Sample records for salt oxidation process

  1. Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes

    NASA Astrophysics Data System (ADS)

    Hwa Lee, Chang; Lee, Yoo Lee; Jeon, Min Ku; Choi, Yong Taek; Kang, Kweon Ho; Park, Geun Il

    2014-06-01

    The effect of pretreatment processes for the Zr electrorefining of oxidized Zircaloy-4 cladding tubes is examined in LiCl-KCl-ZrCl4 molten salts at 500 °C. The cyclic voltammetries reveal that the Zr dissolution kinetics is highly dependent on the thickness of a Zr oxide layer formed at 500 °C under air atmosphere. For the Zircaloy-4 tube covered with a 1 μm thick oxide layer, the Zr dissolution process is initiated from a non-stoichiometric Zr oxide surface through salt treatment at an open circuit potential in the molten salt electrolyte. The Zr dissolution of the samples in the middle range of oxide layer thickness appears to be more effectively derived by the salt treatment coupled with an anodic potential application at an oxidation potential of Zr. A modification of the process scheme offers an applicability of Zr electrorefining for the treatment of oxidized cladding hull wastes.

  2. Vacuum distillation of a mixture of LiCl-KCl eutectic salts and RE oxidative precipitates and a dechlorination and oxidation of RE oxychlorides.

    PubMed

    Eun, Hee Chul; Yang, Hee Chul; Cho, Yung Zun; Lee, Han Soo; Kim, In Tae

    2008-12-30

    In this study, a vacuum distillation of a mixture of LiCl-KCl eutectic salt and rare-earth oxidative precipitates was performed to separate a pure LiCl-KCl eutectic salt from the mixture. Also, a dechlorination and oxidation of the rare-earth oxychlorides was carried out to stabilize a final waste form. The mixture was distilled under a range of 710-759.5Torr of a reduced pressure at a fixed heating rate of 4 degrees C/min and the LiCl-KCl eutectic salt was completely separated from the mixture. The required time for the salt distillation and the starting temperature for the salt vaporization were lowered with a reduction in the pressure. Dechlorination and oxidation of the rare-earth oxychlorides was completed at a temperature below 1300 degrees C and this was dependent on the partial pressure of O2. The rare-earth oxychlorides (NdOCl/PrOCl) were transformed to oxides (Nd2O3/PrO2) during the dechlorination and oxidation process. These results will be utilized to design a concept for a process for recycling the waste salt from an electrorefining process.

  3. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Molten salt oxidation of organic hazardous waste with high salt content.

    PubMed

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  5. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  6. Investigation on the Oxidation and Reduction of Titanium in Molten Salt with the Soluble TiC Anode

    NASA Astrophysics Data System (ADS)

    Wang, Shulan; Wan, Chaopin; Liu, Xuan; Li, Li

    2015-12-01

    To reveal the oxidation process of titanium from TiC anode and the reduction mechanism of titanium ions in molten NaCl-KCl, the polarization curve of TiC anode in molten NaCl-KCl and cyclic voltammograms of the molten salt after polarization were studied. Investigation on the polarization curve shows that titanium can be oxidized and dissociated from the TiC anode at very low potential. The cyclic voltammograms demonstrated that the reduction reaction of titanium ions in the molten salt is a one-step process. By potentiostatic electrolysis, dendritic titanium is obtained on the steel plate. The work promotes the understanding on the process of electrochemical oxidization/dissociation of titanium from TiC anode and the reduction mechanism of titanium ions in molten salt.

  7. Simulation of uranium and plutonium oxides compounds obtained in plasma

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  8. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  9. Direct reduction processes for titanium oxide in molten salt

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryosuke O.

    2007-02-01

    Molten salt electrolysis using CaCl2 is employed to produce pure titanium and its alloys directly from TiO2 and a mixture of elemental oxides, respectively, as an alternate to the Kroll process. This is because CaO, which is a reduction by-product, is highly soluble in CaCl2. Good-quality titanium containing only a small amount of residual oxygen has been successfully produced and scaled to industrial levels. Thermochemical and electrochemical bases are reviewed to optimize the process conditions. Several processes using molten salt are being examined for future progress in titanium processing.

  10. Separation of uranium from (Th,U)O.sub.2 solid solutions

    DOEpatents

    Chiotti, Premo; Jha, Mahesh Chandra

    1976-09-28

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  12. The electrochemical reduction processes of solid compounds in high temperature molten salts.

    PubMed

    Xiao, Wei; Wang, Dihua

    2014-05-21

    Solid electrode processes fall in the central focus of electrochemistry due to their broad-based applications in electrochemical energy storage/conversion devices, sensors and electrochemical preparation. The electrolytic production of metals, alloys, semiconductors and oxides via the electrochemical reduction of solid compounds (especially solid oxides) in high temperature molten salts has been well demonstrated to be an effective and environmentally friendly process for refractory metal extraction, functional materials preparation as well as spent fuel reprocessing. The (electro)chemical reduction of solid compounds under cathodic polarizations generally accompanies a variety of changes at the cathode/melt electrochemical interface which result in diverse electrolytic products with different compositions, morphologies and microstructures. This report summarizes various (electro)chemical reactions taking place at the compound cathode/melt interface during the electrochemical reduction of solid compounds in molten salts, which mainly include: (1) the direct electro-deoxidation of solid oxides; (2) the deposition of the active metal together with the electrochemical reduction of solid oxides; (3) the electro-inclusion of cations from molten salts; (4) the dissolution-electrodeposition process, and (5) the electron hopping process and carbon deposition with the utilization of carbon-based anodes. The implications of the forenamed cathodic reactions on the energy efficiency, chemical compositions and microstructures of the electrolytic products are also discussed. We hope that a comprehensive understanding of the cathodic processes during the electrochemical reduction of solid compounds in molten salts could form a basis for developing a clean, energy efficient and affordable production process for advanced/engineering materials.

  13. Molten salt applications in materials processing

    NASA Astrophysics Data System (ADS)

    Mishra, Brajendra; Olson, David L.

    2005-02-01

    The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.

  14. Oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Rohrmann, Charles A.; Fullam, Harold T.

    1985-01-01

    A process for oxidizing hydrogen halides having substantially no sulfur impurities by means of a catalytically active molten salt is disclosed. A mixture of the subject hydrogen halide and an oxygen bearing gas is contacted with a molten salt containing an oxidizing catalyst and alkali metal normal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen and substantially free of sulfur oxide gases.

  15. Crucible cast from beryllium oxide and refractory cement is impervious to flux and molten metal

    NASA Technical Reports Server (NTRS)

    Jastrzebski, Z. D.

    1966-01-01

    Crucible from a mixture of a beryllium oxide aggregate and hydraulic refractory cement, and coated with an impervious refractory oxide will not deteriorate in the presence of fused salt- molten metal mixtures such as uranium- magnesium-zinc-halide salt systems. Vessels cast by this process are used in the flux reduction of oxides of thorium and uranium.

  16. 238Pu recovery and salt disposition from the molten salt oxidation process

    NASA Astrophysics Data System (ADS)

    Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.

    2000-07-01

    We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.

  17. High-salt in addition to high-fat diet may enhance inflammation and fibrosis in liver steatosis induced by oxidative stress and dyslipidemia in mice.

    PubMed

    Uetake, Yuzaburo; Ikeda, Hitoshi; Irie, Rie; Tejima, Kazuaki; Matsui, Hiromitsu; Ogura, Sayoko; Wang, Hong; Mu, ShengYu; Hirohama, Daigoro; Ando, Katsuyuki; Sawamura, Tatsuya; Yatomi, Yutaka; Fujita, Toshiro; Shimosawa, Tatsuo

    2015-02-13

    It is widely known that salt is an accelerating factor for the progression of metabolic syndrome and causes cardiovascular diseases, most likely due to its pro-oxidant properties. We hypothesized that excessive salt intake also facilitates the development of nonalcoholic steatohepatitis (NASH), which is frequently associated with metabolic syndrome. We examined the exacerbating effect of high-salt diet on high-fat diet-induced liver injury in a susceptible model to oxidative stress, apoE knockout and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) transgenic mice. High-salt diet led to NASH in high-fat diet-fed LOX-1 transgenic/apoE knockout mice without affecting high-fat diet-induced dyslipidemia or hepatic triglyceride accumulation. Additionally, a high-salt and high-fat diet stimulated oxidative stress production and inflammatory reaction to a greater extent than did a high-fat diet in the liver of LOX-1 transgenic/apoE knockout mice. We demonstrated that high-salt diet exacerbated NASH in high-fat diet-fed LOX-1 transgenic /apoE knockout mice and that this effect was associated with the stimulation of oxidative and inflammatory processes; this is the first study to suggest the important role of excessive salt intake in the development of NASH.

  18. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  19. Oxidation of hydrogen halides to elemental halogens with catalytic molten salt mixtures

    DOEpatents

    Rohrmann, Charles A.

    1978-01-01

    A process for oxidizing hydrogen halides by means of a catalytically active molten salt is disclosed. The subject hydrogen halide is contacted with a molten salt containing an oxygen compound of vanadium and alkali metal sulfates and pyrosulfates to produce an effluent gas stream rich in the elemental halogen. The reduced vanadium which remains after this contacting is regenerated to the active higher valence state by contacting the spent molten salt with a stream of oxygen-bearing gas.

  20. Process for forming a homogeneous oxide solid phase of catalytically active material

    DOEpatents

    Perry, Dale L.; Russo, Richard E.; Mao, Xianglei

    1995-01-01

    A process is disclosed for forming a homogeneous oxide solid phase reaction product of catalytically active material comprising one or more alkali metals, one or more alkaline earth metals, and one or more Group VIII transition metals. The process comprises reacting together one or more alkali metal oxides and/or salts, one or more alkaline earth metal oxides and/or salts, one or more Group VIII transition metal oxides and/or salts, capable of forming a catalytically active reaction product, in the optional presence of an additional source of oxygen, using a laser beam to ablate from a target such metal compound reactants in the form of a vapor in a deposition chamber, resulting in the deposition, on a heated substrate in the chamber, of the desired oxide phase reaction product. The resulting product may be formed in variable, but reproducible, stoichiometric ratios. The homogeneous oxide solid phase product is useful as a catalyst, and can be produced in many physical forms, including thin films, particulate forms, coatings on catalyst support structures, and coatings on structures used in reaction apparatus in which the reaction product of the invention will serve as a catalyst.

  1. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% formore » the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.« less

  2. Conversion of alkali metal sulfate to the carbonate

    DOEpatents

    Sheth, A.C.

    1979-10-01

    A process is described for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700/sup 0/C and about 800/sup 0/C with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. the sulfur-containing compounds are further treated. This process was developed for desulfurization and reprocessing of spent seed from open-cycle coal-fired MHD generators for reuse.

  3. Method for removing sulfur oxide from waste gases and recovering elemental sulfur

    DOEpatents

    Moore, Raymond H.

    1977-01-01

    A continuous catalytic fused salt extraction process is described for removing sulfur oxides from gaseous streams. The gaseous stream is contacted with a molten potassium sulfate salt mixture having a dissolved catalyst to oxidize sulfur dioxide to sulfur trioxide and molten potassium normal sulfate to solvate the sulfur trioxide to remove the sulfur trioxide from the gaseous stream. A portion of the sulfur trioxide loaded salt mixture is then dissociated to produce sulfur trioxide gas and thereby regenerate potassium normal sulfate. The evolved sulfur trioxide is reacted with hydrogen sulfide as in a Claus reactor to produce elemental sulfur. The process may be advantageously used to clean waste stack gas from industrial plants, such as copper smelters, where a supply of hydrogen sulfide is readily available.

  4. Pyroprocess for processing spent nuclear fuel

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    2002-01-01

    This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.

    This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvementsmore » are needed to meet chemical durability requirements.« less

  6. Method of fabricating a catalytic structure

    DOEpatents

    Rollins, Harry W [Idaho Falls, ID; Petkovic, Lucia M [Idaho Falls, ID; Ginosar, Daniel M [Idaho Falls, ID

    2009-09-22

    A precursor to a catalytic structure comprising zinc oxide and copper oxide. The zinc oxide has a sheet-like morphology or a spherical morphology and the copper oxide comprises particles of copper oxide. The copper oxide is reduced to copper, producing the catalytic structure. The catalytic structure is fabricated by a hydrothermal process. A reaction mixture comprising a zinc salt, a copper salt, a hydroxyl ion source, and a structure-directing agent is formed. The reaction mixture is heated under confined volume conditions to produce the precursor. The copper oxide in the precursor is reduced to copper. A method of hydrogenating a carbon oxide using the catalytic structure is also disclosed, as is a system that includes the catalytic structure.

  7. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    NASA Astrophysics Data System (ADS)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-02-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.

  8. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.

    2005-02-06

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt asmore » the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.« less

  9. Synthesis of complex oxides with garnet structure by spray drying of an aqueous salt solution

    NASA Astrophysics Data System (ADS)

    Makeenko, A. V.; Larionova, T. V.; Klimova-Korsmik, O. G.; Starykh, R. V.; Galkin, V. V.; Tolochko, O. V.

    2017-04-01

    The use of spray drying to obtain powders of complex oxides with a garnet structure has demonstrated. The processes occurring during heating of the synthesized oxide-salt product, leading to the formation of a material with a garnet structure, have been investigated using DTA, TGA, XPS, and XRD. It has been shown that a single-phase garnet structure of system (Y x Gd(3- x))3Al5O12 can be synthesized over the entire range of compositions.

  10. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, Gary P.; Gavasto, Thomas M.; Ray, Siba P.

    1986-01-01

    An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

  11. Evaluation of Innovative Volatile Organic Compound and Hazardous Air Pollutant Control Technologies for U.S. Air Force Paint Spray Booths

    DTIC Science & Technology

    1990-10-01

    adsorption/incineration * Membrane vapor separation/condensation * Supercritical fluid oxidation • UV/ozone destruction * Molten salt combustion process...separation/ separate air stream contaminants 9 Oxygenated solvents condensation * Chlorinated hydrocarbons Supercritical fluid * Technology utilizing high...testing or full-scale unit capacity; they are: * Supercritical fluid oxidation • UV/ozone destruction * Molten salt incineration * Infrared incineration

  12. Salt Stress Reduces Root Meristem Size by Nitric Oxide-Mediated Modulation of Auxin Accumulation and Signaling in Arabidopsis1[OPEN

    PubMed Central

    Liu, Wen; Li, Rong-Jun; Han, Tong-Tong; Cai, Wei; Fu, Zheng-Wei

    2015-01-01

    The development of the plant root system is highly plastic, which allows the plant to adapt to various environmental stresses. Salt stress inhibits root elongation by reducing the size of the root meristem. However, the mechanism underlying this process remains unclear. In this study, we explored whether and how auxin and nitric oxide (NO) are involved in salt-mediated inhibition of root meristem growth in Arabidopsis (Arabidopsis thaliana) using physiological, pharmacological, and genetic approaches. We found that salt stress significantly reduced root meristem size by down-regulating the expression of PINFORMED (PIN) genes, thereby reducing auxin levels. In addition, salt stress promoted AUXIN RESISTANT3 (AXR3)/INDOLE-3-ACETIC ACID17 (IAA17) stabilization, which repressed auxin signaling during this process. Furthermore, salt stress stimulated NO accumulation, whereas blocking NO production with the inhibitor Nω-nitro-l-arginine-methylester compromised the salt-mediated reduction of root meristem size, PIN down-regulation, and stabilization of AXR3/IAA17, indicating that NO is involved in salt-mediated inhibition of root meristem growth. Taken together, these findings suggest that salt stress inhibits root meristem growth by repressing PIN expression (thereby reducing auxin levels) and stabilizing IAA17 (thereby repressing auxin signaling) via increasing NO levels. PMID:25818700

  13. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  14. Solid oxide membrane (SOM) process for ytterbium and silicon production from their oxides

    NASA Astrophysics Data System (ADS)

    Jiang, Yihong

    The Solid oxide membrane (SOM) electrolysis is an innovative green technology that produces technologically important metals directly from their respective oxides. A yttria-stabilized zirconia (YSZ) tube, closed at one end is employed to separate the molten salt containing dissolved metal oxides from the anode inside the YSZ tube. When the applied electric potential between the cathode in the molten salt and the anode exceeds the dissociation potential of the desired metal oxides, oxygen ions in the molten salt migrate through the YSZ membrane and are oxidized at the anode while the dissolved metal cations in the flux are reduced to the desired metal at the cathode. Compared with existing metal production processes, the SOM process has many advantages such as one unit operation, less energy consumption, lower capital costs and zero carbon emission. Successful implementation of the SOM electrolysis process would provide a way to mitigate the negative environmental impact of the metal industry. Successful demonstration of producing ytterbium (Yb) and silicon (Si) directly from their respective oxides utilizing the SOM electrolysis process is presented in this dissertation. During the SOM electrolysis process, Yb2O3 was reduced to Yb metal on an inert cathode. The melting point of the supporting electrolyte (LiF-YbF3-Yb2O3) was determined by differential thermal analysis (DTA). Static stability testing confirmed that the YSZ tube was stable with the flux at operating temperature. Yb metal deposit on the cathode was confirmed by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). During the SOM electrolysis process for silicon production, a fluoride based flux based on BaF2, MgF2, and YF3 was engineered to serve as the liquid electrolyte for dissolving silicon dioxide. YSZ tube was used to separate the molten salt from an anode current collector in the liquid silver. Liquid tin was chosen as cathode to dissolve the reduced silicon during SOM electrolysis. After electrolysis, upon cooling, silicon crystals precipitated out from the Si-Sn liquid alloy. The presence of high-purity silicon crystals in the liquid tin cathode was confirmed by SEM/EDS. The fluoride based flux was also optimized to improve YSZ membrane stability for long-term use.

  15. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  16. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  17. Process for oxidation of hydrogen halides to elemental halogens

    DOEpatents

    Lyke, Stephen E.

    1992-01-01

    An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1. The dissolved oxygen compound is regenerated in a high temperature (stage 3) and an optical intermediate temperature stage (stage 4) by contacting the substrate-supported salt mixture with a gas containing oxygen whereby the dissolved oxygen compound in the substrate-supported salt mixture is regenerated by being oxidized to a higher valence state.

  18. Aqueous biphasic plutonium oxide extraction process with pH and particle control

    DOEpatents

    Chaiko, D.J.; Mensah-Biney, R.

    1997-04-29

    A method is described for simultaneously partitioning a metal oxide and silica from a material containing silica and the metal oxide, using a biphasic aqueous medium having immiscible salt and polymer phases. 2 figs.

  19. Process for thin film deposition of cadmium sulfide

    DOEpatents

    Muruska, H. Paul; Sansregret, Joseph L.; Young, Archie R.

    1982-01-01

    The present invention teaches a process for depositing layers of cadmium sulfide. The process includes depositing a layer of cadmium oxide by spray pyrolysis of a cadmium salt in an aqueous or organic solvent. The oxide film is then converted into cadmium sulfide by thermal ion exchange of the O.sup.-2 for S.sup.-2 by annealing the oxide layer in gaseous sulfur at elevated temperatures.

  20. Conversion of alkali metal sulfate to the carbonate

    DOEpatents

    Sheth, Atul C.

    1982-01-01

    A process for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700.degree. C. and about 800.degree. C. with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. The sulfur-containing compounds are further treated.

  1. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  2. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    PubMed

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  3. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  4. Electrolytic production of metals using a resistant anode

    DOEpatents

    Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

    1986-11-04

    An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

  5. Separation of aromatic carboxylic acids using quaternary ammonium salts on reversed-phase HPLC. 2. Application for the analysis of Loy Yang coal oxidation products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamura, K.; Okuwaki, A.; Verheyen, T.V.

    In order to develop separation processes and analytical methods for aromatic carboxylic acids for the coal oxidation products, the separation behavior of aromatic carboxylic acids on a reversed-phase HPLC using eluent containing quaternary ammonium salt was optimized using the solvent gradient method. This method was applied for the analysis of Loy Yang coal oxidation products. It was confirmed that the analytical data using this method were consistent with those determined using gas chromatography.

  6. Diffusion mechanism in molten salt baths during the production of carbide coatings via thermal reactive diffusion

    NASA Astrophysics Data System (ADS)

    Ghadi, Aliakbar; Saghafian, Hassan; Soltanieh, Mansour; Yang, Zhi-gang

    2017-12-01

    The diffusion mechanism of carbide-forming elements from a molten salt bath to a substrate surface was studied in this research, with particular focus on the processes occurring in the molten bath at the time of coating. Metal, oxide, and metal-oxide baths were investigated, and the coating process was performed on H13 steel substrates. Scanning electron microscopy and electron-probe microanalysis were used to study the coated samples and the quenched salt bath. The thickness of the carbide coating layer was 6.5 ± 0.5, 5.2 ± 0.5, or 5.7 ± 0.5 μm depending on whether it was deposited in a metal, oxide, or metal-oxide bath, respectively. The phase distribution of vanadium-rich regions was 63%, 57%, and 74% of the total coating deposited in metal, oxide, and metal-oxide baths, respectively. The results obtained using the metal bath indicated that undissolved suspended metal particles deposited onto the substrate surface. Then, carbon subsequently diffused to the substrate surface and reacted with the metal particles to form the carbides. In the oxide bath, oxide powders dissolved in the bath with or without binding to the oxidative structure (Na2O) of borax; they were then reduced by aluminum and converted into metal particles. We concluded that, in the metal and oxide baths, the deposition of metal particles onto the sample surface is an important step in the formation of the coating.

  7. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  8. Formation of zinc protoporphyrin IX in Parma-like ham without nitrate or nitrite.

    PubMed

    Wakamatsu, Jun-ichi; Uemura, Juichi; Odagiri, Hiroko; Okui, Jun; Hayashi, Nobutaka; Hioki, Shoji; Nishimura, Takanori; Hattori, Akihito

    2009-04-01

    Zinc protoporphyrin IX (ZPP) is a characteristic red pigment in meat products that are manufactured without the addition of a curing agent such as nitrate or nitrite. To examine the effects of impurities such as mineral components in sea salt on the formation of ZPP, we manufactured Parmatype dry-cured hams that were salted with refined salt or sea salt and examined the involvement of oxidation-reduction potential (ORP) in the formation of ZPP. The content of ZPP was increased drastically after 40 weeks. Microscopic observation showed strong fluorescence caused by ZPP muscle fiber after 40 weeks. Conversely, heme content varied considerably during processing. ORP increased during processing. However, there was no obvious difference between ham salted with refined salt and that salted with sea salt. Therefore, it was concluded that impurities in sea salt were not involved in the formation of ZPP.

  9. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  10. Integrated method of thermosensitive triblock copolymer-salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide.

    PubMed

    Wang, Yun; Hu, Xiaowei; Han, Juan; Ni, Liang; Tang, Xu; Hu, Yutao; Chen, Tong

    2016-03-01

    A polymer-salt aqueous two-phase system (ATPS) consisting of thermosensitive copolymer ethylene-oxide-b-propylene-oxide-b-ethylene-oxide (EOPOEO) and NaH2PO4 was employed in deproteinization for lycium barbarum polysaccharide (LBP). The effects of salt type and concentration, EOPOEO concentration, amount of crude LBP solution and temperature were studied. In the primary extraction process, LBP was preferentially partitioned to the bottom (salt-rich) phase with high recovery ratio of 96.3%, while 94.4% of impurity protein was removed to the top (EOPOEO-rich) phase. Moreover, the majority of pigments could be discarded to top phase. After phase-separation, the LBP in the bottom phase was further purified by dialysis membrane to remove salt and other small molecular impurities. The purity of LBP was enhanced to 64%. Additionally, the FT-IR spectrum was used to identify LBP. EOPOEO was recovered by a temperature-induced separation, and reused in a new ATPS. An ideal extraction and recycle result were achieved. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Chronopotentiometry of refractory metals, actinides and oxyanions in molten salts: A review

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1992-01-01

    The applications of chronopotentiometry to the study of electrochemical behavior of three technologically important areas of refractory metals, actinides, and oxyanions in molten salts are critically reviewed. Chronopotentiometry is a very versatile diagnostic tool to understand the reaction mechanism of the electrode processes for the electrochemical reduction/oxidation of these electroactive species in molten salt solutions. Well adherent, compact, and uniformly thick coatings of refractory metals may be electrodeposited from their solutions in molten salts.

  12. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    PubMed

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  13. Salt Stress-Induced Loss of Iron Oxidoreduction Activities and Reacquisition of That Phenotype Depend on rus Operon Transcription in Acidithiobacillus ferridurans.

    PubMed

    Bonnefoy, Violaine; Grail, Barry M; Johnson, D Barrie

    2018-04-01

    The type strain of the mineral-oxidizing acidophilic bacterium Acidithiobacillus ferridurans was grown in liquid medium containing elevated concentrations of sodium chloride with hydrogen as electron donor. While it became more tolerant to chloride, after about 1 year, the salt-stressed acidophile was found to have lost its ability to oxidize iron, though not sulfur or hydrogen. Detailed molecular examination revealed that this was due to an insertion sequence, IS Afd1 , which belongs to the IS Pepr1 subgroup of the IS 4 family, having been inserted downstream of the two promoters PI and PII of the rus operon (which codes for the iron oxidation pathway in this acidophile), thereby preventing its transcription. The ability to oxidize iron was regained on protracted incubation of the culture inoculated onto salt-free solid medium containing ferrous iron and incubated under hydrogen. Two revertant strains were obtained. In one, the insertion sequence IS Afd1 had been excised, leaving an 11-bp signature, while in the other an ∼2,500-bp insertion sequence (belonging to the IS 66 family) was detected in the downstream inverted repeat of IS Afd1 The transcriptional start site of the rus operon in the second revertant strain was downstream of the two ISs, due to the creation of a new "hybrid" promoter. The loss and subsequent regaining of the ability of A. ferridurans T to reduce ferric iron were concurrent with those observed for ferrous iron oxidation, suggesting that these two traits are closely linked in this acidophile. IMPORTANCE Iron-oxidizing acidophilic bacteria have primary roles in the oxidative dissolution of sulfide minerals, a process that underpins commercial mineral-processing biotechnologies ("biomining"). Most of these prokaryotes have relatively low tolerance to chloride, which limits their activities when only saline or brackish waters are available. The study showed that it was possible to adapt a typical iron-oxidizing acidophile to grow in the presence of salt concentrations similar to those in seawater, but in so doing they lost their ability to oxidize iron, though not sulfur or hydrogen. The bacterium regained its capacity for oxidizing iron when the salt stress was removed but simultaneously reverted to tolerating lower concentrations of salt. These results suggest that the bacteria that have the main roles in biomining operations could survive but become ineffective in cases where saline or brackish waters are used for irrigation. Copyright © 2018 American Society for Microbiology.

  14. CeO2-Y2O3-ZrO2 Membrane with Enhanced Molten Salt Corrosion Resistance for Solid Oxide Membrane (SOM) Electrolysis Process

    NASA Astrophysics Data System (ADS)

    Zou, Xingli; Li, Xin; Shen, Bin; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu; Ding, Weizhong

    2017-02-01

    Innovative CeO2-Y2O3-ZrO2 membrane has been successfully developed and used in the solid oxide membrane (SOM) electrolysis process for green metallic materials production. The x mol pct ceria/(8- x) mol pct yttria-costabilized zirconia ( xCe(8- x)YSZ, x = 0, 1, 4, or 7) membranes have been fabricated and investigated as the membrane-based inert anodes to control the SOM electroreduction process in molten salt. The characteristics of these fabricated xCe(8- x)YSZ membranes including their corrosion resistances in molten salt and their degradation mechanisms have been systematically investigated and compared. The results show that the addition of ceria in the YSZ-based membrane can inhibit the depletion of yttrium during the SOM electrolysis, which thus makes the ceria-reinforced YSZ-based membranes possess enhanced corrosion resistances to molten salt. The ceria/yttria-costabilized zirconia membranes can also provide reasonable oxygen ion conductivity during electrolysis. Further investigation shows that the newly modified 4Ce4YSZ ceramic membrane has the potential to be used as novel inert SOM anode for the facile and sustainable production of metals/alloys/composites materials such as Si, Ti5Si3, TiC, and Ti5Si3/TiC from their metal oxides precursors in molten CaCl2.

  15. Feasibility tests of nickel as a containment material of molten Li2O-LiCl salt containing Li metal at 650 °C during electrolytic reduction

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Lee, Jeong

    2017-11-01

    In this study, we investigated the feasibility of nickel (Ni) as a material to contain molten Li2O-LiCl salt containing lithium (Li) metal at 650 °C as an electrolyte during the electrolytic reduction process of pyroprocessing (also known as oxide reduction, OR). First, the behaviors of Ni in four different LiCl salts (0.1 wt% Li-LiCl, 1 and 8 wt% Li2O-LiCl, and 8 wt% Li2O-0.1 wt% Li-LiCl) in an argon atmosphere were examined through immersion tests. Then, Ni was used as a vessel material for five consecutive OR runs of simulated oxide fuel using 1.0 wt% Li2O-LiCl salt. The tested Ni was analyzed by microbalance, X-ray diffraction, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Concentrations of Ni in the salt were measured using inductively coupled plasma atomic emission spectroscopy. No corrosion product of Ni, except Cr2Ni3, was observed on the Ni used for both the salt-immersion tests and the OR runs because the Ni was not exposed to oxygen gas. However, leaching of Ni in the OR salt containing excessive Li metal was observed. Therefore, Ni can be used as the salt containment material in the OR process when excessive Li metal and oxygen gas in the salt are maintained at low levels.

  16. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  17. Removal of amino groups from anilines through diazonium salt-based reactions.

    PubMed

    He, Linman; Qiu, Guanyinsheng; Gao, Yueqiu; Wu, Jie

    2014-09-28

    This minireview describes the applications of in situ generated diazonium salts from anilines in organic synthesis. In situ generation of diazonium salts from anilines represents an efficient and practical pathway, leading to a series of useful structures. In these transformations, the amino group of aniline formally acts as a leaving group. Two distinctive kinds of mechanisms, including transition metal (especially palladium)-catalyzed oxidative addition-reductive elimination and a radical process, are involved in the removal of amino groups from anilines, and both catalytic processes are described in this minireview.

  18. Low temperature chemical processing of graphite-clad nuclear fuels

    DOEpatents

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  19. Evaluation of Li{sub 3}N accumulation in a fused LiCl/Li salt matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, C.S.

    1998-09-01

    Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research, a pilot scale of the preprocessing stage is being designed by ANL-West to demonstrate the in situ hot cell capability of the chemical reduction process. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent light water reactor uranium oxide fuel. A simple analysis was performed in which the sources of impurities inmore » the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation, and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hot cell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix, and the mass rate for the device was determined.« less

  20. How salt lakes affect atmospheric new particle formation: A case study in Western Australia.

    PubMed

    Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A

    2016-12-15

    New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh -1 . The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to new particle formation in the investigated salt lake environment. Copyright © 2016. Published by Elsevier B.V.

  1. URANIUM SEPARATION PROCESS

    DOEpatents

    Lyon, W.L.

    1962-04-17

    A method of separating uranium oxides from PuO/sub 2/, ThO/sub 2/, and other actinide oxides is described. The oxide mixture is suspended in a fused salt melt and a chlorinating agent such as chlorine gas or phosgene is sparged through the suspension. Uranium oxides are selectively chlorinated and dissolve in the melt, which may then be filtered to remove the unchlorinated oxides of the other actinides. (AEC)

  2. Process of forming catalytic surfaces for wet oxidation reactions

    NASA Technical Reports Server (NTRS)

    Jagow, R. B. (Inventor)

    1977-01-01

    A wet oxidation process was developed for oxidizing waste materials, comprising dissolved ruthenium salt in a reactant feed stream containing the waste materials. The feed stream is introduced into a reactor, and the reactor contents are then raised to an elevated temperature to effect deposition of a catalytic surface of ruthenium black on the interior walls of the reactor. The feed stream is then maintained in the reactor for a period of time sufficient to effect at least partial oxidation of the waste materials.

  3. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    PubMed

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  4. Geochemical processes controlling the distribution and concentration of metals in soils from a Patagonian (Argentina) salt marsh affected by mining residues.

    PubMed

    Idaszkin, Yanina L; Alvarez, María Del Pilar; Carol, Eleonora

    2017-10-15

    Heavy metal pollution that affects salt marshes is a major environmental concern due to its toxic nature, persistence, and potential risk to organisms and to human health. Mining waste deposits originated four decades ago, by the metallurgical extraction of heavy metals, are found near to the San Antonio salt marsh in Patagonia. The aim of the work was to determine the geochemical processes that control the distribution and concentration of Cu, Fe, Pb and Zn in the soils of this Patagonian salt marsh. A survey of the mining waste deposits was carried out where three dumps were identified. Samples were collected to determine soil texture, Eh pH, organic matter and metal contents and the soil mineralogical composition. The results shows that the soils developed over the mining waste deposits are predominantly reddish constituted mainly by iron oxide, hydroxide and highly soluble minerals such as Zn and Cu sulphates. The drainage from these deposits tends to move towards the salt marsh. Within the salt marsh, the highest concentrations of Cu, Pb and Zn occur in the sectors closest to the mining wastes deposits. The sulphide oxidation and the dissolution of the Cu, Pb and Zn sulphates could be the mainly source of these metals in the drainage water. The metals in solution that reach the salt marsh, are adsorbed by the organic matter and the fine fraction of the soils. These adsorbed metals are then remobilized by tides in the lower sectors of the marsh by desorption from the cations present in the tidal flow. On the other hand, Fe tends to form non soluble oxides, hydroxides and sulphates which remain as altering material within the mining waste deposit. Finally, the heavy metal pollutants recorded in the San Antonio salt marsh shows that the mining waste deposits that were abandoned four decades ago are still a source metal contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Rare Earth Electrochemical Property Measurements and Phase Diagram Development in a Complex Molten Salt Mixture for Molten Salt Recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jinsuo; Guo, Shaoqiang

    Pyroprocessing is a promising alternative for the reprocessing of used nuclear fuel (UNF) that uses electrochemical methods. Compared to the hydrometallurgical reprocessing method, pyroprocessing has many advantages such as reduced volume of radioactive waste, simple waste processing, ability to treat refractory material, and compatibility with fast reactor fuel recycle. The key steps of the process are the electro-refining of the spent metallic fuel in the LiCl-KCl eutectic salt, which can be integrated with an electrolytic reduction step for the reprocessing of spent oxide fuels.

  6. FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS

    DOEpatents

    Moore, R.H.

    1960-08-01

    A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.

  7. Lipid oxidation and fatty acid composition in salt-dried yellow croaker ( Pseudosciaena polyactis) during processing

    NASA Astrophysics Data System (ADS)

    Cai, Qiuxing; Wu, Yanyan; Li, Laihao; Wang, Yueqi; Yang, Xianqing; Zhao, Yongqiang

    2017-10-01

    Lipid oxidation in salt-dried yellow croaker ( Pseudosciaena polyactis) was evaluated during processing with commonly used analytical indices, such as the peroxide value (POV), the thiobarbituric acid reactive substances (TBARS) value, and oxidative-relative lipoxygenase (LOX) activity. Additionally, fatty acids were analyzed using gas chromatography-mass spectrometry. Both POV and TBARS increased significantly ( P < 0.05) at the rinsing stage. POV reached its peak value of 3.63 meq O2 per kg sample at the drying stage, whereas TBARS constantly increased from 0.05 to 0.20 mg MDA per kg sample. Processing of salt-dried yellow croaker had an extremely significant ( P < 0.01) effect on LOX activity. Twenty-six fatty acids were identified. Combined eicosapentaenoic acid (EPA; C20:5n3) and docosahexaenoic acid (DHA; C22:6n3) content varied between (19.20 ± 0.37) mg g-1 and (23.45 ± 1.05) mg g-1. The polyunsaturated fatty acid/saturated fatty acid (PUFA/SFA) ratio in yellow croaker was 0.73-1.10, and the n-6/n-3 PUFA ratio was approximately 0.13-0.20. The contents of most fatty acids varied significantly ( P < 0.05) during the different processing stages, and these differences were caused by lipid oxidation. C18:0, C16:1n7, C19:0, and C22:6n3 showed clear changes in principle component one of a principle components analysis. These fatty acids are potential markers for evaluating lipid oxidation in fish muscle because there was a significant correlation between these markers and TBARS and LOX activity ( P < 0.05) with Pearson's coefficients > 0.931.

  8. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.

    PubMed

    Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina

    2013-01-15

    A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium-vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi(2)O(5) is converted to NaCl-type structure of Na(2)TiO(3), and M(3)O(5) (M=Ti, Mg, Fe) is converted to α-NaFeO(2)-type structure of NaMO(2), respectively. Roasting temperature and NaOH-slag mass ratio played a considerable role in the conversion of titanium in the rich titanium-vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH-slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na(+) was exchanged with H(+), Na(2)TiO(3) is converted to undefined structure of H(2)TiO(3), and NaMO(2) is converted to α-NaFeO(2)-type structure of HMO(2). Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  9. Stabilization of 238Pu-contaminated combustible waste by molten salt oxidation

    NASA Astrophysics Data System (ADS)

    Stimmel, Jay J.; Remerowski, Mary Lynn; Ramsey, Kevin B.; Heslop, J. Mark

    2000-07-01

    Surrogate studies were conducted using the molten salt oxidation system at the Naval Surface Warfare Center-Indian Head Division. This system uses a rotary feed system and an alumina molten salt oxidation vessel. The combustible materials were tested individually and together in a homogenized mixture. A slurry containing pyrolyzed cheesecloth ash spiked with cerium oxide, which is used as a surrogate for plutonium, and ethylene glycol were also treated in the molten salt oxidation vessel.

  10. Low-temperature nitridation of manganese and iron oxides using NaNH2 molten salt.

    PubMed

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro

    2013-10-21

    Manganese and iron nitrides are important functional materials, but their synthesis processes from oxides often require high temperatures. Herein, we show a novel meta-synthesis method for manganese and iron nitrides by low-temperature nitridation of their oxides using NaNH2 molten salt as the nitrogen source in an autoclave at 240 °C. With this method, nitridation of micrometer-sized oxide particles kept their initial morphologies, but the size of the primary particles decreased. The thermodynamic driving force is considered to be the conversion of oxides to sodium hydroxide, and the kinetic of nitridation is improved by the decrease of particle size and the low melting point of NaNH2. This technique as developed here has the advantages of low reaction temperature, reduced consumption of ammonia, employing nonspecialized equipment, and providing facile control of the reactions for producing nitrides from oxides.

  11. 40 CFR Appendix I to Part 265 - Recordkeeping Instructions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...

  12. 40 CFR Appendix I to Part 265 - Recordkeeping Instructions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...

  13. 40 CFR Appendix I to Part 265 - Recordkeeping Instructions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...

  14. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  15. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  16. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  17. 40 CFR Appendix I to Part 265 - Recordkeeping Instructions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... T10Infrared furnace incinerator T11Molten salt destructor T12Pyrolysis T13Wet Air oxidation T14Calcination... T21Chemical fixation T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination... Chloride Process Oxidation Reactor T89Methane Reforming Furnace T90Pulping Liquor Recovery Furnace...

  18. 40 CFR Appendix I to Part 264 - Recordkeeping Instructions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... incinerator T11Molten salt destructor T12Pyrolysis T13Wet air oxidation T14Calcination T15Microwave discharge... T22Chemical oxidation T23Chemical precipitation T24Chemical reduction T25Chlorination T26Chlorinolysis... Furnace T87Smelting, Melting, or Refining Furnace T88Titanium Dioxide Chloride Process Oxidation Reactor...

  19. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  20. Mechanism of oxidation of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt with oxygen in subcritical water.

    PubMed

    Imbierowicz, Mirosław

    2017-06-01

    The article presents the results of studies on the oxidation mechanism of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt (R-salt) with oxygen in subcritical water. To this aim, a series of experiments were carried out which showed that at a temperature of 413 K and pH > 9 the oxidation reaction of a substrate with oxygen was relatively quick and after approximately 40 min the R-salt oxidation yield exceeded 95%. In an acidic medium (pH < 7), the rate of R-salt oxidation is small. In order to identify the mechanism of R-salt oxidation, experiments were carried out at 413-569 K in solutions with pH = 10.0 and at partial oxygen pressure p O2  = 1.73 MPa. As a result of these experiments, a stable oxidation product was isolated from the reaction mixture and subjected to spectroscopic analysis. The analysis of H NMR of this product proved that a stable intermediate product of R-salt oxidation was 4-sulfophthalic acid sodium salt. The results of the experiments have shown that destructive oxidation of R-salt can easily be obtained at a temperature of 413 K, but satisfactory reduction of TOC in wastewater containing this substrate requires the use of very high temperature: at 569 K only 60% reduction of TOC was achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Process for recovering tritium from molten lithium metal

    DOEpatents

    Maroni, Victor A.

    1976-01-01

    Lithium tritide (LiT) is extracted from molten lithium metal that has been exposed to neutron irradiation for breeding tritium within a thermonuclear or fission reactor. The extraction is performed by intimately contacting the molten lithium metal with a molten lithium salt, for instance, lithium chloride - potassium chloride eutectic to distribute LiT between the salt and metal phases. The extracted tritium is recovered in gaseous form from the molten salt phase by a subsequent electrolytic or oxidation step.

  2. Synthesis and Thermodynamic Stability of Ba2B‧B″O6 and Ba3B*B″2O9 Perovskites Using the Molten Salt Method

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Virkar, Anil V.

    1999-12-01

    A number of mixed perovskites of the types Ba2B‧B″O6 (BaB‧1/2B″1/2O3) and Ba3B*B″2O9 (BaB*1/3B″2/3O3) where B‧=Gd, La, Nd, Sm, or Y; B″=Nb and B*=Ca were synthesized by a conventional calcination process, as well as by the molten salt method. The former consists of calcining appropriate mixtures of oxide or carbonate precursors in air at elevated temperatures (∼1250°C). The latter method consists of adding appropriate mixtures of oxide or carbonate precursors to a molten salt bath at relatively low temperatures (on the order of 300 to 500°C) so that the requisite compound is formed by dissolution-reprecipitation. X-ray diffraction confirmed the formation of a single-phase perovskite in each case with calcination at 1250°C. In a molten salt bath, however, all except Ba2LaNbO6 and Ba2NdNbO6 formed the perovskite structure. On the contrary, powders of Ba2LaNbO6 and Ba2NdNbO6 formed by a high-temperature calcination process readily decomposed when introduced into the molten salt bath. The formation of the requisite perovskite at a temperature as low as 350°C in a molten salt suggests that: (a) The perovskite is stable at 350°C. (b) The molten salt exhibits sufficient precursor solubility for the dissolution-reprecipitation process to occur in a reasonable time. Similarly, the decomposition of Ba2LaNbO6 and Ba2NdNbO6 in a molten salt bath shows that these materials are thermodynamically unstable at the temperature of the molten salt bath.

  3. Influence of salt on lipid oxidation in meat and seafood products: A review.

    PubMed

    Mariutti, Lilian R B; Bragagnolo, Neura

    2017-04-01

    Sodium chloride, commonly known as salt, is a widely used additive in food industry due to its preservation and antimicrobial properties provided by its ability to reduce water activity. Moreover, the addition of salt to meat and seafood aims at improving water retention capacity and enhancing flavor due to its influence on the activity of some enzymes responsible for flavor development. On the other hand, salt added in meat and seafood can favor lipid oxidation, which is one of the main responsibles for quality losses in the food industry. In this review, the main mechanisms of fatty acids and cholesterol oxidation are described as well as the influence of salt on lipid oxidation in meat and seafood. Besides, the possible mechanisms of the pro-oxidant action of sodium chloride are presented and potential solutions to inhibit the salt action in lipid oxidation and decrease the salt content in food are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrogen Sulfide Regulates Salt Tolerance in Rice by Maintaining Na+/K+ Balance, Mineral Homeostasis and Oxidative Metabolism Under Excessive Salt Stress

    PubMed Central

    Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan

    2015-01-01

    Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015

  5. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from idealmore » solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.« less

  6. Effects of lead mineralogy on soil washing enhanced by ferric salts as extracting and oxidizing agents.

    PubMed

    Yoo, Jong-Chan; Park, Sang-Min; Yoon, Geun-Seok; Tsang, Daniel C W; Baek, Kitae

    2017-10-01

    In this study, we evaluated the feasibility of using ferric salts including FeCl 3 and Fe(NO 3 ) 3 as extracting and oxidizing agents for a soil washing process to remediate Pb-contaminated soils. We treated various Pb minerals including PbO, PbCO 3 , Pb 3 (CO 3 ) 2 (OH) 2 , PbSO 4 , PbS, and Pb 5 (PO 4 ) 3 (OH) using ferric salts, and compared our results with those obtained using common washing agents of HCl, HNO 3 , disodium-ethylenediaminetetra-acetic acid (Na 2 -EDTA), and citric acid. The use of 50 mM Fe(NO 3 ) 3 extracted significantly more Pb (above 96% extraction) from Pb minerals except PbSO 4 (below 55% extraction) compared to the other washing agents. In contrast, washing processes using FeCl 3 and HCl were not effective for extraction from Pb minerals because of PbCl 2 precipitation. Yet, the newly formed PbCl 2 could be dissolved by subsequent wash with distilled water under acidic conditions. When applying our washing method to remediate field-contaminated soil from a shooting range that had high concentrations of Pb 3 (CO 3 ) 2 (OH) 2 and PbCO 3 , we extracted more Pb (approximately 99% extraction) from the soil using 100 mM Fe(NO 3 ) 3 than other washing agents at the same process conditions. Our results show that ferric salts can be alternative washing agents for Pb-contaminated soils in view of their extracting and oxidizing abilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molten salt oxidation: a versatile and promising technology for the destruction of organic-containing wastes.

    PubMed

    Yao, Zhitong; Li, Jinhui; Zhao, Xiangyang

    2011-08-01

    Molten salt oxidation (MSO), a robust thermal but non-flame process, has the inherent capability of destroying organic constituents in wastes, while retaining inorganic and radioactive materials in situ. It has been considered as an alternative to incineration and may be a solution to many waste disposal problems. The present review first describes the history and development of MSO, as well as design and engineering details, and then focuses on reaction mechanisms and its potential applications in various wastes, including hazardous wastes, medical wastes, mixed wastes, and energetic materials. Finally, the current status of and prospects for the MSO process and directions for future research are considered. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Utilized in the Reprocessing of Used Uranium Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.

    2015-04-01

    This paper describes various approaches for making sodalite with a LiCl-Li2O oxide reduction salt used to recover uranium from used oxide fuel. The approaches include sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in themore » calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt.« less

  9. Exhaust gas clean up process

    DOEpatents

    Walker, Richard J.

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  10. Synergistic effect of graphene oxide on the methanol oxidation for fuel cell application

    NASA Astrophysics Data System (ADS)

    Siwal, Samarjeet; Ghosh, Sarit; Nandi, Debkumar; Devi, Nishu; Perla, Venkata K.; Barik, Rasmita; Mallick, Kaushik

    2017-09-01

    Aromatic polypyrene was synthesized by the oxidative polymerization of pyrene with potassium tetrachloropalladate (II), as oxidant. During the polymerization process the palladium salt was reduced to metallic palladium and forms the metal-polymer composite material. Polypyrene stabilized palladium nanoparticles showed electrocatalytic activity toward the oxidation of methanol. The performance of the electrocatalytic activity was substantially improved with the incorporation of graphene oxide to the palladium-polypyrene composite and the synergistic performance was attributed to the electronic and structural properties of the system.

  11. Catalytic conversion of hydrocarbons to hydrogen and high-value carbon

    DOEpatents

    Shah, Naresh; Panjala, Devadas; Huffman, Gerald P.

    2005-04-05

    The present invention provides novel catalysts for accomplishing catalytic decomposition of undiluted light hydrocarbons to a hydrogen product, and methods for preparing such catalysts. In one aspect, a method is provided for preparing a catalyst by admixing an aqueous solution of an iron salt, at least one additional catalyst metal salt, and a suitable oxide substrate support, and precipitating metal oxyhydroxides onto the substrate support. An incipient wetness method, comprising addition of aqueous solutions of metal salts to a dry oxide substrate support, extruding the resulting paste to pellet form, and calcining the pellets in air is also discloses. In yet another aspect, a process is provided for producing hydrogen from an undiluted light hydrocarbon reactant, comprising contacting the hydrocarbon reactant with a catalyst as described above in a reactor, and recovering a substantially carbon monoxide-free hydrogen product stream. In still yet another aspect, a process is provided for catalytic decomposition of an undiluted light hydrocarbon reactant to obtain hydrogen and a valuable multi-walled carbon nanotube coproduct.

  12. The chemistry of sodium chloride involvement in processes related to hot corrosion. [in gas turbine engines

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.

    1979-01-01

    Thermodynamic and mass transport calculations, and laboratory experiments elucidating the behavior of sodium chloride in combustion environments, in the deposition process, and in reactions with certain oxides on the surfaces of superalloys are summarized. It was found that some of the ingested salt is separated out of the air stream by the compressor. However, sodium chloride does pass from the compressor to the combustor where numerous chemical reactions take place. Here some of the salt is vaporized to yield gaseous sodium chloride molecules. Hydrogen and oxygen atoms present in the combustion products react with some sodium chloride to yield other gaseous species such as sodium, and a fraction of the salt remains as particulates. Both the gas phase and condensed sodium chloride can lead to sodium sulfate formation by various routes, all of which involve reaction with sulfur oxides and oxygen. In addition to contributing to the formation of sodium sulfate, the sodium chloride can contribute to corrosion directly.

  13. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  14. Production of oxygen from lunar soil by molten salt electrolysis

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1989-01-01

    A simple approach to utilizing lunar resources proposes to dissolve lunar soil, without or with little beneficiation, in a suitable molten salt and to electrolyze the oxides to oxygen and a metal byproduct. The envisioned process and the required technological advances are discussed. Promising electrolysis conditions have been identified in a recent experimental program to manufacture silicon and aluminum from anorthite.

  15. Accumulation of Contaminants in the Distribution System.

    EPA Science Inventory

    Removal of arsenic from water using iron-related processes including coagulation with iron salts, iron removal with oxidation/filtration, and specific iron resins is established. These processes are effective because iron solids including minerals and chemical floc have strong ad...

  16. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.

    1991-10-15

    The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.

  17. Recovery and regeneration of spent MHD seed material by the formate process

    DOEpatents

    Sheth, Atul C.; Holt, Jeffrey K.; Rasnake, Darryll G.; Solomon, Robert L.; Wilson, Gregory L.; Herrigel, Howard R.

    1991-01-01

    The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.

  18. Change of brown coal oxidation kinetic characteristics by promoting additives appending in the form of copper salts

    NASA Astrophysics Data System (ADS)

    Larionov, K. B.; Mishakov, I. V.; Gromov, A. A.; Zenkov, A. V.

    2017-11-01

    Process of brown coal oxidation with 5%wt content of copper-salt additives of various nature (Cu (NO3)2, CuSO4 and Cu(CH3COO)2) was studied. The experiment has been performed by thermogravimetric analysis at a heating rate of 2.5°C/min to a maximum temperature of 600°C in the air. Analytical evaluation of oxidation process kinetic characteristics has been conducted based on the results of TGA. It has been established that addition of initiating agents leads to significant reduction in the initial ignition temperature of coal (ΔTi = 15÷40°C), shortening of the sample warm-up time to the ignition point (Δte = 6÷12 min) and reduction of the sample burning time (Δtf = 40÷54 min). The following series of additives activity affecting ignition temperature of coals has been established: Cu(CH3COO)2 > Cu(NO3)2 > CuSO4. Additionally, the opposite can be said about the effect of additives on residence time of the sample in its combustion area (CuSO4 > Cu(NO3)2 > Cu(CH3COO)2). According to mass spectrometric analysis, presence of NOx, SO2, CO2 (intense peaks at 190÷290°C) was recorded in oxidation products of modified samples, which is explained by partial or complete decomposition of salts.

  19. New Aptes Cross-linked Polymers from Poly(ethylene oxide)s and Cyanuric Chloride for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Tigelaar, Dean M.; Meador, Mary Ann B.; Kinder, James D.; Bennett, William R.

    2005-01-01

    A new series of polymer electrolytes for use as membranes for lithium batteries are described. Electrolytes were made by polymerization between cyanuric chloride and diamino-terminated poly(ethylene oxide)s, followed by cross-linking via a sol-gel process. Thermal analysis and lithium conductivity of freestanding polymer films were studied. The effects of several variables on conductivity were investigated, such as length of backbone PEO chain, length of branching PEO chain, extent of branching, extent of cross-linking, salt content, and salt counterion. Polymer films with the highest percentage of PEO were found to be the most conductive, with a maximum lithium conductivity of 3.9 x 10(exp -5) S/cm at 25 C. Addition of plasticizer to the dry polymers increased conductivity by an order of magnitude.

  20. Naphthenic acids removal from high TDS produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration.

    PubMed

    Aher, Ashish; Papp, Joseph; Colburn, Andrew; Wan, Hongyi; Hatakeyama, Evan; Prakash, Prakhar; Weaver, Ben; Bhattacharyya, Dibakar

    2017-11-01

    Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (Fe x O y nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by Fe x O y functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. Fe x O y functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by Fe x O y functionalized membrane for removal of NA.

  1. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, Raghu Nath; Ginley, David S.

    1998-01-01

    A process for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  2. Process for the synthesis of iron powder

    DOEpatents

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  3. Process for the synthesis of iron powder

    DOEpatents

    Welbon, William W.

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  4. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  5. Method for producing nanostructured metal-oxides

    DOEpatents

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  6. Treatment of high salt oxidized modified starch waste water using micro-electrolysis, two-phase anaerobic aerobic and electrolysis for reuse

    NASA Astrophysics Data System (ADS)

    Yi, Xuenong; Wang, Yulin

    2017-06-01

    A combined process of micro-electrolysis, two-phase anaerobic, aerobic and electrolysis was investigated for the treatment of oxidized modified starch wastewater (OMSW). Optimum ranges for important operating variables were experimentally determined and the treated water was tested for reuse in the production process of corn starch. The optimum hydraulic retention time (HRT) of micro-electrolysis, methanation reactor, aerobic process and electrolysis process were 5, 24, 12 and 3 h, respectively. The addition of iron-carbon fillers to the acidification reactor was 200 mg/L while the best current density of electrolysis was 300 A/m2. The biodegradability was improved from 0.12 to 0.34 by micro-electrolysis. The whole treatment was found to be effective with removal of 96 % of the chemical oxygen demand (COD), 0.71 L/day of methane energy recovery. In addition, active chlorine production (15,720 mg/L) was obtained by electrolysis. The advantage of this hybrid process is that, through appropriate control of reaction conditions, effect from high concentration of salt on the treatment was avoided. Moreover, the process also produced the material needed in the production of oxidized starch while remaining emission-free and solved the problem of high process cost.

  7. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOEpatents

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  8. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOEpatents

    Maroni, Victor A.; von Winbush, Samuel

    1988-01-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  9. Influence of different salting processes on the evolution of the volatile metabolites of vacuum-packed fillets of farmed and wild sea bass (Dicentrarchus labrax) stored under refrigeration conditions: a study by SPME-GC/MS.

    PubMed

    Vidal, Natalia P; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D

    2017-02-01

    Fish shelf-life extension is a topic of great interest. In this study the behaviour of salted and unsalted farmed and wild European sea bass (Dicentrarchus labrax) fillets during storage was analysed through the evolution of their volatile metabolites. Farmed and wild sea bass fillets were brine-salted for 15 or 75 min, or dry-salted, vacuum-packed and stored at 4 °C for up to 1 month, and their headspaces were studied by Solid Phase Micro extraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS). At the same storage time, unsalted wild fillets contained, in general, a higher number and abundance of volatile compounds coming from microbiological or endogenous enzymatic activity than unsalted farmed ones. The more intense the salting, the lower the number and abundance of microbiological spoilage metabolites, especially in wild samples. The appearance of oxidation metabolites only in dry-salted wild samples evidences that this kind of salting provokes a certain oxidation in these samples. The better performance of farmed than wild fillets suggests that salted farmed fillets, vacuum-packed and stored under refrigeration conditions, could be a successful alternative to diversify the presence of sea bass in the market. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  11. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-06-23

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  12. Advanced oxidation of acridine orange by aqueous alkaline iodine.

    PubMed

    Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum

    2016-11-01

    The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λ max 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I 3 - ) species, instead of hypoidate (OI - ) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.

  13. Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Adam; Pati, Soobhankar

    2012-03-11

    Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less

  14. Exhaust gas clean up process

    DOEpatents

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  15. Weathering of the New Albany Shale, Kentucky, USA: I. Weathering zones defined by mineralogy and major-element composition

    USGS Publications Warehouse

    Tuttle, M.L.W.; Breit, G.N.

    2009-01-01

    Comprehensive understanding of chemical and mineralogical changes induced by weathering is valuable information when considering the supply of nutrients and toxic elements from rocks. Here minerals that release and fix major elements during progressive weathering of a bed of Devonian New Albany Shale in eastern Kentucky are documented. Samples were collected from unweathered core (parent shale) and across an outcrop excavated into a hillside 40 year prior to sampling. Quantitative X-ray diffraction mineralogical data record progressive shale alteration across the outcrop. Mineral compositional changes reflect subtle alteration processes such as incongruent dissolution and cation exchange. Altered primary minerals include K-feldspars, plagioclase, calcite, pyrite, and chlorite. Secondary minerals include jarosite, gypsum, goethite, amorphous Fe(III) oxides and Fe(II)-Al sulfate salt (efflorescence). The mineralogy in weathered shale defines four weathered intervals on the outcrop-Zones A-C and soil. Alteration of the weakly weathered shale (Zone A) is attributed to the 40-a exposure of the shale. In this zone, pyrite oxidization produces acid that dissolves calcite and attacks chlorite, forming gypsum, jarosite, and minor efflorescent salt. The pre-excavation, active weathering front (Zone B) is where complete pyrite oxidation and alteration of feldspar and organic matter result in increased permeability. Acidic weathering solutions seep through the permeable shale and evaporate on the surface forming abundant efflorescent salt, jarosite and minor goethite. Intensely weathered shale (Zone C) is depleted in feldspars, chlorite, gypsum, jarosite and efflorescent salts, but has retained much of its primary quartz, illite and illite-smectite. Goethite and amorphous FE(III) oxides increase due to hydrolysis of jarosite. Enhanced permeability in this zone is due to a 14% loss of the original mass in parent shale. Denudation rates suggest that characteristics of Zone C were acquired over 1 Ma. Compositional differences between soil and Zone C are largely attributed to illuvial processes, formation of additional Fe(III) oxides and incorporation of modern organic matter.

  16. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION .(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...21 l 7 3 ..... l DTIC NSPECT I" ’I cCPY INSECE( METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION I. INTRODUCTION Molten ...discussed in terms of its importance to the understanding of molten salt corrosion . II. PROTECTIVE COATINGS Since most structural metals and alloys are

  17. Process for the synthesis of iron powder

    DOEpatents

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  18. Synthesis of Oxides Containing Transition Metals

    DTIC Science & Technology

    1990-07-09

    metal oxide single crystals by the electrolysis of molten salts containing mixtures of the appropriate oxides. Andreiux and Bozon (33-34) were able to...examples of unusual transition metal oxides which can be prepared (usually as single crystals) by electrolysis of fused salts . Summary The methods of...ferrites with the composition MFe 204 involved the thermal decomposition of oxalate (3) or pyridinate salts (1). The synthesis of ferrites from mixed

  19. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  20. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  1. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  2. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  3. Preparation of transparent conductors ferroelectric memory materials and ferrites

    DOEpatents

    Bhattacharya, R.N.; Ginley, D.S.

    1998-07-28

    A process is described for the preparation by electrodeposition of metal oxide film and powder compounds for ferroelectric memory materials and ferrites wherein the metal oxide includes a plurality of metals. The process comprises providing an electrodeposition bath, providing soluble salts of the metals to this bath, electrically energizing the bath to thereby cause formation of a recoverable film of metal on the electrode, recovering the resultant film as a film or a powder, and recovering powder formed on the floor of the bath. The films and powders so produced are subsequently annealed to thereby produce metal oxide for use in electronic applications. The process can be employed to produce metal-doped metal oxide film and powder compounds for transparent conductors. The process for preparation of these metal-doped metal oxides follows that described above.

  4. Salt transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  5. Salt transport extraction of transuranium elements from lwr fuel

    DOEpatents

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  6. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  7. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  8. Metal-oxide-based energetic materials and synthesis thereof

    DOEpatents

    Tillotson, Thomas M. , Simpson; Randall, L [Livermore, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2006-01-17

    A method of preparing energetic metal-oxide-based energetic materials using sol-gel chemistry has been invented. The wet chemical sol-gel processing provides an improvement in both safety and performance. Essentially, a metal-oxide oxidizer skeletal structure is prepared from hydrolyzable metals (metal salts or metal alkoxides) with fuel added to the sol prior to gelation or synthesized within the porosity metal-oxide gel matrix. With metal salt precursors a proton scavenger is used to destabilize the sol and induce gelation. With metal alkoxide precursors standard well-known sol-gel hydrolysis and condensation reactions are used. Drying is done by standard sol-gel practices, either by a slow evaporation of the liquid residing within the pores to produce a high density solid nanocomposite, or by supercritical extraction to produce a lower density, high porous nanocomposite. Other ingredients may be added to this basic nanostructure to change physical and chemical properties, which include organic constituents for binders or gas generators during reactions, burn rate modifiers, or spectral emitters.

  9. Effect of cathode material on the electrorefining of U in LiCl-KCl molten salts

    NASA Astrophysics Data System (ADS)

    Lee, Chang Hwa; Kim, Tack-Jin; Park, Sungbin; Lee, Sung-Jai; Paek, Seung-Woo; Ahn, Do-Hee; Cho, Sung-Ki

    2017-05-01

    The influence of cathode materials on the U electrorefining process is examined using electrochemical measurements and SEM-EDX observations. Stainless steel (STS), Mo, and W electrodes exhibit similar U reduction/oxidation behavior in 500 °C LiCl-KCl-UCl3 molten salts, as revealed by the cyclic voltammograms. However, slight shifts are observed in the cathodic and anodic peak potentials at the STS electrode, which are related to the fast reduction/oxidation kinetics associated with this electrode. The U deposits on the Mo and W electrodes consist of uniform dendritic chains of U in rhomboidal-shaped crystals, whereas several U dendrites protruding from the surface are observed for the STS electrode. EDX mapping of the electrode surfaces reveals that simple scraping of the U dendrites from W electrodes pretreated in dilute HCl solutions to dissolve the residual salt, results in clear removal of the U deposits, whereas a thick U deposit layer strongly adheres to the STS electrode surface even after treatment. This result is expected to contribute to the development of an effective and continuous U recovery process using electrorefining.

  10. Corrosion Behavior of Alloy 625 in PbSO4-Pb3O4-PbCl2-ZnO-10 Wt Pct CdO Molten Salt Medium

    NASA Astrophysics Data System (ADS)

    Mohammadi Zahrani, E.; Alfantazi, A. M.

    2012-08-01

    Corrosion behavior and degradation mechanisms of alloy 625 under a 47.288 PbSO4-12.776 Pb3O4-6.844PbCl2-23.108ZnO-10CdO (wt pct) molten salt mixture under air atmosphere were studied at 873 K, 973 K, and 1073 K (600 °C, 700 °C, and 800 °C). Electrochemical impedance spectroscopy (EIS), open circuit potential (OCP) measurements, and potentiodynamic polarization techniques were used to evaluate the degradation mechanisms and characterize the corrosion behavior of the alloy. Morphology, chemical composition, and phase structure of the corrosion products and surface layers of the corroded specimens were studied by scanning electron microscopy/energy-dispersive X-ray (SEM/EDX) and X-ray map analyses. Results confirmed that during the exposure of alloy 625 to the molten salt, chromium was mainly dissolved through an active oxidation process as CrO3, Cr2O3, and CrNbO4, while nickel dissolved only as NiO in the system. Formation of a porous and nonprotective oxide layer with low resistance is responsible for the weak protective properties of the barrier layer at high temperatures of 973 K and 1073 K (700 °C and 800 °C). There were two kinds of attack for INCONEL 625, including general surface corrosion and pitting. Pitting corrosion occurred due to the breakdown of the initial oxide layer by molten salt dissolution of the oxide or oxide cracking.

  11. Facile preparation of highly pure KF-ZrF4 molten salt

    NASA Astrophysics Data System (ADS)

    Zong, Guoqiang; Cui, Zhen-Hua; Zhang, Zhi-Bing; Zhang, Long; Xiao, Ji-Chang

    2018-03-01

    The preparation of highly pure KF-ZrF4 (FKZr) molten salt, a potential secondary coolant in molten salt reactors, was realized simply by heating a mixture of (NH4)2ZrF6 and KF. X-ray diffraction analysis indicated that the FKZr molten salt was mainly composed of KZrF5 and K2ZrF6. The melting point of the prepared FKZr molten salt was 420-422 °C under these conditions. The contents of all metal impurities were lower than 20 ppm, and the content of oxygen was lower than 400 ppm. This one-step protocol avoids the need for a tedious procedure to prepare ZrF4 and for an additional purification process to remove oxide impurities, and is therefore a convenient, efficient and economic preparation method for high-purity FKZr molten salt.

  12. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

    PubMed Central

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm−3) as well as a gravimetric capacity of 161 mA h g−1 and volumetric capacity of 281 mA h cm−3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g−1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate. PMID:27220812

  13. Continuous process electrorefiner

    DOEpatents

    Herceg, Joseph E [Naperville, IL; Saiveau, James G [Hickory Hills, IL; Krajtl, Lubomir [Woodridge, IL

    2006-08-29

    A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.

  14. Using solvent-free sample preparation to promote protonation of poly(ethylene oxide)s with labile end-groups in matrix-assisted laser desorption/ionisation.

    PubMed

    Mazarin, Michael; Phan, Trang N T; Charles, Laurence

    2008-12-01

    Protonation is usually required to observe intact ions during matrix-assisted laser desorption/ionization (MALDI) of polymers containing fragile end-groups while cation adduction induces chain-end degradation. These polymers, generally obtained via living free radical polymerization techniques, are terminated with a functionality in which a bond is prone to homolytic cleavage, as required by the polymerization process. A solvent-free sample preparation method was used here to avoid salt contaminant from the solvent traditionally used in the dried-droplet MALDI procedure. Solvent-based and solvent-free sample preparations were compared for a series of three poly(ethylene oxide) polymers functionalized with a labile end-group in a nitroxide-mediated polymerization reaction, using 2,4,6-trihydroxyacetophenone (THAP) as the matrix without any added salt. Intact oligomer ions could only be produced as protonated molecules in solvent-free MALDI while sodium adducts of degraded polymers were formed from the dried-droplet samples. Although MALDI analysis was performed at the laser threshold, fragmentation of protonated macromolecules was still observed to occur. However, in contrast to sodiated molecules, dissociation of protonated oligomers does not involve the labile C--ON bond of the end-group. As the macromolecule size increased, protonation appeared to be less efficient and sodium adduction became the dominant ionization process, although no sodium salt was added in the preparation. Formation of sodiated degraded macromolecules would be dictated by increasing cation affinity as the size of the oligomers increases and would reveal the presence of salts at trace levels in the MALDI samples.

  15. Scandium recovery from slags after oxidized nickel ore processing

    NASA Astrophysics Data System (ADS)

    Smyshlyaev, Denis; Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Semenishchev, Vladimir

    2017-09-01

    One of the possible sources of scandium production - waste (slags) from processing of oxidized nickel ores, has been considered in present research work. The hydrometallurgical method has been selected as the primary for scandium extraction. Different reagents for leaching of scandium, such as sulfuric acid, various carbonate salts and fluorides, have been tested. Sulfuric acid has been recognized as an optimal leaching reagent. Sulfuric acid concentration of 100 g L-1 allowed recovering up to 97 % of scandium.

  16. Development and application of free pretreatment container steel

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Liu, Y.; Han, B.; Wei, B.; Wang, S. Z.

    2017-12-01

    Due to economic and environmental advantages pre-treatment containers have good big development prospects, which can avoid shot blasting processes, and decrease the noise and dust pollution. By analyzing requirements of the container steel surface quality, target oxide scale structure of free pretreatment container steel has been determined. Trial process was carried out, and test results showed that the oxide scale achieved the desired objects, oxide scale with outer thin Fe3O4 layer and inner eutectoid α-Fe+Fe3O4. Salt spray test, second adhesion test, and modeling performance basically corroborated the container feasibility.

  17. Cryochemical method for forming spherical metal oxide particles from metal salt solutions

    DOEpatents

    Tinkle, M.C.

    1973-12-01

    A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)

  18. Assessing the impact of mineralogy on our ability to detect organic salts in Gale Crater, Mars, through thermal analyses.

    NASA Astrophysics Data System (ADS)

    Lewis, J. M. T.; Eigenbrode, J. L.; Franz, H. B.; Sutter, B.; Niles, P. B.; McAdam, A.

    2016-12-01

    Organic matter present in martian sediments analyzed by the Sample Analysis at Mars (SAM) instrument suite on the Curiosity rover and in martian meteorites suggests that there may be a widespread presence of organic molecules on the surface of Mars. This organic pool may be derived from exogenous sources such as interplanetary dust particles and from indigenous processes such as volcanism, serpentinization and life, if it has ever existed on Mars. Direct detection of an ancient organic geochemical record in martian materials is challenged by two issues. First, alteration at the surface can compromise organic matter preservation. It is expected that unprotected organic compounds undergo partial oxidative diagenesis, spurred by ionizing radiation and oxidants, to metastable organic salts (e.g., iron acetate, calcium oxalate, and sodium phthalate). Such organic salts are not directly detectable by pyrolysis, producing only CO2 and CO during heating. Second, exposed organic compounds in the SAM oven, i.e., those available for reaction, are susceptible to oxidation and chlorination by perchlorates, which are thought to be ubiquitous on Mars. In order to assess whether CO2 and CO may be derived from organic salts, as opposed to combustion of other organics or mineral decomposition, a comprehensive understanding of how sample mineralogy influences their decomposition profiles is required. Simplified mineral matrices, consistent with those detected by Curiosity's Chemistry and Mineralogy instrument or inferred from SAM instrument analyses, were prepared and mixed with standards of several organic salts expected to be present on Mars. The mixtures were then analyzed under SAM-like analytical conditions. Results address the influence of iron and sulfur mineralogies and perchlorate salts on the decomposition of metastable organic salts. The results are related to the interpretation of the sub-400 °C CO2 and CO observed by SAM that may be derived from these organic salts.

  19. Salt-stress-responsive chloroplast proteins in Brassica juncea genotypes with contrasting salt tolerance and their quantitative PCR analysis.

    PubMed

    Yousuf, Peerzada Yasir; Ahmad, Altaf; Aref, Ibrahim M; Ozturk, Munir; Hemant; Ganie, Arshid Hussain; Iqbal, Muhammad

    2016-11-01

    Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.

  20. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  1. Iridium material for hydrothermal oxidation environments

    DOEpatents

    Hong, Glenn T.; Zilberstein, Vladimir A.

    1996-01-01

    A process for hydrothermal oxidation of combustible materials in which, during at least a part of the oxidation, corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises iridium, iridium oxide, an iridium alloy, or a base metal overlaid with an iridium coating. Iridium has been found to be highly resistant to environments encountered in the process of hydrothermal oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 800.degree. C.

  2. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  3. Control of the Structure of Diffusion Layer in Carbon Steels Under Nitriding with Preliminary Deposition of Copper Oxide Catalytic Films

    NASA Astrophysics Data System (ADS)

    Petrova, L. G.; Aleksandrov, V. A.; Malakhov, A. Yu.

    2017-07-01

    The effect of thin films of copper oxide deposited before nitriding on the phase composition and the kinetics of growth of diffusion layers in carbon steels is considered. The process of formation of an oxide film involves chemical reduction of pure copper on the surface of steel specimens from a salt solution and subsequent oxidation under air heating. The oxide film exerts a catalytic action in nitriding of low- and medium-carbon steels, which consists in accelerated growth of the diffusion layer, the nitride zone in the first turn. The kinetics of the nitriding process and the phase composition of the layer are controlled by the thickness of the copper oxide precursor, i.e., the deposited copper film.

  4. Optical cryoimaging of rat kidney and the effective role of chromosome 13 in salt-induced hypertension

    NASA Astrophysics Data System (ADS)

    Salehpour, F.; Yang, C.; Kurth, T.; Cowley, A. W.; Ranji, M.

    2015-03-01

    The objective of this work is to assess oxidative stress levels in salt-sensitive hypertension animal model using 3D optical cryoimager to image mitochondrial redox ratio. We studied Dahl salt-induced (SS) rats, and compared the results with a consomic SS rat strain (SSBN13). The SSBN13 strain was developed by the introgression of chromosome from the Brown Norway (BN) rat into the salt-sensitive (SS) genetic background and exhibits significant protection from salt induced hypertension1 . These two groups were fed on a high salt diet of 8.0% NaCl for one week. Mitochondrial redox ratio (NADH/FAD=NADH RR), was used as a quantitative marker of the oxidative stress in kidney tissue. Maximum intensity projected images and their corresponding histograms in each group were acquired from each kidney group. The result showed a 49% decrease in mitochondrial redox ratio of SS compared to SSBN13 translated to an increase in the level of oxidative stress of the tissue. Therefore, the results quantify oxidative stress levels and its effect on mitochondrial redox in salt sensitive hypertension.

  5. Solid oxide membrane-assisted controllable electrolytic fabrication of metal carbides in molten salt.

    PubMed

    Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu

    2016-08-15

    Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.

  6. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01

    This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl-Li2O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.

  7. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    DOE PAGES

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; ...

    2015-04-01

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li 2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na 2O-B 2O 3- SiO 2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to formmore » halite in solution and Li 2O and SiO 2 to form lithium silicates (e.g., Li 2SiO 3 or Li 2Si 2O 5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li 2O salt but that the incorporation of Li into the sodalite is low.« less

  8. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.

    1999-02-09

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.

  9. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.

    1999-01-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.

  10. Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils.

    PubMed

    Nejidat, Ali

    2005-03-01

    Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.

  11. Characterization of γ-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress.

    PubMed

    Al-Quraan, Nisreen A; Sartawe, Fatima Al-Batool; Qaryouti, Muien M

    2013-07-15

    The molecular response of plants to abiotic stresses has been considered a process mainly involved in the modulation of transcriptional activity of stress-related genes. Nevertheless, recent findings have suggested new layers of regulation and complexity. Upstream molecular mechanisms are involved in the plant response to abiotic stress. Plants gain resistance to abiotic stress by reprogramming metabolism and gene expression. GABA is proposed to be a signaling molecule involved in nitrogen metabolism, regulating the cytosolic pH, and protection against oxidative damage in response to various abiotic stresses. The aim of our study was to examine the role of the GABA shunt pathway-specific response in five wheat (Triticum aestivum L.) cultivars (Hurani 75, Sham I, Acsad 65, Um Qayes and Nodsieh) to salt and osmotic stress in terms of seed germination, seedling growth, oxidative damage (malondialdehyde (MDA) accumulation), and characterization of the glutamate decarboxylse gene (GAD) m-RNA level were determined using RT-PCR techniques. Our data showed a marked increase in GABA, MDA and GAD m-RNA levels under salt and osmotic stress in the five wheat cultivars. Um Qayes cultivar showed the highest germination percentage, GABA accumulation, and MDA level under salt and osmotic stresses. The marked increase in GAD gene expression explains the high accumulation of the GABA level under both stresses. Our results indicated that the GABA shunt is a key signaling and metabolic pathway that allows wheat to adapt to salt and osmotic stress. Based on our data, the Um Qayes wheat cultivar is the cultivar most recommended to be grown in soil with high salt and osmotic contents. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Fish in Vitro Digestion: Influence of Fish Salting on the Extent of Lipolysis, Oxidation, and Other Reactions.

    PubMed

    Nieva-Echevarría, Bárbara; Goicoechea, Encarnación; Manzanos, María J; Guillén, María D

    2017-02-01

    A study of the various chemical reactions which take place during fish in vitro digestion and the potential effect of fish salting on their extent is addressed for the first time. Farmed European sea bass fillets, raw, brine-salted or dry-salted, were digested using a gastrointestinal in vitro model. Fish lipid extracts before and after digestion were analyzed by 1 H NMR, and the headspace composition of the digestates was investigated by SPME-GC/MS. During digestion, not only lipolysis, but also fish lipid oxidation took place. This latter was evidenced by the generation of conjugated dienes supported on chains having also hydroperoxy- and hydroxy-groups (primary oxidation compounds), by the increase of volatile secondary oxidation products, and by the decrease of the antioxidant 2,6-di-tert-butyl-hydroxytoluene (BHT). Likewise, esterification and Maillard-type reactions also occurred. Salting, and especially dry-salting, enhanced all these reactions, except for lipolysis, during digestion.

  13. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  14. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  15. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.

    PubMed

    Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu

    2014-01-01

    Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of disposable topographic silicon oxide from sawtoothed patterns: control of arrays of gold nanoparticles.

    PubMed

    Cho, Heesook; Yoo, Hana; Park, Soojin

    2010-05-18

    Disposable topographic silicon oxide patterns were fabricated from polymeric replicas of sawtoothed glass surfaces, spin-coating of poly(dimethylsiloxane) (PDMS) thin films, and thermal annealing at certain temperature and followed by oxygen plasma treatment of the thin PDMS layer. A simple imprinting process was used to fabricate the replicated PDMS and PS patterns from sawtoothed glass surfaces. Next, thin layers of PDMS films having different thicknesses were spin-coated onto the sawtoothed PS surfaces and annealed at 60 degrees C to be drawn the PDMS into the valley of the sawtoothed PS surfaces, followed by oxygen plasma treatment to fabricate topographic silicon oxide patterns. By control of the thickness of PDMS layers, silicon oxide patterns having various line widths were fabricated. The silicon oxide topographic patterns were used to direct the self-assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films via solvent annealing process. A highly ordered PS-b-P2VP micellar structure was used to let gold precursor complex with P2VP chains, and followed by oxygen plasma treatment. When the PS-b-P2VP thin films containing gold salts were exposed to oxygen plasma environments, gold salts were reduced to pure gold nanoparticles without changing high degree of lateral order, while polymers were completely degraded. As the width of trough and crest in topographic patterns increases, the number of gold arrays and size of gold nanoparticles are tuned. In the final step, the silicon oxide topographic patterns were selectively removed by wet etching process without changing the arrays of gold nanoparticles.

  17. Examination of Treatment Methods for Cyanide Wastes.

    DTIC Science & Technology

    1979-05-15

    industry,is alkaline chlorination. This process oxidizes cyanide to cyanate followed by complete decomposition yielding carbon dioxide and nitrogen or...decomposition yielding carbon dioxide and nitrogen, or ammonium salts depending on final treatment methods. The major oxidizing agents that have been...2H20 (X represents a cation.) 29 NADC-78198-60 This liberates carbon dioxide and nitrogen gas as end products. Possible acid hydrolysis has been

  18. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  19. Synthesis of Metal-Oxide/Carbon-Fiber Heterostructures and Their Properties for Organic Dye Removal and High-Temperature CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Shao, Liangzhi; Nie, Shibin; Shao, Xiankun; Zhang, LinLin; Li, Benxia

    2018-03-01

    One-dimensional metal-oxide/carbon-fiber (MO/CF) heterostructures were prepared by a facile two-step method using the natural cotton as a carbon source the low-cost commercial metal salts as precursors. The metal oxide nanostructures were first grown on the cotton fibers by a solution chemical deposition, and the metal-oxide/cotton heterostructures were then calcined and carbonized in nitrogen atmosphere. Three typical MO/CF heterostructures of TiO2/CF, ZnO/CF, and Fe2O3/CF were prepared and characterized. The loading amount of the metal oxide nanostructures on carbon fibers can be tuned by controlling the concentration of metal salt in the chemical deposition process. Finally, the performance of the as-obtained MO/CF heterostructures for organic dye removal from water was tested by the photocatalytic degradation under a simulated sunlight, and their properties of high-temperature CO2 adsorption were predicted by the temperature programmed desorption. The present study would provide a desirable strategy for the synthesis of MO/CF heterostructures for various applications.

  20. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  1. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    NASA Astrophysics Data System (ADS)

    Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.

    2015-10-01

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  2. Catalytic coal liquefaction process

    DOEpatents

    Garg, D.; Sunder, S.

    1986-12-02

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids. 1 fig.

  3. Catalytic coal liquefaction process

    DOEpatents

    Garg, Diwakar; Sunder, Swaminathan

    1986-01-01

    An improved process for catalytic solvent refining or hydroliquefaction of non-anthracitic coal at elevated temperatures under hydrogen pressure in a solvent comprises using as catalyst a mixture of a 1,2- or 1,4-quinone and an alkaline compound, selected from ammonium, alkali metal, and alkaline earth metal oxides, hydroxides or salts of weak acids.

  4. Dietary salt loading increases nitric oxide synthesis in transgenic mice overexpressing sodium-proton exchanger.

    PubMed

    Kiraku, J; Nakamura, T; Sugiyama, T; Takahashi, N; Kuro-o, M; Fujii, J; Nagai, R

    1999-06-01

    We studied the role of nitric oxide (NO) synthesis in amelioration of blood pressure elevation during dietary salt loading in transgenic mice overexpressing sodium proton exchanger. Systolic blood pressure rose after starting salt loading only in the high-salt group of transgenic mice. However, this elevation of blood pressure was not continued. Urinary excretion of inorganic nitrite and nitrate in the high-salt group of transgenic mice was significantly higher than in the high-salt group of control mice. These results suggest that increased NO synthesis in response to salt loading is one of the anti-hypertensive mechanisms in transgenic mice overexpressing sodium proton exchanger.

  5. Effect of salt, kinnow and pomegranate fruit by-product powders on color and oxidative stability of raw ground goat meat during refrigerated storage.

    PubMed

    Devatkal, Suresh K; Naveena, B M

    2010-06-01

    Effects of salt, kinnow and pomegranate fruit by-product powders on color and oxidative stability of raw ground goat meat stored at 4+/-1 degrees C was evaluated. Five treatments evaluated include: control (only meat), MS (meat+2% salt), KRP (meat+2% salt+2% kinnow rind powder), PRP (meat+2% salt+2% pomegranate rind powder) and PSP (meat+2% salt+2% pomegranate seed powder). Addition of salt resulted in reduction of redness scores. Lightness increased in control and unchanged in others during storage. Redness scores declined and yellowness showed inconsistent changes during storage. Thiobarbituric acid reactive substances (TBARS) values were higher (P<0.05) in MS followed by control and KRP samples compared to PRP and PSP samples throughout storage. The PSP treated samples showed lowest TBARS values than others. Percent reduction of TBARS values was highest in PSP (443%) followed by PRP (227%) and KRP (123%). Salt accelerated the TBARS formation and by-products of kinnow and pomegranate fruits counteracted this effect. The overall antioxidant effect was in the order of PSP>PRP>KRP>control>MS. Therefore, these powders have potential to be used as natural antioxidants to minimize the auto-oxidation and salt induced lipid oxidation in raw ground goat meat. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  6. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    PubMed

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  7. Evaluation of Cyclic Oxidation and Hot Corrosion Behavior of HVOF-Sprayed WC-Co/NiCrAlY Coating

    NASA Astrophysics Data System (ADS)

    Somasundaram, B.; Kadoli, Ravikiran; Ramesh, M. R.

    2014-08-01

    Corrosion of metallic structural materials at an elevated temperature in complex multicomponent gas environments are potential problems in many fossil energy systems, especially those using coal as a feedstock. Combating these problems involves a number of approaches, one of which is the use of protective coatings. The high velocity oxy fuel (HVOF) process has been used to deposit WC-Co/NiCrAlY composite powder on two types of Fe-based alloys. Thermocyclic oxidation behavior of coated alloys was investigated in the static air as well as in molten salt (Na2SO4-60%V2O5) environment at 700 °C for 50 cycles. The thermogravimetric technique was used to approximate the kinetics of oxidation. WC-Co/NiCrAlY coatings showed a lower oxidation rate in comparison to uncoated alloys. The oxidation resistance of WC-Co/NiCrAlY coatings can be ascribed to the oxide layer of Al2O3 and Cr2O3 formed on the outermost surface. Coated alloys extend a protective oxide scale composed of oxides of Ni and Cr that are known to impart resistance to the hot corrosion in the molten salt environment.

  8. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice.

    PubMed

    Bowen, T Scott; Eisenkolb, Sophia; Drobner, Juliane; Fischer, Tina; Werner, Sarah; Linke, Axel; Mangner, Norman; Schuler, Gerhard; Adams, Volker

    2017-01-01

    Hypertension is a key risk factor for heart failure, with the latter characterized by diaphragm muscle weakness that is mediated in part by increased oxidative stress. In the present study, we used a deoxycorticosterone acetate (DOCA)-salt mouse model to determine whether hypertension could independently induce diaphragm dysfunction and further investigated the effects of high-intensity interval training (HIIT). Sham-treated (n = 11), DOCA-salt-treated (n = 11), and DOCA-salt+HIIT-treated (n = 15) mice were studied over 4 wk. Diaphragm contractile function, protein expression, enzyme activity, and fiber cross-sectional area and type were subsequently determined. Elevated blood pressure confirmed hypertension in DOCA-salt mice independent of HIIT (P < 0.05). Diaphragm forces were impaired by ∼15-20% in DOCA-salt vs. sham-treated mice (P < 0.05), but this effect was prevented after HIIT. Myosin heavy chain (MyHC) protein expression tended to decrease (∼30%; P = 0.06) in DOCA-salt vs. sham- and DOCA-salt+HIIT mice, whereas oxidative stress increased (P < 0.05). Enzyme activity of NADPH oxidase was higher, but superoxide dismutase was lower, with MyHC oxidation elevated by ∼50%. HIIT further prevented direct oxidant-mediated diaphragm contractile dysfunction (P < 0.05) after a 30 min exposure to H 2 O- 2 (1 mM). Our data suggest that hypertension induces diaphragm contractile dysfunction via an oxidant-mediated mechanism that is prevented by HIIT.-Bowen, T. S., Eisenkolb, S., Drobner, J., Fischer, T., Werner, S., Linke, A., Mangner, N., Schuler, G., Adams, V. High-intensity interval training prevents oxidant-mediated diaphragm muscle weakness in hypertensive mice. © FASEB.

  9. Method of forming oxide coatings. [for solar collector heating panels

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. E. (Inventor)

    1983-01-01

    This invention is concerned with an improved plating process for covering a substrate with a black metal oxide film. The invention is particularly directed to making a heating panel for a solar collector. A compound is electrodeposited from an aqueous solution containing cobalt metal salts onto a metal substrate. This compound is converted during plating into a black, highly absorbing oxide coating which contains hydrated oxides. This is achieved by the inclusion of an oxidizing agent in the plating bath. The inclusion of an oxidizing agent in the plating bath is contrary to standard electroplating practice. The hydrated oxides are converted to oxides by treatment in a hot bath, such as boiling water. An oxidizing agent may be added to the hot liquid treating bath.

  10. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    NASA Astrophysics Data System (ADS)

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions.

  11. Electrochemical Formation of a p-n Junction on Thin Film Silicon Deposited in Molten Salt.

    PubMed

    Zou, Xingli; Ji, Li; Yang, Xiao; Lim, Taeho; Yu, Edward T; Bard, Allen J

    2017-11-15

    Herein we report the demonstration of electrochemical deposition of silicon p-n junctions all in molten salt. The results show that a dense robust silicon thin film with embedded junction formation can be produced directly from inexpensive silicates/silicon oxide precursors by a two-step electrodeposition process. The fabricated silicon p-n junction exhibits clear diode rectification behavior and photovoltaic effects, indicating promise for application in low-cost silicon thin film solar cells.

  12. AN APPROACH TO A UNIFIED PROCESS-BASED REGIONAL EMISSION FLUX MODELING PLATFORM

    EPA Science Inventory

    The trend towards episodic modeling of environmentally-dependent emissions is increasing, with models available or under development for dust, ammonia, biogenic volatile organic compounds, soil nitrous oxide, pesticides, sea salt, and chloride, mercury, and wildfire emissions. T...

  13. Vascular structure and oxidative stress in salt-loaded spontaneously hypertensive rats: effects of losartan and atenolol.

    PubMed

    de Cavanagh, Elena M V; Ferder, León F; Ferder, Marcelo D; Stella, Inés Y; Toblli, Jorge E; Inserra, Felipe

    2010-12-01

    Renin-angiotensin system (RAS) modulation by high dietary sodium may contribute to salt-induced hypertension, oxidative stress, and target organ damage. We investigated whether angiotensin II (Ang-II) type 1 (AT1)-receptor blockade (losartan) could protect the aorta and renal arteries from combined hypertension- and high dietary salt-related oxidative stress. Spontaneously hypertensive rats (3-month-old, n = 10/group) received tap water (SHR), water containing 1.5% NaCl (SHR+S), 1.5% NaCl and 30 mg losartan/kg/day (SHR+S+L), or 50 mg atenolol/kg/day (SHR+S+A). Atenolol was used for comparison. Ten Wistar-Kyoto rats (WKY) were controls. Systolic blood pressure (SBP) was determined by tail plethysmography. After 5 months of treatment, vascular remodeling and oxidative stress (superoxide production and NAD(P)H-oxidase activity (chemiluminescence), malondialdehyde (MDA) content (high-performance liquid chromatography), endothelial nitric oxide synthase (eNOS) activity [(14)C-arginine to (14)C citrulline], CuZn-SOD activity (spectrophotometry)) were studied. In SHR, salt-loading significantly aggravated hypertension, urinary protein excretion, intraparenchymal renal artery (IPRArt) perivascular fibrosis, aortic and renal artery oxidative stress, and induced endothelial cell loss in IPRArts. In salt-loaded SHR, 5-month losartan and atenolol treatments similarly reduced SBP, but only losartan significantly prevented (i) urinary protein excretion increase, (ii) or attenuated hypertension-related vascular remodeling, (iii) aortic MDA accumulation, (iv) renal artery eNOS activity lowering, and (v) aortic and renal artery superoxide dismutase (SOD) activity reduction. In SHR+S, the contributions to aortic superoxide production were as follows: uncoupled eNOS > xanthine oxidase (XO) > NAD(P)H oxidase. In this salt-sensitive genetic hypertension model, losartan protects from hypertension- and high dietary salt-related vascular oxidative stress, exceeding the benefits of BP reduction. Also, during salt overload, BP-independent factors contribute to vascular remodeling, at least part of which derive from AT1-receptor activation.

  14. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other is considered. (Abstract shortened by UMI.)

  15. Achieving surface chemical and morphologic alterations on tantalum by plasma electrolytic oxidation.

    PubMed

    Goularte, Marcelo Augusto Pinto Cardoso; Barbosa, Gustavo Frainer; da Cruz, Nilson Cristino; Hirakata, Luciana Mayumi

    2016-12-01

    Search for materials that may either replace titanium dental implants or constitute an alternative as a new dental implant material has been widely studied. As well, the search for optimum biocompatible metal surfaces remains crucial. So, the aim of this work is to develop an oxidized surface layer on tantalum using plasma electrolytic oxidation (PEO) similar to those existing on oral implants been marketed today. Cleaned tantalum samples were divided into group 1 (control) and groups 2, 3, and 4 (treated by PEO for 1, 3, and 5 min, respectively). An electrolytic solution diluted in 1-L deionized water was used for the anodizing process. Then, samples were washed with anhydrous ethyl alcohol and dried in the open air. For complete anodic treatment disposal, the samples were immersed in acetone altogether, taken to the ultrasonic tank for 10 min, washed again in distilled water, and finally air-dried. For the scanning electron microscopy (SEM) analysis, all samples were previously coated with gold; the salt deposition analysis was conducted with an energy-dispersive X-ray spectroscopy (EDS) system integrated with the SEM unit. SEM images confirmed the changes on tantalum strips surface according to different exposure times while EDS analysis confirmed increased salt deposition as exposure time to the anodizing process also increased. PEO was able to produce both surface alteration and salt deposition on tantalum strips similar to those existing on oral implants been marketed today.

  16. Dross treatment in a rotary arc furnace with graphite electrodes

    NASA Astrophysics Data System (ADS)

    Drouet, Michel G.; Handfield, My; Meunier, Jean; Laflamme, Claude B.

    1994-05-01

    Aluminum baths are always covered with a layer of dross resulting from the aluminum surface oxidation. This dross represents 1-10% of the melt and may contain up to 75wt.% aluminum. Since aluminum production is highly energy intensive, dross recycling is very attractive from both energy and economic standpoints. The conventional recycling process using salt rotary furnaces is thermally inefficient and environmentally unacceptable because of the production of salt slags. Hydro-Quebec has developed a new technology using a rotary arc furnace with graphite electrodes. This process provides aluminum recovery rates of 80-90%, using a highly energy efficient, environmentally sound production method.

  17. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Stachnik, Łukasz; Majchrowska, Elżbieta; Yde, Jacob C.; Nawrot, Adam P.; Cichała-Kamrowska, Katarzyna; Ignatiuk, Dariusz; Piechota, Agnieszka

    2016-07-01

    This study aims to determine the rate of chemical denudation and the relationships between dominant geochemical reactions operating in the proglacial and subglacial environments of the polythermal glacier Werenskioldbreen (SW Svalbard) during an entire ablation season. Water sampling for major ion chemistry was performed at a proglacial hydrometric station and from subglacial outflows from May to September 2011. These data were combined with measurements of discharge and supraglacial ablation rates. The slopes and intercepts in best-fit regressions of [*Ca2+ + *Mg2+ vs. *SO42-] and [HCO3- vs. *SO42-] in meltwater from ice-marginal subglacial channels were close to the stoichiometric parameters of sulfide oxidation and simple hydrolysis coupled to carbonate dissolution (*concentrations corrected for input of sea-salt). This shows that these relationships predominates the meltwater chemistry. Our findings also show that sulfide oxidation is a better indicator of the configuration of subglacial drainage systems than, for instance, Na+ and K+. In the proglacial area and in sub-artesian outflows, the ion associations represent sulfide oxidation but other processes such as ion exchange and dissolution of Ca and Mg efflorescent salts may also contribute to the solute variations. These processes may cause enhanced fluxes of Ca2+ and HCO3- from glacierized basins during the early ablation and peak flow seasons as the proglacial salts re-dissolve. The overall chemical denudation rate in the basin for 2011 (ranging from 1601 to 1762 meq m-2 yr-1 (121.9 to 132.2 t km-2 yr-1)) was very high when compared to other Svalbard valley glaciers suggesting that the high rate of chemical denudation was mostly caused by the high rates of discharge and ablation. Chemical weathering intensities (876 and 964 meq m-3 yr-1) exceeded previously reported intensities in Svalbard.

  18. UV/TiO₂ photocatalytic oxidation of recalcitrant organic matter: effect of salinity and pH.

    PubMed

    Muthukumaran, Shobha; Song, Lili; Zhu, Bo; Myat, Darli; Chen, Jin-Yuan; Gray, Stephen; Duke, Mikel

    2014-01-01

    Photocatalytic oxidation processes have interest for water treatment since these processes can remove recalcitrant organic compounds and operate at mild conditions of temperature and pressure. However, performance under saline conditions present in many water resources is not well known. This study aims to explore the basic effects of photocatalysis on the removal of organic matter in the presence of salt. A laboratory-scale photocatalytic reactor system, employing ultraviolet (UV)/titanium dioxide (TiO₂) photocatalysis was evaluated for its ability to remove the humic acid (HA) from saline water. The particle size and zeta potential of TiO₂ under different conditions including solution pH and sodium chloride (NaCl) concentrations were characterized. The overall degradation of organics over the NaCl concentration range of 500-2,000 mg/L was found to be 80% of the non-saline equivalent after 180 min of the treatment. The results demonstrated that the adsorption of HA onto the TiO₂ particles was dependent on both the pH and salinity due to electrostatic interaction and highly unstable agglomerated dispersion. This result supports UV/TiO₂ as a viable means to remove organic compounds, but the presence of salt in waters to be treated will influence the performance of the photocatalytic oxidation process.

  19. The effect of molten salt on high temperature behavior of stainless steel and titanium alloy with the presence of water vapor

    NASA Astrophysics Data System (ADS)

    Baharum, Azila; Othman, Norinsan Kamil; Salleh, Emee Marina

    2018-04-01

    The high temperature oxidation experiment was conducted to study the behavior of titanium alloy Ti6A14V and stainless steel 316 in Na2SO4-50%NaCl + Ar-20%O2 (molten salt) and Na2SO4-50%NaCl + Ar-20%O2 + 12% H2O (molten salt + water vapor) environment at 900°C for 30 hours using horizontal tube furnace. The sample then was investigated using weight change measurement analysis and X-ray diffraction (XRD) analysis to study the weight gained and the phase oxidation that occurred. The weight gained of the titanium alloy was higher in molten salt environment compared to stainless steel due to the rapid growth in the oxide scale but showed almost no change of weight gained upon addition of water vapor. This is due to the alloy was fully oxidized. Stainless steel showed more protection and better effect in molten salt environment compared to mixed environment showed by slower weight gain and lower oxidation rate. Meanwhile, the phase oxidation test of the samples showed that the titanium alloy consist of multi oxide layer of rutile (TiO2) and Al2O3 on the surface of the exposed sample. While stainless steel show the formation of both protective Cr-rich oxide and non-protective Fe-rich oxide layer. This can be concluded that stainless steel is better compared to Ti alloy due to slow growing of chromia oxide. Therefore it is proven that stainless steel has better self-protection upon high temperature exposure.

  20. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  1. Recycling of end-of-life reverse osmosis membranes by oxidative treatment: a technical evaluation.

    PubMed

    Coutinho de Paula, Eduardo; Gomes, Júlia Célia Lima; Amaral, Míriam Cristina Santos

    2017-07-01

    The adverse impacts caused by the disposal of thousands of tonnes per annum of reverse osmosis (RO) membranes modules have grown dramatically around the world. The objective of this study was to evaluate the technical feasibility of recycling by chemical oxidation of end-of-life RO membranes for applications in other separation processes with specifications less rigorous. The recycling technique consisted in to cause a membrane exposition with oxidant solutions in order to remove its aromatic polyamide layer and subsequent conversion to a porous membrane. The recycling technique was evaluated by water permeability and salt rejection tests before and after the oxidative treatments. Initially, membranes' chemical cleaning and pretreatment procedures were assessed. Among factors evaluated, the oxidizing agent, its concentration and pH, associated with the oxidative treatment time, showed important influence on the oxidation of the membranes. Results showed that sodium hypochlorite and potassium permanganate are efficient agents for the membrane recycling. The great increased permeability and decreased salt rejection indicated changes on membranes' selective properties. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), and contact angle characterization techniques revealed marked changes on the main membranes' physical-chemical properties, such as morphology, roughness and hydrophobicity. Reuse of produced effluents and fouling tendency of recycled membranes were also evaluated.

  2. The effects of low salt concentrations on the mechanism of adhesion between two pieces of pork semimembranosus muscle following tumbling and cooking.

    PubMed

    Bombrun, Laure; Gatellier, Philippe; Carlier, Martine; Kondjoyan, Alain

    2014-01-01

    The aim of this research was to gain deeper insight into the effect of salt content on the adhesion between pieces of semimembranosus pork muscle bound by a tumbling exudate gel. Hydrophobic site number, free thiol and carbonyl content were measured in tumbling exudate and meat protein to evaluate the protein-protein interactions involved in the adhesion process. Proteins were far more oxidized in exudate than in meat, and under our experimental conditions, salt content increased protein bonding in the exudate but not in the meat. Breaking stress increased between non-salted meat and 0.8%-salted meat but did not depend on the protein physicochemical properties of the tumbling exudate. Modifying the meat surface by tumbling alone, tumbling and salting, or scarification had no effect on breaking stress. It is suggested that the break between the meat pieces occurred between the tumbling exudate and the meat surface due to weaker chemical bonds at this location. © 2013.

  3. Recycling of LiCl-KCl eutectic based salt wastes containing radioactive rare earth oxychlorides or oxides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Cho, Y. Z.; Son, S. M.; Lee, T. K.; Yang, H. C.; Kim, I. T.; Lee, H. S.

    2012-01-01

    Recycling of LiCl-KCl eutectic salt wastes containing radioactive rare earth oxychlorides or oxides was studied to recover renewable salts from the salt wastes and to minimize the radioactive wastes by using a vacuum distillation method. Vaporization of the LiCl-KCl eutectic salt was effective above 900 °C and at 5 Torr. The condensations of the vaporized salt were largely dependent on temperature gradient. Based on these results, a recycling system of the salt wastes as a closed loop type was developed to obtain a high efficiency of the salt recovery condition. In this system, it was confirmed that renewable salt was recovered at more than 99 wt.% from the salt wastes, and the changes in temperature and pressure in the system could be utilized to understand the present condition of the system operation.

  4. Attenuated flow‐induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short‐term high salt diet

    PubMed Central

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary

    2016-01-01

    Key points Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress.The objective of this study was to assess vascular response to flow‐induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS‐fed rats in vitro.The novelty of this study is in demonstrating impaired flow‐induced dilatation of MCAs and down‐regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID.In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake.Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. Abstract The aim of this study was to determine flow‐induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)‐fed rats. Healthy male Sprague‐Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10–Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N ω‐nitro‐l‐arginine methyl ester (l‐name). mRNA levels of antioxidative enzymes, NAPDH‐oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real‐time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values. PMID:27061200

  5. Attenuated flow-induced dilatation of middle cerebral arteries is related to increased vascular oxidative stress in rats on a short-term high salt diet.

    PubMed

    Cosic, Anita; Jukic, Ivana; Stupin, Ana; Mihalj, Martina; Mihaljevic, Zrinka; Novak, Sanja; Vukovic, Rosemary; Drenjancevic, Ines

    2016-09-01

    Recent studies have shown that high salt (HS) intake leads to endothelial dysfunction and impaired vascular reactivity in different vascular beds in both animal and human models, due to increased oxidative stress. The objective of this study was to assess vascular response to flow-induced dilatation (FID) and to elucidate the role of vascular oxidative stress/antioxidative capacity in middle cerebral arteries (MCAs) of HS-fed rats in vitro. The novelty of this study is in demonstrating impaired flow-induced dilatation of MCAs and down-regulation of vascular antioxidant genes with HS intake, leading to increased levels of oxidative stress in blood vessels and peripheral lymph organs, which together contribute to impaired FID. In addition, results show increased oxidative stress in leukocytes of peripheral lymph organs, suggesting the occurrence of inflammatory processes due to HS intake. Recirculation of leukocytes might additionally increase vascular oxidative stress in vivo. The aim of this study was to determine flow-induced dilatation (FID) and the role of oxidative stress/antioxidative capacity in isolated, pressurized middle cerebral arteries (MCAs) of high salt (HS)-fed rats. Healthy male Sprague-Dawley rats (11 weeks old) were fed low salt (0.4% NaCl; LS group) or high salt (4% NaCl; HS group) diets for 1 week. Reactivity of MCAs in response to stepwise increases in pressure gradient (Δ10-Δ100 mmHg) was determined in the absence or presence of the superoxide dismutase (SOD) mimetic TEMPOL and/or the nitric oxide synthases (NOS) inhibitor N(ω) -nitro-l-arginine methyl ester (l-NAME). mRNA levels of antioxidative enzymes, NAPDH-oxidase components, inducible (iNOS) and endothelial nitric oxide synthases (eNOS) were determined by quantitative real-time PCR. Blood pressure (BP), antioxidant enzymes activity, oxidative stress in peripheral leukocytes, lipid peroxidation products and the antioxidant capacity of plasma were measured for both groups. FID was reduced in the HS group compared to the LS group. The presence of TEMPOL restored dilatation in the HS group, with no effect in the LS group. Expression of glutathione peroxidase 4 (GPx4) and iNOS in the HS group was significantly decreased; oxidative stress was significantly higher in the HS group compared to the LS group. HS intake significantly induced basal reactive oxygen species production in the leukocytes of mesenteric lymph nodes and splenocytes, and intracellular production after stimulation in peripheral lymph nodes. Antioxidant enzyme activity and BP were not affected by HS diet. Low GPx4 expression, increased superoxide production in leukocytes, and decreased iNOS expression are likely to underlie increased oxidative stress and reduced nitric oxide bioavailability, leading to impairment of FID in the HS group without changes in BP values. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  6. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  < 0.001). Nitric oxide excretion was 2935 ± 256  μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  7. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity

    PubMed Central

    Lovelock, Joshua D.; Monasky, Michelle M.; Jeong, Euy-Myoung; Lardin, Harvey A.; Liu, Hong; Patel, Bindiya G.; Taglieri, Domenico M.; Gu, Lianzhi; Kumar, Praveen; Pokhrel, Narayan; Zeng, Dewan; Belardinelli, Luiz; Sorescu, Dan; Solaro, R. John; Dudley, Samuel C.

    2012-01-01

    Rationale Previously, we demonstrated that a deoxycorticosterone acetate (DOCA)-salt hypertensive mouse model produces cardiac oxidative stress and diastolic dysfunction with preserved systolic function. Oxidative stress has been shown to increase late inward sodium current (INa), reducing the net cytosolic Ca2+ efflux. Objective Oxidative stress in the DOCA-salt model may increase late INa resulting in diastolic dysfunction amenable to treatment with ranolazine. Methods and Results Echocardiography detected evidence of diastolic dysfunction in hypertensive mice that improved after treatment with ranolazine (E/E′, sham 31.9 ± 2.8, sham+ranolazine 30.2 ± 1.9, DOCA-salt 41.8 ± 2.6, and DOCA-salt+ranolazine 31.9 ± 2.6, p = 0.018). The end diastolic pressure volume relationship slope was elevated in DOCA-salt mice, improving to sham levels with treatment (sham 0.16 ± 0.01 vs. sham+ranolazine 0.18 ± 0.01 vs. DOCA-salt 0.23 ± 0.2 vs. DOCA-salt+ranolazine 0.17 ± 0.01 mm Hg/L, p < 0.005). DOCA-salt myocytes demonstrated impaired relaxation, τ, improving with ranolazine (DOCA-salt 0.18 ± 0.02, DOCA-salt + ranolazine 0.13 ± 0.01, Sham 0.11 ± 0.01, Sham + ranolazine 0.09 ± 0.02 s, p = 0.0004). Neither late INa nor the Ca2+ transients were different from sham myocytes. Detergent extracted fiber bundles from DOCA-salt hearts demonstrated increased myofilament response to Ca2+ with glutathionylation of myosin binding protein C. Treatment with ranolazine ameliorated the Ca2+ response and cross-bridge kinetics. Conclusions Therefore, diastolic dysfunction could be reversed by ranolazine, likely resulting from a direct effect on myofilaments, indicating that cardiac oxidative stress may mediate diastolic dysfunction through altering the contractile apparatus. PMID:22343711

  8. Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity.

    PubMed

    Lovelock, Joshua D; Monasky, Michelle M; Jeong, Euy-Myoung; Lardin, Harvey A; Liu, Hong; Patel, Bindiya G; Taglieri, Domenico M; Gu, Lianzhi; Kumar, Praveen; Pokhrel, Narayan; Zeng, Dewan; Belardinelli, Luiz; Sorescu, Dan; Solaro, R John; Dudley, Samuel C

    2012-03-16

    Previously, we demonstrated that a deoxycorticosterone acetate (DOCA)-salt hypertensive mouse model produces cardiac oxidative stress and diastolic dysfunction with preserved systolic function. Oxidative stress has been shown to increase late inward sodium current (I(Na)), reducing the net cytosolic Ca(2+) efflux. Oxidative stress in the DOCA-salt model may increase late I(Na), resulting in diastolic dysfunction amenable to treatment with ranolazine. Echocardiography detected evidence of diastolic dysfunction in hypertensive mice that improved after treatment with ranolazine (E/E':sham, 31.9 ± 2.8, sham+ranolazine, 30.2 ± 1.9, DOCA-salt, 41.8 ± 2.6, and DOCA-salt+ranolazine, 31.9 ± 2.6; P=0.018). The end-diastolic pressure-volume relationship slope was elevated in DOCA-salt mice, improving to sham levels with treatment (sham, 0.16 ± 0.01 versus sham+ranolazine, 0.18 ± 0.01 versus DOCA-salt, 0.23 ± 0.2 versus DOCA-salt+ranolazine, 0.17 ± 0.0 1 mm Hg/L; P<0.005). DOCA-salt myocytes demonstrated impaired relaxation, τ, improving with ranolazine (DOCA-salt, 0.18 ± 0.02, DOCA-salt+ranolazine, 0.13 ± 0.01, sham, 0.11 ± 0.01, sham+ranolazine, 0.09 ± 0.02 seconds; P=0.0004). Neither late I(Na) nor the Ca(2+) transients were different from sham myocytes. Detergent extracted fiber bundles from DOCA-salt hearts demonstrated increased myofilament response to Ca(2+) with glutathionylation of myosin binding protein C. Treatment with ranolazine ameliorated the Ca(2+) response and cross-bridge kinetics. Diastolic dysfunction could be reversed by ranolazine, probably resulting from a direct effect on myofilaments, indicating that cardiac oxidative stress may mediate diastolic dysfunction through altering the contractile apparatus.

  9. Magnetic properties and magnetization reversal mechanism of Nd-Fe-B nanoparticles synthesized by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Rahimi, Hamed; Ghasemi, Ali; Mozaffarinia, Reza; Tavoosi, Majid

    2017-12-01

    Nd-Fe-B oxide powders with various pH were prepared using chloride and nitrate precursors including NdCl3·6H2O, FeCl3·6H2O, H3BO3, Nd2O3, Fe(NO3)3·9H2O, HNO3, citric acid (CA), ethylene glycol (EG) by Pechini type sol-gel method. The pH of chloride and nitrate base sols were 0 and 2.2, respectively. Mixed oxide powders were obtained by calcination and annealing the gels. These oxides by using a reduction-diffusion process under high vacuum and employing CaH2 as reducing agent at 800 °C were hated to prepare Nd2Fe14B nanoparticles. The role of pH on phase, morphologies, microstructure, and magnetic properties of the powders were investigated. The results show that with a decrease in pH, the average particle size and coercivity of Nd-Fe-B oxide powders were decreased and increased, respectively. Nd2Fe14B nanoparticles were formed successfully after reduction process. The average particle size of reduction treated products were 30 and 65 nm for powders which made of chloride and nitrate base metal salts, respectively. Final powders which made of chloride and nitrate base metal salts had a saturation magnetization of 127.7 emu/g and 122.8 emu/g while the coercivity of samples were 3.32 kOe and 1.82 kOe, respectively. The experimental results in the angular dependence of coercivity indicated that the normalized coercivity of the permanent magnets Hc(θ)/Hc(0) obeys the 1/cosθ law and intermediate between the 1/cosθ law and Stoner-Wohlfarth formula for different Nd2Fe14B magnets which made of nitrate and chloride base metal salts, respectively. Also, the results show that different Nd2Fe14B magnets which made of nitrate and chloride base metal salts had the maximum energy product of 5 and 16 MGOe, respectively. The Henkel plot showed that magnetic phases in synthesized NdFeB magnets which made of chloride and nitrate base metal salts were coupled by exchange and dipolar interactions, respectively. Different average particle size, morphology and microstructure were the reasons for variation of magnetic properties.

  10. Proteomic analysis on mangrove plant Avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression.

    PubMed

    Shen, Zhi-Jun; Chen, Juan; Ghoto, Kabir; Hu, Wen-Jun; Gao, Gui-Feng; Luo, Mei-Rong; Li, Zan; Simon, Martin; Zhu, Xue-Yi; Zheng, Hai-Lei

    2018-06-15

    Avicennia marina (Forsk.) Vierh is one of the most salt-tolerant mangrove species. Our previous study revealed that nitric oxide (NO) enhanced the salt tolerance of A. marina by promoting salt secretion and Na+ sequestration under salt stress. However, little is known about the regulation of NO on proteomic profiling for this mangrove species. In this study, we used sodium nitroprusside (SNP), an NO donor, to investigate the regulatory mechanism of NO on salt tolerance of A. marina according to physiological and proteomic aspects. Photosynthesis data showed that the reduction in photosynthesis caused by high salinity treatment (400 mM NaCl) could be partially recovered by addition of SNP (100 μM). Further analysis revealed that the high salinity treatment could induce not only the stomatal limitation but also non-stomatal limitation on photosynthetic reduction, while SNP addition could restore the non-stomatal limitation, implying that the application of SNP was beneficial to the metabolic process in leaves. Proteomic analysis identified 49 differentially expressed proteins involved in various biological processes such as photosynthesis, energy metabolism, primary metabolism, RNA transcription, protein translation and stress response proteins. Under high salinity treatment, the abundances of proteins related to photosynthesis, such as ribulose-phosphate 3-epimerase (RPE, spot 3), RuBisCO large subunit (RBCL, spot 4, 5, 24), RuBisCO activase A (RCA, spot 17, 18) and quinine oxidoreductase-like protein isoform 1 (QOR1, spot 23), were significantly decreased. However, the abundance of proteins such as RBCL (spot 5, 9) and QOR1 (spot 23) were increased by SNP addition. In addition, exogenous NO supply alleviated salt tolerance by increasing the accumulation of some proteins involved in energy metabolism (spot 15), primary metabolism (spot 25, 45, 46), RNA transcription (spot 36) and stress response proteins (spot 12, 21, 26, 37, 43). The transcriptional levels of nine selected proteins were mostly consistent with their protein abundance except spot 46. Overall, the presented data demonstrated that NO has a positive effect on improving salt tolerance in A. marina by regulating the protein abundance involved in photosynthesis, energy metabolism, primary metabolism and stress response.

  11. Surface properties of AZ91 magnesium alloy after PEO treatment using molybdate salts and low current densities

    NASA Astrophysics Data System (ADS)

    Pezzato, Luca; Brunelli, Katya; Napolitani, Enrico; Magrini, Maurizio; Dabalà, Manuele

    2015-12-01

    Plasma electrolytic oxidation (PEO) process is a recently developed electrochemical method used to produce on the surface of various metals oxide ceramic coatings that improve corrosion and wear properties of the substrate. In this work, PEO process was applied on AZ91 magnesium alloy using low current densities (0.05 A/cm2) and an alkaline solution of silicates with different concentrations of sodium molybdate (0.3-3 g/l). The effect of the low current densities of process and of molybdate salts on the corrosion resistance of the coatings was studied with potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) in chloride and sulfate environment. The morphology, the phases and the chemical composition of the coatings were examined using a scanning electron microscope equipped with EDS, X-ray diffraction, secondary ion mass spectrometry and X-ray photoelectron spectroscopy. The corrosion properties of the PEO coated samples were remarkably improved if compared with the uncoated samples. The addition of sodium molybdate, in determinate conditions, had a positive effect on the characteristics of the coatings in terms of corrosion resistance.

  12. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  13. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  14. Conversion of hazardous materials using supercritical water oxidation

    DOEpatents

    Rofer, Cheryl K.; Buelow, Steven J.; Dyer, Richard B.; Wander, Joseph D.

    1992-01-01

    A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

  15. Salt-responsive lytic polysaccharide monooxygenases from the mangrove fungus Pestalotiopsis sp. NCi6.

    PubMed

    Patel, Ilabahen; Kracher, Daniel; Ma, Su; Garajova, Sona; Haon, Mireille; Faulds, Craig B; Berrin, Jean-Guy; Ludwig, Roland; Record, Eric

    2016-01-01

    Lytic polysaccharide monooxygenases (LPMOs) belong to the "auxiliary activities (AA)" enzyme class of the CAZy database. They are known to strongly improve the saccharification process and boost soluble sugar yields from lignocellulosic biomass, which is a key step in the efficient production of sustainable economic biofuels. To date, most LPMOs have been characterized from terrestrial fungi, but novel fungal LPMOs isolated from more extreme environments such as an estuary mangrove ecosystem could offer enzymes with unique properties in terms of salt tolerance and higher stability under harsh condition. Two LPMOs secreted by the mangrove-associated fungus Pestalotiopsis sp. NCi6 (PsLPMOA and PsLPMOB) were expressed in the yeast Pichia pastoris and produced in a bioreactor with >85 mg L(-1) for PsLPMOA and >260 mg L(-1) for PsLPMOB. Structure-guided homology modeling of the PsLPMOs showed a high abundance of negative surface charges, enabling enhanced protein stability and activity in the presence of sea salt. Both PsLPMOs were activated by a cellobiose dehydrogenase (CDH) from Neurospora crassa, with an apparent optimum of interaction at pH 5.5. Investigation into their regioselective mode of action revealed that PsLPMOA released C1- and C4-oxidized cello-oligosaccharide products, while PsLPMOB released only C4-oxidized products. PsLPMOA was found to cleave polymeric cellulose in the presence of up to 6 % sea salt, which emphasizes the use of sea water in the industrial saccharification process with improved ecological footprints. Two new LPMOs from the mangrove fungus Pestalotiopsis sp. NCi6 were found to be fully reactive against cellulose. The combined hydrolytic activities of these salt-responsive LPMOs could therefore facilitate the saccharification process using sea water as a reaction medium for large-scale biorefineries.

  16. Conservation of Photographic Print Collections.

    ERIC Educational Resources Information Center

    Swan, Alice

    1981-01-01

    Provides specific information on varying photographic materials and processes to aid archivists and curators in preserving photograph collections. Preservation problems related to major types of silver prints on paper (salt, albumen, collodion, gelatin) and to the silver image (oxidation, silver sulfide) are covered. Twenty references are cited.…

  17. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  18. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOEpatents

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  19. Ceramic coating system or water oxidation environments

    DOEpatents

    Hong, Glenn T.

    1996-01-01

    A process for water oxidation of combustible materials in which during at least a part of the oxidation corrosive material is present and makes contact with at least a portion of the apparatus over a contact area on the apparatus. At least a portion of the contact surface area comprises titanium dioxide coated onto a titanium metal substrate. Such ceramic composites have been found to be highly resistant to environments encountered in the process of supercritical water oxidation. Such environments typically contain greater than 50 mole percent water, together with oxygen, carbon dioxide, and a wide range of acids, bases, and salts. Pressures are typically about 27.5 to about 1000 bar while temperatures range as high as 700.degree. C. The ceramic composites are also resistant to degradation mechanisms caused by thermal stresses.

  20. Selective and Catalyst-free Oxidation of D-Glucose to D-Glucuronic acid induced by High-Frequency Ultrasound

    PubMed Central

    Amaniampong, Prince N.; Karam, Ayman; Trinh, Quang Thang; Xu, Kai; Hirao, Hajime; Jérôme, François; Chatel, Gregory

    2017-01-01

    This systematic experimental investigation reveals that high-frequency ultrasound irradiation (550 kHz) induced oxidation of D-glucose to glucuronic acid in excellent yield without assistance of any (bio)catalyst. Oxidation is induced thanks to the in situ production of radical species in water. Experiments show that the dissolved gases play an important role in governing the nature of generated radical species and thus the selectivity for glucuronic acid. Importantly, this process yields glucuronic acid instead of glucuronate salt typically obtained via conventional (bio)catalyst routes, which is of huge interest in respect of downstream processing. Investigations using disaccharides revealed that radicals generated by high frequency ultrasound were also capable of promoting tandem hydrolysis/oxidation reactions. PMID:28084448

  1. 77 FR 48976 - Certain New Chemicals; Receipt and Status Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-15

    ... surface active agent. fluorinated alcohol, reaction products with phosphorus oxide (P205), amine salts. P.... fluorinated alcohol, reaction products with phosphorus oxide (P205), amine salts. P-12-0452...... 07/09/2012...

  2. Uranium (III)-Plutonium (III) co-precipitation in molten chloride

    NASA Astrophysics Data System (ADS)

    Vigier, Jean-François; Laplace, Annabelle; Renard, Catherine; Miguirditchian, Manuel; Abraham, Francis

    2018-02-01

    Co-management of the actinides in an integrated closed fuel cycle by a pyrochemical process is studied at the laboratory scale in France in the CEA-ATALANTE facility. In this context the co-precipitation of U(III) and Pu(III) by wet argon sparging in LiCl-CaCl2 (30-70 mol%) molten salt at 705 °C is studied. Pu(III) is prepared in situ in the molten salt by carbochlorination of PuO2 and U(III) is then introduced as UCl3 after chlorine purge by argon to avoid any oxidation of uranium up to U(VI) by Cl2. The oxide conversion yield through wet argon sparging is quantitative. However, the preferential oxidation of U(III) in comparison to Pu(III) is responsible for a successive conversion of the two actinides, giving a mixture of UO2 and PuO2 oxides. Surprisingly, the conversion of sole Pu(III) in the same conditions leads to a mixture of PuO2 and PuOCl, characteristic of a partial oxidation of Pu(III) to Pu(IV). This is in contrast with coconversion of U(III)-Pu(III) mixtures but in agreement with the conversion of Ce(III).

  3. Influencing factors in the CO-precipitation process of superparamagnetic iron oxide nano particles: A model based study

    NASA Astrophysics Data System (ADS)

    Roth, Hans-Christian; Schwaminger, Sebastian P.; Schindler, Michael; Wagner, Friedrich E.; Berensmeier, Sonja

    2015-03-01

    The study, presented here, focuses on the impact of synthesis parameters on the co-precipitation process of superparamagnetic iron oxide nanoparticles. Particle diameters between 3 and 17 nm and saturation magnetizations from 26 to 89 Am2 kg-1 were achieved by variation of iron salt concentration, reaction temperature, ratio of hydroxide ions to iron ions and ratio of Fe3+/Fe2+. All synthesis assays were conceived according to the "design of experiments" method. The results were fitted to significant models. Subsequent validation experiments could confirm the models with an accuracy>95%. The characterization of the chemical composition, as well as structural and magnetic properties was carried out using powder X-ray diffraction, transmission electron microscopy, Raman and Mössbauer spectroscopy and superconducting quantum interference device magnetometry. The results reveal that the particles' saturation magnetization can be enhanced by the employment of high iron salt concentrations and a molar ratio of Fe3+/Fe2+ below 2:1. Furthermore, the particle size can be increased by higher iron salt concentrations and a hyperstoichiometric normal ratio of hydroxide ions to iron ions of 1.4:1. Overall results indicate that the saturation magnetization is directly related to the particle size.

  4. Process chemistry of americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, J.D.

    1983-01-01

    Americium-241, one of the most useful actinide isotopes, is produced as a by-product of plutonium scrap recovery operations. Rocky Flats has supplied high purity americium oxide to the US Department of Energy's Isotope Pool since 1962. Over the years, the evolving separation and purification processes have included such diverse operations as ion exchange, aqueous precipitation, and both molten-salt and organic-solvent extraction.

  5. Pollution damage to the Powell Building, Reston, Virginia

    USGS Publications Warehouse

    Doe, B.R.; Reddy, M.M.; Eggleston, J.R.

    1999-01-01

    Concrete column segments of the Powell Building (Reston, VA) exposed to the elements and wetted by precipitation were `cleaned' and roughened, but sheltered portions of the columns retained their smoothness and pollution accumulates, similar to observations for limestone, marble, and sandstone. Weathering effects on the columns were dominated by precipitation run-off and not the acidity of the precipitation. The process may be dry deposition of sulfur dioxide (SO2) and nitric oxides (NOx) that formed soluble salts in the presence of humid air or dew, salts that were removed by precipitation run-off.

  6. Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Natsui, Hiroshi; Sun, Yang-Kook; Yashiro, Hitoshi

    Aluminum was studied as a current collector for rechargeable lithium batteries to understand electrochemical and passivation behavior. Electrochemical polarization tests, in situ scratch polarization tests and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) analysis in lithium bis-oxalato borate (LiBOB)-containing alkyl carbonate solution were conducted. The Al foil did not follow the alloy and de-alloy process with the LiBOB salt in electrolyte at 0 V vs. Li/Li + in the cathodic sweep. During the anodic scan to the noble direction, the absence of an oxidation peak up to 3 V vs. Li/Li + indicated that the air-formed oxide layer of Al was not reduced to metal. Oxide-free Al surfaces made by the in situ scratch test during the electrochemical polarization resulted in abrupt alloy formation with Li at 0 V vs. Li/Li +, but the newly formed surface formed passive films at higher potential with oxygen, namely, Al-O compound, as confirmed by ToF-SIMS.

  7. DEMONSTRATION BULLETIN: COGNIS TERRAMET LEAD EXTRACTION PROCESS - TWIN CITIES ARMY AMMUNITION PLANT - COGNIS, INC.

    EPA Science Inventory

    The TERRAMET® soil remediation system leaches and recovers lead (including metallic lead, and lead salts and oxides), and other metals from contaminated soil, sludge, or sediment. The system uses a proprietary aqueous leachant that is optimized through treatability tests for the ...

  8. Increased sensitivity to salt stress in tocopherol-deficient Arabidopsis mutants growing in a hydroponic system

    PubMed Central

    Ellouzi, Hasna; Hamed, Karim Ben; Cela, Jana; Müller, Maren; Abdelly, Chedly; Munné-Bosch, Sergi

    2013-01-01

    Recent studies suggest that tocopherols could play physiological roles in salt tolerance but the mechanisms are still unknown. In this study, we analyzed changes in growth, mineral and oxidative status in vte1 and vte4 Arabidopsis thaliana mutants exposed to salt stress. vte1 and vte4 mutants lack α-tocopherol, but only the vte1 mutant is additionally deficient in γ-tocopherol. Results showed that a deficiency in vitamin E leads to reduced growth and increased oxidative stress in hydroponically-grown plants. This effect was observed at early stages, not only in rosettes but also in roots. The vte1 mutant was more sensitive to salt-induced oxidative stress than the wild type and the vte4 mutant. Salt sensitivity was associated with (i) high contents of Na+, (ii) reduced efficiency of PSII photochemistry (Fv/Fm ratio) and (iii) more pronounced oxidative stress as indicated by increased hydrogen peroxide and malondialdeyde levels. The vte 4 mutant, which accumulates γ- instead of α-tocopherol showed an intermediate sensitivity to salt stress between the wild type and the vte1 mutant. Contents of abscisic acid, jasmonic acid and the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid were higher in the vte1 mutant than the vte4 mutant and wild type. It is concluded that vitamin E-deficient plants show an increased sensitivity to salt stress both in rosettes and roots, therefore indicating the positive role of tocopherols in stress tolerance, not only by minimizing oxidative stress, but also controlling Na+/K+ homeostasis and hormonal balance. PMID:23299430

  9. Process for preparing superconducting film having substantially uniform phase development

    DOEpatents

    Bharacharya, Raghuthan; Parilla, Philip A.; Blaugher, Richard D.

    1995-01-01

    A process for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material.

  10. Process for preparing superconducting film having substantially uniform phase development

    DOEpatents

    Bharacharya, R.; Parilla, P.A.; Blaugher, R.D.

    1995-12-19

    A process is disclosed for preparing a superconducting film, such as a thallium-barium-calcium-copper oxide superconducting film, having substantially uniform phase development. The process comprises providing an electrodeposition bath having one or more soluble salts of one or more respective potentially superconducting metals in respective amounts adequate to yield a superconducting film upon subsequent appropriate treatment. Should all of the metals required for producing a superconducting film not be made available in the bath, such metals can be a part of the ambient during a subsequent annealing process. A soluble silver salt in an amount between about 0.1% and about 4.0% by weight of the provided other salts is also provided to the bath, and the bath is electrically energized to thereby form a plated film. The film is annealed in ambient conditions suitable to cause formation of a superconductor film. Doping with silver reduces the temperature at which the liquid phase appears during the annealing step, initiates a liquid phase throughout the entire volume of deposited material, and influences the nucleation and growth of the deposited material. 3 figs.

  11. Technology for Solar Array Production on the Moon

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2002-01-01

    Silicon, aluminum, and glass are the primary raw materials that will be required for production of solar arrays on the moon. A process sequence is proposed for producing these materials from lunar regolith is proposed, consisting of separating the required materials from lunar rock with fluorine. Fluorosilane produced by this process is reduced to silicon; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O. Aluminum, calcium oxide, and magnesium oxide are recovered to manufacture structural materials and glass.

  12. Formulation and method for preparing gels comprising hydrous aluminum oxide

    DOEpatents

    Collins, Jack L.

    2014-06-17

    Formulations useful for preparing hydrous aluminum oxide gels contain a metal salt including aluminum, an organic base, and a complexing agent. Methods for preparing gels containing hydrous aluminum oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including aluminum, an organic base, and a complexing agent.

  13. Formulation and method for preparing gels comprising hydrous cerium oxide

    DOEpatents

    Collins, Jack L; Chi, Anthony

    2013-05-07

    Formulations useful for preparing hydrous cerium oxide gels contain a metal salt including cerium, an organic base, and a complexing agent. Methods for preparing gels containing hydrous cerium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including cerium, an organic base, and a complexing agent.

  14. Low temperature route to uranium nitride

    DOEpatents

    Burrell, Anthony K.; Sattelberger, Alfred P.; Yeamans, Charles; Hartmann, Thomas; Silva, G. W. Chinthaka; Cerefice, Gary; Czerwinski, Kenneth R.

    2009-09-01

    A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

  15. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  16. Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides.

    PubMed

    Sayed, Farheen N; Polshettiwar, Vivek

    2015-05-05

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

  17. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides

    PubMed Central

    Sayed, Farheen N.; Polshettiwar, Vivek

    2015-01-01

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner. PMID:25939969

  18. Mixed Oxidant Process for Control of Biological Growth in Cooling Towers

    DTIC Science & Technology

    2010-02-01

    Concentration is < 1% (vs. 12.5% for bulk bleach ) • Will not form chlorine gas • No transport or storage of hazardous chemicals • Uses only salt as...Eliminates purchase, transport, and storage of hazardous biocide compounds such as hypochlorite or chlorine gas • Provides a constant dosage level of...patented MIOX equipment design • Chemical and biocidal properties are more effective than conventional chlorine Bulk Bleach On-Site Hypo Mixed Oxidants E

  19. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Peters, T.

    2011-11-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for themore » distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.« less

  20. Preparation of aluminum-magnesium alloy from magnesium oxide in RECl3-KCl-MgCl2 electrolyte by molten salts electrolysis method

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua; Wu, Lin; Yang, Fengli; Li, Mingzhou; Hu, Xianwei; Wang, Zhaowen; Shi, Zhongning; Gao, Bingliang

    Aluminum-magnesium alloys were prepared from magnesium oxide by molten salt electrolysis method. 10w%RECl3-63.5w%KCl-23.5w%MgCl2-3w%MgO was taken as electrolyte. The results showed that RE could be attained in aluminum-magnesium alloy, and it was proved that the RE was reduced directly by aluminum. Magnesium in the alloy was produced by electrolysis on cathode. The content of RE in the alloy was about 0.8wt %-1.2wt%, and the content of Mg in the alloy was lwt%˜6wt% with electrolytic times. The highest current efficiency was 81.3% with 0.8A/cm2 current density. The process of electrolysis was controlled together by electrochemical polarization and concentration polarization.

  1. Long-term eutrophication prompts tradeoffs in nitrous oxide and methane emission in a New England salt marsh

    EPA Science Inventory

    Eutrophication is a common problem facing urban estuaries and may stimulate changes in microtopography, plant communities, and microbial processes that drive greenhouse gas (GHG) fluxes. Since coastal wetlands are known to sequester abundant carbon and GHGs relative to terrestri...

  2. Project SQUID - A program of Fundamental Research on Liquid Rocket and Pulse Jet Propulsion

    DTIC Science & Technology

    1947-10-01

    bration methods. It has been determined that by aspirating salt solution of different concentrations into a flame, very little , if any, effect is...process combustion, de- fining effects of combustion-chamber size and shape, fuel and oxidizer distribution, and turbu- lence with available fuck

  3. Nitrate photolysis in salty snow

    NASA Astrophysics Data System (ADS)

    Donaldson, D. J.; Morenz, K.; Shi, Q.; Murphy, J. G.

    2016-12-01

    Nitrate photolysis from snow can have a significant impact on the oxidative capacity of the local atmosphere, but the factors affecting the release of gas phase products are not well understood. Here, we report the first systematic study of the amounts of NO, NO2, and total nitrogen oxides (NOy) emitted from illuminated snow samples as a function of both nitrate and total salt (NaCl and Instant Ocean) concentration. We show that the release of nitrogen oxides to the gas phase is directly related to the expected nitrate concentration in the brine at the surface of the snow crystals, increasing to a plateau value with increasing nitrate, and generally decreasing with increasing NaCl or Instant Ocean (I.O.). In frozen mixed nitrate (25 mM) - salt (0-500 mM) solutions, there is an increase in gas phase NO2 seen at low added salt amounts: NO2 production is enhanced by 35% at low prefreezing [NaCl] and by 70% at similar prefreezing [I.O.]. Raman microscopy of frozen nitrate-salt solutions shows evidence of stronger nitrate exclusion to the air interface in the presence of I.O. than with added NaCl. The enhancement in nitrogen oxides emission in the presence of salts may prove to be important to the atmospheric oxidative capacity in polar regions.

  4. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; Pierce, David A.; Ebert, William L.; Williams, Benjamin D.; Snyder, Michelle M. V.; Frank, Steven M.; George, Jaime L.; Kruska, Karen

    2017-11-01

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.

  5. Formulation and method for preparing gels comprising hydrous hafnium oxide

    DOEpatents

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  6. [Physical and chemical evaluation during refrigeration storage of salted catfish (Pseudoplatystoma sp.) in brine solution, and packed under vacuum].

    PubMed

    Rodríguez, Diana; Barrero, Marinela; Kodaira, Makie

    2009-06-01

    Salting fish in the south Venezuelan towns are still the main method of preserving fish including cutt, and salting fish process, storage and commercialization. As the result, salted-dried fish is particularly susceptible to spoilage by a number of factors, including lipid oxidation, browning meat. Packing salted fish product is an alternative increasing storage life time reducing lost of quality and enhancing the storage time. The present study evaluated the physic, chemist, and sensory quality of fish fillet from cat fish (Pseudoplatystoma sp.) from Apure state, Venezuela. Fillet fish were placed in brine solution at 36% of sodium chloride 1:2 fillet: brine solution; after, they were packed under followed conditions: vacuum, vacuum and storage under refrigeration condition, and room temperature. The results showed significant differences (p < 0.01) for moisture, salt content, and Aw. The fillets packed at vacuum and storage at 4 degrees C were significant different from the resting treatments; not significant differences were presented at room and refrigeration temperature after three moths. The best conditions treatment was vacuum packing and refrigeration at 4 degrees C.

  7. Catalyzed Atomic Layer Deposition of Silicon Oxide at Ultralow Temperature Using Alkylamine.

    PubMed

    Mayangsari, Tirta R; Park, Jae-Min; Yusup, Luchana L; Gu, Jiyeon; Yoo, Jin-Hyuk; Kim, Heon-Do; Lee, Won-Jun

    2018-06-12

    We report the catalyzed atomic layer deposition (ALD) of silicon oxide using Si 2 Cl 6 , H 2 O, and various alkylamines. The density functional theory (DFT) calculations using the periodic slab model of the SiO 2 surface were performed for the selection of alternative Lewis base catalysts with high catalytic activities. During the first half-reaction, the catalysts with less steric hindrance such as pyridine would be more effective than bulky alkylamines despite lower nucleophilicity. On the other hand, during the second half-reaction, the catalysts with a high nucleophilicity such as triethylamine (Et 3 N) would be more efficient because the steric hindrance is less critical. The in situ process monitoring shows that the calculated atomic charge is a good indicator for expecting the catalyst activity in the ALD reaction. The use of Et 3 N in the second half-reaction was essential to improving the growth rate as well as the step coverage of the film because the Et 3 N-catalyzed process deposited a SiO 2 film with a step coverage of 98% that is better than 93% of the pyridine-catalyzed process. The adsorption of pyridine, ammonia (NH 3 ), or trimethylamine (Me 3 N) salts was more favorable than that of Et 3 N, n-Pr 3 N, or i Pr 3 N salts. Therefore, Et 3 N was expected to incorporate less amine salts in the film as compared to pyridine, and the compositional analyses confirmed that the concentrations of Cl and N by the Et 3 N-catalyzed process were significantly lower than those by the pyridine-catalyzed process.

  8. Salt Inactivates Endothelial Nitric Oxide Synthase in Endothelial Cells12

    PubMed Central

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J.; Li, Xiang-An

    2009-01-01

    There is a 1–4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension. PMID:19176751

  9. Salt inactivates endothelial nitric oxide synthase in endothelial cells.

    PubMed

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An

    2009-03-01

    There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.

  10. Groundwater hydrochemistry in the active layer of the proglacial zone, Finsterwalderbreen, Svalbard

    USGS Publications Warehouse

    Cooper, R.J.; Wadham, J.L.; Tranter, M.; Hodgkins, R.; Peters, N.E.

    2002-01-01

    Glacial bulk meltwaters and active-layer groundwaters were sampled from the proglacial zone of Finsterwalderbreen during a single melt season in 1999, in order to determine the geochemical processes that maintain high chemical weathering rates in the proglacial zone of this glacier. Results demonstrate that the principle means of solute acquisition is the weathering of highly reactive moraine and fluvial active-layer sediments by supra-permafrost groundwaters. Active-layer groundwater derives from the thaw of the proglacial snowpack, buried ice and glacial bulk meltwaters. Groundwater evolves by sulphide oxidation and carbonate dissolution. Evaporation- and freeze-concentration of groundwater in summer and winter, respectively produce Mg-Ca-sulphate salts on the proglacial surface. Re-dissolution of these salts in early summer produces groundwaters that are supersaturated with respect to calcite. There is a pronounced spatial pattern to the geochemical evolution of groundwater. Close to the main proglacial channel, active layer sediments are flushed diurnally by bulk meltwaters. Here, Mg-Ca-sulphate deposits become exhausted in the early season and geochemical evolution proceeds by a combination of sulphide oxidation and carbonate dissolution. At greater distances from the channel, the dissolution of Mg-Ca-sulphate salts is a major influence and dilution by the bulk meltwaters is relatively minor. The influence of sulphate salt dissolution decreases during the sampling season, as these salts are exhausted and waters become increasingly routed by subsurface flowpaths. ?? 2002 Elsevier Science B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.

    Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less

  12. Molten salt electrodeposition of high temperature superconductors. Final report, 7 September 1990-30 November 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tench, D.M.; Kendig, M.W.; Jeanjaquet, S.

    1993-06-01

    The overall objective of this project was to develop a process for direct electrodeposition of Y-Ba-Cu superconducting oxides from a molten salt at relatively low temperatures (300-550 deg C). An important finding was that cathodic deposition of metallic oxides, rather than free metals, generally occurs from nitrate melts, apparently via reduction of metal nitrato complexes. Oxide deposition was confirmed for Cu as CuO, Y as Y2O3, and Co as Co3O4, and apparently also occurs for Ba. Deposition of mixed Ba-Y-Cu oxides was demonstrated on both Cu and Pt substrates. Data were compiled that provide a good basis for designing schemesmore » for deposition of various mixed oxides from nitrate melts. A sequential anodic injection method was conceived for depositing ultrathin mixed oxide layers, which can be viewed as an analog of molecular beam epitaxy. Results obtained with this approach were encouraging but were inconclusive because of contamination with Gd from the Y injection anode. Based on the results of this program and literature studies, cathodic metal oxide deposition from nitrate melts is a general phenomenon that could ultimately prove to be a practical means of preparing a variety of single and mixed anhydrous metal oxide films. It is recommended that future work focus initially on deposition of perovskite materials, which are of considerable practical interest and involve only two metallic components so that the required deposition schemes are inherently simpler.« less

  13. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600?C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form? process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  14. Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Shchetkovskiy, Anatoliy; McKechnie, Timothy; Sadoway, Donald R.; Paramore, James; Melendez, Orlando; Curreri, Peter A.

    2010-01-01

    Processing of lunar regolith into oxygen for habitat and propulsion is needed to support future space missions. Direct electrochemical reduction of molten regolith is an attractive method of processing, because no additional chemical reagents are needed. The electrochemical processing of molten oxides requires high surface area, inert anodes. Such electrodes need to be structurally robust at elevated temperatures (1400-1600 C), be resistant to thermal shock, have good electrical conductivity, be resistant to attack by molten oxide (silicate), be electrochemically stable and support high current density. Iridium with its high melting point, good oxidation resistance, superior high temperature strength and ductility is the most promising candidate for anodes in high temperature electrochemical processes. Several innovative concepts for manufacturing such anodes by electrodeposition of iridium from molten salt electrolyte (EL-Form process) were evaluated. Iridium electrodeposition to form of complex shape components and coating was investigated. Iridium coated graphite, porous iridium structure and solid iridium anodes were fabricated. Testing of electroformed iridium anodes shows no visible degradation. The result of development, manufacturing and testing of high surface, inert iridium anodes will be presented.

  15. A kinetic study on the catalysis of KCl, K2SO4, and K2CO3 during oxy-biomass combustion.

    PubMed

    Deng, Shuanghui; Wang, Xuebin; Zhang, Jiaye; Liu, Zihan; Mikulčić, Hrvoje; Vujanović, Milan; Tan, Houzhang; Duić, Neven

    2018-07-15

    Biomass combustion under the oxy-fuel conditions (Oxy-biomass combustion) is one of the approaches achieving negative CO 2 emissions. KCl, K 2 CO 3 and K 2 SO 4 , as the major potassium species in biomass ash, can catalytically affect biomass combustion. In this paper, the catalysis of the representative potassium salts on oxy-biomass combustion was studied using a thermogravimetric analyzer (TGA). Effects of potassium salt types (KCl, K 2 CO 3 and K 2 SO 4 ), loading concentrations (0, 1, 3, 5, 8 wt%), replacing N 2 by CO 2 , and O 2 concentrations (5, 20, 30 vol%) on the catalysis degree were discussed. The comparison between TG-DTG curves of biomass combustion before and after water washing in both the 20%O 2 /80%N 2 and 20%O 2 /80%CO 2 atmospheres indicates that the water-soluble minerals in biomass play a role in promoting the devolatilization and accelerating the char-oxidation; and the replacement of N 2 by CO 2 inhibits the devolatilization and char-oxidation processes during oxy-biomass combustion. In the devolatilization stage, the catalysis degree of potassium monotonously increases with the increase of potassium salt loaded concentration. The catalysis degree order of the studied potassium salts is K 2 CO 3  > KCl > K 2 SO 4 . In the char-oxidation stage, with the increase of loading concentration the three kinds of potassium salts present inconsistent change tendencies of the catalysis degree. In the studied loading concentrations from 0 to 8 wt%, there is an optimal loading concentration for KCl and K 2 CO 3 , at 3 and 5 wt%, respectively; while for K 2 SO 4 , the catalysis degree on char-oxidation monotonically increases with the loading potassium concentration. For most studied conditions, regardless of the potassium salt types or the loading concentrations or the combustion stages, the catalysis degree in the O 2 /CO 2 atmosphere is stronger than that in the O 2 /N 2 atmosphere. The catalysis degree is also affected by the O 2 concentrations, and the lowest catalysis degree is generally around 20 vol% O 2 concentration. The kinetic parameters under the different studied conditions are finally obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Assessment of lead tellurite glass for immobilizing electrochemical salt wastes from used nuclear fuel reprocessing

    DOE PAGES

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.; ...

    2017-08-30

    Here, this paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li 2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl 2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersivemore » X-ray spectroscopy. These glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability.« less

  17. Changes in the Phosphoproteome and Metabolome Link Early Signaling Events to Rearrangement of Photosynthesis and Central Metabolism in Salinity and Oxidative Stress Response in Arabidopsis1

    PubMed Central

    Chen, Yanmei; Hoehenwarter, Wolfgang

    2015-01-01

    Salinity and oxidative stress are major factors affecting and limiting the productivity of agricultural crops. The molecular and biochemical processes governing the plant response to abiotic stress have often been researched in a reductionist manner. Here, we report a systemic approach combining metabolic labeling and phosphoproteomics to capture early signaling events with quantitative metabolome analysis and enzyme activity assays to determine the effects of salt and oxidative stress on plant physiology. K+ and Na+ transporters showed coordinated changes in their phosphorylation pattern, indicating the importance of dynamic ion homeostasis for adaptation to salt stress. Unique phosphorylation sites were found for Arabidopsis (Arabidopsis thaliana) SNF1 kinase homolog10 and 11, indicating their central roles in the stress-regulated responses. Seven Sucrose Non-fermenting1-Related Protein Kinase2 kinases showed varying levels of phosphorylation at multiple serine/threonine residues in their kinase domain upon stress, showing temporally distinct modulation of the various isoforms. Salinity and oxidative stress also lead to changes in protein phosphorylation of proteins central to photosynthesis, in particular the kinase State Transition Protein7 required for state transition and light-harvesting II complex proteins. Furthermore, stress-induced changes of the phosphorylation of enzymes of central metabolism were observed. The phosphorylation patterns of these proteins were concurrent with changes in enzyme activity. This was reflected by altered levels of metabolites, such as the sugars sucrose and fructose, glycolysis intermediates, and amino acids. Together, our study provides evidence for a link between early signaling in the salt and oxidative stress response that regulates the state transition of photosynthesis and the rearrangement of primary metabolism. PMID:26471895

  18. Dextran templating for the synthesis of metallic and metal oxide sponges

    NASA Astrophysics Data System (ADS)

    Walsh, Dominic; Arcelli, Laura; Ikoma, Toshiyuki; Tanaka, Junzo; Mann, Stephen

    2003-06-01

    Silver or gold-containing porous frameworks have been used extensively in catalysis, electrochemistry, heat dissipation and biofiltration. These materials are often prepared by thermal reduction of metal-ion-impregnated porous insoluble supports (such as alumina and pumice), and have surface areas of about 1 m2 g-1, which is typically higher than that obtained for pure metal powders or foils prepared electrolytically or by infiltration and thermal decomposition of insoluble cellulose supports. Starch gels have been used in association with zeolite nanoparticles to produce porous inorganic materials with structural hierarchy, but the use of soft sacrificial templates in the synthesis of metallic sponges has not been investigated. Here we demonstrate that self-supporting macroporous frameworks of silver, gold and copper oxide, as well as composites of silver/copper oxide or silver/titania can be routinely prepared by heating metal-salt-containing pastes of the polysaccharide, dextran, to temperatures between 500 and 900 °C. Magnetic sponges were similarly prepared by replacing the metal salt precursor with preformed iron oxide (magnetite) nanoparticles. The use of dextran as a sacrificial template for the fabrication of metallic and metal oxide sponges should have significant benefits over existing technologies because the method is facile, inexpensive, environmentally benign, and amenable to scale-up and processing.

  19. Secondary Processors and Landfills — Partnerships that Work

    NASA Astrophysics Data System (ADS)

    Brewer, Ben; Roth, David J.

    Using Best Available Technology is a phase that we often hear when there are environmental discussions on aluminum dross and secondary salt slag processing. The reality is best available technology is a mix between efficient removal of the valuable aluminum, oxides, misc metals and flux from dross and salt cake. This combined with conscientious land fill disposal of those items that finally, at this time, have no economic use is the reality of a company's best available actions. Recycling processes must be looked at with both the economic and environmental benefits weighed for their responsible implementation. This paper will discuss how this is done on a practical basis by Recycling Ventures (a secondary processor) and Environmental Waste Solutions (a Title II landfill), for the aluminum industry.

  20. High temperature oxidation in boiler environment of chromized steel

    NASA Astrophysics Data System (ADS)

    Alia, F. F.; Kurniawan, T.; Asmara, Y. P.; Ani, M. H. B.; Nandiyanto, A. B. D.

    2017-10-01

    The demand for increasing efficiency has led to the development and construction of higher operating temperature power plant. This condition may lead to more severe thickness losses in boiler tubes due to excessive corrosion process. Hence, the research to improve the corrosion resistance of the current operated material is needed so that it can be applied for higher temperature application. In this research, the effect of chromizing process on the oxidation behaviour of T91 steel was investigated under steam condition. In order to deposit chromium, mixture of chromium (Cr) powder as master alloy, halide salt (NH4Cl) powder as activator and alumina (Al2O3) powder as inert filler were inserted into alumina retort together with the steel sample and heated inside furnace at 1050°C for ten hours under argon gas environment. Furthermore, for the oxidation process, steels were exposed at 700°C at different oxidation time (6h-24h) under steam condition. From FESEM/EDX analysis, it was found that oxidation rate of pack cemented steel was lower than the un-packed steel. These results show that Cr from chromizing process was able to become reservoir for the formation of Cr2O3 in high temperature steam oxidation, and its existence can be used for a longer oxidation time.

  1. Numerical Simulation of Hydrothermal Salt Separation Process and Analysis and Cost Estimating of Shipboard Liquid Waste Disposal

    DTIC Science & Technology

    2007-06-01

    possible means to improve a variety of processes: supercritical water in steam Rankine cycles (fossil-fuel powered plants), supercritical carbon ... dioxide and supercritical water in advanced nuclear power plants, and oxidation in supercritical water for use in destroying toxic military wastes and...destruction technologies are installed in a class of ship. Additionally, the properties of one waste water destruction medium, supercritical

  2. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  3. Nitric oxide contributes to high-salt perception in a blood-sucking insect model.

    PubMed

    Cano, Agustina; Pontes, Gina; Sfara, Valeria; Anfossi, Diego; Barrozo, Romina B

    2017-11-14

    In all organisms, salts produce either appetitive or aversive responses depending on the concentration. While low-salt concentration in food elicits positive responses to ingest, high-salt triggers aversion. Still the mechanisms involved in this dual behavior have just started to be uncovered in some organisms. In Rhodnius prolixus, using pharmacological and behavioral assays, we demonstrated that upon high-salt detection in food a nitric oxide (NO) dependent cascade is activated. This activation involves a soluble guanylate cyclase (sGC) and the production of cyclic guanosine monophosphate (cGMP). Thus, appetitive responses to low-salt diets turn to aversion whenever this cascade is activated. Conversely, insects feed over aversive high-salt solutions when it is blocked by reducing NO levels or by affecting the sGC activity. The activation of NO/sGC/cGMP cascade commands the avoidance feeding behavior in R. prolixus. Investigations in other insect species should examine the possibility that high-salt aversion is mediated by NO/sSG/cGMP signaling.

  4. Decreased Arteriolar Tetrahydrobiopterin is Linked to Superoxide Generation from Nitric Oxide Synthase in Mice Fed High Salt

    PubMed Central

    Nurkiewicz, Timothy R.; Wu, Guoyao; Li, Peng; Boegehold, Matthew A.

    2012-01-01

    Objective Impaired endothelium-dependent arteriolar dilation in mice fed high salt is due to local oxidation of nitric oxide (NO) by superoxide anion (O2-). We explored the possibility that “uncoupled” endothelial nitric oxide synthase (eNOS) is the source of this O2-. Methods Levels of L-arginine (L-Arg), tetrahydrobiopterin (BH4) and O2- (hydroethidine oxidation) were measured in spinotrapezius muscle arterioles of mice fed normal salt (0.45%, NS) or high salt (4%, HS) diets for 4 weeks, with or without dietary L-Arg supplementation. The contribution of NO to endothelium-dependent dilation was determined from the effect of Nω-nitro-L-arginine methyl ester (L-NAME) on responses to acetylcholine (ACh). Results Arterioles in HS mice had lower [BH4] and higher O2- levels than those in NS mice. ACh further increased arteriolar O2- in HS mice only. L-Arg supplementation prevented the reduction in [BH4] in arterioles of HS mice, and O2- was not elevated in these vessels. Compared to NS mice, arteriolar ACh responses were diminished and insensitive to L-NAME in HS mice, but not in HS mice supplemented with L-Arg. Conclusions These findings suggest that eNOS uncoupling due to low [BH4] is responsible for O2- generation and reduced NO-dependent dilation in arterioles of mice fed a high salt diet. PMID:20163541

  5. Molten salt medium synthesis of wormlike platinum silver nanotubes without any organic surfactant or solvent for methanol and formic acid oxidation.

    PubMed

    Zhao, Haidong; Liu, Rui; Guo, Yong; Yang, Shengchun

    2015-12-14

    In the current research, the PtxAgy (x/y = 86/14, 79/21, 52/48, 21/79, 11/89) nanoparticles (NPs) are synthesized in the KNO3-LiNO3 molten salts without using any organic surfactant or solvent. The SEM results suggest that when the content of Ag is higher than 48%, the wormlike PtxAgy nanotubes (NTs) can be synthesized. The diameter of the PtxAgyNTs shows a slow decrease with the increase of Ag content. The TEM and HRTEM results indicate that the growth of hollow PtxAgy NTs undergoes an oriented attachment process and a Kirkendall effect approach. The results of cyclic voltammetry (CV) measurement indicate that the Pt52Ag48 catalyst presents a remarkable enhancement for methanol electrooxidation, while the Pt86Ag14 catalyst prefers electrochemically oxidizing formic acid compared with that of the commercially available Pt black.

  6. Treatment of high-salinity chemical wastewater by indigenous bacteria--bioaugmented contact oxidation.

    PubMed

    Li, Qiang; Wang, Mengdi; Feng, Jun; Zhang, Wei; Wang, Yuanyuan; Gu, Yanyan; Song, Cunjiang; Wang, Shufang

    2013-09-01

    A 90 m(3) biological contact oxidation system in chemical factory was bioaugmented with three strains of indigenous salt-tolerant bacteria. These three strains were screened from contaminative soil in situ. Their activity of growth and degradation was investigated with lab-scale experiments. Their salt-tolerant mechanism was confirmed to be compatible-solutes strategy for moderately halophilic bacteria, with amino acid and betaine playing important roles. The running conditions of the system were recorded for 150 days. The indigenous bacteria had such high suitability that the reactor got steady rapidly and the removal of COD maintained above 90%. It was introduced that biofilm fragments in sedimentation tank were inversely flowed to each reaction tank, and quantitative PCR demonstrated that this process could successfully maintain the bacterial abundance in the reaction tanks. In addition, the T-RFLP revealed that bioaugmented strains dominated over others in the biofilm. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  8. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System.

    PubMed

    Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S

    2016-12-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  9. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    NASA Astrophysics Data System (ADS)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.

    This paper provides an overview of research evaluating the use of lead tellurite glass as a waste form for salt wastes from electrochemical reprocessing of used nuclear fuel. The efficacy of using lead tellurite glass to immobilize three different salt compositions was evaluated: a LiCl-Li2O oxide reduction salt containing fission products from oxide fuel, a LiCl-KCl eutectic salt containing fission products from metallic fuel, and SrCl2. Physical and chemical properties of glasses made with these salts were characterized with X-ray diffraction, bulk density measurements, differential thermal analysis, chemical durability tests, scanning and transmission electron microscopies, and energy-dispersive X-ray spectroscopy. Thesemore » glasses were found to accommodate high salt concentrations and have high densities, but further development is needed to improve chemical durability. (C) 2017 Published by Elsevier B.V.« less

  11. Exogenous Proline and Glycine Betaine Mediated Upregulation of Antioxidant Defense and Glyoxalase Systems Provides Better Protection against Salt-Induced Oxidative Stress in Two Rice (Oryza sativa L.) Varieties

    PubMed Central

    Hasanuzzaman, Mirza; Alam, Md. Mahabub; Rahman, Anisur; Hasanuzzaman, Md.; Nahar, Kamrun; Fujita, Masayuki

    2014-01-01

    The present study investigates the roles of exogenous proline (Pro, 5 mM) and glycine betaine (GB, 5 mM) in improving salt stress tolerance in salt sensitive (BRRI dhan49) and salt tolerant (BRRI dhan54) rice (Oryza sativa L.) varieties. Salt stresses (150 and 300 mM NaCl for 48 h) significantly reduced leaf relative water (RWC) and chlorophyll (chl) content and increased endogenous Pro and increased lipid peroxidation and H2O2 levels. Ascorbate (AsA), glutathione (GSH) and GSH/GSSG, ascorbate peroxidae (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and glyoxalase I (Gly I) activities were reduced in sensitive variety and these were increased in tolerant variety due to salt stress. The glyoxalase II (Gly II), glutathione S-transferase (GST), and superoxide dismutase (SOD) activities were increased in both cultivars by salt stress. Exogenous Pro and GB application with salt stress improved physiological parameters and reduced oxidative damage in both cultivars where BRRI dhan54 showed better tolerance. The result suggests that exogenous application of Pro and GB increased rice seedlings' tolerance to salt-induced oxidative damage by upregulating their antioxidant defense system where these protectants rendered better performance to BRRI dhan54 and Pro can be considered as better protectant than GB. PMID:24991566

  12. Grafting of diazonium salts on oxides surface: formation of aryl-O bonds on iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Brymora, Katarzyna; Fouineau, Jonathan; Eddarir, Asma; Chau, François; Yaacoub, Nader; Grenèche, Jean-Marc; Pinson, Jean; Ammar, Souad; Calvayrac, Florent

    2015-11-01

    Combining ab initio modeling and 57Fe Mössbauer spectrometry, we characterized the nature of the chemical linkage of aminoalkyl arenediazonium salt on the surface of iron oxide nanoparticles. We established that it is built through a metal-oxygen-carbon bonding and not a metal-carbon one, as usually suggested and commonly observed in previously studied metal- or carbon-based surfaces.

  13. Aqueously Dispersed Silver Nanoparticle-Decorated Boron Nitride Nanosheets for Reusable, Thermal Oxidation-Resistant Surface Enhanced Raman Spectroscopy (SERS) Devices

    NASA Technical Reports Server (NTRS)

    Lin, Yi; Bunker, Christopher E.; Fernandos, K. A. Shiral; Connell, John W.

    2012-01-01

    The impurity-free aqueous dispersions of boron nitride nanosheets (BNNS) allowed the facile preparation of silver (Ag) nanoparticle-decorated BNNS by chemical reduction of an Ag salt with hydrazine in the presence of BNNS. The resultant Ag-BNNS nanohybrids remained dispersed in water, allowing convenient subsequent solution processing. By using substrate transfer techniques, Ag-BNNS nanohybrid thin film coatings on quartz substrates were prepared and evaluated as reusable surface enhanced Raman spectroscopy (SERS) sensors that were robust against repeated solvent washing. In addition, because of the unique thermal oxidation-resistant properties of the BNNS, the sensor devices may be readily recycled by short-duration high temperature air oxidation to remove residual analyte molecules in repeated runs. The limiting factor associated with the thermal oxidation recycling process was the Ostwald ripening effect of Ag nanostructures.

  14. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots.

    PubMed

    Wu, Jianqiang; Shu, Sheng; Li, Chengcheng; Sun, Jin; Guo, Shirong

    2018-07-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling molecule that mediates a variety of physiological processes and defense responses against abiotic stress in higher plants. In this study, our aims are to clarify the role of H 2 O 2 accumulation induced by the exogenous application of spermidine (Spd) to cucumber (Cucumis sativus) seedlings in regulating the antioxidant capacity of roots under salt stress. The results showed that Spd caused a significant increase in endogenous polyamines and H 2 O 2 levels, and peaked at 2 h after salt stress. Spd-induced H 2 O 2 accumulation was blocked under salt stress by pretreatment with a H 2 O 2 scavenger and respective inhibitors of cell wall peroxidase (CWPOD; EC: 1.11.1.7), polyamine oxidase (PAO; EC: 1.5.3.11) and NADPH oxidase (NOX; EC: 1.6.3.1); among these three inhibitors, the largest decrease was found in response to the addition of the inhibitor of polyamine oxidase. In addition, we observed that exogenous Spd could increase the activities of the enzymes superoxide dismutase (SOD; EC: 1.15.1.1), peroxidase (POD; EC: 1.11.1.7) and catalase (CAT; EC: 1.11.1.6) as well as the expression of their genes in salt-stressed roots, and the effects were inhibited by H 2 O 2 scavengers and polyamine oxidase inhibitors. These results suggested that, by regulating endogenous PAs-mediated H 2 O 2 signaling in roots, Spd could enhance antioxidant enzyme activities and reduce oxidative damage; the main source of H 2 O 2 was polyamine oxidation, which was associated with improved tolerance and root growth recovery of cucumber under salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Iron oxide-mediated semiconductor photocatalysis vs. heterogeneous photo-Fenton treatment of viruses in wastewater. Impact of the oxide particle size.

    PubMed

    Giannakis, Stefanos; Liu, Siting; Carratalà, Anna; Rtimi, Sami; Talebi Amiri, Masoud; Bensimon, Michaël; Pulgarin, César

    2017-10-05

    The photo-Fenton process is recognized as a promising technique towards microorganism disinfection in wastewater, but its efficiency is hampered at near-neutral pH operating values. In this work, we overcome these obstacles by using the heterogeneous photo-Fenton process as the default disinfecting technique, targeting MS2 coliphage in wastewater. The use of low concentrations of iron oxides in wastewater without H 2 O 2 (wüstite, maghemite, magnetite) has demonstrated limited semiconductor-mediated MS2 inactivation. Changing the operational pH and the size of the oxide particles indicated that the isoelectric point of the iron oxides and the active surface area are crucial in the success of the process, and the possible underlying mechanisms are investigated. Furthermore, the addition of low amounts of Fe-oxides (1mgL -1 ) and H 2 O 2 in the system (1, 5 and 10mgL -1 ) greatly enhanced the inactivation process, leading to heterogeneous photo-Fenton processes on the surface of the magnetically separable oxides used. Additionally, photo-dissolution of iron in the bulk, lead to homogeneous photo-Fenton, further aided by the complexation by the dissolved organic matter in the solution. Finally, we assess the impact of the presence of the bacterial host and the difference caused by the different iron sources (salts, oxides) and the Fe-oxide size (normal, nano-sized). Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments

    PubMed Central

    Thomas, François; Giblin, Anne E.; Cardon, Zoe G.; Sievert, Stefan M.

    2014-01-01

    Salt marshes are highly productive ecosystems hosting an intense sulfur (S) cycle, yet little is known about S-oxidizing microorganisms in these ecosystems. Here, we studied the diversity and transcriptional activity of S-oxidizers in salt marsh sediments colonized by the plant Spartina alterniflora, and assessed variations with sediment depth and small-scale compartments within the rhizosphere. We combined next-generation amplicon sequencing of 16S rDNA and rRNA libraries with phylogenetic analyses of marker genes for two S-oxidation pathways (soxB and rdsrAB). Gene and transcript numbers of soxB and rdsrAB phylotypes were quantified simultaneously, using newly designed (RT)-qPCR assays. We identified a diverse assemblage of S-oxidizers, with Chromatiales and Thiotrichales being dominant. The detection of transcripts from S-oxidizers was mostly confined to the upper 5 cm sediments, following the expected distribution of root biomass. A common pool of species dominated by Gammaproteobacteria transcribed S-oxidation genes across roots, rhizosphere, and surrounding sediment compartments, with rdsrAB transcripts prevailing over soxB. However, the root environment fine-tuned the abundance and transcriptional activity of the S-oxidizing community. In particular, the global transcription of soxB was higher on the roots compared to mix and rhizosphere samples. Furthermore, the contribution of Epsilonproteobacteria-related S-oxidizers tended to increase on Spartina roots compared to surrounding sediments. These data shed light on the under-studied oxidative part of the sulfur cycle in salt marsh sediments and indicate small-scale heterogeneities are important factors shaping abundance and potential activity of S-oxidizers in the rhizosphere. PMID:25009538

  17. Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode.

    PubMed

    Yuan, Yating; Li, Wei; Chen, Hualin; Wang, Zhiyong; Jin, Xianbo; Chen, George Z

    2016-08-15

    Electrolysis of solid metal oxides has been demonstrated in MgCl2-NaCl-KCl melt at 700 °C taking the electrolysis of Ta2O5 as an example. Both the cathodic and anodic processes have been investigated using cyclic voltammetry, and potentiostatic and constant voltage electrolysis, with the cathodic products analysed by XRD and SEM and the anodic products by GC. Fast electrolysis of Ta2O5 against a graphite anode has been realized at a cell voltage of 2 V, or a total overpotential of about 400 mV. The energy consumption was about 1 kW h kgTa(-1) with a nearly 100% Ta recovery. The cathodic product was nanometer Ta powder with sizes of about 50 nm. The main anodic product was Cl2 gas, together with about 1 mol% O2 gas and trace amounts of CO. The graphite anode was found to be an excellent inert anode. These results promise an environmentally-friendly and energy efficient method for metal extraction by electrolysis of metal oxides in MgCl2 based molten salts.

  18. Multiple Sulfate Isotopic Evidence on the Formation of Oxide Copper Ore at Spence, Atacama Desert, Northern Chile

    NASA Astrophysics Data System (ADS)

    Sun, T.; Bao, H.; Reich, M.; Palacios, C.

    2007-12-01

    In the Atacama Desert of northern Chile, one of the world's richest metallogenic provinces, porphyry copper deposits are characterized by the unique occurrence of atacamite in their oxidized zones. The origin and formation of the oxide zone of these copper deposits is, however, controversial. It was proposed that Cl-rich deep formation water pumping-up events along faults by earthquakes, after onset of the hyperaridity, were required (Cameron et al., 2007). Their model would imply that supplies of saline deep formation water from fractures to the surface should have left behind a homogeneous or fracture-controlled salt profile from surface down to the oxide zone. While no excluding the deep formation water model in other deposit, here we propose that, in our sampling region, the alternative saline source, which is critical for atacamite formation, could be locally evaporated groundwater, Cl-rich salts leached from arid surface by meteoric water, or brines from eastern salar basins at a time when the climate in northern Chile was changing from arid to hyperarid. At this climate transition, arid- requiring minerals such as atacamite in the oxide zone were formed and, more importantly, preserved upon evaporation beneath the surface alluvial deposits. Since salt accumulation at the surface remain active during hyperarid condition, our model would predict that water-soluble salt profile from surface to the oxide zone should have a characteristic pattern: salts with an atmospheric component on the surface gradually transitioning to salts of the oxide ore zone on the bottom and a mixing zone in between. To test these two alternative models, we focus on sulfate salts, one of the common water-soluble salts in arid environments. An added advantage is that sulfate accumulated on desert surface has a secondary atmospheric component that bears a unique triple oxygen isotope signature, easily distinguishable from sulfate formed by the oxidation of sulfide minerals at the oxide ore zone. Samples were collected from a drill core that extends from surface soil to an oxide zone where gypsum and jarosite coexist with atacamite at Spence, a supergene enriched copper porphyry deposit located between Calama and Antofagasta. We found that at 15 to ~100 m depths, the Δ17O and δ34S both decrease while the δ18O increases steadily with depths, suggesting a binary mixing of two distinct sulfate sources, with the surface sulfate having Δ17O, δ34S, and δ18O at +0.55‰, +5.80‰, and +10.80‰, while the deep oxide-ore- zone sulfate at -0.23‰, +3.6‰, and+19.8‰, respectively. The surface sulfate has reached a maximum depth of ~ 50 meters, as marked by the disappearance of positive Δ17O signals at that depth. The intact preservation of this transitional sulfate mixing profile supports our model, a model that does not require a deep formation water source for atacamite formation in oxide zone of Spence copper porphyry deposit.

  19. Environmental resistance of oxide tags fabricated on 304L stainless steel via nanosecond pulsed laser irradiation

    DOE PAGES

    Lawrence, Samantha Kay; Adams, David P.; Bahr, David F.; ...

    2015-11-14

    Nanosecond pulsed laser irradiation was used to fabricate colored, mechanically robust oxide “tags” on 304L stainless steel. Immersion in simulated seawater solution, salt fog exposure, and anodic polarization in a 3.5% NaCl solution were employed to evaluate the environmental resistance of these oxide tags. Single layer oxides outside a narrow thickness range (~ 100–150 nm) are susceptible to dissolution in chloride containing environments. The 304L substrates immediately beneath the oxides corrode severely—attributed to Cr-depletion in the melt zone during laser processing. For the first time, multilayered oxides were fabricated with pulsed laser irradiation in an effort to expand the protectivemore » thickness range while also increasing the variety of film colors attainable in this range. Layered films grown using a laser scan rate of 475 mm/s are more resistant to both localized and general corrosion than oxides fabricated at 550 mm/s. Furthermore, in the absence of pre-processing to mitigate Cr-depletion, layered films can enhance environmental stability of the system.« less

  20. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    PubMed

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides. Copyright © 2016. Published by Elsevier B.V.

  1. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  2. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  3. Method for the safe disposal of alkali metal

    DOEpatents

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  4. A Comparative Study of Cyclic Oxidation and Sulfates-Induced Hot Corrosion Behavior of Arc-Sprayed Ni-Cr-Ti Coatings at Moderate Temperatures

    NASA Astrophysics Data System (ADS)

    Guo, Wenmin; Wu, Yuping; Zhang, Jianfeng; Hong, Sheng; Chen, Liyan; Qin, Yujiao

    2015-06-01

    The cyclic oxidation and sulfates-induced hot corrosion behaviors of a Ni-43Cr-0.3Ti arc-sprayed coating at 550-750 °C were characterized and compared in this study. In general, all the oxidation and hot corrosion kinetic curves of the coating followed a parabolic law, i.e., the weight of the specimens showed a rapid growth initially and then reached the gradual state. However, the initial stage of the hot corrosion process was approximately two times longer than that of the oxidation process, indicating a longer preparation time required for the formation of a protective scale in the former process. At 650 °C, the parabolic rate constant for the hot corrosion was 7.2 × 10-12 g2/(cm4·s), approximately 1.7 times higher than that for the oxidation at the same temperature. The lower parabolic rate constant for the oxidation was mainly attributed to the formation of a protective oxide scale on the surface of corroded specimens, which was composed of a mixture of NiO, Cr2O3, and NiCr2O4. However, as the liquid molten salts emerged during the hot corrosion, these protective oxides would be dissolved and the coating was corrupted acceleratedly.

  5. Low-Concentration Kinetics of Atmospheric CH4 Oxidation in Soil and Mechanism of NH4+ Inhibition

    PubMed Central

    Gulledge, Jay; Schimel, Joshua P.

    1998-01-01

    NH4+ inhibition kinetics for CH4 oxidation were examined at near-atmospheric CH4 concentrations in three upland forest soils. Whether NH4+-independent salt effects could be neutralized by adding nonammoniacal salts to control samples in lieu of deionized water was also investigated. Because the levels of exchangeable endogenous NH4+ were very low in the three soils, desorption of endogenous NH4+ was not a significant factor in this study. The Km(app) values for water-treated controls were 9.8, 22, and 57 nM for temperate pine, temperate hardwood, and birch taiga soils, respectively. At CH4 concentrations of ≤15 μl liter−1, oxidation followed first-order kinetics in the fine-textured taiga soil, whereas the coarse-textured temperate soils exhibited Michaelis-Menten kinetics. Compared to water controls, the Km(app) values in the temperate soils increased in the presence of NH4+ salts, whereas the Vmax(app) values decreased substantially, indicating that there was a mixture of competitive and noncompetitive inhibition mechanisms for whole NH4+ salts. Compared to the corresponding K+ salt controls, the Km(app) values for NH4+ salts increased substantially, whereas the Vmax(app) values remained virtually unchanged, indicating that NH4+ acted by competitive inhibition. Nonammoniacal salts caused inhibition to increase with increasing CH4 concentrations in all three soils. In the birch taiga soil, this trend occurred with both NH4+ and K+ salts, and the slope of the increase was not affected by the addition of NH4+. Hence, the increase in inhibition resulted from an NH4+-independent mechanism. These results show that NH4+ inhibition of atmospheric CH4 oxidation resulted from enzymatic substrate competition and that additional inhibition that was not competitive resulted from a general salt effect that was independent of NH4+. PMID:9797279

  6. An Investigation on the Thermophysical Properties of a Binary Molten Salt System Containing Both Aluminum Oxide and Titanium Oxide Nanoparticle Suspensions

    NASA Astrophysics Data System (ADS)

    Giridhar, Kunal

    Molten salts are showing great potential to replace current heat transfer and thermal energy storage fluids in concentrated solar plants because of their capability to maximize thermal energy storage, greater stability, cost effectiveness and significant thermal properties. However one of the major drawbacks of using molten salt as heat transfer fluid is that they are in solid state at room temperature and they have a high freezing point. Hence, significant resources would be required to maintain it in liquid form. If molten salt freezes while in operation, it would eventually damage piping network due to its volume shrinkage along with rendering the entire plant inoperable. It is long known that addition of nanoparticle suspensions has led to significant changes in thermal properties of fluids. In this investigation, aluminum oxide and titanium oxide nanoparticles of varying concentrations are added to molten salt/solar salt system consisting of 60% sodium nitrate and 40% potassium nitrate. Using differential scanning calorimeter, an attempt will be made to investigate changes in heat capacity of system, depression in freezing point and changes in latent heat of fusion. Scanning electron microscope will be used to take images of samples to study changes in micro-structure of mixture, ensure uniform distribution of nanoparticle in system and verify authenticity of materials used for experimentation. Due to enormous magnitude of CSP plant, actual implementation of molten salt system is on a large scale. With this investigation, even microscopic enhancement in heat capacity and slight lowering of freezing point will lead to greater benefits in terms of efficiency and cost of operation of plant. These results will further the argument for viability of molten salt as a heat transfer fluid and thermal storage system in CSP. One of the objective of this experimentation is to also collect experimental data which can be used for establishing relation between concentration of nanoparticles and change in thermophysical properties of molten salt for various types of nanoparticles.

  7. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs inmore » waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.« less

  8. Treating Fibrous Insulation to Reduce Thermal Conductivity

    NASA Technical Reports Server (NTRS)

    Zinn, Alfred; Tarkanian, Ryan

    2009-01-01

    A chemical treatment reduces the convective and radiative contributions to the effective thermal conductivity of porous fibrous thermal-insulation tile. The net effect of the treatment is to coat the surfaces of fibers with a mixture of transition-metal oxides (TMOs) without filling the pores. The TMO coats reduce the cross-sectional areas available for convection while absorbing and scattering thermal radiation in the pores, thereby rendering the tile largely opaque to thermal radiation. The treatment involves a sol-gel process: A solution containing a mixture of transition-metal-oxide-precursor salts plus a gelling agent (e.g., tetraethylorthosilicate) is partially cured, then, before it visibly gels, is used to impregnate the tile. The solution in the tile is gelled, then dried, and then the tile is fired to convert the precursor salts to the desired mixed TMO phases. The amounts of the various TMOs ultimately incorporated into the tile can be tailored via the concentrations of salts in the solution, and the impregnation depth can be tailored via the viscosity of the solution and/or the volume of the solution relative to that of the tile. The amounts of the TMOs determine the absorption and scattering spectra.

  9. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

    NASA Astrophysics Data System (ADS)

    Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui

    2017-04-01

    Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments.

  10. Effect of Eutectic Concentration on Conductivity in PEO:LiX Based Solid Polymer Electrolytes

    NASA Astrophysics Data System (ADS)

    Zhan, Pengfei; Ganapatibhotla, Lalitha; Maranas, Janna

    Polyethylene oxide (PEO) and lithium salt based solid polymer electrolytes (SPEs) have been widely proposed as a substitution for the liquid electrolyte in Li-ion batteries. As salt concentration varies, these systems demonstrate rich phase behavior. Conductivity as a function of salt concentration has been measured for decades and various concentration dependences have been observed. A PEO:LiX mixture can have one or two conductivity maximums, while some mixtures with salt of high ionic strength will have higher conductivity as the salt concentration decrease. The factors that affect the conductivity are specific for each sample. The universal factor that affects conductivity is still not clear. In this work, we measured the conductivity of a series of PEO:LiX mixtures and statistical analysis shows conductivity is affected by the concentration difference from the eutectic concentration (Δc). The correlation with Δc is stronger than the correlation with glass transition temperature. We believe that at the eutectic concentration, during the solidification process, unique structures can form which aid conduction. Currently at Dow Chemical.

  11. Potential Lifestyles in Ancient Environments of Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    DesMarais, David J.

    2006-01-01

    Habitable environments must sustain liquid water at least intermittently and also provide both chemical building blocks and useful sources of energy for life. Observations by Spirit rover indicate that conditions have probably been too dry to sustain life, at least since the emplacement of the extensive basalts that underlie the plains around the Columbia Memorial Station landing site. Local evidence of relatively minor aqueous alteration probably occurred under conditions where the activity of water was too low to sustain biological processes as we know them. In contrast, multiple bedrock units in West Spur and Husband Hill in the Columbia Wills have been extensively altered, probably by aqueous processes. The Fe in several of these units has been extensively oxidized, indicating that, in principle, any microbiota present during the aqueous alteration of these rocks could have obtained energy from Fe oxidation. Spirit discovered oliving-rich ultramafic rocks during her descent from Husband Hill southward into Inner Basin. Alteration of similar ultramafic rocks on Earth can yield H2 that can provide both energy and reducing power for microorganisms. Spirit s discovery of "salty" soil horizons rich in Fe and/or Mg is consistent with the aqueous dissolution and/or alteration of olivine. Such processes can oxidize Fe and also yield H2 under appropriate conditions. Very high S concentrations in these salty deposits indicate that soluble salts were mobilized by water and/or that S oxidation, a potential energy source for life, occurred. The Athena team has not yet established whether these salt components were deposited as large beds in ancient water bodies or, for example, were concentrated by more recent groundwater activity. Collectively these observations are consistent with the possibility that habitable environments existed at least intermittently in the distant geologic past.

  12. Environmental protection to 922K (1200 F) for titanium alloys

    NASA Technical Reports Server (NTRS)

    Groves, M. T.

    1973-01-01

    Evaluations are presented of potential coating systems for protection of titanium alloys from hot-salt stress-corrosion up to temperatures of 755 K (900 F) and from oxidation embrittlement up to temperature of 922 K (1200 F). Diffusion type coatings containing Si, Al, Cr, Ni or Fe as single coating elements or in various combinations were evaluated for oxidation protection, hot-salt stress-corrosion (HSSC) resistance, effects on tensile properties, fatigue properties, erosion resistance and ballistic impact resistance on an alpha and beta phase titanium alloy (Ti-6Al-2Sn-4Zr-2Mo). All of the coatings investigated demonstrated excellent oxidation protectiveness, but none of the coatings provided protection from hot-salt stress-corrosion. Experimental results indicated that both the aluminide and silicide types of coatings actually decreased the HSSC resistance of the substrate alloy. The types of coatings which have typically been used for oxidation protection of refractory metals and nickel base superalloys are not suitable for titanium alloys because they increase the susceptibility to hot-salt stress-corrosion, and that entirely new coating concepts must be developed for titanium alloy protection in advanced turbine engines.

  13. A transition-metal-free synthesis of arylcarboxyamides from aryl diazonium salts and isocyanides.

    PubMed

    Xia, Zhonghua; Zhu, Qiang

    2013-08-16

    A transition-metal-free carboxyamidation process, using aryl diazonium tetrafluoroborates and isocyanides under mild conditions, has been developed. This novel conversion was initiated by a base and solvent induced aryl radical, followed by radical addition to isocyanide and single electron transfer (SET) oxidation, affording the corresponding arylcarboxyamide upon hydration of the nitrilium intermediate.

  14. Transcriptome profiling of Kentucky bluegrass (Poa pratensis L.) accessions in response to salt stress.

    PubMed

    Bushman, B Shaun; Amundsen, Keenan L; Warnke, Scott E; Robins, Joseph G; Johnson, Paul G

    2016-01-13

    Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress. Previously, a relatively salt tolerant Kentucky bluegrass accession was identified that maintained green colour under consistent salt applications. In this study, a transcriptome study between the tolerant (PI 372742) accession and a salt susceptible (PI 368233) accession was conducted, under control and salt treatments, and in shoot and root tissues. Sample replicates grouped tightly by tissue and treatment, and fewer differentially expressed transcripts were detected in the tolerant PI 372742 samples compared to the susceptible PI 368233 samples, and in root tissues compared to shoot tissues. A de novo assembly resulted in 388,764 transcripts, with 36,587 detected as differentially expressed. Approximately 75 % of transcripts had homology based annotations, with several differences in GO terms enriched between the PI 368233 and PI 372742 samples. Gene expression profiling identified salt-responsive gene families that were consistently down-regulated in PI 372742 and unlikely to contribute to salt tolerance in Kentucky bluegrass. Gene expression profiling also identified sets of transcripts relating to transcription factors, ion and water transport genes, and oxidation-reduction process genes with likely roles in salt tolerance. The transcript assembly represents the first such assembly in the highly polyploidy, facultative apomictic Kentucky bluegrass. The transcripts identified provide genetic information on how this plant responds to and tolerates salt stress in both shoot and root tissues, and can be used for further genetic testing and introgression.

  15. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.

    PubMed

    Ikbal, Fatima Ezzohra; Hernández, José Antonio; Barba-Espín, Gregorio; Koussa, Tayeb; Aziz, Aziz; Faize, Mohamed; Diaz-Vivancos, Pedro

    2014-06-15

    The possible involvement of polyamines in the salt stress adaptation was investigated in grapevine (Vitis vinifera L.) plantlets focusing on photosynthesis and oxidative metabolism. Salt stress resulted in the deterioration of plant growth and photosynthesis, and treatment of plantlets with methylglyoxal-bis(guanylhydrazone) (MGBG), a S-adenosylmethionine decarboxylase (SAMDC) inhibitor, enhanced the salt stress effect. A decrease in PSII quantum yield (Fv/Fm), effective PSII quantum yield (Y(II)) and coefficient of photochemical quenching (qP) as well as increases in non-photochemical quenching (NPQ) and its coefficient (qN) was observed by these treatments. Salt and/or MGBG treatments also triggered an increase in lipid peroxidation and reactive oxygen species (ROS) accumulation as well as an increase of superoxide dismutase (SOD) and peroxidase (POX) activities, but not ascorbate peroxidase (APX) activity. Salt stress also resulted in an accumulation of oxidized ascorbate (DHA) and a decrease in reduced glutathione. MGBG alone or in combination with salt stress increased monodehydroascorbate reductase (MDHAR), SOD and POX activities and surprisingly no accumulation of DHA was noticed following treatment with MGBG. These salt-induced responses correlated with the maintaining of high level of free and conjugated spermidine and spermine, whereas a reduction of agmatine and putrescine levels was observed, which seemed to be amplified by the MGBG treatment. These results suggest that maintaining polyamine biosynthesis through the enhanced SAMDC activity in grapevine leaf tissues under salt stress conditions could contribute to the enhanced ROS scavenging activity and a protection of photosynthetic apparatus from oxidative damages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

    PubMed Central

    Hiraki, Takehito; Miki, Takahiro; Nakajima, Kenichi; Matsubae, Kazuyo; Nakamura, Shinichiro; Nagasaka, Tetsuya

    2014-01-01

    The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were calculated by assuming the binary systems of aluminum and an impurity element. It was found that the removability of impurities isn’t significantly affected by process parameters such as chloride partial pressure, temperature and flux composition. It was shown that Ho, Dy, Li, La, Mg, Gd, Ce, Yb, Ca and Sr can be potentially eliminated into flux by chlorination from the remelted aluminum. Chlorination and oxidation are not effective to remove other impurities from the melting aluminum, due to the limited parameters which can be controlled during the remelting process. It follows that a proper management of aluminum scrap such as sorting based on the composition of the products is important for sustainable aluminum recycling. PMID:28788144

  17. Architecture for coated conductors

    DOEpatents

    Foltyn, Stephen R.; Arendt, Paul N.; Wang, Haiyan; Stan, Liliana

    2010-06-01

    Articles are provided including a base substrate having a layer of an oriented cubic oxide material with a rock-salt-like structure layer thereon, and, a layer of epitaxial titanium nitride upon the layer of an oriented cubic oxide material having a rock-salt-like structure. Such articles can further include thin films of high temperature superconductive oxides such as YBCO upon the layer of epitaxial titanium nitride or upon a intermediate buffer layer upon the layer of epitaxial titanium nitride.

  18. Whey Peptide-Iron Complexes Increase the Oxidative Stability of Oil-in-Water Emulsions in Comparison to Iron Salts.

    PubMed

    Caetano-Silva, Maria Elisa; Barros Mariutti, Lilian Regina; Bragagnolo, Neura; Bertoldo-Pacheco, Maria Teresa; Netto, Flavia Maria

    2018-02-28

    Food fortification with iron may favor lipid oxidation in both food matrices and the human body. This study aimed at evaluating the effect of peptide-iron complexation on lipid oxidation catalyzed by iron, using oil-in-water (O/W) emulsions as a model system. The extent of lipid oxidation of emulsions containing iron salts (FeSO 4 or FeCl 2 ) or iron complexes (peptide-iron complexes or ferrous bisglycinate) was evaluated during 7 days, measured as primary (peroxide value) and secondary products (TBARS and volatile compounds). Both salts catalyzed lipid oxidation, leading to peroxide values 2.6- to 4.6-fold higher than the values found for the peptide-iron complexes. The addition of the peptide-iron complexes resulted in the formation of lower amounts of secondary volatiles of lipid oxidation (up to 78-fold) than those of iron salts, possibly due to the antioxidant activity of the peptides and their capacity to keep iron apart from the lipid phase, since the iron atom is coordinated and takes part in a stable structure. The peptide-iron complexes showed potential to reduce the undesirable sensory changes in food products and to decrease the side effects related to free iron and the lipid damage of cell membranes in the organism, due to the lower reactivity of iron in the complexed form.

  19. Methods for producing monodispersed particles of barium titanate

    DOEpatents

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  20. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  1. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOEpatents

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  2. DEHYDRATION OF DEUTERIUM OXIDE SLURRIES

    DOEpatents

    Hiskey, C.F.

    1959-03-10

    A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.

  3. HEAT TRANSFER AND TRITIUM PRODUCING SYSTEM

    DOEpatents

    Johnson, E.F.

    1962-06-01

    This invention related to a circulating lithium-containing blanket system in a neution source hav'ing a magnetic field associated therewith. The blanket serves simultaneously and efficiently as a heat transfer mediunm and as a source of tritium. The blanket is composed of a lithium-6-enriched fused salt selected from the group consisting of lithium nitrite, lithium nitrate, a mixture of said salts, a mixture of each of said salts with lithium oxide, and a mixture of said salts with each other and with lithium oxide. The moderator, which is contained within the blanket in a separate conduit, can be water. A stellarator is one of the neutron sources which can be used in this invention. (AEC)

  4. Oxide strengthened molybdenum-rhenium alloy

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William

    2000-01-01

    Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.

  5. High salt diet induces metabolic alterations in multiple biological processes of Dahl salt-sensitive rats.

    PubMed

    Wang, Yanjun; Liu, Xiangyang; Zhang, Chen; Wang, Zhengjun

    2018-06-01

    High salt induced renal disease is a condition resulting from the interactions of genetic and dietary factors causing multiple complications. To understand the metabolic alterations associated with renal disease, we comprehensively analyzed the metabonomic changes induced by high salt intake in Dahl salt-sensitive (SS) rats using GC-MS technology and biochemical analyses. Physiological features, serum chemistry, and histopathological data were obtained as complementary information. Our results showed that high salt (HS) intake for 16 weeks caused significant metabolic alterations in both the renal medulla and cortex involving a variety pathways involved in the metabolism of organic acids, amino acids, fatty acids, and purines. In addition, HS enhanced glycolysis (hexokinase, phosphofructokinase and pyruvate kinase) and amino acid metabolism and suppressed the TCA (citrate synthase and aconitase) cycle. Finally, HS intake caused up-regulation of the pentose phosphate pathway (glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase), the ratio of NADPH/NADP + , NADPH oxidase activity and ROS production, suggesting that increased oxidative stress was associated with an altered PPP pathway. The metabolic pathways identified may serve as potential targets for the treatment of renal damage. Our findings provide comprehensive biochemical details about the metabolic responses to a high salt diet, which may contribute to the understanding of renal disease and salt-induced hypertension in SS rats. Copyright © 2018. Published by Elsevier Inc.

  6. Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors.

    PubMed

    Bassin, João Paulo; Kleerebezem, Robbert; Muyzer, Gerard; Rosado, Alexandre Soares; van Loosdrecht, Mark C M; Dezotti, Marcia

    2012-02-01

    The effect of salinity on the activity of nitrifying bacteria, floc characteristics, and microbial community structure accessed by fluorescent in situ hybridization and polymerase chain reaction-denaturing gradient gel electrophoresis techniques was investigated. Two sequencing batch reactors (SRB₁ and SBR₂) treating synthetic wastewater were subjected to increasing salt concentrations. In SBR₁, four salt concentrations (5, 10, 15, and 20 g NaCl/L) were tested, while in SBR₂, only two salt concentrations (10 and 20 g NaCl/L) were applied in a more shock-wise manner. The two different salt adaptation strategies caused different changes in microbial community structure, but did not change the nitrification performance, suggesting that regardless of the different nitrifying bacterial community present in the reactor, the nitrification process can be maintained stable within the salt range tested. Specific ammonium oxidation rates were more affected when salt increase was performed more rapidly and dropped 50% and 60% at 20 g NaCl/L for SBR₁ and SBR₂, respectively. A gradual increase in NaCl concentration had a positive effect on the settling properties (i.e., reduction of sludge volume index), although it caused a higher amount of suspended solids in the effluent. Higher organisms (e.g., protozoa, nematodes, and rotifers) as well as filamentous bacteria could not withstand the high salt concentrations.

  7. Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah's Salt Lake Valley.

    PubMed

    Baasandorj, Munkhbayar; Hoch, Sebastian W; Bares, Ryan; Lin, John C; Brown, Steven S; Millet, Dylan B; Martin, Randal; Kelly, Kerry; Zarzana, Kyle J; Whiteman, C David; Dube, William P; Tonnesen, Gail; Jaramillo, Isabel Cristina; Sohl, John

    2017-06-06

    The Salt Lake Valley experiences severe fine particulate matter pollution episodes in winter during persistent cold-air pools (PCAPs). We employ measurements throughout an entire winter from different elevations to examine the chemical and dynamical processes driving these episodes. Whereas primary pollutants such as NO x and CO were enhanced twofold during PCAPs, O 3 concentrations were approximately threefold lower. Atmospheric composition varies strongly with altitude within a PCAP at night with lower NO x and higher oxidants (O 3 ) and oxidized reactive nitrogen (N 2 O 5 ) aloft. We present observations of N 2 O 5 during PCAPs that provide evidence for its role in cold-pool nitrate formation. Our observations suggest that nighttime and early morning chemistry in the upper levels of a PCAP plays an important role in aerosol nitrate formation. Subsequent daytime mixing enhances surface PM 2.5 by dispersing the aerosol throughout the PCAP. As pollutants accumulate and deplete oxidants, nitrate chemistry becomes less active during the later stages of the pollution episodes. This leads to distinct stages of PM 2.5 pollution episodes, starting with a period of PM 2.5 buildup and followed by a period with plateauing concentrations. We discuss the implications of these findings for mitigation strategies.

  8. Comparison and simulation of salt-ceramic composites for use in high temperature concentrated solar power

    NASA Astrophysics Data System (ADS)

    Fossile, Lauren Michelle

    Due to the inherently intermittent nature of solar energy caused by cloud cover among other sources, thermal storage systems are needed to make solar energy more consistent. This same technology could be used to prolong the daily number of useful hours of solar energy power plants. Salt-ceramic materials are a relatively new prospect for heat storage, but have been researched mostly with magnesium oxide and several different carbonate salts. Salt ceramics are a phase change material where the salt changes phase inside the ceramic structure allowing for the system to use the sensible heat of both materials and the latent heat of the salt to store thermal energy. Capillary forces within the ceramic structure hold in the salt when the salt melts. The focus here is on the possibility of creating a low-cost salt-ceramic storage material for high temperature solar energy applications. A theoretical analysis of the resulting materials is performed. While most of the existing salt ceramics have been made from magnesium oxide, aluminum oxide is more readily available from various companies in the area. Magnesium oxide is often considered a custom ceramic, so it is more expensive. A cost and material property comparison has been completed between these two materials to determine which is better suited for solar storage. Many of the existing salt-ceramics use carbonate salts, but nitrate salts are commonly used in graphite/salt composites. Therefore, a cost and theoretical performance comparison is between these materials also. For comparisons' sake, zirconia and graphite have also been analyzed as the filler in the composite. Each combination of salt and ceramic or graphite has been analyzed. In order to make the use of salt-ceramics more cost-effective and available to Nevada's energy providers, research has been done into which ceramics have high availability in Nevada, low cost, and the best material properties for this application. The thermal properties and cost of these materials have been compared to the price that Nevada's energy utilities are willing to pay per unit of stored energy, which was approximated through a survey conducted by the National Science Foundation (NSF) - Experimental Project to Stimulate Competitive Research (EPSCoR) at the University of Nevada, Las Vegas. The surveys were completed on Nevadan energy purveyors concerning climate change attitudes, but included questions regarding the usefulness and cost of solar storage. The cost per unit of energy has also been calculated and whether the utilities would be willing to pay for each combination will be determined using information obtained from the surveys mentioned above. This information will dictate which combination will be best for use in the state of Nevada at solar energy power plants.

  9. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  10. Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis

    NASA Astrophysics Data System (ADS)

    Shi, Zhongning; Xu, Junli; Qiu, Zhuxian; Wang, Zhaowen; Gao, Bingliang

    2003-11-01

    The superalloys Cu-Ni-Al, Cu-Ni-Fe, and Cu-Ni-Cr were studied as anodes for aluminum electrolysis. The alloys were tested for corrosion in acidic electrolyte molten salt and for oxidation in both air and oxygen. The results showed that the Cu-Ni-Al anodes possess excellent resistance to oxidation and corrosion, and the oxidation rates of Cu-Ni-Fe and Cu-Ni-Al anodes were slower than those of pure copper or nickel. During electrolysis, the cell voltage of the Cu-Ni-Al anode was affected most by the concentration of alumina in cryolite molten salt. The Cu-Ni-Fe anode exhibited corrosion resistance in electrolyte molten salt. Comparatively, the Cu-Ni-Cr anode showed poor resistance to oxidation and corrosion. The testing found that further study is warranted on the use of Cu-Ni-Al and Cu-Ni-Fe as inert alloy anodes.

  11. Low temperature oxidation using support molten salt catalysts

    DOEpatents

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  12. Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

    PubMed

    Manzanares-Estreder, Sara; Espí-Bardisa, Joan; Alarcón, Benito; Pascual-Ahuir, Amparo; Proft, Markus

    2017-06-01

    Peroxisomes are dynamic organelles and the sole location for fatty acid β-oxidation in yeast cells. Here, we report that peroxisomal function is crucial for the adaptation to salt stress, especially upon sugar limitation. Upon stress, multiple layers of control regulate the activity and the number of peroxisomes. Activated Hog1 MAP kinase triggers the induction of genes encoding enzymes for fatty acid activation, peroxisomal import and β-oxidation through the Adr1 transcriptional activator, which transiently associates with genes encoding fatty acid metabolic enzymes in a stress- and Hog1-dependent manner. Moreover, Na + and Li + stress increases the number of peroxisomes per cell in a Hog1-independent manner, which depends instead of the retrograde pathway and the dynamin related GTPases Dnm1 and Vps1. The strong activation of the Faa1 fatty acyl-CoA synthetase, which specifically localizes to lipid particles and peroxisomes, indicates that adaptation to salt stress requires the enhanced mobilization of fatty acids from internal lipid stores. Furthermore, the activation of mitochondrial respiration during stress depends on peroxisomes, mitochondrial acetyl-carnitine uptake is essential for salt resistance and the number of peroxisomes attached to the mitochondrial network increases during salt adaptation, which altogether indicates that stress-induced peroxisomal β-oxidation triggers enhanced respiration upon salt shock. © 2017 John Wiley & Sons Ltd.

  13. Helicobacter pylori Adaptation In Vivo in Response to a High-Salt Diet

    PubMed Central

    Loh, John T.; Gaddy, Jennifer A.; Algood, Holly M. Scott; Gaudieri, Silvana; Mallal, Simon

    2015-01-01

    Helicobacter pylori exhibits a high level of intraspecies genetic diversity. In this study, we investigated whether the diversification of H. pylori is influenced by the composition of the diet. Specifically, we investigated the effect of a high-salt diet (a known risk factor for gastric adenocarcinoma) on H. pylori diversification within a host. We analyzed H. pylori strains isolated from Mongolian gerbils fed either a high-salt diet or a regular diet for 4 months by proteomic and whole-genome sequencing methods. Compared to the input strain and output strains from animals fed a regular diet, the output strains from animals fed a high-salt diet produced higher levels of proteins involved in iron acquisition and oxidative-stress resistance. Several of these changes were attributable to a nonsynonymous mutation in fur (fur-R88H). Further experiments indicated that this mutation conferred increased resistance to high-salt conditions and oxidative stress. We propose a model in which a high-salt diet leads to high levels of gastric inflammation and associated oxidative stress in H. pylori-infected animals and that these conditions, along with the high intraluminal concentrations of sodium chloride, lead to selection of H. pylori strains that are most fit for growth in this environment. PMID:26438795

  14. Salt Marsh sediment 15N/13C "Push-Pull" assays reveal coupled sulfur, nitrogen, and carbon cycling

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.; Tucker, J.; Thomas, F.; Sievert, S. M.; Cardon, Z. G.; Giblin, A. E.

    2016-12-01

    Salt marshes are extraordinarily productive ecosystems found in estuaries worldwide, hosting intensive sulfur, nitrogen, and carbon cycling. Although it has been hypothesized that in this environment sulfur oxidation may be important for energy flow, there is little direct data. At the heart of these hypothesized interactions are sulfur oxidizing microbes. Sulfur oxidizers can catalyze sulfide (re-)oxidation with nitrate as the electron acceptor under anaerobic conditions, producing ammonium (via DNRA) or dinitrogen gas (via denitrification). The form of sulfur present in marsh systems influences whether autotrophic or heterotrophic processes transform nitrate either to dinitrogen gas or ammonium through DNRA. To examine the fate of nitrate and interactions with sulfur, we conducted a series of "push-pull" experiments in marsh sediment at the Plum Island Ecosystems Long-Term Ecological Research site in Massachusetts. Porewater was extracted anoxically and amended with isotopically labeled nitrate (15N) and bicarbonate (13C). Porewater was pumped back into the sediment and then withdrawn at intervals of several hours. Dissolved inorganic nitrogen, sulfur, and carbon were measured as well as isotopes of nitrogen gas and ammonium. These push-pull experiments were conducted at several times during the growing season, to coincide with salt marsh grass initial growth (May), maximum growth (July), flowering (August), and senescence (October). Porewater sulfides were very low to non-detectable in May (time of initial plant growth) and increased to a maximum of 3 mM in October (time of plant senescence). Combined rates of denitrification and DNRA also varied seasonally: rates were higher in May (0.16 - 17.5 nmoles N/cm3/hr) and much lower in October (0 - 0.03 nmoles N/cm3/hr). Interestingly, DNRA rates were always higher than denitrification rates, often by an order of magnitude or more.

  15. Conjugated Polymers Atypically Prepared in Water

    PubMed Central

    Invernale, Michael A.; Pendergraph, Samuel A.; Yavuz, Mustafa S.; Ombaba, Matthew; Sotzing, Gregory A.

    2010-01-01

    Processability remains a fundamental issue for the implementation of conducting polymer technology. A simple synthetic route towards processable precursors to conducting polymers (main chain and side chain) was developed using commercially available materials. These soluble precursor systems were converted to conjugated polymers electrochemically in aqueous media, offering a cheaper and greener method of processing. Oxidative conversion in aqueous and organic media each produced equivalent electrochromics. The precursor method enhances the yield of the electrochromic polymer obtained over that of electrodeposition, and it relies on a less corruptible electrolyte bath. However, electrochemical conversion of the precursor polymers often relies on organic salts and solvents. The ability to achieve oxidative conversion in brine offers a less costly and a more environmentally friendly processing step. It is also beneficial for biological applications. The electrochromics obtained herein were evaluated for electronic, spectral, and morphological properties. PMID:20959869

  16. Process for producing silicon

    DOEpatents

    Olson, J.M.; Carleton, K.L.

    1982-06-10

    A process of producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  17. Electrolytic Plasma Processing for Sequential Cleaning and Coating Deposition for Cadmium Plating Replacement

    DTIC Science & Technology

    2008-08-01

    deposit Al coatings or ZnAl alloys from aqueous solution. Unfortunately this proved impossible, producing only Al hydroxides and oxides, which are... deposited by normal aqueous electroplating methods. A great deal of effort was expended on attempts to produce metallic Al alloys , but no satisfactory... process . If an Al -bearing salt were soluble in a non- aqueous fluid that did not need an enclosure, then it might be possible to deposit Al coatings

  18. Production and recovery of Americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navratil, J.D.

    1984-01-01

    Americium-241, one of the most useful actinide isotopes, is produced as a by-product of plutonium scrap recovery operations. Rocky Flats (RF) has supplied high-purity americium oxide to the US Department of Energy's Isotope Pool since 1962. Over the years, the evolving separation and purification processes have included such diverse operations as aqueous precipitation, ion exchange, and both molten-salt and organic-solvent extraction. A review is presented of the production and recovery processes of americium-241. 5 references.

  19. Process for producing silicon

    DOEpatents

    Olson, Jerry M.; Carleton, Karen L.

    1984-01-01

    A process for producing silicon includes forming an alloy of copper and silicon and positioning the alloy in a dried, molten salt electrolyte to form a solid anode structure therein. An electrically conductive cathode is placed in the electrolyte for plating silicon thereon. The electrolyte is then purified to remove dissolved oxides. Finally, an electrical potential is applied between the anode and cathode in an amount sufficient to form substantially pure silicon on the cathode in the form of substantially dense, coherent deposits.

  20. Supercritical waste oxidation of aqueous wastes

    NASA Technical Reports Server (NTRS)

    Modell, M.

    1986-01-01

    For aqueous wastes containing 1 to 20 wt% organics, supercritical water oxidation is less costly than controlled incineration or activated carbon treatment and far more efficient than wet oxidation. Above the critical temperature (374 C) and pressure (218 atm) of water, organic materials and gases are completely miscible with water. In supercritical water oxidation, organics, air and water are brought together in a mixture at 250 atm and temperatures above 400 C. Organic oxidation is initiated spontaneously at these conditions. The heat of combustion is released within the fluid and results in a rise in temperature 600 to 650 C. Under these conditions, organics are destroyed rapidly with efficiencies in excess of 99.999%. Heteroatoms are oxidized to acids, which can be precipitated out as salts by adding a base to the feed. Examples are given for process configurations to treat aqueous wastes with 10 and 2 wt% organics.

  1. Organic History and Ice-Rock Decoupling on Enceladus

    NASA Astrophysics Data System (ADS)

    Zolotov, M. Y.

    2007-12-01

    The Cassini detection of methane, propane and acetylene in the Enceladus plume, and condensed organic compounds (OC) on the south polar region imply an organic-bearing interior of the moon. At least a few wt. % of C is expected in rocks from which Enceladus accreted. By analogy with carbonaceous chondrites, the majority of accreted OC was in a polymer in which polyaromatic groups are linked by O-, N-, and S-bearing aliphatic units. If accreted, cometary-type materials also delivered CO2, CO(?), methanol, ethane, ethene, acetylene, and condensed OC. Subsequent water ice melting and hydrothermal processes driven by decay of short-lived radionuclides led to dissolution of CO, CO2 and methanol in water and transformations of the polymer and cometary OC. CO converted to formic acid, carbonate species, methanol and methane. Hydrous pyrolysis and oxidation of the polymer partially liberated aromatic molecules and led to the formation of O-bearing OC (carboxylic and amino acids, alcohols). Increase in temperature favored oxidation of OC to carbonate species and N2, and led to graphitization of the polymer. Despite net oxidation of OC driven by H2 escape, mineral- catalyzed Fisher-Tropsch like synthesis of hydrocarbons and methane occurred in H2-rich niches. As a result, an array of aromatic, aliphatic, and N-, O-, S-bearing OC, and methane was delivered into a primordial water ocean in hydrothermal fluids. Highly soluble OC (acids, alcohols) made multiple passes through hydrothermal systems causing further oxidation of OC in rocks and solutions. In contrast, hydrocarbons exolved from cold oceanic water and formed an organic layer below the ice shell. Subsequent cooling of ocean-entering fluids and ocean freezing from above led to further separation and accumulation of OC. Some OC was trapped in ice, and methane formed clathrates. After freezing of salt eutectic brines, the light oil (a solution/mixture of ethane, propane, butane, ethene, acetylene, methanol, toluene etc.) remained unfrozen and decoupled the ice shell from underlying salt deposits and rocks. Even after oil solidification, if it occurred, the organic layer had a lower viscosity than salts and ice. An uneven pressure and/or topography at the ice-salt boundary could have led to preferential oil (and salt?) accumulation below the south polar region. Throughout history (and today), the uneven oil-rich layer could have favored tidal motions and heat generation at the bottom of the ice shell.

  2. Investigation into the role of NaCL deposited on oxide and metal substrates in the initiation of hot corrosion

    NASA Technical Reports Server (NTRS)

    Birks, N.

    1981-01-01

    The conversion to Na2SO4 of NaCl deposited on oxide substrates was studied as a function of temperature, in air with various SO2 and H2O partial pressures. The substrate was either a pure oxide or an oxide scale growing on a metal specimen. The progress of the reaction was observed using the SEM-EDAX technique to monitor morphological effects and, as far as possible, establish the rate of the process. The physical characteristics of the interaction between salt and substrate were also examined with particular reference to physical damage to the underlying oxide, especially when this is a scale on a metal specimen. An effort was also made to establish the conditions under which liquid phases may form and the mechanisms by which they form.

  3. Preparation of Magnesium, Cobalt and Nickel Ferrite Nanoparticles from Metal Oxides using Deep Eutectic Solvents.

    PubMed

    Söldner, Anika; Zach, Julia; Iwanow, Melanie; Gärtner, Tobias; Schlosser, Marc; Pfitzner, Arno; König, Burkhard

    2016-09-05

    Natural deep eutectic solvents (DESs) dissolve simple metal oxides and are used as a reaction medium to synthesize spinel-type ferrite nanoparticles MFe2 O4 (M=Mg, Zn, Co, Ni). The best results for phase-pure spinel ferrites are obtained with the DES consisting of choline chloride (ChCl) and maleic acid. By employing DESs, the reactions proceed at much lower temperatures than usual for the respective solid-phase reactions of the metal oxides and at the same temperatures as synthesis with comparable calcination processes using metal salts. The method therefore reduces the overall required energy for the nanoparticle synthesis. Thermogravimetric analysis shows that the thermolysis process of the eutectic melts in air occurs in one major step. The phase-pure spinel-type ferrite particles are thoroughly characterized by X-ray diffraction, diffuse-reflectance UV/Vis spectroscopy, and scanning electron microscopy. The properties of the obtained nanoparticles are shown to be comparable to those obtained by other methods, illustrating the potential of natural DESs for processing metal oxides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Method for producing refractory nitrides

    DOEpatents

    Quinby, Thomas C.

    1989-01-24

    A process for making fine, uniform metal nitride powders that can be hot pressed or sintered. A metal salt is placed in a solvent with Melamine and warmed until a metal-Melamine compound forms. The solution is cooled and the metal-Melamine precipitate is calcined at a temperature below 700.degree. C. to form the metal nitrides and to avoid formation of the metal oxide.

  5. EXAFS/XANES studies of plutonium-loaded sodalite/glass waste forms

    NASA Astrophysics Data System (ADS)

    Richmann, Michael K.; Reed, Donald T.; Kropf, A. Jeremy; Aase, Scott B.; Lewis, Michele A.

    2001-09-01

    A sodalite/glass ceramic waste form is being developed to immobilize highly radioactive nuclear wastes in chloride form, as part of an electrochemical cleanup process. Two types of simulated waste forms were studied: where the plutonium was alone in an LiCl/KCl matrix and where simulated fission-product elements were added representative of the electrometallurgical treatment process used to recover uranium from spent nuclear fuel also containing plutonium and a variety of fission products. Extended X-ray absorption fine structure spectroscopy (EXAFS) and X-ray absorption near-edge spectroscopy (XANES) studies were performed to determine the location, oxidation state, and particle size of the plutonium within these waste form samples. Plutonium was found to segregate as plutonium(IV) oxide with a crystallite size of at least 4.8 nm in the non-fission-element case and 1.3 nm with fission elements present. No plutonium was observed within the sodalite in the waste form made from the plutonium-loaded LiCl/KCl eutectic salt. Up to 35% of the plutonium in the waste form made from the plutonium-loaded simulated fission-product salt may be segregated with a heavy-element nearest neighbor other than plutonium or occluded internally within the sodalite lattice.

  6. Attainable high capacity in Li-excess Li-Ni-Ru-O rock-salt cathode for lithium ion battery

    NASA Astrophysics Data System (ADS)

    Wang, Xingbo; Huang, Weifeng; Tao, Shi; Xie, Hui; Wu, Chuanqiang; Yu, Zhen; Su, Xiaozhi; Qi, Jiaxin; Rehman, Zia ur; Song, Li; Zhang, Guobin; Chu, Wangsheng; Wei, Shiqiang

    2017-08-01

    Peroxide structure O2n- has proven to appear after electrochemical process in many lithium-excess precious metal oxides, representing extra reversible capacity. We hereby report construction of a Li-excess rock-salt oxide Li1+xNi1/2-3x/2Ru1/2+x/2O2 electrode, with cost effective and eco-friendly 3d transition metal Ni partially substituting precious 4d transition metal Ru. It can be seen that O2n- is formed in pristine Li1.23Ni0.155Ru0.615O2, and stably exists in subsequent cycles, enabling discharge capacities to 295.3 and 198 mAh g-1 at the 1st/50th cycle, respectively. Combing ex-situ X-ray absorption near edge spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, high resolution transmission electron microscopy and electrochemical characterization, we demonstrate that the excellent electrochemical performance comes from both percolation network with disordered structure and cation/anion redox couples occurring in charge-discharge process. Li-excess and substitution of common element have been demonstrated to be a breakthrough for designing novel high performance commercial cathodes in rechargeable lithium ion battery field.

  7. Characteristics of two novel cold- and salt-tolerant ammonia-oxidizing bacteria from Liaohe Estuarine Wetland.

    PubMed

    Huang, Xiao; Bai, Jie; Li, Kui-Ran; Zhao, Yang-Guo; Tian, Wei-Jun; Dang, Jia-Jia

    2017-01-15

    To achieve a better contaminant removal efficiency in a low-temperature and high-salt environment, two novel strains of cold- and salt-tolerant ammonia-oxidizing bacteria (AOB), i.e., Ochrobactrum sp. (HXN-1) and Aquamicrobium sp. (HXN-2), were isolated from the surface sediment of Liaohe Estuarine Wetland (LEW), China. The optimization of initial ammonia nitrogen concentration, pH, carbon-nitrogen ratio, and petroleum hydrocarbons (PHCs) to improve the ammonia-oxidation capacity of the two bacterial strains was studied. Both bacterial strains showed a high ammonia nitrogen removal rate of over 80% under a high salinity of 10‰. Even at a temperature as low as 15°C, HXN-1 and HXN-2 could achieve an ammonia nitrogen removal rate of 53% and 62%, respectively. The cold- and salt-tolerant AOB in this study demonstrated a high potential for ammonia nitrogen removal from LEW. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of Aging and Alterations in Dietary Sodium Intake on Total Nitric Oxide Production

    PubMed Central

    Schmidt, Rebecca J.; Beierwaltes, William H.; Baylis, Chris

    2009-01-01

    Animal studies suggest that nitric oxide (NO) deficiency is linked to salt-sensitive hypertension and that NO activity decreases during normal aging. This study investigates the impact of increasing age and manipulations in dietary salt intake on biochemical indices of the NO system in healthy humans. We measured NO2 + NO3 (NOX; stable oxidation products of NO) and cyclic guanosine monophosphate (cGMP; major second messenger) in plasma and urine of 30 healthy subjects aged 22 to 77 years. Subjects were maintained on controlled low NOX and low-, normal-, or high-salt diets for 3 days. Salt sensitivity of blood pressure was seen only in the oldest subjects. Plasma renin activity was suppressed by a high salt intake in all age groups, and baseline values declined with advancing age. Neither age nor salt intake correlated with indices of NO activity over the third 24-hour period of controlled salt intake. In a subgroup of subjects aged 33 ± 4 years challenged with ultrahigh sodium intake (400 mEq/24 h), again there was no increase in NO2 + NO3 or cGMP measures. In contrast to animal studies, there is no correlation in humans between either salt intake or age and total NO production and activity, indicated by NO2 + NO3 and cGMP measures. This does not preclude undetected alterations occurring in NO production and/or activity in strategic locations in the kidney and cardiovascular system. Limitations of blood and urine measurements of NO2 + NO3 and cGMP as indices of NO activity are discussed. PMID:11325670

  9. SRNL SHELF LIFE STUDIES - SCC STUDIES AT ROOM TEMPERTURE [stress corrosion cracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mickalonis, J.; Duffey, J.

    Phase II, Series 2 corrosion testing performed by the Savannah River National Laboratory (SRNL) for the Department of Energy 3013 container has been completed. The corrosion tests are part of an integrated plan conducted jointly by Los Alamos National Laboratory and the Savannah River Site. SRNL was responsible for conducting corrosion studies in small-scale vessels to address the influence of salt composition, water loading, and type of oxide/salt contact on the relative humidity inside a 3013 container and on the resulting corrosion of Type 304L and 316L stainless steel (304L and 316L). This testing was conducted in two phases: Phasemore » I evaluated a broad spectrum of salt compositions and initial water loadings on the salt mixtures exposed to 304L and 316L and the resulting corrosion; Phase II evaluated the corrosion of 304L at specific water loadings and a single salt composition. During Phase I testing at high initial moisture levels (0.35 to 1.24 wt%)a, the roomtemperature corrosion of 304L exposed to a series of plutonium oxide/chloride salt mixtures ranged from superficial staining to pitting and stress corrosion cracking (SCC). 304L teardrop coupons that exhibited SCC were directly exposed to a mixture composed of 98 wt % PuO2, 0.9 wt % NaCl, 0.9 wt % KCl, and 0.2 wt % CaCl2. Cracking was not observed in a 316L teardrop coupon. Pitting was also observed in this environment for both 304L and 316L with depths ranging from 20 to 100 μm. Neither pitting nor SCC was observed in mixtures with a greater chloride salt concentration (5 and 28 wt%). These results demonstrated that for a corrosive solution to form a balance existed between the water loading and the salt chloride concentration. This chloride solution results from the interaction of loaded water with the hydrating CaCl2 salt. In Phase II, Series 1 tests, the SCC results were shown to be reproducible with cracking occurring in as little as 85 days. The approximate 0.5 wt% moisture level was found to result in an initial relative humidity of ~55% within the small-scale vessels. Pits were found to be associated with cracks and appeared to act as initiators for the cracking. In a vapor-space only exposure, the weld oxide, which results from the TIG closure weld used to fabricate the teardrop coupon, was also shown to be more susceptible to pitting corrosion than a surface free from weld oxide. This result has important implications for the closure weld of the 3013 inner can since the weld oxide on the can internal surface cannot be removed. The results from the Phase II, Series 2 tests further demonstrated the significance of forming a solution with a critical chloride concentration for corrosion to proceed. 304L teardrop coupons were found to corrode only by pitting with a similar oxide/salt mixture as used in Series 1 testing but with a lower water loading of 0.2 wt%, which resulted in an initial relative humidity of 35-38%. These tests ran twice as long as those for Series 1 testing. The exposure condition was also found to impact the corrosion with salt-exposed surfaces showing lower corrosion resistance. Additional analyses of the Series 2 coupons are recommended especially for determining if cracks emanate from the bottom of pits. Data generated under the 2009 3013 corrosion test plan, as was presented here, increased the understanding of the corrosion process within a sealed 3013 container. Along with the corrosion data from destructive evaluations of 3013 containers, the inner can closure weld region (ICCWR) has been identified as the most vulnerable area of the inner can where corrosion may lead to corrosive species leaking to the interior surface of the outer container, thereby jeopardizing the integrity of the 3013 container. A new corrosion plan has been designed that will characterize the corrosion at the ICCWR of 3013 DEs as well as parameters affecting this corrosion.« less

  10. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  11. Destruction of VX by aqueous-phase oxidation using peroxydisulfate (direct chemical oxidation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, J.F.; Krueger, R.; Farmer, J.C.

    1995-10-11

    Chemical warfare agents may be completely destroyed (converted to H{sub 2}O, CO{sub 2}, salts) by oxidation at 90--100 C using acidified ammonium peroxydisulfate, with recycle of NH{sub 4}SO{sub 4} byproduct. The process requires no toxic or expended catalysts and produces no secondary wastes other than the precipitated inorganic content of the agents. To determine oxidative capability of peroxydisulfate at low reductant contents, we measured rate data for oxidation of 20 diverse compounds with diverse functional groups; 4 of these have bonds similar to those found in VX, HD, and GB. On an equivalence basis, integral first-order rate constants for 100more » C oxidation are 0.012{plus_minus}0.005 min{sup {minus}1} for di-isopropyl-methyl-phosphonate, methyl phosphonic acid, triethylamine, and 2,2{prime}-thiodiethanol at low initial concentrations of 50 ppM(as carbon) and pH 1.5. To provide scale-up equations for a bulk chemical agent destruction process, we measured time-dependent oxidation of bulk model chemicals at high concentrations (0.5 N) and developed and tested a quantitative model. A practical process for bulk VX destruction would begin with chemical detoxification by existing techniques (eg, hydrolysis or mild oxidation using oxone), followed by mineralization of the largely detoxified products by peroxydisulfate. Secondary wastes would be avoided by use of commercial electrolysis equipment to regenerate the oxidant. Reagent requirements, mass balance and scaleup parameters are given for VX destruction, using peroxydisulfate alone, or supplemented with hydrogen peroxide. For the use of 2.5 N peroxydisulfate as the oxidant, a 1 m{sup 3} digester will process about 200 kg (as C) per day. The process may be extended to total destruction of HD and hydrolysis products of G agents.« less

  12. Re-evaluation of Moisture Controls During ARIES Oxide Processing, Packaging and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmiol, Benjamin; Wayne, David Matthew

    DOE-STD-3013 [1] requires limiting the relative humidity (RH) in the glovebox during processing of the oxide product for specific types of plutonium oxides. This requirement is mandated in order to limit corrosion of the stainless steel containers by deliquescence of chloride salts if present in the PuO2. DOE-STD-3013 also specifies the need to limit and monitor internal pressure buildup in the 3013 containers due to the potential for the generation of free H2 and O2 gas from the radiolysis of surfaceadsorbed water. DOE-STD-3013 requires that the oxide sample taken for moisture content verification be representative of the stabilized material inmore » the 3013 container. This is accomplished by either limiting the time between sampling and packaging, or by control of the glovebox relative humidity (%RH). This requirement ensures that the sample is not only representative, but also conservative from the standpoint of moisture content.« less

  13. Establishment of the roadmap for chlorination process development for zirconium recovery and recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, E.D.; Del Cul, G.D.; Spencer, B.B.

    Process development studies are being conducted to recover, purify, and reuse the zirconium (about 98.5% by mass) in used nuclear fuel (UNF) zirconium alloy cladding. Feasibility studies began in FY 2010 using empty cladding hulls that were left after fuel dissolution or after oxidation to a finely divided oxide powder (voloxidation). In FY 2012, two industrial teams (AREVA and Shaw-Westinghouse) were contracted by the Department of Energy Office of Nuclear Energy (NE) to provide technical assistance to the project. In FY 2013, the NE Fuel Cycle Research and Development Program requested development of a technology development roadmap to guide futuremore » work. The first step in the roadmap development was to assess the starting point, that is, the current state of the technology and the end goal. Based on previous test results, future work is to be focused on first using chlorine as the chlorinating agent and secondly on the use of a process design that utilizes a chlorination reactor and dual ZrCl{sub 4} product salt condensers. The likely need for a secondary purification step was recognized. Completion of feasibility testing required an experiment on the chemical decladding flowsheet option. This was done during April 2013. The roadmap for process development will continue through process chemistry optimization studies, the chlorinated reactor design configuration, product salt condensers, and the off-gas trapping of tritium or other volatile fission products from the off-gas stream. (authors)« less

  14. Process for Making a Noble Metal on Tin Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  15. Rock-Salt Growth-Induced (003) Cracking in a Layered Positive Electrode for Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hanlei; Omenya, Fredrick; Yan, Pengfei

    For the first time, the (003) cracking is observed and determined to be the major cracking mechanism for the primary particles of Ni-rich layered dioxides as the positive electrode for Li-ion batteries. Using transmission electron microscopy techniques, here we show that the propagation and fracturing of platelet-like rock-salt phase along the (003) plane of the layered oxide are the leading cause for the cracking of primary particles. The fracturing of the rock-salt platelet is induced by the stress discontinuity between the parent layered oxide and the rock-salt phase. The high nickel content is considered to be the key factor formore » the formation of the rock-salt platelet and thus the (003) cracking. The (003)-type cracking can be a major factor for the structural degradation and associated capacity fade of the layered positive electrode.« less

  16. Arsenophilic Bacterial Processes in Searles Lake: A Salt-saturated, Arsenic-rich, Alkaline Soda Lake.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Swizer Blum, J.; Stolz, J. F.

    2005-12-01

    Searles Lake, located in the Mojave Desert of California, is essentially a chemically-similar, concentrated version of Mono Lake, but having a much higher salinity (e.g., 340 vs. 90 g/L) and a greater dissolved inorganic arsenic content in its brine (e.g., 3.9 vs. 0.2 mM). The source of all this arsenic ultimately comes from hydrothermal spring inputs, thereby underscoring the importance of volcanic and fluvial processes in transporting this toxic element into these closed basin lakes. Nonetheless, the presence of microbial activities with regard to respiration of arsenate oxyanions under anaerobic conditions and the oxidation of arsenite oxyanions under aerobic conditions can be inferred from porewater profiles taken from handcores retrieved beneath Searles Lake's salt crust. Sediment slurry incubations confirmed biological arsenate respiration and arsenite oxidation, with the former processes notably enhanced by provision of the inorganic electron donor sulfide or H2. Hence, arsenic-linked chemo-autotrophy appears to be an important means of carbon fixation in this system. Subsequent efforts using 73As-arsenate as radiotracer detected dissimilatory arsenate reduction activity down the length of the core, but we were unable to detect any evidence for sulfate-reduction using 35S-sulfate. An extremely halophilic anaerobic bacterium of the order Haloanaerobiales [strain SLAS-1] was isolated from the sediments that grew via arsenate respiration using lactate or sulfide as its electron donors. These results show that, unlike sulfate-reduction, arsenic metabolism (i.e., both oxidation of arsenite and dissimilatory reduction of arsenate) is operative and even vigorous under the extreme conditions of salt-saturation and high pH. The occurrence of arsenophilic microbial processes in Searles Lake is relevant to the search for extant or extinct microbial life on Mars. It is evident from surface imagery that Mars had past episodes of volcanism, fluvial transport, and most likely brine concentration reactions (e.g., evapo- and cryo-concentration) occurring in its early Noachian/Hesperian epochs. We speculate that these processes may have created arsenic-rich, dense brines on the Martian surface or even within its underlying regolith. Whether such brines persisted long enough for prokaryotic life to evolve in them, and if so, was such life capable of adapting to and exploiting arsenic redox reactions for the purpose of generating metabolic energy remain tantalizing, but still hypothetical questions.

  17. Hot corrosion and high temperature corrosion behavior of a new gas turbine material -- alloy 603GT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, D.C.; Brill, U.; Klower, J.

    1998-12-31

    Salt deposits encountered in a variety of high temperature processes have caused premature failures in heat exchangers and superheater tubes in pulp and paper recovery boilers, waste incinerators and coal gasifiers. Molten salt corrosion studies in both land based and air craft turbines have been the subject of intense study by many researchers. This phenomenon referred to as ``hot corrosion`` has primarily been attributed to corrosion by alkali sulfates, and there is somewhat general agreement in the literature that this is caused by either basic or acidic dissolution (fluxing) of the protective metal oxide layers by complex salt deposits containingmore » both sulfates and chlorides. This paper describes experimental studies conducted on the hot corrosion behavior of a new Ni-Cr-Al alloy 603GT (UNS N06603) in comparison to some commercially established alloys used in gas turbine components.« less

  18. A robust salt-tolerant superoleophobic alginate/graphene oxide aerogel for efficient oil/water separation in marine environments

    PubMed Central

    Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui

    2017-01-01

    Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments. PMID:28397862

  19. Mathematical Description Development of Reactions of Metallic Gallium Using Kinetic Block Diagram

    NASA Astrophysics Data System (ADS)

    Yakovleva, A. A.; Soboleva, V. G.; Filatova, E. G.

    2018-05-01

    A kinetic block diagram based on a logical sequence of actions in the mathematical processing of a kinetic data is used. A type of reactions of metallic gallium in hydrochloric acid solutions is determined. It has been established that the reactions of the formation of gallium oxide and its salts proceed independently and in the absence of the diffusion resistance. Kinetic models connecting the constants of the reaction rate with the activation energy and describing the evolution of the process are obtained.

  20. Effects of Inhibition Conditions on Anammox process

    NASA Astrophysics Data System (ADS)

    Xie, Haitao; Ji, Dandan; Zang, Lihua

    2017-12-01

    Anaerobic ammonium oxidation (Anammox) is a very suitable process for the treatment of nitrogen-rich wastewater, which is a promising new biological nitrogen removal process, and has a good application prospects. However, the Anammox process is inhibited by many factors, which hinders the process improvement and the application of the Anammox process. Such as organic,temperature,salts,heavy metals, phosphates, sulfides, pH and other inhibitors are usually present in practical applications. We have reviewed the previous researches on the inhibition of Anammox processes. The effect of the substrate on the anaerobic oxide is mainly caused by free ammonia or nitrite nitrogen. Most heavy metals inhibit Anammox growth and activity. The inhibition of organic matter depends on the content of organic matter and species. High salinity inhibits Anammox activity. Dissolved oxygen allows the flora to be in a balanced state. The optimum pH and temperature, as well as other factors, can provide a good growth environment for Anammox. The knowledge of inhibition on Anammox will help prevent the application and improvement of the Anammox process.

  1. A novel process of electroless Ni-P plating with plasma electrolytic oxidation pretreatment

    NASA Astrophysics Data System (ADS)

    Liu, Zhenmin; Gao, Wei

    2006-12-01

    A novel Ni based coating - plasma electrolytic oxidation (PEO) pre-treatment followed by electroless nickel (EN) plating - has been developed to produce pore free Ni coatings on AZ91 magnesium alloy. The application of the PEO film between the nickel coating and the substrate acts as an effective barrier and catalytic layer for the subsequent nickel plating. The potentiodynamic tests indicated that the corrosion current density of the PEO + EN plating on AZ91 decreased by almost two orders of magnitudes compared to the traditional EN coating. Salt fog spray testing further proved this improvement. More importantly, the new technique does not use Cr +6 and HF in its pretreatment, therefore is a much environmentally friendlier process.

  2. Electrochemical method for synthesizing metal-containing particles and other objects

    DOEpatents

    Rondinone, Adam Justin; Ivanov, Ilia N.; Smith, Sean Campbell; Liang, Chengdu; Hensley, Dale K.; Moon, Ji-Won; Phelps, Tommy Joe

    2017-05-02

    The invention is directed to a method for producing metal-containing (e.g., non-oxide, oxide, or elemental) nano-objects, which may be nanoparticles or nanowires, the method comprising contacting an aqueous solution comprising a metal salt and water with an electrically powered electrode to form said metal-containing nano-objects dislodged from the electrode, wherein said electrode possesses a nanotextured surface that functions to confine the particle growth process to form said metal-containing nano-objects. The invention is also directed to the resulting metal-containing compositions as well as devices in which they are incorporated.

  3. Large-Scale Synthesis of Tin-Doped Indium Oxide Nanofibers Using Water as Solvent

    NASA Astrophysics Data System (ADS)

    Altecor, Aleksey; Mao, Yuanbing; Lozano, Karen

    2012-09-01

    Here we report the successful fabrication of tin-doped indium oxide (ITO) nanofibers using a scalable Forcespinning™ method. In this environmentally-friendly process, water was used as the only solvent for both Polyvinylpyrrolidone (PVP, the sacrificial polymer) and the metal chloride precursor salts. The obtained precursor nanofiber mats were calcinated at temperatures ranging from 500-800°C to produce ITO nanofibers with diameters as small as 400 nm. The developed ITO nanofibers were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis.

  4. Scalable salt-templated synthesis of two-dimensional transition metal oxides

    PubMed Central

    Xiao, Xu; Song, Huaibing; Lin, Shizhe; Zhou, Ying; Zhan, Xiaojun; Hu, Zhimi; Zhang, Qi; Sun, Jiyu; Yang, Bo; Li, Tianqi; Jiao, Liying; Zhou, Jun; Tang, Jiang; Gogotsi, Yury

    2016-01-01

    Two-dimensional atomic crystals, such as two-dimensional oxides, have attracted much attention in energy storage because nearly all of the atoms can be exposed to the electrolyte and involved in redox reactions. However, current strategies are largely limited to intrinsically layered compounds. Here we report a general strategy that uses the surfaces of water-soluble salt crystals as growth templates and is applicable to not only layered compounds but also various transition metal oxides, such as hexagonal-MoO3, MoO2, MnO and hexagonal-WO3. The planar growth is hypothesized to occur via a match between the crystal lattices of the salt and the growing oxide. Restacked two-dimensional hexagonal-MoO3 exhibits high pseudocapacitive performances (for example, 300 F cm−3 in an Al2(SO4)3 electrolyte). The synthesis of various two-dimensional transition metal oxides and the demonstration of high capacitance are expected to enable fundamental studies of dimensionality effects on their properties and facilitate their use in energy storage and other applications. PMID:27103200

  5. Effects of agents that inactivate free radical NO (NO•) on nitroxyl anion-mediated relaxations, and on the detection of NO• released from the nitroxyl anion donor Angeli's salt

    PubMed Central

    Ellis, Anthie; Lu, Hong; Li, Chun Guang; Rand, Michael J

    2001-01-01

    The effects of agents that inactivate free radical nitric oxide (carboxy-PTIO, hydroxocobalamin and pyrogallol) were tested on relaxations produced by the nitroxyl anion (NO−) donor Angeli's salt in rat aortic rings and anococcygeus muscles. The amount of NO• generated from Angeli's salt in the presence of these agents was measured using a NO•-selective electrode sensor. Carboxy-PTIO (100, 300 μM), hydroxocobalamin (30, 100 μM) and pyrogallol (10, 30 μM) significantly reduced relaxations produced by Angeli's salt (0.3 μM) in aortic rings but not in anococcygeus muscles. NO• generated from Angeli's salt (0.1 – 10 μM), as detected by the sensor electrode, was less than 0.5% of the amount of Angeli's salt added. Carboxy-PTIO (100 μM) and hydroxocobalamin (30 μM), but not pyrogallol significantly increased the amount of NO• detected. In the presence of an oxidizing agent copper [II] (as CuSO4 100 μM), the amount of NO• detected from 0.3 μM of Angeli's salt increased from an undetectable level of 142.7±15.7 nM (equivalent to 47.6% of Angeli's salt added). Under these conditions, carboxy-PTIO, hydroxocobalamin and pyrogallol significantly reduced the amount of NO• detected from Angeli's salt as well as the signal generated by an equivalent amount of authentic NO (0.33 μM). The difference in effects of these agents on relaxations to Angeli's salt in the aorta and the anococcygeus muscle may be explained by the ready conversion of NO− to NO• in the aorta through an unidentified mechanism, which makes NO− susceptible to inactivation by these agents. Furthermore, in addition to inactivating NO•, carboxy-PTIO and hydroxocobalamin may themselves oxidize NO− to NO•, albeit slightly. PMID:11588105

  6. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension.

    PubMed

    Kido, Makiko; Ando, Katsuyuki; Onozato, Maristela L; Tojo, Akihiro; Yoshikawa, Masahiro; Ogita, Teruhiko; Fujita, Toshiro

    2008-02-01

    Hypertensive cardiovascular damage is accelerated by salt loading but counteracted by dietary potassium supplementation. We suggested recently that antioxidant actions of potassium contribute to protection against salt-induced cardiac dysfunction. Therefore, we examined whether potassium supplementation ameliorated cuff-induced vascular injury in salt-sensitive hypertension via suppression of oxidative stress. Four-week-old Dahl salt-sensitive rats were fed a normal-salt (0.3% NaCl), high-salt (8% NaCl), or high-salt plus high-potassium (8% KCl) diet for 5 weeks, and some of the rats fed a high-salt diet were also given antioxidants. One week after the start of the treatments, a silicone cuff was implanted around the femoral artery. Examination revealed increased cuff-induced neointimal proliferation with adventitial macrophage infiltration in arteries from salt-loaded Dahl salt-sensitive rats compared with that in arteries from non-salt-loaded animals (intima/media ratio: 0.471+/-0.070 versus 0.302+/-0.037; P<0.05), associated with regional superoxide overproduction and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and mRNA overexpression. On the other hand, simultaneous potassium supplementation attenuated salt-induced neointimal hyperplasia (intima/media ratio: 0.205+/-0.012; P<0.001), adventitial macrophage infiltration, superoxide overproduction, and reduced nicotinamide-adenine dinucleotide phosphate oxidase activation and overexpression. Antioxidants, which decrease vascular oxidative stress, also reduced neointima formation induced by salt excess. In conclusion, high-potassium diets seems to have a protective effect against the development of vascular damage induced by salt loading mediated, at least in part, through suppression of the production of reactive oxygen species probably generated by reduced nicotinamide-adenine dinucleotide phosphate oxidase.

  7. Evidence for iron-sulfate coupling in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Mills, Jennifer; Antler, Gilad; Turchyn, Alexandra

    2014-05-01

    Organic carbon burial in shallow marine sediments represents an important net sink in the global carbon cycle. Microbially mediated oxidation of organic matter in oxic, suboxic, and anoxic sediments however, prevents the ultimate burial of organic carbon and its removal from the surface of the planet. Although the subsurface transformations of organic carbon have been studied extensively, an enigmatic question remains: when organic matter is deposited, what determines whether it will be buried, reoxidized, or undergo methanogenesis? One hypothesis is that the sulfur cycle, due to the abundance of sulfate in many surface environments, dominates the subsurface oxidation or other fate of organic carbon. However, it has also been suggested that iron may in turn play a key role in determining the behavior of the sulfur cycle. To better understand the controls on these processes, we are using stable isotope and geochemical techniques to explore the microbially mediated oxidation of organic carbon in salt marsh sediments in North Norfolk, UK. In these sediments there is a high supply of organic carbon, iron, and sulfate (from diurnal tidal cycles). Thus these environments may provide insight into the nature of interactions between the carbon, iron, and sulfur cycles. A series of sampling missions was undertaken in the autumn and winter of 2013-2014. In subsurface fluid samples we observe very high ferrous iron concentrations (>1mM), indicative of extended regions of iron reduction (to over 30cm depth). Within these zones of iron reduction we would predict no sulfate reduction, and as expected δ34Ssulfate remains unchanged with depth. However, δ18Osulfate exhibits significant enrichments of up to 5 permil. This decoupling in the sulfur and oxygen isotopes of sulfate is suggestive of a sulfate recycling process in which sulfate is reduced to an intermediate sulfur species and subsequently reoxidized to sulfate. Taken together, these data suggest that microbial assemblages in these salt marsh sediments facilitate a cryptic cycling of sulfur, potentially mediated by iron species in the zone of iron reduction.

  8. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  9. Chemical Demilitarization - Assembled Chemical Weapons Assessment (ACWA): Root Cause Analysis

    DTIC Science & Technology

    2011-07-01

    BGCAPP, supercritical water oxidation (SCWO) will subject the hydrolysate to very high temperatures and pressures, breaking it down into carbon dioxide ...ANS. The resulting hydrolysates from both the chemical and energetic process are then broken down into carbon dioxide , water and salts in the SCWO...Cutter Machine RDT&E Research, Development, Test and Evaluation RSM Rocket Shear Machine SAR Selected Acquisition Report SCWO Supercritical Water

  10. Liquid Azide Salts and Their Reactions with Common Oxidizers IRFNA and N2O4 (Preprint)

    DTIC Science & Technology

    2008-02-19

    2957(44), 5 2886(13), 2834(7), 1565(4), 1452(7), 1417(19), 1386(8), 1334(21), 1247(3), 1196(1), 1075 (4), 1022(16), 946(2), 874(4), 703(3), 652(1...frames were then processed using the SAINT software16, 17 to give the hkl file corrected for Lp/decay. The absorption correction was performed using

  11. Brain-targeted ACE2 overexpression attenuates neurogenic hypertension by inhibiting COX mediated inflammation

    PubMed Central

    Sriramula, Srinivas; Xia, Huijing; Xu, Ping; Lazartigues, Eric

    2014-01-01

    Overactivity of the renin angiotensin system (RAS), oxidative stress, and cyclooxygenases (COX) in the brain are implicated in the pathogenesis of hypertension. We previously reported that Angiotensin-Converting Enzyme 2 (ACE2) overexpression in the brain attenuates the development of DOCA-salt hypertension, a neurogenic hypertension model with enhanced brain RAS and sympathetic activity. To elucidate the mechanisms involved, we investigated whether oxidative stress, mitogen activated protein kinase signaling and cyclooxygenase (COX) activation in the brain are modulated by ACE2 in neurogenic hypertension. DOCA-salt hypertension significantly increased expression of Nox-2 (+61 ±5 %), Nox-4 (+50 ±13 %) and nitrotyrosine (+89 ±32 %) and reduced activity of the antioxidant enzymes, catalase (−29 ±4 %) and SOD (−31 ±7 %), indicating increased oxidative stress in the brain of non-transgenic mice. This increased oxidative stress was attenuated in transgenic mice overexpressing ACE2 in the brain. DOCA-salt-induced reduction of nNOS expression (−26 ±7 %) and phosphorylated eNOS/total eNOS (−30 ±3 %), and enhanced phosphorylation of Akt and ERK1/2 in the paraventricular nucleus (PVN), were reversed by ACE2 overexpression. In addition, ACE2 overexpression blunted the hypertension-mediated increase in gene and protein expression of COX-1 and COX-2 in the PVN. Furthermore, gene silencing of either COX-1 or COX-2 in the brain, reduced microglial activation and accompanied neuro-inflammation, ultimately attenuating DOCA-salt hypertension. Together, these data provide evidence that brain ACE2 overexpression reduces oxidative stress and COX-mediated neuro-inflammation, improves anti-oxidant and nitric oxide signaling, and thereby attenuates the development of neurogenic hypertension. PMID:25489058

  12. Petrogenesis of the Pd-rich intrusion at Salt Chuck, Prince of Wales island: an early Paleozoic Alaskan-type ultramafic body

    USGS Publications Warehouse

    Loney, R.A.; Himmelberg, G.R.

    1992-01-01

    The early Paleozoic Salt Chuck intrusion has petrographic and chemical characteristics that are similar to those of Cretaceous Alaskan-type ultramafic-mafic bodies. The intrusion is markedly discordant to the structure of the early Paleozoic Descon Formation, in which it has produced a rather indistinct contact aureole a few meters wide. Mineral assemblages, sequence of crystallization, and mineral chemistry suggest that the intrusion crystallized under low pressures (~2 kbar) with oxidation conditions near those of the NNO buffer, from a hydrous, silica-saturated, orthopyroxene-normative parental magma. The Salt Chuck deposit was probably formed by a two-stage process: 1) a stage of magmatic crystallization in which the sulfides and PGE accumulated in a disseminated manner in cumulus deposits, possibly largely in the gabbro, and 2) a later magmatic-hydrothermal stage during which the sulfides and PGE were remobilized and concentrated in veins and fracture-fillings. In this model, the source of the sulfides and PGE was the magma that produced the Salt Chuck intrusion. -from Authors

  13. Spectroscopic Identification of the Au-C Bond Formation upon Electroreduction of an Aryl Diazonium Salt on Gold.

    PubMed

    Guo, Limin; Ma, Lipo; Zhang, Yelong; Cheng, Xun; Xu, Ye; Wang, Jin; Wang, Erkang; Peng, Zhangquan

    2016-11-08

    Electroreduction of aryl diazonium salts on gold can produce organic films that are more robust than their analogous self-assembled monolayers formed from chemical adsorption of organic thiols on gold. However, whether the enhanced stability is due to the Au-C bond formation remains debated. In this work, we report the electroreduction of an aryl diazonium salt of 4,4'-disulfanediyldibenzenediazonium on gold forming a multilayer of Au-(Ar-S-S-Ar) n , which can be further degraded to a monolayer of Au-Ar-S - by electrochemical cleavage of the S-S moieties within the multilayer. By conducting an in situ surface-enhanced Raman spectroscopic study of both the multilayer formation/degradation and the monolayer reduction/oxidation processes, coupled to density functional theory calculations, we provide compelling evidence that an Au-C bond does form upon electroreduction of aryl diazonium salts on gold and that the enhanced stability of the electrografted organic films is due to the Au-C bond being intrinsically stronger than the Au-S bond for a given phenylthiolate compound by ca. 0.4 eV.

  14. Crystalline oxides on semiconductors: A structural transition of the interface phase

    NASA Astrophysics Data System (ADS)

    Walker, F. J.; Buongiorno-Nardelli, Marco; Billman, C. A.; McKee, R. A.

    2004-03-01

    The growth of crystalline oxides on silicon is facilitated by the preparation of a surface phase of alkaline earth silicide. We describe how the surface phase serves as a precursor of the final interface phase using reflection high energy electron diffraction (RHEED) and density functional theory (DFT). RHEED intensity oscillations of the growth of BaSrO show layer-by-layer build up of the oxide on the interface. The 2x1 symmetry of the surface precursor persists up to 3 ML BaSrO coverage at which point a 1x1 pattern characteristic of the rock-salt structure of BaSrO is observed. Prior to 3 ML growth of alkaline earth oxide, DFT calculations and RHEED show that the surface precursor persists as the interface phase and induces large displacements in the growing oxide layer away from the rock-salt structure and having a 2x1 symmetry. These distortions of the rock-salt structure are energetically unfavorable and become more unfavorable as the oxide thickness increases. At 3 ML, the stability of the rock-salt structure drives a structural transformation of the film and the interface phase to a structure that is distinct from the surface precursor. Research sponsored jointly by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory under contract DE-AC05-00OR22725 with UT-Battelle, LLC and at the University of Tennessee under contract DE-FG02-01ER45937. Calculations have been performed on CCS supercomputers at Oak Ridge National Laboratory.

  15. Behavior of toxic metals and radionuclides during molten salt oxidation of chlorinated plastics.

    PubMed

    Yang, Hee-Chul; Cho, Yong-Jun; Eun, Hee-Chul; Yoo, Jae-Hyung; Kim, Joon-Hyung

    2004-01-01

    Molten salt oxidation is one of the promising alternatives to incineration for chlorinated organics without the emission of chlorinated organic pollutants. This study investigated the behavior of three hazardous metals (Cd, Pb, and Cr) and four radioactive metal surrogates (Cs, Ce, Gd, and Sm) in the molten Na2CO3 oxidation reactor during the destruction of PVC plastics. In the tested temperature ranges (1143 1223K) and NaCl content (0-10%), the impact of temperature on the retention of cadmium and lead in the molten salt reactor was very small, but that of the NaCl content for their retention was relatively higher. The influence of NaCl accumulation was, however, proven to be practically negligible due to the low-temperature operating characteristics of the molten salt oxidation system. Neither temperature increase nor chlorine accumulation in the MSO reactor reduced the retention of Cr, Ce, Gd, and Sm. Over 99.98% of these metals remained in the reactor. The influence of the temperature on the cesium behavior is relatively large for a chlorine addition, however, over 99.7% of cesium remained in the reactor throughout the entire test. The experimental metal entrainment rate and the entrained metal particle size distribution agree well with the theoretical equilibrium metal distributions.

  16. Polyamines Confer Salt Tolerance in Mung Bean (Vigna radiata L.) by Reducing Sodium Uptake, Improving Nutrient Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification Systems

    PubMed Central

    Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki

    2016-01-01

    The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763

  17. Study on corrosion of metal materials in nitrate molten salts

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Yang, Bo; Li, Maodong; Li, Shiping; Xin, Mingliang; Zhang, Shuanghong; Huang, Guojia

    2017-01-01

    High temperature molten salts as a heat transfer heat storage medium has been more widely used in the field of concentrated solar thermal power generation. In the thermal heat storage system, metal material stability and performance at high temperatures are of one major limitation in increasing this operating temperature. In this paper, study on corrosion of 321H, 304, 316L, P91 metal materials in modified solar two molten salts. The corrosion kinetics of 304, 316L, 321H, P91 metal material in the modified solar two molten salts at 450°C, 500°C is also investigated. Under the same condition it was found that 304, 321H corroded at a rate of 40% less than P91. Spallation of corrosion products was observed on P91 steel, while no obvious observed on other kinds of stainless steel. Corrosion rates of 304, 321H, and 316L slowly increased with temperature. Oxidation mechanisms little varied with temperature. Corrosion products of metal materials observed at 450°C, 500°C were primarily Fe oxide and Fe, Cr oxide.

  18. Artemin protects cells and proteins against oxidative and salt stress.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Moazzenzade, Taghi

    2017-02-01

    Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks. Also, for continuous monitoring of the effect of artemin in prevention of proteins aggregation/inactivation, co-expression of artemin and luciferase (as an intracellular reporter) in bacterial cells was performed. According to the results, residual activity of luciferase in artemin expressing E. coli cells exposing to different concentrations of H 2 O 2 and NaCl was significantly higher than non-expressing cells. The luciferase activity was rapidly lost in control cells under salt treatments while in co-transformed cells, the activity was considerably retained at higher salt concentrations. Also, analysis from cell viability assays showed that artemin-expressing cells exhibited more resistance to both stress conditions. In the present study, we document for the first time that artemin can protect proteins and bacterial cells against oxidative and salt stress conditions. These results can declare the resistance property of this crustacean against harsh environmental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Assessment of Options for the Treatment of Nitrate Salt Wastes at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Bruce Alan; Funk, David John; Stevens, Patrice Ann

    2016-03-17

    This paper summarizes the methodology used to evaluate options for treatment of the remediated nitrate salt waste containers at Los Alamos National Laboratory. The method selected must enable treatment of the waste drums, which consist of a mixture of complex nitrate salts (oxidizer) improperly mixed with sWheat Scoop®1, an organic kitty litter and absorbent (fuel), in a manner that renders the waste safe, meets the specifications of waste acceptance criteria, and is suitable for transport and final disposal in the Waste Isolation Pilot Plant located in Carlsbad, New Mexico. A Core Remediation Team was responsible for comprehensively reviewing the options,more » ensuring a robust, defensible treatment recommendation. The evaluation process consisted of two steps. First, a prescreening process was conducted to cull the list on the basis for a decision of feasibility of certain potential options with respect to the criteria. Then, the remaining potential options were evaluated and ranked against each of the criteria in a consistent methodology. Numerical scores were established by consensus of the review team. Finally, recommendations were developed based on current information and understanding of the scientific, technical, and regulatory situation. A discussion of the preferred options and documentation of the process used to reach the recommended treatment options are presented.« less

  20. Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Garrabos, Yves; Lecoutre, Carole; Zappoli, Bernard

    2013-01-01

    Current research on supercritical water processes on board the International Space Station (ISS) focuses on salt precipitation and transport in a test cell designed for supercritical water. This study, known as the Supercritical Water Mixture Experiment (SCWM) serves as a precursor experiment for developing a better understanding of inorganic salt precipitation and transport during supercritical water oxidation (SCWO) processes for the eventual application of this technology for waste management and resource reclamation in microgravity conditions. During typical SCWO reactions any inorganic salts present in the reactant stream will precipitate and begin to coat reactor surfaces and control mechanisms (e.g., valves) often severely impacting the systems performance. The SCWM experiment employs a Sample Cell Unit (SCU) filled with an aqueous solution of Na2SO4 0.5-w at the critical density and uses a refurbished High Temperature Insert, which was used in an earlier ISS experiment designed to study pure water at near-critical conditions. The insert, designated as the HTI-Reflight (HTI-R) will be deployed in the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on the International Space Station (ISS). Objectives of the study include measurement of the shift in critical temperature due to the presence of the inorganic salt, assessment of the predominant mode of precipitation (i.e., heterogeneously on SCU surfaces or homogeneously in the bulk fluid), determination of the salt morphology including size and shapes of particulate clusters, and the determination of the dominant mode of transport of salt particles in the presence of an imposed temperature gradient. Initial results from the ISS experiments will be presented and compared to findings from laboratory experiments on the ground.

  1. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  2. Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review

    PubMed Central

    Arafat, M. M.; Dinan, B.; Akbar, Sheikh A.; Haseeb, A. S. M. A.

    2012-01-01

    Recently one dimensional (1-D) nanostructured metal-oxides have attracted much attention because of their potential applications in gas sensors. 1-D nanostructured metal-oxides provide high surface to volume ratio, while maintaining good chemical and thermal stabilities with minimal power consumption and low weight. In recent years, various processing routes have been developed for the synthesis of 1-D nanostructured metal-oxides such as hydrothermal, ultrasonic irradiation, electrospinning, anodization, sol-gel, molten-salt, carbothermal reduction, solid-state chemical reaction, thermal evaporation, vapor-phase transport, aerosol, RF sputtering, molecular beam epitaxy, chemical vapor deposition, gas-phase assisted nanocarving, UV lithography and dry plasma etching. A variety of sensor fabrication processing routes have also been developed. Depending on the materials, morphology and fabrication process the performance of the sensor towards a specific gas shows a varying degree of success. This article reviews and evaluates the performance of 1-D nanostructured metal-oxide gas sensors based on ZnO, SnO2, TiO2, In2O3, WOx, AgVO3, CdO, MoO3, CuO, TeO2 and Fe2O3. Advantages and disadvantages of each sensor are summarized, along with the associated sensing mechanism. Finally, the article concludes with some future directions of research. PMID:22969344

  3. Chemical weathering of layered Ni-rich oxide electrode materials: Evidence for cation exchange

    DOE PAGES

    Shkrob, Ilya A.; Gilbert, James A.; Phillips, Patrick J.; ...

    2017-05-13

    Lithiated ternary oxides containing nickel, cobalt, and manganese are intercalation compounds that are used as positive electrodes in high-energy lithium-ion batteries. These materials undergo compositional changes that adversely affect their cycling performance when they are stored in humid air or exposed to moisture. There is a new urgency to better understanding of these “weathering” processes as manufacturing moves towards a more environmentally benign aqueous processing of the positive electrode. Delithiation in the oxide subsurface regions and the formation of lithium salts (such as hydroxides and carbonates) coating the surface, have been suggested as chemical drivers for these processes, but themore » mechanistic details remain poorly known. The redox reactions which follow oxide delithiation are believed to cause all of the observed transformations. In this article we suggest another possibility: namely, the proton – lithium exchange. We argue that this hypothesis provides a simple, comprehensive rationale for our observations from X-ray diffraction, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and electrochemical measurements. These observations include contraction of the c-axis (unit cell) lattice parameter, strain in the crystalline oxide bulk, directionality of the chemical damage, formation of amorphous surface films, and the partial recovery of capacity loss by electrochemical relithiation of the material. Lastly, these effects need to be mitigated before aqueous processing of the positive electrode can find widespread adoption during cell manufacturing.« less

  4. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  5. Comparison of different procedures to stabilize biogas formation after process failure in a thermophilic waste digestion system: Influence of aggregate formation on process stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleyboecker, A.; Liebrich, M.; Kasina, M.

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Correspondingmore » to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.« less

  6. Liquid Azide Salts and Their Reactions with Common Oxidizers IRFNA and N2O4 (Postprint)

    DTIC Science & Technology

    2008-01-01

    1452(7), 1417(19), 1386(8), 1334(21), 1247(3), 1196(1), 1075 (4), 1022(16), 946(2), 874(4), 703(3), 652(1), 602(7), 495(4), 417(3), 331(2), 279(2), 85...The frames were then processed using the SAINT software16,17 to give the hkl file corrected for Lp/decay. The absorption correction was performed using

  7. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  8. Reduce oil and grease content in wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capps, R.W.; Matelli, G.N.; Bradford, M.L.

    Poor water quality is often blamed on biological oxidation unit malfunction. However, poorly treated water entering the bio-unit is more often the problem. At the microscopic level, oil/water-separation dynamics are influenced by pH, fluid velocity, temperature, and unit volumes. Oily water's physical and chemical properties affect pretreatment systems such as API separators, corrugated plate interception (CPI) separators, air flotation and equalization systems. A better understanding of pretreatment systems' limits and efficiencies can improve wastewater quality before it upsets the biological oxidation (BIOX). Oil contamination in refinery wastewater originates from desalting, steam stripping, product treating, tank drains, sample drains and equipmentmore » washdown. The largest volumetric contributors are cooling tower blowdowns and contaminated stormwater. The paper describes the BIOX process; oil/water separation; oil/water emulsions and colloidal solutions; air flotation; surfactants; DAF (dissolved air flotation) process; IAF (induced air flotation) process; equalization; load factors; salts; and system design.« less

  9. Hazards Associated with Legacy Nitrate Salt Waste Drums Managed under the Container Isolation Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Funk, David John; Clark, David Lewis

    At present, there are 29 drums of nitrate waste salts (oxidizers with potentially acidic liquid bearing RCRA characteristics D001 and D002) that are awaiting processing, specifically to eliminate these characteristics and to allow for ultimate disposition at WIPP. As a result of the Feb. 14th, 2014 drum breach at WIPP, and the subsequent identification of the breached drum as a product ofLANL TRU waste disposition on May 15th, 2014, these 29 containers were moved into the Perrnacon in Dome 231 at TA-54 Area G, as part of the New Mexico Environment Department (NMED) approved container isolation plan. The plan ismore » designed to mitigate hazards associated with the nitrate salt bearing waste stream. The purpose of this document is to articulate the hazards associated with un-remediated nitrate salts while in storage at LANL. These hazards are distinctly different from the Swheat-remediated nitrate salt bearing drums, and this document is intended to support the request to remove the un-remediated drums from management under the container isolation plan. Plans to remediate and/or treat both of these waste types are being developed separately, and are beyond the scope of this document.« less

  10. Method of extracting coal from a coal refuse pile

    DOEpatents

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  11. Cerium Improves Growth of Maize Seedlings via Alleviating Morphological Structure and Oxidative Damages of Leaf under Different Stresses.

    PubMed

    Hong, Fashui; Qu, Chunxiang; Wang, Ling

    2017-10-18

    It had been indicated that cerium (Ce) could promote maize growth involving photosynthetic improvement under potassium (K) deficiency, salt stress, and combined stress of K + deficiency and salt stress. However, whether the improved growth is related to leaf morphological structure, oxidative stress in maize leaves is not well understood. The present study showed that K + deficiency, salt stress, and their combined stress inhibited growth of maize seedlings, affecting the formation of appendages of leaf epidermal cells, and stomatal opening, which may be due to increases in H 2 O 2 and malondialdehyde levels, and reductions in Ca 2+ content, ratios of glutathione/oxidized glutathione, ascorbic acid/dehydroascorbic acid, and the activities of superoxide dismutase, catalase, ascorbic acid peroxidase, guaiacol peroxidase, and glutathione reductase in leaves under different stresses. The adverse effects caused by combined stress were higher than those of single stress. Furthermore, our findings demonstrated that adding Ce 3+ could significantly promote seedling growth, and alleviate morphological and structural damage of leaf, decrease oxidative stress and increase antioxidative capacity in maize leaves caused by different stresses.

  12. Microwave assisted direct saponification for the simultaneous determination of cholesterol and cholesterol oxides in shrimp.

    PubMed

    Souza, Hugo A L; Mariutti, Lilian R B; Bragagnolo, Neura

    2017-05-01

    A novel microwave-assisted direct saponification method for the simultaneous determination of cholesterol and cholesterol oxides in shrimp was developed and validated. Optimal saponification conditions, determined by means of an experimental design, were achieved using 500mg of sample and 20mL of 1mol/L KOH ethanol solution for 16min at 45°C at maximum power at 200W and magnetic stirring at 120rpm. Higher extraction of cholesterol oxides in a reduced saponification time (∼75 times) was achieved in comparison with the direct cold saponification method. The new method showed low detection (≤0.57μg/mL) and quantification (≤1.73μg/mL) limits, good repeatability (≤10.50% intraday and ≤8.56% interday) and low artifact formation (evaluated by using a deuterated cholesterol-D6 standard). Raw, salted and dried-salted shrimps were successfully analyzed by the validated method. The content of cholesterol oxides increased after salting and decreased after drying. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Magnesium oxide. 184.1431 Section 184.1431 Food... Specific Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No... light magnesium oxide. Heating the salts under more rigorous conditions (1200 °C for 12 hours) produces...

  14. Survey of Materials for Fusion Fission Hybrid Reactors Vol 1 Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farmer, Joseph Collin

    2007-07-03

    Materials for fusion-fission hybrid reactors fall into several broad categories, including fuels, blanket and coolant materials, cladding, structural materials, shielding, and in the specific case of inertial-confinement fusion systems, laser and optical materials. This report surveys materials in all categories of materials except for those required for lasers and optics. Preferred collants include two molten salt mixtures known as FLIBE (Li2BeF4) and FLINABE (LiNaBeF4). In the case of homogenous liquid fuels, UF4 can be dissolved in these molten salt mixtures. The transmutation of lithium in this coolant produces very corrosive hydrofluoric acid species (HF and TF), which can rapidly degrademore » structural materials. Broad ranges of high-melting radiation-tolerant structural material have been proposed for fusion-fission reactor structures. These include a wide variety of steels and refractory alloys. Ferritic steels with oxide-dispersion strengthening and graphite have been given particular attention. Refractory metals are found in Groups IVB and VB of the periodic table, and include Nb, Ta, Cr, Mo, and W, as serve as the basis of refractory alloys. Stable high-melting composites and amorphous metals may also be useful. Since amorphous metals have no lattice structure, neutron bombardment cannot dislodge atoms from lattice sites, and the materials would be immune from this specific mode of degradation. The free energy of formation of fluorides of the alloying elements found in steels and refractory alloys can be used to determine the relative stability of these materials in molten salts. The reduction of lithium transmutation products (H + and T +) drives the electrochemical corrosion process, and liberates aggressive fluoride ions that pair with ions formed from dissolved structural materials. Corrosion can be suppressed through the use of metallic Be and Li, though the molten salt becomes laden with colloidal suspensions of Be and Li corrosion products in the process. Alternatively, imposed currents and other high-temperature cathodic protection systems are envisioned for protection of the structural materials. This novel concept could prove to be enabling technology for such high-temperature molten-salt reactors. The use of UF 4 as a liquid-phase homogenous fuel is also complicated by redox control. For example, the oxidation of tetravalent uranium to hexavalent uranium could result in the formation of volatile UF 6. This too could be controlled through electrochemically manipulated oxidation and reduction reactions. In situ studies of pertinent electrochemical reactions in the molten salts are proposed, and are relevant to both the corrosive attack of structural materials, as well as the volatilization of fuel. Some consideration is given to the potential advantages of gravity fed falling-film blankets. Such systems may be easier to control than vortex systems, but would require that cylindrical reaction vessels be oriented with the centerline normal to the gravitational field.« less

  15. Long-distance electron transport occurs globally in marine sediments

    NASA Astrophysics Data System (ADS)

    Burdorf, Laurine D. W.; Tramper, Anton; Seitaj, Dorina; Meire, Lorenz; Hidalgo-Martinez, Silvia; Zetsche, Eva-Maria; Boschker, Henricus T. S.; Meysman, Filip J. R.

    2017-02-01

    Recently, long filamentous bacteria have been reported conducting electrons over centimetre distances in marine sediments. These so-called cable bacteria perform an electrogenic form of sulfur oxidation, whereby long-distance electron transport links sulfide oxidation in deeper sediment horizons to oxygen reduction in the upper millimetres of the sediment. Electrogenic sulfur oxidation exerts a strong impact on the local sediment biogeochemistry, but it is currently unknown how prevalent the process is within the seafloor. Here we provide a state-of-the-art assessment of its global distribution by combining new field observations with previous reports from the literature. This synthesis demonstrates that electrogenic sulfur oxidation, and hence microbial long-distance electron transport, is a widespread phenomenon in the present-day seafloor. The process is found in coastal sediments within different climate zones (off the Netherlands, Greenland, the USA, Australia) and thrives on a range of different coastal habitats (estuaries, salt marshes, mangroves, coastal hypoxic basins, intertidal flats). The combination of a widespread occurrence and a strong local geochemical imprint suggests that electrogenic sulfur oxidation could be an important, and hitherto overlooked, component of the marine cycle of carbon, sulfur and other elements.

  16. Investigation of high temperature corrosion behavior on 304L austenite stainless steel in corrosive environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahri, M. I.; Othman, N. K.; Samsu, Z.

    2014-09-03

    In this work, 304L stainless steel samples were exposed at 700 °C for 10hrs in different corrosive environments; dry oxygen, molten salt, and molten salt + dry oxygen. The corrosion behavior of samples was analyzed using weight change measurement technique, optical microscope (OM) and Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX). The existence phases of corroded sample were determined using X-ray Diffraction (XRD). The lowest corrosion rate was recorded in dry oxygen while the highest was in molten salt + dry oxygen environments with the value of 0.0062 mg/cm{sup 2} and −13.5225 mg/cm{sup 2} respectively. The surfacemore » morphology of sample in presence of salt mixture showed scale spallation. Oxide scales of Fe{sub 3}O{sub 4}, Fe{sub 2}O{sub 3} were the main phases developed and detected by XRD technique. Cr{sub 2}O{sub 3} was not developed in every sample as protective layers but chromate-rich oxide was developed. The cross-section analysis found the oxide scales were in porous, thick and non-adherent that would not an effective barrier to prevent from further degradation of alloy. EDX analysis also showed the Cr-element was low compared to Fe-element at the oxide scale region.« less

  17. Salts affect the interaction of ZnO or CuO nanoparticles with wheat.

    PubMed

    Stewart, Jacob; Hansen, Trevor; McLean, Joan E; McManus, Paul; Das, Siddhartha; Britt, David W; Anderson, Anne J; Dimkpa, Christian O

    2015-09-01

    Exposure to nanoparticles (NPs) that release metals with potential phytotoxicity could pose problems in agriculture. The authors of the present study used growth in a model growth matrix, sand, to examine the influence of 5 mmol/kg of Na, K, or Ca (added as Cl salts) and root exudates on transformation and changes to the bioactivity of copper(II) oxide (CuO) and zinc oxide (ZnO) NPs on wheat. These salt levels are found in saline agricultural soils. After 14 d of seedling growth, particles with crystallinity typical of CuO or ZnO remained in the aqueous fraction from the sand; particles had negative surface charges that differed with NP type and salt, but salt did not alter particle agglomeration. Reduction in shoot and root elongation and lateral root induction by ZnO NPs were mitigated by all salts. However, whereas Na and K promoted Zn loading into shoots, Ca reduced loading, suggesting that competition with Zn ions for uptake occurred. With CuO NPs, plant growth and loading was modified equally by all salts, consistent with major interaction with the plant with CuO rather than Cu ions. Thus, for both NPs, loading into plant tissues was not solely dependent on ion solubility. These findings indicated that salts in agricultural soils could modify the phytotoxicity of NPs. © 2015 SETAC.

  18. Hot corrosion of four superalloys - HA-188, S-57, IN-617, and TD-NiCrAl

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    Cyclic oxidation and hot corrosion tests of two cobalt-base and two nickel-base alloys are reported. The alloys were exposed to maximum temperatures of 900 and 1000 C in a Mach 0.3 burner rig whose flame was doped with various concentrations of sea salt and sodium sulfate for hot corrosion tests. The test data were subjected to a regression analysis for the development of model equations relating corrosion to temperature and for the effects of salt concentration and composition on corrosion. The corrosion resistance varied with temperature, sea salt concentration, and salt composition, concluding that the S-57 cobalt-base alloy was the most hot corrosion-resistant alloy, and the TD-NiCrAl nickel-base alloy was the least resistant. However, under straight oxidation conditions, the TD-NiCrAl was most resistant, while S-57 was the least resistant alloy.

  19. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, Shannon S.; Rafiee, Mohammad

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers ormore » oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.« less

  20. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.

    We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less

  1. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars

    DOE PAGES

    Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.; ...

    2016-07-28

    We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less

  2. Synthesis of silver nanoparticles by silver salt reduction and its characterization

    NASA Astrophysics Data System (ADS)

    Muzamil, Muhammad; Khalid, Naveed; Danish Aziz, M.; Aun Abbas, S.

    2014-06-01

    The wet chemical method route by metal salt reduction has been used to synthesize nanoparticles, using silver nitrate as an inorganic salt, aldehyde as a reducing agent and amino acid as a catalyst. During the reaction aldehyde oxidizes to carboxylic acid and encapsulates the silver nanoparticles to prevent agglomeration and provide barrier in the growth of particle. The existing work produces particles using lab grade chemical, here the presented work is by using industrial grade chemicals to make the process more cost & time effective. The nano silver powder has been studied for their formation, particle size, shape & compositional analysis using Scanning Electron Microscope (SEM) equipped with EDS. The particles size distributions were analyzed by Laser Particle Analyzer (LPA), structure & morphological analysis using x-ray diffraction (XRD) and Fourier-transform-infrared Spectroscopy (FTIR) confirmed the stabilization of particles by coating of carboxylic group. These studies infer that the particles are mostly spherical in shape and have an average size between 70 to 350 nm.

  3. The LiAl/FeS2 battery power source for the future

    NASA Technical Reports Server (NTRS)

    Briscoe, J. Douglass; Embrey, J.; Oweis, S.; Press, K.

    1992-01-01

    Advanced high power density rechargeable batteries are currently under development. These batteries have the potential of greatly increasing the power and energy densities available for space applications. Depending on whether the system is optimized for high power or high energy, values up to 150 Wh/kg and 2100 W/kg (including hardware) are projected. This is due to the fact that the system uses a high conductivity molten salt electrolyte. The electrolyte also serves as a separator layer with unlimited freeze thaw capabilities. Life of 1000 cycles and ten calendar years is projected. The electrochemistry consists of a lithium aluminum alloy negative electrode, iron disulfide positive electrode, and magnesium oxide powder immobilized molten salt electrolyte. Processed powders are cold compacted into circular discs which are assembled into bipolar cell hardware with peripheral ceramic salts. The culmination of the work will be a high energy battery of 40 kWh and a high power battery of 28 kWh.

  4. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.; Zhou, A.; Baidoo, E.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed.more » Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.« less

  5. The feasibility of using molten carbonate corrosion for separating a nuclear surrogate for plutonium oxide from silicon carbide inert matrix

    NASA Astrophysics Data System (ADS)

    Cheng, Ting; Baney, Ronald H.; Tulenko, James

    2010-10-01

    Silicon carbide is one of the prime candidates as a matrix material in inert matrix fuels (IMF) being designed to reduce the plutonium inventories. Since complete fission and transmutation is not practical in a single in-core run, it is necessary to separate the non-transmuted actinide materials from the silicon carbide matrix for recycling. In this work, SiC was corroded in sodium carbonate (Na 2CO 3) and potassium carbonate (K 2CO 3), to form water soluble sodium or potassium silicate. Separation of the transuranics was achieved by dissolving the SiC corrosion product in boiling water. Ceria (CeO 2), which was used as a surrogate for plutonium oxide (PuO 2), was not corroded in these molten salt environments. The molten salt depth, which is a distance between the salt/air interface to the upper surface of SiC pellets, significantly affected the rate of corrosion. The corrosion was faster in K 2CO 3 than in Na 2CO 3 molten salt at 1050 °C, when the initial molten salt depths were kept the same for both salts.

  6. Copper enhances the activity and salt resistance of mixed methane-oxidizing communities.

    PubMed

    van der Ha, David; Hoefman, Sven; Boeckx, Pascal; Verstraete, Willy; Boon, Nico

    2010-08-01

    Effluents of anaerobic digesters are an underestimated source of greenhouse gases, as they are often saturated with methane. A post-treatment with methane-oxidizing bacterial consortia could mitigate diffuse emissions at such sites. Semi-continuously fed stirred reactors were used as model systems to characterize the influence of the key parameters on the activity of these mixed methanotrophic communities. The addition of 140 mg L(-1) NH (4) (+) -N had no significant influence on the activity nor did a temperature increase from 28 degrees C to 35 degrees C. On the other hand, addition of 0.64 mg L(-1) of copper(II) increased the methane removal rate by a factor of 1.5 to 1.7 since the activity of particulate methane monooxygenase was enhanced. The influence of different concentrations of NaCl was also tested, as effluents of anaerobic digesters often contain salt levels up to 10 g NaCl L(-1). At a concentration of 11 g NaCl L(-1), almost no methane-oxidizing activity was observed in the reactors without copper addition. Yet, reactors with copper addition exhibited a sustained activity in the presence of NaCl. A colorimetric test based on naphthalene oxidation showed that soluble methane monooxygenase was inhibited by copper, suggesting that the particulate methane monooxygenase was the active enzyme and thus more salt resistant. The results obtained demonstrate that the treatment of methane-saturated effluents, even those with increased ammonium (up to 140 mg L(-1) NH (4) (+) -N) and salt levels, can be mitigated by implementation of methane-oxidizing microbial consortia.

  7. Low-concentration kinetics of atmospheric CH{sub 4} oxidation in soil and mechanism of NH{sub 4}{sup +} inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gulledge, J.; Schimel, J.P.

    1998-11-01

    NH{sub 4}{sup +} inhibition kinetics for CH{sub 4} oxidation were examined at near-atmospheric CH{sub 4} concentrations in three upland forest soils. Whether NH{sub 4}{sup +}-independent salt effects could be neutralized by adding nonammoniacal salts to control samples in lieu of deionized water was also investigated. Because the levels of exchangeable endogenous NH{sub 4}{sup +} were very low in the three soils, desorption of endogenous NH{sub 4}{sup +} was not a significant factor in this study. The K{sub m(app)} values for water-treated controls were 9.8, 22, and 57 nM for temperate pine, temperate hardwood, and birch taiga soils, respectively. At CH{submore » 4} concentrations of {le}15 {micro}l liter{sup {minus}1}, oxidation followed first-order kinetics in the fine-textured taiga soil, whereas the coarse-textured temperate soils exhibited Michaelis-Menten kinetics. Compared to water controls, the K{sub m(app)} values in the temperate soils increased in the presence of NH{sub 4}{sup +} salts, whereas the V{sub max(app)} values decreased substantially, indicating that there was a mixture of competitive and noncompetitive inhibition mechanisms for whole NH{sub 4}{sup +} salts. Compared to the corresponding K{sup +} salt controls, the K{sub m(app)} values for NH{sub 4}{sup +} salts increased substantially, whereas the V{sub max(app)} values remained virtually unchanged, indicating that NH{sub 4}{sup +} acted by competitive inhibition. Nonammoniacal salts caused inhibition to increase with increasing CH{sub 4} concentrations in all three soils. In the birch taiga soil, this trend occurred with both NH{sub 4}{sup +} and K{sup +} salts, and the slope of the increase was not affected by the addition of NH{sub 4}{sup +}. Hence, the increase in inhibition resulted from an NH{sub 4}{sup +}-independent mechanism.« less

  8. METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION

    DOEpatents

    Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.

    1960-08-23

    A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).

  9. Polyamines contribute to salinity tolerance in the symbiosis Medicago truncatula-Sinorhizobium meliloti by preventing oxidative damage.

    PubMed

    López-Gómez, Miguel; Hidalgo-Castellanos, Javier; Muñoz-Sánchez, J Rubén; Marín-Peña, Agustín J; Lluch, Carmen; Herrera-Cervera, José A

    2017-07-01

    Polyamines (PAs) such as spermidine (Spd) and spermine (Spm) are small ubiquitous polycationic compounds that contribute to plant adaptation to salt stress. The positive effect of PAs has been associated to a cross-talk with other anti-stress hormones such as brassinosteroids (BRs). In this work we have studied the effects of exogenous Spd and Spm pre-treatments in the response to salt stress of the symbiotic interaction between Medicago truncatula and Sinorhizobium meliloti by analyzing parameters related to nitrogen fixation, oxidative damage and cross-talk with BRs in the response to salinity. Exogenous PAs treatments incremented the foliar and nodular Spd and Spm content which correlated with an increment of the nodule biomass and nitrogenase activity. Exogenous Spm treatment partially prevented proline accumulation which suggests that this polyamine could replace the role of this amino acid in the salt stress response. Additionally, Spd and Spm pre-treatments reduced the levels of H 2 O 2 and lipid peroxidation under salt stress. PAs induced the expression of genes involved in BRs biosynthesis which support a cross-talk between PAs and BRs in the salt stress response of M. truncatula-S. meliloti symbiosis. In conclusion, exogenous PAs improved the response to salinity of the M. truncatula-S. meliloti symbiosis by reducing the oxidative damage induced under salt stress conditions. In addition, in this work we provide evidences of the cross-talk between PAs and BRs in the adaptive responses to salinity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Antioxidant defences and oxidative damage in salt-treated olive plants under contrasting sunlight irradiance.

    PubMed

    Melgar, Juan Carlos; Guidi, Lucia; Remorini, Damiano; Agati, Giovanni; Degl'innocenti, Elena; Castelli, Silvana; Camilla Baratto, Maria; Faraloni, Cecilia; Tattini, Massimiliano

    2009-09-01

    The interactive effects of root-zone salinity and sunlight on leaf biochemistry, with special emphasis on antioxidant defences, were analysed in Olea europaea L. cv. Allora, during the summer period. Plants were grown outside under 15% (shade plants) or 100% sunlight (sun plants) and supplied with 0 or 125 mM NaCl. The following measurements were performed: (1) the contribution of ions and soluble carbohydrates to osmotic potentials; (2) the photosystem II (PSII) photochemistry and the photosynthetic pigment concentration; (3) the concentration and the tissue-specific distribution of leaf flavonoids; (4) the activity of antioxidant enzymes; and (5) the leaf oxidative damage. The concentrations of Na(+) and Cl(-) were significantly greater in sun than in shade leaves, as also observed for the concentration of the 'antioxidant' sugar-alcohol mannitol. The de-epoxidation state of violaxanthin-cycle pigments increased in response to salinity stress in sun leaves. This finding agrees with a greater maximal PSII photochemistry (F(v)/F(m)) at midday, detected in salt-treated than in control plants, growing in full sunshine. By contrast, salt-treated plants in the shade suffered from midday depression in F(v)/F(m) to a greater degree than that observed in control plants. The high concentration of violaxanthin-cycle pigments in sun leaves suggests that zeaxanthin may protect the chloroplast from photo-oxidative damage, rather than dissipating excess excitation energy via non-photochemical quenching mechanisms. Dihydroxy B-ring-substituted flavonoid glycosides accumulate greatly in the mesophyll, not only in the epidermal cells, in response to high sunlight. The activity of antioxidant enzymes varied little because of sunlight irradiance, but declined sharply in response to high salinity in shade leaves. Interestingly, control and particularly salt-treated plants in the shade underwent greater oxidative damage than their sunny counterparts. These findings, which conform to the evolution of O. europaea in sunny environments, suggest that under partial shading, the antioxidant defence system may be ineffective to counter salt-induced oxidative damage.

  11. Preparation and Stoichiometry Effects on Microstructure and Properties of High Purity BaTiO3.

    DTIC Science & Technology

    1986-03-27

    oxalate , citrate) salt solutions, from mixed alkoxide precursors or from hydrothermal solutions. Typical starting materials and reaction sequences...decomposition and calcination reactions to form the BaTiO compound. Both the oxalate and 3 hydrothermal processes show commnercial promise and are briefly...thermal decomposition of oxalates and by hydrothermal synthesis. As-received lots of mixed oxide and oxalate -derived powders had Ba:TI ratios of 0.997 and

  12. Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Merwin, Augustus

    Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy showed mixed (kinetic and diffusion) control and an overall low impedance due to extreme corrosion. It was observed that tungsten is sufficiently stable in LiCl - 2wt% Li 2O at 700°C at the required anodic potential for the reduction of uranium oxide. This study identifies tungsten to be a superior anode material to platinum for the electrolytic reduction of uranium oxide, both in terms of superior corrosion behavior and reduced cost, and thus recommends that tungsten be further investigated as an alternative anode for the electrolytic reduction of uranium dioxide.

  13. The resolution of acyclic P-stereogenic phosphine oxides via the formation of diastereomeric complexes: A case study on ethyl-(2-methylphenyl)-phenylphosphine oxide.

    PubMed

    Bagi, Péter; Varga, Bence; Szilágyi, András; Karaghiosoff, Konstantin; Czugler, Mátyás; Fogassy, Elemér; Keglevich, György

    2018-04-01

    As an example of acyclic P-chiral phosphine oxides, the resolution of ethyl-(2-methylphenyl)-phenylphosphine oxide was elaborated with TADDOL derivatives, or with calcium salts of the tartaric acid derivatives. Besides the study on the resolving agents, several purification methods were developed in order to prepare enantiopure ethyl-(2-methylphenyl)-phenylphosphine oxide. It was found that the title phosphine oxide is a racemic crystal-forming compound, and the recrystallization of the enantiomeric mixtures could be used for the preparation of pure enantiomers. According to our best method, the (R)-ethyl-(2-methylphenyl)-phenylphosphine oxide could be obtained with an enantiomeric excess of 99% and in a yield of 47%. Complete racemization of the enantiomerically enriched phosphine oxide could be accomplished via the formation of a chlorophosphonium salt. Characterization of the crystal structures of the enantiopure phosphine oxide was complemented with that of the diastereomeric intermediate. X-ray analysis revealed the main nonbonding interactions responsible for enantiomeric recognition. © 2018 Wiley Periodicals, Inc.

  14. The Preparation and Characterization of a Sodium Tungsten Bronze

    ERIC Educational Resources Information Center

    Conroy, Lawrence E.

    1977-01-01

    Describes an experiment that utilizes the techniques of temperature synthesis, crystallization from a molten salt, oxidation-reduction in a molten salt, powder X-ray diffraction and analysis by high temperature volatilization or a specific ion electrode. (MLH)

  15. Sulfate-dependent Anaerobic Oxidation of Methane as a Generation Mechanism for Calcite Cap Rock in Gulf Coast Salt Domes

    NASA Astrophysics Data System (ADS)

    Caesar, K. H.; Kyle, R.; Lyons, T. W.; Loyd, S. J.

    2015-12-01

    Gulf Coast salt domes, specifically their calcite cap rocks, have been widely recognized for their association with significant reserves of crude oil and natural gas. However, the specific microbial reactions that facilitate the precipitation of these cap rocks are still largely unknown. Insight into the mineralization mechanism(s) can be obtained from the specific geochemical signatures recorded in these structures. Gulf Coast cap rocks contain carbonate and sulfur minerals that exhibit variable carbon (d13C) and sulfur isotope (δ34S) signatures. Calcite d13C values are isotopically depleted and show a large range of values from -1 to -52‰, reflecting a mixture of various carbon sources including a substantial methane component. These depleted carbon isotope compositions combined with the presence of abundant sulfide minerals in cap rocks have led to interpretations that invoke microbial sulfate reduction as an important carbonate mineral-yielding process in salt dome environments. Sulfur isotope data from carbonate-associated sulfate (CAS: trace sulfate incorporated within the carbonate mineral crystal lattice) provide a more direct proxy for aqueous sulfate in salt dome systems and may provide a means to directly fingerprint ancient sulfate reduction. We find CAS sulfur isotope compositions (δ34SCAS) significantly greater than those of the precursor Jurassic sulfate-salt deposits (which exhibit δ34S values of ~ +15‰). This implies that cap rock carbonate generation occurred via microbial sulfate reduction under closed-system conditions. The co-occurrence of depleted carbonate d13C values (< ~30‰) and the enriched δ34SCAS values are evidence for sulfate-dependent anaerobic oxidation of methane (AOM). AOM, which has been shown to yield extensive seafloor carbonate authigenesis, is also potentially partly responsible for the carbonate minerals of the Gulf Coast calcite cap rocks through concomitant production of alkalinity. Collectively, these data shed new light on a potential hotspot of microbial activity in the deep biosphere.

  16. 21 CFR 184.1431 - Magnesium oxide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... magnesium oxide. Heating the salts under more rigorous conditions (1200 °C for 12 hours) produces heavy...

  17. Impact of high fat/high salt diet on myocardial oxidative stress.

    PubMed

    Mayyas, Fadia; Alzoubi, Karem H; Al-Taleb, Zahraa

    2017-01-01

    High fat high salt diet contributes to oxidative stress and cardiac diseases. To determine the impact of moderately high fat diet (HFD), high salt (HS) or their combination on blood pressure (Bp) and myocardial oxidants/antioxidants. Sprague Dawley rats were assigned into four groups; conventional diet (control, 5% fat, 0.5% NaCl), HFD (25% fat, 0.5% NaCl), HS (5% fat, 8% NaCl), or combined diet (HFD+HS) for 10 weeks. Bp and cardiac oxidants and antioxidants were measured. HFD, HS, and their combination didn't cause obesity or dyslipidemia. Both HS and combined diets resulted in an increase in the heart/body weight ratio accompanied by an increase in Bp. No changes were observed in levels of the glutathione (GSH) system or superoxide dismutase (SOD) activities. However, a significant decrease in TBARS levels was observed in the HFD and the combined diet with a parallel increase in catalase activity in all groups. Relative to HFD, the combined diet was associated with increases in GSH reductase/peroxidase and SOD activities. The lack of changes in the GSH system, the decrease in TBARS, and the increase in catalase activity suggest that normal hearts adapt compensatory mechanisms to prevent oxidative damage in response to HFD/and or HS.

  18. Transformation of zinc hydroxide chloride monohydrate to crystalline zinc oxide.

    PubMed

    Moezzi, Amir; Cortie, Michael; McDonagh, Andrew

    2016-04-25

    Thermal decomposition of layered zinc hydroxide double salts provides an interesting alternative synthesis for particles of zinc oxide. Here, we examine the sequence of changes occurring as zinc hydroxide chloride monohydrate (Zn5(OH)8Cl2·H2O) is converted to crystalline ZnO by thermal decomposition. The specific surface area of the resultant ZnO measured by BET was 1.3 m(2) g(-1). A complicating and important factor in this process is that the thermal decomposition of zinc hydroxide chloride is also accompanied by the formation of volatile zinc-containing species under certain conditions. We show that this volatile compound is anhydrous ZnCl2 and its formation is moisture dependent. Therefore, control of atmospheric moisture is an important consideration that affects the overall efficiency of ZnO production by this process.

  19. Inert electrode composition having agent for controlling oxide growth on electrode made therefrom

    DOEpatents

    Ray, S.P.

    1986-04-15

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. The electrode composition further includes a metal compound dopant which will aid in controlling the thickness of a protective oxide layer on at least the bottom portion of an electrode made therefrom during use. 12 figs.

  20. Inert electrode composition having agent for controlling oxide growth on electrode made therefrom

    DOEpatents

    Ray, Siba P.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. The electrode composition further includes a metal compound dopant which will aid in controlling the thickness of a protective oxide layer on at least the bottom portion of an electrode made therefrom during use.

  1. Salt-assistant combustion synthesis of nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} (0 {<=} x {<=} 1) solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong Yuping, E-mail: huabeitong@yahoo.cn; Wang Yanping

    2009-11-15

    Nanocrystalline Nd{sub 2}(Zr{sub 1-x}Sn{sub x}){sub 2}O{sub 7} series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.

  2. Method for producing high surface area chromia materials for catalysis

    DOEpatents

    Gash, Alexander E [Brentwood, CA; Satcher, Joe [Patterson, CA; Tillotson, Thomas [Tracy, CA; Hrubesh, Lawrence [Pleasanton, CA; Simpson, Randall [Livermore, CA

    2007-05-01

    Nanostructured chromium(III)-oxide-based materials using sol-gel processing and a synthetic route for producing such materials are disclosed herein. Monolithic aerogels and xerogels having surface areas between 150 m.sup.2/g and 520 m.sup.2/g have been produced. The synthetic method employs the use of stable and inexpensive hydrated-chromium(III) inorganic salts and common solvents such as water, ethanol, methanol, 1-propanol, t-butanol, 2-ethoxy ethanol, and ethylene glycol, DMSO, and dimethyl formamide. The synthesis involves the dissolution of the metal salt in a solvent followed by an addition of a proton scavenger, such as an epoxide, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively.

  3. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, themore » acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.« less

  4. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin [Los Alamos, NM; Li, Wenguang [Los Alamos, NM

    2009-01-13

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  5. The catalytic pyrolysis of food waste by microwave heating.

    PubMed

    Liu, Haili; Ma, Xiaoqian; Li, Longjun; Hu, ZhiFeng; Guo, Pingsheng; Jiang, Yuhui

    2014-08-01

    This study describes a series of experiments that tested the use of microwave pyrolysis for treating food waste. Characteristics including rise in temperature, and the three-phase products, were analyzed at different microwave power levels, after adding 5% (mass basis) metal oxides and chloride salts to the food waste. Results indicated that, the metal oxides MgO, Fe₂O₃ and MnO₂ and the chloride salts CuCl₂ and NaCl can lower the yield of bio-oil and enhance the yield of gas. Meanwhile, the metal oxides MgO and MnO₂ can also lower the low heating value (LHV) of solid residues and increase the pH values of the lower layer bio-oils. However, the chloride salts CuCl₂ and NaCl had the opposite effects. The optimal microwave power for treating food waste was 400W; among the tested catalysts, CuCl₂ was the best catalyst and had the largest energy ratio of production to consumption (ERPC), followed by MnO₂. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-07-27

    Varistors and/or resistors are described that include doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  7. Zinc oxide varistors and/or resistors

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    Varistors and/or resistors that includes doped zinc oxide gel microspheres. The doped zinc oxide gel microspheres preferably have from about 60 to about 95% by weight zinc oxide and from about 5 to about 40% by weight dopants based on the weight of the zinc oxide. The dopants are a plurality of dopants selected from silver salts, boron oxide, silicon oxide and hydrons oxides of aluminum, bismuth, cobalt, chromium, manganese, nickel, and antimony.

  8. Oxidation Studies of SiAlON/MgAlON Ceramics with Fe2O3 and CaO Impurities, Part I: Kinetics

    NASA Astrophysics Data System (ADS)

    Li, Peng; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2013-02-01

    T he oxidation behaviors of composites SiAlON/MgAlON phases (β-SiAlON, 15R-SiAlON and MgAlON) synthesized from the residue during the leaching treatment of salt cake and corresponding synthetic samples were investigated in air by thermogravimetric measurements. Combined kinetics, viz. linear law + arctan law + parabolic law, are used to describe the kinetics of oxidation in isothermal mode. The oxidation studies reveal the effects of impurities, namely, Fe2O3 and CaO, present in the salt cake residue. The addition of Fe2O3 results in a lower activation energy and more aggressive oxidation. The addition of CaO caused the shrinkage during the synthesis and liquid formation during the oxidation above 1673 K (1400 °C). The impurities of CaO and Fe2O3 in the leaching residue can result in an aggressive oxidation at low temperature and a protective oxidation at temperatures above the eutectic point.

  9. Production and application of O2 enriched air produced by fresh and salt water desorption in chemical plants.

    PubMed

    Galli, F; Previtali, D; Bozzano, G; Bianchi, C L; Manenti, F; Pirola, C

    2018-07-01

    Oxygen enriched air intensifies oxidation processes since smaller reactors reach the same conversion of typical unit operations that employ simple air as reactant. However, the cost to produce pure oxygen or oxygen enriched air with traditional methods, i.e. cryogenic separation or membrane technologies, may be unaffordable. Here, we propose a new continuous technology for gas mixture separation, focusing on the production of oxygen enriched air as a case study. This operation is an absorption-desorption process that takes advantage of the higher oxygen solubility in water compared to nitrogen. In a pressurized solubilisation tank, water absorbs air. Subsequently, reducing pressure desorbs oxygen enriched air. PRO/II 9.3 (Simsci-Scheider Electrics) simulated, optimized, and calculated the capital and operative expenses of this technology. Moreover, we tested for the first time salt water instead of distilled water as appealing possibility for chemical plant near sea and ocean. We varied the inlet water flowrate between 5 and 15 m 3 /h. The optimum operative absortion unit pressure is 15-35 barg. After degassing, water may be recycled. With salt water, the extracted quantity of enriched air decreases compared with the desorption from fresh water (20% less), while the concentration of oxygen is independent from the salt concentration. The cost of enriched air at the optimum condition is 2-3.35 EUR/Nm 3 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  11. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  12. The use of catalyst to enhance the wet oxidation process.

    PubMed

    Maugans, C; Kumfer, B

    2007-01-01

    Wet oxidation tests were performed on two pure compound streams: acetic acid and ammonia; and on two wastewater streams: acrylic acid wastewater and sulphide laden spent caustic. Test results showed that Mn/Ce and Pt/TiO2 were effective catalysts that greatly enhanced acetic acid, ammonia and acrylic acid wastewater destruction. However, the Mn/Ce catalyst performance appears to be inhibited by concentrated salts dissolved in solution. This could limit the applicability of this catalyst for the treatment of brackish wastewaters. Zr, Ce and Ce nanoparticles were also shown to exhibit some catalytic activity, however not to the extent of the Mn/Ce and the Pt/TiO2.

  13. Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules

    DOE PAGES

    Jang, Gyoung Gug; Jacobs, Christopher B.; Gresback, Ryan G.; ...

    2014-11-10

    Bimodal sized elemental copper (Cu) nanoparticles (NPs) were synthesized from inexpensive oxidized copper salts by an extracellular metal-reduction process using anaerobic Thermoanaerobacter sp. X513 bacteria in aqueous solution. The bacteria nucleate NPs outside of the cell, and they control the Cu2+ reduction rate to form uniform crystallites with an average diameter of 1.75 0.46 m after 3-day incubation. To control the size and enhance air stability of Cu NPs, the reaction mixtures were supplemented with nitrilotriacetic acid as a chelator, and the surfactant capping agents oleic acid, oleylamine, ascorbic acid, or L-cysteine. Time-dependent UV-visible absorption measurements and XPS studies indicatedmore » well-suspended, bimodal colloidal Cu NPs (70 150 and 5 10 nm) with extended air-stability up to 300 min and stable Cu NP films surfaces with 14% oxidation after 20 days. FTIR spectroscopy suggested that these capping agents were effectively adsorbed on the NP surface providing oxidation resistance in aqueous and dry conditions. Compared to previously reported Cu NP syntheses, this biological process substantially reduced the requirement for hazardous organic solvents and chemical reducing agents, while reducing the levels of Cu oxide impurities in the product. This process was highly reproducible and scalable from 0.01 to 1-L batches.« less

  14. Substrate Structures For Growth Of Highly Oriented And/Or Epitaxial Layers Thereon

    DOEpatents

    Arendt, Paul N.; Foltyn, Stephen R.; Groves, James R.; Jia, Quanxi

    2005-07-26

    A composite substrate structure including a substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the substrate, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer is provided together with additional layers such as one or more layers of a buffer material upon the oriented cubic oxide material layer. Jc's of 2.3×106 A/cm2 have been demonstrated with projected Ic's of 320 Amperes across a sample 1 cm wide for a superconducting article including a flexible polycrystalline metallic substrate, an inert oxide material layer upon the surface of the flexible polycrystalline metallic substrate, a layer of a crystalline metal oxide or crystalline metal oxynitride material upon the layer of the inert oxide material, a layer of an oriented cubic oxide material having a rock-salt-like structure upon the crystalline metal oxide or crystalline metal oxynitride material layer, a layer of a buffer material upon the oriented cubic oxide material layer, and, a top-layer of a high temperature superconducting material upon the layer of a buffer material.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shkrob, Ilya A.; Gilbert, James A.; Phillips, Patrick J.

    Lithiated ternary oxides containing nickel, cobalt, and manganese are intercalation compounds that are used as positive electrodes in high-energy lithium-ion batteries. These materials undergo compositional changes that adversely affect their cycling performance when they are stored in humid air or exposed to moisture. There is a new urgency to better understanding of these “weathering” processes as manufacturing moves towards a more environmentally benign aqueous processing of the positive electrode. Delithiation in the oxide subsurface regions and the formation of lithium salts (such as hydroxides and carbonates) coating the surface, have been suggested as chemical drivers for these processes, but themore » mechanistic details remain poorly known. The redox reactions which follow oxide delithiation are believed to cause all of the observed transformations. In this article we suggest another possibility: namely, the proton – lithium exchange. We argue that this hypothesis provides a simple, comprehensive rationale for our observations from X-ray diffraction, X-ray photoelectron spectroscopy, scanning transmission electron microscopy, and electrochemical measurements. These observations include contraction of the c-axis (unit cell) lattice parameter, strain in the crystalline oxide bulk, directionality of the chemical damage, formation of amorphous surface films, and the partial recovery of capacity loss by electrochemical relithiation of the material. Lastly, these effects need to be mitigated before aqueous processing of the positive electrode can find widespread adoption during cell manufacturing.« less

  16. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  17. Chronopotentiometry of Refractory Metals, Actinides and Oxyanions in Molten Salts: A Review

    DTIC Science & Technology

    1992-09-01

    disappaared. No new wave appeared which could be attributed to the nitrosonium , NO+, ion . The nitronium ion , N02+, could not be detected in the melt...electrodeposit- ion of coherent deposits of refractory metals from solutions in fused electrolytes. 2.1. Titanium. The electrochemical oxidation of Ti(II...the higher valent niobium ions were found to be electroactive. The reduction process was a reversible, one electron step with the product soluble in the

  18. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less

  19. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress.

    PubMed

    Kaur, Harmeet; Bhatla, Satish C

    2016-09-30

    The present findings demonstrate significant modulation of total glutathione content, reduced glutathione (GSH) content, oxidized glutathione (GSSG) content, GSH/GSSG ratio and glutathione reductase (GR; EC 1.6.4.2) activity in dark-grown seedling cotyledons in response to salt-stress (120 mM NaCl) in sunflower (Helianthus annuus L.) seedlings. A differential spatial distribution of GR activity (monitored by confocal laser scanning microscopic (CLSM) imaging) is also evident. Melatonin and nitric oxide (NO) differentially ameliorate salt stress effect by modulating GR activity and GSH content in seedling cotyledons. Total glutathione content (GSH + GSSG) exhibit a seedling age-dependent increase in the cotyledons, more so in salt-stressed conditions and when subjected to melatonin treatment. Seedlings raised in presence of 15 μM of melatonin exhibit significant increase in GR activity in cotyledon homogenates (10,000 g supernatant) coinciding with significant increase in GSH content. GSSG content and GSH/GSSG ratio also increased due to melatonin treatment. A correlation is thus evident in NaCl-sensitized modulation of GSH content and GR activity by melatonin. GSH content is down regulated by NO provided as 250 μM of sodium nitroprusside (SNP) although total glutathione content remained in similar range. A reversal of response (enhanced total glutathione accumulation) by NO scavenger (cPTIO) highlights the critical role of NO in modulating glutathione homeostasis. SNP lowers the activity of hydroxyindole-O-methyltransferase (HIOMT) - a regulatory enzyme in melatonin biosynthesis in control seedlings whereas its activity is upregulated in salt-stressed seedling cotyledons. Melatonin content of seedling cotyledons is also modulated by NO. NO and melatonin thus seem to modulate GR activity and GSH content during seedling growth under salt stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Enhanced oxidative stress in the jasmonic acid-deficient tomato mutant def-1 exposed to NaCl stress.

    PubMed

    Abouelsaad, Ibrahim; Renault, Sylvie

    2018-04-21

    Jasmonic acid (JA) has been mostly studied in responses to biotic stresses, such as herbivore attack and pathogenic infection. More recently, the involvement of JA in abiotic stresses including salinity was highlighted; yet, its role in salt stress remained unclear. In the current study, we compared the physiological and biochemical responses of wild-type (WT) tomato (Solanum lycopersicum) cv Castlemart and its JA-deficient mutant defenseless-1 (def-1) under salt stress to investigate the role of JA. Plant growth, photosynthetic pigment content, ion accumulation, oxidative stress-related parameters, proline accumulation and total phenolic compounds, in addition to both enzymatic and non-enzymatic antioxidant activities, were measured in both genotypes after 14 days of 100 mM NaCl treatment. Although we observed in both genotypes similar growth pattern and sodium, calcium and potassium levels in leaves under salt stress, def-1 plants exhibited a more pronounced decrease of nitrogen content in both leaves and roots and a slightly higher level of sodium in roots compared to WT plants. In addition, def-1 plants exposed to salt stress showed reactive oxygen species (ROS)-associated injury phenotypes. These oxidative stress symptoms in def-1 were associated with lower activity of both enzymatic antioxidants and non-enzymatic antioxidants. Furthermore, the levels of the non-enzymatic ROS scavengers proline and total phenolic compounds increased in both genotypes exposed to salt stress, with a higher amount of proline in the WT plants. Overall the results of this study suggest that endogenous JA mainly enhanced tomato salt tolerance by maintaining ROS homeostasis. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Bio-desulfurization and denitrification by anaerobic-anoxic process for the treatment of wastewater from flue gas washing.

    PubMed

    Song, Ziyu; Zhou, Xuemei; Li, Yuguang; Yang, Maohua; Xing, Jianmin

    2013-01-01

    For amine-based carbon dioxide capture, nitrogen oxides and sulfur oxides were the main pollutants that had a negative effect on the regeneration of solvent. Before carbon dioxide capture, the sulfur oxides in flue gas should be removed by the method of calcium salt, and then washed by alkaline solution to eliminate the residual nitrogen oxides and sulfur oxides. The washing wastewater containing sulfate and nitrate needs to be treated. In this study, a novel anaerobic-anoxic process was built up for the treatment of this washing wastewater. Nitrate was reduced to nitrogen by denitrifying bacteria. Sulfate was firstly reduced to sulfide by sulfate reducing bacteria, and then selectively oxidized to element sulfur by sulfide oxidizing bacteria. The treated liquid could be reused as absorption after the adjustment of pH value. The performances of this bioprocess were investigated under various pH values and S/N ratios. It was found that the optimal pH value of influent was 6.0, the percentages of denitrification and sulfate reducing could reach 90 and 89%, respectively. Seventy-six percent of sulfate was transformed into element sulfur. Nitrate significantly had a negative effect on sulfate reduction above 10 mM. As 20 mM nitrate, the sulfate reducing percentage would drop to 67%. These results showed that the anaerobic-anoxic process was feasible for the treatment of flue gas washing wastewater. It would be prospectively applied to other wastewater with the higher ratio of SO4(2-)/NO3(-).

  2. Zinc-oxide-silica-silver nanocomposite: Unique one-pot synthesis and enhanced catalytic and anti-bacterial performance.

    PubMed

    Kokate, Mangesh; Garadkar, Kalyanrao; Gole, Anand

    2016-12-01

    We describe herein a unique approach to synthesize zinc oxide-silica-silver (ZnO-SiO2-Ag) nanocomposite, in a simple, one-pot process. The typical process for ZnO synthesis by alkaline precipitation of zinc salts has been tweaked to replace alkali by alkaline sodium silicate. The free acid from zinc salts helps in the synthesis of silica nanoparticles, whereas the alkalinity of sodium silicate precipitates the zinc salts. Addition of silver ions into the reaction pot prior to addition of sodium silicate, and subsequent reduction by borohydride, gives additional functionality of metallic centres for catalytic applications. The synthesis strategy is based on our recent work typically involving acid-base type of cross-reactions and demonstrates a novel strategy to synthesize nanocomposites in a one-pot approach. Each component in the composite offers a unique feature. ZnO besides displaying mild catalytic and anti-bacterial behaviour is an excellent and a cheap 3-D support for heterogeneous catalysis. Silver nanoparticles enhance the catalytic & anti-bacterial properties of ZnO. Silica is an important part of the composite; which not only "glues" the two nanoparticles thereby stabilizing the nanocomposite, but also significantly enhances the surface area of the composite; which is an attractive feature of any catalyst composite. The nanocomposite is found to show excellent catalytic performance with very high turnover frequencies (TOFs) when studied for catalytic reduction of Rhodamine B (RhB) and 4-Nitrophenol (4-NP). Additionally, the composite has been tested for its anti-bacterial properties on three different bacterial strains i.e. E. coli, B. Cereus and Bacillus firmus. The mechanism for enhancement of catalytic performance has been probed by understanding the role of silica in offering accessibility to the catalyst via its porous high surface area network. The nanocomposite has been characterized by a host of different analytical techniques. The uniqueness of our product and process stems from the novel synthesis strategy, the choice and combination of the three moieties, increased surface area offered by silica, and cost effectiveness, thereby making our product and process commercially viable and sustainable for industrial applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. DEVELOPMENT AND DEPLOYMENT OF VACUUM SALT DISTILLATION AT THE SAVANNAH RIVER SITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.; Edwards, T.

    2010-10-28

    The Savannah River Site has a mission to dissolve fissile materials and disposition them. The primary fissile material is plutonium dioxide (PuO{sub 2}). To support dissolution of these materials, the Savannah River National Laboratory (SRNL) designed and demonstrated a vacuum salt distillation (VSD) apparatus using both representative radioactive samples and non-radioactive simulant materials. Vacuum salt distillation, through the removal of chloride salts, increases the quantity of materials suitable for processing in the site's HB-Line Facility. Small-scale non-radioactive experiments at 900-950 C show that >99.8 wt % of the initial charge of chloride salt distilled from the sample boat with recoverymore » of >99.8 wt % of the ceric oxide (CeO{sub 2}) - the surrogate for PuO{sub 2} - as a non-chloride bearing 'product'. Small-scale radioactive testing in a glovebox demonstrated the removal of sodium chloride (NaCl) and potassium chloride (KCl) from 13 PuO{sub 2} samples. Chloride concentrations were distilled from a starting concentration of 1.8-10.8 wt % to a final concentration <500 mg/kg chloride. Initial testing of a non-radioactive, full-scale production prototype is complete. A designed experiment evaluated the impact of distillation temperature, time at temperature, vacuum, product depth, and presence of a boat cover. Significant effort has been devoted to mechanical considerations to facilitate simplified operation in a glovebox.« less

  4. RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant.

    PubMed

    Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang

    2017-06-02

    Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.

  5. Propellant Containing 3, 6bis(1h-1,2,3,4-Tetrazol-5-Ylamino)-1,2,4,5- Tetrazine Or Salt Thereof

    DOEpatents

    Hiskey, Michael A.; Chavez, David E.; Naud, Darren

    2003-12-02

    The compound 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine and its salts are provided together with a propellant composition including an oxidizer, a binder and 3,6-bis(1H-1,2,3,4-tetrazol-5-ylamino)-1,2,4,5-tetrazine or its salts.

  6. Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration

    NASA Astrophysics Data System (ADS)

    Das, S.; Ghosh, A.

    2016-06-01

    In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R  =  EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R  >  9) and single phase in the samples containing high salt concentrations (R  ⩽  9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R  >  9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R  ⩽  9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.

  7. Effect of incorporating graphene oxide and surface imprinting on polysulfone membranes on flux, hydrophilicity and rejection of salt and polycyclic aromatic hydrocarbons from water

    NASA Astrophysics Data System (ADS)

    Kibechu, Rose Waithiegeni; Ndinteh, Derek Tantoh; Msagati, Titus Alfred Makudali; Mamba, Bhekie Briliance; Sampath, S.

    2017-08-01

    We report a significant enhancement of hydrophillity of polysulfone (Psf) membranes after modification with graphene oxide (GO) as a filler followed by surface imprinting on the surface of GO/Psf composite imprinted membranes (CIMs). The surface imprinting on the GO-Psf membrane was employed in order to enhance its selectivity towards polycyclic aromatic hydrocarbons (PAHs) in water. The CIMs were prepared through a process of phase inversion of a mixture of graphene oxide and polysulfone (Psf) in N-methylpyrrolidone (NMP). Fourier-transform spectroscopy (FT-IR) of the imprinted showed new peaks at 935 cm-1 and 1638 cm-1 indicating success in surface imprinting on the GO-Psf membrane. The CIM also showed improvement in flux from 8.56 LM-2 h-1 of unmodified polysulfone membrane to 15.3 LM-2 h-1 in the CIM, salt rejection increased from 57.2 ± 4.2% of polysulfone membrane to 76 ± 4.5%. The results obtained from the contact angle measurements showed a decrease with increase in GO content from 72 ± 2.7% of neat polysulfone membrane to 62.3 ± 2.1% of CIM indicating an improvement in surface hydrophilicity. The results from this study shows that, it is possible to improve the hydrophilicity of the membranes without affecting the performance of the membranes.

  8. Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots

    PubMed Central

    Chen, Juan; Wang, Wen-Hua; Wu, Fei-Hua; He, En-Ming; Liu, Xiang; Shangguan, Zhou-Ping; Zheng, Hai-Lei

    2015-01-01

    Hydrogen sulfide (H2S) and nitric oxide (NO) are emerging as messenger molecules involved in the modulation of plant physiological processes. Here, we investigated a signalling network involving H2S and NO in salt tolerance pathway of barley. NaHS, a donor of H2S, at a low concentration of either 50 or 100 μM, had significant rescue effects on the 150 mM NaCl-induced inhibition of plant growth and modulated the K+/Na+ balance by decreasing the net K+ efflux and increasing the gene expression of an inward-rectifying potassium channel (HvAKT1) and a high-affinity K+ uptake system (HvHAK4). H2S and NO maintained the lower Na+ content in the cytoplast by increasing the amount of PM H+-ATPase, the transcriptional levels of PM H+-ATPase (HvHA1) and Na+/H+ antiporter (HvSOS1). H2S and NO modulated Na+ compartmentation into the vacuoles with up-regulation of the transcriptional levels of vacuolar Na+/H+ antiporter (HvVNHX2) and H+-ATPase subunit β (HvVHA-β) and increased in the protein expression of vacuolar Na+/H+ antiporter (NHE1). H2S mimicked the effect of sodium nitroprusside (SNP) by increasing NO production, whereas the function was quenched with the addition of NO scavenger. These results indicated that H2S increased salt tolerance by maintaining ion homeostasis, which were mediated by the NO signal. PMID:26213372

  9. Development of the Fray-Farthing-Chen Cambridge Process: Towards the Sustainable Production of Titanium and Its Alloys

    NASA Astrophysics Data System (ADS)

    Hu, Di; Dolganov, Aleksei; Ma, Mingchan; Bhattacharya, Biyash; Bishop, Matthew T.; Chen, George Z.

    2018-02-01

    The Kroll process has been employed for titanium extraction since the 1950s. It is a labour and energy intensive multi-step semi-batch process. The post-extraction processes for making the raw titanium into alloys and products are also excessive, including multiple remelting steps. Invented in the late 1990s, the Fray-Farthing-Chen (FFC) Cambridge process extracts titanium from solid oxides at lower energy consumption via electrochemical reduction in molten salts. Its ability to produce alloys and powders, while retaining the cathode shape also promises energy and material efficient manufacturing. Focusing on titanium and its alloys, this article reviews the recent development of the FFC-Cambridge process in two aspects, (1) resource and process sustainability and (2) advanced post-extraction processing.

  10. An effective method of UV-oxidation of dissolved organic carbon in natural waters for radiocarbon analysis by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xue, Yuejun; Ge, Tiantian; Wang, Xuchen

    2015-12-01

    Radiocarbon (14C) measurement of dissolved organic carbon (DOC) is a very powerful tool to study the sources, transformation and cycling of carbon in the ocean. The technique, however, remains great challenges for complete and successful oxidation of sufficient DOC with low blanks for high precision carbon isotopic ratio analysis, largely due to the overwhelming proportion of salts and low DOC concentrations in the ocean. In this paper, we report an effective UV-Oxidation method for oxidizing DOC in natural waters for radiocarbon analysis by accelerator mass spectrometry (AMS). The UV-oxidation system and method show 95%±4% oxidation efficiency and high reproducibility for DOC in both river and seawater samples. The blanks associated with the method was also low (about 3 µg C) that is critical for 14C analysis. As a great advantage of the method, multiple water samples can be oxidized at the same time so it reduces the sample processing time substantially compared with other UV-oxidation method currently being used in other laboratories. We have used the system and method for 14C studies of DOC in rivers, estuaries, and oceanic environments and have received promise results.

  11. Doped palladium containing oxidation catalysts

    DOEpatents

    Mohajeri, Nahid

    2014-02-18

    A supported oxidation catalyst includes a support having a metal oxide or metal salt, and mixed metal particles thereon. The mixed metal particles include first particles including a palladium compound, and second particles including a precious metal group (PMG) metal or PMG metal compound, wherein the PMG metal is not palladium. The oxidation catalyst may also be used as a gas sensor.

  12. Non-traditional Oxidants in Preparative Coordination Chemistry

    NASA Astrophysics Data System (ADS)

    Kukushkin, Vadim Yu; Kukushkin, Yurii N.

    1986-10-01

    The application of nitrosonium and arenediazonium salts, carbenium, silver(I), and mercury(II) ions, protic acids, and amine oxides as oxidants in preparative coordination chemistry is examined. Specific examples illustrate which problems in the field of the synthesis and reactions of coordination compounds can be solved with the aid of these oxidants. The bibliography includes 158 references.

  13. Imidazoline conditioner for the flotation of oxidized coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hefner, R.E. Jr.

    1984-05-22

    Froth flotation of oxidized coal in the presence of certain imidazoline or imidazolinium salts improves both the selectivity and recovery attained. Imidazolines found particularly efficacious are those bearing a fatty alkyl group in the 2- position and an N-aminoethyl or N-hydroxyethyl group. Preferred imidazolinium salts are those corresponding to the following formula: 1-((-)OOC-CH/sub 2/-),1-(C/sub 11/ to C/sub 17/ alkyl or alkenyl-COO-CH/sub 2/-),2-R-2-imidazoline(+) wherein R is a C/sub 6/ to C/sub 22/ alkyl or alkenyl group.

  14. An Efficient Composition for Bengal Lights

    NASA Astrophysics Data System (ADS)

    Comet, M.; Schreyeck, L.; Fuzellier, H.

    2002-01-01

    Fuel-oxidizer mixtures based on potassium chlorate or sodium chlorate are well known. These mixtures have interesting properties of deflagration and are often used in propellants. Drastic reactivity of alkaline chlorates with ammonium salts due to the formation of ammonium chlorate NH4ClO3, a very unstable salt, is famous. By analogy, we tested the reactivity of different molecules containing nitrogen atoms, and we found an efficient fuel-oxidizer composed of potassium chlorate and thiocarbamide. Impressive bengal lights of various colors can easily be achieved using this basic composition.

  15. Manganese Oxide Nanoarray-Based Monolithic Catalysts: Tunable Morphology and High Efficiency for CO Oxidation

    DOE PAGES

    Chen, Sheng-Yu; Song, Wenqiao; Lin, Hui-Jan; ...

    2016-03-08

    In this work, a generic one-pot hydrothermal synthesis route has been successfully designed and utilized to in situ grow uniform manganese oxide nanorods and nanowires onto the cordierite honeycomb monolithic substrates, forming a series of nanoarray-based monolithic catalysts. During the synthesis process, three types of potassium salt oxidants have been used with different reduction potentials, i.e., K 2Cr 2O 7, KClO 3, and K 2S 2O 8, denoted as HM-DCM, HM-PCR, and HM-PSF, respectively. The different reduction potentials of the manganese source (Mn 2+) and oxidants induced the formation of manganese oxide nanoarrays with different morphology, surface area, and reactivitymore » of carbon monoxide (CO) oxidation. K 2Cr 2O 7 and KClO 3 can induce sharp and long nanowires with slow growth rates due to their low reduction potentials. In comparison, the nanoarrays of HM-PSF presented shorter nanorods but displayed an efficient 90% CO oxidation conversion at 200 °C (T90) without noble-metal loading. Reducibility tests for the three monolithic catalysts by hydrogen temperature-programmed reduction revealed an activation energy order of HM-PSF > HM-DCM > HM-PCR for CO oxidation. The characterizations of oxygen temperature-programmed desorption and X-ray photoelectron spectroscopy indicated the abundant surface-adsorbed oxygen and lattice oxygen contributing to the superior reactivity of HM-PSF. Finally, the straightforward synthetic process showed a scalable, low-cost, and template-free method to fabricate manganese oxide nanoarray monolithic catalysts for exhaust treatment.« less

  16. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsinmore » had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re-evaluate thermophysical properties of flibe and flinak. Pacific Northwest National Laboratories has focused on evaluating the fluorinating gas nitrogen trifluoride as a potential salt purification agent. Work there was performed on removing hydroxides and oxides from flinak salt under controlled conditions. Lastly, the University of California Berkeley has spent considerable time designing and simulating reactor components with fluoride salts at high temperatures. Despite the hurdles presented by the innate chemical hazards, considerable progress has been made. The stage has been set to perform new research on salt chemical control which could advance the fluoride salt cooled reactor concept towards commercialization. What were previously thought of as chemical undesirable, but nuclear certified, alloys have been shown to be theoretically compatible with fluoride salts at high temperatures. This preliminary report has been prepared to communicate the construction of the basic infrastructure required for flibe, as well as suggest original research to performed at the University of Wisconsin. Simultaneously, the contents of this report can serve as a detailed, but introductory guide to allow anyone to learn the fundamentals of chemistry, engineering, and safety required to work with flibe salt.« less

  17. Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study.

    PubMed

    Leggesse, Ermias Girma; Lin, Rao Tung; Teng, Tsung-Fan; Chen, Chi-Liang; Jiang, Jyh-Chiang

    2013-08-22

    This paper reports an in-depth mechanistic study on the oxidative decomposition of propylene carbonate in the presence of lithium salts (LiClO4, LiBF4, LiPF6, and LiAsF6) with the aid of density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The solvent effect is accounted for by using the implicit solvation model with density method. Moreover, the rate constants for the decompositions of propylene carbonate have been investigated by using transition-state theory. The shortening of the original carbonyl C-O bond and a lengthening of the adjacent ethereal C-O bonds of propylene carbonate, which occurs as a result of oxidation, leads to the formation of acetone radical and CO2 as a primary oxidative decomposition product. The termination of the primary radical generates polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1,3-dioxolan-4-ylium, and CO2. The thermodynamic and kinetic data show that the major oxidative decomposition products of propylene carbonate are independent of the type of lithium salt. However, the decomposition rate constants of propylene carbonate are highly affected by the lithium salt type. On the basis of the rate constant calculations using transition-state theory, the order of gas volume generation is: [PC-ClO4](-) > [PC-BF4](-) > [PC-AsF6](-) > [PC-PF6](-).

  18. IRIS TOXICOLOGICAL REVIEW AND SUMMARY DOCUMENTS FOR CERIUM OXIDE (STABLE) AND COMPOUNDS

    EPA Science Inventory

    Cerium is a member of the lanthanoid series of rare earth metals. It is also the most abundant and most reactive of the rare earth metals. Cerium oxidizes at room temperature and forms a variety of salt compounds including oxides, hydroxides, sulfates and chlorides. Cerium is ...

  19. Pesticide Spill Prevention and Management

    DTIC Science & Technology

    2009-08-01

    Gentrol IGR) Strong oxidizers. Imidacloprid Oxidizing agents. Lambda-cyhalothrin Oxidizing agents, alkalis, calcium hypochlorite. Malathion... Imidacloprid Sodium salt of diphacinone Methyl Azoxystrobin Use Hard Water Detergent for: Diquat Aluminum phosphide – NOTE: See special...Hydroprene, 9.0%, emulsifiable concentrate (Gentrol IGR) Imidacloprid (Maxforce Granular Fly Bait) Imidacloprid (Maxforce Fly Spot Bait

  20. Preparation of Some Homologous TEMPO Nitroxides and Oxoammonium Salts; Notes on the NMR Spectroscopy of Nitroxide Free Radicals; Observed Radical Nature of Oxoammonium Salt Solutions Containing Trace Amounts of Corresponding Nitroxides in an Equilibrium Relationship.

    PubMed

    Bobbitt, James M; Eddy, Nicholas A; Cady, Clyde X; Jin, Jing; Gascon, Jose A; Gelpí-Dominguez, Svetlana; Zakrzewski, Jerzy; Morton, Martha D

    2017-09-15

    Three new homologous TEMPO oxoammonium salts and three homologous nitroxide radicals have been prepared and characterized. The oxidation properties of the salts have been explored. The direct 13 C NMR and EPR spectra of the nitroxide free radicals and the oxoammonium salts, along with TEMPO and its oxoammonium salt, have been successfully measured with little peak broadening of the NMR signals. In the spectra of all ten compounds (nitroxides and corresponding oxoammonium salts), the carbons in the 2,2,6,6-tetramethylpiperidine core do not appear, implying paramagnetic properties. This unpredicted overall paramagnetism in the oxoammonium salt solutions is explained by a redox equilibrium as shown between oxoammonium salts and trace amounts of corresponding nitroxide. This equilibrium is confirmed by electron interchange reactions between nitroxides with an N-acetyl substituent and oxoammonium salts with longer acyl side chains.

  1. INCREASED RENAL OXIDATIVE STRESS IN SALT-SENSITIVE HUMAN GRK4γ486V TRANSGENIC MICE

    PubMed Central

    Diao, Zhenyu; Asico, Laureano D.; Villar, Van Anthony M.; Zheng, Xiaoxu; Cuevas, Santiago; Armando, Ines; Jose, Pedro A.; Wang, Xiaoyan

    2017-01-01

    We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms. PMID:28189851

  2. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    PubMed

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO 4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO 4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  4. Overexpression of a Medicago truncatula stress-associated protein gene (MtSAP1) leads to nitric oxide accumulation and confers osmotic and salt stress tolerance in transgenic tobacco.

    PubMed

    Charrier, Aurélie; Planchet, Elisabeth; Cerveau, Delphine; Gimeno-Gilles, Christine; Verdu, Isabelle; Limami, Anis M; Lelièvre, Eric

    2012-08-01

    The impact of Medicago truncatula stress-associated protein gene (MtSAP1) overexpression has been investigated in Nicotiana tabacum transgenic seedlings. Under optimal conditions, transgenic lines overexpressing MtSAP1 revealed better plant development and higher chlorophyll content as compared to wild type seedlings. Interestingly, transgenic lines showed a stronger accumulation of nitric oxide (NO), a signaling molecule involved in growth and development processes. This NO production seemed to be partially nitrate reductase dependent. Due to the fact that NO has been also reported to play a role in tolerance acquisition of plants to abiotic stresses, the responses of MtSAP1 overexpressors to osmotic and salt stress have been studied. Compared to the wild type, transgenic lines were less affected in their growth and development. Moreover, NO content in MtSAP1 overexpressors was always higher than that detected in wild seedlings under stress conditions. It seems that this better tolerance induced by MtSAP1 overexpression could be associated with this higher NO production that would enable seedlings to reach a high protection level to prepare them to cope with abiotic stresses.

  5. [Evaluation of the influence of sterilization method on the stability of carboxymethyl cellulose wound dressing].

    PubMed

    Muselík, Jan; Wojnarová, Lenka; Masteiková, Ruta; Sopuch, Tomáš

    2013-04-01

    Carboxymethyl cellulose, especially its sodium salt, is a versatile pharmaceutical excipient. From a therapeutic point of view, sodium salt of carboxymethyl cellulose is used in the production of modern wound dressings to allow moist wound healing. Wound dressings must be sterile and stable throughout their shelf life and have to be able to withstand different temperature conditions. At the present time, a number of sterilization methods are available. In the case of polymeric materials, the selected sterilization process must not induce any changes in the polymer structure, such as polymer chains cleavage, changes in cross-linking, etc. This paper evaluates the influence of different sterilization methods (γ-radiation, β-radiation, ethylene oxide) on the stability of carboxymethyl cellulose and the results of long-term and accelerated stability testing. Evaluation of samples was performed using size-exclusion chromatography. The obtained results showed that ethylene oxide sterilization was the least aggressive variant of the sterilization methods tested. When the γ-radiation sterilization was used, the changes in the size of the carboxymethyl cellulose molecule occurred. In the course of accelerated and long term stability studies, no further degradation changes were observed, and thus sterilized samples are suitable for long term storage.

  6. Arabidopsis CaM1 and CaM4 Promote Nitric Oxide Production and Salt Resistance by Inhibiting S-Nitrosoglutathione Reductase via Direct Binding

    PubMed Central

    Wu, Dan; Peng, Xuan; Liu, Xu; Zhang, Jiaojiao; Zhao, Junfeng; Chen, Kunming; Zhao, Liqun

    2016-01-01

    Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals. PMID:27684709

  7. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  8. SOLVENT EXTRACTION PROCESS FOR PLUTONIUM

    DOEpatents

    Seaborg, G.T.

    1959-04-14

    The separation of plutonium from aqueous inorganic acid solutions by the use of a water immiscible organic extractant liquid is described. The plutonium must be in the oxidized state, and the solvents covered by the patent include nitromethane, nitroethane, nitropropane, and nitrobenzene. The use of a salting out agents such as ammonium nitrate in the case of an aqueous nitric acid solution is advantageous. After contacting the aqueous solution with the organic extractant, the resulting extract and raffinate phases are separated. The plutonium may be recovered by any suitable method.

  9. Electroreduction of Er 3+ in nonaqueous solvents

    DOE PAGES

    Small, Leo J.; Sears, Jeremiah M.; Lambert, Timothy N.; ...

    2016-09-15

    Here, the electroreduction of Er 3+ in propylene carbonate, N,N-dimethylformamide, or a variety of quaternary ammonium ionic liquids (ILs) was investigated using [Er(OTf) 3] and [Er(NTf 2) 3]. Systematic variation of the ILs' cation and anion, Er 3+ salt, and electrode material revealed a disparity in electrochemical interactions not previously seen. For most ILs at a platinum electrode, cyclic voltammetry exhibits irreversible interactions between Er 3+ salts and the electrode at potentials significantly less than the theoretical reduction potential for Er 3+. Throughout all solvent–salt systems tested, a deposit could be formed on the electrode, though obtaining a high purity,more » crystalline Er 0 deposit is challenging due to the extreme reactivity of the deposit and resulting chemical interactions, often resulting in the formation of a complex, amorphous solid–electrolyte interface that slowed deposition rates. Comparison of platinum, gold, nickel, and glassy carbon (GC) working electrodes revealed oxidation processes unique to the platinum surface. While no appreciable reduction current was observed on GC at the potentials investigated, deposits were seen on platinum, gold, and nickel electrodes.« less

  10. Exogenous nitric oxide improves salt tolerance during establishment of Jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation.

    PubMed

    Gadelha, Cibelle Gomes; Miranda, Rafael de Souza; Alencar, Nara Lídia M; Costa, José Hélio; Prisco, José Tarquinio; Gomes-Filho, Enéas

    2017-05-01

    Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development. Under NaCl stress, seedlings arising from NO-treated seeds showed lower accumulation of Na + and Cl - than those salinized seedlings only, which was consistent with a better growth for all analyzed time points. Also, although salinity promoted a significant increase in hydrogen peroxide (H 2 O 2 ) content and membrane damage, the harmful effects were less aggressive in NO-primed seedlings. The lower oxidative damage in NO-primed stressed seedlings was attributed to operation of a powerful antioxidant system, including greater glutathione (GSH) and ascorbate (AsA) contents as well as catalase (CAT) and glutathione reductase (GR) enzyme activities in both endosperm and embryo axis. Priming with NO also was found to rapidly up-regulate the JcCAT1, JcCAT2, JcGR1 and JcGR2 gene expression in embryo axis, suggesting that NO-induced salt responses include functional and transcriptional regulations. Thus, NO almost completely abolished the deleterious salinity effects on reserve mobilization and seedling growth. In conclusion, NO priming improves salt tolerance of J. curcas during seedling establishment by inducing an effective antioxidant system and limiting toxic ion and reactive oxygen species (ROS) accumulation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Elevated Temperature Corrosion Studies of AlCrN and TiAlN Coatings by PAPVD on T91 Boiler Steel

    NASA Astrophysics Data System (ADS)

    Goyal, Lucky; Chawla, Vikas; Hundal, Jasbir Singh

    2017-11-01

    The present investigation discusses the hot corrosion behavior of AlCrN and TiAlN nano-coatings on T91 boiler steel by PAPVD process subjected to molten salt of Na2SO4-60%V2O5 at 900 °C for 50 cycles. Surface and cross-sectional studies were performed by AFM, SEM/EDS and XRD techniques to understand the corrosion kinetics and mechanism. T91 bare boiler steel as well as TiAlN-coated specimen has shown higher internal oxidation as well as weight gain. The better corrosion resistance of AlCrN-coated specimen has been observed by virtue of higher availability of Cr and Al in the oxide scale as well as adherent and dense coating. The betterment of AlCrN coating can be attributed to low internal oxidation as well as movement of Cr and Al toward oxide scale to form protective corrosion barriers.

  12. Top Ten Reasons for DEOX as a Front End to Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; K.J. Bateman; S.D. Herrmann

    A front end step is being considered to augment chopping during the treatment of spent oxide fuel by pyroprocessing. The front end step, termed DEOX for its emphasis on decladding via oxidation, employs high temperatures to promote the oxidation of UO2 to U3O8 via an oxygen carrier gas. During oxidation, the spent fuel experiences a 30% increase in lattice structure volume resulting in the separation of fuel from cladding with a reduced particle size. A potential added benefit of DEOX is the removal of fission products, either via direct release from the broken fuel structure or via oxidation and volatilizationmore » by the high temperature process. Fuel element chopping is the baseline operation to prepare spent oxide fuel for an electrolytic reduction step. Typical chopping lengths range from 1 to 5 mm for both individual elements and entire assemblies. During electrolytic reduction, uranium oxide is reduced to metallic uranium via a lithium molten salt. An electrorefining step is then performed to separate a majority of the fission products from the recoverable uranium. Although DEOX is based on a low temperature oxidation cycle near 500oC, additional conditions have been tested to distinguish their effects on the process.[1] Both oxygen and air have been utilized during the oxidation portion followed by vacuum conditions to temperatures as high as 1200oC. In addition, the effects of cladding on fission product removal have also been investigated with released fuel to temperatures greater than 500oC.« less

  13. Thermal decomposition and isomerization of cis-permethrin and beta-cypermethrin in the solid phase.

    PubMed

    González Audino, Paola; Licastro, Susana A; Zerba, Eduardo

    2002-02-01

    The stability to heart of cis-permethrin and beta-cypermethrin in the solid phase was studied and the decomposition products identified. Samples heated at 210 degrees C in an oven in the dark showed that, in the absence of potassium chlorate (the salt present in smoke-generating formulations of these pyrethroids), cis-permethrin was not isomerized, although in the presence of that salt, decomposition was greater and thermal isomerization occurred. Other salts of the type KXO3 or NaXO3, with X being halogen or nitrogen, also led to a considerable thermal isomerization. Heating the insecticides in solution in the presence of potassium chlorate did not produce isomerization in any of the solvents assayed. Salt-catalysed thermal cis-trans isomerization was also found for other pyrethroids derived from permethrinic or deltamethrinic acid but not for those derived from chrysanthemic acid. The main thermal degradation processes of cis-permethrin and beta-cypermethrin decomposition when potassium chlorate was present were cyclopropane isomerization, ester cleavage and subsequent oxidation of the resulting products. Permethrinic acid, 3-phenoxybenzyle chloride, alcohol, aldehyde and acid were identified in both cases, as well as 3-phenoxybenzyl cyanide from beta-cypermethrin. A similar decomposition pattern occurred after combustion of pyrethroid fumigant formulations.

  14. Chemical synthesis of chiral conducting polymers

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang

    2006-07-11

    An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts. The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.103 degree-cm2/decimole to about 700.times.103 degree-cm2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.

  15. Graphene oxide windows for in situ environmental cell photoelectron spectroscopy.

    PubMed

    Kolmakov, Andrei; Dikin, Dmitriy A; Cote, Laura J; Huang, Jiaxing; Abyaneh, Majid Kazemian; Amati, Matteo; Gregoratti, Luca; Günther, Sebastian; Kiskinova, Maya

    2011-08-28

    The performance of new materials and devices often depends on processes taking place at the interface between an active solid element and the environment (such as air, water or other fluids). Understanding and controlling such interfacial processes require surface-specific spectroscopic information acquired under real-world operating conditions, which can be challenging because standard approaches such as X-ray photoelectron spectroscopy generally require high-vacuum conditions. The state-of-the-art approach to this problem relies on unique and expensive apparatus including electron analysers coupled with sophisticated differentially pumped lenses. Here, we develop a simple environmental cell with graphene oxide windows that are transparent to low-energy electrons (down to 400 eV), and demonstrate the feasibility of X-ray photoelectron spectroscopy measurements on model samples such as gold nanoparticles and aqueous salt solution placed on the back side of a window. These proof-of-principle results show the potential of using graphene oxide, graphene and other emerging ultrathin membrane windows for the fabrication of low-cost, single-use environmental cells compatible with commercial X-ray and Auger microprobes as well as scanning or transmission electron microscopes.

  16. Hydrocarbon biodegradation in hypersaline environments.

    PubMed

    Ward, D M; Brock, T D

    1978-02-01

    When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments.

  17. Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics

    PubMed Central

    Park, Sungjun; Lee, SeYeong; Kim, Chang-Hyun; Lee, Ilseop; Lee, Won-June; Kim, Sohee; Lee, Byung-Geun; Jang, Jae-Hyung; Yoon, Myung-Han

    2015-01-01

    Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconductor and aqueous electrolyte dielectrics based on small ionic salts. The proper selection of channel material (i.e., indium-gallium-zinc-oxide) and precautious passivation of non-channel areas enabled the development of simple but highly stable metal oxide transistors manifested by low operation voltages within 0.5 V, high transconductance of ~1.0 mS, large current on-off ratios over 107, and fast inverter responses up to several hundred hertz without device degradation even in physiologically-relevant ionic solutions. In conjunction with excellent transistor characteristics, investigation of the electrochemical nature of the metal oxide-electrolyte interface may contribute to the development of a viable bio-electronic platform directly interfacing with biological entities in vivo. PMID:26271456

  18. Processing conditions and endpoint temperature effects on development of pink defect without pink-generating ligands in cooked ground turkey breast.

    PubMed

    Claus, James R; Jeong, Jong Youn

    2018-02-01

    This study was conducted to characterize the pink pigments associated with storing presalted (2%) and ground turkey breast trim at different processing conditions. Four treatments included: treatment (no NaCl, stored for 7 d before being cooked), treatment 2 (NaCl added and stored for 7 d before being cooked), treatment 3 (NaCl added and immediately cooked), and treatment 4 (stored for 7 d before NaCl added and cooked). All treatments were cooked to 4 endpoint temperatures (71.1, 73.9, 76.7, and 79.4°C). Processing conditions affected the pink defect in cooked ground turkey breast. Undenatured myoglobin in salted meat (treatment 2, 3, 4) still remained (17 to 19%) after cooking. Salted and stored ground turkey (treatment 2) produced a cooked product with the most reducing condition (lowest oxidation-reduction potential, ORP) and one of the most red coloration (CIE a* values). Final internal temperature had limited effects on pigment properties. ORP was similar across cooking temperatures but CIE a* values decreased with temperature. Even at 79.4°C, 15% undenatured myoglobin remained. Cooking yield decreased with temperature as expected (92.8 to 89.5%). Results indicate that to limit the degree of the pink color development processors should avoid storage of ground turkey, particularly when mixed with salt, as it favors the formation of nicotinamide-denatured globin hemochrome. © 2017 Poultry Science Association Inc.

  19. Ultrapure glass optical waveguide development in microgravity by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Mukherjee, S. P.; Holman, R. A.

    1981-01-01

    Multicomponent, homogeneous, noncrystalline oxide gels can be prepared by the sol-gel process and these gels are promising starting materials for melting glasses in the space environment. The sol-gel process referred to here is based on the polymerization reaction of alkoxysilane with other metal alkoxy compounds or suitable metal salts. Many of the alkoxysilanes or other metal alkoxides are liquids and thus can be purified by distillation. The use of gels offers several advantages such as high purity and lower melting times and temperatures. The sol-gel process is studied for utilization in the preparation of multicomponent ultrapure glass batches for subsequent containerless melting of the batches in space to prepare glass blanks for optical waveguides.

  20. The Oxidation State of Europium in Halide Glasses

    PubMed Central

    Weber, J.K.R.; Vu, M.; Paßlick, C.; Schweizer, S.; Brown, D.E.; Johnson, C.E.; Johnson, J.A.

    2012-01-01

    The luminescent properties of divalent europium ions can be exploited to produce storage phosphors for x-ray imaging applications. The relatively high cost and limited availability of divalent europium halides makes it desirable to synthesize them from the readily available trivalent salts. In this work, samples of pure EuCl3 and fluoride glass melts doped with EuCl3 were processed at 700-800 °C in an inert atmosphere furnace. The Eu oxidation state in the resulting materials was determined using fluorescence and Mössbauer spectroscopy. Heat treatment of pure EuCl3 for 10 minutes at 710 °C resulted in a material comprising approximately equal amounts of Eu2+ and Eu3+. Glasses made using mixtures of EuCl2 and EuCl3 in the starting material contained both oxidation states. This paper describes the sample preparation and analysis and discusses the results in the context of chemical equilibria in the melts. PMID:22101252

  1. Pd-Catalyzed Aerobic Oxidative Biaryl Coupling: Non-Redox Cocatalysis by Cu(OTf)2 and Discovery of Fe(OTf)3 as a Highly Effective Cocatalyst.

    PubMed

    Wang, Dian; Stahl, Shannon S

    2017-04-26

    Copper salts find widespread use in Pd-catalyzed oxidation reactions, and they are typically used as oxidants or redox-active cocatalysts. Here, we probe the origin of a dramatic acceleration effect of Cu(OTf) 2 in the C-H/C-H aerobic oxidative coupling of o-xylene. NMR spectroscopic analysis of the Pd II catalyst in the presence of Cu(OTf) 2 , together with other experimental and DFT computational studies of the catalytic reaction, show that Cu(OTf) 2 activates the Pd II catalyst for C-H activation via a non-redox pathway and has negligible impact on catalyst reoxidation. These observations led to the testing of other metal triflate salts as cocatalysts, the results of which show that Fe(OTf) 3 is even more effective than Cu(OTf) 2 .

  2. Silver manganese oxide electrodes for lithium batteries

    DOEpatents

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  3. One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Qing Ling; Yang, Ye Feng; He, Hai Ping; Chen, Dong Dong; Ye, Zhi Zhen; Jin, Yi Zheng

    2010-05-01

    A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In-ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.

  4. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  5. Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles.

    PubMed

    Han, Dongfei; Link, Hannes; Liesack, Werner

    2017-08-11

    Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils, but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response) and 14 h (late response) of stress exposure. Physiological and transcriptomic stress response corresponded well. Salt stress induced differential expression of 301 genes, with sigma factor σ 32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH 4 to CO 2 remained unaffected, while gene expression involved in energy-yielding reactions ( nuoEFGHI ) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities. Importance Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with changes in moisture content and soil salinity. Growth and methane oxidation of Methylocystis sp. strain SC2 was not affected by the presence of 0.5% NaCl, while 1% NaCl completely inhibited its activities. This places strain SC2 into the low salt tolerance range reported for other Methylocystis spp. Our results show that, albeit in a narrow range, strain SC2 is able to respond and adapt to salinity changes. It possesses various stress-response mechanisms, which allows for a full resumption of its activities within 23.5 hours when exposed to 0.75% NaCl. Presumably, these mechanisms allow Methylocystis spp., such as strain SC2, to thrive in upland soils and to adapt to certain fluctuations in soil salinity. Copyright © 2017 American Society for Microbiology.

  6. Copper/H2O2-mediated oxidation of 2'-deoxyguanosine in the presence of 2-naphthol leads to the formation of two distinct isomeric adducts.

    PubMed

    Fleming, Aaron M; Kannan, Arunkumar; Muller, James G; Liao, Yi; Burrows, Cynthia J

    2011-10-07

    Exposure of cells to phenolic compounds through exogenous and endogenous sources can lead to deleterious effects via nucleobase modifications of DNA occurring under oxidative conditions. 2'-Deoxyguanosine (dG) is the most electron rich of the four canonical bases and includes many nucleophilic sites; it is also susceptible to oxidation with numerous reactive oxygen species. In these studies, dG was allowed to react with 2-naphthol in the presence of copper or iron salts yielding two principal isomeric products. Spectroscopic analysis and reactions with alkylated nucleosides support the assignment of compound 1a/1b as a pair of atropisomer N(2) adducts and compound 2a/2b as a diastereomeric mixture of tricyclic [4.3.3.0] adducts. Both products are the result of an overall four-electron oxidation process and consequently have the same masses, though drastically different structures, providing mechanistic insight into their formation. Thus, dG alkylation by 2-naphthol under oxidative conditions yields products whose structural properties are altered, leading to potentially mutagenic effects in genomic DNA.

  7. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    PubMed

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  8. Separation of thorium ions from wolframite and scandium concentrates using graphene oxide.

    PubMed

    Jankovský, Ondřej; Sedmidubský, David; Šimek, Petr; Klímová, Kateřina; Bouša, Daniel; Boothroyd, Chris; Macková, Anna; Sofer, Zdeněk

    2015-10-14

    The separation of rare metals from the ores and commercially available compounds is an important issue due to the need of their high purity in advanced materials and devices. Important examples of two highly important elements that co-exist in the ores are scandium and thorium. Scandium containing ores and consequently also commercially available scandium compounds often contain traces of thorium which is very difficult to separate. We used graphene oxide for the selective sorption of thorium ions from scandium and thorium mixtures originating from the mined ores as well as from commercially available scandium salts. Our results showed that graphene oxide has an extreme affinity towards thorium ions. After the sorption process the graphene oxide contained over 20 wt% of thorium while the amount of scandium sorbed on GO was very low. This phenomenon of high sorption selectivity of graphene oxide can be applied in industry for the purification of various chemicals containing scandium and for separation of thorium containing mixtures. Alternatively, this methodology can be used for preconcentration of thorium from low-grade ores and its further use in the new generation of nuclear reactors.

  9. Catalysis by Nanostructures: Methane, Ethylene Oxide, and Propylene Oxide Synthesis on Ag, Cu or Au Nanoclusters

    DTIC Science & Technology

    2008-02-07

    22 nm) were prepared by reducing a Au salt, and encapsulating the Au nanoparticles formed in a polymer33 . A variety of high area oxides (TiO 2, ZnO ...Morphologies Utilizing a Combinatorial Electrochemistry Methodology. Ph. D. dissertation, Chemical Engineering, University of California, Santa Barbara (2004

  10. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media

    NASA Astrophysics Data System (ADS)

    Blasco-Ahicart, Marta; Soriano-López, Joaquín; Carbó, Jorge J.; Poblet, Josep M.; Galan-Mascaros, J. R.

    2018-01-01

    Water splitting is a promising approach to the efficient and cost-effective production of renewable fuels, but water oxidation remains a bottleneck in its technological development because it largely relies on noble-metal catalysts. Although inexpensive transition-metal oxides are competitive water oxidation catalysts in alkaline media, they cannot compete with noble metals in acidic media, in which hydrogen production is easier and faster. Here, we report a water oxidation catalyst based on earth-abundant metals that performs well in acidic conditions. Specifically, we report the enhanced catalytic activity of insoluble salts of polyoxometalates with caesium or barium counter-cations for oxygen evolution. In particular, the barium salt of a cobalt-phosphotungstate polyanion outperforms the state-of-the-art IrO2 catalyst even at pH < 1, with an overpotential of 189 mV at 1 mA cm-2. In addition, we find that a carbon-paste conducting support with a hydrocarbon binder can improve the stability of metal-oxide catalysts in acidic media by providing a hydrophobic environment.

  11. Electrolytic reduction runs of 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt using metal anode shrouds

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Lee, Jeong; Heo, Dong Hyun; Lee, Sang Kwon; Jeon, Min Ku; Hong, Sun Seok; Kim, Sung-Wook; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-06-01

    Ten electrolytic reduction or oxide reduction (OR) runs of a 0.6 kg scale-simulated oxide fuel in a Li2O-LiCl molten salt at 650 °C were conducted using metal anode shrouds. During this procedure, an anode shroud surrounds a platinum anode and discharges hot oxygen gas from the salt to outside of the OR apparatus, thereby preventing corrosion of the apparatus. In this study, a number of anode shrouds made of various metals were tested. Each metallic anode shroud consisted of a lower porous shroud for the salt phase and an upper nonporous shroud for the gas phase. A stainless steel (STS) wire mesh with five-ply layer was a material commonly used for the lower porous shroud for the OR runs. The metals tested for the upper nonporous shroud in the different OR runs are STS, nickel, and platinum- or silver-lined nickel. The lower porous shroud showed no significant damage during two consecutive OR runs, but exhibited signs of damage from three or more runs due to thermal stress. The upper nonporous shrouds made up of either platinum- or silver-lined nickel showed excellent corrosion resistance to hot oxygen gas while STS or nickel without any platinum or silver lining exhibited poor corrosion resistance.

  12. Low temperature electrolytes for lithium/silver vanadium oxide cells

    NASA Technical Reports Server (NTRS)

    Tuhovak, Denise R.; Takeuchi, Esther S.

    1991-01-01

    Combinations of methyl formate (MF) and propylene carbonate (PC) using salt concentrations of 0.6 to 2.4 M, with lithium hexafluoroarsenate and lithium tetrafluoroborate in a five to one molar ratio, were investigated as electrolytes in lithium/silver vanadium oxide batteries. The composition of the electrolyte affected cell performance at low temperature, self-discharge and abuse resistance as characterized by short circuit and crush testing. The electrolyte that provided the best combination of good low temperature performance, low cell self-discharge and abuse resistance was 0.6 M salt in 10:90 PC/MF.

  13. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1984-06-12

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  14. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  15. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  16. Method for improving performance of high temperature superconductors within a magnetic field

    DOEpatents

    Wang, Haiyan; Foltyn, Stephen R.; Maiorov, Boris A.; Civale, Leonardo

    2010-01-05

    The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.

  17. Identical acyl transfer reactions between pyridine N-oxides and their N-acylonium salts

    NASA Astrophysics Data System (ADS)

    Rybachenko, V. I.; Shroeder, G.; Chotii, K. Yu.; Kovalenko, V. V.; Red'Ko, A. N.; Gierzyk, B.

    2007-10-01

    28 identical acyl exchange reactions R-CO-Nu+, X- + Nu between pyridine N-oxides in acetonitrile were studied. Here, X- = BPh{4/-} and R = methyl, N,N-dimethylamino, N,N-diethylamino, 4-morpholino, 1-piperidino, N-methyl, N-phenylamino, or N,N-diphenylamino group. The IR and NMR spectroscopic characteristics of acyloxypyridinium salts were determined, and the quantum-chemical parameters of all reagents calculated. The results were subjected to correlation analysis. It was found that the rate of identical acyl transfer reactions was controlled by the interaction of frontier orbitals in the transition state.

  18. An environmentally compliant cerium-based conversion coating for aluminum protection

    NASA Astrophysics Data System (ADS)

    Lin, Xuan

    Chromate conversion coatings have been extensively used in the aircraft industry for the corrosion protection of aluminum alloys. Unfortunately, hexavalent chromium, which is a primary component in the chromating process, is a confirmed carcinogen. Because of rising remediation and disposal costs caused by increasingly strict regulations, the replacement of the traditional chromate conversion process is becoming a top priority in the metal finishing industry. This research focused on the electrodeposition of cerium-based coatings on 7075-T6 aluminum alloy in an electrolyte containing a cerium salt, an oxidizing agent and an organic solvent. The cerium-rich deposits were characterized by phase composition, oxidation state, coating thickness, surface morphology, deposition mechanism and polarization behavior. Chemical and electrochemical tests were utilized to compare the corrosion resistance between cerium-based coatings and chromate conversion coatings. To characterize and simulate the deposition process, a variety of approaches were utilized to study the oxidation states of cerium in various soluble and precipitated forms as a function of hydrogen peroxide and electrolyte pH. The pH ranges where the oxidation and reduction reactions dominate were determined. Further studies were performed to optimize the corrosion performance of cerium-based coatings and to understand the effects of electrolyte constituents and deposition parameters. The optimum levels for these variables were identified. A patent disclosure on the cerium-based coating process was made to the University of Missouri-Rolla and has now been officially filed with the U.S. Patent Office.

  19. Process for the preparation of protected dihydroxypropyl trialkylammonium salts and derivatives thereof

    DOEpatents

    Hollingsworth, Rawle I.; Wang, Guijun

    2000-01-01

    A process for the preparation of protected dihydroxypropyl trialkylammonium salts, particularly in chiral form is described. In particular, a process for the preparation of (2,2-dimethyl-1,3-dioxolan-4-ylmethyl)trialkylammonium salts, particularly in chiral form is described. Furthermore, a process is described wherein the (2,2-dimethyl-1,3-dioxolan-4ylmethyl)trialkylammonium salts is a 2,2-dimethyl-1,3-dioxolan-4-ylmethyl trimethylammonium salt, preferably in chiral form. The protected dihydroxypropyl trialkylammonium salts lead to L-carnitine (9) when in chiral form (5).

  20. A Review on Advanced Treatment of Pharmaceutical Wastewater

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  1. Stress corrosion in titanium alloys and other metallic materials

    NASA Technical Reports Server (NTRS)

    Harkins, C. G. (Editor); Brotzen, F. R.; Hightower, J. W.; Mclellan, R. B.; Roberts, J. M.; Rudee, M. L.; Leith, I. R.; Basu, P. K.; Salama, K.; Parris, D. P.

    1971-01-01

    Multiple physical and chemical techniques including mass spectroscopy, atomic absorption spectroscopy, gas chromatography, electron microscopy, optical microscopy, electronic spectroscopy for chemical analysis (ESCA), infrared spectroscopy, nuclear magnetic resonance (NMR), X-ray analysis, conductivity, and isotopic labeling were used in investigating the atomic interactions between organic environments and titanium and titanium oxide surfaces. Key anhydrous environments studied included alcohols, which contain hydrogen; carbon tetrachloride, which does not contain hydrogen; and mixtures of alcohols and halocarbons. Effects of dissolved salts in alcohols were also studied. This program emphasized experiments designed to delineate the conditions necessary rather than sufficient for initiation processes and for propagation processes in Ti SCC.

  2. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    PubMed Central

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-01-01

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts. PMID:28772910

  3. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    PubMed

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  4. Tocopherol deficiency reduces sucrose export from salt-stressed potato leaves independently of oxidative stress and symplastic obstruction by callose

    PubMed Central

    Asensi-Fabado, María Amparo; Ammon, Alexandra; Sonnewald, Uwe; Munné-Bosch, Sergi; Voll, Lars M.

    2015-01-01

    Tocopherol cyclase, encoded by the gene SUCROSE EXPORT DEFECTIVE1, catalyses the second step in the synthesis of the antioxidant tocopherol. Depletion of SXD1 activity in maize and potato leaves leads to tocopherol deficiency and a ‘sugar export block’ phenotype that comprises massive starch accumulation and obstruction of plasmodesmata in paraveinal tissue by callose. We grew two transgenic StSXD1:RNAi potato lines with severe tocopherol deficiency under moderate light conditions and subjected them to salt stress. After three weeks of salt exposure, we observed a strongly reduced sugar exudation rate and a lack of starch mobilization in leaves of salt-stressed transgenic plants, but not in wild-type plants. However, callose accumulation in the vasculature declined upon salt stress in all genotypes, indicating that callose plugging of plasmodesmata was not the sole cause of the sugar export block phenotype in tocopherol-deficient leaves. Based on comprehensive gene expression analyses, we propose that enhanced responsiveness of SnRK1 target genes in mesophyll cells and altered redox regulation of phloem loading by SUT1 contribute to the attenuation of sucrose export from salt-stressed SXD:RNAi source leaves. Furthermore, we could not find any indication that elevated oxidative stress may have served as a trigger for the salt-induced carbohydrate phenotype of SXD1:RNAi transgenic plants. In leaves of the SXD1:RNAi plants, sodium accumulation was diminished, while proline accumulation and pools of soluble antioxidants were increased. As supported by phytohormone contents, these differences seem to increase longevity and prevent senescence of SXD:RNAi leaves under salt stress. PMID:25428995

  5. Recovery of protactinium from molten fluoride nuclear fuel compositions

    DOEpatents

    Baes, C.F. Jr.; Bamberger, C.; Ross, R.G.

    1973-12-25

    A method is provided for separating protactinium from a molten fluonlde salt composition consisting essentially of at least one alkali and alkaline earth metal fluoride and at least one soluble fluoride of uranium or thorium which comprises oxidizing the protactinium in said composition to the + 5 oxidation state and contacting said composition with an oxide selected from the group consisting of an alkali metal oxide, an alkaline earth oxide, thorium oxide, and uranium oxide, and thereafter isolating the resultant insoluble protactinium oxide product from said composition. (Official Gazette)

  6. 78 FR 78315 - Revision to the Idaho State Implementation Plan; Approval of Fine Particulate Matter Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-26

    ... ), nitrogen oxides (NO X ), volatile organic compounds (VOC), and ammonia. An analysis of the baseline year... Idaho Transportation Department agreed to use straight salt and liquid salt brine throughout Franklin.... List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Nitrogen dioxide...

  7. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  8. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1978-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  9. Chemical Safety: Molten Salt Baths Cited as Lab Hazards.

    ERIC Educational Resources Information Center

    Baum, Rudy

    1982-01-01

    Discusses danger of explosions with molten salts baths, commonly used as heat-transfer media. One such explosion involved use of a bath containing 3-lb sodium nitrite and 1-lb potassium thiocyanate. Although most commercially available mixtures for heat transfer contain oxidizers, a reducer (thiocyanate) was included which possibly triggered the…

  10. Comparison of liquid chemical sterilization with peracetic acid and ethylene oxide sterilization for long narrow lumens.

    PubMed

    Alfa, M J; DeGagne, P; Olson, N; Hizon, R

    1998-10-01

    The aim of this study was to determine how well peracetic acid liquid chemical sterilization (LCPAS) killed test organisms in the presence of 10% fetal bovine serum and 0.65% salt challenge (RPMI-S) compared with a 100% ethylene oxide (ETO) sterilizer and an ETO hydrochlorofluorocarbon (ETO-HCFC) sterilization method with long (125 cm), narrow (3-mm internal diameter) flexible lumens as the test carrier. The inoculated lumens were dried overnight before processing. The test organisms included Mycobacterium chelonei, Enterococcus faecalis, and Bacillus subtilis. For all 3 organisms tested, the LCPAS process resulted in a 6 log10 reduction in bacterial load compared with a 2.5 log10 to 6 log10 reduction for the 100% ETO and ETO-HCFC sterilizers. Sterilization was achieved for 100%, 61%, and 67% of the lumen test carriers for the LCPAS, 100% ETO, and ETO-HCFC sterilizers, respectively. The data indicate that of the sterilization methods evaluated, LCPAS was the most effective for sterilizing narrow flexible lumens in the presence of residual inorganic and organic soil. This effectiveness was achieved through a combination of organism wash-off and peracetic acid sterilant killing of organisms. Salt was the major compounding factor for effective ETO gas sterilization, because carriers inoculated with organisms in 10% fetal bovine serum alone all were sterilized by both 100% ETO and ETO-HCFC sterilization methods. Our data support the critical need to ensure adequate precleaning of narrow flexible lumen endoscopes before any sterilization method.

  11. Synthesis and characterization of lithium oxonitrate (LiNO)

    PubMed Central

    Switzer, Christopher H.; Miller, Thomas W.; Farmer, Patrick J.; Fukuto, Jon M.

    2012-01-01

    The oxonitrate (1−) anion (NO−), the one-electron reduction product of nitric oxide and conjugate base of HNO, has not been synthesized and isolated due to the inherent reactivity of this anion. The large scale synthesis and characterization of a stable NO− salt is described here. The lithium salt of oxonitrate (LiNO) was formed by the deprotonation of N-hydroxybenzenesulfonamide with phenyllithium in aprotic, deoxygenated conditions. LiNO exhibited antiferromagnetic paramagnetism as determined by SQUID magnetometry, consistent with a triplet ground state of NO−. LiNO reacted with HCl to yield nitrous oxide consistent with HNO formation and dimerization. LiNO consumed O2 in a pH-dependent manner to initially produce peroxynitrite and eventually nitrite. Consistent with the reduction potential of NO, LiNO exhibited an oxidation potential of approximately +0.80 V as determined by reactions with a series of viologen electron acceptors. LiNO also reacted with ferric tetraphenylporphyrin chloride (Fe(TPP)Cl), potassium tetracyanonickelate (K2Ni(CN)4) and nitrosobenzene in a manner that is identical to other HNO/NO− donors. We conclude that the physical and chemical characteristics of LiNO are indistinguishable from the experimentally and theoretically derived data on oxonitrrate (1−) anion. The bulk synthesis and isolation of a stable 3NO− salt described here allows the chemical and physical properties of this elusive nitrogen oxide to be thoroughly studied as this once elusive nitrogen oxide is now attainable. PMID:23107606

  12. A one-dimensional sectional aerosol model integrated with mesoscale meteorological data to study marine boundary layer aerosol dynamics

    NASA Astrophysics Data System (ADS)

    Caffrey, Peter F.; Hoppel, William A.; Shi, Jainn J.

    2006-12-01

    The dynamics of aerosols in the marine boundary layer are simulated with a one-dimensional, multicomponent, sectional aerosol model using vertical profiles of turbulence, relative humidity, temperature, vertical velocity, cloud cover, and precipitation provided by 3-D mesoscale meteorological model output. The Naval Research Laboratory's (NRL) sectional aerosol model MARBLES (Fitzgerald et al., 1998a) was adapted to use hourly meteorological input taken from NRL's Coupled Ocean-Atmosphere Prediction System (COAMPS). COAMPS-generated turbulent mixing coefficients and large-scale vertical velocities determine vertical exchange within the marine boundary layer and exchange with the free troposphere. Air mass back trajectories were used to define the air column history along which the meteorology was retrieved for use with the aerosol model. Details on the integration of these models are described here, as well as a description of improvements made to the aerosol model, including transport by large-scale vertical motions (such as subsidence and lifting), a revised sea-salt aerosol source function, and separate tracking of sulfate mass from each of the five sources (free tropospheric, nucleated, condensed from gas phase oxidation products, cloud-processed, and produced from heterogeneous oxidation of S(IV) on sea-salt aerosol). Results from modeling air masses arriving at Oahu, Hawaii, are presented, and the relative contribution of free-tropospheric sulfate particles versus sea-salt aerosol from the surface to CCN concentrations is discussed. Limitations and benefits of the method are presented, as are sensitivity analyses of the effect of large-scale vertical motions versus turbulent mixing.

  13. In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis.

    PubMed

    Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David

    2017-08-07

    Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H 2 ), and a mixture of H 2 and carbon dioxide (CO 2 ) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H 2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H 2 activates CoB for the catalysis of CO 2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.

  14. Development of a novel wet oxidation process for hazardous and mixed wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhooge, P.M.

    1994-12-31

    Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides. These materials are often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The over all objective of the effort described here is to develop a novel catalytic wet oxidation process for the treatment of these multi-component wastes, with the aim of providing a versatile, non-thermal method which will destroy hazardous organic compounds while simultaneously containing and concentrating toxic and radioactive metals for recovery or disposal in a readily stabilized matrix. The DETOX process usesmore » a unique combination of metal catalysts to increase the rate of oxidation of organic materials. The metal catalysts are in the form of salts dissolved in a dilute acid solution. A typical catalyst composition is 60% ferric chloride, 3--4% hydrochloric acid, 0.13% platinum ions, and 0.13% ruthenium ions in a water solution. The catalyst solution is maintained at 423--473 K. Wastes are introduced into contact with the solution, where their organic portion is oxidized to carbon dioxide and water. If the organic portion is chlorinated, hydrogen chloride will be produced as a product. The process is a viable alternative to incineration for the treatment of organic mixed wastes. Estimated costs for waste treatment using the process are from $2.50/kg to $25.00/kg, depending on the size of the unit and the amount of waste processed. Process units can be mobile for on-site treatment of wastes. Results from phase 1 and 2, design and engineering studies, are described.« less

  15. A Tolerant Behavior in Salt-Sensitive Tomato Plants can be Mimicked by Chemical Stimuli

    PubMed Central

    Flors, Víctor; Paradís, Mercedes; García-Andrade, Javier; Cerezo, Miguel; González-Bosch, Carmen

    2007-01-01

    Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accumulation. Salinity-induced oxidative stress was also ameliorated by DAAME treatments. Oxidative membrane damage and ethylene emission were both reduced in DAAME-treated plants. This effect is probably a consequence of an increase of both non-enzymatic antioxidant activity as well as peroxidase activity. DAAME-mediated tolerance resulted in an unaltered photosynthetic rate and a stimulation of the decrease in transpiration under stress conditions without a cost in growth due to salt stress. The reduction in transpiration rate was concomitant with a reduction in phytotoxic Na+ and Cl− accumulation under saline stress. Interestingly, the ABA deficient tomato mutant sitiens was insensitive to DAAME-induced tolerance following NaCl stress exposure. Additionally, DAAME treatments increased the ABA content of leaves, therefore, an intact ABA signalling pathway seems to be important to express DAAME-induced salt tolerance. Here, we show a possibility of enhance tomato stress tolerance by chemical induction of the major plant defences against salt stress. DAAME-induced tolerance against salt stress could be complementary to or share elements with induced resistance against biotic stress. This might be the reason for the observed wide spectrum of effectiveness of this compound. PMID:19516968

  16. Characterization of the aerosol over the sub-arctic north east Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Phinney, Lisa; Richard Leaitch, W.; Lohmann, Ulrike; Boudries, Hacene; Worsnop, Douglas R.; Jayne, John T.; Toom-Sauntry, Desiree; Wadleigh, Moire; Sharma, Sangeeta; Shantz, Nicole

    2006-10-01

    Time series measurements of the size and composition of aerosol particles made near Ocean Station Papa during the Canadian SOLAS SERIES experiment in July 2002 indicate major contributions to the aerosol mass from the oxidation of dimethyl sulphide, from primary emissions of sea salt, and from ship emissions. The high temporal resolution of the AMS revealed significant variability in the fine mode species mass concentrations in this area. The background fine mode composition was dominated by non-sea-salt-sulphate (nss-SO 4), sea salt, organics, and methanesulphonic acid (MSA), with average mass concentrations of 0.74±0.04, 0.6±0.1, 0.3±0.1, and 0.16±0.05 μg m -3, respectively. The fine mode MSA:nss-SO 4 ratio varied from 0.01 to 3.19±0.2, with a mean of 0.23. The average fine mode mass distribution was internally mixed with a mode vacuum aerodynamic diameter of 475 nm. The concentration of MSA was an order of magnitude higher than previously reported values in the North Pacific, indicating significant oxidation of DMS. A diurnal signal in particulate products of DMS oxidation (i.e. MSA and sulphate) and in gaseous DMS and SO 2 indicates daytime photochemistry and in-cloud oxidation. A simple examination of chemical reaction pathways is used to help elucidate the relationships among the sulphur species and oxidants. The relationship between sea salt mass and wind speed is examined. This study marks the first time atmospheric measurements have been included in an iron enrichment experiment, and the first time an Aerodyne Aerosol Mass Spectrometer (AMS) has been deployed in a remote marine setting. Due to the proximity of the ship to the fertilized patch and the relatively high wind speeds, no impact of the SERIES iron fertilization on the local aerosol was observed.

  17. Vascular smooth muscle relaxation mediated by nitric oxide donors: a comparison with acetylcholine, nitric oxide andnitroxyl ion

    PubMed Central

    Wanstall, Janet C; Jeffery, Trina K; Gambino, Agatha; Lovren, Fina; Triggle, Christopher R

    2001-01-01

    Vasorelaxant properties of three nitric oxide (NO) donor drugs (glyceryl trinitrate, sodium nitroprusside and spermine NONOate) in mouse aorta (phenylephrine pre-contracted) were compared with those of endothelium-derived NO (generated with acetylcholine), NO free radical (NO·; NO gas solution) and nitroxyl ion (NO−; from Angeli's salt). The soluble guanylate cyclase inhibitor, ODQ (1H-(1,2,4-)oxadiazolo(4,3-a)-quinoxalin-1-one; 0.3, 1 and 10 μM), concentration-dependently inhibited responses to all agents. 10 μM ODQ abolished responses to acetylcholine and glyceryl trinitrate, almost abolished responses to sodium nitroprusside but produced parallel shifts (to a higher concentration range; no depression in maxima) in the concentration-response curves for NO gas solution, Angeli's salt and spermine NONOate. The NO· scavengers, carboxy-PTIO, (2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide; 100 μM) and hydroxocobalamin (100 μM), both inhibited responses to NO gas solution and to the three NO donor drugs, but not Angeli's salt. Hydroxocobalamin, but not carboxy-PTIO, also inhibited responses to acetylcholine. The NO− inhibitor, L-cysteine (3 mM), inhibited responses to Angeli's salt, acetylcholine and the three NO donor drugs, but not NO gas solution. The data suggest that, in mouse aorta, responses to all three NO donors involve (i) activation of soluble guanylate cyclase, but to differing degrees and (ii) generation of both NO· and NO−. Glyceryl trinitrate and sodium nitroprusside, which generate NO following tissue bioactivation, have profiles resembling the profile of endothelium-derived NO more than that of exogenous NO. Spermine NONOate, which generates NO spontaneously outside the tissue, was the drug that most closely resembled (but was not identical to) exogenous NO. PMID:11588100

  18. Lack of Inducible NO Synthase Reduces Oxidative Stress and Enhances Cardiac Response to Isoproterenol in Mice With Deoxycorticosterone Acetate–Salt Hypertension

    PubMed Central

    Sun, Ying; Carretero, Oscar A.; Xu, Jiang; Rhaleb, Nour-Eddine; Wang, Fangfei; Lin, Chunxia; Yang, James J.; Pagano, Patrick J.; Yang, Xiao-Ping

    2015-01-01

    Although NO derived from endothelial NO synthase (eNOS) is thought to be cardioprotective, the role of inducible NO synthase (iNOS) remains controversial. Using mice lacking iNOS (iNOS−/−), we studied (1) whether development of hypertension, cardiac hypertrophy, and dysfunction after deoxycorticosterone acetate (DOCA)–salt would be less severe compared with wild-type controls (WT; C57BL/6J), and (2) whether the cardioprotection attributable to lack of iNOS is mediated by reduced oxidative stress. Mice were uninephrectomized and received either DOCA-salt (30 mg/mouse SC and 1% NaCl+0.2% KCl in drinking water) or vehicle (tap water) for 12 weeks. Systolic blood pressure (SBP) was measured weekly. Left ventricular (LV) ejection fraction (EF) by echocardiography and cardiac response to isoproterenol (50 ng/mouse IV) were studied at the end of the experiment. Expression of eNOS and iNOS as well as the oxidative stress markers 4-hydroxy-2-nonenal (4-HNE, a marker of lipid peroxidation) and nitrotyrosine (a marker for peroxynitrite) were determined by Western blot and immunohistochemical staining, respectively. DOCA-salt increased SBP and LV weight similarly in both strains and decreased EF in WT but not in iNOS−/−. Cardiac contractile and relaxation responses to isoproterenol were greater, 4-HNE and nitrotyrosine levels were lower, and eNOS expression tended to be higher in iNOS−/−. We conclude that lack of iNOS leads to better preservation of cardiac function, which may be mediated by reduced oxidative stress and increased eNOS; however, it does not seem to play a significant role in preventing DOCA-salt–induced hypertension and hypertrophy. PMID:16286571

  19. Impact of the Valence Charge of Transition Metals on the Cobalt- and Rhodium-Catalyzed Synthesis of Indenamines, Indenols, and Isoquinolinium Salts: A Catalytic Cycle Involving MIII/MV [M = Co, Rh] for [4+2] Annulation.

    PubMed

    Chiou, Mong-Feng; Jayakumar, Jayachandran; Cheng, Chien-Hong; Chuang, Shih-Ching

    2018-06-13

    Reaction mechanisms for the synthesis of indenamines, indenols, and isoquinolinium salts through cobalt- and rhodium-catalysis were investigated using density functional theory calculations. We found that the valence charge of transition metals dramatically influences the reaction pathways. Catalytic reactions involving lower-oxidation-state transition metals (M I /M III , M = Co and Rh) generally favor a [3+2] cyclization pathway, whereas those involving higher oxidation states (M III /M V ) proceed through a [4+2] cyclization pathway. A catalytic cycle with novel M III /M V as a crucial species was successfully revealed for isoquinolinium salts synthesis, which highly valent M V was not only encountered in the [RhCp*]-catalysis but also in the [CoCp*]-catalysis.

  20. Stainless steel corrosion by molten nitrates : analysis and lessons learned.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruizenga, Alan Michael

    2011-09-01

    A secondary containment vessel, made of stainless 316, failed due to severe nitrate salt corrosion. Corrosion was in the form of pitting was observed during high temperature, chemical stability experiments. Optical microscopy, scanning electron microscopy and energy dispersive spectroscopy were all used to diagnose the cause of the failure. Failure was caused by potassium oxide that crept into the gap between the primary vessel (alumina) and the stainless steel vessel. Molten nitrate solar salt (89% KNO{sub 3}, 11% NaNO{sub 3} by weight) was used during chemical stability experiments, with an oxygen cover gas, at a salt temperature of 350-700 C.more » Nitrate salt was primarily contained in an alumina vessel; however salt crept into the gap between the alumina and 316 stainless steel. Corrosion occurred over a period of approximately 2000 hours, with the end result of full wall penetration through the stainless steel vessel; see Figures 1 and 2 for images of the corrosion damage to the vessel. Wall thickness was 0.0625 inches, which, based on previous data, should have been adequate to avoid corrosion-induced failure while in direct contact with salt temperature at 677 C (0.081-inch/year). Salt temperatures exceeding 650 C lasted for approximately 14 days. However, previous corrosion data was performed with air as the cover gas. High temperature combined with an oxygen cover gas obviously drove corrosion rates to a much higher value. Corrosion resulted in the form of uniform pitting. Based on SEM and EDS data, pits contained primarily potassium oxide and potassium chromate, reinforcing the link between oxides and severe corrosion. In addition to the pitting corrosion, a large blister formed on the side wall, which was mainly composed of potassium, chromium and oxygen. All data indicated that corrosion initiated internally and moved outward. There was no evidence of intergranular corrosion nor were there any indication of fast pathways along grain boundaries. Much of the pitting occurred near welds; however this was the hottest region in the chamber. Pitting was observed up to two inches above the weld, indicating independence from weld effects.« less

  1. Effects of anodic oxidation parameters on a modified titanium surface.

    PubMed

    Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Seol, Kyeong Won

    2008-02-01

    Anodic oxidation is an electrochemical treatment that can be used to control the thickness of an oxide layer formed on a titanium surface. This procedure has the advantage of allowing the ions contained in an electrolyte to deposit onto the oxide layer. The characteristics of a layer treated with anodic oxidation can vary according to the type and concentration of the electrolytes as well as the processing variables used during anodic oxidation. In this study, the constant electrolyte for anodic oxidation was a mixed solution containing 0.02 M DL-alpha-glycerophosphate disodium salt and 0.2M calcium acetate. Anodic oxidation was carried out at different voltages, current densities, and duration of anodic oxidation. The results showed that the current density and variation in the duration of anodic oxidation did not have a large effect on the change in the characteristics of the layer. On the other hand, the size of the micropores was increased with increasing voltage of anodic oxidation, and anatase and rutile phases were found to co-exist in the porous titanium dioxide layer. In addition, the thickness of the oxide layer on titanium and the characteristic of corrosion resistance increased with increasing voltage. The MTT test showed that the cell viability was increased considerably as a result of anodic oxidation. The anodizing voltage is an important parameter that determines the characteristics of the anodic oxide layer of titanium. (c) 2007 Wiley Periodicals, Inc.

  2. Synthesis of ketones from biomass-derived feedstock.

    PubMed

    Meng, Qinglei; Hou, Minqiang; Liu, Huizhen; Song, Jinliang; Han, Buxing

    2017-01-31

    Cyclohexanone and its derivatives are very important chemicals, which are currently produced mainly by oxidation of cyclohexane or alkylcyclohexane, hydrogenation of phenols, and alkylation of cyclohexanone. Here we report that bromide salt-modified Pd/C in H 2 O/CH 2 Cl 2 can efficiently catalyse the transformation of aromatic ethers, which can be derived from biomass, to cyclohexanone and its derivatives via hydrogenation and hydrolysis processes. The yield of cyclohexanone from anisole can reach 96%, and the yields of cyclohexanone derivatives produced from the aromatic ethers, which can be extracted from plants or derived from lignin, are also satisfactory. Detailed study shows that the Pd, bromide salt and H 2 O/CH 2 Cl 2 work cooperatively to promote the desired reaction and inhibit the side reaction. Thus high yields of desired products can be obtained. This work opens the way for production of ketones from aromatic ethers that can be derived from biomass.

  3. Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts.

    PubMed

    Mekki, Ahmed; Samanta, Soumen; Singh, Ajay; Salmi, Zakaria; Mahmoud, Rachid; Chehimi, Mohamed M; Aswal, Dinesh K

    2014-03-15

    Highly uniform core-shell like multi-walled carbon nanotubes-polyaniline (MWCNT-PANI) nanocomposites were prepared in two steps (i) surface modification of MWCNTs with a 4-aminodiphenylamine group via in situ diazonium generation process; and (ii) polymerization of aniline onto surface modified MWCNTs. This functionalization helped to easily disperse the MWCNTs in acidic solutions; hence it is suitable for the chemical oxidative polymerization of aniline. It was found that MWCNT-PANI nano-composites with higher MWCNTs loading yield PANI chains with more quinoid units than the pure PANI, which results in significant improvement in the conductivity of the composites. This facile approach of synthesizing core-shell nanocomposites highlights the efficiency of the interfacial chemistry of aryl diazonium salts in generating conductive polymer/MWCNT nanocomposites with enhanced conductivity and high surface area. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    NASA Astrophysics Data System (ADS)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    2014-09-01

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  5. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jongkwon; Um, Wooyong; Choung, Sungwook

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions weremore » 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.« less

  6. Biogeochemical cycles of carbon, sulfur, and free oxygen in a microbial mat

    NASA Technical Reports Server (NTRS)

    Canfield, Donald E.; Des Marais, David J.

    1993-01-01

    Complete budgets for carbon and oxygen have been constructed for cyanobacterial mats dominated by Microcoleus chthonoplastes from the evaporating ponds of a salt works. We infer from the data the various sinks for O2 as well as the sources of carbon for primary production. Although seasonal variability exists, a major percentage of the O2 produced during the day did not diffuse out of the mat but was used within the mat to oxidize both organic carbon and the sulfide produced by sulfate reduction. At night, most of the O2 that diffused into the mat was used to oxidize sulfide, with O2 respiration of minor importance. During the day, the internal mat processes of sulfate reduction and O2 respiration generated as much or more inorganic carbon (DIC) for primary production as diffusion into the mat. Oxygenic photosynthesis was the most important process of carbon fixation. At night, the DIC lost from the mat was mostly from sulfate reduction. Elemental fluxes across the mat/brine interface indicated that carbon with an oxidation state of greater than zero was taken up by the mat during the day and liberated from the mat at night. Overall, carbon with an average oxidation state of near zero accumulated in the mat. Both carbon fixation and carbon oxidation rates varied with temperature by a similar amount.

  7. Cloud Point and Liquid-Liquid Equilibrium Behavior of Thermosensitive Polymer L61 and Salt Aqueous Two-Phase System.

    PubMed

    Rao, Wenwei; Wang, Yun; Han, Juan; Wang, Lei; Chen, Tong; Liu, Yan; Ni, Liang

    2015-06-25

    The cloud point of thermosensitive triblock polymer L61, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO), was determined in the presence of various electrolytes (K2HPO4, (NH4)3C6H5O7, and K3C6H5O7). The cloud point of L61 was lowered by the addition of electrolytes, and the cloud point of L61 decreased linearly with increasing electrolyte concentration. The efficacy of electrolytes on reducing cloud point followed the order: K3C6H5O7 > (NH4)3C6H5O7 > K2HPO4. With the increase in salt concentration, aqueous two-phase systems exhibited a phase inversion. In addition, increasing the temperature reduced the concentration of salt needed that could promote phase inversion. The phase diagrams and liquid-liquid equilibrium data of the L61-K2HPO4/(NH4)3C6H5O7/K3C6H5O7 aqueous two-phase systems (before the phase inversion but also after phase inversion) were determined at T = (25, 30, and 35) °C. Phase diagrams of aqueous two-phase systems were fitted to a four-parameter empirical nonlinear expression. Moreover, the slopes of the tie-lines and the area of two-phase region in the diagram have a tendency to rise with increasing temperature. The capacity of different salts to induce aqueous two-phase system formation was the same order as the ability of salts to reduce the cloud point.

  8. Dry halide method for separating the components of spent nuclear fuels

    DOEpatents

    Christian, Jerry Dale; Thomas, Thomas Russell; Kessinger, Glen F.

    1998-01-01

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.

  9. Dry halide method for separating the components of spent nuclear fuels

    DOEpatents

    Christian, J.D.; Thomas, T.R.; Kessinger, G.F.

    1998-06-30

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.

  10. Amelioration of cardio-renal injury with aging in dahl salt-sensitive rats by H2-enriched electrolyzed water

    PubMed Central

    2013-01-01

    Abstract Recent studies have revealed the biological effects of H2 in suppressing organ injuries due to acute inflammation and oxidative stress. Dahl salt-sensitive (SS) rats naturally develop elevated blood pressure (BP) and kidney injury with aging. The present study examined the effect of long-term supplementation of H2 in drinking water on age-related changes. Four-week-old male Dahl SS rats were fed 3 types of water (n = 30 each) for up to 48 weeks: filtered water (FW), water with a high H2 content (492.5 ppb) obtained with water electrolysis (EW), or dehydrogenated EW (DW). Animals were subjected to histological analysis at 16, 24, and 48 weeks. The FW group showed progressive BP elevation and increases in albuminuria and cardiac remodeling during the course of treatment. Histologically, there were significant changes as a function of aging, i.e., glomerular sclerosis with tubulointerstitial fibrosis in the kidney, and increased cardiomyocyte diameter with interstitial fibrosis in the heart at 48 weeks. These changes were related to the enhanced inflammation and oxidative stress in the respective organs. However, there were no striking differences in BP among the groups, despite histological alterations in the EW group being significantly decreased when compared to FW and DW in both organs, with concurrently lower oxidative stress and inflammatory markers at 48 weeks. Conclusion Long-term ad libitum consumption of H2-enriched electrolyzed water can ameliorate the processes of kidney injury and cardiac remodeling with aging in Dahl SS rats by suppressing, at least partly, elevated inflammation and oxidative stress. PMID:24289332

  11. Hydroxyl radical and ferryl-generating systems promote gel network formation of myofibrillar protein.

    PubMed

    Xiong, Youling L; Blanchard, Suzanne P; Ooizumi, Tooru; Ma, Yuanyuan

    2010-03-01

    The objective of the study was to examine how oxidatively induced protein cross-linking would influence the gelation properties of myofibrillar protein (MP) under meat processing conditions. MP suspensions in 0.6 M NaCl at pH 6 were treated with an iron-catalyzed oxidizing system (IOS: 10 microM FeCl(3), 0.1 mM ascorbic acid, 0.05 to 5 mM H(2)O(2)) or a H(2)O(2)-activated metmyoglobin oxidizing system (MOS: 0.01 to 0.1 mM metmyoglobin/H(2)O(2)) that produced hydroxyl radical and ferryl species, respectively. Both oxidizing systems promoted MP thermal gelation, which was evidenced by rapid protein-protein interaction and the enhancement in storage modulus (elasticity) of the gel network as revealed by dynamic rheological testing in the 20 to 74 degrees C temperature range. This gelation-enhancing effect was attributed to the shift of myosin aggregation in the early stage of heating from predominantly head-head association (nonoxidized control samples) to prevalently tail-tail cross-linking through disulfide bonds. However, both hardness and water-holding capacity of chilled gels tended to decline when MP was exposed to >or=1 mM H(2)O(2) in IOS and to all concentrations of metmyoglobin in MOS. Microscopic examination confirmed a more porous structure in oxidized gels when compared with nonoxidized protein gels. The results demonstrated that mild oxidation altered the mode of myosin aggregation in favor of an elastic gel network formation, but it did not improve or had a negative effect on water-binding properties of MP gels. Mild oxidation promotes protein network formation and enhances gelation of myofibrillar protein under normal salt and pH conditions used in meat processing. This oxidative effect, which involves disulfide linkages, is somewhat similar to that in bakery product processing where oxidants are used to improve dough performance through gluten protein interaction.

  12. Development of Functional Inorganic Materials by Soft Chemical Process Using Ion-Exchange Reactions

    NASA Astrophysics Data System (ADS)

    Feng, Qi

    Our study on soft chemical process using the metal oxide and metal hydroxide nanosheets obtained by exfoliation their layered compounds were reviewed. Ni(OH)2⁄MnO2 sandwich layered nanostructure can be prepared by layer by-layer stacking of exfoliated manganese oxide nanosheets and nickel hydroxide layers. Manganese oxide nanotubes can be obtained by curling the manganese oxide nanosheets using the cationic surfactants as the template. The layered titanate oriented thin film can be prepared by restacking the titanate nanosheets on a polycrystalline substrate, and transformed to the oriented BaTiO3 and TiO2 thin films by the topotactic structural transformation reactions, respectively. The titanate nanosheets can be transformed anatase-type TiO2 nanocrystals under hydrothermal conditions. The TiO2 nanocrystals are formed by a topotactic structural transformation reaction. The TiO2 nanocrystals prepared by this method expose specific crystal plane on their surfaces, and show high photocatalytic activity and high dye adsorption capacity for high performance dye-sensitized solar cell. A series of layered basic metal salt (LBMS) compounds were prepared by hydrothermal reactions of transition metal hydroxides and organic acids. We succeeded in the exfoliation of these LBMS compounds in alcohol solvents, and obtained the transition metal hydroxide nanosheets for the first time.

  13. Salt reduction in sheeted dough: A successful technological approach.

    PubMed

    Diler, Guénaëlle; Le-Bail, Alain; Chevallier, Sylvie

    2016-10-01

    The challenge of reducing the salt content while maintaining shelf life, stability and acceptability of the products is major for the food industry. In the present study, we implemented processing adjustments to reduce salt content while maintaining the machinability and the saltiness perception of sheeted dough: the homogeneous distribution of a layer of encapsulated salt grains on the dough during the laminating process. During sheeting, for an imposed deformation of 0.67, the final strain remained unchanged around 0.50 for salt reduction below 50%, and then, increased significantly up to 0.53 for a dough without salt. This increase is, in fine, positive regarding the rolling process since the decrease of salt content induces less shrinkage of dough downstream, which is the main feature to be controlled in the process. Moreover, the final strain was negatively correlated to the resistance to extension measured with a texture analyzer, therefore providing a method to evaluate the machinability of the dough. From these results, a salt reduction of 25% was achieved by holding 50% of the salt in the dough recipe to maintain the dough properties and saving 25% as salt grains to create high-salted areas that would enhance the saltiness perception of the dough. The distributor mounted above the rollers of the mill proved to be able to distribute evenly salt grains at a calculated step of the rolling out process. An innovative method based on RX micro-tomography allowed to follow the salt dissolving and to demonstrate the capability of the coatings to delay the salt dissolving and consequently the diffusion of salt within the dough piece. Finally, a ranking test on the salted perception of different samples having either an even distribution of encapsulated salt grains, a single layer of salt grains or a homogeneous distribution of salt, demonstrated that increasing the saltiness perception in salt-reduced food product could be achieved by a technological approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Transcriptional Modulation of Ethylene Response Factor Protein JERF3 in the Oxidative Stress Response Enhances Tolerance of Tobacco Seedlings to Salt, Drought, and Freezing1[C][W][OA

    PubMed Central

    Wu, Lijun; Zhang, Zhijin; Zhang, Haiwen; Wang, Xue-Chen; Huang, Rongfeng

    2008-01-01

    Abiotic stresses such as drought, cold, and salinity affect normal growth and development in plants. The production and accumulation of reactive oxygen species (ROS) cause oxidative stress under these abiotic conditions. Recent research has elucidated the significant role of ethylene response factor (ERF) proteins in plant adaptation to abiotic stresses. Our earlier functional analysis of an ERF protein, JERF3, indicated that JERF3-expressing tobacco (Nicotiana tabacum) adapts better to salinity in vitro. This article extends that study by showing that transcriptional regulation of JERF3 in the oxidative stress response modulates the increased tolerance to abiotic stresses. First, we confirm that JERF3-expressing tobacco enhances adaptation to drought, freezing, and osmotic stress during germination and seedling development. Then we demonstrate that JERF3-expressing tobacco imparts not only higher expression of osmotic stress genes compared to wild-type tobacco, but also the activation of photosynthetic carbon assimilation/metabolism and oxidative genes. More importantly, this regulation of the expression of oxidative genes subsequently enhances the activities of superoxide dismutase but reduces the content of ROS in tobacco under drought, cold, salt, and abscisic acid treatments. This indicates that JERF3 also modulates the abiotic stress response via the regulation of the oxidative stress response. Further assays indicate that JERF3 activates the expression of reporter genes driven by the osmotic-responsive GCC box, DRE, and CE1 and by oxidative-responsive as-1 in transient assays, suggesting the transcriptional activation of JERF3 in the expression of genes involved in response to oxidative and osmotic stress. Our results therefore establish that JERF3 activates the expression of such genes through transcription, resulting in decreased accumulation of ROS and, in turn, enhanced adaptation to drought, freezing, and salt in tobacco. PMID:18945933

  15. Electrochemical reduction of CerMet fuels for transmutation using surrogate CeO2-Mo pellets

    NASA Astrophysics Data System (ADS)

    Claux, B.; Souček, P.; Malmbeck, R.; Rodrigues, A.; Glatz, J.-P.

    2017-08-01

    One of the concepts chosen for the transmutation of minor actinides in Accelerator Driven Systems or fast reactors proposes the use of fuels and targets containing minor actinides oxides embedded in an inert matrix either composed of molybdenum metal (CerMet fuel) or of ceramic magnesium oxide (CerCer fuel). Since the sufficient transmutation cannot be achieved in a single step, it requires multi-recycling of the fuel including recovery of the not transmuted minor actinides. In the present work, a pyrochemical process for treatment of Mo metal inert matrix based CerMet fuels is studied, particularly the electroreduction in molten chloride salt as a head-end step required prior the main separation process. At the initial stage, different inactive pellets simulating the fuel containing CeO2 as minor actinide surrogates were examined. The main studied parameters of the process efficiency were the porosity and composition of the pellets and the process parameters as current density and passed charge. The results indicated the feasibility of the process, gave insight into its limiting parameters and defined the parameters for the future experiment on minor actinide containing material.

  16. Bare Iron Oxide Nanoparticles for Magnetic Harvesting of Microalgae: From Interaction Behavior to Process Realization.

    PubMed

    Fraga-García, Paula; Kubbutat, Peter; Brammen, Markus; Schwaminger, Sebastian; Berensmeier, Sonja

    2018-05-01

    Microalgae continue to gain in importance as a bioresource, while their harvesting remains a major challenge at the moment. This study presents findings on microalgae separation using low-cost, easy-to-process bare iron oxide nanoparticles with the additional contribution of the upscaling demonstration of this simple, adhesion-based process. The high affinity of the cell wall for the inorganic surface enables harvesting efficiencies greater than 95% for Scenedesmus ovalternus and Chlorella vulgaris . Successful separation is possible in a broad range of environmental conditions and primarily depends on the nanoparticle-to-microalgae mass ratio, whereas the effect of pH and ionic strength are less significant when the mass ratio is chosen properly. The weakening of ionic concentration profiles at the interphase due to the successive addition of deionized water leads the microalgae to detach from the nanoparticles. The process works efficiently at the liter scale, enabling complete separation of the microalgae from their medium and the separate recovery of all materials (algae, salts, and nanoparticles). The current lack of profitable harvesting processes for microalgae demands innovative approaches to encourage further development. This application of magnetic nanoparticles is an example of the prospects that nanobiotechnology offers for biomass exploitation.

  17. Gross nitrous oxide production drives net nitrous oxide fluxes across a salt marsh landscape.

    PubMed

    Yang, Wendy H; Silver, Whendee L

    2016-06-01

    Sea level rise will change inundation regimes in salt marshes, altering redox dynamics that control nitrification - a potential source of the potent greenhouse gas, nitrous oxide (N2 O) - and denitrification, a major nitrogen (N) loss pathway in coastal ecosystems and both a source and sink of N2 O. Measurements of net N2 O fluxes alone yield little insight into the different effects of redox conditions on N2 O production and consumption. We used in situ measurements of gross N2 O fluxes across a salt marsh elevation gradient to determine how soil N2 O emissions in coastal ecosystems may respond to future sea level rise. Soil redox declined as marsh elevation decreased, with lower soil nitrate and higher ferrous iron in the low marsh compared to the mid and high marshes (P < 0.001 for both). In addition, soil oxygen concentrations were lower in the low and mid-marshes relative to the high marsh (P < 0.001). Net N2 O fluxes differed significantly among marsh zones (P = 0.009), averaging 9.8 ± 5.4 μg N m(-2)  h(-1) , -2.2 ± 0.9 μg N m(-2)  h(-1) , and 0.67 ± 0.57 μg N m(-2)  h(-1) in the low, mid, and high marshes, respectively. Both net N2 O release and uptake were observed in the low and high marshes, but the mid-marsh was consistently a net N2 O sink. Gross N2 O production was highest in the low marsh and lowest in the mid-marsh (P = 0.02), whereas gross N2 O consumption did not differ among marsh zones. Thus, variability in gross N2 O production rates drove the differences in net N2 O flux among marsh zones. Our results suggest that future studies should focus on elucidating controls on the processes producing, rather than consuming, N2 O in salt marshes to improve our predictions of changes in net N2 O fluxes caused by future sea level rise. © 2015 John Wiley & Sons Ltd.

  18. Biochemical Effects of Aqueous Extract of Persea americana (Mill) on the Myocardium of Left Ventricle of High Salt-Fed Adult Wistar Rats.

    PubMed

    Olushola, Ayoola I; Aderibigbe, Komolafe O; Stephen, Saka O; Ayodeji, Odukoya S

    2017-10-01

    The cardioprotective effects of Persea americana extract was investigated on biochemical activities of high salt-fed adult Wistar rats in this study. Forty healthy Wistar rats of both sexes weighing 120 to 150 g were randomly assigned into 8 groups of 5 rats each (groups A, B, C, D, E, F, G, and H). Rats in groups A, F, G, and H were fed with standard laboratory pellets, while groups B, C, D, and E were fed on the high-salt diet for 4 weeks. Concomitantly, daily administration of 50, 100, and 150 mg/kg of the P americana extract were given orally to groups C and F, D and G, and E and H, respectively, while rats in groups A and B were administered distilled water. Blood samples were taken by cardiac puncture; concentration of sodium ion, potassium ion, nitric oxide, and activity of lactate dehydrogenase were determined. One-way analysis of variance was used to analyze data, followed by Student-Newman-Keuls (SNK) test for multiple comparison. Results revealed that concentration of potassium ion and nitric oxide was significantly lower ( P < .05) in high salt-fed groups. Sodium ion concentration and activity of lactate dehydrogenase were higher in high salt-fed group while P americana prevented biochemical perturbations in other experimental groups. In conclusion, high salt-diet induced biochemical alterations which were significantly protected by oral administration of P americana extract.

  19. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  20. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

Top