswax (17% w/w), candelilla wax (2% w/w) and carnauba wax (2% w/w). With respect to these factors, the 46.0 °C melting point property was observed experimentally, similar to the theoretical prediction of 46.5 °C. Carnauba wax is the most influential factor on this response (melting point) with its function being with respect to heat endurance. The quadratic polynomial model sufficiently fit the experimental data.

  1. Distillation Separation of Hydrofluoric Acid and Nitric Acid from Acid Waste Using the Salt Effect on Vapor-Liquid Equilibrium

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hideki; Sumoge, Iwao

    2011-03-01

    This study presents the distillation separation of hydrofluoric acid with use of the salt effect on the vapor-liquid equilibrium for acid aqueous solutions and acid mixtures. The vapor-liquid equilibrium of hydrofluoric acid + salt systems (fluorite, potassium nitrate, cesium nitrate) was measured using an apparatus made of perfluoro alkylvinylether. Cesium nitrate showed a salting-out effect on the vapor-liquid equilibrium of the hydrofluoric acid-water system. Fluorite and potassium nitrate showed a salting-in effect on the hydrofluoric acid-water system. Separation of hydrofluoric acid from an acid mixture containing nitric acid and hydrofluoric acid was tested by the simple distillation treatment using the salt effect of cesium nitrate (45 mass%). An acid mixture of nitric acid (5.0 mol · dm-3) and hydrofluoric acid (5.0 mol · dm-3) was prepared as a sample solution for distillation tests. The concentration of nitric acid in the first distillate decreased from 5.0 mol · dm-3 to 1.13 mol · dm-3, and the concentration of hydrofluoric acid increased to 5.41 mol · dm-3. This first distillate was further distilled without the addition of salt. The concentrations of hydrofluoric acid and nitric acid in the second distillate were 7.21 mol · dm-3 and 0.46 mol · dm-3, respectively. It was thus found that the salt effect on vapor-liquid equilibrium of acid mixtures was effective for the recycling of acids from acid mixture wastes.

  2. University Students' Conceptions of Bonding in Melting and Dissolving Phenomena

    ERIC Educational Resources Information Center

    Smith, K. Christopher; Nakhleh, Mary B.

    2011-01-01

    Undergraduate and graduate students' predictions and submicroscopic level explanations for the melting of four materials (salt, chalk, sugar, and butter), and for the mixing of these solutes in two solvents (water and cooking oil) were collected. Twenty-three undergraduate students and seven graduate students participated in the study, and data…

  3. Effect of salt treatments on survival and consumer acceptance of freshwater prawn, Macrobrachium rosenbergii

    USDA-ARS?s Scientific Manuscript database

    Post harvest acclimation of live freshwater prawns to a mixture of water and marine salt increases the consumer acceptability of the finished product. However, the high cost of marine salts prohibits their use in commercial practice. Therefore, the identification of successful, cost effective salt a...

  4. Molten salts and energy related materials.

    PubMed

    Fray, Derek

    2016-08-15

    Molten salts have been known for centuries and have been used for the extraction of aluminium for over one hundred years and as high temperature fluxes in metal processing. This and other molten salt routes have gradually become more energy efficient and less polluting, but there have been few major breakthroughs. This paper will explore some recent innovations that could lead to substantial reductions in the energy consumed in metal production and in carbon dioxide production. Another way that molten salts can contribute to an energy efficient world is by creating better high temperature fuel cells and novel high temperature batteries, or by acting as the medium that can create novel materials that can find applications in high energy batteries and other energy saving devices, such as capacitors. Carbonate melts can be used to absorb carbon dioxide, which can be converted into C, CO and carbon nanoparticles. Molten salts can also be used to create black silicon that can absorb more sunlight over a wider range of wavelengths. Overall, there are many opportunities to explore for molten salts to play in an efficient, low carbon world.

  5. Separation of non-racemic mixtures of enantiomers: an essential part of optical resolution.

    PubMed

    Faigl, Ferenc; Fogassy, Elemér; Nógrádi, Mihály; Pálovics, Emese; Schindler, József

    2010-03-07

    Non-racemic enantiomeric mixtures form homochiral and heterochiral aggregates in melt or suspension, during adsorption or recrystallization, and these diastereomeric associations determine the distribution of the enantiomers between the solid and other (liquid or vapour) phases. That distribution depends on the stability order of the homo- and heterochiral aggregates (conglomerate or racemate formation). Therefore, there is a correlation between the binary melting point phase diagrams and the experimental ee(I)vs. ee(0) curves (ee(I) refers to the crystallized enantiomeric mixtures, ee(0) is the composition of the starting ones). Accordingly, distribution of the enantiomeric mixtures between two phases is characteristic and usually significant enrichment can be achieved. There are two exceptions: no enrichment could be observed under thermodynamically controlled conditions when the starting enantiomer composition corresponded to the eutectic composition, or when the method used was unsuitable for separation. In several cases, when kinetic control governed the crystallization, the character of the ee(0)-ee(I) curve did not correlate with the melting point binary phase diagram.

  6. Melting of genomic DNA: Predictive modeling by nonlinear lattice dynamics

    NASA Astrophysics Data System (ADS)

    Theodorakopoulos, Nikos

    2010-08-01

    The melting behavior of long, heterogeneous DNA chains is examined within the framework of the nonlinear lattice dynamics based Peyrard-Bishop-Dauxois (PBD) model. Data for the pBR322 plasmid and the complete T7 phage have been used to obtain model fits and determine parameter dependence on salt content. Melting curves predicted for the complete fd phage and the Y1 and Y2 fragments of the ϕX174 phage without any adjustable parameters are in good agreement with experiment. The calculated probabilities for single base-pair opening are consistent with values obtained from imino proton exchange experiments.

  7. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  8. Cathode for molten salt batteries

    DOEpatents

    Mamantov, Gleb; Marassi, Roberto

    1977-01-01

    A molten salt electrochemical system for battery applications comprises tetravalent sulfur as the active cathode material with a molten chloroaluminate solvent comprising a mixture of AlCl.sub.3 and MCl having a molar ratio of AlCl.sub.3 /MCl from greater than 50.0/50.0 to 80/20.

  9. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.; Ong, E.

    1983-01-01

    Experimental results of compatibility screening studies of 100 salt/containment/thermal conductivity enhancement (TCE) combinations for the high temperature solar thermal application range of 704 deg to 871 C (1300 to 1600 F) are presented. Nine candidate containment/HX alloy materials and two TCE materials were tested with six candidate solar thermal alkali and alkaline earth carbonate storage salts (both reagent and technical grade of each). Compatibility tests were conducted with salt encapsulated in approx. 6.0 inch x 1 inch welded containers of test material from 300 to 3000 hours. Compatibility evaluations were end application oriented, considering the potential 30 year lifetime requirement of solar thermal power plant components. Analyses were based on depth and nature of salt side corrosion of materials, containment alloy thermal aging effects, weld integrity in salt environment, air side containment oxidation, and chemical and physical analyses of the salt. A need for more reliable, and in some cases first time determined thermophysical and transport property data was also identified for molten carbonates in the 704 to 871 C temperature range. In particular, accurate melting point (mp) measurements were performed for Li2CO3 and Na2CO3 while melting point, heat of fusion, and specific heat determinations were conducted on 81.3 weight percent Na2CO3-18.7 weight percent K2CO3 and 52.2 weight percent BaCO3-47.8 weight percent Na2CO3 to support future TES system design and ultimate scale up of solar thermal energy storage (TES) subsystems.

  10. Novel ternary molten salt electrolytes for intermediate-temperature sodium/nickel chloride batteries

    NASA Astrophysics Data System (ADS)

    Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Y.; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

    2012-12-01

    The sodium-nickel chloride (ZEBRA) battery is operated at relatively high temperature (250-350 °C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150200 °C can not only lead to enhanced cycle life by suppressing temperature-related degradations, but also allow the use of lower cost materials for construction. To achieve adequate electrochemical performance at lower operating temperatures, reduction in ohmic losses is required, including the reduced ohmic resistance of β″-alumina solid electrolyte (BASE) and the incorporation of low melting point secondary electrolytes. In present work, planar-type Na/NiCl2 cells with a thin BASE (600 μm) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salts used as secondary electrolytes were fabricated by the partial replacement of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of these ternary molten salts demonstrated improved ionic conductivity and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175 °C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150 °C.

  11. Identifying Hydrated Salts Using Simultaneous Thermogravimetric Analysis and Differential Scanning Calorimetry

    ERIC Educational Resources Information Center

    Harris, Jerry D.; Rusch, Aaron W.

    2013-01-01

    simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to characterize colorless, hydrated salts with anhydrous melting points less than 1100 degrees C. The experiment could be used to supplement the lecture discussing gravimetric techniques. It is…

  12. Effects of sodium chloride salinity on ecophysiological and biochemical parameters of oak seedlings (Quercus robur L.) from use of de-icing salts for winter road maintenance.

    PubMed

    Laffray, Xavier; Alaoui-Sehmer, Laurence; Bourioug, Mohamed; Bourgeade, Pascale; Alaoui-Sossé, Badr; Aleya, Lotfi

    2018-04-04

    Salt is widely used to melt snow on roads especially in mountain regions. Whether as rock salt or aerosols, spread or sprayed over road surfaces, salt may result in increased salt concentrations in soils, which, in turn, affect natural vegetation, especially tree seedlings already subjected to various other types of abiotic stress. The authors investigated the effects of salt treatment-related stress on seedling growth and certain biochemical parameters in Quercus robur to determine ion concentrations in root tips. Seedlings growing in a quartz sand/vermiculite mixture were subjected to NaCl concentrations of 0, 50, or 100 mM for 5 weeks. The results showed that high NaCl concentrations caused a marked reduction in total leaf biomass 55 and 75% for 50 and 100 mM treatments, respectively, in dry weight of stems (84%) and roots (175%) for 100 mM treatment and modified root architecture, whereas no changes appeared in leaf number. A non-significant decrease in relative water content, with changes in ion balance was recorded. Comparison of stressed to control plants show an increase in sodium (3.5-8-fold), potassium (0.6-fold), and chloride (9.5-14-fold) concentrations in the root tips while the K + /Na + ratio decreased. In taproots, no significant biochemical differences were observed between the salt-treated and the control plants for acid invertase activity, reducing sugars, sucrose, or soluble protein contents. The significance of ion and sugar accumulations in relation to osmotic adjustment and the ability of oak seedlings to cope with salt stress are discussed.

  13. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Astrophysics Data System (ADS)

    Petri, R. J.; Claar, T. D.

    1980-03-01

    Alkali and alkaline earth carbonate latent-heat storage salts, metallic containment materials, and thermal conductivity enhancement materials were investigated to satisfy the high temperature (704 to 871 C) thermal energy storage requirements of advanced solar-thermal power generation concepts are described. Properties of the following six salts selected for compatibility studies are given: three pure carbonates, K2CO3, Li2CO3 and Na2CO3; two eutectic mixtures, BaCO3/Na2CO3 and K2CO3/NaCO3, and one off-eutectic mixture of Na2CO3/K2CO3.

  14. High-temperature molten salt thermal energy storage systems for solar applications

    NASA Technical Reports Server (NTRS)

    Petri, R. J.; Claar, T. D.

    1980-01-01

    Alkali and alkaline earth carbonate latent-heat storage salts, metallic containment materials, and thermal conductivity enhancement materials were investigated to satisfy the high temperature (704 to 871 C) thermal energy storage requirements of advanced solar-thermal power generation concepts are described. Properties of the following six salts selected for compatibility studies are given: three pure carbonates, K2CO3, Li2CO3 and Na2CO3; two eutectic mixtures, BaCO3/Na2CO3 and K2CO3/NaCO3, and one off-eutectic mixture of Na2CO3/K2CO3.

  15. An experimental method for directly determining the interconnectivity of melt in a partially molten system

    NASA Technical Reports Server (NTRS)

    Daines, Martha J.; Richter, Frank M.

    1988-01-01

    An experimental method for directly determining the degree of interconnectivity of melt in a partially molten system is discussed using an olivine-basalt system as an example. Samarium 151 is allowed time to diffuse through mixtures of olivine and basalt powder which have texturally equilibrated at 1350 C and 13 to 15 kbars. The final distribution of samarium is determined through examination of developed radiographs of the samples. Results suggest an interconnected melt network is established at melt fractions at least as low as 1 wt pct and all melt is completely interconnected at melt fractions at least as low as 2 wt pct for the system examined.

  16. Effects of a mixture of vegetable and essential oils and fatty acid potassium salts on Tetranychus urticae and Phytoseiulus persimilis.

    PubMed

    Tsolakis, H; Ragusa, S

    2008-06-01

    Laboratory trials were carried out to evaluate the toxicity and the influence of a commercial mixture of vegetal, essential oils, and potassium salts of fatty acids (Acaridoil 13SL) on the population growth rate (r(i)--instantaneous rate of increase) of two mite species, the phytophagous Tetranychus urticae Koch and the predator Phytoseiulus persimilis Athias-Henriot. A residue of 1.3 mg/cm(2) of pesticide solution was harmless for Ph. persimilis eggs, while a moderate mortality of eggs and of larvae from treated eggs of T. urticae, was observed (53.8%). The pesticide also caused a delay in the postembryonic development of the tetranychid. Moreover, 83.4% mortality was reported for treated females tetranychids and only 24.0% for Ph. persimilis females. The pesticide influenced negatively the population growth of T. urticae which showed a very low rate of increase (r(i)=0.07), compared to that obtained in the control (r(i)=0.68). The pesticide did not affect negatively the reproductive potential of Ph. persimilis (r(i)=0.54 and r(i)=0.57 for test and control, respectively). These results suggest a considerable acaricidal activity of potassium salts of fatty acids and caraway oil on T. urticae and a good selectivity on Ph. persimilis.

  17. Effects of Detergent β-Octylglucoside and Phosphate Salt Solutions on Phase Behavior of Monoolein Mesophases

    PubMed Central

    Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.

    2013-01-01

    Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861

  18. High-temperature corrosion of metals in the salt and metallic melts containing rare earths

    NASA Astrophysics Data System (ADS)

    Karpov, V. V.; Abramov, A. V.; Zhilyakov, A. Yu.; Belikov, S. V.; Volkovich, V. A.; Polovov, I. B.; Rebrin, O. I.

    2016-09-01

    A complex of independent methods was employed to study the corrosion resistance of molybdenum, zirconium, tantalum and tungsten in chloride, chloride-fluoride and fluoride-oxide melts based on LiCl, CaCl2, NaCl- KCl, LiF, and containing rare earths. Tests were conducted for 30 h at 750-1050 °C. The metals showed excellent corrosion resistance in fused chlorides (the corrosion rates were below 0.0005 g/(m2 h). Despite the presence of chemically active fluoride ions in the chloride-fluoride melts, the metals studied also showed very low corrosion rates, except molybdenum, for which the rate of corrosion was 0,8 g/(m2 h). The corrosion resistance of tantalum was considerably reduced in the fluoride-oxide melts; the corrosion rate was over 1 g/(m2 h) corresponding to the 8-th grade of stability and placing tantalum to the group of "low stability" materials.

  19. Stabilization of 238Pu-contaminated combustible waste by molten salt oxidation

    NASA Astrophysics Data System (ADS)

    Stimmel, Jay J.; Remerowski, Mary Lynn; Ramsey, Kevin B.; Heslop, J. Mark

    2000-07-01

    Surrogate studies were conducted using the molten salt oxidation system at the Naval Surface Warfare Center-Indian Head Division. This system uses a rotary feed system and an alumina molten salt oxidation vessel. The combustible materials were tested individually and together in a homogenized mixture. A slurry containing pyrolyzed cheesecloth ash spiked with cerium oxide, which is used as a surrogate for plutonium, and ethylene glycol were also treated in the molten salt oxidation vessel.

  20. Research and Development of EDDN and DETN at Pilot Scale

    DTIC Science & Technology

    2009-07-17

    based fills which fails to meet Insensitive Munitions (1M) requirements. These formulations are based upon a nitrate salt based eutectic mixture...155mm M795 artillery projectile. Two components of this DEMN eutectic are the energetic salts , Ethylenediamine 15. SUBJECT TERMS EDDN, DETN, DEMN...need, ARL has been developing a series of reduced sensitivity melt cast explosive formulations that are based on the nitrate salt containing eutectic

  1. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    PubMed

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  2. In Situ Salt Formation during Melt Extrusion for Improved Chemical Stability and Dissolution Performance of a Meloxicam-Copovidone Amorphous Solid Dispersion.

    PubMed

    Haser, Abbe; Cao, Tu; Lubach, Joseph W; Zhang, Feng

    2018-03-05

    As the pipeline for poorly soluble compounds continues to grow, drug degradation during melt extrusion must be addressed. We present a novel method for stabilizing a thermally labile drug substance while preserving its physical stability and even improving its dissolution performance. In a previous study, we found that incorporating meglumine during extrusion of meloxicam results in chemical stabilization that cannot be achieved using process optimization alone. The purpose of this study is to understand the mechanism behind this stabilization and its impact on the performance of a meloxicam-Kollidon VA64 amorphous solid dispersion. The meloxicam concentration was maintained at 10% (w/w) for blends with and without meglumine. The optimal meglumine blend contained an equimolar amount of meloxicam to meglumine with the remainder consisting of Kollidon VA64. Both formulations were processed with optimized extrusion conditions and analyzed by HPLC for purity. Meglumine at a 1:1 molar ratio with meloxicam results in 100% purity of meloxicam after melt extrusion. Solid-state NMR revealed a proton transfer between the meloxicam and meglumine indicating an in situ salt formation. During non-sink dissolution, the meglumine ASD enables meloxicam to maintain supersaturatation (≅50 times more than meloxicam free acid) for >7.25 h. The ASD without meglumine began precipitating 2.25 h following the pH shift. The ASDs were placed at 40 °C/75% RH for 6 months, and their stability was assessed. No significant chemical degradation, recrystallization, or significant moisture uptake was observed after six months' storage at 40 °C/75% RH.

  3. Energy-Storage Modules for Active Solar Heating and Cooling

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1982-01-01

    34 page report describes a melting salt hydrate that stores 12 times as much heat as rocks and other heavy materials. Energy is stored mostly as latent heat; that is, heat that can be stored and recovered without any significant change in temperature. Report also describes development, evaluation and testing of permanently sealed modules containing salt hydrate mixture.

  4. Cooling molten salt reactors using "gas-lift"

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav; Klimko, Marek

    2014-08-01

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  5. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye

    2013-11-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  6. Modeling the surface tension of complex, reactive organic-inorganic mixtures

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. F.

    2013-01-01

    Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN) ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling fits and goodness of fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.

  7. Effect of Halide Flux on Physicochemical Properties of MgCl2-Based Molten Salts for Accelerating Zirconium Production: Thermodynamic Assessment

    NASA Astrophysics Data System (ADS)

    Shin, Jae Hong; Park, Joo Hyun

    2016-09-01

    The effective halide flux additive for increasing the density of MgCl2 mixture and for decreasing the activity of MgCl2 was investigated in order to improve the reaction efficiency between gaseous ZrCl4 and fresh Mg melt to produce zirconium sponge. Thermochemical computation using FactSageTM software was primarily carried out, followed by the experimental confirmation. The addition of CaCl2, BaCl2, MgF2, and CaF2 to the molten MgCl2 increases the density of the melts, indicating that these halide additives can be a candidate to increase the density of the MgCl2-based molten salts. Among them, BaCl2, MgF2, and CaF2 are the useful additives. The activity of MgCl2 can be reduced by the addition of BaCl2, KCl, NaCl, MgF2, and CaF2, among which the CaF2 is the most effective additive to reduce the activity of MgCl2 with the strongest negative deviation from an ideality. Thus, the addition of CaF2 to the MgCl2, forming the MgCl2-CaF2 binary melt, is the most effective way not only to increase the density of the melt but also to decrease the activity of MgCl2, which was experimentally confirmed. Consequently, the production rate of zirconium sponge by magnesiothermic reduction process can be accelerated by the addition of CaF2.

  8. Apparatus and method for making metal chloride salt product

    DOEpatents

    Miller, William E [Naperville, IL; Tomczuk, Zygmunt [Homer Glen, IL; Richmann, Michael K [Carlsbad, NM

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  9. Direct esterification of ammonium salts of carboxylic acids

    DOEpatents

    Halpern, Yuval [Skokie, IL

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  10. 2D Models for the evolving distribution of impact melt at the lunar near-surface

    NASA Astrophysics Data System (ADS)

    Liu, T.; Michael, G. G.; Oberst, J.

    2017-09-01

    This study aims to investigate the cumulative effect of the impact gardening process. The lateral distribution of the melt with diverse ages is traced in this model. Using the observed distribution of melt age in lunar samples and meteorites, the possible scenarios of the lunar impact history can be discriminated. The record is also helpful for the future lunar sampling, guiding the choice of site to obtain samples from different impact basins, and to understand the mixture of melt ages observed at any one site.

  11. Measurement of europium (III)/europium (II) couple in fluoride molten salt for redox control in a molten salt reactor concept

    NASA Astrophysics Data System (ADS)

    Guo, Shaoqiang; Shay, Nikolas; Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo

    2017-12-01

    The fluoride molten salt such as FLiNaK and FLiBe is one of the coolant candidates for the next generation nuclear reactor concepts, for example, the fluoride salt cooled high temperature reactor (FHR). For mitigating corrosion of structural materials in molten fluoride salt, the redox condition of the salts needs to be monitored and controlled. This study investigates the feasibility of applying the Eu3+/Eu2+ couple for redox control. Cyclic voltammetry measurements of the Eu3+/Eu2+ couple were able to obtain the concentrations ratio of Eu3+/Eu2+ in the melt. Additionally, the formal standard potential of Eu3+/Eu2+ was characterized over the FHR's operating temperatures allowing for the application of the Nernst equation to establish a Eu3+/Eu2+ concentration ratio below 0.05 to prevent corrosion of candidate structural materials. A platinum quasi-reference electrode with potential calibrated by potassium reduction potential is shown as reliable for the redox potential measurement. These results show that the Eu3+/Eu2+ couple is a feasible redox buffering agent to control the redox condition in molten fluoride salts.

  12. Process for improving the energy density of feedstocks using formate salts

    DOEpatents

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  13. Shifting the equilibrium mixture of gramicidin double helices toward a single conformation with multivalent cationic salts.

    PubMed Central

    Doyle, D A; Wallace, B A

    1998-01-01

    The conformation of the polypeptide antibiotic gramicidin is greatly influenced by its environment. In methanol, it exists as an equilibrium mixture of four interwound double-helical conformers that differ in their handedness, chain orientation, and alignment. Upon the addition of multivalent cationic salts, there is a shift in the equilibrium to a single conformer, which was monitored in this study by circular dichroism spectroscopy. With increasing concentrations of multivalent cations, both the magnitude of the entire spectrum and the ratio of the 229-nm to the 210-nm peak were increased. The spectral change is not related to the charge on the cation, but appears to be related to the cationic radius, with the maximum change in ellipticity occurring for cations with a radius of approximately 1 A. The effect requires the presence of an anion whose radius is greater than that of a fluoride ion, but is otherwise not a function of anion type. It is postulated that multivalent cations interact with a binding site in one of the conformers, known as species 1 (a left-handed, parallel, no stagger double helix), stabilizing a modified form of this type of structure. PMID:9675165

  14. Investigating the principles of recrystallization from glyceride melts.

    PubMed

    Windbergs, Maike; Strachan, Clare J; Kleinebudde, Peter

    2009-01-01

    Different lipids were melted and resolidified as model systems to gain deeper insight into the principles of recrystallization processes in lipid-based dosage forms. Solid-state characterization was performed on the samples with differential scanning calorimetry and X-ray powder diffraction. Several recrystallization processes could be identified during storage of the lipid layers. Pure triglycerides that generally crystallize to the metastable alpha-form from the melt followed by a recrystallization process to the stable beta-form with time showed a chain-length-dependent behavior during storage. With increasing chain length, the recrystallization to the stable beta-form was decelerated. Partial glycerides exhibited a more complex recrystallization behavior due to the fact that these substances are less homogenous. Mixtures of a long-chain triglyceride and a partial glyceride showed evidence of some interaction between the two components as the partial glyceride hindered the recrystallization of the triglyceride to the stable beta-form. In addition, the extent of this phenomenon depended on the amount of partial glyceride in the mixture. Based on these results, changes in solid dosage forms based on glycerides during processing and storage can be better understood.

  15. The Pathway of Oligomeric DNA Melting Investigated by Molecular Dynamics Simulations

    PubMed Central

    Wong, Ka-Yiu; Pettitt, B. Montgomery

    2008-01-01

    Details of the reaction coordinate for DNA melting are fundamental to much of biology and biotechnology. Recently, it has been shown experimentally that there are at least three states involved. To clarify the reaction mechanism of the melting transition of DNA, we perform 100-ns molecular dynamics simulations of a homo-oligomeric, 12-basepair DNA duplex, d(A12)·d(T12), with explicit salt water at 400 K. Analysis of the trajectory reveals the various biochemically important processes that occur on different timescales. Peeling (including fraying from the ends), searching for Watson-Crick complements, and dissociation are recognizable processes. However, we find that basepair searching for Watson-Crick complements along a strand is not mechanistically tied to or directly accessible from the dissociation steps of strand melting. A three-step melting mechanism is proposed where the untwisting of the duplex is determined to be the major component of the reaction coordinate at the barrier. Though the observations are limited to the characteristics of the system being studied, they provide important insight into the mechanism of melting of other more biologically relevant forms of DNA, which will certainly differ in details from those here. PMID:18952784

  16. Evidence for melt partitioning between olivine and orthopyroxene in partially molten harzburgite

    NASA Astrophysics Data System (ADS)

    Miller, K.; Zhu, W.; Montesi, L. G.; Le Roux, V.; Gaetani, G. A.

    2013-12-01

    During melting at mid-ocean ridges, melt is driven into an equilibrium, minimum-energy configuration by surface energy gradients between solid-solid and solid-liquid phase boundaries. Such a configuration, where melt is mostly restricted to three and four-grain junctions, acts as a porous medium through which melt can percolate to the surface. For a monomineralic system, melt is distributed evenly among all grains. However, in mineralogical heterogeneous systems, melt partitions unevenly between the various solid phases to minimize the total energy of the system. In a ocean ridge melting environment, where olivine is often juxtaposed against orthopyroxene (opx), lithologic partitioning is expected to turn olivine-rich regions into high-permeability conduits, through which melt can be quickly extracted, drastically increasing the permeability of the mantle [Zhu and Hirth, 2003]. Lithologic partitioning has been demonstrated in experiments using analogue systems [Watson, 1999]; however, to date, no experiment has confirmed its existence in partially molten mantle systems. We present experimental results that determine the degree of melt partitioning between olivine and opx in partially molten harzburgites. Samples were prepared from a powdered mixture of oxides and carbonates and then hot-pressed in a solid-media piston-cylinder apparatus at 1350°C and 1.5GPa [Zhu et al., 2011] to achieve an 82/18 vol. % ratio of olivine to opx. Prior to hot-pressing, basalt was added to the powdered mixtures in various proportions to test for lithologic partitioning across a range of melt fractions. Three-dimensional, 700nm-resolution images of our samples were obtained using synchrotron X-ray microtomography on the 2BM station of the Advanced Photon Source at Argonne National Labs. Image data were filtered using an anisotropic diffusion filter to enhance phase contrast and then segmented to produce binary representations of each phase. In order to quantitatively demonstrate

  17. Hydrate-melt electrolytes for high-energy-density aqueous batteries

    NASA Astrophysics Data System (ADS)

    Yamada, Yuki; Usui, Kenji; Sodeyama, Keitaro; Ko, Seongjae; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-10-01

    Aqueous Li-ion batteries are attracting increasing attention because they are potentially low in cost, safe and environmentally friendly. However, their low energy density (<100 Wh kg-1 based on total electrode weight), which results from the narrow operating potential window of water and the limited selection of suitable negative electrodes, is problematic for their future widespread application. Here, we explore optimized eutectic systems of several organic Li salts and show that a room-temperature hydrate melt of Li salts can be used as a stable aqueous electrolyte in which all water molecules participate in Li+ hydration shells while retaining fluidity. This hydrate-melt electrolyte enables a reversible reaction at a commercial Li4Ti5O12 negative electrode with a low reaction potential (1.55 V versus Li+/Li) and a high capacity (175 mAh g-1). The resultant aqueous Li-ion batteries with high energy density (>130 Wh kg-1) and high voltage (˜2.3-3.1 V) represent significant progress towards performance comparable to that of commercial non-aqueous batteries (with energy densities of ˜150-400 Wh kg-1 and voltages of ˜2.4-3.8 V).

  18. 76 FR 31824 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process... establish those chemical mixtures containing red phosphorus or hypophosphorous acid and its salts (hereinafter ``regulated phosphorus'') that shall automatically qualify for exemption from the [[Page 31825...

  19. Metal and polymer melt jet formation by the high-power laser ablation

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; Gojani, Ardian B.

    2010-02-01

    The laser-induced metal and polymer melt jets are studied experimentally. Two classes of physical phenomena of interest are: first, the process of explosive phase change of laser induced surface ablation and second, the hydrodynamic jetting of liquid melts ejected from a beamed spot. We focus on the dynamic link between these two distinct physical phenomena in a framework of forming and patterning of metallic and polymer jets using a high-power Nd:YAG laser. The microexplosion of ablative spot on a target first forms a pocket of hot liquid melt and then it is followed by a sudden volume change of gas-liquid mixture leading to a pressure-induced spray jet ejection into surrounding medium.

  20. Thermodynamic study of (anthracene + benzo[a]pyrene) solid mixtures

    PubMed Central

    Rice, James W.; Suuberg, Eric M.

    2010-01-01

    To characterize better the thermodynamic behavior of a binary polycyclic aromatic hydrocarbon mixture, thermochemical and vapor pressure experiments were used to examine the phase behavior of the {anthracene (1) + benzo[a]pyrene (2)} system. A solid-liquid phase diagram was mapped for the mixture. A eutectic point occurs at x1 = 0.26. The eutectic mixture is an amorphous solid that lacks organized crystal structure and melts between T = (414 and 420) K. For mixtures that contain 0.10 < x1 < 0.90, the enthalpy of fusion is dominated by that of the eutectic. Solid-vapor equilibrium studies show that mixtures of anthracene and benzo[a]pyrene at x1 < 0.10 sublime at the vapor pressure of pure benzo[a]pyrene. These results suggest that the solid-vapor equilibrium of benzo[a]pyrene is not significantly influenced by moderate levels of anthracene in the crystal structure. PMID:20814451

  1. Formation of Intermetallic Phases in Al-Sc Alloys Prepared by Molten Salt Electrolysis at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Zengjie; Guan, Chunyang; Liu, Qiaochu; Xue, Jilai

    Molten salts electrolysis method to prepare Al-RE alloys has attracted increasing attention recently. CaCl2 and Na3AlF6 were the most often used melts for this purpose. In this work, Al-Sc alloys prepared by electrolytic deposition process in both CaCl2 and Na3AlF6 melts were investigated, respectively. It was found that Sc distributes almost uniformly and Sc contents increase with increasing current intensity in both melts. Current efficiency was measured for comparison among various current densities applied. The alloy products were analyzed using XRD and SEM, where the formation behaviors of Al-Sc intermetallics were investigated in details. The experimental and theoretical results demonstrate that Al3Sc and Al0.968Sc0.032 are the major precipitates in the Al-Sc alloys prepared by molten electrolysis. The results are useful for selection and optimization of the molten salts compositions and the parameters of electrolysis operation.

  2. Al/Cl2 molten salt battery

    NASA Technical Reports Server (NTRS)

    Giner, J.

    1972-01-01

    Molten salt battery has been developed with theoretical energy density of 5.2 j/kg (650 W-h/lb). Battery, which operates at 150 C, can be used in primary mode or as rechargeable battery. Battery has aluminum anode and chlorine cathode. Electrolyte is mixture of AlCl3, NaCl, and some alkali metal halide such as KCl.

  3. Correlating the cold flow and melting properties of fatty acid methyl ester (FAME) mixtures

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures derived from plant oils or animal fats are used to make biodiesel, lubricants, surfactants, plasticizers, ink solvents, paint strippers and other products. Processing requires a precise knowledge of the physico-chemical properties of mixtures with diverse and ...

  4. Lipid melting and cuticular permeability: new insights into an old problem.

    PubMed

    Gibbs, Allen G.

    2002-04-01

    The idea that the physical properties of cuticular lipids affect cuticular permeability goes back over 65 years. This proposal has achieved textbook status, despite controversy and the general lack of direct supporting evidence. Recent work supports the standard model, in which lipid melting results in increased cuticular permeability. Surprisingly, although all species studied to date can synthesize lipids that remain in a solid state at environmental temperatures, partial melting often occurs due to the deposition of lipids with low melting points. This will tend to increase water loss; the benefits may include better dispersal of lipids or other compounds across the cuticle or improved communication via cuticular pheromones. In addition, insects with high melting-point lipids are not necessarily less permeable at low temperatures. One likely reason is variation in lipid properties within the cuticle. Surface lipids differ from one region to another, and biophysical studies of model mixtures suggest the occurrence of phase separation between melted and solid lipid fractions. Lipid phase separation may have important implications for insect water balance and chemical communication.

  5. XAFS Study on Chlorination of Y2O3 in LiCl-KCl-ZrCl4 Melt

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiro; Yaita, Tsuyoshi; Shiwaku, Hideaki; Suzuki, Shinichi

    2008-11-01

    The chlorination reaction of Y2O3 with ZrCl4 in LiCl-KCl eutectic melt was investigated by X-ray absorption fine structure (XAFS) technique. The chlorination reaction was observed between 773 K and 823 K as the 1st peak shift of the Fourier transform magnitude function |FT(k3χ(k))|. The peak corresponding to the nearest Y3+-Cl- correlation was observed in the XAFS analysis at 823 K as the result of the chlorination. It was confirmed that the mixture melts after the reaction is almost equivalent to a molten 5% YCl3-(LiCl-KCl eutectic) mixture.

  6. Notes from the CKD kitchen: a variety of salt-free seasonings.

    PubMed

    Sunwold, Duane

    2007-05-01

    One of the challenges with renal diets is how to make flavorful food while maintaining the low sodium restrictions. I have found three spice companies that have created seasoning mixtures using a mixture of herbs that do not add sodium or potassium chloride in their flavors. The recipe Ginger Roasted Chicken with an Asian Slaw is an example of how you can use three different salt-free seasonings to create a flavorful meal. I know from personal experience that I feel better, have more energy, and sleep better if I restrict my sodium intake. It is easy to stop using the salt shaker and replace the garlic salt and onion salt with garlic powder and onion powder in the kitchen. It takes a dedicated shopper to find the hidden sodium in foods. I find myself reading more and more labels in the aisles of the grocery store before I put any foods in my grocery cart. I also find myself studying the spice selections looking for salt-free seasonings. Mrs. Dash is great and very popular, but there must be more options for us patients with chronic kidney disease. After doing some culinary research, I was pleased to find a much larger section of salt-free seasonings than I expected. I have listed a few of the seasoning combinations below and a table of three major spice companies along with their contact information for purchasing their products.

  7. Experimental evidence supports mantle partial melting in the asthenosphere.

    PubMed

    Chantel, Julien; Manthilake, Geeth; Andrault, Denis; Novella, Davide; Yu, Tony; Wang, Yanbin

    2016-05-01

    The low-velocity zone (LVZ) is a persistent seismic feature in a broad range of geological contexts. It coincides in depth with the asthenosphere, a mantle region of lowered viscosity that may be essential to enabling plate motions. The LVZ has been proposed to originate from either partial melting or a change in the rheological properties of solid mantle minerals. The two scenarios imply drastically distinct physical and geochemical states, leading to fundamentally different conclusions on the dynamics of plate tectonics. We report in situ ultrasonic velocity measurements on a series of partially molten samples, composed of mixtures of olivine plus 0.1 to 4.0 volume % of basalt, under conditions relevant to the LVZ. Our measurements provide direct compressional (V P) and shear (V S) wave velocities and constrain attenuation as a function of melt fraction. Mantle partial melting appears to be a viable origin for the LVZ, for melt fractions as low as ~0.2%. In contrast, the presence of volatile elements appears necessary to explaining the extremely high V P/V S values observed in some local areas. The presence of melt in LVZ could play a major role in the dynamics of plate tectonics, favoring the decoupling of the plate relative to the asthenosphere.

  8. The thermodynamic activity of ZnO in silicate melts

    NASA Astrophysics Data System (ADS)

    Reyes, R. A.; Gaskell, D. R.

    1983-12-01

    The activity of ZnO in ZnO-SiO2 and CaO-ZnO-SiO2 melts has been measured at 1560 °C using a transpiration technique with CO-CO2 mixtures as the carrier gas. The activities of ZnO in dilute solution in 42 wt pct SiO2-38 wt pct CaO-20 wt pct A12O3 in the range 1400° to 1550 °C and in 62 wt pct SiO2-23.3 wt pct CaO-14.7 wt pct A12O3 at 1550 °C have also been measured. The measured free energies of formation of ZnO-SiO2 melts are significantly more negative than published estimated values and this, together with the behavior observed in the system CaO-Al2O3-SiO2, indicate that ZnO is a relatively basic oxide. The results are discussed in terms of the polymerization model of binary silicate melts and ideal silicate mixing in ternary silicate melts. The behavior of ZnO in dilute solution in CaO-Al2O3-SiO2 melts is discussed in terms of the possibility of the fluxing of ZnO by iron blast furnace slags.

  9. Electric Double Layer Composed of an Antagonistic Salt in an Aqueous Mixture: Local Charge Separation and Surface Phase Transition

    NASA Astrophysics Data System (ADS)

    Yabunaka, Shunsuke; Onuki, Akira

    2017-09-01

    We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.

  10. Erythritol: crystal growth from the melt.

    PubMed

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S

    2010-03-30

    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  11. Taste Masking of Griseofulvin and Caffeine Anhydrous Using Kleptose Linecaps DE17 by Hot Melt Extrusion.

    PubMed

    Juluri, Abhishek; Popescu, Carmen; Zhou, Leon; Murthy, Reena N; Gowda, Vanaja K; Chetan Kumar, P; Pimparade, Manjeet B; Repka, Michael A; Murthy, S Narasimha

    2016-02-01

    The objective of this project was to investigate the potential of Kleptose Linecaps DE17 (KLD) in masking the unpleasant/bitter taste of therapeutic agents by hot melt extrusion (HME). Griseofulvin (GRI) and caffeine anhydrous (CA) were used as a bitter active pharmaceutical ingredient (API) model drugs. Thermogravimetric studies confirmed the stability of GRI, CA, and KLD at the employed extrusion temperatures. The differential scanning calorimetry (DSC) studies revealed a characteristic melting endotherm of GRI at 218-220°C and CA at 230-232°C in the physical mixtures as well as in all extrudates over the period of study, indicating the crystalline nature of drug. HME of KLD was achieved only in the presence of plasticizer. Among the several plasticizers investigated, xylitol showed improved processability of KLD at 15% w/w concentration. Dissolution studies of HME extrudates using simulated salivary medium exhibited ∼threefold less release compared to physical mixture at the end of 5 min (the lesser drug release, better the taste masking efficiency). Furthermore, the results from the sensory evaluation of products in human panel demonstrated strong bitter taste in the case of physical mixture compared to the HME formulation, suggesting the potential of Kleptose Linecaps DE17 as taste masking polymer in melt extruded form.

  12. Superconductor precursor mixtures made by precipitation method

    DOEpatents

    Bunker, Bruce C.; Lamppa, Diana L.; Voigt, James A.

    1989-01-01

    Method and apparatus for preparing highly pure homogeneous precursor powder mixtures for metal oxide superconductive ceramics. The mixes are prepared by instantaneous precipitation from stoichiometric solutions of metal salts such as nitrates at controlled pH's within the 9 to 12 range, by addition of solutions of non-complexing pyrolyzable cations, such as alkyammonium and carbonate ions.

  13. Melt-castable energetic compounds comprising oxadiazoles and methods of production thereof

    DOEpatents

    Pagoria, Philip F; Zhang, Mao X

    2013-11-12

    In one embodiment, a melt-castable energetic material comprises at least one of: 3,5-bis(4-nitro-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DNFO), and 3-(4-amino-1,2,5-oxadiazol-3-yl)-5-(4-nitro-1,2,5-oxadiazol-3-yl)-1,2- ,4-oxadiazole (ANFO). In another embodiment, a method for forming a melt-castable energetic material includes reacting 3,5-bis(4-amino-1,2,5-oxadiazol-3-yl)-1,2,4-oxadiazole (DAFO) with oxygen or an oxygen-containing compound to form a mixture of at least: DNFO, and ANFO.

  14. Chemical interactions and thermodynamic studies in aluminum alloy/molten salt systems

    NASA Astrophysics Data System (ADS)

    Narayanan, Ramesh

    The recycling of aluminum and aluminum alloys such as Used Beverage Container (UBC) is done under a cover of molten salt flux based on (NaCl-KCl+fluorides). The reactions of aluminum alloys with molten salt fluxes have been investigated. Thermodynamic calculations are performed in the alloy/salt flux systems which allow quantitative predictions of the equilibrium compositions. There is preferential reaction of Mg in Al-Mg alloy with molten salt fluxes, especially those containing fluorides like NaF. An exchange reaction between Al-Mg alloy and molten salt flux has been demonstrated. Mg from the Al-Mg alloy transfers into the salt flux while Na from the salt flux transfers into the metal. Thermodynamic calculations indicated that the amount of Na in metal increases as the Mg content in alloy and/or NaF content in the reacting flux increases. This is an important point because small amounts of Na have a detrimental effect on the mechanical properties of the Al-Mg alloy. The reactions of Al alloys with molten salt fluxes result in the formation of bluish purple colored "streamers". It was established that the streamer is liquid alkali metal (Na and K in the case of NaCl-KCl-NaF systems) dissipating into the melt. The melts in which such streamers were observed are identified. The metal losses occurring due to reactions have been quantified, both by thermodynamic calculations and experimentally. A computer program has been developed to calculate ternary phase diagrams in molten salt systems from the constituting binary phase diagrams, based on a regular solution model. The extent of deviation of the binary systems from regular solution has been quantified. The systems investigated in which good agreement was found between the calculated and experimental phase diagrams included NaF-KF-LiF, NaCl-NaF-NaI and KNOsb3-TINOsb3-LiNOsb3. Furthermore, an insight has been provided on the interrelationship between the regular solution parameters and the topology of the phase

  15. Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures

    NASA Astrophysics Data System (ADS)

    Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2018-04-01

    The binary Kob-Andersen (KA) Lennard-Jones mixture is the standard model for computational studies of viscous liquids and the glass transition. For very long simulations, the viscous KA system crystallizes, however, by phase separating into a pure A particle phase forming a fcc crystal. We present the thermodynamic phase diagram for KA-type mixtures consisting of up to 50% small (B ) particles showing, in particular, that the melting temperature of the standard KA system at liquid density 1.2 is 1.028(3) in A particle Lennard-Jones units. At large B particle concentrations, the system crystallizes into the CsCl crystal structure. The eutectic corresponding to the fcc and CsCl structures is cutoff in a narrow interval of B particle concentrations around 26% at which the bipyramidal orthorhombic PuBr3 structure is the thermodynamically stable phase. The melting temperature's variation with B particle concentration at two constant pressures, as well as at the constant density 1.2, is estimated from simulations at pressure 10.19 using isomorph theory. Our data demonstrate approximate identity between the melting temperature and the onset temperature below which viscous dynamics appears. Finally, the nature of the solid-liquid interface is briefly discussed.

  16. The refreezing of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  17. Phase transition and chemical decomposition of hydrogen peroxide and its water mixtures under high pressures.

    PubMed

    Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik; Dattelbaum, Dana M; Sheffield, Stephen

    2010-06-07

    We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.

  18. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOEpatents

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  19. Separation of Isotopes by Electromigration in Fused Salts; SEPARATION DES ISOTOPES PAR ELECTROMIGRATION EN SELS FONDUS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menes, F.

    1961-12-01

    A process is given for the separation of isotopes by reflux electromigration of fused salts. The process is carried out in a countercurrent manner on a fused mixture of a salt containing the isotopic cations with a salt having the same anion and a cation with a mobility as near as possible to that of the isotopic cations. An electrolytic cell for carrying out the process is described. Examples are presented of the process in which lithium-6 and lithium-7 are separated in a LiBr-KBr mixture, and calcium isotopes are separated in CaBr/sub 2/-KBr and CaBr/sub 2/- LiBr systems. (N.W.R.)

  20. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared

    2016-12-01

    This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at

  1. High-temperature XAFS measurement of molten salt systems

    NASA Astrophysics Data System (ADS)

    Okamoto, Y.; Akabori, M.; Motohashi, H.; Itoh, A.; Ogawa, T.

    2002-07-01

    A measurement system for high temperature XAFS was developed for investigating the local structure of hygroscopic molten salts like rare earth halides. A solid sample was enclosed in the upper tank of a quartz cell having a sandglass shape under reduced pressure to avoid oxygen and moisture. The measurement was carried out in an electric furnace capable of a highest temperature of 1273 K. After melting, the sample runs down through the melt path with 0.1 mm (or 0.2 mm) thickness to the lower tank. The measurable energy was limited to be above 10 keV due to the absorption of the quartz cell. We confirmed that the measurement of the expensive hygroscopic sample is possible with this system.

  2. Experiments on water/melt explosions, nature of products, and models of dispersal

    NASA Technical Reports Server (NTRS)

    Sheridan, M. F.; Wohletz, K. H.

    1984-01-01

    Experiments were carried out in a steel pressure device using controlled amounts of water and thermite melt to examine the mechanical energy released on explosive mixing following the initial contact of the two materials. An experimental design was used to allow the direct calculation of the mechanical energy by the dynamic lift of the device as recorded both optically and physically. A large number of experiments were run to accurately determine the optimum mixture of water and melt for the conversion of thermal to mechanical energy. The maximum efficiency observed was about 12% at a water/thermite mass ratio of 0.50. These experiments are the basis for the development of models of hydroexplosions and melt fragmentation. Particles collected from the experimental products are similar in size and shape to pyroclasts produced by much larger hydrovolcanic explosions. Melt rupture at optimum ratios produces very fine particles whereas rupture at high or low water/melt ratios produces large melt fragments. Grain surface textures in the experimental products are also related to the water/melt ratio and the mechanism of explosive mixing. It is thus possible to have qualitative information about the nature of the explosion from the sizes and shapes of the fragments produced.

  3. Kinematics and dynamics of salt movement driven by sub-salt normal faulting and supra-salt sediment accumulation - combined analogue experiments and analytical calculations

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; Kley, Jonas

    2017-04-01

    In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses

  4. On the origin of salt in the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Esin, Nikolay; Esin, Nikolay V.; Yanko-Hombach, Valentina

    2017-04-01

    A very serious problem associated with the evolution of the Caspian Sea, is the appearance of salt in it with a chemical composition that is different from the ocean salt (Svitoch, 2014). There are several hypotheses proposed to explain the specified properties. In each of them states that the salt entered the sea from the Arctic or Indian oceans or from the Mediterranean Sea, and then it was subsequently reworked by numerous evaporations. But they do not explain the mechanism of salt accumulation in the Caspian lowlands and its chemical composition changes. In recent years, our studies have shown that after Paratethys disconnecting from the Mediterranean Sea the transgressions of the Black and Caspian seas occurred as a result of periodic melting of the continental ice. The flow of water through the mountain range from the Black Sea to the Mediterranean Sea led to the formation of the Bosphorus Strait. The erosive lowering of the river bed flowing out of the Black Sea is gradually lowered limit of the possible filling of the seas Paratethys descendants. A mathematical reconstruction of the Sarmatian Sea in current relief showed that the theoretical contours of the sea very well coincide with the contours obtained according to the natural geological research. This shows that over the past 14 million years the significant changes in the landscape of the Black Sea-Caspian lowlands in the whole did not happen. The results allow creating a new understanding of the dynamics of the coasts and seas levels, and the origin of salt in the Caspian Sea. In our opinion the oceanic salt in the Caspian Sea remained since Paratethys connection with the Mediterranean Sea. As a result of tectonic processes of the Alps formation there was a gradual separation of the Paratethys from the Mediterranean Sea. As a result of negative freshwater balance the water in the Caspian depression evaporated with continuous (some time) inflow of salt water from the ocean. Thus, water evaporated and

  5. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R.; Sridhar, K. N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  6. Characterization of poly(ethylene oxide) as a drug carrier in hot-melt extrusion.

    PubMed

    Li, Lei; AbuBaker, Omar; Shao, Zezhi J

    2006-09-01

    Poly(ethylene oxide) (PEO) as a drug carrier in hot-melt extrusion was studied by using a model drug, nifedipine, in a twin-screw extruder. Binary mixtures of PEO and nifedipine have been shown to be amenable to hot-melting at a temperature as low as 70 degrees C, well below nifedipine's melting point (172 degrees C). Hot-stage microscopy provided visual evidence that nifedipine can form a miscible dispersion with PEO at 120 degrees C. Complete loss of nifedipine crystallinity when extrudated at and above 120 degrees C with a drug loading of 20% (w/w) was further confirmed by differential scanning calorimetry (DSC) and X-ray diffraction. Cross-sectional imaging of the extrudates using scanning electron microscopy indicated homogeneous drug distribution inside PEO when the processing temperature was above 120 degrees C. Raman spectroscopy confirmed drug-PEO interactions at a molecular level. Cryo-milled extrudates showed significant improvement in dissolution rate compared to either pure nifedipine or the physical mixture of PEO and nifedipine. A state of supersaturation was achieved after 10-minute release in pH 6.8 phosphate buffer. Finally, stability study demonstrated that the solid dispersion system is chemically stable for at least 3 months under the conditions of both 25 degrees C/60% RH and 40 degrees C/75% RH. Overall, PEO appears to be a promising aid/carrier to solublize poorly soluble drugs through the formation of solid dispersion via hot-melt extrusion, thereby improving dissolution and absorption.

  7. Osmotic and Salted Brush Phase of Polyelectrolyte Brushes

    NASA Astrophysics Data System (ADS)

    Helm, Christane A.; Ahrens, Heiko; Förster, Stephan

    2004-03-01

    Amphiphilic block copolymers consisting of a fluid hydrophobic Poly(ethyletylene) (PEE), and a Poly(styrenesulfonate) (PSS) part form monolayers at the air/water interface. With x-ray reflectivity it is shown that the hydrophobic blocks of PEE_114PSS_83 and PEE_144PSS_136 constitute a nm-thick melt, while the polyelectrolyte forms an osmotically swollen brush with counterion incorporation. A slight thickness increase on monolayer compression is found which can be explained by the strong stretching of the brushes. Only at high salt conditions (above 0.1 M), the brush shrinks and the thickness scales with the molecular area (exponent -1/3), and with the salt concentration (exponent ca. -1/5). With Grazing Incidence Diffraction, the lateral order of the polyelectrolyte chains can be detected.

  8. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  9. Spectral identification and quantification of salts in the Atacama Desert

    NASA Astrophysics Data System (ADS)

    Harris, J. K.; Cousins, C. R.; Claire, M. W.

    2016-10-01

    Salt minerals are an important natural resource. The ability to quickly and remotely identify and quantify salt deposits and salt contaminated soils and sands is therefore a priority goal for the various industries and agencies that utilise salts. The advent of global hyperspectral imagery from instruments such as Hyperion on NASA's Earth-Observing 1 satellite has opened up a new source of data that can potentially be used for just this task. This study aims to assess the ability of Visible and Near Infrared (VNIR) spectroscopy to identify and quantify salt minerals through the use of spectral mixture analysis. The surface and near-surface soils of the Atacama Desert in Chile contain a variety of well-studied salts, which together with low cloud coverage, and high aridity, makes this region an ideal testbed for this technique. Two forms of spectral data ranging 0.35 - 2.5 μm were collected: laboratory spectra acquired using an ASD FieldSpec Pro instrument on samples from four locations in the Atacama desert known to have surface concentrations of sulfates, nitrates, chlorides and perchlorates; and images from the EO-1 satellite's Hyperion instrument taken over the same four locations. Mineral identifications and abundances were confirmed using quantitative XRD of the physical samples. Spectral endmembers were extracted from within the laboratory and Hyperion spectral datasets and together with additional spectral library endmembers fed into a linear mixture model. The resulting identification and abundances from both dataset types were verified against the sample XRD values. Issues of spectral scale, SNR and how different mineral spectra interact are considered, and the utility of VNIR spectroscopy and Hyperion in particular for mapping specific salt concentrations in desert environments is established. Overall, SMA was successful at estimating abundances of sulfate minerals, particularly calcium sulfate, from both hyperspectral image and laboratory sample spectra

  10. Ultrasonic Acoustic Velocities During Partial Melting of a Mantle Peridotite KLB-1

    NASA Astrophysics Data System (ADS)

    Weidner, Donald J.; Li, Li; Whitaker, Matthew L.; Triplett, Richard

    2018-02-01

    Knowledge of the elastic properties of partially molten rocks is crucial for understanding low-velocity regions in the interior of the Earth. Models of fluid and solid mixtures have demonstrated that significant decreases in seismic velocity are possible with small amounts of melt, but there is very little available data for testing these models, particularly with both P and S waves for mantle compositions. We report ultrasonic measurements of P and S velocities on a partially molten KLB-1 sample at mantle conditions using a multi-anvil device at a synchrotron facility. The P, S, and bulk sound velocities decrease as melting occurs. We find that the quantity, ∂lnVS/∂lnVB (where VB is the bulk sound velocity) is lower than mechanical models estimate. Instead, our data, as well as previous data in the literature, are consistent with a dynamic melting model in which melting and solidification interact with the stress field of the acoustic wave.

  11. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    NASA Astrophysics Data System (ADS)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  12. Evidence for Impact Shock Melting in CM and CI Chondrite Regolith Samples

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael; Mikouchi, Takashi; Hagiya, Kenji; Ohsumi, Kazumasa; Komatsu, Mutsumi; Le, Loan

    2014-01-01

    C class asteroids frequently exhibit reflectance spectra consistent with thermally metamorphosed carbonaceous chondrites, or a mixture of phyllosilicate-rich material along with regions where they are absent. One particularly important example appears to be near-Earth asteroid 1999 JU3, the target of the Hayabusa II sample return mission [1], although not all spectra indicate this. In fact most spectra of 1999 JU3 are featureless, suggesting a heterogeneous regolith. Here we explore an alternative cause of dehydration of regolith of C class asteroids - impact shock melting. Impact shock melting has been proposed to explain some mineralogical characteristics of CB chondrites, but has not been considered a major process for hydrous carbonaceous chondrites. What evidence is there for significant shock melting in the very abundant CMs, or less abundant but still important CI chondrites?

  13. Molten Salts and Isotope Separation

    NASA Astrophysics Data System (ADS)

    Lantelme, Frédéric

    2013-02-01

    The work on molten salts and isotope separation performed over the years at Université Pierre et Marie Curie and at Collège de France is critically reviewed. This research, closely related to A. Klemm's pioneering contributions, leads among other things to the discovery of the effect now called the `Chemla effect', after the late Professor Marius Chemla. These studies of ionic motions in melts, and liquids in general, have greatly benefitted from recent advances in molecular simulations. Some recent results of such simulations - molecular dynamics (MD) and Brownian dynamics (BD) - as well as of related theoretical work are discussed.

  14. Temperature dependence of fluorescence for EuCl3 in LiCl-KCl eutectic melt.

    PubMed

    Im, Hee-Jung; Kim, Tack-Jin; Song, Kyuseok

    2010-08-15

    The fluorescence of EuCl(3) in LiCl-KCl eutectic melt according to temperature changes was investigated, and the spontaneous partial reduction of Eu(3+) to Eu(2+) at high temperature was confirmed by the fluorescence results. The fluorescence decreases when the temperature increases, and this was examined in detail. The studies of fluorescence provided information regarding the chemical and physical behavior of europium ions in the molten salt according to the temperature changes. It is applicable for monitoring species and concentrations and estimating the approximate chemical structure of the ions in molten salts. Copyright 2010 Elsevier B.V. All rights reserved.

  15. Sulfur Solubility In Silicate Melts: A Thermochemical Model

    NASA Astrophysics Data System (ADS)

    Moretti, R.; Ottonello, G.

    A termochemical model for calculating sulfur solubility of simple and complex silicate melts has been developed in the framework of the Toop-Samis polymeric approach combined with a Flood - Grjotheim theoretical treatment of silicate slags [1,2]. The model allows one to compute sulfide and sulfate content of silicate melts whenever fugacity of gaseous sulphur is provided. "Electrically equivalent ion fractions" are needed to weigh the contribution of the various disproportion reactions of the type: MOmelt + 1/2S2 ,gas MSmelt+1/2O2 ,gas (1) MOmelt + 1/2S2 ,gas + 3/2O2 ,gas MSO4 ,melt (2) Eqs. 1 and 2 account for the oxide-sulfide and the oxide-sulfate disproportiona- tion in silicate melt. Electrically equivalent ion fractions are computed, in a fused salt Temkin notation, over the appropriate matrixes (anionic and cationic). The extension of such matrixes is calculated in the framework of a polymeric model previously developed [1,2,3] and based on a parameterization of acid-base properties of melts. No adjustable parameters are used and model activities follow the raoultian behavior implicit in the ion matrix solution of the Temkin notation. The model is based on a huge amount of data available in literature and displays a high heuristic capability with virtually no compositional limits, as long as the structural role assigned to each oxide holds. REFERENCES: [1] Ottonello G., Moretti R., Marini L. and Vetuschi Zuccolini M. (2001), Chem. Geol., 174, 157-179. [2] Moretti R. (2002) PhD Thesis, University of Pisa. [3] Ottonello G. (2001) J. Non-Cryst. Solids, 282, 72-85.

  16. Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jetté, F. X.; Goroshin, S.; Higgins, A. J.

    2007-12-01

    Equimolar mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2-3.0 GPa (pressures were estimated using LS-DYNA simulations of samples with 100% TMD).

  17. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A.

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such asmore » nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)« less

  18. Thermophysical Properties and Corrosion Characterization of Low Cost Lithium Containing Nitrate Salts Produced in Northern Chile for Thermal Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Angel G.; Gomez, Judith C.; Galleguillos, Hector

    In recent years, lithium containing salts have been studied for thermal energy storage (TES) systems applications, because of their optimal thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, due to its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations of carbon and low chromium steels were performed at 390 degrees C for 1000 hours. Thermophysicalmore » properties of the salt mixtures, such as thermal stability and heat capacity, were measured before and after corrosion tests. Chemical composition of the salts was also determined and an estimation of Chilean production costs is reported. Results showed that purity, thermal stability and heat capacity of the salts were reduced, caused by partial thermal decomposition and incorporation of corrosion products from the steel.« less

  19. Corrosion-electrochemical behavior of nickel in an alkali metal carbonate melt under a chlorine-containing atmosphere

    NASA Astrophysics Data System (ADS)

    Nikitina, E. V.; Kudyakov, V. Ya.; Malkov, V. B.; Plaksin, S. V.

    2013-08-01

    The corrosion-electrochemical behavior of a nickel electrode is studied in the melt of lithium, sodium, and potassium (40: 30: 30 mol %) carbonates in the temperature range 500-600°C under an oxidizing atmosphere CO2 + 0.5O2 (2: 1), which is partly replaced by gaseous chlorine (30, 50, 70%) in some experiments. In other experiments, up to 5 wt % chloride of sodium peroxide is introduced in a salt melt. A change in the gas-phase composition is shown to affect the mechanism of nickel corrosion.

  20. Apollo 16 impact-melt splashes - Petrography and major-element composition

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Horz, Friedrich; Morris, Richard V.

    1986-01-01

    Petrographic and major-element analyses are applied to 50 Apollo 16 impact-melt splash (IMS) samples in order to determine their origin and assess the nature of the subregolith source. The macroscopic analyses reveal that the IMSs exhibit a glassy appearance, but the textures range from holohyaline to hyalopilitic. Schlieren-rich glasses dominate the holohyaline areas, and the crystalline areas are mainly spherulitic. It is observed that most IMSs contain feldspathic monomineralic and lithic clasts and no regolithic materials. It is detected that the chemistry of most IMSs is not like the local regolith and appears to represent varied mixtures of VHA impact-melt breccias and anorthosite; the host rocks are mainly dimict breccias. It is concluded that the Cayley Formation is a polymict deposit composed of VHA impact-melt breccias and anorthosites. Tables revealing the macroscopic characteristics of the IMSs and the major-element composition of IMSs and various host rock are presented.

  1. New promising lithium malonatoborate salts for high voltage lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao -Guang; Wan, Shun; Guang, Hong Yu

    Here, three new lithium salts, lithium difluoro-2-methyl-2-fluoromalonaoborate (LiDFMFMB), lithium difluoro-2-ethyl-2-fluoromalonaoborate (LiDFEFMB), and lithium difluoro-2-propyl-2-fluoro malonaoborate (LiDFPFMB), have been synthesized and evaluated for application in lithium ion batteries. These new salts are soluble in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.) and 1.0 M salt solutions can be easily prepared. The ionic conductivities of these new salts are close to those of LiBF 4 and LiPF 6. Cyclic voltammograms reveal that these new salt based electrolytes can passivate both natural graphite and high voltage spinel LiNi 0.5Mn 1.5O 4 (LNMO) to form effective solidmore » electrolyte interphases (SEIs). In addition, these new salts based electrolytes exhibit good cycling stability with high coulombic efficiencies in both LiNi 0.5Mn 1.5O 4 and graphite based half-cells and full cells.« less

  2. New promising lithium malonatoborate salts for high voltage lithium ion batteries

    DOE PAGES

    Sun, Xiao -Guang; Wan, Shun; Guang, Hong Yu; ...

    2016-12-01

    Here, three new lithium salts, lithium difluoro-2-methyl-2-fluoromalonaoborate (LiDFMFMB), lithium difluoro-2-ethyl-2-fluoromalonaoborate (LiDFEFMB), and lithium difluoro-2-propyl-2-fluoro malonaoborate (LiDFPFMB), have been synthesized and evaluated for application in lithium ion batteries. These new salts are soluble in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.) and 1.0 M salt solutions can be easily prepared. The ionic conductivities of these new salts are close to those of LiBF 4 and LiPF 6. Cyclic voltammograms reveal that these new salt based electrolytes can passivate both natural graphite and high voltage spinel LiNi 0.5Mn 1.5O 4 (LNMO) to form effective solidmore » electrolyte interphases (SEIs). In addition, these new salts based electrolytes exhibit good cycling stability with high coulombic efficiencies in both LiNi 0.5Mn 1.5O 4 and graphite based half-cells and full cells.« less

  3. Competitive adsorption in model charged protein mixtures: Equilibrium isotherms and kinetics behavior

    NASA Astrophysics Data System (ADS)

    Fang, F.; Szleifer, I.

    2003-07-01

    The competitive adsorption of proteins of different sizes and charges is studied using a molecular theory. The theory enables the study of charged systems explicitly including the size, shape, and charge distributions in all the molecular species in the mixture. Thus, this approach goes beyond the commonly used Poisson-Boltzmann approximation. The adsorption isotherms of the protein mixtures are studied for mixtures of two proteins of different size and charge. The amount of proteins adsorbed and the fraction of each protein is calculated as a function of the bulk composition of the solution and the amount of salt in the system. It is found that the total amount of proteins adsorbed is a monotonically decreasing function of the fraction of large proteins on the bulk solution and for fixed protein composition of the salt concentration. However, the composition of the adsorbed layer is a complicated function of the bulk composition and solution ionic strength. The structure of the adsorb layer depends upon the bulk composition and salt concentration. In general, there are multilayers adsorbed due to the long-range character of the electrostatic interactions. When the composition of large proteins in bulk is in very large excess it is found that the structure of the adsorb multilayer is such that the layer in contact with the surface is composed by a mixture of large and small proteins. However, the second and third layers are almost exclusively composed of large proteins. The theory is also generalized to study the time-dependent adsorption. The approach is based on separation of time scales into fast modes for the ions from the salt and the solvent and slow for the proteins. The dynamic equations are written for the slow modes, while the fast ones are obtained from the condition of equilibrium constrained to the distribution of proteins given by the slow modes. Two different processes are presented: the adsorption from a homogeneous solution to a charged surface at

  4. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  5. Effect of Inorganic Salts on the Volatility of Organic Acids

    PubMed Central

    2014-01-01

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance. PMID:25369247

  6. Effect of inorganic salts on the volatility of organic acids.

    PubMed

    Häkkinen, Silja A K; McNeill, V Faye; Riipinen, Ilona

    2014-12-02

    Particulate phase reactions between organic and inorganic compounds may significantly alter aerosol chemical properties, for example, by suppressing particle volatility. Here, chemical processing upon drying of aerosols comprised of organic (acetic, oxalic, succinic, or citric) acid/monovalent inorganic salt mixtures was assessed by measuring the evaporation of the organic acid molecules from the mixture using a novel approach combining a chemical ionization mass spectrometer coupled with a heated flow tube inlet (TPD-CIMS) with kinetic model calculations. For reference, the volatility, i.e. saturation vapor pressure and vaporization enthalpy, of the pure succinic and oxalic acids was also determined and found to be in agreement with previous literature. Comparison between the kinetic model and experimental data suggests significant particle phase processing forming low-volatility material such as organic salts. The results were similar for both ammonium sulfate and sodium chloride mixtures, and relatively more processing was observed with low initial aerosol organic molar fractions. The magnitude of low-volatility organic material formation at an atmospherically relevant pH range indicates that the observed phenomenon is not only significant in laboratory conditions but is also of direct atmospheric relevance.

  7. Thermodynamic properties and interactions of salt hydrates used as phase change materials

    NASA Astrophysics Data System (ADS)

    Braunstein, J.

    1982-12-01

    The state-of-the-art of salt hydrates as phase change materials for low temperature thermal energy storage is reviewed with the objective of recommending research that would result in more practicable use of these materials. Areas for review included phase equilibria, nucleation behavior and melting kinetics of the commonly used hydrates.

  8. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    PubMed

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  9. The impact of dispersion on selective laser melting of titanium and niobium fine powders mixture

    NASA Astrophysics Data System (ADS)

    Razin, A.; Ovchinnikov, V.; Akhmetshin, R.; Krinitcyn, M.; Fedorov, V.; Akhmetshina, V.

    2016-11-01

    This paper is dedicated to the study of selective laser melting process of metal powders. Experiments were performed in the Research Center Modern Manufacturing Technologies of TPU with the fine powders of titanium and niobium. The research was carried out on 3D laser printer designed at TPU. In the framework of experiments aimed at determining possibilities of obtaining niobium-titanium alloy by SLS (selective laser sintering) there were studied the basic processes of laser melting and their effect on the quality of final samples and products. We determined operation modes of 3D printers which allow obtaining high quality of printed sample surface. The research results show that rigid requirements related to powder dispersiveness and proportions are needed to achieve better quality of products.

  10. Alloys compatibility in molten salt fluorides: Kurchatov Institute related experience

    NASA Astrophysics Data System (ADS)

    Ignatiev, Victor; Surenkov, Alexandr

    2013-10-01

    In the last several years, there has been an increased interest in the use of high-temperature molten salt fluorides in nuclear power systems. For all molten salt reactor designs, materials selection is a very important issue. This paper summarizes results, which led to selection of materials for molten salt reactors in Russia. Operating experience with corrosion thermal convection loops has demonstrated good capability of the “nickel-molybdenum alloys + fluoride salt fueled by UF4 and PuF3 + cover gas” system up to 750 °C. A brief description is given of the container material work in progress. Tellurium corrosion of Ni-based alloys in stressed and unloaded conditions studies was also tested in different molten salt mixtures at temperatures up to 700-750 °C, also with measurement of the redox potential. HN80MTY alloy with 1% added Al is the most resistant to tellurium intergranular cracking of Ni-base alloys under study.

  11. Salt attack in parking garage in block of flats

    NASA Astrophysics Data System (ADS)

    Beran, Pavel; Frankeová, Dita; Pavlík, Zbyšek

    2017-07-01

    In recent years many new block of flats with parking garages placed inside the buildings were constructed. This tendency brings beyond question benefits for residents and also for city planning, but it requires new design and structural approaches and advanced material and construction solutions. The analysis of plaster damage on partition wall in parking garage in one of these buildings is presented in the paper. The damage of studied plaster is caused by the salts which are transported together with snow on cars undercarriage into garage area during winter. The snow melts and water with dissolved salts is transported by the capillary suction from concrete floor into the rendered partition wall. Based on the interior temperature, adsorbed water with dissolved chlorides evaporates and from the over saturated pore solution are formed salt crystals that damages the surface plaster layers. This damage would not occur if the partition wall was correctly isolated from the floor finish layer in the parking garage.

  12. Effects of temperature, concentration, and uranium chloride mixture on zirconium electrochemical studies in LiClsbnd KCl eutectic salt

    NASA Astrophysics Data System (ADS)

    Hoover, Robert O.; Yoon, Dalsung; Phongikaroon, Supathorn

    2016-08-01

    Experimental studies were performed to provide measurement and analysis of zirconium (Zr) electrochemistry in LiClsbnd KCl eutectic salt at different temperatures and concentrations using cyclic voltammetry (CV). An additional experimental set with uranium chloride added into the system forming UCl3sbnd ZrCl4sbnd LiClsbnd KCl was performed to explore the general behavior of these two species together. Results of CV experiments with ZrCl4 show complicated cathodic and anodic peaks, which were identified along with the Zr reactions. The CV results reveal that diffusion coefficients (D) of ZrCl4 and ZrCl2 as the function of temperature can be expressed as DZr(IV) = 0.00046exp(-3716/T) and DZr(II) = 0.027exp(-5617/T), respectively. The standard rate constants and apparent standard potentials of ZrCl4 at different temperatures were calculated. Furthermore, the results from the mixture of UCl3 and ZrCl4 indicate that high concentrations of UCl3 hide the features of the smaller concentration of ZrCl4 while Zr peaks become prominent as the concentration of ZrCl4 increases.

  13. Under-ice melt ponds and the oceanic mixed layer

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Smith, N.; Feltham, D. L.

    2017-12-01

    Under-ice melt ponds are pools of freshwater beneath the Arctic sea ice that form when melt from the surface of the sea ice percolates down through the porous sea ice. Through double diffusion, a sheet of ice can form at the interface between the ocean and the under-ice melt pond, completely isolating the pond from the mixed layer below and forming a false bottom to the sea ice. As such, they insulate the sea ice from the ocean below. It has been estimated that these ponds could cover between 5 and 40 % of the base of the Arctic sea ice, and so could have a notable impact on the mass balance of the sea ice. We have developed a one-dimensional model to calculate the thickness and thermodynamic properties of a slab of sea ice, an under-ice melt pond, and a false bottom, as these layers evolve. Through carrying out sensitivity studies, we have identified a number of interesting ways that under-ice melt ponds affect the ice above them and the rate of basal ablation. We found that they result in thicker sea ice above them, due to their insulation of the ice, and have found a possible positive feedback cycle in which less ice will be gained due to under-ice melt ponds as the Arctic becomes warmer. More recently, we have coupled this model to a simple Kraus-Turner type model of the oceanic mixed layer to investigate how these ponds affect the ocean water beneath them. Through altering basal ablation rates and ice thickness, they change the fresh water and salt fluxes into the mixed layer, as well as incoming radiation. Multi-year simulations have, in particular, shown how these effects work on longer time-scales.

  14. Dielectric constant of liquid alkanes and hydrocarbon mixtures

    NASA Technical Reports Server (NTRS)

    Sen, A. D.; Anicich, V. G.; Arakelian, T.

    1992-01-01

    The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.

  15. Thermal characteristics of oleochemical carbonate binary mixtures for potential latent heat storage

    USDA-ARS?s Scientific Manuscript database

    The present study examines the thermal properties of melting and solidification for binary mixtures between dodecyl carbonate (1a), tetradecyl carbonate (1b), hexadecyl carbonate (1c), and octadecyl carbonate (1d) by differential scanning calorimetry (DSC) in order to gain further understanding of t...

  16. The effect of under-ice melt ponds on their surroundings in the Arctic

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Smith, N.; Flocco, D.

    2016-12-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.

  17. Methods for Melting Temperature Calculation

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun

    the melting temperature is a design criterion. We present in detail two examples of refractory materials. First, we demonstrate how key material properties that provide guidance in the design of refractory materials can be accurately determined via ab initio thermodynamic calculations in conjunction with experimental techniques based on synchrotron X-ray diffraction and thermal analysis under laser-heated aerodynamic levitation. The properties considered include melting point, heat of fusion, heat capacity, thermal expansion coefficients, thermal stability, and sublattice disordering, as illustrated in a motivating example of lanthanum zirconate (La2Zr2O7). The close agreement with experiment in the known but structurally complex compound La2Zr 2O7 provides good indication that the computation methods described can be used within a computational screening framework to identify novel refractory materials. Second, we report an extensive investigation into the melting temperatures of the Hf-C and Hf-Ta-C systems using ab initio calculations. With melting points above 4000 K, hafnium carbide (HfC) and tantalum carbide (TaC) are among the most refractory binary compounds known to date. Their mixture, with a general formula TaxHf 1-xCy, is known to have a melting point of 4215 K at the composition Ta4HfC 5, which has long been considered as the highest melting temperature for any solid. Very few measurements of melting point in tantalum and hafnium carbides have been documented, because of the obvious experimental difficulties at extreme temperatures. The investigation lets us identify three major chemical factors that contribute to the high melting temperatures. Based on these three factors, we propose and explore a new class of materials, which, according to our ab initio calculations, may possess even higher melting temperatures than Ta-Hf-C. This example also demonstrates the feasibility of materials screening and discovery via ab initio calculations for the

  18. Chemical Safety: Molten Salt Baths Cited as Lab Hazards.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1982-01-01

    Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…

  19. Mixture and method for simulating soiling and weathering of surfaces

    DOEpatents

    Sleiman, Mohamad; Kirchstetter, Thomas; Destaillats, Hugo; Levinson, Ronnen; Berdahl, Paul; Akbari, Hashem

    2018-01-02

    This disclosure provides systems, methods, and apparatus related to simulated soiling and weathering of materials. In one aspect, a soiling mixture may include an aqueous suspension of various amounts of salt, soot, dust, and humic acid. In another aspect, a method may include weathering a sample of material in a first exposure of the sample to ultraviolet light, water vapor, and elevated temperatures, depositing a soiling mixture on the sample, and weathering the sample in a second exposure of the sample to ultraviolet light, water vapor, and elevated temperatures.

  20. Direct reduction processes for titanium oxide in molten salt

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryosuke O.

    2007-02-01

    Molten salt electrolysis using CaCl2 is employed to produce pure titanium and its alloys directly from TiO2 and a mixture of elemental oxides, respectively, as an alternate to the Kroll process. This is because CaO, which is a reduction by-product, is highly soluble in CaCl2. Good-quality titanium containing only a small amount of residual oxygen has been successfully produced and scaled to industrial levels. Thermochemical and electrochemical bases are reviewed to optimize the process conditions. Several processes using molten salt are being examined for future progress in titanium processing.

  1. On the preparation of TiAl alloy by direct reduction of the oxide mixtures in calcium chloride melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat K. Tripathy; Derek J. Fray

    2011-11-01

    In recent years, TiAl-based intermetallic alloys are being increasingly considered for application in areas such as (i) automobile/transport sector (passenger cars, trucks and ships) (ii) aerospace industry (jet engines and High Speed Civil Transport propulsion system) and (iii) industrial gas turbines. These materials offer excellent (i) high temperature properties (at higher than 6000C) (ii) mechanical strength and (iii) resistance to corrosion and as a result have raised renewed interest. The combination of these properties make them possible replacement materials for traditional nickel-based super-alloys, which are nearly as twice as dense (than TiAl based alloys). Since the microstructures of these intermetallicmore » alloys affect, to a significant extent, their ultimate performance, further improvements (by way of alteration/modification of these microstructures), have been the subject matter of intense research investigations. It has now been established that the presence of alloy additives, such as niobium, tantalum, manganese, boron, chromium, silicon, nickel and yttrium etc, in specific quantities, impart marked improvement to the properties, viz. fatigue strength, fracture toughness, oxidation resistance and room temperature ductility, of these alloys. From a number of possible alloy compositions, {gamma}-TiAl and Ti-Al-Nb-Cr have, of late, emerged as two promising engineering alloys/materials. . The conventional fabrication process of these alloys include steps such as melting, forging and heat treatment/annealing of the alloy compositions. However, an electrochemical process offers an attractive proposition to prepare these alloys, directly from the mixture of the respective oxides, in just one step. The experimental approach, in this new process, was, therefore, to try to electrochemically reduce the (mixed) oxide pellet to an alloy phase. The removal of oxygen, from the (mixed) oxide pellet, was effected by polarizing the oxide pellet against a

  2. Molten salt pyrolysis of latex. [synthetic hydrocarbon fuel production using the Guayule shrub

    NASA Technical Reports Server (NTRS)

    Bauman, A. J. (Inventor)

    1981-01-01

    Latex-rich plants such as Guayule or extracts thereof are pyrolyzed in an inert nitrogen atmosphere inorganic salt melts such as a LiCl/KCl eutectic at a temperature of about 500 C. The yield is over 60% of a highly aromatic, combustible hydrocarbon oil suitable for use as a synthetic liquid fuel.

  3. Molten salts in Nuclear Reactors (Bibliography); LES SELS FONDUS DANS LES REACTEURS NUCLEAIRES (BIBLIOGRAPHIE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirian, J.; Saint-James, R.

    1959-01-01

    A collection is presented of references dealing with the physicochemical studies of fused salts, in partictular the alkali and alkali earth halides. Numerous binary, ternary and quaternary systems of these halides with those of uranium and thoriuna are examined, and the physical properties, density, viscosity, and vapor pressure going from the halides to the mixtures are also considered. References relating to the corrosion of materials by these salts are included and the treatment of the salts with a view to recovery after irradiation in a nuclear reactor is discussed. (auth)

  4. Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions.

    PubMed

    Vradman, Leonid; Zana, Jonatan; Kirschner, Alon; Herskowitz, Moti

    2013-07-14

    LaMnO3 perovskite was successfully synthesized in molten chlorides. In order to explore the effect of the molten salt type, NaCl-KCl and LiCl-KCl eutectic mixtures were employed as a liquid medium for the perovskite formation process. The synthesis included heating the La-nitrate, Mn-nitrate and chlorides mixture to above the melting point of the corresponding chlorides. This procedure yielded a LaMnO3 phase integrated in the fused chloride matrix. Washing with water removed the salts completely, yielding pure LaMnO3 perovskite crystals. The synthesis without molten salt at 800 °C yielded several by-products in addition to the LaMnO3 phase, while with LiCl-KCl the pure perovskite phase was obtained at temperatures as low as 600 °C. Variation of temperature in the range 600-800 °C for LiCl-KCl and 700-800 °C for NaCl-KCl had no significant effect either on the morphology or on the particle size of the product. On the other hand, the effect of the molten salt type on the morphology and size of perovskite particles was remarkable. The synthesis in NaCl-KCl resulted in sub-micron LaMnO3 particles with shapes that range from truncated hexahedrons to spheres, while in LiCl-KCl mostly cubic particles of up to 2-microns were obtained. The effect of the molten salt type on LaMnO3 perovskite formation is explained based on the nucleation and crystal growth model and difference in the melting point of eutectic mixtures.

  5. Separation of rare earths from transition metals by liquid-liquid extraction from a molten salt hydrate to an ionic liquid phase.

    PubMed

    Rout, Alok; Binnemans, Koen

    2014-02-28

    The solvent extraction of trivalent rare-earth ions and their separation from divalent transition metal ions using molten salt hydrates as the feed phase and an undiluted fluorine-free ionic liquid as the extracting phase were investigated in detail. The extractant was tricaprylmethylammonium nitrate, [A336][NO3], and the hydrated melt was calcium nitrate tetrahydrate, Ca(NO3)2·4H2O. The extraction behavior of rare-earth ions was studied for solutions of individual elements, as well as for mixtures of rare earths in the hydrated melt. The influence of different extraction parameters was investigated: the initial metal loading in the feed phase, percentage of water in the feed solution, equilibration time, and the type of hydrated melt. The extraction of rare earths from Ca(NO3)2·4H2O was compared with extraction from CaCl2·4H2O by [A336][Cl] (Aliquat 336). The nitrate system was found to be the better one. The extraction and separation of rare earths from the transition metals nickel, cobalt and zinc were also investigated. Remarkably high separation factors of rare-earth ions over transition metal ions were observed for extraction from Ca(NO3)2·4H2O by the [A336][NO3] extracting phase. Furthermore, rare-earth ions could be separated efficiently from transition metal ions, even in melts with very high concentrations of transition metal ions. Rare-earth oxides could be directly dissolved in the Ca(NO3)2·4H2O phase in the presence of small amounts of Al(NO3)3·9H2O or concentrated nitric acid. The efficiency of extraction after dissolving the rare-earth oxides in the hydrated nitrate melt was identical to extraction from solutions with rare-earth nitrates dissolved in the molten phase. The stripping of the rare-earth ions from the loaded ionic liquid phase and the reuse of the recycled ionic liquid were also investigated in detail.

  6. Incorporation and distribution of rhenium in a borosilicate glass melt heat treated in a sealed ampoule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang; Schweiger, Michael J.

    2013-07-25

    We investigated a mass balance of rhenium (used as a surrogate for technetium-99) in a borosilicate glass that was mixed with excess Re source (KReO4) beyond its solubility and heat treated in a vacuum-sealed fused silica ampoule. Distribution of Re in the bulk of the glass, in a salt phase formed on the melt surface, and in condensate material deposited on the ampoule wall was evaluated to understand the Re migration into different phases during the reaction between the molten glass and KReO4. The information gained from this study will contribute to an effort to understand the mechanism of technetiummore » retention in or escape from glass melt during early stages of glass batch melting, which is a goal of the present series of studies.« less

  7. Physicochemical properties of betaine monohydrate-carboxylic acid mixtures

    NASA Astrophysics Data System (ADS)

    Zahrina, I.; Nasikin, M.; Mulia, K.

    2018-05-01

    Green solvents are widely used to minimize environmental problems associated with the use of volatile organic solvents in many industries. DES are new green solvents in recent. The physicochemical properties of DES can be varied by properly combining of salts with different hydrogen bond donors. The objective of this work is to investigate the effect of varying molar ratios on the physicochemical properties of betaine monohydrate-carboxylic acid (i.e,. propionic or acetic acid) mixtures. Properties of mixtures were measured at 40°C. The viscosity, polarity scale (ENR), density, pH, and water content tend to decrease with the decrease in a molar ratio of betaine monohydrate to acid. Conversely, the ionic conductivity was increased. The physicochemical properties of these mixtures depend on the hydrogen bonding interactions between betaine, water and acid molecules. Betaine monohydratecarboxylic acid mixtures have wide range of polarity, low viscosity, high ionic conductivity, and density higher than 1 g·cm-3 that make them fit for numerous various applications. Additionally, due to these mixtures have acidic pH, it should be properly selected of metal type to minimize corrosion problems in industrial application.

  8. Solidification of high temperature molten salts for thermal energy storage systems

    NASA Technical Reports Server (NTRS)

    Sheffield, J. W.

    1981-01-01

    The solidification of phase change materials for the high temperature thermal energy storage system of an advanced solar thermal power system has been examined theoretically. In light of the particular thermophysical properties of candidate phase change high temperature salts, such as the eutectic mixture of NaF - MgF2, the heat transfer characteristics of one-dimensional inward solidification for a cylindrical geometry have been studied. The Biot number for the solidified salt is shown to be the critical design parameter for constant extraction heat flux. A fin-on-fin design concept of heat transfer surface augmentation is proposed in an effort to minimize the effects of the salt's low thermal conductivity and large volume change upon fusing.

  9. Ternary mixtures of ionic liquids for better salt solubility, conductivity and cation transference number improvement

    PubMed Central

    Karpierz, E.; Niedzicki, L.; Trzeciak, T.; Zawadzki, M.; Dranka, M.; Zachara, J.; Żukowska, G. Z.; Bitner-Michalska, A.; Wieczorek, W.

    2016-01-01

    We hereby present the new class of ionic liquid systems in which lithium salt is introduced into the solution as a lithium cation−glyme solvate. This modification leads to the reorganisation of solution structure, which entails release of free mobile lithium cation solvate and hence leads to the significant enhancement of ionic conductivity and lithium cation transference numbers. This new approach in composing electrolytes also enables even three-fold increase of salt concentration in ionic liquids. PMID:27767069

  10. Structure and Energetics of Clusters Relevant to Thorium Tetrachloride Melts

    NASA Astrophysics Data System (ADS)

    Akdeniz, Z.; Tosi, M. P.

    2000-10-01

    We study within an ionic model the structure and energetics of neutral and charged molecular clusters which may be relevant to molten ThCl4 and to its liquid mixtures with alkali chlorides, with reference to Raman scattering experiments by Photiadis and Papatheodorou. As stressed by these authors, the most striking facts for ThCl4 in comparison to other tetrachloride compounds (and in particular to ZrCl4) are the appreciable ionic conductivity of the pure melt and the continuous structural changes which occur in the melt mixtures with varying composition. After adjusting our model to data on the isolated ThCl4 tetrahedral molecule, we evaluate (i) the Th2Cl8 dimer and the singly charged species obtained from it by chlorine-ion transfer between two such neutral dimers; (ii) the ThCl6 and ThCl7 clusters both as charged anions and as alkali-compensated species; and (iii) various oligomers carrying positive or negative double charges. Our study shows that the characteristic structural properties of the ThCl4 compound and of the alkali-Th chloride systems are the consequence of the relatively high ionic character of the binding, which is already evident in the isolated ThCl4 monomer.

  11. Examination of Effective Dielectric Constants Derived from Non-Spherical Melting Hydrometeor

    NASA Astrophysics Data System (ADS)

    Liao, L.; Meneghini, R.

    2009-04-01

    The bright band, a layer of enhanced radar echo associated with melting hydrometeors, is often observed in stratiform rain. Understanding the microphysical properties of melting hydrometeors and their scattering and propagation effects is of great importance in accurately estimating parameters of the precipitation from spaceborne radar and radiometers. However, one of the impediments in the study of the radar signature of the melting layer is the determination of effective dielectric constants of melting hydrometeors. Although a number of mixing formulas are available to compute the effective dielectric constants, their results vary to a great extent when water is a component of the mixture, such as in the case of melting snow. It is also physically unclear as to how to select among these various formulas. Furthermore, the question remains as to whether these mixing formulas can be applied to computations of radar polarimetric parameters from non-spherical melting particles. Recently, several approaches using numerical methods have been developed to derive the effective dielectric constants of melting hydrometeors, i.e., mixtures consisting of air, ice and water, based on more realistic melting models of particles, in which the composition of the melting hydrometeor is divided into a number of identical cells. Each of these cells is then assigned in a probabilistic way to be water, ice or air according to the distribution of fractional water contents for a particular particle. While the derived effective dielectric constants have been extensively tested at various wavelengths over a range of particle sizes, these numerical experiments have been restricted to the co-polarized scattering parameters from spherical particles. As polarimetric radar has been increasingly used in the study of microphysical properties of hydrometeors, an extension of the theory to polarimetric variables should provide additional information on melting processes. To account for polarimetric

  12. The aluminum electrode in AlCl3-alkali-halide melts.

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Giner, J.

    1972-01-01

    Passivation phenomena have been observed upon cathodic and anodic polarization of the Al electrode in AlCl3-KCl-NaCl melts between 100 and 160 C. They are caused by formation of a solid salt layer at the electrode surface resulting from concentration changes upon current flow. The anodic limiting currents increased with temperature and with decreasing AlCl3 content of the melt. Current voltage curves obtained on a rotating aluminum disk showed a linear relationship between the anodic limiting current and omega to the minus 1/2 power. Upon cathodic polarization, dendrite formation occurs at the Al electrode. The activation overvoltage in AlCl3-KCl-NaCl was determined by galvanostatic current step methods. An apparent exchange current density of 270 mA/sq cm at 130 C and a double layer capacity of 40 plus or minus 10 microfarad/sq cm were measured.

  13. A salt oscillator in the glacial northern Atlantic? part II: A 'scale analysis' model

    NASA Astrophysics Data System (ADS)

    Birchfield, G. Edward; Broecker, Wallace S.

    1990-12-01

    A proposal has been made by Broecker et al. (1990) that rapid changes on a time scale of a thousand years or so, seen over much of the last major glacial in the Greenland ice core record, represent significant climate changes and are caused by a salt oscillator in the glacial Atlantic. This proposal is examined in terms of a rudimentary quantitative model. Scale analysis asserts that heat transported to the high-latitude atmosphere when the thermohaline circulation is turned on, is large enough to produce the melting rates found by Fairbanks (1989) for the time interval around that of the Younger Dryas event and that these melting rates are of the same order of magnitude as the mass flux associated with water vapor flux to the Pacific Ocean estimated by Broecker (1989). Scale analysis also suggests that the salinity fluxes associated with 1) the water vapor flux mechanism, 2) the rapid melting episodes of Fairbanks, 3) possibly ice sheet growth events, 4) net transport by the thermohaline circulation and 5) net transport by turbulent eddy mixing are roughly of the same order of magnitude and therefore may be important mechanisms for producing salinity oscillations on a time scale of a few thousands of years, (see Broecker, 1990). By integration of simple salt conservation equations, it is found that model oscillations with a period of a few thousand years occur over a significant range of salinity fluxes; estimated fluxes fall well within the range for which oscillations exist. The model also suggests that there may exist close coupling between the European-Scandinavian ice sheets and the bimodal response of the oscillator; that is, significant increases or decreases in continental ice volume may accompany each complete cycle of the oscillator. In addition, it appears that continental ice may be required for the salt oscillator to function. A crucial element, which cannot adequately be investigated with the present model, concerns the local effect of salinity

  14. Melting mode and source lithology inferred from trace element systematic in historical olivine from Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Gómez-Ulla, Alejandra; Sigmarsson, Olgeir; Guðfinnsson, Guðmundur H.

    2017-04-01

    Trace element concentrations and ratios in olivine phenocrysts, such as fractionation-corrected Ni x (FeO/MgO) and Fe/Mn, have been shown useful as probes of pyroxenite derived component in mixtures of primary mantle melts (e.g. Sobolev et al., 2007). For instance, higher Ni and lower Mn and Ca contents are expected in partial melts of pyroxenite compared to those of lherzolite. We have measured trace element concentrations in olivine from 1730-1736 AD (Timanfaya) and 1824 AD eruptions in Lanzarote (Canary Islands), which erupted mafic and mantle nodule bearing magmas, ranging in composition from highly silica-undersaturated basanite through alkali basalt to tholeiite. The early basanite exhibit the largest olivine trace element variation covering the range of those from MORB and OIB worldwide, whereas later erupted tholeiite have values typical from pyroxenite derived melts. The Fo value decreased systematically with time during the 1730-36 eruption and the proportion of silica-saturated primary melt increased in the parental magma mixture with time. At the end of the eruption, tholeiite magmas crystallized olivine with, increasing concentrations of Mn and Ca and higher Ca/Al at relatively uniform Ni x (FeO/MgO) and Fe/Mn, all of which is readily explained by increased decompression melting at lower temperature. The basanite from the eruption that took place in 1824 AD has olivine with even higher Fo value and trace element variability similar those of the Timanfaya basanite. The fact that the Lanzarote basanite contain olivine with trace element systematic spanning that of MORB and pyroxenite melt can be explained by CO2-flux melting of a lithologically heterogeneous source, generating the diverse compositions. Initial reactive porous flow through depleted oceanic lithosphere and equilibration with dunitic restite of percolating pyroxenite melt may have amplified the observed Ni depletion in olivine of the earliest basanite. The fact that olivine compositions and

  15. Chromatographic resolution of a salt into its parent acid and base constituents.

    PubMed

    Davankov, Vadim; Tsyurupa, Maria

    2006-12-08

    Based on the results of the earlier proposed process of separation of mixtures of mineral electrolytes by size-exclusion chromatography (SEC), it has been suggested that a mineral salt must spontaneously resolve, at least partially, into its parent acid and base constituents, provided that the separating media discriminates the anion and cation of the salt according to their size. Indeed, migration of a zone of an aqueous salt solution through a bed of neutral nanoporous hypercrosslinked polystyrene-type packing was shown to result in the generation of acidic and alkaline effluent fractions. The principle of spontaneous salt resolution has been extended to other types of discriminating interactions between the stationary phase and the two ions of the salt. The idea was exemplified by the resolution of ammonium acetate, due to hydrophobic retention of the acetate, into fractions enriched in ammoniac and then acetic acid.

  16. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  17. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-03-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  18. Obtaining Crack-free WC-Co Alloys by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Khmyrov, R. S.; Safronov, V. A.; Gusarov, A. V.

    Standard hardmetals of WC-Co system are brittle and often crack at selective laser melting (SLM). The objective of this study is to estimate the range of WC/Co ratio where cracking can be avoided. Micron-sized Co powder was mixed with WC nanopowder in a ball mill to obtain uniform distribution of WC over the surface of Co particles. Continuous layers of remelted material on the surface of a hardmetal plate were obtained from this composite powder by SLM at 1.07μm wavelength. The layers have satisfactory porosity and are well bound to the substrate. The chemical composition of the layers matches the composition of the initial powder mixtures. The powder mixture with 25wt.%WC can be used for SLM to obtain materials without cracks. The powder mixture with 50wt.%WC cracks because of formation of brittle W3Co3C phase. Cracking can considerably reduce the mechanical strength, so that the use of this composition is not advised.

  19. Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique

    PubMed Central

    Angappan, S.; Kalaiselvi, N.; Sudha, R.; Visuvasam, A.

    2014-01-01

    The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF–B2O3–MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm2. The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed. PMID:27350961

  20. Electrochemical Synthesis of Magnesium Hexaboride by Molten Salt Technique.

    PubMed

    Angappan, S; Kalaiselvi, N; Sudha, R; Visuvasam, A

    2014-01-01

    The present work reports electrochemical synthesis of MgB6 from molten salts using the precursor consists of LiF-B2O3-MgCl2. An attempt has been made to synthesize metastable phase MgB6 crystal by electrolysis method. DTA/TGA studies were made to determine the eutectic point of the melt and it was found to be around 900°C. The electrolysis was performed at 900°C under argon atmosphere, at current density of 1.5 A/cm(2). The electrodeposited crystals were examined using XRD, SEM, and XPS. From the above studies, the electrochemical synthesis method for hypothetical MgB6 from chloro-oxy-fluoride molten salt system is provided. Mechanism for the formation of magnesium hexaboride is discussed.

  1. Reduced sediment melting at 7.5-12 GPa: phase relations, geochemical signals and diamond nucleation

    NASA Astrophysics Data System (ADS)

    Brey, G. P.; Girnis, A. V.; Bulatov, V. K.; Höfer, H. E.; Gerdes, A.; Woodland, A. B.

    2015-08-01

    Melting of carbonated sediment in the presence of graphite or diamond was experimentally investigated at 7.5-12 GPa and 800-1600 °C in a multianvil apparatus. Two starting materials similar to GLOSS of Plank and Langmuir (Chem Geol 145:325-394, 1998) were prepared from oxides, carbonates, hydroxides and graphite. One mixture (Na-gloss) was identical in major element composition to GLOSS, and the other was poorer in Na and richer in K (K-gloss). Both starting mixtures contained ~6 wt% CO2 and 7 wt% H2O and were doped at a ~100 ppm level with a number of trace elements, including REE, LILE and HFSE. The near-solidus mineral assemblage contained a silica polymorph (coesite or stishovite), garnet, kyanite, clinopyroxene, carbonates (aragonite and magnesite-siderite solid solution), zircon, rutile, bearthite and hydrous phases (phengite and lawsonite at <9 GPa and the hydrous aluminosilicates topaz-OH and phase egg at >10 GPa). Hydrous phases disappear at ~900 °C, and carbonates persist up to 1000-1100 °C. At temperatures >1200 °C, the mineral assemblage consists of coesite or stishovite, kyanite and garnet. Clinopyroxene stability depends strongly on the Na content in the starting mixture; it remains in the Na-gloss composition up to 1600 °C at 12 GPa, but was not observed in K-gloss experiments above 1200 °C. The composition of melt or fluid changes gradually with increasing temperature from hydrous carbonate-rich (<10 wt% SiO2) at 800-1000 °C to volatile-rich silicate liquids (up to 40 wt% SiO2) at high temperatures. Trace elements were analyzed in melts and crystalline phases by LA ICP MS. The garnet-melt and clinopyroxene-melt partition coefficients are in general consistent with results from the literature for volatile-free systems and silicocarbonate melts derived by melting carbonated peridotites. Most trace elements are strongly incompatible in kyanite and silica polymorphs ( D < 0.01), except for V, Cr and Ni, which are slightly compatible in kyanite

  2. Flash Points of Secondary Alcohol and n-Alkane Mixtures.

    PubMed

    Esina, Zoya N; Miroshnikov, Alexander M; Korchuganova, Margarita R

    2015-11-19

    The flash point is one of the most important characteristics used to assess the ignition hazard of mixtures of flammable liquids. To determine the flash points of mixtures of secondary alcohols with n-alkanes, it is necessary to calculate the activity coefficients. In this paper, we use a model that allows us to obtain enthalpy of fusion and enthalpy of vaporization data of the pure components to calculate the liquid-solid equilibrium (LSE) and vapor-liquid equilibrium (VLE). Enthalpy of fusion and enthalpy of vaporization data of secondary alcohols in the literature are limited; thus, the prediction of these characteristics was performed using the method of thermodynamic similarity. Additionally, the empirical models provided the critical temperatures and boiling temperatures of the secondary alcohols. The modeled melting enthalpy and enthalpy of vaporization as well as the calculated LSE and VLE flash points were determined for the secondary alcohol and n-alkane mixtures.

  3. Effects of deliquescent salts in soils of polar Mars on the flow of the Northern Ice Cap

    NASA Astrophysics Data System (ADS)

    Fisher, D. A.; Hecht, M. H.; Kounaves, S.; Catling, D.

    2008-12-01

    The discovery of substantial amounts of magnesium and perchlorate by Phoenix' "Wet Chemistry Lab" (WCL) in the soil of Polar Mars suggests that magnesium perchlorate could be the dominant salt in the polar region's soils. This prospect opens some unexpected doors for moving liquid water around at temperatures as low as -68C. In its fully hydrated form ,this salt water mixture has a high density (~ 1700 kgm /cubic meter) (Besley and Bottomley,1969) and a freezing point of -68C (Pestova et al., 2005).This perchlorate is very deliquescent and gives off heat as it melts ice. About 1.8 gram of ice can be 'melted' by 1 gm of pure magnesium perchlorate . If the reported 1 percent perchlorate is typical of polar soils and if 5 percent of the Northern Permanent Ice Cap is soil then the perchorate , makes up about 0.0005 the of the ice cap. Given the average thickness of the ice cap is about 2000 meters,this suggests there enough perchorate in the ice cap to generate about 2m of salty water at the bed. Because of its density the perclorate salty water would pool over impervious layers and make the bed into a perchorate sludge that could be mobilized and deformed by the overburden of ice. The deformation of mobile beds is a well known phenomenon on some terrestrial glaciers presently and was thought to have played a major role during the Wisconsinan ice age (Fisher et al., 1985) . The perchorate sludge would be deformed and moved outwards possibly resulting its re-introduction to the polar environment. Having a deliquescent salt sludge at the bed whose melting point is -68C would mean that the ice cap could slide on its deformable bed while the ice itself was still very cold and stiff . This possibility has been modeled with a 2D time varying model . Adding the deformable bed material allows ice cap motion even at ice temperatures cold enough to generate and preserve the scarp/trough features. When the perchlorate formation mechanisms and rates are known the ultimate

  4. Physical properties of salt, anhydrite and gypsum : preliminary report

    USGS Publications Warehouse

    Robertson, Eugene C.; Robie, Richard A.; Books, Kenneth G.

    1958-01-01

    This summary is the result of a search of the available literature. Emphasis is placed on the mechanical and calorimetric properties of salt; the measurements of elastic, thermal, magnetic, and mass properties of salt are merely tabulated. Under hydrostatic pressure 100 percent at a nearly constant stress difference of about 300 kg/cm2. Similarily, under temperatures > 400?C at one atmosphere, salt deforms plastically to strains > 100 percent under stress differences of about 100 kg/cm2. Entha1pies were calculated for various temperatures to 2,000? C from the low temperature and high temperature heat capacities and the heats of solution of the following minerals: salt (or halite), NaCl; anhydrite, CaS04; quartz, Si02; and calcite, CaC03. Three combinations of these minerals were assumed to represent three possible natural salt beds, and the heats required to raise the temperature of each to 1,500?C and to 2,000?C were calculated. For a half and half mixture of salt and anhydrite, 1,300 cal/gm were required to raise the temperature to 2,000?C. For an evaporite containing 60 percent salt and about equal amounts of anhydrite, calcite, and quartz, 1,100 cal/gm are required to raise the temperature to 2,OOO?C. Most of the measurements of the elastic moduli were made on single crystals of salt, anhydrite, and gypsum. For the most part, the measurements of density, magnetic susceptibility, and other properties were made on natural salt samples.

  5. Refractivity of Molten Nitrates and Chlorides: Binary Mixtures Containing Cesium Ions

    NASA Astrophysics Data System (ADS)

    Uchiyama, Yohji; Karawacki, Ernest

    1981-05-01

    By using an interferometric technique, the refractive index of some molten salt mixtures containing Cs+ ions was measured with high accuracy: (Li-Cs)NO3, (Na-Cs)NO3, (Ag-Cs)NO3, (Li-Cs)Cl, and also pure RbCl. The isotherms of molar refractivity show a small negative deviation from additivity in the (Li-Cs)NO3 and (Li-Cs)Cl systems and a positive deviation in the (Ag-Cs)NO3 mixture. A tentative attempt was made to relate the excess molar refractivities with the absorption bands of the ions.

  6. Simple Cloud Chambers Using a Freezing Mixture of Ice and Cooking Salt

    ERIC Educational Resources Information Center

    Yoshinaga, Kyohei; Kubota, Miki; Kamata, Masahiro

    2015-01-01

    We have developed much simpler cloud chambers that use only ice and cooking salt instead of the dry ice or ice gel pack needed for the cloud chambers produced in our previous work. The observed alpha-ray particle tracks are as clear as those observed using our previous cloud chambers. The tracks can be observed continuously for about 20?min, and…

  7. Salt flux synthesis of single and bimetallic carbide nanowires

    NASA Astrophysics Data System (ADS)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  8. A molten salt process for producing neodymium and neodymium-iron alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Ram A.; Seefurth, Randall N.

    1989-12-01

    The production of low-cost neodymium metal in a stirred tank reactor by the reduction of Nd2O3 with sodium in the presence of CaCl2-KCl-NaCl melts by the overall reaction Nd2O3+3CaCl2+6Na→2Nd+3CaO+6NaCl at ˜750 °C is described. The metal produced is recovered from the salt medium by dissolving it in a Nd-Zn or Nd-Fe alloy pool. In the case of Nd-Zn alloy pools, product yields (percentages of theoretical neodymium produced) in excess of 94 pct are obtained when using salt ratios, i.e., the amounts of salt per gram of neodymium produced, ≥3.5 and excess reductant ≥10 pct. The alloy produced is of high quality, and following vacuum distillation of the zinc, can be used in producing General Motors’ MAGNEQUENCH alloy for permanent magnets. In the case of Nd-Fe pools, the yield is also ˜95 pct with a salt ratio as low as 3.5. The yield is found to depend on the salt composition and salt ratio, and to decrease at salt ratios below 3.25. Stirrer position has little effect on yield, while increasing the temperature and placing fins in the reactor increase the yield. The Nd-Fe alloy produced is of as good quality as that produced using Ca reductant and is suitable for direct use in preparing the MAGNEQUENCH alloy.

  9. Towards Organic Zeolites and Inclusion Catalysts: Heptazine Imide Salts Can Exchange Metal Cations in the Solid State.

    PubMed

    Savateev, Aleksandr; Pronkin, Sergey; Willinger, Marc Georg; Antonietti, Markus; Dontsova, Dariya

    2017-07-04

    Highly crystalline potassium (heptazine imides) were prepared by the thermal condensation of substituted 1,2,4-triazoles in eutectic salt melts. These semiconducting salts are already known to be highly active photocatalysts, for example, for the visible-light-driven generation of hydrogen from water. Herein, we show that within the solid-state structure, potassium ions can be exchanged to other metal ions while the crystal habitus is essentially preserved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Proposed Guidance for Preparing and Reviewing Molten Salt Nonpower Reactor Licence Applications (NUREG-1537)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Flanagan, George F.; Voth, Marcus

    Development of non-power molten salt reactor (MSR) test facilities is under consideration to support the analyses needed for development of a full-scale MSR. These non-power MSR test facilities will require review by the US Nuclear Regulatory Commission (NRC) staff. This report proposes chapter adaptations for NUREG-1537 in the form of interim staff guidance to address preparation and review of molten salt non-power reactor license applications. The proposed adaptations are based on a previous regulatory gap analysis of select chapters from NUREG-1537 for their applicability to non-power MSRs operating with a homogeneous fuel salt mixture.

  11. Azobenzene-based organic salts with ionic liquid and liquid crystalline properties

    DOE PAGES

    Stappert, Kathrin; Muthmann, Johanna; Spielberg, Eike T.; ...

    2015-07-23

    Two sets of new azobenzene-based bromide salts are synthesized, and their thermal photochromic properties are studied. Both sets are based on the imidazolium cation. The first set (1) features a symmetric biscation where two imidazolium head groups (Im) with different alkyl chains (Cn) are connected to a central azobenzene unit (Azo): [Azo(C1-Im-Cn) 2]; n = 6, 8, 10, 12, 14. The other one contains an n-alkyl-imidazolium cation (Cn-Im) bearing a terminal azobenzene unit (C1-Azo) substituted with an alkoxy chain (O-Cm) of either two (2) or six (3) carbon atoms: [C1-Azo-O-Cm-Im-Cn]; m = 2, n = 8, 10, 12 and mmore » = 6, n = 8, 10, 12, 14, 16. For both cation classes, the influence of alkyl chains of varying length on the thermal phase behavior was investigated by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). For five compounds (Azo(-C1-Im-C12) 2 (1d), Azo(-C1-Im-C12) 2 (1e), C1-Azo-O-C2-Im-C10 (2b), C1-Azo-O-C2-Im-C12 (2c), and C1-Azo-O-C6-Im-C16 (3e)), the formation of a liquid crystalline phase was observed. The biscationic salts (1) are all comparatively high melting organic salts (180–240 °C), and only the two representatives with long alkylchains (C12 and C14) exhibit liquid crystallinity. The monocationic salts with an O–C2 bridge (2) melt between 140 and 170 °C depending on the alkyl chain length, but from an alkyl chain of 10 and more carbon atoms on they form a smectic A liquid crystalline phase. The representatives of the third set with a O–C6 bridge qualify as ionic liquids with melting points less than 100 °C. However, only the representative with a hexadecyl chain forms a liquid crystalline phase. Representative single crystals for all sets of cations could be grown that allowed for single crystal structure analysis. Together with small-angle X-ray scattering experiments they allow for a more detailed understanding of the thermal properties. As a result, through irradiation with UV-light (320–366 nm) all

  12. Single and multiple stressor effect of road deicers and Cu on Atlantic salmon (Salmo salar) alevins from hatching till swim-up.

    PubMed

    Mahrosh, Urma; Rosseland, Bjørn Olav; Salbu, Brit; Teien, Hans-Christian

    2018-04-01

    Road salts are frequently used for deicing of roads in the Nordic countries. During snow-melt, the road run-off containing high concentrations of road salt and various metals such as Cu remobilized from sand, silt and dust may negatively influence organisms in downstream receiving water bodies. The present work focuses on the impact of road salt (NaCl) and Cu, separately and in mixtures on Atlantic salmon alevins from hatching till swim-up. The results showed that high road salt concentrations could induce a series of negative effects in alevins such as reduced growth, deformities, delayed swim-up and mortality. For alevins exposed to all tested road salt concentrations (100-1000mg/L), mortality was significantly higher compared to control. In exposure to Cu solutions (5-20μgCu/L), no effects on growth, morphology, swim-up or mortality of alevins compared to control were observed. In mixture solutions (road salt and Cu), ultrafiltration of the exposure water demonstrated that only 20%-40% of Cu was present as positively charged low molecular mass (LMM) Cu species assumed to be bioavailable. When exposed to road salt and Cu mixtures, negative effects in alevins such as reduced growth, deformities, delayed swim-up and mortality were observed. The overall results indicated that the road salt application could seriously affect sensitive life stages of Atlantic salmon, and application of road salt should be avoided during the late winter-early spring period. Copyright © 2017. Published by Elsevier B.V.

  13. Rheology as a tool for evaluation of melt processability of innovative dosage forms.

    PubMed

    Aho, Johanna; Boetker, Johan P; Baldursdottir, Stefania; Rantanen, Jukka

    2015-10-30

    Future manufacturing of pharmaceuticals will involve innovative use of polymeric excipients. Hot melt extrusion (HME) is an already established manufacturing technique and several products based on HME are on the market. Additionally, processing based on, e.g., HME or three dimensional (3D) printing, will have an increasingly important role when designing products for flexible dosing, since dosage forms based on compacting of a given powder mixture do not enable manufacturing of optimal pharmaceutical products for personalized treatments. The melt processability of polymers and API-polymer mixtures is highly dependent on the rheological properties of these systems, and rheological measurements should be considered as a more central part of the material characterization tool box when selecting suitable candidates for melt processing by, e.g., HME or 3D printing. The polymer processing industry offers established platforms, methods, and models for rheological characterization, and they can often be readily applied in the field of pharmaceutical manufacturing. Thoroughly measured and calculated rheological parameters together with thermal and mechanical material data are needed for the process simulations which are also becoming increasingly important. The authors aim to give an overview to the basics of rheology and summarize examples of the studies where rheology has been utilized in setting up or evaluating extrusion processes. Furthermore, examples of different experimental set-ups available for rheological measurements are presented, discussing each of their typical application area, advantages and limitations. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2014-05-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. While the hygroscopicities of pure salts, di-carboxylic acids (DCA), and DCA salts are known, the hygroscopicity of internal mixtures of these components, as they are typically found in the atmosphere, has not been fully characterized. Here we show that inorganic-organic component interactions typically not considered in atmospheric models can lead to very strongly bound metal-organic complexes and greatly affect aerosol volatility and hygroscopicity; in particular, the bi-dentate binding of DCA to soluble inorganic ions. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the cloud condensation nuclei (CCN) activation diameter for particles with di-valent salts (e.g., CaCl2) and relatively small particle volume fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O : C ratios are capable of forming low-volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low-particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles without the need for a phase transition.

  15. Developing a Hygrometer for Water-Undersaturated Lherzolite Melts

    NASA Astrophysics Data System (ADS)

    Guild, M. R.; Till, C. B.

    2017-12-01

    The effect of water on the composition of primitive mantle melts at arc volcanoes is a topic of wide interest and has been addressed in a number of previous experimental studies including Hirose & Kawamoto (1995), Gaetani & Grove (1998), Till et al. (2012) and Mitchell & Grove (2015). The current study builds upon the work by previous authors in an effort to develop a more robust hygrometer for primitive lherzolite melts at water-undersaturated conditions. The starting composition for this experimental study is a mixture of 75% primitive upper mantle and 25% primitive basalt (Baker et al., 1991) with a bulk H2O content of 2 wt. %. Experiments were performed at Arizona State University in the Experimental Petrology and Igneous processes Center (EPIC) from 1.2-1.6 GPa at 1150-1300 ºC for 2 days in a piston cylinder apparatus to reflect conditions relevant for arc melt equilibration (Till 2017). A double capsule design was used to prevent Fe and H2O loss with an inner Fe-presaturated Au80Pd20 capsule and an outer Au80Pd20 capsule. Run products were analyzed by electron microprobe and determined to be successful when they demonstrated 0-5% Fe-loss, olivine-melt KDs of 0.27-0.30, and minimal H2O loss. The water-undersaturated melt composition are in equilibrium with ol+opx+sp±cpx. Run products at 1.6 GPa do not contain cpx in the mineral assemblage over the studied temperature range. Observed melt compositions have SiO2 contents of 48-49 wt. % at 1.2 GPa and 46-49 wt.% at 1.6 GPa. Our experimental results suggest an enhanced effect of water on increasing the SiO2 content of the melt compared to previous studies on systems with similar water contents and anhydrous systems. Baker, et al., JGR 96, 21819-21842 (1991). Gaetani & Grove, CMP 131, 323-346 (1998). Hirose & Kawamoto, EPSL 133, 463-473 (1995). Mitchell & Grove, CMP 170, 13 (2015). Till, Am. Mineral, 102, 931-947 (2017). Till, et al., JGR 117 (2012).

  16. Salt Attack on Rocks and Expansion of Soils on Mars

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.

    2004-12-01

    Salt-rich sediments observed by the MER rover Opportunity at Meridiani Planum show that brines have been present on Mars in the past, but a role for groundwater in widespread rock weathering and soil formation is uncertain. Experiments by several groups suggest instead the action of acid fog over long time spans, with episodic input of volcanic gases, as a more significant agent of Mars weathering. Salt minerals formed in these acid weathering experiments consistently include gypsum and alunogen, with epsomite or hexahydrite forming where olivine provides a source of Mg. Analogous to the martian acid fog scenario are terrestrial acid rain or acid fog attacks on building and monument stone by chemical action and mechanical wedging through growth of gypsum, anhydrite, epsomite, hexahydrite, kieserite, and other sulfate minerals. Physical effects can be aggressive, operating by both primary salt growth and hydration of anhydrous or less-hydrous primary salts. In contrast, soils evolve to states where chemical attack is lessened and salt mineral growth leads to expansion with cementation; in this situation the process becomes constructive rather than destructive. We have made synthetic salt-cemented soils (duricrusts) from clays, zeolites, palagonites and other media mixed with ultrapure Mg-sulfate solutions. Although near-neutral in pH, these solutions still exchange or leach Ca from the solids to form cements containing gypsum as well as hexahydrite. At low total P (1 torr) and low RH (<1%) hexahydrite becomes amorphous but gypsum does not. If allowed to rehydrate from vapor at higher RH, the Mg-sulfate component of the duricrust expands by formation of a complex mixture of Mg-sulfate phases with various hydration states. The expanded form is retained even if the duricrust is again dehydrated, suggesting that soil porosity thus formed is difficult to destroy. These processes can be considered in the context of Viking, Pathfinder, and MER evidence for differing salt

  17. Deformation of debris-ice mixtures

    NASA Astrophysics Data System (ADS)

    Moore, Peter L.

    2014-09-01

    Mixtures of rock debris and ice are common in high-latitude and high-altitude environments and are thought to be widespread elsewhere in our solar system. In the form of permafrost soils, glaciers, and rock glaciers, these debris-ice mixtures are often not static but slide and creep, generating many of the landforms and landscapes associated with the cryosphere. In this review, a broad range of field observations, theory, and experimental work relevant to the mechanical interactions between ice and rock debris are evaluated, with emphasis on the temperature and stress regimes common in terrestrial surface and near-surface environments. The first-order variables governing the deformation of debris-ice mixtures in these environments are debris concentration, particle size, temperature, solute concentration (salinity), and stress. A key observation from prior studies, consistent with expectations, is that debris-ice mixtures are usually more resistant to deformation at low temperatures than their pure end-member components. However, at temperatures closer to melting, the growth of unfrozen water films at ice-particle interfaces begins to reduce the strengthening effect and can even lead to profound weakening. Using existing quantitative relationships from theoretical and experimental work in permafrost engineering, ice mechanics, and glaciology combined with theory adapted from metallurgy and materials science, a simple constitutive framework is assembled that is capable of capturing most of the observed dynamics. This framework highlights the competition between the role of debris in impeding ice creep and the mitigating effects of unfrozen water at debris-ice interfaces.

  18. Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Zheng, Jianming; Engelhard, Mark H.

    The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes follows the order as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB >more » LiPF6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. In conclusion, the key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.« less

  19. Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries

    DOE PAGES

    Li, Xing; Zheng, Jianming; Engelhard, Mark H.; ...

    2017-12-27

    The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes follows the order as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB >more » LiPF6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. In conclusion, the key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.« less

  20. Effects of Imide-Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries.

    PubMed

    Li, Xing; Zheng, Jianming; Engelhard, Mark H; Mei, Donghai; Li, Qiuyan; Jiao, Shuhong; Liu, Ning; Zhao, Wengao; Zhang, Ji-Guang; Xu, Wu

    2018-01-24

    The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of lithium (Li) metal batteries are systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) are chosen for this study and compared with the conventional LiPF 6 salt. Density functional theory calculations indicate that the chemical and electrochemical stabilities rank in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiFSI-LiBOB. The experimental cycling stability of the Li metal batteries with the electrolytes ranks in the following order: LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiDFOB > LiPF 6 > LiFSI-LiBOB, which is in well accordance with the calculation results. The LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high-performance Li metal batteries.

  1. Crystallization of carbon-oxygen mixtures in white dwarf stars.

    PubMed

    Horowitz, C J; Schneider, A S; Berry, D K

    2010-06-11

    We determine the phase diagram for dense carbon-oxygen mixtures in white dwarf (WD) star interiors using molecular dynamics simulations involving liquid and solid phases. Our phase diagram agrees well with predictions from Ogata et al. and from Medin and Cumming and gives lower melting temperatures than Segretain et al. Observations of WD crystallization in the globular cluster NGC 6397 by Winget et al. suggest that the melting temperature of WD cores is close to that for pure carbon. If this is true, our phase diagram implies that the central oxygen abundance in these stars is less than about 60%. This constraint, along with assumptions about convection in stellar evolution models, limits the effective S factor for the 12C(α,γ)16O reaction to S(300)≤170  keV b.

  2. Rheological Characterization of Molten Polymer-Drug Dispersions as a Predictive Tool for Pharmaceutical Hot-Melt Extrusion Processability.

    PubMed

    Van Renterghem, Jeroen; Vervaet, Chris; De Beer, Thomas

    2017-11-01

    The aim of this study was to investigate (i) the influence of drug solid-state (crystalline or dissolved in the polymer matrix) on the melt viscosity and (ii) the influence of the drug concentration, temperature and shear rate on polymer crystallization using rheological tests. Poly (ethylene oxide) (PEO) (100.000 g/mol) and physical mixtures (PM) containing 10-20-30-40% (w/w) ketoprofen or 10% (w/w) theophylline in PEO were rheologically characterized. Rheological tests were performed (frequency and temperature sweeps in oscillatory shear as well as shear-induced crystallization experiments) to obtain a thorough understanding of the flow behaviour and crystallization of PEO-drug dispersions. Theophylline did not dissolve in PEO as the complex viscosity (η*) of the drug-polymer mixture increased as compared to that of neat PEO. In contrast, ketoprofen dissolved in PEO and acted as a plasticizer, decreasing η*. Acting as a nucleating agent, theophylline induced the crystallization of PEO upon cooling from the melt. On the other hand, ketoprofen inhibited crystallization upon cooling. Moreover, higher concentrations of ketoprofen in the drug-polymer mixture increasingly inhibited polymer crystallization. However, shear-induced crystallization was observed for all tested mixtures containing ketoprofen. The obtained rheological results are relevant for understanding and predicting HME processability (e.g., barrel temperature selection) and downstream processing such as injection moulding (e.g., mold temperature selection).

  3. Influence of Sulphur Impurities on the Interfacial Tension between Aluminium and Cryolite Alumina Melts

    NASA Astrophysics Data System (ADS)

    Korenko, Michal

    2007-06-01

    The interfacial tension (IFT) between aluminium and cryolite melts containing different salt additions (AlF3, NaF,Na2SO4) has been measured during electrolysis by the capillary depression method. The technique is based on the measurement of the capillary depression occurring when a capillary, which is moved vertically down through the molten salt layer, passes through the metal/salt interface. The depression is measured by simultaneous video recording of the immersion height of the alumina capillary. The interfacial tension is strongly dependent on the n(NaF)/n(AlF3) ratio. The addition of Na2SO4 decreases the IFT of the aluminium/electrolyte interface. We also found the different influence of the conditions of electrolysis on the IFT in systems with and without Na2SO4. In systems without Na2SO4 the IFT decreases with increasing current density, and in systems with Na2SO4 it increases.

  4. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    PubMed

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  5. Does calving matter? Evidence for significant submarine melt

    USGS Publications Warehouse

    Bartholomaus, Timothy C.; Larsen, Christopher F.; O’Neel, Shad

    2013-01-01

    During the summer in the northeast Pacific Ocean, the Alaska Coastal Current sweeps water with temperatures in excess of 12 °C past the mouths of glacierized fjords and bays. The extent to which these warm waters affect the mass balance of Alaskan tidewater glaciers is uncertain. Here we report hydrographic measurements made within Icy Bay, Alaska, and calculate rates of submarine melt at Yahtse Glacier, a tidewater glacier terminating in Icy Bay. We find strongly stratified water properties consistent with estuarine circulation and evidence that warm Gulf of Alaska water reaches the head of 40 km-long Icy Bay, largely unaltered. A 10–20 m layer of cold, fresh, glacially-modified water overlies warm, saline water. The saline water is observed to reach up to 10.4 °C within 1.5 km of the terminus of Yahtse Glacier. By quantifying the heat and salt deficit within the glacially-modified water, we place bounds on the rate of submarine melt. The submarine melt rate is estimated at >9 m d−1, at least half the rate at which ice flows into the terminus region, and can plausibly account for all of the submarine terminus mass loss. Our measurements suggest that summer and fall subaerial calving is a direct response to thermal undercutting of the terminus, further demonstrating the critical role of the ocean in modulating tidewater glacier dynamics.

  6. Thermal Energy Storage Material Comprising Mixtures of Sodium, Potassium and Magnesium Chlorides.

    DTIC Science & Technology

    This invention pertains generally to the storage of thermal energy and in particular to such storage as latent heat of fusion in a ternary eutectic ... salt mixture. Storage of thermal energy has gained great importance since the increased interest in the use of solar energy. On account of the

  7. Enzymatic synthesis of cocoa butter equivalent from olive oil and palmitic-stearic fatty acid mixture.

    PubMed

    Mohamed, Ibrahim O

    2015-01-01

    The main goal of the present research is to restructure olive oil triacylglycerol (TAG) using enzymatic acidolysis reaction to produce structured lipids that is close to cocoa butter in terms of TAG structure and melting characteristics. Lipase-catalyzed acidolysis of refined olive oil with a mixture of palmitic-stearic acids at different substrate ratios was performed in an agitated batch reactor maintained at constant temperature and agitation speed. The reaction attained steady-state conversion in about 5 h with an overall conversion of 92.6 % for the olive oil major triacylglycerol 1-palmitoy-2,3-dioleoyl glycerol (POO). The five major TAGs of the structured lipids produced with substrate mass ratio of 1:3 (olive oil/palmitic-stearic fatty acid mixture) were close to that of the cocoa butter with melting temperature between 32.6 and 37.7 °C. The proposed kinetics model used fits the experimental data very well.

  8. On melt solutions for the growth of CaTiO3 crystals

    NASA Astrophysics Data System (ADS)

    Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen

    2018-03-01

    When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.

  9. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  10. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Zapata, Félix; García-Ruiz, Carmen

    2018-01-01

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra.

  11. Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jette, Francois-Xavier; Goroshin, Samuel; Higgins, Andrew

    2007-06-01

    Stoichiometric mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in the absence of porosity. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2 - 3.8 GPa (pressures were estimated using LS-DYNA simulations). In the cases where the shock was too weak to cause ignition in the ampoule, the sample was extracted and its ignition temperature was determined using a differential thermal analyzer.

  12. FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS

    DOEpatents

    Moore, R.H.

    1960-08-01

    A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.

  13. The Contribution of Interchain Salt Bridges to Triple-Helical Stability in Collagen

    PubMed Central

    Gurry, Thomas; Nerenberg, Paul S.; Stultz, Collin M.

    2010-01-01

    Abstract Studies on collagen and collagen-like peptides suggest that triple-helical stability can vary along the amino acid chain. In this regard, it has been shown that lysine residues in the Y position and acidic residues in the X′ position of (GPO)3GXYGX′Y′(GPO)3 peptides lead to triple-helical structures with melting temperatures similar to (GPO)8 (where O is hydroxyproline), which is generally regarded as the most stable collagen-like sequence of this length. This enhanced stability has been attributed to the formation of salt bridges between adjacent collagen chains. In this study, we explore the relationship between interchain salt bridge formation and triple-helical stability using detailed molecular simulations. Although our results confirm that salt bridges promote triple-helical stability, we find that not all salt bridges are created equal. In particular, lysine-glutamate salt bridges are most stabilizing when formed between residues in the middle strand (B) and the trailing strand (C), whereas lysine-aspartate salt bridges are most stabilizing when formed between residues in the leading (A) and middle (B) strand—the latter observation being consistent with recent NMR data on a heterotrimeric model peptide. Overall, we believe these data clarify the role of salt bridges in modulating triple-helical stability and can be used to guide the design of collagen-like peptides that have specific interchain interactions. PMID:20513408

  14. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer

    USGS Publications Warehouse

    McCord, T.B.; Hansen, G.B.; Fanale, F.P.; Carlson, R.W.; Matson, D.L.; Johnson, T.V.; Smythe, W.D.; Crowley, J.K.; Martin, P.D.; Ocampo, A.; Hibbitts, C.A.; Granahan, J.C.

    1998-01-01

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  15. Effect of the oxygen content in a salt solution on the characteristics of sodium-reduced tantalum powders

    NASA Astrophysics Data System (ADS)

    Kolosov, V. N.; Orlov, V. M.; Miroshnichenko, M. N.; Prokhorova, T. Yu.; Masloboeva, S. M.; Belyaevskii, A. T.

    2009-02-01

    The characteristics of the tantalum powders produced by sodium thermal reduction from salt melts based on K2TaF7 and NaCl with various amounts of added oxycompounds K3TaOF6 and K2Ta2O3F6 are studied. At a molar ratio of oxygen to tantalum of 1.25 in the initial melt, capacitor tantalum powders with a specific surface area more than 3 m2/g are produced. The specific capacitance of the anodes made from these powders reaches 58 mC/g.

  16. Influence Of The Redox State On The Electrical Conductivity Of Basaltic Melts

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.

    2007-12-01

    The electrical conductivity is an efficient probe of mass transfer processes within silicate melts and magmas. Previous studies have established that the electrical conductivity is sensitive to parameters such as temperature, melt composition and pressure. In contrast to what is known for Fe-bearing minerals, little attention has been given to the influence of redox state on the electrical conductivity of melts. Experiments were performed on tephritic and basaltic compositions respectively from Mt. Vesuvius and Pu'u 'O'o. Measurements were carried out on cylindrical glass samples (OD: 6 mm, ID: 1 mm, L: 8 mm) drilled from glass obtained by fusing each rock sample at 1400°C in air. A two-electrode configuration was adopted, with the electrical impedance being radially measured. A Pt wire was used as the internal electrode whereas a Pt tube served as the external electrode. Experiments were conducted at 1 atm in a vertical furnace between 1200°C and 1300°C, both in air and in a CO-CO2 atmosphere at a fO2 corresponding to NNO+1. Both reduction and oxidation experiments were performed. In reduction experiments (pure CO2 then CO-CO2 gas mixture), electrical conductivities progressively increase with time. The reverse is observed in oxidation experiments (CO-CO2 gas mixture then pure CO2). These variations of electrical conductivities are correlated with modifications of the Fe2+/Fe3+ ratio in the melt, and are consistent with the respective structural roles of Fe2+ and Fe3+. In both types of experiments, a minimum of about 400 mn is necessary before a plateau is reached, interpreted to reflect the kinetics of attainment of the equilibrium Fe2+/Fe3+ ratio in the melt. Differences between plateau and initial values are typically of a few ohms, much higher than the sensitivity of our measurements (better than 0.1 ohm). When increasing temperature, the time required for reaching plateau values decreases. At NNO+1, the electrical activation energy (Ea) was determined for

  17. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    PubMed Central

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-01-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N—H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine

  18. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt.

    PubMed

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-03-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior

  19. Bacterial growth tolerance to concentrations of chlorate and perchlorate salts relevant to Mars

    NASA Astrophysics Data System (ADS)

    Al Soudi, Amer F.; Farhat, Omar; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.

    2017-07-01

    The Phoenix lander at Mars polar cap found appreciable levels of (per)chlorate salts, a mixture of perchlorate and chlorate salts of Ca, Fe, Mg and Na at levels of ~0.6% in regolith. These salts are highly hygroscopic and can form saturated brines through deliquescence, likely producing aqueous solutions with very low freezing points on Mars. To support planetary protection efforts, we have measured bacterial growth tolerance to (per)chlorate salts. Existing bacterial isolates from the Great Salt Plains of Oklahoma (NaCl-rich) and Hot Lake in Washington (MgSO4-rich) were tested in high concentrations of Mg, K and Na salts of chlorate and perchlorate. Strong growth was observed with nearly all of these salinotolerant isolates at 1% (~0.1 M) (per)chlorate salts, similar to concentrations observed in bulk soils on Mars. Growth in perchlorate salts was observed at concentrations of at least 10% (~1.0 M). Greater tolerance was observed for chlorate salts, where growth was observed to 2.75 M (>25%). Tolerance to K salts was greatest, followed by Mg salts and then Na salts. Tolerances varied among isolates, even among those within the same phylogenetic clade. Tolerant bacteria included genera that also are found in spacecraft assembly facilities. Substantial microbial tolerance to (per)chlorate salts is a concern for planetary protection since tolerant microbes contaminating spacecraft would have a greater chance for survival and proliferation, despite the harsh chemical conditions found near the surface of Mars.

  20. Molecular dynamics study of congruent melting of the equimolar ionic liquid-benzene inclusion crystal [emim][NTf2]•C6H6

    NASA Astrophysics Data System (ADS)

    Kowsari, M. H.; Alavi, Saman; Ashrafizaadeh, Mahmud; Najafi, Bijan

    2010-01-01

    We use molecular dynamics simulations to study the structure, dynamics, and details of the mechanism of congruent melting of the equimolar mixture of 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide with benzene, [emim][NTf2]•C6H6. Changes in the molecular arrangement, radial distribution functions, and the dynamic behavior of species are used to detect the solid to liquid transition, show an indication of the formation of polar islands by aggregating of the ions in the liquid phase, and characterize the melting process. The predicted enthalpy of melting ΔHm=38±2 kJ mol-1 for the equimolar inclusion mixture at 290 K is in good agreement with the differential scanning calorimetry experimental results of 42±2 kJ mol-1. The dynamics of the ions and benzene molecules were studied in the solid and liquid states by calculating the mean-square displacement (MSD) and the orientational autocorrelation function. The MSD plots show strong association between ion pairs of the ionic liquid in the inclusion mixture. Indeed, the presence of a stoichiometric number of benzene molecules does not affect the nearest neighbor ionic association between [emim]+ and [NTf2]-, but increases the MSDs of both cations and anions compared to pure liquid [emim][NTf2], showing that second shell ionic associations are weakened. We monitored the rotational motion of the alkyl chain sides of imidazolium cations and also calculated the activation energy for rotation of benzene molecules about their C6 symmetry axes in their lattice sites prior to melting.

  1. Investigation of residual anode material after electrorefining uranium in molten chloride salt

    NASA Astrophysics Data System (ADS)

    Rose, M. A.; Williamson, M. A.; Willit, J.

    2015-12-01

    A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.

  2. Modelling melting in crustal environments, with links to natural systems in the Nepal Himalayas

    NASA Astrophysics Data System (ADS)

    Isherwood, C.; Holland, T.; Bickle, M.; Harris, N.

    2003-04-01

    Melt bodies of broadly granitic character occur frequently in mountain belts such as the Himalayan chain which exposes leucogranitic intrusions along its entire length (e.g. Le Fort, 1975). The genesis and disposition of these bodies have considerable implications for the development of tectonic evolution models for such mountain belts. However, melting processes and melt migration behaviour are influenced by many factors (Hess, 1995; Wolf &McMillan, 1995) which are as yet poorly understood. Recent improvements in internally consistent thermodynamic datasets have allowed the modelling of simple granitic melt systems (Holland &Powell, 2001) at pressures below 10 kbar, of which Himalayan leucogranites provide a good natural example. Model calculations such as these have been extended to include an asymmetrical melt-mixing model based on the Van Laar approach, which uses volumes (or pseudovolumes) for the different end-members in a mixture to control the asymmetry of non-ideal mixing. This asymmetrical formalism has been used in conjunction with several different entropy of mixing assumptions in an attempt to find the closest fit to available experimental data for melting in simple binary and ternary haplogranite systems. The extracted mixing data are extended to more complex systems and allow the construction of phase relations in NKASH necessary to model simple haplogranitic melts involving albite, K-feldspar, quartz, sillimanite and {H}2{O}. The models have been applied to real bulk composition data from Himalayan leucogranites.

  3. Melt Heterogeneity and Degassing at MT Etna from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Corsaro, R. A.

    2014-12-01

    The melts feeding Mt Etna, Italy, are rich in volatiles and drive long-lasting powerful eruptions of basaltic magma in both effusive and explosive styles of activity. The volatile systematics of the volcanic system are well understood through melt inclusion and volcanic gas studies. Etna's melts are generated from a complex mantle setting, with subduction-related chemical modifications as well as OIB-type features, and then the melts must travel through thick carbonate-rich crust. The continual influx of mantle-derived volatile-rich magma controls the major compositional and eruptive features of Mount Etna and magma mixing has been recognized as an important process driving large eruptions [Kamenetsky, 2007]. Our study focusses on the 1669 eruption, the largest in historical times. Olivine-hosted melt inclusions were analyzed for volatile, trace and major elements using electron microprobe and ion probe (SIMS). We use volatile systematics and geochemical data to deconvolve mantle-derived heterogeneity from melt mixing and crystal fractionation. Our data are well described by a mixing trend between two distinct melts: a CO2-rich (CO2~1000ppm), incompatible trace element depleted melt (La/Yb~16), and a CO2-poor, enriched melt. The mixing also generates a strong correlation between Sr and CO2 in the melt inclusions dataset, reflecting the presence of a strong Sr anomaly in one of the end-member melts. We investigate the origin of this Sr anomaly by considering plagioclase dissolution and crustal assimilation. We also investigate degassing processes in the crust and plumbing system of the volcano. We compare our results with similar studies of OIB and arc-related basalts elsewhere and assess the implications for linking eruption size and style with the nature of the mantle-derived melts. Kamenetsky et al. (2007) Geology 35, 255-258.

  4. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field

    NASA Astrophysics Data System (ADS)

    Kolafa, Jiří

    2016-11-01

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  5. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field.

    PubMed

    Kolafa, Jiří

    2016-11-28

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  6. The synthesis and characterization of fatty acid salts of chitosan as novel matrices for prolonged intragastric drug delivery.

    PubMed

    Bani-Jaber, Ahmad; Hamdan, Imad; Alkawareek, Mahmoud

    2012-07-01

    The aim of this study was to prepare fatty acid salts of chitosan (CS) and to evaluate the salts as matrices for sustained drug release and prolonged gastric retention. CS-laurate and CS-palmitate were formed by mixing saturated CS solution and aqueous solutions of sodium laurate and sodium palmitate, respectively, and collected by centrifugation. They were characterized using Fourier-transform infrared spectroscopy and differential scanning calorimetry. Different matrices as effervescent tablets were prepared using each of these CS-salts, CS and the corresponding physical mixtures of CS and the fatty acids. Sodium bicarbonate as an effervescent agent and ranitidine HCl as a model drug were incorporated into these matrices. In vitro buoyancy and drug dissolution were studied for the matrices in 0.1 M HCl. Tablets with fatty acid salts of CS showed both rapid and prolonged buoyancy (> 8 h). Comparatively, CS tablets exhibited a short floatation period (< 2 h) and tablets were completely disintegrated within 1 h of soaking. In addition, slow and prolonged drug release was achieved from tablets of fatty acid salts of CS with average drug release of 80.1 and 71.8% for CS-laurate and CS-palmitate, respectively. Rapid drug release (> 80% at 1 h) was exhibited by tablets with CS or the physical mixtures.

  7. Inorganic salts interact with organic di-acids in sub-micron particles to form material with low hygroscopicity and volatility

    NASA Astrophysics Data System (ADS)

    Drozd, G.; Woo, J.; Häkkinen, S. A. K.; Nenes, A.; McNeill, V. F.

    2013-11-01

    Volatility and hygroscopicity are two key properties of organic aerosol components, and both are strongly related to chemical identity. Here we show that inorganic-organic component interactions typically not considered in atmospheric models may strongly affect aerosol volatility and hygroscopicity. In particular, bi-dentate binding of di-carboxylic acids (DCA) to soluble inorganic ions can lead to very strongly bound metal-organic complexes with largely undetermined hygroscopicity and volatility. These reactions profoundly impact particle hygroscopicity, transforming hygroscopic components into irreversibly non-hygroscopic material. While the hygroscopicities of pure salts, DCA, and DCA salts are known, the hygroscopicity of internal mixtures of hygroscopic salts and DCA, as they are typically found in the atmosphere, has not been fully characterized. We have studied the volatility of pure, dry organic salt particles and the hygroscopicity of internal mixtures of oxalic acid (OxA, the dominant DCA in the atmosphere) and a number of salts, both mono- and di-valent. The formation of very low volatility organic salts was confirmed, with minimal evaporation of oxalate salt particles below 75 °C. Dramatic increases in the CCN activation diameter for particles with divalent salts (e.g. CaCl2) and relatively small particle mass fractions of OxA indicate that standard volume additivity rules for hygroscopicity do not apply. Thus small organic compounds with high O:C are capable of forming low volatility and very low hygroscopicity particles. Given current knowledge of the formation mechanisms of OxA and M-Ox salts, surface enrichment of insoluble M-Ox salts is expected. The resulting formation of an insoluble coating of metal-oxalate salts can explain low particle hygroscopicities. The formation of particles with a hard coating could offer an alternative explanation for observations of glass-like particles with very low viscosity.

  8. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  9. Membrane interactions of ionic liquids and imidazolium salts.

    PubMed

    Wang, Da; Galla, Hans-Joachim; Drücker, Patrick

    2018-06-01

    Room-temperature ionic liquids (RTILs) have attracted considerable attention in recent years due to their versatile properties such as negligible volatility, inflammability, high extractive selectivity and thermal stability. In general, RTILs are organic salts with a melting point below ~100 °C determined by the asymmetry of at least one of their ions. Due to their amphiphilic character, strong interactions with biological materials can be expected. However, rising attention has appeared towards their similarity and interaction with biomolecules. By employing structural modifications, the biochemical properties of RTILs can be designed to mimic lipid structures and to tune their hydrophobicity towards a lipophilic behavior. This is evident for the interaction with lipid-membranes where some of these compounds present membrane-disturbing effects or cellular toxicity. Moreover, they can form micelles or lipid-like bilayer structures by themselves. Both aspects, cellular effects and membrane-forming capacities, of a novel class of lipophilic imidazolium salts will be discussed.

  10. Tin in granitic melts: The role of melting temperature and protolith composition

    NASA Astrophysics Data System (ADS)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  11. Ammonia-water mixtures at high pressures - Melting curves of ammonia dihydrate and ammonia monohydrate and a revised high-pressure phase diagram for the water-rich region. [in primordial solar system ices

    NASA Technical Reports Server (NTRS)

    Boone, S.; Nicol, M. F.

    1991-01-01

    The phase relations of some mixtures of ammonia and water are investigated to create a phase diagram in pressure-temperature-composition space relevant to the geophysical study of bodies in the outer solar system. The mixtures of NH3(x)H2O(1-x), where x is greater than 0.30 but less than 0.51, are examined at pressures and temperatures ranging from 0-6.5 GPa and 125-400 K, respectively. The ruby luminescence technique monitors the pressure and a diamond-anvil cell compresses the samples, and the phases are identified by means of normal- and polarized-light optical microscopy. The melting curve for NH3H2O(2) is described by the equation T = 176 + 60P - 8.5P squared for the ranges of 0.06-1.4 GPa and 179-243 K. The equation for NH3H2O is T = 194 + 37P - P squared, which represents a minor correction of a previous description by Johnson et al. (1985). Observed phase transitions are consistent with the high-pressure stability limit of NH3H2O(2), and the transition boundary is found to be linear.

  12. Crystallization of D-mannitol in binary mixtures with NaCl: phase diagram and polymorphism.

    PubMed

    Telang, Chitra; Suryanarayanan, Raj; Yu, Lian

    2003-12-01

    To study the crystallization, polymorphism, and phase behavior of D-mannitol in binary mixtures with NaCl to better understand their interactions in frozen aqueous solutions. Differential scanning calorimetry, hot-stage microscopy, Raman microscopy, and variable-temperature X-ray diffractometry were used to characterize D-mannitol-NaCl mixtures. NaCl and D-mannitol exhibited significant melt miscibility (up to 7.5% w/w or 0.20 mole fraction of NaCl) and a eutectic phase diagram (eutectic composition 7.5% w/w NaCl; eutectic temperature 150 degrees C for the alpha and beta polymorphs of D-mannitol and 139 degrees C for the delta). The presence of NaCl did not prevent mannitol from crystallizing but, depending on sample size, affected the polymorph crystallized: below 10 mg, delta was obtained; above 100 mg, alpha was obtained. Pure mannitol crystallized under the same conditions first as the delta polymorph and then as the a polymorph, with the latter nucleating on the former. KCl showed similar eutectic points and melt miscibility with D-mannitol as NaCl. LiCl yielded lower eutectic melting points, inhibited the crystallization of D-mannitol during cooling, and enabled the observation of its glass transition. Despite their structural dissimilarity, significant melt miscibility exists between D-mannitol and NaCl. Their phase diagram has been determined and features polymorph-dependent eutectic points. NaCl influences the polymorphic behavior of mannitol, and the effect is linked to the crystallization of mannitol in two polymorphic stages.

  13. Microsiemens or Milligrams: Measures of Ionic Mixtures ...

    EPA Pesticide Factsheets

    In December of 2016, EPA released the Draft Field-Based Methods for Developing Aquatic Life Criteria for Specific Conductivity for public comment. Once final, states and authorized tribes may use these methods to derive field-based ecoregional ambient Aquatic Life Ambient Water Quality Criteria (AWQC) for specific conductivity (SC) in flowing waters. The methods provide flexible approaches for developing science-based SC criteria that reflect ecoregional or state specific factors. The concentration of a dissolved salt mixture can be measured in a number of ways including measurement of total dissolved solids, freezing point depression, refractive index, density, or the sum of the concentrations of individually measured ions. For the draft method, SC was selected as the measure because SC is a measure of all ions in the mixture; the measurement technology is fast, inexpensive, and accurate, and it measures only dissolved ions. When developing water quality criteria for major ions, some stakeholders may prefer to identify the ionic constituents as a measure of exposure instead of SC. A field-based method was used to derive example chronic and acute water quality criteria for SC and two anions a common mixture of ions (bicarbonate plus sulfate, [HCO3−] + [SO42−] in mg/L) that represent common mixtures in streams. These two anions are sufficient to model the ion mixture and SC (R2 = 0.94). Using [HCO3−] + [SO42−] does not imply that these two anions are the

  14. Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka

    2016-05-01

    The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy

  15. Target-projectile interaction during impact melting at Kamil Crater, Egypt

    NASA Astrophysics Data System (ADS)

    Fazio, Agnese; D'Orazio, Massimo; Cordier, Carole; Folco, Luigi

    2016-05-01

    In small meteorite impacts, the projectile may survive through fragmentation; in addition, it may melt, and chemically and physically interact with both shocked and melted target rocks. However, the mixing/mingling between projectile and target melts is a process still not completely understood. Kamil Crater (45 m in diameter; Egypt), generated by the hypervelocity impact of the Gebel Kamil Ni-rich ataxite on sandstone target, allows to study the target-projectile interaction in a simple and fresh geological setting. We conducted a petrographic and geochemical study of macroscopic impact melt lapilli and bombs ejected from the crater, which were collected during our geophysical campaign in February 2010. Two types of glasses constitute the impact melt lapilli and bombs: a white glass and a dark glass. The white glass is mostly made of SiO2 and it is devoid of inclusions. Its negligible Ni and Co contents suggest derivation from the target rocks without interaction with the projectile (<0.1 wt% of projectile contamination). The dark glass is a silicate melt with variable contents of Al2O3 (0.84-18.7 wt%), FeOT (1.83-61.5 wt%), and NiO (<0.01-10.2 wt%). The dark glass typically includes fragments (from few μm to several mm in size) of shocked sandstone, diaplectic glass, lechatelierite, and Ni-Fe metal blebs. The metal blebs are enriched in Ni compared to the Gebel Kamil meteorite. The dark glass is thus a mixture of target and projectile melts (11-12 wt% of projectile contamination). Based on recently proposed models for target-projectile interaction and for impact glass formation, we suggest a scenario for the glass formation at Kamil. During the transition from the contact and compression stage and the excavation stage, projectile and target liquids formed at their interface and chemically interact in a restricted zone. Projectile contamination affected only a shallow portion of the target rocks. The SiO2 melt that eventually solidified as white glass behaved as

  16. Use of Li.sub.2[B.sub.12H.sub.12] salt to absorb water into polymers

    DOEpatents

    Eastwood, Eric A.; Bowen, III, Daniel E.

    2016-08-30

    Methods of adjusting the properties of a composition are provided. The compositions comprise a polymer-containing matrix and a filler comprising a hygroscopic salt. Preferred such salts comprise a cage compound selected from the group consisting of borane cage compounds, carborane cage compounds, metal complexes thereof, residues thereof, mixtures thereof, and/or agglomerations thereof, where the cage compound is not covalently bound to the matrix polymer.

  17. Pyrolysis and gasification-melting of automobile shredder residue.

    PubMed

    Roh, Seon Ah; Kim, Woo Hyun; Yun, Jin Han; Min, Tae Jin; Kwak, Yeon Ho; Seo, Yong Chil

    2013-10-01

    Automobile shredder residue (ASR) from end-of-life vehicles (ELVs) in Korea has commonly been disposed of in landfills. Due to the growing number of scrapped cars and the decreasing availability of landfill space, effective technology for reducing ASR is needed. However ASR is a complex mixture, and finding an appropriate treatment is not easy on account of the harmful compounds in ASR. Therefore, research continues to seek an effective treatment technology. However most studies have thus far been performed in the laboratory, whereas few commercial and pilot studies have been performed. This paper studies the pyrolysis and gasification-melting of ASR. The pyrolyis characteristics have been analyzed in a thermogravimetric analyzer (TGA), a Lindberg furnace, and a fixed-bed pyrolyzer to study the fundamental characteristics of ASR thermal conversion. As a pilot study, shaft-type gasification-melting was performed. High-temperature gasification-melting was performed in a 5000 kg/day pilot system. The gas yield and syngas (H2 and CO) concentration increase when the reaction temperature increases. Gas with a high calorific value of more than 16,800 kJ/m3 was produced in the pyrolyzer. From the gasification-melting process, syngas of CO (30-40%) and H2(10-15%) was produced, with 5% CH4 produced as well. Slag generation was 17% of the initial ASR, with 5.8% metal content and 4% fly ash. The concentration of CO decreases, whereas the H2, CO2, and CH4 concentrations increase with an increase in the equivalence ratio (ER). The emission levels of dioxin and air pollution compounds except nitrogen oxides (NO(x)) were shown to satisfy Korean regulations.

  18. Modified T-history method for measuring thermophysical properties of phase change materials at high temperature

    NASA Astrophysics Data System (ADS)

    Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming

    2017-06-01

    Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.

  19. Melt Extrusion of High-Dose Co-Amorphous Drug-Drug Combinations : Theme: Formulation and Manufacturing of Solid Dosage Forms Guest Editors: Tony Zhou and Tonglei Li.

    PubMed

    Arnfast, Lærke; Kamruzzaman, Md; Löbmann, Korbinian; Aho, Johanna; Baldursdottir, Stefania; Rades, Thomas; Rantanen, Jukka

    2017-12-01

    Many future drug products will be based on innovative manufacturing solutions, which will increase the need for a thorough understanding of the interplay between drug material properties and processability. In this study, hot melt extrusion of a drug-drug mixture with minimal amount of polymeric excipient was investigated. Using indomethacin-cimetidine as a model drug-drug system, processability of physical mixtures with and without 5% (w/w) of polyethylene oxide (PEO) were studied using Differential Scanning Calorimetry (DSC) and Small Amplitude Oscillatory Shear (SAOS) rheometry. Extrudates containing a co-amorphous glass solution were produced and the solid-state composition of these was studied with DSC. Rheological analysis indicated that the studied systems display viscosities higher than expected for small molecule melts and addition of PEO decreased the viscosity of the melt. Extrudates of indomethacin-cimetidine alone displayed amorphous-amorphous phase separation after 4 weeks of storage, whereas no phase separation was observed during the 16 week storage of the indomethacin-cimetidine extrudates containing 5% (w/w) PEO. Melt extrusion of co-amorphous extrudates with low amounts of polymer was found to be a feasible manufacturing technique. Addition of 5% (w/w) polymer reduced melt viscosity and prevented phase separation.

  20. The WSTIAC Quarterly. Volume 9, Number 3

    DTIC Science & Technology

    2010-01-25

    program .[8] THE THORIUM FUEL CYCLE AND LFTR POWER PLANT The thorium fuel cycle is based on a series of neutron absorp- tion and beta decay processes...the fig- ure is a graphite matrix moderated MSR reactor with fuel salt mixture (ThF4-U233F4) being circulated by a pump through the core and to a...the core as purified salt. As one of the unique safety features, a melt-plug at the reactor bottom would permit the reactor fluid fuel to be drained

  1. Diclofenac salts, part 6: release from lipid microspheres.

    PubMed

    Fini, Adamo; Cavallari, Cristina; Rabasco Alvarez, Antonio M; Rodriguez, Marisa Gonzalez

    2011-08-01

    The release of diclofenac (20%, w/w) was studied from lipidic solid dispersions using three different chemical forms (acid, sodium salt, and pyrrolidine ethanol salt) and two different lipid carriers (Compritol 888 ATO or Carnauba wax) either free or together with varying amounts (10%-30%, w/w) of stearic acid. Microspheres were prepared by ultrasound-assisted atomization of the molten dispersions and analyzed by scanning electron microscopy, differential scanning calorimetry, and hot stage microscopy. The effects of different formulations on the resulting drug release profiles as a function of pH were studied and the results were discussed. The formulation of the 18 systems and the chemical form of the drug were found to strongly affect the mode of the drug release. The solubility of the chemical forms in the lipid mixture is in the following order: pyrrolidine ethanol salt ≫ acid > sodium salt (according to the solubility parameters), and the nature of the systems thus obtained ranges from a matrix, for mutually soluble drug/carrier pairs, to a microcapsule, for pairs wherein mutual solubility is poor. Drug release from microspheres prepared by pure lipids was primarily controlled by diffusion, whereas the release from microspheres containing stearic acid was diffusion/erosion controlled at pH 7.4. Copyright © 2011 Wiley-Liss, Inc.

  2. Effects of Stress on Corrosion in a Molten Salt Environment

    NASA Astrophysics Data System (ADS)

    Girdzis, Samuel; Manos, Dennis; Cooke, William

    Molten salt is often used as a heat transfer and energy storage fluid in concentrating solar power plants. Despite its suitable thermal properties, molten salt can present challenges in terms of corrosion. Previous studies have focused extensively on mass loss due to molten salt-induced corrosion. In contrast, we have investigated how corrosion begins and how it changes the surface of stainless steel. Samples of alloys including 304 and 316 stainless steel were exposed to the industry-standard NaNO3-KNO3 (60%-40% by weight) mixture at temperatures over 500°C and then analyzed using Hirox, SEM, and TOF-SIMS. We compare the corrosion at grain boundaries to that within single grain surfaces, showing the effect of the increased internal stresses and the weakened passivation layer. Also, we have examined the enhanced corrosion of samples under mechanical stress, simulating the effects of thermal stresses in a power plant.

  3. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.

    PubMed

    Deng, Bowen; Chen, Zhigang; Gao, Muxing; Song, Yuqiao; Zheng, Kaiyuan; Tang, Juanjuan; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2016-08-15

    Electrochemical transformation of CO2 into functional materials or fuels (i.e., carbon, CO) in high temperature molten salts has been demonstrated as a promising way of carbon capture, utilisation and storage (CCUS) in recent years. In a view of continuous operation, the electrolysis process should match very well with the CO2 absorption kinetics. At the same time, in consideration of the energy efficiency, a molten salt electrochemical cell running at lower temperature is more beneficial to a process powered by the fluctuating renewable electricity from solar/wind farms. Ternary carbonates (Li : Na : K = 43.5 : 31.5 : 25.0) and binary chlorides (Li : K = 58.5 : 41.5), two typical kinds of eutectic melt with low melting points and a wide electrochemical potential window, could be the ideal supporting electrolyte for the molten salt CO2 capture and electro-transformation (MSCC-ET) process. In this work, the CO2 absorption behaviour in Li2O/CaO containing carbonates and chlorides were investigated on a home-made gas absorption testing system. The electrode processes as well as the morphology and properties of carbon obtained in different salts are compared to each other. It was found that the composition of molten salts significantly affects the absorption of CO2, electrode processes and performance of the product. Furthermore, the relationship between the absorption and electro-transformation kinetics are discussed based on the findings.

  4. Melt containment member

    DOEpatents

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  5. Water structure and its influence on the flotation of carbonate and bicarbonate salts.

    PubMed

    Ozdemir, O; Celik, M S; Nickolov, Z S; Miller, J D

    2007-10-15

    Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.

  6. Application of simplex-centroid mixture design to optimize stabilizer combinations for ice cream manufacture.

    PubMed

    BahramParvar, Maryam; Tehrani, Mostafa Mazaheri; Razavi, Seyed M A; Koocheki, Arash

    2015-03-01

    This study aimed to obtain the optimum formulation for stabilizers in ice cream that could contest with blends presented nowadays. Thus, different mixtures of three stabilizers, i.e. basil seed gum, carboxymethyl cellulose, and guar gum, at two concentrations (0.15 % & 0.35 %) were studied using mixture design methodology. The influence of these mixtures on some properties of ice cream and the regression models for them were also determined. Generally, high ratios of basil seed gum in mixture developed the apparent viscosity of ice cream mixes and decreased the melting rate. Increasing proportion of this stabilizer as well as guar gum in the mixtures at concentration of 0.15 % enhanced the overrun of samples. Based on the optimization criteria, the most excellent combination was 84.43 % basil seed gum and 15.57 % guar gum at concentration of 0.15 %. This research proved the capability of basil seed gum as a novel stabilizer in ice cream stabilization.

  7. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  8. 75 FR 36306 - Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-25

    ... 1117-AA66 Chemical Mixtures Containing Listed Forms of Phosphorus and Change in Application Process... phosphorus, white phosphorus (also known as yellow phosphorus), or hypophosphorous acid and its salts (hereinafter ``regulated phosphorus'') that shall automatically qualify for exemption from the Controlled...

  9. The effects of polymer carrier, hot melt extrusion process and downstream processing parameters on the moisture sorption properties of amorphous solid dispersions.

    PubMed

    Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V; Alshetaili, Abdullah S; Pimparade, Manjeet B; Repka, Michael A

    2016-05-01

    The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing the hot melt extrusion technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the dynamic vapour sorption system, and the effects of polymer hydrophobicity, hygroscopicity, molecular weight and the hot melt extrusion process were investigated. Fourier transform infrared (FTIR) imaging was performed to understand the phase separation driven by the moisture. Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity and higher molecular weight could sorb less moisture under the high relative humidity (RH) conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared with the physical mixture after hot melt extrusion, which might be due to the decreased surface area and porosity. The FTIR imaging indicated that the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. © 2015 Royal Pharmaceutical Society.

  10. Separation of actinides from lanthanides utilizing molten salt electrorefining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separationmore » ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.« less

  11. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  12. Reactions during melting of low-activity waste glasses and their effects on the retention of rhenium as a surrogate for technetium-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Kim, Dong-Sang; Tucker, Abigail E.

    2015-10-01

    Volatile loss of radioactive 99Tc to offgas is a concern with processing the low-activity waste (LAW) at Hanford site. We investigated the partitioning and incorporation of Re (a nonradioactive surrogate for 99Tc) into the glass melt during crucible melting of two simulated LAW feeds that resulted in a large difference in 99mTc/Re retention in glass from the small-scale melter tests. Each feed was prepared from a simulated liquid LAW and chemical and mineral additives (boric acid, silica sand, etc.). The as-mixed slurry feeds were dried at 105°C and heated to 600–1100°C at 5 K/min. The dried feeds and heat treatedmore » samples were leached with deionized water for 10 min at room temperature followed by 24-h leaching at 80°C. Chemical compositions of the resulting solutions and insoluble solids were analyzed. Volume expansion measurement and X-ray diffraction were performed on dried feeds and heat treated samples to characterize the progress of feed-to-glass conversion reactions. It was found that the incorporation of Re into glass melt virtually completed during the major feed-to-glass conversion reactions were going on at ≤ 700°C. The present results suggest that the different composition of the salt phase is responsible for the large difference in Re incorporation into glass melt during early stages of glass melting at ≤ 700°C. Additional studies with modified and simplified feeds are underway to understand the details on how the different salt composition affects the Re incorporation.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Anoop

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing themore » commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  14. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dohmen, Janik; Wallner, Herbert; Noack, Lena; Tosi, Nicola; Plesa, Ana-Catalina; Maurice, Maxime

    2015-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we initiate a benchmark comparison. In the initial phase of this endeavor we focus on the usefulness of the definitions of the test cases keeping the physics as sound as possible. The reference model is taken from the mantle convection benchmark, case 1b (Blanckenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and a Rayleigh number of 1e5. Melting is modelled assuming a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) three cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 includes batch melting, melt buoyancy (melt Rayleigh number Rm), depletion buoyancy and latent heat, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms) and qm approaching a statistical steady state. Case 3 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases should be carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction

  15. The importance of transport property studies for battery electrolytes: revisiting the transport properties of lithium-N-methyl-N-propylpyrrolidinium bis(fluorosulfonyl)imide mixtures.

    PubMed

    Rüther, Thomas; Kanakubo, Mitsuhiro; Best, Adam S; Harris, Kenneth R

    2017-04-19

    Transport properties are examined in some detail for samples of the low temperature molten salt N-propyl-N-methyl pyrrolidinium bis(fluorosulfonyl)imide [Pyr 13 ][FSI] from two different commercial suppliers. A similar set of data is presented for two different concentrations of binary lithium-[Pyr 13 ][FSI] salt mixtures from one supplier. A new and significantly different production process is used for the synthesis of Li[FSI] as well as the [Pyr 13 ] + salt used in the mixtures. Results for the viscosity, conductivity, and self-diffusion coefficients, together with the density and expansivity and apparent molar volume, are reported over the temperature range of (0 to 80) °C. The data for neat [Pyr 13 ][FSI] are discussed in the context of velocity cross correlation (VCC or f ij ) and Laity resistance (r ij ) coefficients. Unusually, f +- ∼ f ++ < f -- . The three resistance coefficients are of similar magnitude indicating all three ion-ion interactions contribute to the transport properties, not just the cation-anion interaction. The composition dependence of the transport properties is compared to previously reported data for the same and related compounds: in contrast to high-temperature molten salt mixtures, this is an exponential dependence. The Nernst-Einstein parameter Δ, which contains information on the correlations of the ionic velocities and is determined by differences in the VCC for the various ion-ion combinations, was calculated for both the neat ionic liquid and its binary mixture. It increases with increasing lithium concentration. The new data set also allows some conclusions with regards to the lithium-[FSI] - coordination environment.

  16. Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions

    NASA Astrophysics Data System (ADS)

    Tasios, Nikos; Samin, Sela; van Roij, René; Dijkstra, Marjolein

    2017-11-01

    We develop a lattice-based Monte Carlo simulation method for charged mixtures capable of treating dielectric heterogeneities. Using this method, we study oil-water mixtures containing an antagonistic salt, with hydrophilic cations and hydrophobic anions. Our simulations reveal several phases with a spatially modulated solvent composition, in which the ions partition between water-rich and water-poor regions according to their affinity. In addition to the recently observed lamellar phase, we find tubular and droplet phases, reminiscent of those found in block copolymers and surfactant systems. Interestingly, these structures stem from ion-mediated interactions, which allows for tuning of the phase behavior via the concentrations, the ionic properties, and the temperature.

  17. Electrical Conductivity Measurements on Hydrous Carbonate Melts at Mantle Pressure

    NASA Astrophysics Data System (ADS)

    Sifre, D.; Gaillard, F.

    2012-04-01

    Electromagnetic methods image mantle regions in the asthenosphere with elevated conductivity (0.1 to 1 S.m-1), which constrasts with the conductivity of dry olivine (10-2 to 10-3 S.m-1). A correct interpretation of the petrological nature of the conductive mantle is critical for our understanding of mantle geodynamics because such conductive regions indicate mantle rocks with physical and chemical properties that importantly deviates from the canonical peridotites. For decades, such anomalously high mantle conductivities have been attributed to mineralogical defects associated to few tens of ppm water incorporated in olivine. Most recent experimental surveys, however, refute this hydrous olivine model. Conductive mantle regions could then reflect partial melting. The presence of melts in the Earth's mantle has long been proved by geochemical observations and experimental petrology on peridotite rocks. The requirement for melting in the asthenospheric mantle is the presence of volatile species (water, carbon dioxide, halogens). Small melt fractions are then produced by small volatile contents and they are the first liquids produced by melting magma. This study reports electrical conductivity measurements on such melts at mantle pressure and temperature. We investigated on melt chemical compositions produced by melting of peridotite that would interact with CO2-H2O and Cl. Such melts are carbonatite melts, carbonated silicate melts, hydrous carbonate melts, hydrous basalts. A new system allowing in situ electrical conductivity measurements in piston cylinder has been deployed. This design has been specifically adapted to perfom measurements on liquid samples with elevated electrical conductivities. The chemical compositions investigated are pure liquid CaCO3 and CaMg(CO3)2, to which, cloride (as salts), silicate (as basalts) and water (as brucite) have been added. Experiments have been realized at 1.5 and 2.7 GPa pressure and temperature of 1000-1700° C. Impedance

  18. Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets.

    PubMed

    Niu, Liyong; Li, Mingjian; Tao, Xiaoming; Xie, Zhuang; Zhou, Xuechang; Raju, Arun P A; Young, Robert J; Zheng, Zijian

    2013-08-21

    We report a facile and low-cost method to directly exfoliate graphite powders into large-size, high-quality, and solution-dispersible few-layer graphene sheets. In this method, aqueous mixtures of graphite and inorganic salts such as NaCl and CuCl2 are stirred, and subsequently dried by evaporation. Finally, the mixture powders are dispersed into an orthogonal organic solvent solution of the salt by low-power and short-time ultrasonication, which exfoliates graphite into few-layer graphene sheets. We find that the as-made graphene sheets contain little oxygen, and 86% of them are 1-5 layers with lateral sizes as large as 210 μm(2). Importantly, the as-made graphene can be readily dispersed into aqueous solution in the presence of surfactant and thus is compatible with various solution-processing techniques towards graphene-based thin film devices.

  19. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less

  20. Freezing points and small-scale deicing tests for salts of levulinic acid made from grain sorghum.

    PubMed

    Ganjyal, G; Fang, Q; Hanna, M A

    2007-11-01

    Deicers from renewable resources are needed to overcome the disadvantages of using traditional deicers. Salts made from levulinic acid produced using grain sorghum as raw material were tested as road deicing agents. Freezing points of these salts viz., sodium levulinate, magnesium levulinate and calcium levulinate along with rock salt (sodium chloride) were determined according to American Society for Testing and Materials (ASTM) D 1177-94 standard at concentrations of 10, 20, 30 and 40 % w/w. There were significant differences among the freezing points of the salts. Freezing points for rock salt, sodium levulinate, calcium levulinate and magnesium levulinate, for different concentrations, were in the ranges of -6.6 to -20.5, -2.9 to -15.0, -2.1 to -7.8 and -1.5 to -6.5 degrees C, respectively. Deicing effectiveness of the salts of levulinic acid were investigated by conducting small-scale deicing tests with aqueous solutions of various salt concentrations (2%, 5% and 10%) in a laboratory freezer and by spraying the deicer on a graveled surface covered by ice and snow with the average temperature during the testing at -2.7 degrees C. Deicing capabilities of the three salts of levulinic acid differed. At -2.7 degrees C, all three salts caused melting of the ice. Among the different levulinates studied sodium levulinate was the most effective deicing agent. These salts of levulinates could be a viable replacement for traditional deicers and could help in reducing the disadvantages of traditional deicers.

  1. On the influence of the mixture of denaturants on protein structure stability: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Shao, Qiang; Wang, Jinan; Zhu, Weiliang

    2014-09-01

    Mixtures of osmolytes and/or inorganic salts are present in the cell. Therefore, the understanding of the interplay of mixed osmolyte molecules and inorganic salts and their combined effects on protein structure is of fundamental importance. A novel test is presented to investigate the combined effects of urea and a chaotropic inorganic salt, potassium iodide (KI), on protein structure by using molecular dynamics simulation. It is found that the coexistence of KI and urea does not affect their respective distribution in solution. The solvation of KI salt in urea solution makes the electrostatic interactions of urea more favorable, promoting the hydrogen bonding between urea (and water) to protein backbone. The interactions from K+ and hydrogen bonding from urea and water to protein backbone work as the driving force for protein denaturation. The collaborative behavior of urea and KI salt thus enhances the denaturing ability of urea and KI mixed solution.

  2. Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Salt Mixture for Molten Salt Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinsuo; Guo, Shaoqiang

    Pyroprocessing is a promising alternative for the reprocessing of used nuclear fuel (UNF) that uses electrochemical methods. Compared to the hydrometallurgical reprocessing method, pyroprocessing has many advantages such as reduced volume of radioactive waste, simple waste processing, ability to treat refractory material, and compatibility with fast reactor fuel recycle. The key steps of the process are the electro-refining of the spent metallic fuel in the LiCl-KCl eutectic salt, which can be integrated with an electrolytic reduction step for the reprocessing of spent oxide fuels.

  3. Differential scanning calorimetric study of nonionic surfactant mixtures with a room temperature ionic liquid, bmimBF4.

    PubMed

    Inoue, Tohru; Higuchi, Yuka; Misono, Takeshi

    2009-10-01

    The melting behavior of polyethyleneglycol dodecyl ethers (C(12)E(6), C(12)E(7), and C(12)E(8)) in a room temperature ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF(4)), was investigated by means of differential scanning calorimetry (DSC). The melting temperature as a function of the surfactant concentration, combined with the cmc curve and cloud point curve, provided phase diagrams for the surfactant/bmimBF(4) mixtures in solvent-rich region. The characteristic feature of the mixtures is an existence of the Krafft temperature which is usually not observed with aqueous solutions of nonionic surfactants. The heat of fusion as a function of the surfactant concentration provided the interaction energy between the surfactant and bmimBF(4). The interaction energy shows a linear dependence on the length of polyoxyethylene (POE) chain of the surfactants, which suggests that the solvation takes place around the POE chain.

  4. The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa

    NASA Astrophysics Data System (ADS)

    Dasgupta, Rajdeep; Hirschmann, Marc M.; Dellas, Nikki

    2005-05-01

    To explore the effect of bulk composition on the solidus of carbonated eclogite, we determined near-solidus phase relations at 3 GPa for four different nominally anhydrous, carbonated eclogites. Starting materials (SLEC1, SLEC2, SLEC3, and SLEC4) were prepared by adding variable proportions and compositions of carbonate to a natural eclogite xenolith (66039B) from Salt Lake crater, Hawaii. Near-solidus partial melts for all bulk compositions are Fe Na calcio-dolomitic and coexist with garnet + clinopyroxene + ilmenite ± calcio-dolomitic solid solution. The solidus for SLEC1 (Ca#=100 × molar Ca/(Ca + Mg + FeT)=32, 1.63 wt% Na2O, and 5 wt% CO2) is bracketed between 1,050°C and 1,075°C (Dasgupta et al. in Earth Planet Sci Lett 227:73 85, 2004), whereas initial melting for SLEC3 (Ca# 41, 1.4 wt% Na2O, and 4.4 wt% CO2) is between 1,175°C and 1,200°C. The solidus for SLEC2 (Ca# 33, 1.75 wt% Na2O, and 15 wt% CO2) is estimated to be near 1,100°C and the solidus for SLEC3 (Ca# 37, 1.47 wt% Na2O, and 2.2 wt% CO2) is between 1,100°C and 1,125°C. Solidus temperatures increase with increasing Ca# of the bulk, owing to the strong influence of the calcite magnesite binary solidus-minimum on the solidus of carbonate bearing eclogite. Bulk compositions that produce near-solidus crystalline carbonate closer in composition to the minimum along the CaCO3-MgCO3 join have lower solidus temperatures. Variations in total CO2 have significant effect on the solidus if CO2 is added as CaCO3, but not if CO2 is added as a complex mixture that maintains the cationic ratios of the bulk-rock. Thus, as partial melting experiments necessarily have more CO2 than that likely to be found in natural carbonated eclogites, care must be taken to assure that the compositional shifts associated with excess CO2 do not unduly influence melting behavior. Near-solidus dolomite and calcite solid solutions have higher Ca/(Ca + Mg) than bulk eclogite compositions, owing to Ca Mg exchange equilibrium

  5. High-Albedo Salt Crusts on the Tropical Ocean of Snowball Earth: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Carns, R.; Light, B.; Warren, S. G.

    2014-12-01

    During a Snowball Earth event, almost all of the ocean surface first freezes as sea ice. As in modern sea ice, trapped inclusions of liquid brine permeate the ice cover. As the ice grows and cools, salt crystals precipitate within the inclusions. At -23C, the most abundant salt in seawater, sodium chloride, begins to precipitate as the dihydrate mineral hydrohalite (NaCl·2H2O). Crystals of hydrohalite within the sea ice scatter light. Measurements of cold, natural sea ice show a broadband albedo increase of 10-20% when salt precipitates. Such snow-free natural sea ice with a surface temperature below -23C is rare on modern Earth, but would have been common in tropical regions of a Snowball Earth where evaporation exceeded precipitation. The persistent cold and lack of summer melt on the Snowball ocean surface, combined with net evaporation, is hypothesized to yield lag deposits of hydrohalite crystals on the ice surface. To investigate this process, we prepared laboratory-grown sea ice in a 1000 liter tank in a walk-in freezer laboratory. The ice was cooled below -23 C and the surface sprayed with a 23% NaCl solution to create a layer of hydrohalite-enriched ice, a proxy for lag deposits that would have formed over long periods of surface sublimation. We have developed a novel technique for measuring the spectral albedo of ice surfaces in the laboratory; this technique was used to monitor the evolution of the surface albedo of our salt crust as the ice matrix sublimated away leaving a layer of fine-grained hydrohalite crystals. Measurements of this hydrohalite surface crust show a very high albedo, comparable to fresh snow at visible wavelengths and significantly larger than fresh snow at near infrared wavelengths. Broadband albedos are 0.55 for bare artificial sea ice at -30C, 0.75 for ice containing 25% hydrohalite by volume, 0.84 after five days of desiccation and 0.93 after 47 days of desiccation. Using our laboratory measurements, along with estimates of

  6. Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide

    NASA Technical Reports Server (NTRS)

    Deluca, J. J. (Inventor)

    1975-01-01

    Bonding of an element comprising sapphire, ruby or blue sapphire to another element of such material with a eutectic mixture of aluminum oxide and zirconium oxide is discussed. The bonding mixture may be applied in the form of a distilled water slurry or by electron beam vapor deposition. In one embodiment the eutectic is formed in situ by applying a layer of zirconium oxide and then heating the assembly to a temperature above the eutectic temperature and below the melting point of the material from which the elements are formed. The formation of a sapphire rubidium maser cell utilizing eutectic bonding is shown.

  7. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  8. Composition of Impact Melt Debris from the Eltanin Impact Strewn Field, Bellingshausen Sea

    NASA Technical Reports Server (NTRS)

    Kyte, Frank T.

    2002-01-01

    The impact of the km-sized Eltanin asteroid into the Bellingshausen Sea produced mm- to cm-sized vesicular impact melt-rock particles found in sediment cores across a large area of the ocean floor. These particles are composed mainly of olivine and glass with minor chromite and traces of NiFe-sulfides. Some particles have inclusions of unmelted mineral and rock fragments from the precursor asteroid. Although all samples of melt rock examined have experienced significant alteration since their deposition in the late Pliocene, a significant portion of these particles have interiors that remain pristine and can be used to estimate the bulk composition of the impact melt. The bulk composition of the melt-rock particles is similar to the composition of basaltic meteorites such as howardites or mesosiderite silicates, with a contribution from seawater salts and a siderophile-rich component. There is no evidence that the Eltanin impact melt contains a significant terrestrial silicate component that might have been incorporated by mixing of the projectile with oceanic crust. If terrestrial silicates were incorporated into the melt, then their contribution must be much less than 10 wt%. Since excess K, Na, and CI are not present in seawater proportions, uptake of these elements into the melt must have been greatest for K and least for CI, producing a K/CI ratio about 4 times that in seawater. After correcting for the seawater component, the bulk composition of the Eltanin impact melt provides the best estimate of the bulk composition of the Eltanin asteroid. Excess Fe in the impact melt, relative to that in howardites, must be from a significant metal phase in the parent asteroid. Although the estimated Fe:Ni:Ir ratios (8:1:4 x 10(exp -5)) are similar to those in mesosiderite metal nodules (10:1:6 x 10(exp -5), excess Co and Au by factors of about 2 and 10 times, respectively, imply a metal component distinct from that in typical mesosiderites. An alternative interpretation

  9. Initial Results from the Third Round of Remediated Nitrate Salt Surrogate Formulation and Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Geoffrey Wayne; Leonard, Philip; Hartline, Ernest Leon

    2016-04-20

    High explosives science and technology (M-7) is currently working on the third round of formulation and testing of Remediated nitrate salt (RNS) surrogates. This report summarizes the calorimetry results from the 15% sWheat mixtures. All formulation and testing was carried out according to PLAN-TA9-2443 Rev B, "Remediated Nitrate Salt (RNS) surrogate formulation and testing standard procedure", released February 16, 2016. Results from the first and second rounds of formulation and testing were documented in memoranda M7-16-6042 and M7-16-6053.

  10. Pesticide Removal from Aqueous Solutions by Adding Salting Out Agents

    PubMed Central

    Moscoso, Fátima; Deive, Francisco J.; Esperança, José M. S. S.; Rodríguez, Ana

    2013-01-01

    Phase segregation in aqueous biphasic systems (ABS) composed of four hydrophilic ionic liquids (ILs): 1-butyl-3-methylimidazolium methylsulfate and 1-ethyl-3-methylimidazolium methylsulfate (CnC1im C1SO4, n = 2 and 4), tributylmethyl phosphonium methylsulfate (P4441 C1SO4) and methylpyridinium methylsulfate (C1Py C1SO4) and two high charge density potassium inorganic salts (K2CO3 and K2HPO4) were determined by the cloud point method at 298.15 K. The influence of the addition of the selected inorganic salts to aqueous mixtures of ILs was discussed in the light of the Hofmeister series and in terms of molar Gibbs free energy of hydration. The effect of the alkyl chain length of the cation on the methylsulfate-based ILs has been investigated. All the solubility data were satisfactorily correlated to several empirical equations. A pesticide (pentachlorophenol, PCP) extraction process based on the inorganic salt providing a greater salting out effect was tackled. The viability of the proposed process was analyzed in terms of partition coefficients and extraction efficiencies. PMID:24145747

  11. Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Rafi, H. Khalid; Pal, Deepankar; Patil, Nachiket; Starr, Thomas L.; Stucker, Brent E.

    2014-12-01

    The mechanical behavior and the microstructural evolution of 17-4 precipitation hardenable (PH) stainless steel processed using selective laser melting have been studied. Test coupons were produced from 17-4 PH stainless steel powder in argon and nitrogen atmospheres. Characterization studies were carried out using mechanical testing, optical microscopy, scanning electron microscopy, and x-ray diffraction. The results show that post-process heat treatment is required to obtain typically desired tensile properties. Columnar grains of smaller diameters (<2 µm) emerged within the melt pool with a mixture of martensite and retained austenite phases. It was found that the phase content of the samples is greatly influenced by the powder chemistry, processing environment, and grain diameter.

  12. Compositions of Magmatic and Impact Melt Sulfides in Tissint And EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Rao, M. N.; Nyquist, L.; Agee, C.; Sutton, S.

    2013-01-01

    Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts.

  13. Melt-gas phase equilibria and state diagrams of the selenium-tellurium system

    NASA Astrophysics Data System (ADS)

    Volodin, V. N.; Trebukhov, S. A.; Burabaeva, N. M.; Nitsenko, A. V.

    2017-05-01

    The partial pressures of saturated vapor of the components in the Se-Te system are determined and presented in the form of temperature-concentration dependences from which the boundaries of the melt-gas phase transition are calculated at atmospheric pressure and vacuums of 2000 and 100 Pa. The existence of azeotropic mixtures is revealed. It is found that the points of inseparably boiling melts correspond to 7.5 at % of Se and 995°C at 101325 Pa, 10.9 at % at 673°C and 19.5 at % at 522°C in vacuums of 2000 and 100 Pa, respectively. A complete state diagram is constructed, including the fields of gas-liquid equilibria at atmospheric and low pressures, the boundaries of which allow us to assess the behavior of selenium and tellurium upon distillation fractionation.

  14. [A DNA study of rat liver oligonucleosomes enriched by transcriptionally active genes during induction due to the administration of an amino acid mixture].

    PubMed

    Vardevanian, P O; Davtian, A M; Tiratsuian, S G; Vardevanian, A O

    1990-01-01

    A highly active fraction of rat liver oligonucleosome DNA has been isolated and studied by means of thermal denaturation after induction by amino acid mixture or hydrocortisone. A considerable redistribution of DNA content has been shown in sucrose gradient fractions during these forms of induction. The changes are revealed in melting temperature, differential melting profile of DNA, isolated from actively transcribed chromatine fractions. Analysis of melting profiles shows changes of GC content of oligonucleosome DNA, suggesting that there are differences in activation during two studied forms of induction.

  15. Functionalized alkoxy arene diazonium salts from paracetamol.

    PubMed

    Schmidt, Bernd; Berger, René; Hölter, Frank

    2010-03-21

    Arene diazonium tetrafluoroborates can be synthesized from aromatic acetamides via a sequence of deacetylation, diazotation and precipitation, induced by anion exchange. The reaction is conducted as a convenient one-flask transformation with consecutive addition of the appropriate reagents. Exchange of solvents or removal of byproducts prior to isolation of the product is not required. The arene diazonium salts are isolated from the reaction mixture by simple filtration. Two complementary protocols are presented, and the utility of the reaction is exemplified for a synthesis of the diarylheptanoid natural product de-O-methyl centrolobine.

  16. Melting Inside the Tibetan Crust? Constraint From Electrical Conductivity of Peraluminous Granitic Melt

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Zhang, Li; Su, Xue; Mao, Zhu; Gao, Xiao-Ying; Yang, Xiaozhi; Ni, Huaiwei

    2018-05-01

    Magnetotelluric and seismological studies suggested the presence of partial melts in the middle to lower Himalaya-Tibetan crust. However, the melt fractions inferred by previous work were based on presumed electrical conductivity of melts. We performed measurements on the electrical conductivity of peraluminous granitic melts with 0.16-8.4 wt % H2O (the expected compositions in the Tibetan crust) at 600-1,300°C and 0.5-1.0 GPa. Peraluminous melt exhibits lower electrical conductivity than peralkaline melt at dry condition, but this difference diminishes at H2O > 2 wt %. With our data, the observed electrical anomalies in the Tibetan crust could be explained by 2-33 vol % of peraluminous granitic melts with H2O > 6 wt %. Possible reasons for our inferred melt fractions being higher than seismological constraints include the following: (1) The real melts are more Na and H2O rich, (2) the effect of melt reducing seismic velocities was overestimated, and (3) the anomalies at some locations are due to fluids.

  17. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  18. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, C.

    1999-02-23

    A method is described for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method is described for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700 C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite. 3 figs.

  19. Method for synthesizing pollucite from chabazite and cesium chloride

    DOEpatents

    Pereira, Candido

    1999-01-01

    A method for immobilizing waste chlorides salts containing radionuclides and hazardous nuclear material for permanent disposal, and in particular, a method for immobilizing waste chloride salts containing cesium, in a synthetic form of pollucite. The method for synthesizing pollucite from chabazite and cesium chloride includes mixing dry, non-aqueous cesium chloride with chabazite and heating the mixture to a temperature greater than the melting temperature of the cesium chloride, or above about 700.degree. C. The method further comprises significantly improving the rate of retention of cesium in ceramic products comprised of a salt-loaded zeolite by adding about 10% chabazite by weight to the salt-loaded zeolite prior to conversion at elevated temperatures and pressures to the ceramic composite.

  20. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    NASA Astrophysics Data System (ADS)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  1. Longitudinal Change of Perceived Salt Intake and Stroke Risk in a Chinese Population.

    PubMed

    Li, Yun; Huang, Zhe; Jin, Cheng; Xing, Aijun; Liu, Yesong; Huangfu, Chunmei; Lichtenstein, Alice H; Tucker, Katherine L; Wu, Shouling; Gao, Xiang

    2018-06-01

    Data for a relationship between salt intake and stroke have been inconsistent. This inconstancy could be because of the majority of studies evaluated salt intake at a single time point, which may be insufficient to accurately characterize salt intake throughout the observation period. Included were 77 605 participants from the Kailuan study. We assessed perceived salt intake via questionnaire in 2006, 2008, and 2010. Salt intake trajectories from 2006 to 2010 were identified using latent mixture models. Incident stroke cases were identified from 2010 to 2015 and confirmed by review of medical records. Cox proportional hazards model was used to examine the association between salt intake trajectories and stroke risk after adjusting for possible confounders, including age, sex, lifestyle, social economic status, body mass index, use of medicines, blood pressure, and lipoprotein profiles. Identified were 5 distinct salt intake trajectories: moderate-stable (n=59 241), moderate-decreasing (n=9268), moderate-increasing (n=2975), low-increasing (n=2879), and high-decreasing (n=3242). During the 5-year follow-up period, there were 1564 incident strokes cases. Compared with individuals with the moderate-stable salt intake trajectory, individuals with moderate-decreasing salt intake trajectory had significantly lower cerebral infarction stroke risk (adjusted hazard ratio, 0.76; 95% confidence interval, 0.63-0.92) but not intracerebral hemorrhage risk (adjusted hazard ratio, 0.84; 95% confidence interval, 0.55-1.29). Further adjustment for 2006 or 2010 perceived salt intakes generated similar results. When baseline perceived salt intake only was used as the exposure, a significant dose-response relationship between higher perceived salt intake and higher stroke risk was observed ( P trend=0.006). Change in salt intake was associated with the stroke risk. These data support the dietary recommendation to the reduction of salt intake. © 2018 American Heart Association, Inc.

  2. Molten salt applications in materials processing

    NASA Astrophysics Data System (ADS)

    Mishra, Brajendra; Olson, David L.

    2005-02-01

    The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.

  3. Synthesis and Properties of a Clean and Sustainable Deicing Additive for Asphalt Mixture

    PubMed Central

    Peng, Chao; Yu, Jianying; Zhao, Zhijie; Dai, Jing; Fu, Jingyi; Zhao, Meiling; Wang, Wei

    2015-01-01

    A clean and sustainable deicing additive was prepared via the adsorption of acetate anions (Ac-) by magnesium (Mg) and aluminum (Al) calcined layered double hydroxide (Mg/Al-CLDH). Fourier transform infrared spectroscopy spectrums proved that Ac- had intercalated into LDH structure. X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy images showed that the intercalation spacing and platelet thickness of Mg and Al layered double hydroxide containing Ac- anions (Mg/Al-Ac- LDH) had been enlarged due to substitution of divalent CO3 2- anions by a larger quantity of monovalent Ac– anions. Differential scanning calorimetry tests testified that the insoluble Mg2/Al-Ac- LDH evidently decreased the freeze point (FP) of water to -10.68°C. X-ray photoelectron spectroscopy analyses confirmed that the Ac- were strongly confined by the metal layers of LDHs. FP test of asphalt mixtures confirmed that Mg/Al-Ac- LDHs reduced FP to -5.5°C. Immersion test results indicated that Mg/Al-Ac- LDH had a good deicing durability and Ac- did not released from asphalt mixture. Snow melting observation was conducted further testified that Mg/Al-Ac- LDH melted snow or ice sustainably. PMID:25625279

  4. Synthesis and properties of a clean and sustainable deicing additive for asphalt mixture.

    PubMed

    Peng, Chao; Yu, Jianying; Zhao, Zhijie; Dai, Jing; Fu, Jingyi; Zhao, Meiling; Wang, Wei

    2015-01-01

    A clean and sustainable deicing additive was prepared via the adsorption of acetate anions (Ac-) by magnesium (Mg) and aluminum (Al) calcined layered double hydroxide (Mg/Al-CLDH). Fourier transform infrared spectroscopy spectrums proved that Ac- had intercalated into LDH structure. X-ray diffraction patterns, scanning electron microscopy and transmission electron microscopy images showed that the intercalation spacing and platelet thickness of Mg and Al layered double hydroxide containing Ac- anions (Mg/Al-Ac- LDH) had been enlarged due to substitution of divalent CO32- anions by a larger quantity of monovalent Ac- anions. Differential scanning calorimetry tests testified that the insoluble Mg2/Al-Ac- LDH evidently decreased the freeze point (FP) of water to -10.68°C. X-ray photoelectron spectroscopy analyses confirmed that the Ac- were strongly confined by the metal layers of LDHs. FP test of asphalt mixtures confirmed that Mg/Al-Ac- LDHs reduced FP to -5.5°C. Immersion test results indicated that Mg/Al-Ac- LDH had a good deicing durability and Ac- did not released from asphalt mixture. Snow melting observation was conducted further testified that Mg/Al-Ac- LDH melted snow or ice sustainably.

  5. Effect of sand and method of mixing on molten salt properties for an open direct absorption solar receiver/storage system

    NASA Astrophysics Data System (ADS)

    AlQaydi, Muna; Delclos, Thomas; AlMheiri, Saif; Calvet, Nicolas

    2017-06-01

    The concept of CSPonD Demo project is based on a single and open molten salt tank as a thermal solar receiver and storage unit. Therefore, the effect of external environment such as sand and air on the thermophysical properties of nitrate salt (60 wt. % sodium nitrate, 40 wt. % potassium nitrate) has been investigated in this work. Differential Scanning Calorimeter (DSC) was used to determine the melting, solidification temperatures while the thermal stability and mass loss measurements were carried on Thermal Gravimetric Analysis (TGA). Measurements under nitrogen indicate that the adding 2% (w/w) sand has negative impact by increasing the solidification temperature, mass loss percentage and decreasing the stability limit. While the melting temperature was not affected by the sand and by the preparation method. On the other hand, measurement under air showed an increase of the stability limit and decrease of the mass loss percentage. Furthermore, the measurements for the mass loss under air did not reach a stable value, which required further investigation.

  6. The Synthesis of 1,1’-Bicobaltocene Salts of Tetracyano-P-Quinodimethanide and the Sturcture of 1,1’-Bicobaltocene (Co (III) Co (III)) (TCNQ)3,

    DTIC Science & Technology

    1981-06-03

    Salts of Bicobaltocenet-The hexafluorophosphate salt of bicobaltocene(III,III) was prepared by the method of Davison and Smart 4 and the orange product...tetrahydrofuran. The lithium salt of TCNO was prepared by adding a boiling solution of lithium iodide in acetonitrile to a boiling solution of TCNQ in...compound 1,1’-bicobaltocene[Co(III)Co(III)[TCNQJ 3 resulted from the reaction of the mixed valence hexafluorophosphate salt with a mixture of [Et3NH

  7. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  8. Internal stress-induced melting below melting temperature at high-rate laser heating

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  9. Optical Limiting by Index-Matched Phase-Segregated Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exarhos, Gregory J.; Ferris, Kim F.; Manijeh Razeghi, Gail J. Brown

    The nonlinear optical response for index-matched, non-absorbing immiscible phases (liquid-solid, liquid-liquid, solid-solid) has been determined by means of open aperture z-scan measurements. In mixtures where one constituent shows a relatively high optical nonlinearity, rapid and reversible transformation to a light-scattering state is observed under conditions where a critical incident light fluence is exceeded. This passive broadband response is induced by a transient change in the dispersive part of the refractive index, and is based upon the Christiansen-Shelyubskii filter that at one time was used as a means to monitor the temperature of glass melts. Modeling studies are used to simulatemore » scattering intensities in such textured composites as a function of composition, microstructure, and constituent optical properties. Results provide a rational approach to the selection of materials for use in these limiters. Challenges to preparing dispersed phase mixtures and their response to 532 nm nanosecond pulsed laser irradiation are described.« less

  10. Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality

    NASA Astrophysics Data System (ADS)

    Kerner, Manfred; Lim, Du-Hyun; Jeschke, Steffen; Rydholm, Tomas; Ahn, Jou-Hyeon; Scheers, Johan

    2016-11-01

    The overall safety of Li-ion batteries is compromised by the state-of-the-art electrolytes; the thermally unstable lithium salt, lithium hexafluorophosphate (LiPF6), and flammable carbonate solvent mixtures. The problem is best addressed by new electrolyte compositions with thermally robust salts in low flammability solvents. In this work we introduce electrolytes with either of two lithium nitrile salts, lithium 4,5-dicyano-1,2,3-triazolate (LiDCTA) or lithium 4,5-dicyano-2-trifluoromethylimidazolide (LiTDI), in solvent mixtures with high flashpoint adiponitrile (ADN), as the main component. With sulfolane (SL) and ethylene carbonate (EC) as co-solvents the liquid temperature range of the electrolytes are extended to lower temperatures without lowering the flashpoint, but at the expense of high viscosities and moderate ionic conductivities. The anodic stabilities of the electrolytes are sufficient for LiFePO4 cathodes and can be charged/discharged for 20 cycles in Li/LiFePO4 cells with coulombic efficiencies exceeding 99% at best. The excellent thermal stabilities of the electrolytes with the solvent combination ADN:SL are promising for future electrochemical investigations at elevated temperatures (> 60 °C) to compensate the moderate transport properties and rate capability. The electrolytes with EC as a co-solvent, however, release CO2 by decomposition of EC in presence of a lithium salt, which potentially makes EC unsuitable for any application targeting higher operating temperatures.

  11. Melting relations in the Fe-rich portion of the system FeFeS at 30 kb pressure

    USGS Publications Warehouse

    Brett, R.; Bell, P.M.

    1969-01-01

    The melting relations of FeFeS mixtures covering the composition range from Fe to Fe67S33 have been determined at 30 kb pressure. The phase relations are similar to those at low pressure. The eutectic has a composition of Fe72.9S27.1 and a temperature of 990??C. Solubility of S in Fe at elevated temperatures at 30 kb is of the same order of magnitude as at low pressure. Sulfur may have significantly lowered the melting point of iron in the upper mantle during the period of coalescence of metal prior to core formation in the primitive earth. ?? 1969.

  12. Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3

    NASA Astrophysics Data System (ADS)

    Mohammad, Mehedi Bin; Brooks, Geoffrey Alan; Rhamdhani, Muhammad Akbar

    2018-02-01

    A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 ( P_{{{O}2 }} = 1.0) compared to inert argon ( P_{{{O}2 }} = 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).

  13. Premelting, Melting, and Degradation Properties of Molten Alkali Nitrates: LiNO3, NaNO3, KNO3, and Binary NaNO3-KNO3

    NASA Astrophysics Data System (ADS)

    Mohammad, Mehedi Bin; Brooks, Geoffrey Alan; Rhamdhani, Muhammad Akbar

    2018-06-01

    A simultaneous thermal analyzer (STA) was used to observe the transition and degradation events of LiNO3, NaNO3, KNO3, and binary NaNO3-KNO3 salts for potential use as phase change materials (PCMs) and heat transfer fluid (HTF). Samples were heated from 50 °C to 800 °C at 10 °C/min scanning rate in three atmospheres (argon, air, and oxygen) using an STA to observe decomposition behavior. Thermal stability increased for all salts at high partial pressure of O2 ( P_{{{O}2 }} = 1.0) compared to inert argon ( P_{{{O}2 }} = 0). O2, N2, NO, N2O, and NO2 were main evolved gases during nitrate decomposition. NO and O2 started to evolve at approximately the same temperature after melting, indicating that primary and secondary decomposition reactions were concurrent and overlapping. The solid-solid transition, liquidus and solidus temperatures, heat of transition, heat of melting, and heat of solidification were obtained at various heating-cooling rates (1, 2, 4, 5, 6, 8, 10, and 15 °C/min) using an STA. At all heating-cooling rates, a small gap exists between liquidus and solidus temperatures for all samples due to the salts exhibiting supercooling phenomena. This study showed that the degradation point depends on the blanket atmosphere top of the molten salts and that heating rates have a minor effect on transition events (peaks height, peaks width, and transition enthalpies).

  14. Modeling the Time-dependent Changes in Electrical Conductivity of Basaltic Melts With Redox State

    NASA Astrophysics Data System (ADS)

    Pommier, A.; Gaillard, F.; Pichavant, M.

    2008-12-01

    The electrical conductivity σ is an efficient probe of mass transfer processes within silicate melts and magmas. Little attention has been given to the influence of redox state (fO2) on the melts conductivity. We present an experimental setup allowing electrical conductivity measurements for basaltic melts under variable fO2. We demonstrate a significant dependence of σ with fO2, allowing to characterize in situ the mechanisms and kinetics of redox changes in the melt. Experiments were conducted on basalts from Pu'u 'O'o, Hawaii, and Mt.Vesuvius, Italy. Measurements were performed cylindrical glass samples (OD: 6mm, ID: 1mm, L: 8mm) using an impedance spectrometer. Experiments were conducted in a 1atm vertical furnace, from 1200°C to 1400°C. Variable gas atmosphere (air, CO2 or CO-CO2 gas mixtures) were used, imposing ΔNNO from -1 to +7. Electrical conductivities were determined for the two melts at constant fO2, different T (constant fO2) and constant T, different fO2 (variable fO2) obtained by changing the gas composition. Isothermal reduction and oxidation cycles were performed. Glasses quenched from different T and fO2 conditions were analyzed by electron microprobe, the FeO concentration was determined by wet chemistry. In constant fO2 experiments, a small but detectable effect of fO2 on σ is evidenced. At 1300°C, the difference in the Kilauea sample conductivity between reduced (ΔNNO=-1) and oxidized (ΔNNO=+7) fO2 is <1(ohm.m)-1, the sample being more conductive when reduced. The temperature dependence of σ was fitted using Arrhenian equations, the activation energy Ea being 100kJ/mol. Sodium was identified as the main charge carrier in the melts. The fO2-effect on σ can thus be attributed to the influence of the Fe2+/Fe3+ ratio on sodium mobility. The fO2-dependence of σ was included in the model of Pommier et al.(2008), allowing the conductivity of natural melts to be calculated as a function of T, P, H2O, and fO2. Variable fO2 experiments

  15. Study of particle rearrangement, compression behavior and dissolution properties after melt dispersion of ibuprofen, Avicel and Aerosil

    PubMed Central

    Mallick, Subrata; Kumar Pradhan, Saroj; Chandran, Muronia; Acharya, Manoj; Digdarsini, Tanmayee; Mohapatra, Rajaram

    2011-01-01

    Particle rearrangements, compaction under pressure and in vitro dissolution have been evaluated after melt dispersion of ibuprofen, Avicel and Aerosil. The Cooper–Eaton and Kuno equations were utilized for the determination of particle rearrangement and compression behavior from tap density and compact data. Particle rearrangement could be divided into two stages as primary and secondary rearrangement. Transitional tapping between the stages was found to be 20–25 taps in ibuprofen crystalline powder, which was increased up to 45 taps with all formulated powders. Compaction in the rearrangement stages was increased in all the formulations with respect to pure ibuprofen. Significantly increased compaction of ibuprofen under pressure can be achieved using Avicel by melt dispersion technique, which could be beneficial in ibuprofen tablet manufacturing by direct compression. SEM, FTIR and DSC have been utilized for physicochemical characterization of the melt dispersion powder materials. Dissolution of ibuprofen from compacted tablet of physical mixture and melt dispersion particles has also been improved greatly in the following order: Ibc

  16. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  17. Redox condition in molten salts and solute behavior: A first-principles molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Nam, Hyo On; Morgan, Dane

    2015-10-01

    Molten salts technology is of significant interest for nuclear, solar, and other energy systems. In this work, first-principles molecular dynamics (FPMD) was used to model the solute behavior in eutectic LiCl-KCl and FLiBe (Li2BeF4) melts at 773 K and 973 K, respectively. The thermo-kinetic properties for solute systems such as the redox potential, solute diffusion coefficients and structural information surrounding the solute were predicted from FPMD modeling and the calculated properties are generally in agreement with the experiments. In particular, we formulate an approach to model redox energetics vs. chlorine (or fluorine) potential from first-principles approaches. This study develops approaches for, and demonstrates the capabilities of, FPMD to model solute properties in molten salts.

  18. Internal stress-induced melting below melting temperature at high-rate laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu; Levitas, Valery I., E-mail: vlevitas@iastate.edu

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamicmore » equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.« less

  19. A method for determining and exploring the distribution of organic matters and hardness salts in natural waters

    NASA Astrophysics Data System (ADS)

    Sargsyan, Suren

    2017-11-01

    A question regarding how organic matters in water are associated with hardness salts hasn't been completely studied. For partially clarifying this question, a water fractional separation and investigation method has been recommended. The experiments carried out by the recommended method showed that the dynamics of the distribution of total hardness and permanganate oxidation values in the fractions of frozen and melted water samples coincided completely based on which it has been concluded that organic matters in natural waters are associated with hardness salts and always distributed in this form. All these findings are useful information for the deep study of macro- and microelements in water.

  20. Enhanced oral bioavailability of vinpocetine through mechanochemical salt formation: physico-chemical characterization and in vivo studies.

    PubMed

    Hasa, Dritan; Voinovich, Dario; Perissutti, Beatrice; Grassi, Mario; Bonifacio, Alois; Sergo, Valter; Cepek, Cinzia; Chierotti, Michele R; Gobetto, Roberto; Dall'Acqua, Stefano; Invernizzi, Sergio

    2011-08-01

    Enhancing oral bioavailability of vinpocetine by forming its amorphous citrate salt through a solvent-free mechanochemical process, in presence of micronised crospovidone and citric acid. The impact of formulation and process variables (amount of polymer and citric acid, and milling time) on vinpocetine solubilization kinetics from the coground was studied through an experimental design. The best performing samples were characterized by employing a multidisciplinary approach, involving Differential scanning calorimetry, X-ray diffraction, Raman imaging/spectroscopy, X-ray photoelectron spectroscopy, solid-state NMR spectroscopy, porosimetry and in vivo studies on rats to ascertain the salt formation, their solid-state characteristics and oral bioavailability in comparison to vinpocetine citrate salt (Oxopocetine(®)). The analyses attested that the mechanochemical process is a viable way to produce in absence of solvents vinpocetine citrate salt in an amorphous state. From the in vivo studies on rats the obtained salt was four times more bioavailable than its physical mixture and bioequivalent to the commercial salt produced by conventional synthetic process implying the use of solvent.

  1. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  2. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  3. Paradise Lost: Uncertainties in melting and melt extraction processes beneath oceanic spreading ridges

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2014-12-01

    In many ways, decompression melting and focused melt transport beneath oceanic spreading ridges is the best understood igneous process on Earth. However, there are remaining - increasing - uncertainties in interpreting residual mantle peridotites. Indicators of degree of melting in residual peridotite are questionable. Yb concentration and spinel Cr# are affected by (a) small scale variations in reactive melt transport, (b) variable extents of melt extraction, and (c) "impregnation", i.e. partial crystallization of cooling melt in pore space. Roughly 75% of abyssal peridotites have undergone major element refertilization. Many may have undergone several melting events. The following three statements are inconsistent: (1) Peridotite melt productivity beyond cpx exhaustion is > 0.1%/GPa. (2) Crustal thickness is independent of spreading rate at rates > 2 cm/yr full rate (excluding ultra-slow spreading ridges). (3) Thermal models predict, and observations confirm, thick thermal boundary layers beneath slow spreading ridges. If (a) melt productivity is << 0.1%/GPa beyond cpx-out, and (b) cpx-out occurs > 15 km below the seafloor beneath most ridges, then the independence of crustal thickness with spreading rate can be understood. Most sampled peridotites from ridges melted beyond cpx-out. Cpx in these rocks formed via impregnation and/or exsolution during cooling. Most peridotites beneath ridges may undergo cpx exhaustion during decompression melting. This would entail an upward modification of potential temperature estimates. Alternatively, perhaps oceanic crustal thickness does vary with spreading rate but this is masked by complicated tectonics and serpentinization at slow-spreading ridges. Dissolution channels (dunites) are predicted to coalesce downstream, but numerical models of these have not shown why > 95% of oceanic crust forms in a zone < 5 km wide. There may be permeability barriers guiding deeper melt toward the ridge, but field studies have not identified

  4. X-ray fluorescence analysis of K, Al and trace elements in chloroaluminate melts

    NASA Astrophysics Data System (ADS)

    Shibitko, A. O.; Abramov, A. V.; Denisov, E. I.; Lisienko, D. G.; Rebrin, O. I.; Bunkov, G. M.; Rychkov, V. N.

    2017-09-01

    Energy dispersive x-ray fluorescence spectrometry was applied to quantitative determination of K, Al, Cr, Fe and Ni in chloroaluminate melts. To implement the external standard calibration method, an unconventional way of samples preparation was suggested. A mixture of metal chlorides was melted in a quartz cell at 350-450 °C under a slightly excessive pressure of purified argon (99.999 %). The composition of the calibration samples (CSs) prepared was controlled by means of the inductively coupled plasma atomic emission spectrometry (ICP-AES). The optimal conditions for analytical lines excitation were determined, the analytes calibration curves were obtained. There was some influence of matrix effects in synthesized samples on the analytical signal of some elements. The CSs are to be stored in inert gas atmosphere. The precision, accuracy, and reproducibility factors of the quantitative chemical analysis were computed.

  5. Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team.

    PubMed

    McCord, T B; Hansen, G B; Fanale, F P; Carlson, R W; Matson, D L; Johnson, T V; Smythe, W D; Crowley, J K; Martin, P D; Ocampo, A; Hibbitts, C A; Granahan, J C

    1998-05-22

    Reflectance spectra in the 1- to 2.5-micrometer wavelength region of the surface of Europa obtained by Galileo's Near Infrared Mapping Spectrometer exhibit distorted water absorption bands that indicate the presence of hydrated minerals. The laboratory spectra of hydrated salt minerals such as magnesium sulfates and sodium carbonates and mixtures of these minerals provide a close match to the Europa spectra. The distorted bands are only observed in the optically darker areas of Europa, including the lineaments, and may represent evaporite deposits formed by water, rich in dissolved salts, reaching the surface from a water-rich layer underlying an ice crust.

  6. Melt fracture revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referredmore » to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.« less

  7. Electrochemical Formation of Divalent Samarium Cation and Its Characteristics in LiCl-KCl Melt.

    PubMed

    Bae, Sang-Eun; Jung, Tae Sub; Cho, Young-Hwan; Kim, Jong-Yun; Kwak, Kyungwon; Park, Tae-Hong

    2018-06-28

    The electrochemical reduction of trivalent samarium in a LiCl-KCl eutectic melt produced highly stable divalent samarium, whose electrochemical properties and electronic structure in the molten salt were investigated using cyclic voltammetry, UV-vis absorption spectroscopy, laser-induced emission spectroscopy, and density functional theory (DFT) calculations. Diffusion coefficients of Sm 2+ and Sm 3+ were electrochemically measured to be 0.92 × 10 -5 and 1.10 × 10 -5 cm 2 /s, respectively, and the standard apparent potential of the Sm 2+/3+ couple was estimated to be -0.82 V vs Ag|Ag + at 450 °C. The spectroelectrochemical study demonstrated that the redox behavior of the samarium cations obeys the Nernst equation ( E°' = -0.83 V, n = 1) and the trivalent samarium cation was successfully converted to the divalent cation having characteristic absorption bands at 380 and 530 nm with molar absorptivity values of 1470 and 810 M -1 cm -1 , respectively. Density function theory calculations for the divalent samarium complex revealed that the absorption signals originated from the 4f 6 to 4f 5 5d 1 transitions. Additionally, laser-induced emission measurements for the Sm cations in the LiCl-KCl matrix showed that the Sm 3+ ion in the LiCl-KCl melt at 450 °C emitted an orange color of fluorescence, whereas a red colored emission was observed from the Sm 2+ ion in the solidified LCl-KCl salt at room temperature.

  8. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction.

    PubMed

    Wang, Kuen-Sheng; Lin, Kae-Long; Lee, Ching-Hwa

    2009-02-15

    This work describes a novel approach for melting municipal solid waste incinerator (MSWI) fly ash, based on self-propagating reactions, by using energy-efficient simulated waste-derived thermite. The self-propagating characteristics, the properties of the recycled alloy and slag and the partitioning of heavy metals during the process are also studied. Experimental results demonstrate that the mix ratio of fly ash to the starting mixture of less than 30% supports the development of the self-propagating reaction with a melting temperature of 1350-2200 degrees C. Furthermore, metallic iron (or alloy) and the slag were retrieved after activation of the thermite reactions among the starting mixtures. It was noted that more than 91wt.% of iron was retrieved as alloy and the rest of non-reductive oxides as slag. During the thermite reactions, the partition of heavy metals to the SFA and flue gas varied with the characteristics of the target metals: Cd was mainly partitioned to flue gas (75-82%), and partition slightly increased with the increasing fly ash ratio; Pb and Zn, were mainly partitioned to the SFA, and the partition increased with increasing fly ash ratio; Cu was partitioned to the SFA (18-31%) and was not found in the flue gas; and moreover stable Cr and Ni were not identified in both the SFA and flue gas. On the other hand, the determined TCLP leaching concentrations were all well within the current regulatory thresholds, despite the various FA ratios. This suggests that the vitrified fly ash samples were environmental safe in heavy metal leaching. The results of this study suggested that melting of municipal solid waste incinerator fly ash by waste-derived thermite reactions was a feasible approach not only energy-beneficial but also environmental-safe.

  9. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    PubMed

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Sea Salt vs. Table Salt: What's the Difference?

    MedlinePlus

    ... Nutrition and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, ...

  11. Bactericidal activity of alkaline salts of fatty acids towards bacteria associated with poultry processing

    USDA-ARS?s Scientific Manuscript database

    Antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids were determined using the agar diffusion assay. A 0.5M concentration of each fatty acid (FA) was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric aci...

  12. Partial melting of TTG gneisses: crustal contamination and the production of granitic melts

    NASA Astrophysics Data System (ADS)

    Meade, F. C.; Masotta, M.; Troll, V. R.; Freda, C.; Johnson, T. E.; Dahren, B.

    2011-12-01

    Understanding partial melting of ancient TTG gneiss terranes is crucial when considering crustal contamination in volcanic systems, as these rocks are unlikely to melt completely at magmatic temperatures (1000-1200 °C) and crustal pressures (<500 MPa). Variations in the bulk composition of the gneiss, magma temperature, pressure (depth) and the composition and abundance of any fluids present will produce a variety of melt compositions, from partial melts enriched in incompatible elements to more complete melts, nearing the bulk chemistry of the parent gneiss. We have used piston cylinder experiments to simulate partial melting in a suite of 12 gneisses from NW Scotland (Lewisian) and Eastern Greenland (Ammassalik, Liverpool Land) under magma chamber temperature and pressure conditions (P=200 MPa, T=975 °C). These gneisses form the basement to much of the North Atlantic Igneous Province, where crustal contamination of magmas was commonplace but the composition of the crustal partial melts are poorly constrained [1]. The experiments produced partial melts in all samples (e.g. Fig 1). Electron microprobe analyses of glasses indicate they are compositionally heterogeneous and are significantly different from the whole rock chemistry of the parent gneisses. The melts have variably evolved compositions but are typically trachy-dacitic to rhyolitic (granitic). This integrated petrological, experimental and in-situ geochemical approach allows quantification of the processes of partial melting of TTG gneiss in a volcanic context, providing accurate major/trace element and isotopic (Sr, Pb) end-members for modeling crustal contamination. The experimental melts and restites will be compared geochemically with a suite of natural TTG gneisses, providing constraints on the extent to which the gneisses have produced and subsequently lost melt. [1] Geldmacher et al. (2002) Scottish Journal of Geology, v.38, p.55-61.

  13. Heavy metal removal mechanisms of sorptive filter materials for road runoff treatment and remobilization under de-icing salt applications.

    PubMed

    Huber, Maximilian; Hilbig, Harald; Badenberg, Sophia C; Fassnacht, Julius; Drewes, Jörg E; Helmreich, Brigitte

    2016-10-01

    The objective of this research study was to elucidate the removal and remobilization behaviors of five heavy metals (i.e., Cd, Cu, Ni, Pb, and Zn) that had been fixed onto sorptive filter materials used in decentralized stormwater treatment systems receiving traffic area runoff. Six filter materials (i.e., granular activated carbon, a mixture of granular activated alumina and porous concrete, granular activated lignite, half-burnt dolomite, and two granular ferric hydroxides) were evaluated in column experiments. First, a simultaneous preloading with the heavy metals was performed for each filter material. Subsequently, the remobilization effect was tested by three de-icing salt experiments in duplicate using pure NaCl, a mixture of NaCl and CaCl2, and a mixture of NaCl and MgCl2. Three layers of each column were separated to specify the attenuation of heavy metals as a function of depth. Cu and Pb were retained best by most of the selected filter materials, and Cu was often released the least of all metals by the three de-icing salts. The mixture of NaCl and CaCl2 resulted in a stronger effect upon remobilization than the other two de-icing salts. For the material with the highest retention, the effect of the preloading level upon remobilization was measured. The removal mechanisms of all filter materials were determined by advanced laboratory methods. For example, the different intrusions of heavy metals into the particles were determined. Findings of this study can result in improved filter materials used in decentralized stormwater treatment systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Preliminary morphological and X-ray diffraction studies of the crystals of the DNA cetyltrimethylammonium salt.

    PubMed

    Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y

    1977-04-01

    Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained.

  15. Preliminary morphological and X-ray diffraction studies of the crystals of the DNA cetyltrimethylammonium salt.

    PubMed Central

    Osica, V D; Pyatigorskaya, T L; Polyvtsev, O F; Dembo, A T; Kliya, M O; Vasilchenko, V N; Verkin, B I; Sukharevskya, B Y

    1977-01-01

    Double-stranded DNA molecules (molecular weight 2.5 X 10(5) - 5 X 10(5) daltons) have been crystallized from water-salt solutions as cetyltrimethylammonium salts (CTA-DNA). Variation of crystallization conditions results in a production of different types of CTA-DNA crystals: spherulits, dendrites, needle-shaped and faceted rhombic crystals, the latter beeing up to 0.3 mm on a side. X-ray diffraction data indicate that DNA molecules in the crystals form a hexagonal lattice which parameters vary slightly with the morphological type of the crystal. Comparison of the melting curves of the DNA preparation before and after crystallization suggests that DNA molecules are partially fractionated in the course of crystallization. Crystals of the CTA-DNA-proflavine complex have also been obtained. Images PMID:866188

  16. Use of Encapsulated Zinc Particles in a Eutectic Chloride Salt to Enhance Thermal Energy Storage Capacity for Concentrated Solar Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cingarapu, Sreeram; Singh, Dileep; Timofeeva, Elena V.

    2015-08-01

    Concentrated Solar Power (CSP) is considered as a viable large-scale renewable energy source to produce electricity. However, current costs to produce electricity from CSP are not cost competitive as compared to the traditional energy generation technologies based on fossil fuels and nuclear. It is envisioned that development of high efficiency and high heat capacity thermal storage fluids will increase system efficiency, reduce structural storage volume, and hence, contribute to reducing costs. Particularly, with respect to CSP, current high temperature energy storage fluids, such as molten salts, are relatively limited in terms of their thermal energy storage capacity and thermal conductivity.more » The current work explores possibility of boosting the thermal storage capacity of molten salts through latent heat of added phase change materials. We studied the advantage Of adding coated Zn micron-sized particles to alkali chloride salt eutectic for enhanced thermal energy storage. Zinc particles (0.6 mu m and 5 mu m) obtained from commercial source were coated with an organo-phosphorus shell to improve chemical stability and to prevent individual particles from coalescing with one another during melt/freeze cycles. Thermal cycling tests (200 melt/freeze cycles) showed that coated Zn particles have good thermal stability and are chemically inert to alkali chloride salt eutectic in both N-2 and in air atmospheres. Elemental mapping of the cross-sectional view of coated Zn particles from the composite after thermal cycles showed no signs of oxidation, agglomeration or other type of particle degradation. The measured enhancement in volumetric thermal storage capacity of the composite with just similar to 10 vol% of coated Zn particles over the base chloride salt eutectic varies from 15% to 34% depending on cycling temperature range (Delta T = 50 degrees C -100 degrees C. (C) 2015 Elsevier Ltd. All rights reserved.« less

  17. Molecular dynamics simulation of a needle-sphere binary mixture

    NASA Astrophysics Data System (ADS)

    Raghavan, Karthik

    This paper investigates the dynamic behaviour of a hard needle-sphere binary system using a novel numerical technique called the Newton homotopy continuation (NHC) method. This mixture is representative of a polymer melt where both long chain molecules and monomers coexist. Since the intermolecular forces are generated from hard body interactions, the consequence of missed collisions or incorrect collision sequences have a significant bearing on the dynamic properties of the fluid. To overcome this problem, in earlier work NHC was chosen over traditional Newton-Raphson methods to solve the hard body dynamics of a needle fluid in random media composed of overlapping spheres. Furthermore, the simplicity of interactions and dynamics allows us to focus our research directly on the effects of particle shape and density on the transport behaviour of the mixture. These studies are also compared with earlier works that examined molecular chains in porous media primarily to understand the differences in molecular transport in the bulk versus porous systems.

  18. Salt-melt synthesis of B2O3, P2O5 and V2O5 modified high-alumina mullite nanocomposites with promising photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Kool, Arpan; Thakur, Pradip; Bagchi, Biswajoy; Hoque, Nur Amin; Banerjee, Somtirtha; Das, Sukhen

    2017-10-01

    High-alumina mullite (Al4.8Si1.2O9.6) nanowhiskers have been prepared by mechano-chemical activation of Al2(SO4)3-Na2SO4 molten salt mixture in the presence of B2O3, P2O5 and V2O5 as additives. Thermal evolution of the precursors has been studied by differential thermal analyzer and thermogravimetric analyzer (DTA-TG). The effect of additives on the phase formation and morphology of mullite is investigated using x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and field emission scanning electron microscope (FESEM). Mullite whiskers with submicron sized length and diameter in the nanoscale range were obtained after calcining at 1000 °C. These nanowhiskers decomposed when sintered at 1400 °C with consequent formation of dense alumina platelets. Owing to formation of defect related structures of mullite, UV photoluminescence peaks for mullite reflected at 285, 298, 310, 325, 347, 362 and 379 nm while visible photoluminescence peaks appeared at 407, 424, 436 and 460 nm.

  19. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less

  20. Novel approach to Zr powder production by smooth ZrCl4 bubbling through molten salt

    NASA Astrophysics Data System (ADS)

    Bae, Hyun-Na; Choi, Mi-Seon; Lee, Go-Gi; Kim, Seon-Hyo

    2016-01-01

    A reduction process using ZrCl4 bubbles as a reactant was investigated to produce zirconium metals. ZrCl4 vapor was bubbled through the lance in the bath, in which Mg melt and MgCl2 salt were separated. Zr powder was formed by a reduction of ZrCl4 bubbles in magnesium layer. However, the lance was clogged by the aggregate of zirconium occurred during ZrCl4 vapor injecting leading to interruption of ZrCl4 supply into the bath. This phenomenon could be caused by the presence of magnesium at the lance tip, which passes through MgCl2 salt during bubbling, and then zirconium was formed in the forms of intermetallic compounds with aluminum. In this study, the effect of molten salt on the troubled phenomena was investigated and it was verified that CaCl2 with relatively low Weber number meaning relatively high surface tension as molten salt is effective in inhibiting the lance clogging phenomena. Then, a few micrometer-sized Zr powder with the high purity of 91.6 wt% was obtained smoothly without the formation of intermetallic compound.

  1. Deicer scaling resistance of concrete mixtures containing slag cement. Phase 2 : evaluation of different laboratory scaling test methods.

    DOT National Transportation Integrated Search

    2012-07-01

    With the use of supplementary cementing materials (SCMs) in concrete mixtures, salt scaling tests such as ASTM C672 have been found to be overly aggressive and do correlate well with field scaling performance. The reasons for this are thought to be b...

  2. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    NASA Astrophysics Data System (ADS)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  3. Microbial Communities and Physicochemical Properties of Myeolchi Jeotgal (Anchovy Jeotgal) Prepared with Different Types of Salts.

    PubMed

    Shim, Jae Min; Lee, Kang Wook; Yao, Zhuang; Kim, Jeong A; Kim, Hyun-Jin; Kim, Jeong Hwan

    2017-10-28

    Myeolchi jeotgals (MJs) were prepared with purified salt (PS), solar salt aged for 1 year (SS), and bamboo salt (BS) melted 3 times at 10% and 20% (w/w) concentrations, and fermented for 28 weeks at 15°C. BS MJ showed higher pH and lower titratable acidities than the other samples because of the alkalinity of bamboo salt. Lactic acid bacteria counts increased until 4-6 weeks and then decreased gradually, and were not detected after 20 weeks from MJs with 10% salt. Yeast counts of PS MJs were higher than those of BS and SS MJs. Bacilli were detected in relatively higher numbers throughout the 28 weeks, like marine bacteria, but archae were detected in lower numbers during the first 10 weeks. When 16S rRNA genes were amplified from total DNA from PS MJ (10% salt) at 12 weeks, Tetragenococcus halophilus was the major species. However, Staphylococcus epidermidis was the dominant species for BS MJ at the same time point. In SS MJ, T. halophilus was the dominant species and S. epidermidis was the next dominant species. BS and SS MJs showed higher amino-type nitrogen, ammonia-type nitrogen, and volatile basic nitrogen contents than PS MJs. SS and BS were better than PS for the production of high-quality MJs.

  4. Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kubo, T.; Kirby, S.H.

    2005-01-01

    We selected two Europan-ice-shell candidate highly hydrated sulfate salts for a laboratory survey of ductile flow properties: MgSO4 ?? 7H2O (epsomite) and Na2SO4 ?? 10H2O (mirabilite), called MS7 and NS10, respectively. Polycrystalline samples in pure form and in mixtures with water ice I were tested using our cryogenic high-pressure creep apparatus at temperatures 232 ??? T ??? 294 K, confining pressures P = 50 and 100 MPa, and strain rates 4 ?? 10-8 ??? ???dot;e ??? 7 ?? 10-5 s-1. Grain size of NS10 samples was > 100 ??m. The flow strength ?? of pure MS7 was over 100 times that of polycrystalline ice I at comparable conditions; that of pure NS10 over 20 times that of ice. In terms of the creep law ???dot;e = A??n e-Q/RT, where R is the gas constant, we determine parameter values of A = 1012.1 MPa-ns-1, n = 5.4, and Q = 128 kJ/mol for pure NS10. Composites of ice I and NS10 of volume fraction ?? NS10 have flow strength ??c = [??NS10??NS10J + (1 - ?? NS10)??iceIJ]1/J where J ??? -0.5, making the effect on the flow of ice with low volume fractions of NS10 much like that of virtually undeformable hard rock inclusions. Being much stronger and denser than ice, massive sulfate inclusions in the warmer, ductile layer of the Europan ice shell are less likely to be entrained in convective ice flow and more likely to be drawn to the base of the ice shell by gravitational forces and eventually expelled. With only smaller, dispersed sulfate inclusions, at probable sulfate ?? < 0.2, the shell may be treated rheologically as pure, polycrystalline ice, with boundary conditions perhaps influenced by the high density and low thermal conductivity of the hydrated salts. Copyright 2005 by the American Geophysical Union.

  5. Effects of feeding salt-tolerant forage cultivated in saline-alkaline land on rumen fermentation, feed digestibility and nitrogen balance in lamb.

    PubMed

    Wang, Cong; Dong, Kuan Hu; Liu, Qiang; Yang, Wen Zhu; Zhao, Xiang; Liu, Sheng Qiang; He, Ting Ting; Liu, Zhuang Yu

    2011-05-01

    Mixing salt-tolerant plants with other plants may affect rumen fermentation, which could result in an increase of feed conversion rate. The objective of this study was to evaluate the effects of partially or entirely replacing the corn stover with a mixture of salt-tolerant forage (Dahurian wildrye grass, weeping alkaligrass and erect milkvetch) in the diet of lambs on ruminal fermentation, feed digestibility and nitrogen (N) balance. Ratios of corn stover to the mixture of salt-tolerant forages in the four experimental diets were 100:0, 67:33, 33:67 and 0:100, respectively, for control, low (LF), medium (MF) and high (HF). Ruminal pH was lower (P = 0.048) with LF and MF than with control and HF diets. Total VFA concentration was consistently higher (P = 0.039) for LF and MF than for control and HF with increasing amount of salt-tolerant forage. Ratio of acetate to propionate was linearly (P = 0.019) decreased due to the decrease in acetate production. Digestibilities of OM, NDF and CP in the whole tract linearly (P < 0.002) decreased with increasing amount of salt-tolerant forage. Similarly, retained N and ratio of retained N to digestible N also linearly (P < 0.005) decreased. Feeding salt-tolerant forage cultivated in saline-alkaline land improved rumen fermentation with increased total VFA production, and changed the rumen fermentation pattern to increased butyrate production. However, the decreased feed digestibility in the whole digestive tract of lamb may reduce nutrient availability to animals and thus adversely affect animal productivity. Additionally, feeding salt-tolerant forages may require more protein supplement to meet animal requirements, because of the low protein content and low protein digestibility of the salt-tolerant forages. Copyright © 2011 Society of Chemical Industry.

  6. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    PubMed

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (<1:9, w/w). PLM was found more sensitive to detect drug crystallization than DSC and powder X-ray diffractometry. There was general correlation between results of film casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  7. Modeling of dielectric properties of aqueous salt solutions with an equation of state.

    PubMed

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M; Thomsen, Kaj

    2013-09-12

    The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles in the electrical field surrounding ions. Kinetic depolarization may explain 25-75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich to associating mixtures. Wertheim's association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion-solvent association. Finally, we compare the Debye-Hückel Helmholtz energy obtained using an empirical model with the new physical model and show that the empirical models may introduce unphysical behavior in the equation of state.

  8. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.

    PubMed

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-09-21

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  9. Investigating Mixture Interactions of Astringent Stimuli Using the Isobole Approach

    PubMed Central

    Fleming, Erin E.; Ziegler, Gregory R.

    2016-01-01

    Abstract Astringents (alum, malic acid, tannic acid) representing 3 broad classes (multivalent salts, organic acids, and polyphenols) were characterized alone, and as 2- and 3-component mixtures using isoboles. In experiment 1, participants rated 7 attributes (“astringency,” the sub-qualities “drying,” “roughing,” and “puckering,” and the side tastes “bitterness,” “sourness,” and “sweetness”) using direct scaling. Quality specific power functions were calculated for each stimulus. In experiment 2, the same participants characterized 2- and 3-component mixtures. Multiple factor analysis (MFA) and hierarchical clustering on attribute ratings across stimuli indicate “astringency” is highly related to “bitterness” as well as “puckering,” and the subqualities “drying” and “roughing” are somewhat redundant. Moreover, power functions were used to calculate indices of interaction (I) for each attribute/mixture combination. For “astringency,” there was evidence of antagonism, regardless of the type of mixture. Conversely, for subqualities, the pattern of interaction depended on the mixture type. Alum/tannic acid and tannic acid/malic acid mixtures showed evidence of synergy for “drying” and “roughing”; alum/malic acid mixtures showed evidence of antagonism for “drying,” “roughing,” and “puckering.” Collectively, these data clarify some semantic ambiguity regarding astringency and its subqualities, as well as the nature of interactions of among different types of astringents. Present data are not inconsistent with the idea that astringency arises from multiple mechanisms, although it remains to be determined whether the synergy observed here might reflect simultaneous activation of these multiple mechanisms. PMID:27252355

  10. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps.

    PubMed

    Rabah, Mahmoud A

    2004-01-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 degrees C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 degrees C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 degrees C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  11. Influence of lidocaine forms (salt vs. freebase) on properties of drug-eudragit® L100-55 extrudates prepared by reactive melt extrusion.

    PubMed

    Liu, Xu; Ma, Xiangyu; Kun, Eucharist; Guo, Xiaodi; Yu, Zhongxue; Zhang, Feng

    2018-06-05

    This study examines the preparation of sustained-release lidocaine polyelectrolyte complex using reactive melt extrusion. Eudragit L100-55 was selected as the ionic polymer. The influence of drug forms (freebase vs. hydrochloride salt) on lidocaine-Eudragit L100-55 interactions, physical stability, and dissolution properties of extrudates was investigated. It was confirmed by DSC, FT-IR and Raman spectroscopy that polyelectrolyte could only form via the acid-base reaction between Eudragit L100-55 and lidocaine freebase. Due to this ionic interaction, the lidocaine extrudate was physically more stable than the lidocaine hydrochloride extrudate during the storage under stressed condition. Drug release from lidocaine extrudate was a function of drug solubility, polymer solubility, drug-polymer interaction, and drug-induced microenvironment pH. At 30% drug loading, extrudate exhibited sustained release in aqueous media at pH 1.2 and 4.5. Due to the alkaline microenvironment pH induced by dissolved lidocaine, Eudragit L100-55 was solubilized and sustained-release was not achieved in water and aqueous media at pH 5.5. In comparison, lidocaine hydrochloride induced an acidic microenvironment. Drug release of lidocaine hydrochloride extrudate was similar at pH 1.2, 4.5, 5.5 and water with drug being released over 10 h. The release of lidocaine hydrochloride from the extrudates in these media was primarily controlled by microenvironment pH. It is concluded that different forms of lidocaine resulted in different drug-polymer interactions and distinctive physicochemical properties of extrudates. Copyright © 2018. Published by Elsevier B.V.

  12. Effects of process parameters on properties of porous foams formed by laser-assisted melting of steel powder (AISI P21)/foaming agent (ZrH2) mixture

    NASA Astrophysics Data System (ADS)

    Seo, Ja-Ye; Lee, Ki-Yong; Shim, Do-Sik

    2018-01-01

    This paper describes the fabrication of lightweight metal foams using the directed energy deposition (DED) method. DED is a highly flexible additive manufacturing process wherein a metal powder mixed with a foaming agent is sprayed while a high-power laser is used to simultaneously melt the powder mixture into layered metal foams. In this study, a mixture of a carbon steel material (P21 powder) and a widely used foaming agent, ZrH2, is used to fabricate metal foams. The effects of various process parameters, such as the laser power, powder feed rate, powder gas flow rate, and scanning speed, on the deposition characteristics (porosity, pore size, and pore distribution) are investigated. The synthesized metal foams exhibit porosities of 10% or lower, and a mean pore area of 7 × 105 μm2. It is observed that the degree of foaming increases in proportion to the laser power to a certain extent. The results also show that the powder feed rate has the most pronounced effect on the porosity of the metal foams, while the powder gas flow rate is the most suitable parameter for adjusting the size of the pores formed within the foams. Further, the scanning speed, which determines the amounts of energy and powder delivered, has a significant effect on the height of the deposits as well as on the properties of the foams. Thus, during the DED process for fabricating metal foams, the pore size and distribution and hence the foam porosity can be tailored by varying the individual process parameters. These findings should be useful as reference data for the design of processes for fabricating porous metallic materials that meet the specific requirements for specialized parts.

  13. Stretching and smearing of chemical heterogeneity by melting and melt migration beneath mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liang, Y.

    2017-12-01

    The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.

  14. Supercritical Water Mixture (SCWM) Experiment

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.

    2012-01-01

    The subject presentation, entitled, Supercritical Water Mixture (SCWM) Experiment, was presented at the International Space Station (ISS) Increment 33/34 Science Symposium. This presentation provides an overview of an international collaboration between NASA and CNES to study the behavior of a dilute aqueous solution of Na2SO4 (5% w) at near-critical conditions. The Supercritical Water Mixture (SCWM) investigation, serves as important precursor work for subsequent Supercritical Water Oxidation (SCWO) experiments. The SCWM investigation will be performed in DECLICs High Temperature Insert (HTI) for the purpose of studying critical fluid phenomena at high temperatures and pressures. The HTI includes a completely sealed and integrated test cell (i.e., Sample Cell Unit SCU) that will contain approximately 0.3 ml of the aqueous test solution. During the sequence of tests, scheduled to be performed in FY13, temperatures and pressures will be elevated to critical conditions (i.e., Tc = 374C and Pc = 22 MPa) in order to observe salt precipitation, precipitate agglomeration and precipitate transport in the presence of a temperature gradient without the influences of gravitational forces. This presentation provides an overview of the motivation for this work, a description of the DECLIC HTI hardware, the proposed test sequences, and a brief discussion of the scientific research objectives.

  15. The importance of dissolved salts to the in vivo efficacy of antifreeze proteins.

    PubMed

    Evans, Robert P; Hobbs, Rod S; Goddard, Sally V; Fletcher, Garth L

    2007-11-01

    Antifreeze proteins (AFP) and antifreeze glycoproteins (AFGP) lower the freezing point of marine fish plasma non-colligatively by specifically adsorbing to certain surfaces of ice crystals, modifying their structure and inhibiting further growth. While the freezing point is lowered, the melting point is unaltered and the difference between the two is termed thermal hysteresis (TH). In pure water, the level of TH is directly related to the intrinsic activity of the specific AF(G)P in solution and to their concentration. Results of this study indicate that when AF(G)P are dissolved in salt solutions, such as NaCl, encompassing the range they could encounter in nature, there is a synergistic enhancement of basal TH that is positively related to the salt concentration. This enhancement is likely a result of the hydration shell surrounding the dissolved ions and, as a consequence, reducing freezable water. A secondary reason for the enhancement is that the salt could be influencing the hydration shell surrounding the AF(G)P, increasing their solubility and thus the protein surface area available to adsorb to the ice/water interface. The former hypothesis for the salt enhanced TH has implications for the in vivo function of AF(G)P, particularly at the seawater/external epithelia (gills, skin, stomach) interface. The latter hypothesis is likely only relevant to in vitro situations where freeze dried protein is dissolved in low salt solutions.

  16. Benard convection in binary mixtures with Soret effects and solidification

    NASA Technical Reports Server (NTRS)

    Zimmermann, G.; Mueller, U.; Davis, S. H.

    1992-01-01

    Benard convection was studied in a two-component liquid which displayed Soret effects (Soret, 1879; DeGroot and Mazur, 1969) and in which the temperatures of the horizontal boundaries spanned the solidification temperature of the mixture. A steady basic state was observed, in which the layer is partly liquid (near the lower, heated plate) and partly solid (near the upper, cooled plate) with the interface being planar, and in which all transport is by conduction and diffusion. Linear stability of the basic state was examined to determine how the presence of solid and the ability of the material to solidify or melt under disturbance affects the critical conditions from the onset of instability. The theoretical results obtained for cases when the phase change is absent and when the Soret effects are absent (but the phase change is present) are compared with an experiment using alcohol-water mixtures.

  17. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  18. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  19. Glass-ceramic from mixtures of bottom ash and fly ash.

    PubMed

    Vu, Dinh Hieu; Wang, Kuen-Sheng; Chen, Jung-Hsing; Nam, Bui Xuan; Bac, Bui Hoang

    2012-12-01

    Along with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h. Major minerals forming in the glass-ceramics mainly are gehlenite (Ca(2)Al(2)SiO(7)) & akermanite (Ca(2)MgSiO(7)) and wollastonite (CaSiO(3)). In addition, regarding chemical/mechanical properties, the chemical resistance showing durability, and the leaching concentration of heavy metals confirmed the possibility of engineering and construction applications of the most superior glass-ceramic product. Finally, petrurgic method of a mixture of bottom ash and fly ash at 950 °C represents a simple, inexpensive, and energy saving method compared with the conventional heat treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  1. Achieving zero waste of municipal incinerator fly ash by melting in electric arc furnaces while steelmaking.

    PubMed

    Yang, Gordon C C; Chuang, Tsun-Nan; Huang, Chien-Wen

    2017-04-01

    The main objective of this work was to promote zero waste of municipal incinerator fly ash (MIFA) by full-scale melting in electric arc furnaces (EAFs) of steel mini mills around the world. MIFA, generally, is considered as a hazardous waste. Like in many countries, MIFA in Taiwan is first solidified/stabilized and then landfilled. Due to the scarcity of landfill space, the cost of landfilling increases markedly year by year in Taiwan. This paper presents satisfactory results of treating several hundred tons of MIFA in a full-scale steel mini mill using the approach of "melting MIFA while EAF steelmaking", which is somewhat similar to "molten salt oxidation" process. It was found that this practice yielded many advantages such as (1) about 18wt% of quicklime requirement in EAF steelmaking can be substituted by the lime materials contained in MIFA; (2) MIFA would totally end up as a material in fractions of recyclable EAF dust, oxidized slag and reduced slag; (3) no waste is needed for landfilling; and (4) a capital cost saving through the employment of existing EAFs in steel mini mills instead of building new melting plants for the treatment of MIFA. Thus, it is technically feasible to achieve zero waste of MIFA by the practice of this innovative melting technology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. A density functional theory based approach for predicting melting points of ionic liquids

    DOE PAGES

    Chen, Lihua; Bryantsev, Vyacheslav S.

    2017-01-17

    -containing anions. As a result, continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.« less

  3. A density functional theory based approach for predicting melting points of ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lihua; Bryantsev, Vyacheslav S.

    -containing anions. As a result, continuous progress in predicting crystal structures of organic salts with halide anions will be a key factor for successful prediction of melting points with no prior knowledge of the crystal structure.« less

  4. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Treesearch

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  5. Experimental correlation of melt structures, nucleation rates, and thermal histories of silicate melts

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The theory and measurement of the structure of liquids is an important aspect of modern metallurgy and igneous petrology. Liquid structure exerts strong controls on both the types of crystals that may precipitate from melts and on the chemical composition of those crystals. An interesting aspect of melt structure studies is the problem of melt memories; that is, a melt can retain a memory of previous thermal history. This memory can influence both nucleation behavior and crystal composition. This melt memory may be characterized quantitatively with techniques such as Raman, infrared and NMR spectroscopy to provide information on short-range structure. Melt structure studies at high temperature will take advantage of the microgravity conditions of the Space Station to perform containerless experiments. Melt structure determinations at high temperature (experiments that are greatly facilitated by containerless technology) will provide invaluable information for materials science, glass technology, and geochemistry. In conjunction with studies of nucleation behavior and nucleation rates, information relevant to nucleation in magma chambers in terrestrial planets will be acquired.

  6. On Thermocapillary Mechanism of Spatial Separation of Metal Melts

    NASA Astrophysics Data System (ADS)

    Demin, V. A.; Mizev, A. I.; Petukhov, M. I.

    2018-02-01

    Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.

  7. Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández, Ángel G.; Gomez-Vidal, Judith C.

    In recent years, lithium containing salts have been studied for thermal energy storage (TES) applications because of their excellent thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of state-of-the art molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, because of its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations at 390° and 565 °C for 1000 h were performed for low chromium steel T22more » and stainless steels (AISI 430 and AISI 316), respectively. Chemical composition of the salts including identification of corrosion products and impurities was determined and an estimation of the Chilean production costs is reported. The study shows a loss of thermal properties after the corrosion tests. The heat capacity was reduced, possibly caused by the formation of oxides at high temperatures. As a result, the partial thermal decomposition of the salt was probably produced by the incorporation of corrosion products from the steel.« less

  8. Thermophysical properties of low cost lithium nitrate salts produced in northern Chile for thermal energy storage

    DOE PAGES

    Fernández, Ángel G.; Gomez-Vidal, Judith C.

    2016-09-01

    In recent years, lithium containing salts have been studied for thermal energy storage (TES) applications because of their excellent thermophysical properties. In solar power plants, lithium is seen as a way to improve the properties of state-of-the art molten salts used today. Lithium nitrate is a good candidate for sensible heat storage, because of its ability to increase the salt mixture's working temperature range. In the present research, thermophysical properties characterization of lithium nitrate containing salts, produced in Chile, have been carried out. Corrosion evaluations at 390° and 565 °C for 1000 h were performed for low chromium steel T22more » and stainless steels (AISI 430 and AISI 316), respectively. Chemical composition of the salts including identification of corrosion products and impurities was determined and an estimation of the Chilean production costs is reported. The study shows a loss of thermal properties after the corrosion tests. The heat capacity was reduced, possibly caused by the formation of oxides at high temperatures. As a result, the partial thermal decomposition of the salt was probably produced by the incorporation of corrosion products from the steel.« less

  9. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhong-Li, E-mail: zl.liu@163.com; Zhang, Xiu-Lu; Cai, Ling-Cang

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curvemore » of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.« less

  10. Effects assessment of 10 functioning years on the main components of the molten salt PCS experimental facility of ENEA

    NASA Astrophysics Data System (ADS)

    Gaggioli, Walter; Di Ascenzi, Primo; Rinaldi, Luca; Tarquini, Pietro; Fabrizi, Fabrizio

    2016-05-01

    In the frame of the Solar Thermodynamic Laboratory, ENEA has improved CSP Parabolic Trough technologies by adopting new advanced solutions for linear tube receivers and by implementing a binary mixture of molten salt (60% NaNO3 and 40% KNO3) [1] as both heat transfer fluid and heat storage medium in solar field and in storage tanks, thus allowing the solar plants to operate at high temperatures up to 550°C. Further improvements have regarded parabolic mirror collectors, piping and process instrumentation. All the innovative components developed by ENEA, together with other standard parts of the plant, have been tested and qualified under actual solar operating conditions on the PCS experimental facility at the ENEA Casaccia Research Center in Rome (Italy). The PCS (Prova Collettori Solari, i.e. Test of Solar Collectors) facility is the main testing loop built by ENEA and it is unique in the world for what concerns the high operating temperature and the fluid used (mixture of molten salt). It consists in one line of parabolic trough collectors (test section of 100 m long life-size solar collectors) using, as heat transfer fluid, the aforesaid binary mixture of molten salt up to 10 bar, at high temperature in the range 270° and 550°C and a flow rate up to 6.5 kg/s. It has been working since early 2004 [2] till now; it consists in a unique closed loop, and it is totally instrumented. In this paper the effects of over ten years qualification tests on the pressurized tank will be presented, together with the characterization of the thermal losses of the piping of the molten salt circuit, and some observations performed on the PCS facility during its first ten years of operation.

  11. Partial melting and melt percolation in the mantle: The message from Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Ionov, Dmitri A.

    2007-07-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with

  12. Equilibrium and Dynamics Properties of Poly(oxyethylene) Melts and Related Poly(alkylethers) from Simulations and Ab Initio Calculations

    NASA Technical Reports Server (NTRS)

    Smith, Grant D.; Jaffe, R. L.; Yoon, D. Y.; Arnold, James O. (Technical Monitor)

    1994-01-01

    Molecular dynamics simulations of POE melts have been performed utilizing a potential force field parameterized to reproduce conformer energies and rotational energy barriers in dimethoxyethane as determined from ab initio electronic structure calculations. Chain conformations and dimensions of POE from the simulations were found to be in good agreement with predictions of a rotational isomeric state (RIS) model based upon the ab initio conformational. energies. The melt chains were found to be somewhat extended relative to chains at theta conditions. This effect will be discussed in light of neutron scattering experiments which indicate that POE chains are extended in the melt relative to theta solutions. The conformational characteristics of POE chains will also be compared with those of other poly (alkylethers), namely poly(oxymethylene), poly(oxytrimethylene) and poly(oxytetramethylene). Local conformational dynamics were found to be more rapid than in polymethylene. Calculated C-H vector correlation times were found to be in reasonable agreement with experimental values from C-13 NMR spin-lattice relaxation times. The influence of ionic salts on local conformations and dynamics will also be discussed.

  13. Inclusion behavior of Cs, Sr, and Ba impurities in LiCl crystal formed by layer-melt crystallization: Combined first-principles calculation and experimental study

    NASA Astrophysics Data System (ADS)

    Choi, Jung-Hoon; Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Kim, Jun-Hong; Kim, In-Tae; Park, Geun-Il; Kang, Jeung-Ku

    2013-05-01

    The pyroprocessing which uses a dry method to recycle spent oxide fuel generates a waste LiCl salt containing radioactive elements. To reuse LiCl salt, the radioactive impurities has to be separated by the purification process such as layer-melt crystallization. To enhance impurity separation efficiency, it is important to understand the inclusion mechanism of impurities within the LiCl crystal. Herein, we report the inclusion properties of impurities in LiCl crystals. First of all, the substitution enthalpies of Cs+, Sr2+, and Ba2+ impurities with 0-6 at% in LiCl crystal were evaluated via first-principles calculations. Also, the molten LiCl containing 1 mol of Cs+, Sr2+, and Ba2+ impurities was crystallized through the experimental layer-melt crystallization method. These substitution enthalpy and experiment clarify that a high substitution enthalpy should result in the high separation efficiency for an impurity. Furthermore, we find that the electron density map gives a clue to the mechanism for inclusion of impurities into LiCl crystal.

  14. Osmotic second virial cross-coefficient measurements for binary combination of lysozyme, ovalbumin, and α-amylase in salt solutions.

    PubMed

    Mehta, Chirag M; White, Edward T; Litster, James D

    2013-01-01

    Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross-interactions were measured as the osmotic second virial cross-coefficients (B23 ) for the three binary protein systems involving lysozyme, ovalbumin, and α-amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross-interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross-interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers.

  15. Deep Crustal Melting and the Survival of Continental Crust

    NASA Astrophysics Data System (ADS)

    Whitney, D.; Teyssier, C. P.; Rey, P. F.; Korchinski, M.

    2017-12-01

    Plate convergence involving continental lithosphere leads to crustal melting, which ultimately stabilizes the crust because it drives rapid upward flow of hot deep crust, followed by rapid cooling at shallow levels. Collision drives partial melting during crustal thickening (at 40-75 km) and/or continental subduction (at 75-100 km). These depths are not typically exceeded by crustal rocks that are exhumed in each setting because partial melting significantly decreases viscosity, facilitating upward flow of deep crust. Results from numerical models and nature indicate that deep crust moves laterally and then vertically, crystallizing at depths as shallow as 2 km. Deep crust flows en masse, without significant segregation of melt into magmatic bodies, over 10s of kms of vertical transport. This is a major mechanism by which deep crust is exhumed and is therefore a significant process of heat and mass transfer in continental evolution. The result of vertical flow of deep, partially molten crust is a migmatite dome. When lithosphere is under extension or transtension, the deep crust is solicited by faulting of the brittle upper crust, and the flow of deep crust in migmatite domes traverses nearly the entire thickness of orogenic crust in <10 million years. This cycle of burial, partial melting, rapid ascent, and crystallization/cooling preserves the continents from being recycled into the mantle by convergent tectonic processes over geologic time. Migmatite domes commonly preserve a record of high-T - low-P metamorphism. Domes may also contain rocks or minerals that record high-T - high-P conditions, including high-P metamorphism broadly coeval with host migmatite, evidence for the deep crustal origin of migmatite. There exists a spectrum of domes, from entirely deep-sourced to mixtures of deep and shallow sources. Controlling factors in deep vs. shallow sources are relative densities of crustal layers and rate of extension: fast extension (cm/yr) promotes efficient

  16. Experimental Phase Relations of Hydrous, Primitive Melts: Implications for variably depleted mantle melting in arcs and the generation of primitive high-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2010-12-01

    There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with

  17. TEMperature Pressure ESTimation of a homogeneous boiling fuel-steel mixture in an LMFBR core. [TEMPEST code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyun, J.J.; Majumdar, D.

    The paper describes TEMPEST, a simple computer program for the temperature and pressure estimation of a boiling fuel-steel pool in an LMFBR core. The time scale of interest of this program is large, of the order of ten seconds. Further, the vigorous boiling in the pool will generate a large contact, and hence a large heat transfer between fuel and steel. The pool is assumed to be a uniform mixture of fuel and steel, and consequently vapor production is also assumed to be uniform throughout the pool. The pool is allowed to expand in volume if there is steel meltingmore » at the walls. In this program, the total mass of liquid and vapor fuel is always kept constant, but the total steel mass in the pool may change by steel wall melting. Because of a lack of clear understanding of the physical phenomena associated with the progression of a fuel-steel mixture at high temperature, various input options have been built-in to enable one to perform parametric studies. For example, the heat transfer from the pool to the surrounding steel structure may be controlled by input values for the heat transfer coefficients, or, the heat transfer may be calculated by a correlation obtained from the literature. Similarly, condensation of vapor on the top wall can be specified by input values of the condensation coefficient; the program can otherwise calculate condensation according to the non-equilibrium model predictions. Meltthrough rates of the surrounding steel walls can be specified by a fixed melt-rate or can be determined by a fraction of the heat loss that goes to steel-melting. The melted steel is raised to the pool temperature before it is joined with the pool material. Several applications of this program to various fuel-steel pools in the FFTF and the CRBR cores are discussed.« less

  18. Thermodynamics of soluble fission products cesium and iodine in the Molten Salt Reactor

    NASA Astrophysics Data System (ADS)

    Capelli, E.; Beneš, O.; Konings, R. J. M.

    2018-04-01

    The present study describes the full thermodynamic assessment of the Li,Cs,Th//F,I system. The existing database for the relevant fluoride salts considered as fuel for the Molten Salt Reactor (MSR) has been extended with two key fission products, cesium and iodine. A complete evaluation of all the common-ion binary and ternary sub-systems of the LiF-ThF4-CsF-LiI-ThI4-CsI system has been performed and the optimized parameters are presented in this work. New equilibrium data have been measured using Differential Scanning Calorimetry and were used to assess the reciprocal ternary systems and confirm the extrapolated phase diagrams. The developed database significantly contributes to the understanding of the behaviour of cesium and iodine in the MSR, which strongly depends on their concentration and chemical form. Cesium bonded with fluorine is well retained in the fuel mixture while in the form of CsI the solubility of these elements is very limited. Finally, the influence of CsI and CsF on the physico-chemical properties of the fuel mixture was calculated as function of composition.

  19. Salting out the polar polymorph: analysis by alchemical solvent transformation.

    PubMed

    Duff, Nathan; Dahal, Yuba Raj; Schmit, Jeremy D; Peters, Baron

    2014-01-07

    We computationally examine how adding NaCl to an aqueous solution with α- and γ-glycine nuclei alters the structure and interfacial energy of the nuclei. The polar γ-glycine nucleus in pure aqueous solution develops a melted layer of amorphous glycine around the nucleus. When NaCl is added, a double layer is formed that stabilizes the polar glycine polymorph and eliminates the surface melted layer. In contrast, the non-polar α-glycine nucleus is largely unaffected by the addition of NaCl. To quantify the stabilizing effect of NaCl on γ-glycine nuclei, we alchemically transform the aqueous glycine solution into a brine solution of glycine. The alchemical transformation is performed both with and without a nucleus in solution and for nuclei of α-glycine and γ-glycine polymorphs. The calculations show that adding 80 mg/ml NaCl reduces the interfacial free energy of a γ-glycine nucleus by 7.7 mJ/m(2) and increases the interfacial free energy of an α-glycine nucleus by 3.1 mJ/m(2). Both results are consistent with experimental reports on nucleation rates which suggest: J(α, brine) < J(γ, brine) < J(α, water). For γ-glycine nuclei, Debye-Hückel theory qualitatively, but not quantitatively, captures the effect of salt addition. Only the alchemical solvent transformation approach can predict the results for both polar and non-polar polymorphs. The results suggest a general "salting out" strategy for obtaining polar polymorphs and also a general approach to computationally estimate the effects of solvent additives on interfacial free energies for nucleation.

  20. Composition of the Cayley Formation at Apollo 16 as inferred from impact melt splashes

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.; Horz, Friedrich; See, Thomas H.

    1986-01-01

    Abundances of major and trace elements and magnetic properties of 50 impact melt splashes (IMSs) from the Apollo 16 landing site are analzyed to determine the composition of their meteoritic component. MgO-Sc and Ca-Sc variation diagrams and least-squares mixing models are utilized to analyze the IMS, soil, and rock data. Consideration is given to progenitor lithologies of the IMS, the number of impact events represented by the IMS, and the heterogeneity of impact melts from single events. It is observed that the IMSs are composed of either a mixture of anorthosite and low-Sc impact melt rocks or anorthositic norite. It is determined that the surface Cayley layer is composed of TiO2, MgO, Sc, and La concentrations of 0.69, and 7.1 wt pct and 10.5 and 21.2 microg/g, respectively and 0.38 and 5.9 wt pct and 6.1 and 11.8 microg/g, respectively, for the subsurface Cayley layer. The Descartes Formation composition is estimated as TiO2, MgO, Sc, and La concentrations of 0.25, and 3.5 wt pct and 7.7 and 2.2 microg/g, respectively.