Sample records for salt power tower

  1. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits

    DOE PAGES

    Turchi, Craig S.; Vidal, Judith; Bauer, Matthew

    2018-03-14

    This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.

  2. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig S.; Vidal, Judith; Bauer, Matthew

    This analysis examines the potential benefit of adopting the supercritical carbon dioxide (sCO 2) Brayton cycle at 600-650 degrees C compared to the current state-of-the-art power tower operating a steam-Rankine cycle with solar salt at approximately 574 degrees C. The analysis compares a molten-salt power tower configuration using direct storage of solar salt (60:40 wt% sodium nitrate: potassium nitrate) or single-component nitrate salts at 600 degrees C or alternative carbonate- or chloride-based salts at 650 degrees C.

  3. Concentrating Solar Power Projects - Golden Tower 100MW Molten Salt project

    Science.gov Websites

    | Concentrating Solar Power | NREL Golden Tower 100MW Molten Salt project Status Date Turbine Capacity: Net: 100.0 Gross: 100.0 Status: Under development Do you have more information , corrections, or comments? Background Technology: Power tower Status: Under development Country: China City

  4. Concentrating Solar Power Projects - Yumen 100MW Molten Salt Tower CSP

    Science.gov Websites

    project | Concentrating Solar Power | NREL 100MW Molten Salt Tower CSP project Status Date Turbine Capacity: Net: 100.0 MW Gross: 100.0 MW Status: Under development Do you have more information , corrections, or comments? Background Technology: Power tower Status: Under development Country: China City

  5. Conceptual Design of a 100 MWe Modular Molten Salt Power Tower Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. Pacheco; Carter Moursund, Dale Rogers, David Wasyluk

    2011-09-20

    A conceptual design of a 100 MWe modular molten salt solar power tower plant has been developed which can provide capacity factors in the range of 35 to 75%. Compared to single tower plants, the modular design provides a higher degree of flexibility in achieving the desired customer's capacity factor and is obtained simply by adjusting the number of standard modules. Each module consists of a standard size heliostat field and receiver system, hence reengineering and associated unacceptable performance uncertainties due to scaling are eliminated. The modular approach with multiple towers also improves plant availability. Heliostat field components, receivers andmore » towers are shop assembled allowing for high quality and minimal field assembly. A centralized thermal-storage system stores hot salt from the receivers, allowing nearly continuous power production, independent of solar energy collection, and improved parity with the grid. A molten salt steam generator converts the stored thermal energy into steam, which powers a steam turbine generator to produce electricity. This paper describes the conceptual design of the plant, the advantages of modularity, expected performance, pathways to cost reductions, and environmental impact.« less

  6. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The referencemore » plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.« less

  7. Solar tower enhanced natural draft dry cooling tower

    NASA Astrophysics Data System (ADS)

    Yang, Huiqiang; Xu, Yan; Acosta-Iborra, Alberto; Santana, Domingo

    2017-06-01

    Concentrating Solar Power (CSP) plants are located in desert areas where the Direct Normal Irradiance (DNI) value is very high. Since water resource is scarcely available, mechanical draft cooing technology is commonly used, with power consumption of mechanical fans being approximately 2% of the total power generated. Today, there is only one solar power plant (Khi Solar One in South Africa) uses a condenser installed in a Natural Draft Cooling (NDC) tower that avoids the windage loss of water occurring in wet cooling towers. Although, Khi Solar One is a cavity receiver power tower, the receivers can be hung onto the NDC tower. This paper looks at a novel integration of a NDC tower into an external molten salt receiver of a solar power plant, which is one of a largest commercial molten salt tower in China, with 100MWe power capacity. In this configuration study, the NDC tower surrounds the concrete tower of the receiver concentrically. In this way, the receiver concrete tower is the central support of the NDC tower, which consists of cable networks that are fixed to the concrete tower and suspended at a certain height over the floor. The cable networks support the shell of the NDC tower. To perform a preliminary analysis of the behavior of this novel configuration, two cases of numerical simulation in three dimensional (3D) models have been solved using the commercial Computational Fluid Dynamics (CFD) code, ANSYS Fluent 6.3. The results show that the integration of the NDC tower into an external central receiver tower is feasible. Additionally, the total heat transfer rate is not reduced but slightly increases when the molten salt receiver is in operation because of the additional natural draft induced by the high temperature of the receiver.

  8. Concentrating Solar Power Projects - Yumen 50MW Molten Salt Tower CSP

    Science.gov Websites

    : Yumen (Gansu Province) Owner(s): Yumen Xinneng Thermal Power Co., Ltd Technology: Power tower Turbine Developer(s): China Sinogy Electric Engineering Co., Ltd Owner(s) (%): Yumen Xinneng Thermal Power Co., Ltd (Gross): 50.0 MW Turbine Capacity (Net): 50.0 MW Output Type: Steam Rankine Thermal Storage Storage Type

  9. SENER molten salt tower technology. Ouarzazate NOOR III case

    NASA Astrophysics Data System (ADS)

    Relloso, Sergio; Gutiérrez, Yolanda

    2017-06-01

    NOOR III 150 MWe project is the evolution of Gemasolar (19.9 MWe) to large scale Molten Salt Tower plants. With more than 5 years of operational experience, Gemasolar lessons learned have been the starting point for the optimization of this technology, considered the leader of potential cost reduction in CSP. In addition, prototypes of plant key components (heliostat and receiver) were manufactured and thoroughly tested before project launch in order to prove the new engineering solutions adopted. The SENER proprietary technology of NOOR III will be applied in the next Molten Salt Tower plants that will follow in other countries, such as South Africa, Chile and Australia.

  10. Life cycle assessment of a power tower concentrating solar plant and the impacts of key design alternatives.

    PubMed

    Whitaker, Michael B; Heath, Garvin A; Burkhardt, John J; Turchi, Craig S

    2013-06-04

    A hybrid life cycle assessment (LCA) is used to evaluate four sustainability metrics over the life cycle of a power tower concentrating solar power (CSP) facility: greenhouse gas (GHG) emissions, water consumption, cumulative energy demand (CED), and energy payback time (EPBT). The reference design is for a dry-cooled, 106 MW(net) power tower facility located near Tucson, AZ that uses a mixture of mined nitrate salts as the heat transfer fluid and storage medium, a two-tank thermal energy storage system designed for six hours of full load-equivalent storage, and receives auxiliary power from the local electric grid. A thermocline-based storage system, synthetically derived salts, and natural gas auxiliary power are evaluated as design alternatives. Over its life cycle, the reference plant is estimated to have GHG emissions of 37 g CO2eq/kWh, consume 1.4 L/kWh of water and 0.49 MJ/kWh of energy, and have an EPBT of 15 months. Using synthetic salts is estimated to increase GHG emissions by 12%, CED by 7%, and water consumption by 4% compared to mined salts. Natural gas auxiliary power results in greater than 10% decreases in GHG emissions, water consumption, and CED. The thermocline design is most advantageous when coupled with the use of synthetic salts.

  11. Transient analysis of a molten salt central receiver (MSCR) in a solar power plant

    NASA Astrophysics Data System (ADS)

    Joshi, A.; Wang, C.; Akinjiola, O.; Lou, X.; Neuschaefer, C.; Quinn, J.

    2016-05-01

    Alstom is developing solar power tower plants utilizing molten salt as the working fluid. In solar power tower, the molten salt central receiver (MSCR) atop of the tower is constructed of banks of tubes arranged in panels creating a heat transfer surface exposed to the solar irradiation from the heliostat field. The molten salt heat transfer fluid (HTF), in this case 60/40%wt NaNO3-KNO3, flows in serpentine flow through the surface collecting sensible heat thus raising the HTF temperature from 290°C to 565°C. The hot molten salt is stored and dispatched to produce superheated steam in a steam generator, which in turn produces electricity in the steam turbine generator. The MSCR based power plant with a thermal energy storage system (TESS) is a fully dispatchable renewable power plant with a number of opportunities for operational and economic optimization. This paper presents operation and controls challenges to the MSCR and the overall power plant, and the use of dynamic model computer simulation based transient analyses applied to molten salt based solar thermal power plant. This study presents the evaluation of the current MSCR design, using a dynamic model, with emphasis on severe events affecting critical process response, such as MS temperature deviations, and recommend MSCR control design improvements based on the results. Cloud events are the scope of the transient analysis presented in this paper. The paper presents results from a comparative study to examine impacts or effects on key process variables related to controls and operation of the MSCR plant.

  12. Survey of power tower technology

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A. F.; Dasgupta, S.

    1980-05-01

    The history of the power tower programs is reviewed, and attention is given to the current state of heliostat, receiver, and storage design. Economic considerations are discussed, as are simulation studies and implications. Also dealt with are alternate applications for the power tower and some financing and energy aspects of solar electric conversion. It is noted that with a national commitment to solar energy, the power tower concept could generate 40 GW of electricity and double this amount in process heat by the year 2000. Calculations show an energy amplification factor of 20 for solar energy plants; that is, the ratio of the electric energy produced over the lifetime of a power plant to the thermal energy required to produce the plant.

  13. Feasibility Study on High Concentrating Photovoltaic Power Towers

    NASA Astrophysics Data System (ADS)

    Frohberger, Dirk; Jaus, Joachim; Wiesenfarth, Maike; Schramek, Philipp; Bett, Andreas W.

    2010-10-01

    This paper presents an analysis on the concept of high concentrating PV power towers. A feasibility study is conducted in order to evaluate the future potential of this technology. Objective of the analysis is to provide an improved basis for establishing research and development priorities for the PV power tower concept. Performance assessments and cost calculations for a 1 MW prototype PV tower power are derived. Based on the assumption of a highly homogeneously illuminated receiver, levelized costs of electricity of 0.29 €/kWh have been calculated for a prototype PV tower power.

  14. Steam generator design for solar towers using solar salt as heat transfer fluid

    NASA Astrophysics Data System (ADS)

    González-Gómez, Pedro Ángel; Petrakopoulou, Fontina; Briongos, Javier Villa; Santana, Domingo

    2017-06-01

    Since the operation of a concentrating solar power plant depends on the intermittent character of solar energy, the steam generator is subject to daily start-ups, stops and load variations. Faster start-up and load changes increase the plant flexibility and the daily energy production. However, it involves high thermal stresses on thick-walled components. Continuous operational conditions may eventually lead to a material failure. For these reasons, it is important to evaluate the transient behavior of the proposed designs in order to assure the reliability. The aim of this work is to analyze different steam generator designs for solar power tower plants using molten salt as heat transfer fluid. A conceptual steam generator design is proposed and associated heat transfer areas and steam drum size are calculated. Then, dynamic models for the main parts of the steam generator are developed to represent its transient performance. A temperature change rate that ensures safe hot start-up conditions is studied for the molten salt. The thermal stress evolution on the steam drum is calculated as key component of the steam generator.

  15. Coupled optical and thermal detailed simulations for the accurate evaluation and performance improvement of molten salts solar towers

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Mutuberria, Amaia; Palacin, Luis G.; Sanz, Javier L.; Pereira, Daniel; Bernardos, Ana; Sanchez, Marcelino; Rocha, Alberto R.

    2017-06-01

    developed, helping ACS Cobra to adequately handle the optical and thermal coupled simulations. According to current results it can be concluded that the developed model has resulted in a powerful tool to improve the design and operation of future ACS Cobra's Molten Salts Solar Towers, since historical data based on its projects have been used for validation of the final tool.

  16. Dynamic detailed model of a molten salt tower receiver, with ThermoSysPro library: Impacts of several failures or operational transients on the receiver dynamic behavior

    NASA Astrophysics Data System (ADS)

    Hefni, Baligh El; Bourdil, Charles

    2017-06-01

    Molten salt technology represents nowadays the most cost-effective technology for electricity generation for solar power plant. The molten salt tower receiver is based on a field of individually sun-tracking mirrors (heliostats) that reflect the incident sunshine to a receiver at the top of a centrally located tower. The objective of this study is to assess the impact of several transients issued from different scenarios (failure or normal operation mode) on the receiver dynamic behavior. A dynamic detailed model of Solar Two molten salt central receiver has been developed. The component model is meant to be used for receiver modeling with the ThermoSysPro library, developed by EDF. The paper also gives the results of the dynamic simulation for the selected scenarios on Solar Two receiver.

  17. Cell-Phone Tower Power System Prototype Testing for Verizon Wireless |

    Science.gov Websites

    Verizon Wireless Cell-Phone Tower Power System Prototype Testing for Verizon Wireless For Verizon Wireless Advanced Manufacturing Research | NREL Cell-Phone Tower Power System Prototype Testing for , NREL tested a new cell-phone tower power system prototype based on DC interconnection and photovoltaics

  18. System and method for aligning heliostats of a solar power tower

    DOEpatents

    Convery, Mark R.

    2013-01-01

    Disclosed is a solar power tower heliostat alignment system and method that includes a solar power tower with a focal area, a plurality of heliostats that each reflect sunlight towards the focal area of the solar power tower, an off-focal area location substantially close to the focal area of the solar power tower, a communication link between the off-focal area location and a misaligned heliostat, and a processor that interprets the communication between the off-focal area location and the misaligned heliostat to identify the misaligned heliostat from the plurality of heliostats and that determines a correction for the identified misaligned heliostat to realign the misaligned heliostat to reflect sunlight towards the focal area of the solar power tower.

  19. Concentrating Solar Power Projects - Power Tower Projects | Concentrating

    Science.gov Websites

    (CSP) projects that use power tower systems are listed below-alphabetically by project name. You can browse a project profile by clicking on the project name. You can also find related information on power Aurora Solar Energy Project Copiapó Crescent Dunes Solar Energy Project (Tonopah) Dahan Power Plant DEWA

  20. Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang

    Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).

  1. Concentrating Solar Power Projects - Shangyi 50MW DSG Tower CSP project |

    Science.gov Websites

    Concentrating Solar Power | NREL Shangyi 50MW DSG Tower CSP project Status Date: September 27 : 50.0 MW Gross: 50.0 MW Status: Under development Do you have more information, corrections, or comments ? Background Technology: Power tower Status: Under development Country: China City: Shangyi Region: Hebei

  2. 1. ENVIRONMENT, FROM NORTHWEST, SHOWING B&P INTERLOCKING TOWER AND POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. ENVIRONMENT, FROM NORTHWEST, SHOWING B&P INTERLOCKING TOWER AND POWER SUBSTATIONS - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD

  3. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  4. 8. View of power plant and radar tower, looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View of power plant and radar tower, looking southwest - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  5. 1. View of east elevation of power plant, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of east elevation of power plant, radar tower in background, looking west - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  6. 8. STATIC TEST TOWER NORTHWEST ELEVATION FROM THE POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. STATIC TEST TOWER - NORTHWEST ELEVATION FROM THE POWER PLANT TEST STAND. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  7. Power plant I - Fused salt

    NASA Astrophysics Data System (ADS)

    Roche, M.

    A solar thermal power plant using fused salt as the heat transfer fluid for steam power generation is analyzed for the feasibility of economic operation. The salt is also stored in a tank reservoir for maintaining the primary heat loop at temperatures high enough for the salts to remain liquid, and also to provide reserve power for the steam generator. Initial studies were with eutectic (hitec) salt comprising Na, KOH, and nitrites melting at 146 C, and further studies were performed employing draw salt, which has no nitrite, is more stable at high temperature, and melts at 225 C. The use of draw salt was found to allow a 5 percent reduction in storage capacity. Further examinations of the effects of the hitec salts on corrosion and composition degradation at high temperatures are indicated. The molten salt system is projected to offer an efficiency of 26 percent.

  8. Electrolyte salts for power sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doddapaneni, Narayan; Ingersoll, David

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  9. Concentrating Solar Power Projects - Sierra SunTower | Concentrating Solar

    Science.gov Websites

    Turbine Capacity: Net: 5.0 MW Gross: 5.0 MW Status: Currently Non-Operational Start Year: 2009 Do you have more information, corrections, or comments? Background Technology: Power tower Status: Currently Non

  10. Optical study of solar tower power plants

    NASA Astrophysics Data System (ADS)

    Eddhibi, F.; Ben Amara, M.; Balghouthi, M.; Guizani, A.

    2015-04-01

    The central receiver technology for electricity generation consists of concentrating solar radiation coming from the solar tracker field into a central receiver surface located on the top of the tower. The heliostat field is constituted of a big number of reflective mirrors; each heliostat tracks the sun individually and reflects the sunlight to a focal point. Therefore, the heliostat should be positioned with high precision in order to minimize optical losses. In the current work, a mathematical model for the analysis of the optical efficiency of solar tower field power plant is proposed. The impact of the different factors which influence the optical efficiency is analyzed. These parameters are mainly, the shading and blocking losses, the cosine effect, the atmospheric attenuation and the spillage losses. A new method for the calculation of blocking and shadowing efficiency is introduced and validated by open literature.

  11. The Effect Analysis of Strain Rate on Power Transmission Tower-Line System under Seismic Excitation

    PubMed Central

    Wang, Wenming

    2014-01-01

    The effect analysis of strain rate on power transmission tower-line system under seismic excitation is studied in this paper. A three-dimensional finite element model of a transmission tower-line system is created based on a real project. Using theoretical analysis and numerical simulation, incremental dynamic analysis of the power transmission tower-line system is conducted to investigate the effect of strain rate on the nonlinear responses of the transmission tower and line. The results show that the effect of strain rate on the transmission tower generally decreases the maximum top displacements, but it would increase the maximum base shear forces, and thus it is necessary to consider the effect of strain rate on the seismic analysis of the transmission tower. The effect of strain rate could be ignored for the seismic analysis of the conductors and ground lines, but the responses of the ground lines considering strain rate effect are larger than those of the conductors. The results could provide a reference for the seismic design of the transmission tower-line system. PMID:25105157

  12. Solar thermal power & gas turbine hybrid design with molten salt storage tank

    NASA Astrophysics Data System (ADS)

    Martín, Fernando; Wiesenberg, Ralf; Santana, Domingo

    2017-06-01

    Taking into consideration the need to decelerate the global climatic change, power generation has to shift from burning fossil fuel to renewable energy source in short medium period of time. In this work, we are presenting a new model of a solar-gas natural hybrid power cycle with the main aim of decoupling the solar generation system from the gas turbine system. The objective is to have high solar power contribution compared to conventional ISCC plants [2], producing firm and dispatchable electricity at the same time. The decoupling is motivated by the low solar contribution reached by the ISCC, which is technically limited to maximum of 15%, [4]. In our case, we have implemented a solar tower with molten salts as working fluid. Central receiver systems get higher performance than others systems, like parabolic trough technology [1], due to the higher temperature achieved in the heat transferred fluid HTF, close to 560°C.

  13. Radiation Testing of PICA at the Solar Power Tower

    NASA Technical Reports Server (NTRS)

    White, Susan M.

    2010-01-01

    Sandia National Laboratory's Solar Power Tower was used to irradiate specimens of Phenolic Impregnated Carbon Ablator (PICA), in order to evaluate whether this thermal protection system material responded differently to potential shock layer radiative heating than to convective heating. Tests were run at 50, 100 and 150 Watts per square centimeter levels of concentrated solar radiation. Experimental results are presented both from spectral measurements on 1- 10 mm thick specimens of PICA, as well as from in-depth temperature measurements on instrumented thicker test specimens. Both spectral measurements and measured in-depth temperature profiles showed that, although it is a porous, low-density material, PICA does not exhibit problematic transparency to the tested high levels of NIR radiation, for all pragmatic cm-to-inch scale thicknesses. PICA acted as a surface absorber to efficiently absorb the incident visible and near infrared incident radiation in the top 2 millimeter layer in the Solar Power Tower tests up to 150 Watts per square centimeter.

  14. Life Cycle Environmental Impacts Resulting from the Manufacture of the Heliostat Field for a Reference Power Tower Design in the United States: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, G.; Burkhardt, J.; Turchi, C.

    2012-10-01

    Life cycle assessment (LCA) is recognized as a useful analytical approach for quantifying environmental impacts of renewable energy technologies, including concentrating solar power (CSP). An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory is conducting a series of LCA studies for various CSP technologies. This paper contributes to a thorough LCA of a 100 MWnet molten salt power tower CSP plant by estimatingmore » the environmental impacts resulting from the manufacture of heliostats. Three life cycle metrics are evaluated: greenhouse gas emissions, water consumption, and cumulative energy demand. The heliostat under consideration (the 148 m2 Advanced Thermal Systems heliostat) emits 5,300 kg CO2eq, consumes 274 m3 of water, and requires 159,000 MJeq during its manufacture. Future work will incorporate the results from this study into the LCA model used to estimate the life cycle impacts of the entire 100 MWnet power tower CSP plant.« less

  15. Review on Water Distribution of Cooling Tower in Power Station

    NASA Astrophysics Data System (ADS)

    Huichao, Zhang; Lei, Fang; Hao, Guang; Ying, Niu

    2018-04-01

    As the energy sources situation is becoming more and more severe, the importance of energy conservation and emissions reduction gets clearer. Since the optimization of water distribution system of cooling tower in power station can save a great amount of energy, the research of water distribution system gets more attention nowadays. This paper summarizes the development process of counter-flow type natural draft wet cooling tower and the water distribution system, and introduces the related domestic and international research situation. Combining the current situation, we come to the conclusion about the advantages and disadvantages of the several major water distribution modes, and analyze the problems of the existing water distribution ways in engineering application, furthermore, we put forward the direction of water distribution mode development on the basis knowledge of water distribution of cooling tower. Due to the water system can hardly be optimized again when it’s built, choosing an appropriate water distribution mode according to actual condition seems to be more significant.

  16. Chalk Point cooling tower project native vegetation study. Final report 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, G.W.; Galloway, R.A.; Francis, B.A.

    1979-06-01

    The Potomac Electric Power Company generating station at Chalk Point, MD, utilizes brackish water in its natural draft cooling tower and, consequently, releases saline aerosol into the atmosphere. A research and monitoring project was established in 1974 to evaluate the effects of this drift on native perennial vegetation. Leaf samples have been collected form dogwood, Cornys florida, Virginia pine, Pinus virginiana, black locust, Robinia pseudoacacia, and sassafras, Sassafras albidum, located at 12 different sites in the vicinity of the power plant. Sampling was begun prior to the operation of the cooling tower, 1974, and continued through 1978. Complete results frommore » monthly monitoring of foliar chloride in the four native tree species is documented for May through September 1978. Results from salt spray experiments indicate chloride and sodium concentrations in the wood of dogwood trees increases with increased spraying levels.« less

  17. Effect of heliostat size on the levelized cost of electricity for power towers

    NASA Astrophysics Data System (ADS)

    Pidaparthi, Arvind; Hoffmann, Jaap

    2017-06-01

    The objective of this study is to investigate the effects of heliostat size on the levelized cost of electricity (LCOE) for power tower plants. These effects are analyzed in a power tower with a net capacity of 100 MWe, 8 hours of thermal energy storage and a solar multiple of 1.8 in Upington, South Africa. A large, medium and a small size heliostat with a total area of 115.56 m2, 43.3 m2 and 15.67 m2 respectively are considered for comparison. A radial-staggered pattern and an external cylindrical receiver are considered for the heliostat field layouts. The optical performance of the optimized heliostat field layouts has been evaluated by the Hermite (analytical) method using SolarPILOT, a tool used for the generation and optimization of the heliostat field layout. The heliostat cost per unit is calculated separately for the three different heliostat sizes and the effects due to size scaling, learning curve benefits and the price index is included. The annual operation and maintenance (O&M) costs are estimated separately for the three heliostat fields, where the number of personnel required in the field is determined by the number of heliostats in the field. The LCOE values are used as a figure of merit to compare the different heliostat sizes. The results, which include the economic and the optical performance along with the annual O&M costs, indicate that lowest LCOE values are achieved by the medium size heliostat with an area of 43.3 m2 for this configuration. This study will help power tower developers determine the optimal heliostat size for power tower plants currently in the development stage.

  18. Performance modeling and techno-economic analysis of a modular concentrated solar power tower with latent heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rea, Jonathan E.; Oshman, Christopher J.; Olsen, Michele L.

    In this paper, we present performance simulations and techno-economic analysis of a modular dispatchable solar power tower. Using a heliostat field and power block three orders of magnitude smaller than conventional solar power towers, our unique configuration locates thermal storage and a power block directly on a tower receiver. To make the system dispatchable, a valved thermosyphon controls heat flow from a latent heat thermal storage tank to a Stirling engine. The modular design results in minimal balance of system costs and enables high deployment rates with a rapid realization of economies of scale. In this new analysis, we combinemore » performance simulations with techno-economic analysis to evaluate levelized cost of electricity, and find that the system has potential for cost-competitiveness with natural gas peaking plants and alternative dispatchable renewables.« less

  19. Within compound, from Guard Tower, looking southeast, Power Plant (Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Guard Tower, looking southeast, Power Plant (Building 5761) to left, Satellite Communications Terminal (Building 5771) center, Supply Warehouse (Building 5768) to left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  20. Wet cooling towers: rule-of-thumb design and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leeper, Stephen A.

    1981-07-01

    A survey of wet cooling tower literature was performed to develop a simplified method of cooling tower design and simulation for use in power plant cycle optimization. The theory of heat exchange in wet cooling towers is briefly summarized. The Merkel equation (the fundamental equation of heat transfer in wet cooling towers) is presented and discussed. The cooling tower fill constant (Ka) is defined and values derived. A rule-of-thumb method for the optimized design of cooling towers is presented. The rule-of-thumb design method provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature,more » power requirements and construction cost. In addition, a method for simulation of cooling tower performance at various operating conditions is presented. This information is also useful in power plant cycle evaluation. Using the information presented, it will be possible to incorporate wet cooling tower design and simulation into a procedure to evaluate and optimize power plant cycles.« less

  1. Engineering evaluation of magma cooling-tower demonstration at Nevada Power Company's Sunrise Station

    NASA Astrophysics Data System (ADS)

    1980-11-01

    The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.

  2. Simulation and Evaluation of Small Scale Solar Power Tower Performance under Malaysia Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gamil, A. M.; Gilani, S. I.; Al-Kayiem, H. H.

    2013-06-01

    Solar energy is the most available, clean, and inexpensive source of energy among the other renewable sources of energy. Malaysia is an encouraging location for the development of solar energy systems due to abundant sunshine (10 hours daily with average solar energy received between 1400 and 1900 kWh/m2). In this paper the design of heliostat field of 3 dual-axis heliostat units located in Ipoh, Malaysia is introduced. A mathematical model was developed to estimate the sun position and calculate the cosine losses in the field. The study includes calculating the incident solar power to a fixed target on the tower by analysing the tower height and ground distance between the heliostat and the tower base. The cosine efficiency was found for each heliostat according to the sun movement. TRNSYS software was used to simulate the cosine efficiencies and field hourly incident solar power input to the fixed target. The results show the heliostat field parameters and the total incident solar input to the receiver.

  3. Airborne LIDAR point cloud tower inclination judgment

    NASA Astrophysics Data System (ADS)

    liang, Chen; zhengjun, Liu; jianguo, Qian

    2016-11-01

    Inclined transmission line towers for the safe operation of the line caused a great threat, how to effectively, quickly and accurately perform inclined judgment tower of power supply company safety and security of supply has played a key role. In recent years, with the development of unmanned aerial vehicles, unmanned aerial vehicles equipped with a laser scanner, GPS, inertial navigation is one of the high-precision 3D Remote Sensing System in the electricity sector more and more. By airborne radar scan point cloud to visually show the whole picture of the three-dimensional spatial information of the power line corridors, such as the line facilities and equipment, terrain and trees. Currently, LIDAR point cloud research in the field has not yet formed an algorithm to determine tower inclination, the paper through the existing power line corridor on the tower base extraction, through their own tower shape characteristic analysis, a vertical stratification the method of combining convex hull algorithm for point cloud tower scarce two cases using two different methods for the tower was Inclined to judge, and the results with high reliability.

  4. PBF Cooling Tower. Hot deck of Cooling Tower with fan ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Hot deck of Cooling Tower with fan motors in place. Fan's propeller blades (not in view) rotate within lower portion of vents. Inlet pipe is a left of view. Contractor's construction buildings in view to right. Photographer: Larry Page. Date: June 30, 1969. INEEL negative no. 69-3781 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility

    USGS Publications Warehouse

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Mike J.; Cryan, Paul

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  6. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility.

    PubMed

    Diehl, Robert H; Valdez, Ernest W; Preston, Todd M; Wellik, Michael J; Cryan, Paul M

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light ("solar flux") in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world's largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife.

  7. Evaluating the Effectiveness of Wildlife Detection and Observation Technologies at a Solar Power Tower Facility

    PubMed Central

    Diehl, Robert H.; Valdez, Ernest W.; Preston, Todd M.; Wellik, Michael J.; Cryan, Paul M.

    2016-01-01

    Solar power towers produce electrical energy from sunlight at an industrial scale. Little is known about the effects of this technology on flying animals and few methods exist for automatically detecting or observing wildlife at solar towers and other tall anthropogenic structures. Smoking objects are sometimes observed co-occurring with reflected, concentrated light (“solar flux”) in the airspace around solar towers, but the identity and origins of such objects can be difficult to determine. In this observational pilot study at the world’s largest solar tower facility, we assessed the efficacy of using radar, surveillance video, and insect trapping to detect and observe animals flying near the towers. During site visits in May and September 2014, we monitored the airspace surrounding towers and observed insects, birds, and bats under a variety of environmental and operational conditions. We detected and broadly differentiated animals or objects moving through the airspace generally using radar and near solar towers using several video imaging methods. Video revealed what appeared to be mostly small insects burning in the solar flux. Also, we occasionally detected birds flying in the solar flux but could not accurately identify birds to species or the types of insects and small objects composing the vast majority of smoking targets. Insect trapping on the ground was somewhat effective at sampling smaller insects around the tower, and presence and abundance of insects in the traps generally trended with radar and video observations. Traps did not tend to sample the larger insects we sometimes observed flying in the solar flux or found dead on the ground beneath the towers. Some of the methods we tested (e.g., video surveillance) could be further assessed and potentially used to automatically detect and observe flying animals in the vicinity of solar towers to advance understanding about their effects on wildlife. PMID:27462989

  8. Vortex-augmented cooling tower-windmill combination

    DOEpatents

    McAllister, Jr., John E.

    1985-01-01

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  9. Vortex-augmented cooling tower - windmill combination

    DOEpatents

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  10. Salt power - Is Neptune's ole salt a tiger in the tank

    NASA Astrophysics Data System (ADS)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  11. Baseload Nitrate Salt Central Receiver Power Plant Design Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilley, Drake; Kelly, Bruce; Burkholder, Frank

    The objectives of the work were to demonstrate that a 100 MWe central receiver plant, using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator, can 1) operate, at full load, for 6,400 hours each year using only solar energy, and 2) satisfy the DOE levelized energy cost goal of $0.09/kWhe (real 2009 $). To achieve these objectives the work incorporated a large range of tasks relating to many different aspects of a molten salt tower plant. The first Phase of the project focused on developing a baseline design for a Moltenmore » Salt Tower and validating areas for improvement. Tasks included a market study, receiver design, heat exchanger design, preliminary heliostat design, solar field optimization, baseline system design including PFDs and P&IDs and detailed cost estimate. The baseline plant met the initial goal of less than $0.14/kWhe, and reinforced the need to reduce costs in several key areas to reach the overall $0.09/kWhe goal. The major improvements identified from Phase I were: 1) higher temperature salt to improve cycle efficiency and reduce storage requirements, 2) an improved receiver coating to increase the efficiency of the receiver, 3) a large receiver design to maximize storage and meet the baseload hours objective, and 4) lower cost heliostat field. The second Phase of the project looked at advancing the baseline tower with the identified improvements and included key prototypes. To validate increasing the standard solar salt temperature to 600 °C a dynamic test was conducted at Sandia. The results ultimately proved the hypothesis incorrect and showed high oxide production and corrosion rates. The results lead to further testing of systems to mitigate the oxide production to be able to increase the salt temperature for a commercial plant. Foster Wheeler worked on the receiver design in both Phase I and Phase II looking at both design and lowering costs utilizing commercial fossil boiler

  12. Optical performance considerations for analysis and simulation of power tower plants

    NASA Astrophysics Data System (ADS)

    Pidaparthi, Arvind; Landman, Willem; Hoffmann, Jaap; Dinter, Frank

    2017-06-01

    South Africa has implemented a `time of day' tariff structure for concentrating solar power plants in the Renewable Energy Independent Power Producer Procurement Programme. It is hypothesised that payment allocation factors for the `time of day' and the `time of use' dispatch schedule influence the optimal heliostat field layout. SolarPILOT software is used to generate and optimize the heliostat field layout of a 100 MWe power tower plant in Upington, South Africa with 8 hours of thermal energy storage in the SunShot scenario with a high receiver thermal efficiency of 90%. A large size heliostat with a total area of 115.56 m2 and an external cylindrical receiver are considered for the heliostat field layout. A subset of 12 days is simulated on an hourly basis to achieve convergence and to take seasonal, daily and hourly weather variability into account. During the optimization of a heliostat field layout, the heliostats are ranked and selected according to a performance metric. In this study, two field layouts are compared based on two different performance metrics, namely: power delivered to the receiver and the time of use weighted power. The optical performance is simulated using both the Hermite (analytical) and the Monte-Carlo Ray-Tracing methods. By accounting for the TOU weighted power, it is found that the LCOE increases from 0.1831 /kWh to 0.1870 /kWh using the Hermite (analytical) method. Similarly, when MCRT techniques are used for the optical characterization, the LCOE value increases from 0.1781 /kWh to 0.1832 /kWh. It is recommended that payment allocation factors and the tariff structure for the time of day be included when comparing field layouts with other layout generation and optimization strategies. This study will be useful for power tower developers in identifying practices to be included in the optical characterization of their heliostat field layouts for better simulation results.

  13. Closed-loop control for power tower heliostats

    NASA Astrophysics Data System (ADS)

    Convery, Mark R.

    2011-10-01

    In a Power Tower solar thermal power plant, alignment and control of the heliostats constitutes one of the largest costs of both time and money. This is especially the case in systems where individual heliostats are small (~1m2). I describe a closed-loop control system that generates the required feedback by inducing small mechanical vibrations in the heliostat reflector surface using piezoelectric actuators. These vibrations induce time-dependent changes in the reflected wavefront that can be detected by photosensors surrounding the thermal receiver target. Time and frequency encoding of the vibrations allows identification of a misaligned heliostat from among the thousands in the system. Corrections can then be applied to bring the reflected beam onto the receiver target. This technique can, in principle, control thousands of heliostats simultaneously.Outdoor testing of a small-scale model of this system has confirmed that such a system is effective and can achieve milliradian tracking accuracy. If such a system were implemented in a commercial plant, it could relax the accuracy specification required of the heliostats as well as provide an automated alignment and calibration system. This could significantly reduce the installed cost of the heliostat field.

  14. Analysis of Ideal Towers for Tall Wind Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  15. Wind tower service lift

    DOEpatents

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  16. Simulation and experimental research of 1MWe solar tower power plant in China

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Wang, Zhifeng; Xu, Ershu

    2016-05-01

    The establishment of a reliable simulation system for a solar tower power plant can greatly increase the economic and safety performance of the whole system. In this paper, a dynamic model of the 1MWe Solar Tower Power Plant at Badaling in Beijing is developed based on the "STAR-90" simulation platform, including the heliostat field, the central receiver system (water/steam), etc. The dynamic behavior of the global CSP plant can be simulated. In order to verify the validity of simulation system, a complete experimental process was synchronously simulated by repeating the same operating steps based on the simulation platform, including the locations and number of heliostats, the mass flow of the feed water, etc. According to the simulation and experimental results, some important parameters are taken out to make a deep comparison. The results show that there is good alignment between the simulations and the experimental results and that the error range can be acceptable considering the error of the models. In the end, a comprehensive and deep analysis on the error source is carried out according to the comparative results.

  17. Formation of secondary inorganic aerosols by power plant emissions exhausted through cooling towers in Saxony.

    PubMed

    Hinneburg, Detlef; Renner, Eberhard; Wolke, Ralf

    2009-01-01

    The fraction of ambient PM10 that is due to the formation of secondary inorganic particulate sulfate and nitrate from the emissions of two large, brown-coal-fired power stations in Saxony (East Germany) is examined. The power stations are equipped with natural-draft cooling towers. The flue gases are directly piped into the cooling towers, thereby receiving an additionally intensified uplift. The exhausted gas-steam mixture contains the gases CO, CO2, NO, NO2, and SO2, the directly emitted primary particles, and additionally, an excess of 'free' sulfate ions in water solution, which, after the desulfurization steps, remain non-neutralized by cations. The precursor gases NO2 and SO2 are capable of forming nitric and sulfuric acid by several pathways. The acids can be neutralized by ammonia and generate secondary particulate matter by heterogeneous condensation on preexisting particles. The simulations are performed by a nested and multi-scale application of the online-coupled model system LM-MUSCAT. The Local Model (LM; recently renamed as COSMO) of the German Weather Service performs the meteorological processes, while the Multi-scale Atmospheric Transport Model (MUSCAT) includes the transport, the gas phase chemistry, as well as the aerosol chemistry (thermodynamic ammonium-sulfate-nitrate-water system). The highest horizontal resolution in the inner region of Saxony is 0.7 km. One summer and one winter episode, each realizing 5 weeks of the year 2002, are simulated twice, with the cooling tower emissions switched on and off, respectively. This procedure serves to identify the direct and indirect influences of the single plumes on the formation and distribution of the secondary inorganic aerosols. Surface traces of the individual tower plumes can be located and distinguished, especially in the well-mixed boundary layer in daytime. At night, the plumes are decoupled from the surface. In no case does the resulting contribution of the cooling tower emissions to PM10

  18. Concentrating Solar Power Projects in China | Concentrating Solar Power |

    Science.gov Websites

    Delingha 50MW Thermal Oil Parabolic Trough project Gansu Akesai 50MW Molten Salt Trough project Golden Tower 100MW Molten Salt project Golmud Gulang 100MW Thermal Oil Parabolic Trough project Hami 50 MW CSP Yumen 50MW Thermal Oil Trough project Shangyi 50MW DSG Tower CSP project SunCan Dunhuang 10 MW Phase I

  19. The optimal operation of cooling tower systems with variable-frequency control

    NASA Astrophysics Data System (ADS)

    Cao, Yong; Huang, Liqing; Cui, Zhiguo; Liu, Jing

    2018-02-01

    This study investigates the energy performance of chiller and cooling tower systems integrated with variable-frequency control for cooling tower fans and condenser water pumps. With regard to an example chiller system serving an office building, Chiller and cooling towers models were developed to assess how different variable-frequency control methods of cooling towers fans and condenser water pumps influence the trade-off between the chiller power, pump power and fan power under various operating conditions. The matching relationship between the cooling tower fans frequency and condenser water pumps frequency at optimal energy consumption of the system is introduced to achieve optimum system performance.

  20. Transient simulation of molten salt central receiver

    NASA Astrophysics Data System (ADS)

    Doupis, Dimitri; Wang, Chuan; Carcorze-Soto, Jorge; Chen, Yen-Ming; Maggi, Andrea; Losito, Matteo; Clark, Michael

    2016-05-01

    Alstom is developing concentrated solar power (CSP) utilizing 60/40wt% NaNO3-KNO3 molten salt as the working fluid in a tower receiver for the global renewable energy market. In the CSP power generation cycle, receivers undergo a daily cyclic operation due to the transient nature of solar energy. Development of robust and efficient start-up and shut-down procedures is critical to avoiding component failures due to mechanical fatigue resulting from thermal transients, thus maintaining the performance and availability of the CSP plant. The Molten Salt Central Receiver (MSCR) is subject to thermal transients during normal daily operation, a cycle that includes warmup, filling, operation, draining, and shutdown. This paper describes a study to leverage dynamic simulation and finite element analysis (FEA) in development of start-up, shutdown, and transient operation concepts for the MSCR. The results of the FEA also verify the robustness of the MSCR design to the thermal transients anticipated during the operation of the plant.

  1. 10. VIEW TO SOUTHEAST, SAMPLING BUILDING, FOUNDATION, WATER TOWER, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW TO SOUTHEAST, SAMPLING BUILDING, FOUNDATION, WATER TOWER, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  2. Analysis of Ideal Towers for Tall Wind Applications: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, Katherine L; Damiani, Rick R; Roberts, Joseph O

    Innovation in wind turbine tower design is of significant interest for future development of wind power plants. First, wind turbine towers account for a large portion of overall capital expenditures for wind power projects. Second, for low wind-resource regions of the world, the use of low-cost tall-tower technology has the potential to open new markets for development. This study investigates the relative potential of various tower configurations in terms of mass and cost. For different market applications and hub heights, idealized tall towers are designed and compared. The results show that innovation in wind turbine controls makes reaching higher hubmore » heights with current technology economically viable. At the same time, new technologies hold promise for reducing tower costs as these technologies mature and hub heights reach twice the current average.« less

  3. The nominal cooling tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1995-12-31

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95{degrees}F. Hot Water temperature (HWT) Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies through out the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can selectmore » the nominal cooling tower model recommended by the manufacturer. Ask any HVAC operator, refinery manager, power generating station operator what happens when the Wet Bulb reaches or exceeds the design WBT of the area. He probably will tell you, {open_quotes}My cooling tower works quite well, but in the summer time, I usually have trouble with it.{close_quotes} This occurs because he is operating a nominal cooling tower.« less

  4. 5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. STEAM PLANT COOLING TOWER LOCATED WEST OF STEAM PLANT BUILDING, FROM SOUTH. SHOWS CURRENT LEVEL OF DISREPAIR. December 4, 1990 - Crosscut Steam Plant, North side Salt River near Mill Avenue & Washington Street, Tempe, Maricopa County, AZ

  5. Towers for Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kurian, V. J.; Narayanan, S. P.; Ganapathy, C.

    2010-06-01

    Increasing energy demand coupled with pollution free production of energy has found a viable solution in wind energy. Land based windmills have been utilized for power generation for more than two thousand years. In modern times wind generated power has become popular in many countries. Offshore wind turbines are being used in a number of countries to tap the energy from wind over the oceans and convert to electric energy. The advantages of offshore wind turbines as compared to land are that offshore winds flow at higher speed than onshore winds and the more available space. In some land based settings, for better efficiency, turbines are separated as much as 10 rotor diameters from each other. In offshore applications where only two wind directions are likely to predominate, the distances between the turbines arranged in a line can be shortened to as little as two or four rotor diameters. Today, more than a dozen offshore European wind facilities with turbine ratings of 450 kw to 3.6 MW exist offshore in very shallow waters of 5 to 12 m. Compared to onshore wind turbines, offshore wind turbines are bigger and the tower height in offshore are in the range of 60 to 80 m. The water depths in oceans where offshore turbines can be located are within 30 m. However as the distance from land increases, the costs of building and maintaining the turbines and transmitting the power back to shore also increase sharply. The objective of this paper is to review the parameters of design for the maximum efficiency of offshore wind turbines and to develop types offshore towers to support the wind turbines. The methodology of design of offshore towers to support the wind turbine would be given and the environmental loads for the design of the towers would be calculated for specific cases. The marine corrosion on the towers and the methods to control the corrosion also would be briefly presented. As the wind speeds tend to increase with distance from the shore, turbines build father

  6. Themis - A solar power station

    NASA Astrophysics Data System (ADS)

    Hillairet, J.

    The organization, goals, equipment, costs, and performance of the French Themis (Thermo-helio-electric-MW) project are outlined. The program was begun for both the domestic energy market and for export. The installation comprises a molten eutectic salt loop which receives heat from radiators situated in a central tower. The salt transfers the heat to water for steam generation of electricity. A storage tank holds enough molten salt to supply one day's reserve of power, 40 MWh. A field of heliostats directs the suns rays for an estimated 2400 hr/yr onto the central receiver aperture, while 11 additional parabolic concentrators provide sufficient heat to keep the salt reservoir at temperatures exceeding 200 C. In a test run of several months during the spring of 1982 the heliostats directed the sun's rays with an average efficiency of 75 percent, yielding 2.3 MW of power at a system efficiency of 20.5 percent in completely automatic operation.

  7. Concentrating Solar Power Gen3 Demonstration Roadmap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehos, Mark; Turchi, Craig; Vidal, Judith

    Today's power-tower concentrating solar power (CSP) technology exists in large part as a result of Department of Energy (DOE) and utility industry funding of demonstration systems in the 1980s and 1990s. Today's most advanced towers are integrated with molten-salt thermal energy storage, delivering thermal energy at 565 degrees C for integration with conventional steam-Rankine cycles. The supercritical carbon dioxide power cycle has been identified as a likely successor to the steam-Rankine power cycle due to its potential for high efficiency when operating at elevated temperatures of 700 degrees C or greater. Over the course of the SunShot Initiative, DOE hasmore » supported a number of technology pathways that can operate efficiently at these temperatures and that hold promise to be reliable and cost effective. Three pathways - molten salt, particle, and gaseous - were selected for further investigation based on a two-day workshop held in August of 2016. The information contained in this roadmap identifies research and development challenges and lays out recommended research activities for each of the three pathways. DOE foresees that by successfully addressing the challenges identified in this roadmap, one or more technology pathways will be positioned for demonstration and subsequent commercialization within the next ten years. Based on current knowledge of the three power tower technologies, all three have the potential to achieve the SunShot goal of 6 cents/kilowatt-hour. Further development, modeling, and testing are now required to bring one or more of the technologies to a stage where integrated system tests and pilot demonstrations are feasible.« less

  8. CFD analysis of supercritical CO2 used as HTF in a solar tower receiver

    NASA Astrophysics Data System (ADS)

    Roldán, M. I.; Fernández-Reche, J.

    2016-05-01

    The relative cost of a solar receiver can be minimized by the selection of an appropriate heat transfer fluid capable of achieving high receiver efficiencies. In a conventional central receiver system, the concentrated solar energy is transferred from the receiver tube walls to the heat transfer fluid (HTF), which passes through a heat exchanger to generate steam for a Rankine cycle. Thus, higher working fluid temperature is associated with greater efficiency in receiver and power cycle. Emerging receiver designs that can enable higher efficiencies using advanced power cycles, such as supercritical CO2 (s-CO2) closed-loop Brayton cycles, include direct heating of s-CO2 in tubular receiver designs capable of withstanding high internal fluid pressures (around 20 MPa) and temperatures (900 K). Due to the high pressures required and the presence of moving components installed in pipelines (ball-joints and/or flexible connections), the use of s-CO2 presents many technical challenges due to the compatibility of seal materials and fluid leakages of the moving connections. These problems are solved in solar tower systems because the receiver is fixed. In this regard, a preliminary analysis of a tubular receiver with s-CO2 as HTF has been developed using the design of a molten-salt receiver which was previously tested at Plataforma Solar de Almería (PSA). Therefore, a simplified CFD model has been carried out in this study in order to analyze the feasibility of s-CO2 as HTF in solar towers. Simulation results showed that the heat gained by s-CO2 was around 75% greater than the one captured by molten salts (fluid inlet temperature of 715 K), but at a pressure range of 7.5-9.7 MPa. Thus, the use of s-CO2 as HTF in solar tower receivers appears to be a promising alternative, taking into account both the operating conditions required and their maintenance cost.

  9. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  10. A Spanish ''Power Tower'' solar system: Project CESA-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torralbo, A.M.; Gonzalvez, M.; Lacal, J.A.

    1984-02-01

    Like many other countries and organizations, Spain has been developing a program to investigate the economic viability of new sources of energy. Among these, it should be pointed out, is included the large solar power systems. Within this investigation program, ''Centro de Estudios de la Energia'', an organization dependent on ''Ministerio de Industria y Energia'', is carrying out the CESA-1 Project, which consists of design, construction, start-up, and operation of a 1.2-MW Pilot Solar Power Plant. If the current technical uncertainties are removed and the power tower concept demonstrates its economical viability, Spain will be one of the most appropriatemore » countries in the world for a full-scale implementation of this technology. For this reason, the ''Ministerio de Industria y Energia'' reached the conclusion in mid-1977 that it would be of interest to explore this technology using the domestic industrial potential. The project was approved by the Council of Ministers in June 1977 and the project begun in early 1978. The management of the Project is the direct responsibility of ''El Centro de Estudios de la Energia'' and was helped by the engineering firms Initec and Sener to attain the adequate organization to carry out the project.« less

  11. Startup of Pumping Units in Process Water Supplies with Cooling Towers at Thermal and Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berlin, V. V., E-mail: vberlin@rinet.ru; Murav’ev, O. A., E-mail: muraviov1954@mail.ru; Golubev, A. V., E-mail: electronik@inbox.ru

    Aspects of the startup of pumping units in the cooling and process water supply systems for thermal and nuclear power plants with cooling towers, the startup stages, and the limits imposed on the extreme parameters during transients are discussed.

  12. In Hot Water: A Cooling Tower Case Study. Instructor's Manual

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power output. The efficiency…

  13. Thermo-mechanical and optical optimization of the molten salt receiver for a given heliostat field

    NASA Astrophysics Data System (ADS)

    Augsburger, Germain; Das, Apurba K.; Boschek, Erik; Clark, Michael M.

    2016-05-01

    The tower type molten salt solar thermal power plant has proven to be advantageous over other utility scale solar power plant configurations due to its scalability and provision of storage, thereby improving the dispatchability. The configuration consists of a molten salt central receiver (MSCR) located atop an optimally located tower within a heliostat field with thousands of mirrors. The MSCR receives the concentrated energy from the heliostat field which heats a molten salt heat transfer fluid for thermal storage and utilization in producing steam as and when required for power generation. The MSCR heat transfer surface consists of banks of tangent tubes arranged in panels. The combined cost of the heliostat field and the receiver is 40%-50% of the total plant cost, which calls for optimization to maximize their utilization. Several previous studies have looked into the optimum solar power plant size based on various site conditions. However, the combined optimization of the receiver and the heliostat field has not been reported before. This study looks into the optimum configuration of the receiver for a given heliostat field. An in-house tool has been developed to select and rank a few receiver surface configurations (typically <50) from a list of hundreds of thousands of possible options. The operating limits which the heliostat field needs to obey are defined for the ranked surface configurations based on several different design considerations (e.g. mechanical integrity, corrosion limits). The thermal output of the receiver configurations for a given heliostat field is maximized. A combined rank indicating the optimum configurations in descending order of preference is presented based on the performance and various other practical considerations (e.g. total surface area, cost of material, ability of aiming strategies to distribute the flux). The methodology thus provided can be used as a guideline to arrive at an optimum receiver configuration for a given

  14. Evaluation of dynamic response for monopole and hybrid wind mill tower

    NASA Astrophysics Data System (ADS)

    Shah, Hemal J.; Desai, Atul K.

    2017-07-01

    The wind mill towers are constructed using monopoles or lattice type tower. As the height of tower increases it gives more power but it becomes uneconomical, so in the present research work innovative wind mill tower such as combination of monopole and lattice tower is analyzed using FEM software. When the tall structures are constructed on soft soil it becomes dynamically sensitive so 3 types of soil such as hard, medium and soft soil is also modeled and the innovative tower is studied for different operating frequencies of wind turbine. From study it is concluded that the innovative tower will reduce resonance condition considering soil structure interaction.

  15. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reducemore » the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with

  16. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  17. PBF Cooling Tower and it Auxiliary Building (PER624) to left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower and it Auxiliary Building (PER-624) to left of tower. Camera facing west and the east louvered face of the tower. Details include secondary coolant water riser piping and flow control valves (butterfly valves) to distribute water evenly to all sections of tower. Photographer: Holmes. Date: May, 20, 1970. INEEL negative no. 70-2322 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  19. Energy conservation strategies, the ignored cooling towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1997-06-01

    Because of their apparent lack of sophistication, cooling towers are usually considered orphans of the facilities operation. Historically, cooling towers have been neglected in refrigeration air conditioning systems, electric power generating stations, manufacturing plants, and chemical process plants. Operators are aware of the importance of their sophisticated equipment but, they take the apparently simple cooling towers and cold water returning for granted, Since the box looks sturdy and the fans are rotating, the operators think all is well and ignore the quality of water coming off the tower. A cooling tower is purchased for Design Conditions of performance which aremore » specified. Design Conditions relate to the volume of circulating water (GPM), hot water temperature (HWT), cold water temperature (CWT) discharge, and wet bulb temperature (WBT). The WBT consisting of ambient temperature and relative humidity. After the tower is on line and the CWT becomes inadequate, many engineers look to solutions other than the obvious. All cooling towers are purchased to function at 100% of capability in accordance with Design Condition. In the real world of on-stream utilization, the level of operation is lower. It can be deficient as much as 30% due to a variety of reasons which are not necessarily due to the failure of the performance of the tower.« less

  20. In Hot Water: A Cooling Tower Case Study

    ERIC Educational Resources Information Center

    Cochran, Justin; Raju, P. K.; Sankar, Chetan

    2005-01-01

    Problem Statement: Vogtle Electric Generating Plant operated by Southern Nuclear Operating Company, a subsidiary of Southern Company, has found itself at a decision point. Vogtle depends on their natural draft cooling towers to remove heat from the power cycle. Depending on the efficiency of the towers, the cycle can realize more or less power…

  1. Bird strike and electrocutions at power lines, communication towers, and wind turbines: state of the art and state of the science - next steps toward mitigation

    Treesearch

    Albert M. Manville II

    2005-01-01

    Migratory birds suffer considerable human-caused mortality from structures built to provide public services and amenities. Three such entities are increasing nationwide: communication towers, power lines, and wind turbines. Communication towers have been growing at an exponential rate over at least the past 6 years. The U.S. Fish and Wildlife Service is especially...

  2. An experimental study of windturbine noise from blade-tower wake interaction

    NASA Astrophysics Data System (ADS)

    Marcus, E. N.; Harris, W. L.

    1983-04-01

    A program of experiments has been conducted to study the impulsive noise of a horizontal axis windturbine. These tests were performed on a 1/53 scale model of the DOE-NASA MOD-1 windturbine. Experiments were performed in the M.I.T. 5 x 7-1/2 ft Anechoic Windtunnel Facility. The impulsive noise of a horizontal axis windturbine is observed to result from repeated blade passage through the mean velocity deficit induced in the lee of the windturbine support tower. The two factors which most influence this noise are rotation speed and tower drag coefficient. The intensity of noise from blade tower wake interaction is predicted to increase with the fourth power of the RPM and the second power of the tower drag coefficient. These predictions are confirmed in experiments. Further experiments are also presented in order to observe directionality of the acoustic field as well as the acoustic influence of tower shape and blade number.

  3. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN,EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-48 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  4. DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF AERIAL TRAM SUPPORT TOWER SIX WITH TOWERS SEVEN, EIGHT, NINE, TEN, AND BREAK OVER TOWER IN DISTANCE, LOOKING NORTH. TOWER SIX IS THE LAST BEFORE A DEEP CHASM, AS IS SEEN BY THE DISTANCE BETWEEN TOWERS SIX AND SEVEN. SEE CA-291-21 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  5. Vibration analysis of three guyed tower designs for intermediate size wind turbines

    NASA Technical Reports Server (NTRS)

    Christie, R. J.

    1982-01-01

    Three guyed tower designs were analyzed for intermediate size wind turbines. The four lowest natural frequencies of vibration of the three towers concepts were estimated. A parametric study was performed on each tower to determine the effect of varying such tower properties as the inertia and stiffness of the tower and guys, the inertia values of the nacelle and rotor, and the rotational speed of the rotor. Only the two lowest frequencies were in a range where they could be excited by the rotor blade passing frequencies. There two frequencies could be tuned by varying the guy stiffness, the guy attachment point on the tower, the tower and mass stiffness, and the nacelle/rotor/power train masses.

  6. 2. ENVIRONMENT, FROM SOUTHEAST, SHOWING B&P INTERLOCKING TOWER, AUXILIARY INTERLOCKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. ENVIRONMENT, FROM SOUTHEAST, SHOWING B&P INTERLOCKING TOWER, AUXILIARY INTERLOCKING BUILDING, AND POWER SUBSTATION - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD

  7. Acidity of vapor plume from cooling tower mixed with flue gases emitted from coal-fired power plant.

    PubMed

    Hlawiczka, Stanislaw; Korszun, Katarzyna; Fudala, Janina

    2016-06-01

    Acidity of products resulting from the reaction of flue gas components emitted from a coal-fired power plant with water contained in a vapor plume from a wet cooling tower was analyzed in a close vicinity of a power plant (710 m from the stack and 315 m from the cooling tower). Samples of this mixture were collected using a precipitation funnel where components of the mixed plumes were discharged from the atmosphere with the rainfall. To identify situations when the precipitation occurred at the same time as the wind directed the mixed vapor and flue gas plumes above the precipitation funnel, an ultrasound anemometer designed for 3D measurements of the wind field located near the funnel was used. Precipitation samples of extremely high acidity were identified - about 5% of samples collected during 12 months showed the acidity below pH=3 and the lowest recorded pH was 1.4. During the measurement period the value of pH characterizing the background acidity of the precipitation was about 6. The main outcome of this study was to demonstrate a very high, and so far completely underestimated, potential of occurrence of episodes of extremely acid depositions in the immediate vicinity of a coal-fired power plant. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. PBF Cooling Tower contextual view. Camera facing southwest. West wing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower contextual view. Camera facing southwest. West wing and north facade (rear) of Reactor Building (PER-620) is at left; Cooling Tower to right. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4913 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Capillary Ion Concentration Polarization for Power-Free Salt Purification

    NASA Astrophysics Data System (ADS)

    Park, Sungmin; Jung, Yeonsu; Cho, Inhee; Kim, Ho-Young; Kim, Sung Jae

    2014-11-01

    In this presentation, we experimentally and theoretically demonstrated the capillary based ion concentration polarization for power-free salt purification system. Traditional ion concentration polarization phenomenon has been studied for a decade for both fundamental nanoscale fluid dynamics and novel engineering applications such as desalination, preconcentration and energy harvesting devices. While the conventional system utilizes an external power source, the system based on capillary ion concentration polarization is capable of perm-selective ion transportation only by capillarity so that the same ion depletion zone can be formed without any external power sources. An ion concentration profile near the nanostructure was tracked using fluorescent probes and analyzed by solving the modified Nernst-Planck equation. As a result, the concentration in the vicinity of the nanostructure was at least 10 times lower than that of bulk electrolyte and thus, the liquid absorbed into the nanostructure had the low concentration. This mechanism can be used for the power free salt purification system which would be significantly useful in underdeveloped and remote area. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-MA1301-02.

  10. The influence and analysis of natural crosswind on cooling characteristics of the high level water collecting natural draft wet cooling tower

    NASA Astrophysics Data System (ADS)

    Ma, Libin; Ren, Jianxing

    2018-01-01

    Large capacity and super large capacity thermal power is becoming the main force of energy and power industry in our country. The performance of cooling tower is related to the water temperature of circulating water, which has an important influence on the efficiency of power plant. The natural draft counter flow wet cooling tower is the most widely used cooling tower type at present, and the high cooling tower is a new cooling tower based on the natural ventilation counter flow wet cooling tower. In this paper, for high cooling tower, the application background of high cooling tower is briefly explained, and then the structure principle of conventional cooling tower and high cooling tower are introduced, and the difference between them is simply compared. Then, the influence of crosswind on cooling performance of high cooling tower under different wind speeds is introduced in detail. Through analysis and research, wind speed, wind cooling had little impact on the performance of high cooling tower; wind velocity, wind will destroy the tower inside and outside air flow, reducing the cooling performance of high cooling tower; Wind speed, high cooling performance of cooling tower has increased, but still lower than the wind speed.

  11. PBF Cooling Tower. View of stairway to fan deck. Vents ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View of stairway to fan deck. Vents are made of redwood. Camera facing southwest toward north side of Cooling Tower. Siding is corrugated asbestos concrete. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3463 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  12. PBF Cooling Tower. Camera facing southwest. Round piers will support ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. Camera facing southwest. Round piers will support Tower's wood "fill" or "packing." Black-topped stack in far distance is at Idaho Chemical Processing Plant. Photographer: John Capek. Date: October 16, 1968. INEEL negative no. 68-4097 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. System of tolerances for a solar-tower power station

    NASA Astrophysics Data System (ADS)

    Aparisi, R. R.; Tepliakov, D. I.

    The principles underlying the establishment of a system of tolerances for a solar-tower station are presented. Attention is given to static and dynamic tolerances and deviations for a single heliostat, and geometrical tolerances for a field of heliostats.

  14. Improved heliostat field design for solar tower plants

    NASA Astrophysics Data System (ADS)

    Collado, Francisco J.; Guallar, Jesús

    2017-06-01

    In solar power tower (SPT) systems, selecting the optimum location of thousands of heliostats and the most profitable tower height and receiver size remains a challenge. Campo code is prepared for the detailed design of such plants in particular, the optimum layout, provided that the plant size is known. Therefore, less exhaustive codes, as DELSOL3, are also needed to perform preliminary parametric analysis that narrows the most economic size of the plant.

  15. 13. INTERIOR VIEW OF TOWER OFFICE SHOWING CONTROL TOWER DESK, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. INTERIOR VIEW OF TOWER OFFICE SHOWING CONTROL TOWER DESK, FACING NORTHWEST. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  16. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  17. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  18. PBF Cooling Tower Auxiliary Building (PER624) interior. Camera facing north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower Auxiliary Building (PER-624) interior. Camera facing north. Deluge valves and automatic fire protection piping for Cooling Tower. Photographer: Holmes. Date: May 20, 1970. INEEL negative no. 70-2323 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  19. Optimized molten salt receivers for ultimate trough solar fields

    NASA Astrophysics Data System (ADS)

    Riffelmann, Klaus-J.; Richert, Timo; Kuckelkorn, Thomas

    2016-05-01

    Today parabolic trough collectors are the most successful concentrating solar power (CSP) technology. For the next development step new systems with increased operation temperature and new heat transfer fluids (HTF) are currently developed. Although the first power tower projects have successfully been realized, up to now there is no evidence of an all-dominant economic or technical advantage of power tower or parabolic trough. The development of parabolic trough technology towards higher performance and significant cost reduction have led to significant improvements in competitiveness. The use of molten salt instead of synthetic oil as heat transfer fluid will bring down the levelized costs of electricity (LCOE) even further while providing dispatchable energy with high capacity factors. FLABEG has developed the Ultimate TroughTM (UT) collector, jointly with sbp Sonne GmbH and supported by public funds. Due to its validated high optical accuracy, the collector is very suitable to operate efficiently at elevated temperatures up to 550 °C. SCHOTT will drive the key-innovations by introducing the 4th generation solar receiver that addresses the most significant performance and cost improvement measures. The new receivers have been completely redesigned to provide a product platform that is ready for high temperature operation up to 550 °C. Moreover distinct product features have been introduced to reduce costs and risks in solar field assembly and installation. The increased material and design challenges incurred with the high temperature operation have been reflected in sophisticated qualification and validation procedures.

  20. Convection towers

    DOEpatents

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  1. Convection towers

    DOEpatents

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  2. PBF. Oblique and contextual view of PBF Cooling Tower, PER720. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF. Oblique and contextual view of PBF Cooling Tower, PER-720. Camera facing northeast. Auxiliary Building (PER-624) abuts Cooling Tower. Demolition equipment has arrived. Date: August 2003. INEEL negative no. HD-35-11-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. Corrosion of galvanized transmission towers near the Colbert Steam Plant: data report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, J.H.

    1980-01-01

    This report contains data relating power plant emissions and the thickness of the galvanized layers on 20 electric transmission towers near the Colbert Steam plant after 25 years of ambient exposure. In addition to the thickness of the galvanized layers, total exposure to SO/sub 2/ at each tower was estimated and relevant meteorological data were reported. These data may be useful in relating galvanized corrosion to power plant emissions.

  4. THE TOWER HOUSE, LOOKING WEST. The tower house provided a ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    THE TOWER HOUSE, LOOKING WEST. The tower house provided a water tank on the second floor that gravity fed water to the Kineth house and farm buildings. The one-story addition to the west of the tower provided workshop space. The hog shed is seen on the left of the image and the concrete foundation of the upright silo is in the foreground on the right. - Kineth Farm, Tower House, 19162 State Route 20, Coupeville, Island County, WA

  5. Experimental Investigation on Strengthening of Bolted Connections in Transmission/Communication Towers

    NASA Astrophysics Data System (ADS)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.

    2018-06-01

    Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.

  6. Experimental Investigation on Strengthening of Bolted Connections in Transmission/Communication Towers

    NASA Astrophysics Data System (ADS)

    Balagopal, R.; Prasad Rao, N.; Rokade, R. P.; Umesha, P. K.

    2018-02-01

    Due to increase in demand for power supply and increase in bandwidth for communication industry, the existing transmission line (TL) and communication towers needs to be strengthened. The strengthening of existing tower is economical rather than installation of new towers due to constraints in acquisition of land. The size of conductors have to be increased or additional number of antenna needs to be installed in existing TL/communication tower respectively. The compression and tension capacity of members in the existing towers have to be increased to sustain the additional loads due to wind and self-weight of these components. The tension capacity enhancement of existing angle sections in live line condition without power shut-down is a challenging task. In the present study, the use of Glass Fiber Reinforced Plastic (GFRP) plate/angle sections is explored to strengthen existing bolted connections in TL/communication towers. Experimental investigation conducted at component level on strengthening of existing two types of single cover steel butt joint, one made of steel plate and another joint made of steel angle sections respectively. First series of experiment conducted on strengthening the connection using GFRP plate/cleat angle sections. The second series of strengthening experiment is conducted using steel plate/angle sections to replace GFRP sections. The load sharing behaviour of strengthened GFRP and steel section is compared and suitable recommendations are given.

  7. Convection towers

    DOEpatents

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  8. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  9. Reliability assessment of an OVH HV power line truss transmission tower subjected to seismic loading

    NASA Astrophysics Data System (ADS)

    Winkelmann, Karol; Jakubowska, Patrycja; Soltysik, Barbara

    2017-03-01

    The study focuses on the reliability of a transmission tower OS24 ON150 + 10, an element of an OVH HV power line, under seismic loading. In order to describe the seismic force, the real-life recording of the horizontal component of the El Centro earthquake was adopted. The amplitude and the period of this excitation are assumed random, their variation is described by Weibull distribution. The possible space state of the phenomenon is given in the form of a structural response surface (RSM methodology), approximated by an ANOVA table with directional sampling (DS) points. Four design limit states are considered: stress limit criterion for a natural load combination, criterion for an accidental combination (one-sided cable snap), vertical and horizontal translation criteria. According to these cases the HLRF reliability index β is used for structural safety assessment. The RSM approach is well suited for the analysis - it is numerically efficient, not excessively time consuming, indicating a high confidence level. Given the problem conditions, the seismic excitation is shown the sufficient trigger to the loss of load-bearing capacity or stability of the tower.

  10. PBF Cooling Tower detail. Camera facing southwest into north side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower detail. Camera facing southwest into north side of Tower. Five horizontal layers of splash bars constitute fill decks, which will break up falling water into droplets, promoting evaporative cooling. Louvered faces, through which air enters tower, are on east and west sides. Louvers have been installed. Support framework for one of two venturi-shaped fan stacks (or "vents") is in center top. Orifices in hot basins (not in view) will distribute water over fill. Photographer: Kirsh. Date: May 15, 1969. INEEL negative no. 69-3032 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. Corona discharges from a windmill and its lightning protection tower in winter thunderstorms

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Wang, Daohong; Rison, William; Thomas, Ronald J.; Edens, Harald E.; Takagi, Nobuyuki; Krehbiel, Paul R.

    2017-05-01

    This paper presents lightning mapping array (LMA) observations of corona discharges from a windmill and its lightning protection tower in winter thunderstorms in Japan. Corona discharges from the windmill, called windmill coronas, and those from the tower, called tower coronas, are distinctly different. Windmill coronas occur with periodic bursts, generally radiate larger power, and possibly develop to higher altitudes than tower coronas do. A strong negative electric field is necessary for the frequent production of tower coronas but is not apparently related with windmill coronas. These differences are due to the periodic rotation of the windmill and the moving blades which can escape space charges produced by corona discharges and sustain a large local electric field. The production period of windmill coronas is related with the rotation period of the windmill. Surprisingly, for one rotation of the windmill, only two out of the three blades produce detectable discharges and source powers of discharges from these two blades are different. The reason for this phenomenon is still unclear. For tower coronas, the source rate can get very high only when there is a strong negative electric field, and the source power can get very high only when the source rate is very low. The relationship between corona discharges and lightning flashes is investigated. There is no direct evidence that corona discharges can increase the chance of upward leader initiation, but nearby lightning flashes can increase the source rate of corona discharges right after the flashes. The peak of the source height distribution of corona discharges is about 100 m higher than the top of the windmill and the top of the tower. Possible reasons for this result are discussed.

  12. 4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER TOWER, AND OFFICE BUILDING. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. KM3NeT tower data acquisition and data transport electronics

    NASA Astrophysics Data System (ADS)

    Nicolau, C. A.; Ameli, F.; Biagioni, A.; Capone, A.; Frezza, O.; Lonardo, A.; Masullo, R.; Mollo, C. M.; Orlando, A.; Simeone, F.; Vicini, P.

    2016-04-01

    In the framework of the KM3Net European project, the production stage of a large volume underwater neutrino telescope has started. The forthcoming installation includes 8 towers and 24 strings, that will be installed 100 km off-shore Capo Passero (Italy) at 3500 m depth. The KM3NeT tower, whose layout is strongly based on the NEMO Phase-2 prototype tower deployed in March 2013, has been re-engineered and partially re-designed in order to optimize production costs, power consumption, and usability. This contribution gives a description of the main electronics, including front-end, data transport and clock distribution system, of the KM3NeT tower detection unit.

  14. PBF Cooling Tower (PER720). Camera faces east to show west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Camera faces east to show west facade. Sloped (louvered) panels in this and opposite facade allow air to enter tower and cool water falling on splash bars within. Date: August 2003. INEEL negative no. HD-35-10-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    NASA Astrophysics Data System (ADS)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-01

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative "dry" cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  16. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understandingmore » the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.« less

  17. Rust and paint stripping from power transmission towers with a pulsed Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Ashidate, Shu-ichi; Obara, Minoru

    1997-04-01

    The possibility of the rust and paint removal from the power transmission towers was investigated with the pulsed Nd:YAG laser for the first time. The red rust and paint were successfully removed without damaging underlying Zn(zinc) galvanized steel substrates. The optimum irradiated laser fluence for the red rust was found from 0.3 J/cm2 to 0.4 J/cm2 for 9 ns short pulses, from 1.0 J/cm2 to 4.4 J/cm2 for 200 ns long pulses, respectively. For the paint stripping the optimum ranged from 3.3 J/cm2 to 4.4 J/cm2 with the pulse width of 200 ns.

  18. Concentrating Solar Power Central Receiver Panel Component Fabrication and Testing FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDowell, Michael W; Miner, Kris

    The objective of this project is to complete a design of an advanced concentrated solar panel and demonstrate the manufacturability of key components. Then confirm the operation of the key components under prototypic solar flux conditions. This work is an important step in reducing the levelized cost of energy (LCOE) from a central receiver solar power plant. The key technical risk to building larger power towers is building the larger receiver systems. Therefore, this proposed technology project includes the design of an advanced molten salt prototypic sub-scale receiver panel that can be utilized into a large receiver system. Then completemore » the fabrication and testing of key components of the receive design that will be used to validate the design. This project shall have a significant impact on solar thermal power plant design. Receiver panels of suitable size for utility scale plants are a key element to a solar power tower plant. Many subtle and complex manufacturing processes are involved in producing a reliable, robust receiver panel. Given the substantial size difference between receiver panels manufactured in the past and those needed for large plant designs, the manufacture and demonstration on prototype receiver panel components with representative features of a full-sized panel will be important to improving the build process for commercial success. Given the thermal flux limitations of the test facility, the panel components cannot be rendered full size. Significance changes occurred in the projects technical strategies from project initiation to the accomplishments described herein. The initial strategy was to define cost improvements for the receiver, design and build a scale prototype receiver and test, on sun, with a molten salt heat transport system. DOE had committed to constructing a molten salt heat transport loop to support receiver testing at the top of the NSTTF tower. Because of funding constraints this did not happen. A subsequent

  19. 69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. INTERIOR VIEW OF THE ABSORPTION TOWER BUILDING, ABSORPTION TOWER UNDER CONSTRUCTION. (DATE UNKNOWN). - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  20. Tower counts

    USGS Publications Warehouse

    Woody, Carol Ann; Johnson, D.H.; Shrier, Brianna M.; O'Neal, Jennifer S.; Knutzen, John A.; Augerot, Xanthippe; O'Neal, Thomas A.; Pearsons, Todd N.

    2007-01-01

    Counting towers provide an accurate, low-cost, low-maintenance, low-technology, and easily mobilized escapement estimation program compared to other methods (e.g., weirs, hydroacoustics, mark-recapture, and aerial surveys) (Thompson 1962; Siebel 1967; Cousens et al. 1982; Symons and Waldichuk 1984; Anderson 2000; Alaska Department of Fish and Game 2003). Counting tower data has been found to be consistent with that of digital video counts (Edwards 2005). Counting towers do not interfere with natural fish migration patterns, nor are fish handled or stressed; however, their use is generally limited to clear rivers that meet specific site selection criteria. The data provided by counting tower sampling allow fishery managers to determine reproductive population size, estimate total return (escapement + catch) and its uncertainty, evaluate population productivity and trends, set harvest rates, determine spawning escapement goals, and forecast future returns (Alaska Department of Fish and Game 1974-2000 and 1975-2004). The number of spawning fish is determined by subtracting subsistence, sport-caught fish, and prespawn mortality from the total estimated escapement. The methods outlined in this protocol for tower counts can be used to provide reasonable estimates ( plus or minus 6%-10%) of reproductive salmon population size and run timing in clear rivers. 

  1. Microwave Tower Deflection Monitor

    NASA Astrophysics Data System (ADS)

    Truax, Bruce E.

    1980-10-01

    This paper describes an instrument which is capable of monitoring both the twist and lateral motion of a microwave tower. The Microwave Tower Deflection Monitor (MTDM) gives designers the capability of evaluating towers, both for troubleshooting purposes and comparison with design theory. The MTDM has been designed to operate on a broad range of tower structures in a variety of weather conditions. The instrument measures tower motion by monitoring the position of two retroreflectors mounted on the top of the tower. The two retroreflectors are located by scanning a laser beam in a raster pattern in the vicinity of the reflector. When a retroreflector is struck its position is read by a microprocessor and stored on a magnetic tape. Position resolution of better than .5 cm at 200 ft. has been observed in actual tests.

  2. Preliminary Design, Feasibility and Cost Evaluation of 1- to 15-Kilometer Height Steel Towers

    NASA Technical Reports Server (NTRS)

    Shanker, Ajay

    2003-01-01

    Design and construction of tall towers is an on-going research program of NASA. The agency has already done preliminary review in this area and has determined that multi-kilometer height towers are technically and economically feasible. The proposed towers will provide high altitude launch platforms reaching above eighty percent of Earth's atmosphere and provide tremendous gains in the potential energy as well as substantial reduction in aerodynamic drag. NASA has also determined that a 15-KM tower will have many useful applications in: (i)Meteorology,(ii)Oceanography, (iii)Astronomy, (iv)High Altitude Launch, (v)Physics Drop Tower, (vi) Biosphere Research, (vii) Nanotechnology, (viii) Energy/Power, (ix)Broadband Wireless Technology, (x)Space Transportation and (xi)Space Tourism.

  3. EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.

    1960-03-24

    A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)

  4. Optimized dispatch in a first-principles concentrating solar power production model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Michael J.; Newman, Alexandra M.; Hamilton, William T.

    Concentrating solar power towers, which include a steam-Rankine cycle with molten salt thermal energy storage, is an emerging technology whose maximum effectiveness relies on an optimal operational and dispatch policy. Given parameters such as start-up and shut-down penalties, expected electricity price profiles, solar availability, and system interoperability requirements, this paper seeks a profit-maximizing solution that determines start-up and shut-down times for the power cycle and solar receiver, and the times at which to dispatch stored and instantaneous quantities of energy over a 48-h horizon at hourly fidelity. The mixed-integer linear program (MIP) is subject to constraints including: (i) minimum andmore » maximum rates of start-up and shut-down, (ii) energy balance, including energetic state of the system as a whole and its components, (iii) logical rules governing the operational modes of the power cycle and solar receiver, and (iv) operational consistency between time periods. The novelty in this work lies in the successful integration of a dispatch optimization model into a detailed techno-economic analysis tool, specifically, the National Renewable Energy Laboratory's System Advisor Model (SAM). The MIP produces an optimized operating strategy, historically determined via a heuristic. Using several market electricity pricing profiles, we present comparative results for a system with and without dispatch optimization, indicating that dispatch optimization can improve plant profitability by 5-20% and thereby alter the economics of concentrating solar power technology. While we examine a molten salt power tower system, this analysis is equally applicable to the more mature concentrating solar parabolic trough system with thermal energy storage.« less

  5. Modified corrosion protection coatings for Concrete tower of Transmission line

    NASA Astrophysics Data System (ADS)

    Guo, Kai; Jing, Xiangyang; Wang, Hongli; Yue, Zengwu; Wu, Yaping; Mi, Xuchun; Li, Xingeng; Chen, Suhong; Fan, Zhibin

    2017-12-01

    By adding nano SiO2 particles, an enhanced K-PRTV anti-pollution flashover coating had been prepared. Optical profile meter (GT-K), atomic force microscopy (AFM) and infrared spectrometer (FT-IR) characterization were carried out on the coating surface analysis. With the use of modified epoxy resin as the base material, the supplemented by phosphate as a corrosion stabilizer, to achieve a corrosion of steel and galvanized steel with rust coating. Paint with excellent adhesion, more than 10MPa (1), resistant to neutral salt spray 1000h does not appear rust point. At the same time coating a large amount of ultra-fine zinc powder can be added for the tower galvanized layer zinc repair function, while the paint in the zinc powder for the tower to provide sacrificial anode protection, to achieve self-repair function of the coating. Compared to the market with a significant reduction in the cost of rust paint, enhance the anti-corrosion properties.

  6. Thermal energy storage heat exchanger: Molten salt heat exchanger design for utility power plants

    NASA Technical Reports Server (NTRS)

    Ferarra, A.; Yenetchi, G.; Haslett, R.; Kosson, R.

    1977-01-01

    The use of thermal energy storage (TES) in the latent heat of molten salts as a means of conserving fossil fuels and lowering the cost of electric power was evaluated. Public utility systems provided electric power on demand. This demand is generally maximum during late weekday afternoons, with considerably lower overnight and weekend loads. Typically, the average demand is only 60% to 80% of peak load. As peak load increases, the present practice is to purchase power from other grid facilities or to bring older less efficient fossil-fuel plants on line which increase the cost of electric power. The widespread use of oil-fired boilers, gas turbine and diesel equipment to meet peaking loads depletes our oil-based energy resources. Heat exchangers utilizing molten salts can be used to level the energy consumption curve. The study begins with a demand analysis and the consideration of several existing modern fossil-fuel and nuclear power plants for use as models. Salts are evaluated for thermodynamic, economic, corrosive, and safety characteristics. Heat exchanger concepts are explored and heat exchanger designs are conceived. Finally, the economics of TES conversions in existing plants and new construction is analyzed. The study concluded that TES is feasible in electric power generation. Substantial data are presented for TES design, and reference material for further investigation of techniques is included.

  7. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  8. Study on Remote Monitoring System of Crossing and Spanning Tangent Tower

    NASA Astrophysics Data System (ADS)

    Chen, Da-bing; Zhang, Nai-long; Zhang, Meng-ge; Wang, Ze-hua; Zhang, Yan

    2017-05-01

    In order to grasp the vibration state of overhead transmission line and ensure the operational security of transmission line, the remote monitoring system of crossing and spanning tangent tower was studied. By use of this system, the displacement, velocity and acceleration of the tower, and the local weather data are collected automatically, displayed on computer of remote monitoring centre through wireless network, real-time collection and transmission of vibration signals are realized. The applying results show that the system is excellent in reliability and accuracy and so on. The system can be used to remote monitoring of transmission tower of UHV power transmission lines and in large spanning areas.

  9. Two-stage solar power tower cavity-receiver design and thermal performance analysis

    NASA Astrophysics Data System (ADS)

    Pang, Liping; Wang, Ting; Li, Ruihua; Yang, Yongping

    2017-06-01

    New type of two-stage solar power tower cavity-receiver is designed and a calculating procedure of radiation, convection and flow under the Gaussian heat flux is established so as to determine the piping layout and geometries in the receiver I and II and the heat flux distribution in different positions is obtained. Then the main thermal performance on water/steam temperature, steam quality, wall temperature along the typical tubes and pressure drop are specified according to the heat transfer and flow characteristics of two-phase flow. Meanwhile, a series of systematic design process is promoted and analysis on thermal performance of the two receivers is conducted. Results show that this type of two-stage cavity-receivers can minimize the size and reduce the mean temperature of receiver I while raise the average heat flux, thus increase the thermal efficiency of the two receivers; besides, the multiple serpentine tubes from header can make a more uniform distribution of the outlet parameters, preventing wall overheated.

  10. 2. Southern Light Tower and Northern Light Tower, view north, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Southern Light Tower and Northern Light Tower, view north, south sides - Kennebec River Light Station, South side of Doubling Point Road, off State Highway 127, 1.8 miles south of U.S. Route 1, Arrowsic, Sagadahoc County, ME

  11. 8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. GENERAL VIEW OF TOWER 32, LEFT, AND TOWER 31, RIGHT. VIEW LOOKING NORTH SHOWING AERIAL WIRE DESIGN WITH VERTICAL 'TOP HAT' WIRES IN CENTER. - Chollas Heights Naval Radio Transmitting Facility, 6410 Zero Road, San Diego, San Diego County, CA

  12. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  13. Tower Based Load Measurements for Individual Pitch Control and Tower Damping of Wind Turbines

    NASA Astrophysics Data System (ADS)

    Kumar, A. A.; Hugues-Salas, O.; Savini, B.; Keogh, W.

    2016-09-01

    The cost of IPC has hindered adoption outside of Europe despite significant loading advantages for large wind turbines. In this work we presented a method for applying individual pitch control (including for higher-harmonics) using tower-top strain gauge feedback instead of blade-root strain gauge feedback. Tower-top strain gauges offer hardware savings of approximately 50% in addition to the possibility of easier access for maintenance and installation and requiring a less specialised skill-set than that required for applying strain gauges to composite blade roots. A further advantage is the possibility of using the same tower-top sensor array for tower damping control. This method is made possible by including a second order IPC loop in addition to the tower damping loop to reduce the typically dominating 3P content in tower-top load measurements. High-fidelity Bladed simulations show that the resulting turbine spectral characteristics from tower-top feedback IPC and from the combination of tower-top IPC and damping loops largely match those of blade-root feedback IPC and nacelle- velocity feedback damping. Lifetime weighted fatigue analysis shows that the methods allows load reductions within 2.5% of traditional methods.

  14. 1. Light tower/keeper's house and abandoned light tower, view northwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Light tower/keeper's house and abandoned light tower, view northwest, south southeast and east northeast sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  15. 2. Abandoned light tower and keeper's house/light tower, view southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Abandoned light tower and keeper's house/light tower, view southeast, north northwest and west southwest sides - Matinicus Rock Light Station, Matinicus Island, on Matinicus Rock, Matinicus, Knox County, ME

  16. Thermal modeling of a secondary concentrator integrated with an open direct-absorption molten-salt volumetric receiver in a beam-down tower system

    NASA Astrophysics Data System (ADS)

    Lahlou, Radia; Armstrong, Peter; Grange, Benjamin; Almheiri, Saif; Calvet, Nicolas; Slocum, Alexander; Shamim, Tariq

    2016-05-01

    An upward-facing three-dimensional secondary concentrator, herein termed Final Optical Element (FOE), is designed to be used in a beam-down tower in combination with an open volumetric direct-absorption molten-salt receiver tank acting simultaneously as a thermal energy storage system. It allows reducing thermal losses from the open receiver by decreasing its aperture area while keeping minimal spillage losses. The FOE is exposed to high solar fluxes, a part of which is absorbed by its reflector material, leading to material degradation by overheating. Consequently, the FOE may require active cooling. A thermal model of the FOE under passive cooling mechanism is proposed as a first step to evaluate its sensitivity to some design parameters. Then, it will be used to evaluate the requirements for the active cooling system. The model provides insights on the FOE thermal behavior and highlights the effectiveness of a design modification on passive cooling enhancement. First prototype tests under reduced flux and with no active cooling will be used for model adjustment.

  17. A molten salt tower model used for site selection in South Africa using SAURAN meteorological data

    NASA Astrophysics Data System (ADS)

    Poole, Ian Vincent; Dinter, Frank

    2017-06-01

    South Africa has become a hotspot for concentrating solar power (CSP) development in recent years. With an abundance of solar resource and an existing governmental framework for renewable energy development, the country has captured the attention of CSP developers worldwide. The primary limitations for CSP plants in South Africa are electrical transmission and water availability. While taking into account such infrastructure limitations, six sites were proposed. A purpose-built simulation model for a proposed 100 MWe (gross) tower plant with 12 hours of storage was developed. Using site South African Universities Radiometric Network (SAURAN) meteorological data with a resolution of up to 1 minute, each of the sites was evaluated in terms of electrical yield using the model. The investigation found that the site situated in Springbok will generate 450.8 GWhe per annum, and is the most advantageous site for the modeled plant. The most promising alternative site is situated in near Laingsburg in the Western Province. This site offered 413.7 GWhe per annum, and it is close to available transmission and surface water.

  18. Finite Element Analysis of the Maximum Stress at the Joints of the Transmission Tower

    NASA Astrophysics Data System (ADS)

    Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Bamashmos, Khaled H.

    2016-03-01

    Transmission towers are tall structures, usually a steel lattice tower, used to support an overhead power line. Usually, transmission towers are analyzed as frame-truss systems and the members are assumed to be pin-connected without explicitly considering the effects of joints on the tower behavior. In this research, an engineering example of joint will be analyzed with the consideration of the joint detailing to investigate how it will affect the tower analysis. A static analysis using STAAD Pro was conducted to indicate the joint with the maximum stress. This joint will then be explicitly analyzed in ANSYS using the Finite Element Method. Three approaches were used in the software which are the simple plate model, bonded contact with no bolts, and beam element bolts. Results from the joint analysis show that stress values increased with joint details consideration. This proves that joints and connections play an important role in the distribution of stress within the transmission tower.

  19. Contrastive analysis of cooling performance between a high-level water collecting cooling tower and a typical cooling tower

    NASA Astrophysics Data System (ADS)

    Wang, Miao; Wang, Jin; Wang, Jiajin; Shi, Cheng

    2018-02-01

    A three-dimensional (3D) numerical model is established and validated for cooling performance optimization between a high-level water collecting natural draft wet cooling tower (HNDWCT) and a usual natural draft wet cooling tower (UNDWCT) under the actual operation condition at Wanzhou power plant, Chongqing, China. User defined functions (UDFs) of source terms are composed and loaded into the spray, fill and rain zones. Considering the conditions of impact on three kinds of corrugated fills (Double-oblique wave, Two-way wave and S wave) and four kinds of fill height (1.25 m, 1.5 m, 1.75 m and 2 m), numerical simulation of cooling performance are analysed. The results demonstrate that the S wave has the highest cooling efficiency in three fills for both towers, indicating that fill characteristics are crucial to cooling performance. Moreover, the cooling performance of the HNDWCT is far superior to that of the UNDWCT with fill height increases of 1.75 m and above, because the air mass flow rate in the fill zone of the HNDWCT improves more than that in the UNDWCT, as a result of the rain zone resistance declining sharply for the HNDWCT. In addition, the mass and heat transfer capacity of the HNDWCT is better in the tower centre zone than in the outer zone near the tower wall under a uniform fill layout. This behaviour is inverted for the UNDWCT, perhaps because the high-level collection devices play the role of flow guiding in the inner zone. Therefore, when non-uniform fill layout optimization is applied to the HNDWCT, the inner zone increases in height from 1.75 m to 2 m, the outer zone reduces in height from 1.75 m to 1.5 m, and the outlet water temperature declines approximately 0.4 K compared to that of the uniform layout.

  20. The Legacy of the Texas Tower Sniper

    ERIC Educational Resources Information Center

    Lavergne, Gary

    2007-01-01

    In this article, the author relates the incident that happened at the University of Texas to the tragedy that took place at Virginia Tech. On August 1, 1966, Charles Joseph Whitman ascended the University of Texas Tower, in Austin, and in 96 minutes fired 150 high-powered rounds of ammunition down upon an unsuspecting university family. The…

  1. Modified shape of the Eiffel Tower determined for an atmospheric boundary-layer wind profile

    NASA Astrophysics Data System (ADS)

    Weidman, P. D.

    2009-06-01

    The design and construction of the Eiffel Tower was based, in part, on a uniform horizontal wind model giving 300 kg m-2 kinematic pressure acting on the surface of the tower. Eiffel received a patent for his method of construction that eliminates the need for diagonal trellis bars used to resist the moment of an oncoming wind. At the end of the 19th century boundary-layer theory, laminar or turbulent, was nonexistent. Now, however, models for atmospheric flow over rough landscapes are available, the simplest being a power-law distribution of velocity with height. In this paper we deduce the shape of the tower had Eiffel incorporated this information into the design and construction of his world famous tower. Moreover, we prove Eiffel's observation that the tower profile conforms to the moment distribution wrought by the wind.

  2. A three-degree-of-freedom parallel manipulator for concentrated solar power towers: Modeling, simulation and design

    NASA Astrophysics Data System (ADS)

    Ghosal, Ashitava; Shyam, R. B. Ashith

    2016-05-01

    There is an increased thrust to harvest solar energy in India to meet increasing energy requirements and to minimize imported fossil fuels. In a solar power tower system, an array of tracking mirrors or heliostats are used to concentrate the incident solar energy on an elevated stationary receiver and then the thermal energy converted to electricity using a heat engine. The conventional method of tracking are the Azimuth-Elevation (Az-El) or Target-Aligned (T-A) mount. In both the cases, the mirror is rotated about two mutually perpendicular axes and is supported at the center using a pedestal which is fixed to the ground. In this paper, a three degree-of-freedom parallel manipulator, namely the 3-RPS, is proposed for tracking the sun in a solar power tower system. We present modeling, simulation and design of the 3-RPS parallel manipulator and show its advantages over conventional Az-El and T-A mounts. The 3-RPS manipulator consists of three rotary (R), three prismatic (P) and three spherical (S) joints and the mirror assembly is mounted at three points in contrast to the Az-El and T-A mounts. The kinematic equations for sun tracking are derived for the 3-RPS manipulator and from the simulations, we obtain the range of motion of the rotary, prismatic and spherical joints. Since the mirror assembly is mounted at three points, the wind load and self-weight are distributed and as a consequence, the deflections due to loading are smaller than in conventional mounts. It is shown that the weight of the supporting structure is between 15% and 65% less than that of conventional systems. Hence, even though one additional actuator is used, the larger area mirrors can be used and costs can be reduced.

  3. Concentrating Solar Power Projects - Gansu Akesai 50MW Molten Salt Trough

    Science.gov Websites

    project | Concentrating Solar Power | NREL Gansu Akesai 50MW Molten Salt Trough project Status . Technology: Parabolic trough Turbine Capacity: Net: 50.0 MW Gross: 50.0 MW Status: Under development Do you have more information, corrections, or comments? Background Technology: Parabolic trough Status: Under

  4. Densities of some molten fluoride salt mixtures suitable for heat storage in space power applications

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Liquid densities were determined for a number of fluoride salt mixtures suitable for heat storage in space power applications, using a procedure that consisted of measuring the loss of weight of an inert bob in the melt. The density apparatus was calibrated with pure LiF and NaF at different temperatures. Density data for safe binary and ternary fluoride salt eutectics and congruently melting intermediate compounds are presented. In addition, a comparison was made between the volumetric heat storage capacity of different salt mixtures.

  5. A new code for the design and analysis of the heliostat field layout for power tower system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiudong; Lu, Zhenwu; Yu, Weixing

    2010-04-15

    A new code for the design and analysis of the heliostat field layout for power tower system is developed. In the new code, a new method for the heliostat field layout is proposed based on the edge ray principle of nonimaging optics. The heliostat field boundary is constrained by the tower height, the receiver tilt angle and size and the heliostat efficiency factor which is the product of the annual cosine efficiency and the annual atmospheric transmission efficiency. With the new method, the heliostat can be placed with a higher efficiency and a faster response speed of the design andmore » optimization can be obtained. A new module for the analysis of the aspherical heliostat is created in the new code. A new toroidal heliostat field is designed and analyzed by using the new code. Compared with the spherical heliostat, the solar image radius of the field is reduced by about 30% by using the toroidal heliostat if the mirror shape and the tracking are ideal. In addition, to maximize the utilization of land, suitable crops can be considered to be planted under heliostats. To evaluate the feasibility of the crop growth, a method for calculating the annual distribution of sunshine duration on the land surface is developed as well. (author)« less

  6. Carbon Nanotube Tower-Based Supercapacitor

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya (Inventor)

    2012-01-01

    A supercapacitor system, including (i) first and second, spaced apart planar collectors, (ii) first and second arrays of multi-wall carbon nanotube (MWCNT) towers or single wall carbon nanotube (SWCNT) towers, serving as electrodes, that extend between the first and second collectors where the nanotube towers are grown directly on the collector surfaces without deposition of a catalyst and without deposition of a binder material on the collector surfaces, and (iii) a porous separator module having a transverse area that is substantially the same as the transverse area of at least one electrode, where (iv) at least one nanotube tower is functionalized to permit or encourage the tower to behave as a hydrophilic structure, with increased surface wettability.

  7. Chalk point cooling tower project: effects of simulated saline cooling tower drift on woody species. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis, B.A.

    1977-07-01

    Cooling towers of power plants are used to dissipate waste heat into the atmosphere. If saline water is used for cooling, a saline aerosol known as drift is released into the atmosphere. Drift effects on vegetation are not well known. To simulate drift for a field study, cooling tower basin water was sprayed thirty separate times during a 46-day period in 1975 on Virginia pine (Pinus virginiana), flowering dogwood (Cornus florida), tulip tree (Liriodendron tulipfera), and California privet (Ligustrum ovalifolium), Norway spruce (Picea abies), and white ash (Fraxinus americana) were added in 1976 and all trees were sprayed 43 timesmore » during a 59-day period. Only dogwood leaves showed significant injury. Absence of injury on other species was probably due to the ability of their leaves to exclude, or reduce absorption of, toxic concentrations of the ions supplied.« less

  8. 5. View of east elevation of fuel tanks, radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of east elevation of fuel tanks, radar tower and power plant in background, looking west - Naval Air Station Fallon, Fuel Tanks, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  9. You're a What?: Tower Technician

    ERIC Educational Resources Information Center

    Vilorio, Dennis

    2012-01-01

    In this article, the author talks about the role and functions of a tower technician. A tower technician climbs up the face of telecommunications towers to remove, install, test, maintain, and repair a variety of equipment--from antennas to light bulbs. Tower technicians also build shelters and radiofrequency shields for electronic equipment, lay…

  10. The shape of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Gallant, Joseph

    2002-02-01

    The distinctive shape of the Eiffel Tower is based on simple physics and is designed so that the maximum torque created by the wind is balanced by the torque due to the Tower's weight. We use this idea to generate an equation for the shape of the Tower. The solution depends only on the width of the base and the maximum wind pressure. We parametrize the wind pressure and reproduce the shape of the Tower. We also discuss some of the Tower's interesting history and characteristics.

  11. Drop Tower Physics

    ERIC Educational Resources Information Center

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  12. The Transmission Channel Tower Identification and Landslide Disaster Monitoring Based on Insar

    NASA Astrophysics Data System (ADS)

    Li, G.; Tan, Q.; Xie, C.; Fei, X.; Ma, X.; Zhao, B.; Ou, W.; Yang, Z.; Wang, J.; Fang, H.

    2018-04-01

    The transmission distance of transmission lines is long, the line affected by the diversity of climate and topography of the corridors of transmission lines, differences in regional geological structure conditions, variability of rock and soil types, and the complexity of groundwater. Under the influence of extreme weather conditions (ice-covered, strong wind, etc.) and sudden geological disasters (such as mudslides, flash floods, earthquakes, etc.), catastrophic damage and basic deformation problems of the tower foundations are prone, and even tower collapse accidents occur in severe cases, which affect the safe operation of transmission lines. Monitoring the deformation of power transmission towers and surrounding grounds, it is critical to ensuring the normal operation of transmission lines by assessing and controlling potential risks in advance. In this paper, using ALOS-2 PALSAR radar satellite data, differential interferometry was used to monitor surface deformation near the Sichuan Jinsu line transmission channel. The analysis found that a significant landslide hazard was found near the transmission channel tower in Yibin-Zhaotong section of Jinsu, Sichuan Province, the cumulative deformation reaches 9cm. The results of this paper can provide new monitoring means for safety monitoring of transmission towers.

  13. Wind turbine tower for storing hydrogen and energy

    DOEpatents

    Fingersh, Lee Jay [Westminster, CO

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  14. Experimental determination of drift and PM10 cooling tower emissions: Influence of components and operating conditions.

    PubMed

    Ruiz, J; Kaiser, A S; Lucas, M

    2017-11-01

    Cooling tower emissions have become an increasingly common hazard to the environment (air polluting, ice formation and salts deposition) and to the health (Legionella disease) in the last decades. Several environmental policies have emerged in recent years limiting cooling tower emissions but they have not prevented an increasing intensity of outbreaks. Since the level of emissions depends mainly on cooling tower component design and the operating conditions, this paper deals with an experimental investigation of the amount of emissions, drift and PM 10 , emitted by a cooling tower with different configurations (drift eliminators and distribution systems) and working under several operating conditions. This objective is met by the measurement of cooling tower source emission parameters by means of the sensitive paper technique. Secondary objectives were to contextualize the observed emission rates according to international regulations. Our measurements showed that the drift rates included in the relevant international standards are significantly higher than the obtained results (an average of 100 times higher) and hence, the environmental problems may occur. Therefore, a revision of the standards is recommended with the aim of reducing the environmental and human health impact. By changing the operating conditions and the distribution system, emissions can be reduced by 52.03% and 82% on average. In the case of drift eliminators, the difference ranges from 18.18% to 98.43% on average. As the emissions level is clearly influenced by operating conditions and components, regulation tests should be referred to default conditions. Finally, guidelines to perform emission tests and a selection criterion of components and conditions for the tested cooling tower are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Phase 1 of the First Small Power System Experiment (engineering Experiment No. 1). Volume 3: Experimental System Descriptions. [development and testing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Holl, R. J.

    1979-01-01

    The design and development of a modular solar thermal power system for application in the 1 to 10 MWe range is described. The system consists of five subsystems: the collector, power conversion, energy transport, energy storage, and the plant control subsystem. The collector subsystem consists of concentrator, receiver, and tower assemblies. The energy transport subsystem uses a mixture of salts with a low melting temperature to transport thermal energy. A steam generator drives a steam Rankine cycle turbine which drives an electrical generator to produce electricity. Thermal and stress analysis tests are performed on each subsystem in order to determine the operational reliability, the minimum risk of failure, and the maintenance and repair characteristics.

  16. Fire ants perpetually rebuild sinking towers.

    PubMed

    Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L; Tovey, Craig

    2017-07-01

    In the aftermath of a flood, fire ants, Solenopsis invicta , cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.

  17. Fire ants perpetually rebuild sinking towers

    NASA Astrophysics Data System (ADS)

    Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Hu, David L.; Tovey, Craig

    2017-07-01

    In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers.

  18. Fire ants perpetually rebuild sinking towers

    PubMed Central

    Phonekeo, Sulisay; Mlot, Nathan; Monaenkova, Daria; Tovey, Craig

    2017-01-01

    In the aftermath of a flood, fire ants, Solenopsis invicta, cluster into temporary encampments. The encampments can contain hundreds of thousands of ants and reach over 30 ants high. How do ants build such tall structures without being crushed? In this combined experimental and theoretical study, we investigate the shape and rate of construction of ant towers around a central support. The towers are bell shaped, consistent with towers of constant strength such as the Eiffel tower, where each element bears an equal load. However, unlike the Eiffel tower, the ant tower is built through a process of trial and error, whereby failed portions avalanche until the final shape emerges. High-speed and novel X-ray videography reveal that the tower constantly sinks and is rebuilt, reminiscent of large multicellular systems such as human skin. We combine the behavioural rules that produce rafts on water with measurements of adhesion and attachment strength to model the rate of growth of the tower. The model correctly predicts that the growth rate decreases as the support diameter increases. This work may inspire the design of synthetic swarms capable of building in vertical layers. PMID:28791170

  19. Ivory Basements and Ivory Towers

    ERIC Educational Resources Information Center

    Fitzgerald, Tanya

    2012-01-01

    The metaphors of the ivory tower and ivory basement are used in this chapter to reflect how many women understand and experience the academy. The ivory tower signifies a place that is protected, a place of privilege and authority and a place removed from the outside world (and consequently the rigours of the market place). The ivory tower, by…

  20. 13. Bottom floor, tower interior showing concrete floor and cast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Bottom floor, tower interior showing concrete floor and cast iron bases for oil butts (oil butts removed when lighthouse lamp was converted to electric power.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  1. PBF Cooling Tower detail. Camera facing southwest. Wood fill rises ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower detail. Camera facing southwest. Wood fill rises from foundation piers of cold water basin. Photographer: Kirsh. Date: May 1, 1969. INEEL negative no. 69-2826 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. Analysis of Wind Characteristics at United States Tall Tower Measurement Sites

    NASA Astrophysics Data System (ADS)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.

    2008-12-01

    complicate analysis of seasonal wind patterns. The tall tower data analysis revealed some distinct regional features of wind shear climatology. For example, the wind shear exponent (alpha) at the towers in the Central Plains is generally between 0.15 and 0.25, greater than the commonly used 1/7 power law exponent value of 0.143. Another characteristic of Central Plains wind climatology was that winds from the south had alpha values of 0.2 to 0.3, while northerly winds had lower alpha values from 0.1 to 0.2. The wind resource at a particular tower is affected not only by the regional climatology but also by local conditions such as terrain, surface roughness, and structure of the lower boundary layer.

  3. Drop Tower Facility at Queensland University of Technology

    NASA Astrophysics Data System (ADS)

    Plagens, Owen; Castillo, Martin; Steinberg, Theodore; Ong, Teng-Cheong

    The Queensland University of Technology (QUT) Drop Tower Facility is a {raise.17exscriptstyle˜}2.1 second, 21.3 m fall, dual capsule drop tower system. The dual capsule comprises of an uncoupled exterior hollow drag shield that experiences drag by the ambient atmosphere with the experimental capsule falling within the drag shield. The dual capsule system is lifted to the top of the drop tower via a mechanical crane and the dropping process is initiated by the cutting of a wire coupling the experimental package and suspending the drag shield. The internal experimental capsule reaches the bottom of the drag shield floor just prior to the deceleration stage at the air bag and during this time experience gravity levels of {raise.17exscriptstyle˜}10textsuperscript{-6} g. The deceleration system utilizes an inflatable airbag where experimental packages can be designed to experience a maximum deceleration of {raise.17exscriptstyle˜}10textsuperscript{18} g for {raise.17exscriptstyle˜}0.1 seconds. The drag shield can house experimental packages with a maximum diameter of 0.8 m and height of 0.9 m. The drag shield can also be used in foam mode, where the walls are lined with foam and small experiments can be dropped completely untethered. This mode is generally used for the study of microsatellite manipulation. Payloads can be powered by on-board power systems with power delivered to the experiment until free fall occurs. Experimental data that can be collected includes but is not limited to video, temperature, pressure, voltage/current from the power supply, and triggering mechanisms outputs which are simultaneously collected via data logging systems and high speed video recording systems. Academic and commercial projects are currently under investigation at the QUT Drop Tower Facility and collaboration is openly welcome at this facility. Current research includes the study of heterogeneously burning metals in oxygen which is aimed at fire safety applications and

  4. Analysis of wind-resistant and stability for cable tower in cable-stayed bridge with four towers

    NASA Astrophysics Data System (ADS)

    Meng, Yangjun; Li, Can

    2017-06-01

    Wind speed time history simulation methods have been introduced first, especially the harmonic synthesis method introduced in detail. Second, taking Chishi bridge for example, choosing the particular sections, and combined with the design wind speed, three-component coefficient simulate analysis between -4°and 4°has been carry out with the Fluent software. The results show that drag coefficient reaches maximum when the attack Angle is 1°. According to measured wind speed samples,time history curves of wind speed at bridge deck and tower roof have been obtained,and wind-resistant time history analysis for No.5 tower has been carry out. Their results show that the dynamic coefficients are different with different calculation standard, especially transverse bending moment, pulsating crosswind load does not show a dynamic amplification effect.Under pulsating wind loads at bridge deck or tower roof, the maximum displacement at the top of the tower and the maximum stress at the bottom of the tower are within the allowable range. The transverse stiffness of tower is greater than that of the longitudinal stiffness, therefore wind-resistant analysis should give priority to the longitudinal direction. Dynamic coefficients are different with different standard, the maximum dynamic coefficient should be used for the pseudo-static analysis.Finally, the static stability of tower is analyzed with different load combinations, and the galloping stabilities of cable tower is proved.

  5. Tower Temperature and Humidity Sensors (TWR) Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  6. SWECS tower dynamics analysis methods and results

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Sexton, J. H.; Butterfield, C. P.; Thresher, R. M.

    1981-01-01

    Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described.

  7. Structural Design Considerations for Tubular Power Tower Receivers Operating at 650 Degrees C: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neises, T. W.; Wagner, M. J.; Gray, A. K.

    Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500 - 700 degrees C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650 degrees C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditionalmore » boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.« less

  8. Visual appearance of wind turbine tower at long range measured using imaging system

    NASA Astrophysics Data System (ADS)

    Gustafsson, K. Ove S.; Möller, Sebastian

    2013-10-01

    Wind turbine towers affect the visual appearance of the landscape, as an example in the touristic woodland of Dalecarlia, and the fear is that the visual impact will be too negative to the important tourist trade. The landscape analysis, developed by municipalities around Lake Siljan, limited expansion of wind power, due to the strong visual impression of wind turbine towers. In order to facilitate the assessment of the visual impact of towers a view, from Tällberg, over the ring of height on the other side of Lake Siljan, has been photographed every ten minutes for a year (34,727 images, about 65% of the possible number during a year). Four towers are possible to see in the photos, three of them have been used in the assessment of visual impression. This contribution presents a method to assess visibility of wind turbine towers from photographs, describing the measuring situation (location and equipment) as well as the analytical method and results of the analysis. The towers are possible to see in about 48% of analyzed images taken during daytime with the used equipment. During the summer (winter) months the towers were apparent in 49% (46%) of the images. At least one red warning light was possible to see on towers in about 66% of the night images. One conclusion of this work is that the method to assess the visibility within digital photographs and translate it into the equivalent of a normal eye can only provide an upper limit for visibility of an object.

  9. Comparison and simulation of salt-ceramic composites for use in high temperature concentrated solar power

    NASA Astrophysics Data System (ADS)

    Fossile, Lauren Michelle

    Due to the inherently intermittent nature of solar energy caused by cloud cover among other sources, thermal storage systems are needed to make solar energy more consistent. This same technology could be used to prolong the daily number of useful hours of solar energy power plants. Salt-ceramic materials are a relatively new prospect for heat storage, but have been researched mostly with magnesium oxide and several different carbonate salts. Salt ceramics are a phase change material where the salt changes phase inside the ceramic structure allowing for the system to use the sensible heat of both materials and the latent heat of the salt to store thermal energy. Capillary forces within the ceramic structure hold in the salt when the salt melts. The focus here is on the possibility of creating a low-cost salt-ceramic storage material for high temperature solar energy applications. A theoretical analysis of the resulting materials is performed. While most of the existing salt ceramics have been made from magnesium oxide, aluminum oxide is more readily available from various companies in the area. Magnesium oxide is often considered a custom ceramic, so it is more expensive. A cost and material property comparison has been completed between these two materials to determine which is better suited for solar storage. Many of the existing salt-ceramics use carbonate salts, but nitrate salts are commonly used in graphite/salt composites. Therefore, a cost and theoretical performance comparison is between these materials also. For comparisons' sake, zirconia and graphite have also been analyzed as the filler in the composite. Each combination of salt and ceramic or graphite has been analyzed. In order to make the use of salt-ceramics more cost-effective and available to Nevada's energy providers, research has been done into which ceramics have high availability in Nevada, low cost, and the best material properties for this application. The thermal properties and cost of

  10. Effectiveness of a multi-channel volumetric air receiver for a solar power tower

    NASA Astrophysics Data System (ADS)

    Jung, Eui Guk; Boo, Joon Hong; Kang, Yong Heak; Kim, Nak Hoon

    2013-08-01

    In this study, the heat transfer performance of a multi-channel volumetric air receiver for a solar power tower was numerically analyzed. The governing equations, including the solar radiation heat flux, conduction, convection and radiation heat transfer for a single channel, were solved on the basis of valid related references and a methodology that can predict the temperature distribution of the receiver wall and the heat transfer fluid for specific dimensions and input conditions. Furthermore, a mathematical model of the effectiveness of the receiver was derived from an analysis of the temperature profiles of the wall and the heat transfer fluid. The receiver effectiveness as an appropriate criterion to assess economic feasibility regarding geometric size was investigated, as it would be applied to the design process of the receiver. The main parameters for the thermal performance simulations described in this paper are the air mass flow rate, receiver length and the influence of these parameters on the heat transfer performance from the viewpoint of receiver efficiency and effectiveness.

  11. 2004 Savannah River Cooling Tower Collection (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of themore » six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.« less

  12. EURELIOS, the world's first thermomechanical helioelectric power plant

    NASA Astrophysics Data System (ADS)

    Gretz, J.

    Characteristics of the power source, design, costs and operating mechanisms and performance of the EURELIOS central receiver solar electric power plant are described. Noting that the solar input at the earth's surface is about 1 kW/sq m, 6200 sq m of float glass mirrors mounted on 182 heliostats were fabricated to focus the incoming radiation onto a receiver aperture atop a 55 m high tower. The curved mirrors permit the focus of 80% of the energy input to be deposited on a 2.2 m diam aperture which is equipped with heat exchangers imbedded in pyrex and darkened and finned to maximize absorption. Feedwater is superheated in the receiver and is transferred to a buffer tank of hot water at 19 bar and molten salt at 410 C, and then on to turbines for actual power production. The grid serves as back-up power system. Total costs are calculated at $1600/kWe.

  13. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different

  14. Emergency Cooling of Nuclear Power Plant Reactors With Heat Removal By a Forced-Draft Cooling Tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murav’ev, V. P., E-mail: murval1@mail.ru

    The feasibility of heat removal during emergency cooling of a reactor by a forced-draft cooling tower with accumulation of the peak heat release in a volume of precooled water is evaluated. The advantages of a cooling tower over a spray cooling pond are demonstrated: it requires less space, consumes less material, employs shorter lines in the heat removal system, and provides considerably better protection of the environment from wetting by entrained moisture.

  15. PBF Cooling Tower (PER720). Camera faces south to show north ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Camera faces south to show north facade. Note enclosed stairway. Date: August 2003. INEEL negative no. HD-35-10-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  16. PBF Cooling Tower (PER720). Closeup detail of louvered wall panels ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720). Close-up detail of louvered wall panels on south facade. Date: August 2003. INEEL negative no. HD-35-11-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  17. ETR COOLING TOWER. PUMP HOUSE (TRA645) IN SHADOW OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COOLING TOWER. PUMP HOUSE (TRA-645) IN SHADOW OF TOWER ON LEFT. AT LEFT OF VIEW, HIGH-BAY BUILDING IS ETR. ONE STORY ATTACHMENT IS ETR ELECTRICAL BUILDING. STACK AT RIGHT IS ETR STACK; MTR STACK IS TOWARD LEFT. CAMERA FACING NORTHEAST. INL NEGATIVE NO. 56-3799. Jack L. Anderson, 11/26/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  18. Molten Salt: Concept Definition and Capital Cost Estimate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoddard, Larry; Andrew, Daniel; Adams, Shannon

    The Department of Energy’s (DOE’s) Office of Renewable Power (ORP) has been tasked to provide effective program management and strategic direction for all of the DOE’s Energy Efficiency & Renewable Energy’s (EERE’s) renewable power programs. The ORP’s efforts to accomplish this mission are aligned with national energy policies, DOE strategic planning, EERE’s strategic planning, Congressional appropriation, and stakeholder advice. ORP is supported by three renewable energy offices, of which one is the Solar Energy Technology Office (SETO) whose SunShot Initiative has a mission to accelerate research, development and large scale deployment of solar technologies in the United States. SETO hasmore » a goal of reducing the cost of Concentrating Solar Power (CSP) by 75 percent of 2010 costs by 2020 to reach parity with base-load energy rates, and to reduce costs 30 percent further by 2030. The SunShot Initiative is promoting the implementation of high temperature CSP with thermal energy storage allowing generation during high demand hours. The SunShot Initiative has funded significant research and development work on component testing, with attention to high temperature molten salts, heliostats, receiver designs, and high efficiency high temperature supercritical CO 2 (sCO2) cycles. DOE retained Black & Veatch to support SETO’s SunShot Initiative for CSP solar power tower technology in the following areas: 1. Concept definition, including costs and schedule, of a flexible test facility to be used to test and prove components in part to support financing. 2. Concept definition, including costs and schedule, of an integrated high temperature molten salt (MS) facility with thermal energy storage and with a supercritical CO 2 cycle generating approximately 10MWe. 3. Concept definition, including costs and schedule, of an integrated high temperature falling particle facility with thermal energy storage and with a supercritical CO 2 cycle generating

  19. Drop Tower Workshop

    NASA Technical Reports Server (NTRS)

    Urban, David

    2013-01-01

    Ground based microgravity facilities are an important proving ground for space experiments, ground-based research and space hardware risk mitigation. An overview of existing platforms will be discussed with an emphasis on drop tower capabilities. The potential for extension to partial gravity conditions will be discussed. Input will be solicited from attendees for their potential to use drop towers in the future and the need for enhanced capabilities (e.g. partial gravity)

  20. Application of Molten Salt Reactor Technology to MMW In-Space NEP and Surface Power Missions

    NASA Technical Reports Server (NTRS)

    Patton, Bruce; Sorensen, Kirk; Rodgers, Stephen (Technical Monitor)

    2002-01-01

    Anticipated manned nuclear electric propulsion (NEP) and planetary surface power missions will require multimegawatt nuclear reactors that are lightweight, operationally robust, and scalable in power for widely varying scientific mission objectives. Molten salt reactor technology meets all of these requirements and offers an interesting alternative to traditional multimegawatt gas-cooled and liquid metal concepts.

  1. An assessment of the net value of CSP systems integrated with thermal energy storage

    DOE PAGES

    Mehos, M.; Jorgenson, J.; Denholm, P.; ...

    2015-05-01

    Within this study, we evaluate the operational and capacity value—or total system value—for multiple concentrating solar power (CSP) plant configurations under an assumed 33% renewable penetration scenario in California. We calculate the first-year bid price for two CSP plants, including a 2013 molten-salt tower integrated with a conventional Rankine cycle and a hypothetical 2020 molten-salt tower system integrated with an advanced supercritical carbon-dioxide power block. The overall benefit to the regional grid, defined in this study as the net value, is calculated by subtracting the first-year bid price from the total system value.

  2. Some techniques for reducing the tower shadow of the DOE/NASA mod-0 wind turbine tower. [wind tunnel tests to measure effects of tower structure on wind velocity

    NASA Technical Reports Server (NTRS)

    Burley, R. R.; Savino, J. M.; Wagner, L. H.; Diedrich, J. H.

    1979-01-01

    Wind speed profile measurements to measure the effect of a wind turbine tower on the wind velocity are presented. Measurements were made in the wake of scale models of the tower and in the wake of certain full scale components to determine the magnitude of the speed reduction (tower shadow). Shadow abatement techniques tested on the towers included the removal of diagonals, replacement of diagonals and horizontals with round cross section members, installation of elliptical shapes on horizontal members, installation of airfoils on vertical members, and application of surface roughness to vertical members.

  3. Evaporation Tower With Prill Nozzles

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Tower more efficient than conventional evaporation equipment. Liquids such as milk and fruit juice concentrated by passing them through tiny nozzle to form droplets, then allowing droplets to fall through evacuated tower with cooled walls.

  4. Wake characteristics of an eight-leg tower for a MOD-0 type wind turbine

    NASA Technical Reports Server (NTRS)

    Savino, J. M.; Wagner, L. H.; Sinclair, D.

    1977-01-01

    Low speed wind tunnel tests were conducted to determine the flow characteristics of the wake downwind of a 1/25th scale, all tubular eight leg tower concept suitable for application to the DOE-NASA MOD-0 wind power turbine. Measurements were made of wind speed profiles, and from these were determined the wake local minimum velocity, average velocity, and width for several wind approach angles. These data are presented herein along with tower shadow photographs and comparisons with data from an earlier lattice type, four leg tower model constructed of tubular members. Values of average wake velocity defect ratio and average ratio of wake width to blade radius for the eight leg model were estimated to be around 0.17 and 0.30, respectively, at the plane of the rotor blade. These characteristics suggest that the tower wake of the eight leg concept is slightly less than that of the four leg design.

  5. Analysis and improvement of the cavity structure of steam receiver of 1MWe solar tower power plant

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Wang, Zhifeng; Zhu, Lingzhi

    2017-06-01

    The central receiver, which plays a dominant role in the radiation-heat conversion, is one of the most important components in the solar tower power plants. Its performance can directly affect the efficiency of the entire solar power generation system. In general, the performance of the central receiver is mainly determined by two aspects: the first is the receiver structure and arrangement of heating pipes, the other is the integral control and operation strategy. The former is the internal essence of the receiver and the latter is extrinsic. In this paper, the latter is temporarily not in the scope of the discussion. According to the previous cavity structure and arrangement of the heating pipes, it is found that there are varying degrees of deformation to the heating pipes, especially for the superheated pipes. In order to make some improvement for the cavity receiver, firstly, the most likely causes were analyzed according to the previous structure. Secondly, a possible cavity structure was proposed according to the calculation results. The results show that the performance of the receiver is better than the previous one.

  6. PBF Cooling Tower. View from highbay roof of Reactor Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower. View from high-bay roof of Reactor Building (PER-620). Camera faces northwest. East louvered face has been installed. Inlet pipes protrude from fan deck. Two redwood vents under construction at top. Note piping, control, and power lines at sub-grade level in trench leading to Reactor Building. Photographer: Kirsh. Date: June 6, 1969. INEEL negative no. 69-3466 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  7. Confusion at the Tower

    ERIC Educational Resources Information Center

    Li, Loretta F.

    2014-01-01

    This study will explore the omission of the Tower of Babel narrative from middle and secondary school world history, world studies, and world geography textbooks and will consider what might be learned from inclusion of the story in the curriculum. A total of 17 textbooks are analyzed. The Tower of Babel narrative is examined within the context of…

  8. Design and Fabrication of Solar Updraft Tower and Estimation of Power Generation; Initially Focused on Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayub, F.; Akhand, S.; Khan, A. S.; Saklayen, G.

    2018-05-01

    In our studies we focused on area of sourcing, converting and delivering sustainable energy, concentrating at the potential role of solar power. Power generation through a solar updraft tower (SUT) has been a promising approach for sustainable generation of renewable energy. Developing nations are faced with many challenges. Conventional sources are insufficient to meet the increasing demand of a developing, industrious nation (e.g. Bangladesh). Our project aims in reducing electricity crisis and forming a solution for our country, Bangladesh. The electricity generated can be supplied to the national grid. This will mean reduced cost for the government in the long run and also allow the government to reduce its dependency on costly and unsustainable fossil fuel. This cost reduction benefit can be passed on to the public as reduced energy cost or preferably through nationwide energy infrastructure development. This technology will not only help with the energy concern of Bangladesh but also will help to improve the situations of other developing countries alike Bangladesh. All in all implementing this technology will pave the way towards a better world and form a part of an integrated ecosystem of sustainable energy technology.

  9. Tower-supported solar-energy collector

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1977-01-01

    Multiple-collector tower system supports three receiver/concentrators that absorb solar energy reflected from surrounding field of heliostats. System overcomes disadvantages of tower-supported collectors. Booms can be lowered during heavy winds to protect arms and collectors.

  10. Saguaro Power Plant Solar Repowering Project. Volume II. System requirements specification. Final technical report, September 1979-July 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, E.R.

    1980-07-01

    This specification defines the system and subsystem characteristics, design requirements, and system environmental requirements for the Saguaro Power Plant Solar Repowering Project. This project involves the solar repowering of all (120.2 MWe gross) of the 115 MWe net power No. One steam-Rankine unit of the Arizona Public Service Company's Saguaro station. The receiver heat transport fluid is draw salt (60% sodium nitrate and 40% potassium nitrate) that is also used to provide 3.8 hours of sensible heat thermal energy storage. The quad-cavity type receiver is mounted on a tower within a single surrounding collector field of 10,500 second generation heliostats.

  11. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications.

    PubMed

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-05-19

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO₃-NaNO₃ binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts.

  12. Credit BG. Test Stand "D" tower as seen looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Test Stand "D" tower as seen looking northeast (See caption for CA-163-F-18). To the right of the view is the stainless steel dome top for Dv Cell (see CA-163-F-22 for view into cell), behind which rests a spherical accumulator--an electrically heated steam generator for powering the vacuum system at "C" and Test Stand "D." Part of the ejector system can be seen on the right corner of the tower, other connections include electrical ducts (thin, flat metal members) and fire protection systems. Note the stand in the foreground with lights used to indicate safety status of the stand during tests - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  13. Development of Meteorological Towers Using Advanced Composite Materials

    NASA Astrophysics Data System (ADS)

    Alshurafa, Sami A.

    The research program involved both numerical and experimental work. The numerical analysis was conducted to simulate the static and dynamic behaviour of the 81 m meteorological FRP guyed tower under wind and ice loading. The FRP tower consisted of 16 segments each made of 3 cells connected together to form an equilateral triangle having equal sides of 450 mm. The segments were interconnected using internal sleeves. Various non-linear finite element models were developed to study a number of design parameters for the 81 m FRP tower such as, different laminates containing a variety of stacking sequences of laminate orientations with various thicknesses, different cable diameters, and appropriate guy cable spacing levels. The effect of pre-stressing the guy cables up to 10 % of their breaking strength was investigated. The effect of fibre volume fraction on the design of the FRP tower was also examined. Furthermore, an 8.6 m FRP tower segment was designed using the finite element analysis and subject to the same loading conditions experienced by the bottom section of the 81 m FRP tower. A modal analysis was carried out for both the 8.6 m FRP tower segment with and without a mass on the top as well as for the 81 m FRP guyed tower to evaluate the vibration performance of these towers. The experimental work involved extensive material testing to define the material properties for use in the analysis of the 81 m FRP tower. It also involved the design and fabrication of a special collapsible mandrel for fabricating the FRP cells for the 8.6 m tower segment. The 8.6 m tower was tested horizontally under static lateral loading to 80 % of its estimated failure load using a "whiffle tree" arrangement, in order to simulate a uniformly distributed wind loading. Later, the same FRP tower was erected in a vertical position and was tested with and without a mass on top under dynamic loading to obtain the natural frequencies. Lastly, a comparative study was conducted between two 81

  14. Blasting response of the Eiffel Tower

    NASA Astrophysics Data System (ADS)

    Horlyck, Lachlan; Hayes, Kieran; Caetano, Ryan; Tahmasebinia, Faham; Ansourian, Peter; Alonso-Marroquin, Fernando

    2016-08-01

    A finite element model of the Eiffel Tower was constructed using Strand7 software. The model replicates the existing tower, with dimensions justified through the use of original design drawings. A static and dynamic analysis was conducted to determine the actions of the tower under permanent, imposed and wind loadings, as well as under blast pressure loads and earthquake loads due to an explosion. It was observed that the tower utilises the full axial capacity of individual members by acting as a `truss of trusses'. As such, permanent and imposed loads are efficiently transferred to the primary columns through compression, while wind loads induce tensile forces in the windward legs and compressive forces in the leeward. Under blast loading, the tower experienced both ground vibrations and blast pressures. Ground vibrations induced a negligibly small earthquake loading into the structure which was ignored in subsequent analyses. The blast pressure was significant, and a dynamic analysis of this revealed that further research is required into the damping qualities of the structure due to soil and mechanical properties. In the worst case scenario, the blast was assumed to completely destroy several members in the adjacent leg. Despite this weakened condition, it was observed that the tower would still be able to sustain static loads, at least for enough time for occupant evacuation. Further, an optimised design revealed the structure was structurally sound under a 46% reduction of the metal tower's mass.

  15. The Design of Akhmat Tower

    NASA Astrophysics Data System (ADS)

    Beardsley, Sara; Stochetti, Alejandro; Cerone, Marc

    2018-03-01

    Akhmat Tower is a 435m supertall building designed by Adrian Smith + Gordon Gill Architecture. It is currently under construction in the city of Grozny, in the Chechen Republic, in the North Caucasus region of Russia. The design of the tower was done during a collaborative process by a multi-disciplinary architectural and engineering team, based primarily in the United States and Russia. During this process, the designers considered many factors including, most primarily, the cultural and historical context, the structural requirements given the high seismicity of the region, and the client's programmatic needs. The resulting crystalline-shaped tower is both an aesthetic statement and a performative architectural solution which will be a new landmark for Chechnya. "The Design of Akhmat Tower" describes in detail the design process including structural considerations, exterior wall design, building program, interior design, the tuned mass damper, and the use of building information modeling.

  16. Concentrating Solar Power Projects - Planta Solar 20 | Concentrating Solar

    Science.gov Websites

    (CSP) project, with data organized by background, participants, and power plant configuration. Abengoa Solar's Planta Solar 20 (PS20) is a 20-megawatt power tower plant being constructed next to the PS10 tower percent. The 160-meter tower was designed to reduce the visual impact of its height. The plant has the

  17. Cultivation of E. coli in single- and ten-stage tower-loop reactors.

    PubMed

    Adler, I; Schügerl, K

    1983-02-01

    E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.

  18. LDSD on the Launch Tower

    NASA Image and Video Library

    2015-06-05

    NASA's Low-Density Supersonic Decelerator (LDSD) hangs from a launch tower at U.S. Navy's Pacific Missile Range Facility in Kauai, Hawaii. The saucer-shaped vehicle will test two devices for landing heavy payloads on Mars: an inflatable donut-shaped device and a supersonic parachute. The launch tower helps link the vehicle to a balloon; once the balloon floats up, the vehicle is released from the tower and the balloon carries it to high altitudes. The vehicle's rocket takes it to even higher altitudes, to the top of the stratosphere, where the supersonic test begins. http://photojournal.jpl.nasa.gov/catalog/PIA19343

  19. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  20. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications

    PubMed Central

    Lasfargues, Mathieu; Stead, Graham; Amjad, Muhammad; Ding, Yulong; Wen, Dongsheng

    2017-01-01

    Seeding nanoparticles in molten salts has been shown recently as a promising way to improve their thermo-physical properties. The prospect of such technology is of interest to both academic and industrial sectors in order to enhance the specific heat capacity of molten salt. The latter is used in concentrated solar power plants as both heat transfer fluid and sensible storage. This work explores the feasibility of producing and dispersing nanoparticles with a novel one pot synthesis method. Using such a method, CuO nanoparticles were produced in situ via the decomposition of copper sulphate pentahydrate in a KNO3-NaNO3 binary salt. Analyses of the results suggested preferential disposition of atoms around produced nanoparticles in the molten salt. Thermal characterization of the produced nano-salt suspension indicated the dependence of the specific heat enhancement on particle morphology and distribution within the salts. PMID:28772910

  1. The Drop Tower Bremen -An Overview

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Könemann, Thorben; Rath, Hans J.

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University of Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of ZARM`s drop tower began. Since its inau-guration in September 1990, the eye-catching Drop Tower Bremen with a height of 146m and its characteristic glass roof has become twice a landmark on the campus of the University of Bremen and the emblem of the technology park Bremen. As such an outstanding symbol of space science in Bremen the drop tower provides an european unique facility for experiments under conditions of high-quality weightlessness with residual gravitational accelerations in the microgravity regime. The period of maximum 4.74s of each freely falling experiment at the Drop Tower Bremen is only limited by the height of the drop tower vacuum tube, which was fully manufactured of steal and enclosed by an outer concrete shell. Thus, the pure free fall height of each microgravity drop experiment is approximately 110m. By using the later in-stalled catapult system established in 2004 ZARM`s short-term microgravity laboratory is able to nearly double the time of free fall. This world-wide inimitable capsule catapult system meets scientists` demand of extending the period of weightlessness. During the catapult operation the experiment capsule performs a vertical parabolic flight within the drop tower vacuum tube. In this way the time of microgravity can be extended to slightly over 9s. Either in the drop or in the catapult operation routine the repetition rates of microgravity experiments at ZARM`s drop tower facility are the same, generally up to 3 times per day. In comparison to orbital platforms the ground-based laboratory Drop Tower Bremen represents an economic alternative with a permanent access to weightlessness on earth. Moreover, the exceptional high quality of weightlessness in order of 1e-6 g (in the frequency range below 100

  2. LCOE reduction potential of parabolic trough and solar tower CSP technology until 2025

    NASA Astrophysics Data System (ADS)

    Dieckmann, Simon; Dersch, Jürgen; Giuliano, Stefano; Puppe, Michael; Lüpfert, Eckhard; Hennecke, Klaus; Pitz-Paal, Robert; Taylor, Michael; Ralon, Pablo

    2017-06-01

    Concentrating Solar Power (CSP), with an installed capacity of 4.9 GW by 2015, is a young technology compared to other renewable power generation technologies. A limited number of plants and installed capacity in a small challenging market environment make reliable and transparent cost data for CSP difficult to obtain. The International Renewable Energy Agency (IRENA) and the DLR German Aerospace Center gathered and evaluated available cost data from various sources for this publication in order to yield transparent, reliable and up-to-date cost data for a set of reference parabolic trough and solar tower plants in the year 2015 [1]. Each component of the power plant is analyzed for future technical innovations and cost reduction potential based on current R&D activities, ongoing commercial developments and growth in market scale. The derived levelized cost of electricity (LCOE) for 2015 and 2025 are finally contrasted with published power purchase agreements (PPA) of the NOOR II+III power plants in Morocco. At 7.5% weighted average cost of capital (WACC) and 25 years economic life time, the levelized costs of electricity for plants with 7.5 (trough) respectively 9 (tower) full-load hours thermal storage capacity decrease from 14-15 -ct/kWh today to 9-10 -ct/kWh by 2025 for both technologies at direct normal irradiation of 2500 kWh/(m².a). The capacity factor increases from 41.1% to 44.6% for troughs and from 45.5% to 49.0% for towers. Financing conditions are a major cost driver and offer potential for further cost reduction with the maturity of the technology and low interest rates (6-7 - ct/kWh for 2% WACC at 2500 kWh/(m2.a) in 2025).

  3. Corrosion Behavior Of Potential Structural Materials For Use In Nitrate Salts Based Solar Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Summers, Kodi

    The increasing global demand for electricity is straining current resources of fossil fuels and placing increased pressure on the environment. The implementation of alternative sources of energy is paramount to satisfying global electricity demand while reducing reliance on fossil fuels and lessen the impact on the environment. Concentrated solar power (CSP) plants have the ability to harness solar energy at an efficiency not yet achieved by other technologies designed to convert solar energy to electricity. The problem of intermittency in power production seen with other renewable technologies can be virtually eliminated with the use of molten salt as a heat transfer fluid in CSP plants. Commercial and economic success of CSP plants requires operating at maximum efficiency and capacity which requires high temperature and material reliability. This study investigates the corrosion behavior of structural alloys and electrochemical testing in molten nitrate salts at three temperatures common to CSP plants. Corrosion behavior was evaluated using gravimetric and inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis. Surface morphology was studied using scanning electron microscopy. Surface oxide structure and chemistry was characterized using X-ray diffraction, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical behavior of candidate structural alloys Alloy 4130, austenitic stainless steel 316, and super-austenitic Incoloy 800H was evaluated using potentiodynamic polarization characteristics. It was observed that electrochemical evaluation of these candidate materials correlates well with the corrosion behavior observed from gravimetric and ICP-OES analysis. This study identifies that all three alloys exhibited acceptable corrosion in 300°C molten salt while elevated salt temperatures require the more corrosion resistant alloys, stainless steel 316 and 800H. Characterization of the sample

  4. Concentrating Solar Power Projects | Concentrating Solar Power | NREL

    Science.gov Websites

    construction, or under development. CSP technologies include parabolic trough, linear Fresnel reflector, power Technology-listing by parabolic trough, linear Fresnel reflector, power tower, or dish/engine systems Status

  5. Geology of Devils Tower National Monument, Wyoming

    USGS Publications Warehouse

    Robinson, Charles Sherwood

    1956-01-01

    Devils Tower is a steep-sided mass of igneous rock that rises above the surrounding hills and the valley of the Belle Fourche River in Crook County, Wyo. It is composed of a crystalline rock, classified as phonolite porphyry, that when fresh is gray but which weathers to green or brown. Vertical joints divide the rock mass into polygonal columns that extend from just above the base to the top of the Tower. The hills in the vicinity and at the base of the Tower are composed of red, yellow, green, or gray sedimentary rocks that consist of sandstone, shale, or gypsum. These rocks, in aggregate about 400 feet thick, include, from oldest to youngest, the upper part of the Spearfish formation, of Triassic age, the Gypsum Spring formation, of Middle Jurassic age, and the Sundance formation, of Late Jurassic age. The Sundance formation consists of the Stockade Beaver shale member, the Hulett sandstone member, the Lak member, and the Redwater shale member. The formations have been only slightly deformed by faulting and folding. Within 2,000 to 3.000 feet of the Tower, the strata for the most part dip at 3 deg - 5 deg towards the Tower. Beyond this distance, they dip at 2 deg - 5 deg from the Tower. The Tower is believed to have been formed by the intrusion of magma into the sedimentary rocks, and the shape of the igneous mass formed by the cooled magma is believed to have been essentially the same as the Tower today. Devils Tower owes its impressiveness to its resistance to erosion as compared with the surrounding sedimentary rocks, and to the contrast of the somber color of the igneous column to the brightly colored bands of sedimentary rocks.

  6. How many flux towers are enough? How tall is a tower tall enough? How elaborate a scaling is scaling enough?

    NASA Astrophysics Data System (ADS)

    Xu, K.; Sühring, M.; Metzger, S.; Desai, A. R.

    2017-12-01

    Most eddy covariance (EC) flux towers suffer from footprint bias. This footprint not only varies rapidly in time, but is smaller than the resolution of most earth system models, leading to a systemic scale mismatch in model-data comparison. Previous studies have suggested this problem can be mitigated (1) with multiple towers, (2) by building a taller tower with a large flux footprint, and (3) by applying advanced scaling methods. Here we ask: (1) How many flux towers are needed to sufficiently sample the flux mean and variation across an Earth system model domain? (2) How tall is tall enough for a single tower to represent the Earth system model domain? (3) Can we reduce the requirements derived from the first two questions with advanced scaling methods? We test these questions with output from large eddy simulations (LES) and application of the environmental response function (ERF) upscaling method. PALM LES (Maronga et al. 2015) was set up over a domain of 12 km x 16 km x 1.8 km at 7 m spatial resolution and produced 5 hours of output at a time step of 0.3 s. The surface Bowen ratio alternated between 0.2 and 1 among a series of 3 km wide stripe-like surface patches, with horizontal wind perpendicular to the surface heterogeneity. A total of 384 virtual towers were arranged on a regular grid across the LES domain, recording EC observations at 18 vertical levels. We use increasing height of a virtual flux tower and increasing numbers of virtual flux towers in the domain to compute energy fluxes. Initial results show a large (>25) number of towers is needed sufficiently sample the mean domain energy flux. When the ERF upscaling method was applied to the virtual towers in the LES environment, we were able to map fluxes over the domain to within 20% precision with a significantly smaller number of towers. This was achieved by relating sub-hourly turbulent fluxes to meteorological forcings and surface properties. These results demonstrate how advanced scaling

  7. Lifting system and apparatus for constructing wind turbine towers

    DOEpatents

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  8. Industrial Cooling Tower Disinfection Treatment to Prevent Legionella spp.

    PubMed

    Iervolino, Matteo; Mancini, Benedetta; Cristino, Sandra

    2017-09-26

    The contamination of industrial cooling towers has been identified as one cause of legionellosis, but the real risk has been underestimated. Two different disinfection treatments were tested on Legionella colonization in an industrial Cooling Tower System (CTS). Environmental monitoring of Legionella , P. aeruginosa , and a heterotrophic plate count (HPC) at 36 °C was performed from June to October 2016. The disinfection procedures adopted were based on hydrogen peroxide (H₂O₂) and silver salts (Ag⁺), in addition to an anti-algal treatment, then using hyperclorination as a shock, and then continuous treatment by sodium hypochlorite (NaClO). L . pneumophila serogroup 8 was found at a concentration of 5.06 Log cfu/L after the CTS filling; a shock treatment performed by H₂O₂/Ag⁺ produced a rapid increase in contamination up to 6.14 Log cfu/L. The CTS activity was stopped and two subsequent shock treatments were performed using NaClO, followed by continuous hyperclorination. These procedures showed a significant decrease ( p < 0.05) in Legionella concentration (1.77 Log cfu/L). The same trend was observed for P . aeruginosa (0.55 Log cfu/100 mL) and HPC (1.95 Log cfu/mL) at 36 °C. Environmental monitoring and the adoption of maintenance procedures, including anti-scale treatment, and physical, chemical, and microbiological control, ensure the good performance of a CTS, reducing the Legionella risk for public health.

  9. Industrial Cooling Tower Disinfection Treatment to Prevent Legionella spp.

    PubMed Central

    Iervolino, Matteo; Mancini, Benedetta; Cristino, Sandra

    2017-01-01

    The contamination of industrial cooling towers has been identified as one cause of legionellosis, but the real risk has been underestimated. Two different disinfection treatments were tested on Legionella colonization in an industrial Cooling Tower System (CTS). Environmental monitoring of Legionella, P. aeruginosa, and a heterotrophic plate count (HPC) at 36 °C was performed from June to October 2016. The disinfection procedures adopted were based on hydrogen peroxide (H2O2) and silver salts (Ag+), in addition to an anti-algal treatment, then using hyperclorination as a shock, and then continuous treatment by sodium hypochlorite (NaClO). L. pneumophila serogroup 8 was found at a concentration of 5.06 Log cfu/L after the CTS filling; a shock treatment performed by H2O2/Ag+ produced a rapid increase in contamination up to 6.14 Log cfu/L. The CTS activity was stopped and two subsequent shock treatments were performed using NaClO, followed by continuous hyperclorination. These procedures showed a significant decrease (p < 0.05) in Legionella concentration (1.77 Log cfu/L). The same trend was observed for P. aeruginosa (0.55 Log cfu/100 mL) and HPC (1.95 Log cfu/mL) at 36 °C. Environmental monitoring and the adoption of maintenance procedures, including anti-scale treatment, and physical, chemical, and microbiological control, ensure the good performance of a CTS, reducing the Legionella risk for public health. PMID:28954435

  10. Tower Illuminance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Clifford K.; Sims, Cianan

    TIM is a real-time interactive concentrating solar field simulation. TIM models a concentrating tower (receiver), heliostat field, and potential reflected glare based on user-specified parameters such as field capacity, tower height and location. TIM provides a navigable 3D interface, allowing the user to “fly” around the field to determine the potential glare hazard from off-target heliostats. Various heliostat aiming strategies are available for specifying how heliostats behave when in standby mode. Strategies include annulus, point-per-group, up-aiming and single-point-focus. Additionally, TIM includes an avian path feature for approximating the irradiance and feather temperature of a bird flying through the field airspace.

  11. Flux Sampling Errors for Aircraft and Towers

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry

    1998-01-01

    Various errors and influences leading to differences between tower- and aircraft-measured fluxes are surveyed. This survey is motivated by reports in the literature that aircraft fluxes are sometimes smaller than tower-measured fluxes. Both tower and aircraft flux errors are larger with surface heterogeneity due to several independent effects. Surface heterogeneity may cause tower flux errors to increase with decreasing wind speed. Techniques to assess flux sampling error are reviewed. Such error estimates suffer various degrees of inapplicability in real geophysical time series due to nonstationarity of tower time series (or inhomogeneity of aircraft data). A new measure for nonstationarity is developed that eliminates assumptions on the form of the nonstationarity inherent in previous methods. When this nonstationarity measure becomes large, the surface energy imbalance increases sharply. Finally, strategies for obtaining adequate flux sampling using repeated aircraft passes and grid patterns are outlined.

  12. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelizedmore » cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  13. The analysis of the process in the cooling tower with the low efficiency

    NASA Astrophysics Data System (ADS)

    Badriev, A. I.; Sharifullin, V. N.

    2017-11-01

    We put quite a difficult task maintaining a temperature drop to 11-12 degrees at thermal power plants to ensure the required depth of cooling of vacuum in the condenser, cooling towers. This requirement is achieved with the reducing of the hydraulic load with the low efficiency of the apparatus. The task analysis process in this unit and identify the causes of his poor performance was put in the work. One of the possible reasons may be the heterogeneity of the process in the volume of the apparatus. Therefore, it was decided to investigate experimentally the distribution of the irrigation water and the air flow in the cross section of industrial cooling towers. As a result, we found a significant uneven distribution of flows of water and air in the volume of the apparatus. We have shown theoretically that the uneven distribution of irrigation leads to a significant decrease in the efficiency of evaporation in the cooling tower. The velocity distribution of the air as the tower sections, and inside sections are interesting. The obtained experimental data allowed to establish the internal communication: the effects of the distributions of the density of irrigation in sections of the apparatus for the distribution of changes of the temperature and the air velocity. The obtained results allowed to formulate a methodology for determining process problems and to develop actions on increase of the efficiency of the cooling tower.

  14. Tower-Related Major System Development Programs

    DOT National Transportation Integrated Search

    1978-03-01

    This report is devoted to the present and near future states of the tower cab environment, addresses those MSDP systems which may have an impact on the current tower cab environment, systems and/or operations. The systems included are: Discrete Addre...

  15. Characterization of Current Tower Cab Environments

    DOT National Transportation Integrated Search

    1977-11-01

    This report describes the general tower cab environment in terms of: (a) the evolution of the tower cab, current cab classification and staffing levels, and the basic flow of ATC data relevant to cab operations, (b) a breakdown of functions performed...

  16. Tower of Babel: a special report of the nuclear industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The southern U.S. region currently maintains 19 operating nuclear reactors, a large number of nuclear-related industries, and numerous radioactive waste storage facilities. To illustrate the greed of nuclear power proponents and the dangers of existing and future nuclear power plant operations, the southern nuclear power industry is surveyed. Detailed are the South's involvement in each phase of the nuclear fuel cycle, from uranium mining to waste disposal; efforts by the region's private electric utility companies to buttress the crumbling supports of the nuclear industry; and the serious threat that nuclear power poses to the region, the nation, and the world.more » The U.S. nuclear power industry can be viewed as a modern Tower of Babel. (4 maps, 20 photos, 2 tables)« less

  17. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  18. Benefits of full scope simulators during solar thermal power plants design and construction

    NASA Astrophysics Data System (ADS)

    Gallego, José F.; Gil, Elena; Rey, Pablo

    2017-06-01

    In order to efficiently develop high-precision dynamic simulators for solar thermal power plants, Tecnatom adapted its simulation technology to consider solar thermal models. This effort and the excellent response of the simulation market have allowed Tecnatom to develop simulators with both parabolic trough and solar power tower technologies, including molten salt energy storage. These simulators may pursue different objectives, giving rise to training or engineering simulators. Solar thermal power market combines the need for the training of the operators with the potential benefits associated to the improvement of the design of the plants. This fact along with the simulation capabilities enabled by the current technology and the broad experience of Tecnatom present the development of an engineering+training simulator as a very advantageous option. This paper describes the challenge of the development and integration of a full scope simulator during the design and construction stages of a solar thermal power plant, showing the added value to the different engineering areas.

  19. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  20. Optimal Inflatable Space Towers with 3 - 100 km Height

    NASA Technical Reports Server (NTRS)

    Bolonkin, Alexander

    2003-01-01

    Theory and computations are provided for building inflatable space towers up to one hundred kilometers in height. These towers can be used for tourism, scientific observation of space, observation of the Earth's surface, weather and upper atmosphere, and for radio, television, and communication transmissions. These towers can also be used to launch space ships and Earth satellites. These projects are not expensive and do not require rockets. They require thin strong films composed from artificial fibers and fabricated by current industry. The towers can be built using present technology. The towers can be used (for tourism, communication, etc.) during the construction process and provide self-financing for further construction. The tower design does not require work at high altitudes; all construction can be done at the Earth's surface. The transport system for a tower consists of a small engine (used only for friction compensation) located at the Earth's surface. The tower is separated into sections and has special protection mechanisms in case of damage. Problems involving security, control, repair, and stability of the proposed towers are addressed in other publications. The author is prepared to discuss these and other problems with serious organizations desiring to research and develop these projects.

  1. Summary of tower designs for large horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Frederick, G. R.; Savino, J. M.

    1986-01-01

    Towers for large horizontal axis wind turbines, machines with a rotor axis height above 30 meters and rated at more than 500 kW, have varied in configuration, materials of construction, type of construction, height, and stiffness. For example, the U.S. large HAWTs have utilized steel truss type towers and free-standing steel cylindrical towers. In Europe, the trend has been to use only free-standing and guyed cylindrical towers, but both steel and reinforced concrete have been used as materials of construction. These variations in materials of construction and type of construction reflect different engineering approaches to the design of cost effective towers for large HAWTs. Tower designs are the NASA/DOE Mod-5B presently being fabricated. Design goals and requirements that influence tower configuration, height and materials are discussed. In particular, experiences with United States large wind turbine towers are elucidated. Finally, current trends in tower designs for large HAWTs are highlighted.

  2. PBF Cooling Tower (PER720) and its Auxiliary Building (PER625). Camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720) and its Auxiliary Building (PER-625). Camera facing west shows east facades. Center pipe carried secondary coolant water from reactor. Building to distributor basin. Date: August 2003. INEEL negative no. HD-35-10-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  3. PBF Cooling Tower (PER720), and Auxiliary Building (PER624). Camera faces ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower (PER-720), and Auxiliary Building (PER-624). Camera faces north to show south facades. Oblong vertical structure at left of center is weather shield for stairway. Date: August 2003. INEEL negative no. HD-35-10-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  4. Mycobacteria in Finnish cooling tower waters.

    PubMed

    Torvinen, Eila; Suomalainen, Sini; Paulin, Lars; Kusnetsov, Jaana

    2014-04-01

    Evaporative cooling towers are water systems used in, e.g., industry and telecommunication to remove excess heat by evaporation of water. Temperatures of cooling waters are usually optimal for mesophilic microbial growth and cooling towers may liberate massive amounts of bacterial aerosols. Outbreaks of legionellosis associated with cooling towers have been known since the 1980's, but occurrences of other potentially pathogenic bacteria in cooling waters are mostly unknown. We examined the occurrence of mycobacteria, which are common bacteria in different water systems and may cause pulmonary and other soft tissue infections, in cooling waters containing different numbers of legionellae. Mycobacteria were isolated from all twelve cooling systems and from 92% of the 24 samples studied. Their numbers in the positive samples varied from 10 to 7.3 × 10(4) cfu/L. The isolated species included M. chelonae/abscessus, M. fortuitum, M. mucogenicum, M. peregrinum, M. intracellulare, M. lentiflavum, M. avium/nebraskense/scrofulaceum and many non-pathogenic species. The numbers of mycobacteria correlated negatively with the numbers of legionellae and the concentration of copper. The results show that cooling towers are suitable environments for potentially pathogenic mycobacteria. Further transmission of mycobacteria from the towers to the environment needs examination. © 2013 APMIS. Published by John Wiley & Sons Ltd.

  5. 5. View of south tower, facing northnortheast from south bank ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of south tower, facing north-northeast from south bank of the Columbia River. Center tower and north tower in background, lower right. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  6. On the design and feasibility of a pneumatically supported actively guided space tower

    NASA Astrophysics Data System (ADS)

    Seth, Raj Kumar

    2010-07-01

    Space tethers have been investigated widely as a means to provide easy access to space. However, the design and construction of such a device presents significant unsolved technological challenges. An alternative approach is proposed to the construction of a space elevator that utilises a free-standing core structure to provide access to near space regions and to reduce the cost of space launch. The theoretical and experimental investigation of the bending of inflatable cylindrical cantilevered beams made of modem fabric materials provides the basis for the design of an inflatable space tower. Experimental model structures were deployed and tested in order to determine design guidelines for the core structure. The feasibility of the construction of a thin walled inflatable space tower of 20 km vertical extent comprised of pneumatically inflated sections that are actively controlled and stabilised to balance external disturbances and support the structure is discussed. The response of the structure under wind loads is analyzed and taken into account for determining design guidelines. Such an approach avoids problems associated with a space tether including material strength constraints, the need for in-space construction, the fabrication of a cable at least 50,000 km in length, and the ageing and meteorite damage effects associated with a thin tether or cable in Low Earth Orbit. A suborbital tower of 20 km height would provide an ideal mounting point where a geostationary orbital space tether could be attached without experiencing atmospheric turbulence and weathering in the lower atmosphere. The tower can be utilized as a platform for various scientific and space missions or as an elevator to carry payloads and tourists. In addition, space towers can significantly be utilized to generate electrical power by harvesting high altitude renewable energy sources. Keywords: Space Elevator, Inflatable Space Tower, Inflatable Structure, Inflatable Beam, Inflatable Multiple

  7. Final Test and Evaluation Results from the Solar Two Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRADSHAW, ROBERT W.; DAWSON, DANIEL B.; DE LA ROSA, WILFREDO

    Solar Two was a collaborative, cost-shared project between 11 U. S. industry and utility partners and the U. S. Department of Energy to validate molten-salt power tower technology. The Solar Two plant, located east of Barstow, CA, comprised 1926 heliostats, a receiver, a thermal storage system, a steam generation system, and steam-turbine power block. Molten nitrate salt was used as the heat transfer fluid and storage media. The steam generator powered a 10-MWe (megawatt electric), conventional Rankine cycle turbine. Solar Two operated from June 1996 to April 1999. The major objective of the test and evaluation phase of the projectmore » was to validate the technical characteristics of a molten salt power tower. This report describes the significant results from the test and evaluation activities, the operating experience of each major system, and overall plant performance. Tests were conducted to measure the power output (MW) of the each major system, the efficiencies of the heliostat, receiver, thermal storage, and electric power generation systems and the daily energy collected, daily thermal-to-electric conversion, and daily parasitic energy consumption. Also included are detailed test and evaluation reports.« less

  8. 17. VIEW OF THE TOP OF THE TOWER SHOWING BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. VIEW OF THE TOP OF THE TOWER SHOWING BASE OF TOWER MAST AND WOOD DECKING ON SIGNAL TOWER ROOF. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  9. An integrated system for the energy production and accumulation from renewable sources: a rural tower prototype

    NASA Astrophysics Data System (ADS)

    Di Francesco, Silvia; Petrozzi, Alessandro; Montesarchio, Valeria

    2014-05-01

    This research work presents the implementation of an architectural prototype aiming at the complete energy self-sufficiency through an integrated system based on renewable energy. It is suitable for historical buildings in rural areas, isolated but important from natural and architectonical point of view. In addition to the energy aspects, it is important to protect the impact in terms of land-use and environment. This idea is also especially powerful because in the rural countries there are many little building centers abandoned because they are devoid of a connection to the electric energy grid and methane piping. Thus, taking inspiration from dove towers, architectural typology widespread in central Italy, a virtual model has been developed as an integrated system for renewable energy production, storage and supply. While recovering the ancient tower, it is possible to design and assembly an integrated intelligent system, able to combine energy supply and demand: a new tower that should be flexible, efficient and replicable in other contexts as manufacturing, commercial and residential ones. The prototype has been applied to a real case of study, an ancient complex located in Umbria Region. The sources for electric production installed on the tower are photovoltaics, on the head and shaft of the tower, hydropower and a biomass gasifier providing thermal too. A tank at the head of the tower allows an available hydraulic potential energy, for the turbine at any time, to cover photovoltaic lacks, caused by sudden loss of production, for environmental causes. Conversely, photovoltaic peaks, otherwise unusable, can be used to reload the water from the receiving tank at the foot of the tower, up to the tank in the head. The same underground tank acts as a thermal flywheel to optimize the geothermal heat pumps for the heat and cold production. Keywords: hydropower, photovoltaics, dove tower.

  10. The Physics of Shot Towers

    ERIC Educational Resources Information Center

    Lipscombe, Trevor C.; Mungan, Carl E.

    2012-01-01

    In the late 18th and throughout the 19th century, lead shot for muskets was prepared by use of a shot tower. Molten lead was poured from the top of a tower and, during its fall, the drops became spherical under the action of surface tension. In this article, we ask and answer the question: "How does the size of the lead shot depend on the height…

  11. The new Drop Tower catapult system

    NASA Astrophysics Data System (ADS)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  12. Adaptation of amoebae to cooling tower biocides.

    PubMed

    Srikanth, S; Berk, S G

    1994-05-01

    Adaptation of amoebae to four cooling tower Biocides, which included a thiocarbamate compound, tributyltin neodecanoate mixed with quaternary ammonium compounds (TBT/QAC), another QAC alone, and an isothiazolin derivative, was studied. Previously we found that amoebae isolated from waters of cooling towers were more resistant to cooling tower biocides than amoebae from other habitats. Acanthamoeba hatchetti and Cochliopodium bilimbosum, obtained from American Type Culture Collection and used in the previous studies, were tested to determine whether they could adapt to cooling tower Biocides. A. hatchetti was preexposed to subinhibitory concentrations of the four Biocides for 72h, after which they were tested for their resistance to the same and other biocides. C. bilimbosum was exposed to only two biocides, as exposure to the other two was lethal after 72 h. Preexposure to the subinhibitory concentrations of the Biocides increased the resistance of the amoebae, as indicated by a significant increase in the minimum inhibitory concentration (up to 30-fold). In addition, cross-resistance was also observed, i.e., exposure to one biocide caused resistance to other biocides. These results show that amoebae can adapt to biocides in a short time. The phenomenon of cross-resistance indicates that regularly alternating biocides, as is done to control microbial growth in cooling towers, may not be effective in keeping amoeba populations in check. On the contrary, exposure to one biocide may boost the amoebae's resistance to a second biocide before the second biocide is used in the cooling tower. Since amoebae may harbor Legionella, or alone cause human diseases, these results may be important in designing effective strategies for controlling pathogens in cooling towers.

  13. Seismic Analysis of Intake Towers

    DTIC Science & Technology

    1982-10-01

    Experiment Station (WES) under the sponsorship of the Directorate of Civil Works of the Office, Chief of Engineers, U. S. Army. The work was funded under...the structural capacity of the intake S,-tower are contained in Engineer Technical Letter (ETL) 1110-2-265 " Civil Systems Incorporated, "Dynamic...Berkeley, Calif. " ___ 1975. "Earthquake Resistant Design of Intake-Outlet Towers," Journal of the Structural Division_ American Society of Civil

  14. Computational Analysis of Nanoparticles-Molten Salt Thermal Energy Storage for Concentrated Solar Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vinod

    2017-05-05

    High fidelity computational models of thermocline-based thermal energy storage (TES) were developed. The research goal was to advance the understanding of a single tank nanofludized molten salt based thermocline TES system under various concentration and sizes of the particles suspension. Our objectives were to utilize sensible-heat that operates with least irreversibility by using nanoscale physics. This was achieved by performing computational analysis of several storage designs, analyzing storage efficiency and estimating cost effectiveness for the TES systems under a concentrating solar power (CSP) scheme using molten salt as the storage medium. Since TES is one of the most costly butmore » important components of a CSP plant, an efficient TES system has potential to make the electricity generated from solar technologies cost competitive with conventional sources of electricity.« less

  15. Recent Results From the NOAA/ESRL GMD Tall Tower Network

    NASA Astrophysics Data System (ADS)

    Andrews, A. E.; Tans, P. P.; Peters, W.; Hirsch, A.; Sweeney, C.; Petron, G.; Kofler, J.; Zhao, C.; Masarie, K.; Wofsy, S. C.; Matross, D. M.; Mahadevan, P.; Longo, M.; Gerbig, C.; Lin, J. C.

    2006-12-01

    We will present a summary of new results from NOAA Earth System Research Laboratory`s Tall Tower greenhouse gas monitoring network. The tower network is operated by the Global Monitoring Division, which also maintains the global Cooperative Air Sampling network and a network of aircraft profiling sites over North America. Tall tower CO2 mixing ratio measurements are sensitive to upwind fluxes over scales of hundreds of kilometers, and the primary objective of the tower network is to obtain regionally representative carbon flux estimates for the North American continent. Mixing ratios of CO2 and CO are measured semi-continuously at the towers, and the KWKT-TV tower site near Moody, TX has recently also been equipped with sensors to measure radon and O3. Daily flask samples are collected at the KWKT tower and analyzed for CO2, CO, CH4, SF6, N2O, H2, stable isotopes of CO2 and CH4, COS, and a variety of halocarbon and hydrocarbon species. Daily flask sampling will be implemented at all tower sites within the next few years. We have used the Stochastic Time Inverted Lagrangian Transport (STILT) model to investigate upwind influences on the tower observations. CO measurements provide an indicator of polluted air masses, and we will present a summary of the frequency and origin of pollution events observed at the towers. We will present an analysis of the primary factors contributing to observed CO2 variability along with average seasonal and diurnal cycles of CO2 at the tower sites. Tower measurements are being used to evaluate atmospheric transport models in the context of the Transcom Continuous experiment and are an important constraint for CO2 data assimilation systems that produce regional to global carbon flux estimates with up to weekly resolution.

  16. Convective Cloud Towers and Precipitation Initiation, Frequency and Intensity

    NASA Astrophysics Data System (ADS)

    Vant-hull, B.; Mahani, S. E.; Autones, F.; Rabin, R.; Mecikalski, J. R.; Khanbilvardi, R.

    2012-12-01

    : Geosynchronous satellite retrieval of precipitation is desirable because it would provide continuous observation throughout most of the globe in regions where radar data is not available. In the current work the distribution of precipitation rates is examined as a function of cloud tower area and cloud top temperature. A thunderstorm tracking algorithm developed at Meteo-France is used to track cumulus towers that are matched up with radar data at 5 minute 1 km resolution. It is found that roughly half of the precipitation occurs in the cloud mass that surrounds the towers, and when a tower is first detected the precipitation is already in progress 50% of the time. The average density of precipitation per area is greater as the towers become smaller and colder, yet the averaged shape of the precipitation intensity distribution is remarkably constant in all convective situations with cloud tops warmer than 220 K. This suggests that on average all convective precipitation events look the same, unaffected by the higher frequency of occurrence per area inside the convective towers. Only once the cloud tops are colder than 220 K does the precipitation intensity distribution become weighted towards higher instantaneous intensities. Radar precipitation shown in shades of green to blue, lightning in orange; black diamonds are coldest points in each tower. Ratio of number of pixels of given precipitation inside versus outside the convective towers, for various average cloud top temperatures. A flat plot indicates the distribution of rainfall inside and outside the towers has the same shape.

  17. Assessment of the Neutronic and Fuel Cycle Performance of the Transatomic Power Molten Salt Reactor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Sean; Dewan, Leslie; Massie, Mark

    This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less

  18. Facing technological challenges of Solar Updraft Power Plants

    NASA Astrophysics Data System (ADS)

    Lupi, F.; Borri, C.; Harte, R.; Krätzig, W. B.; Niemann, H.-J.

    2015-01-01

    The Solar Updraft Power Plant technology addresses a very challenging idea of combining two kinds of renewable energy: wind and solar. The working principle is simple: a Solar Updraft Power Plant (SUPP) consists of a collector area to heat the air due to the wide-banded ultra-violet solar radiation, the high-rise solar tower to updraft the heated air to the atmosphere, and in between the power conversion unit, where a system of coupled turbines and generators transforms the stream of heated air into electric power. A good efficiency of the power plant can only be reached with extra-large dimensions of the tower and/or the collector area. The paper presents an up-to-date review of the SUPP technology, focusing on the multi-physics modeling of the power plant, on the structural behavior of the tower and, last but not least, on the modeling of the stochastic wind loading process.

  19. A comment on towers for windmills. [structural and economic criteria

    NASA Technical Reports Server (NTRS)

    Budgen, H. P.

    1973-01-01

    Design considerations for windmill tower structures include the effects of normal wind forces on the rotor and on the tower. Circular tabular or masonry towers present a relatively simple aerodynamic solution. Economic factors establish the tubular tower as superior for small and medium sized windmills. Concrete and standard concrete block designs are cheaper than refabricated steel structures that have to be freighted.

  20. Calder Hall Cooling Tower Demolition: Landmark Milestone for Decommissioning at Sellafield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, E.J.

    2008-07-01

    September 2007 saw a very visible change to the Sellafield site following the culmination of a major decommissioning project; the demolition of the four Calder Hall cooling towers. A key part of the UK's nuclear industrial heritage, Calder Hall, the world's first commercial nuclear power station, was opened by Her Majesty Queen Elizabeth II in October 1953 and continued to generate electricity until its closure in 2003. Following the decision to decommission the Calder Hall site, explosive demolition was identified as the safest and most cost effective route for the removal of the towers. The technique, involving the placement ofmore » explosive in 60% of the circumference of both shell and legs, is a tried and tested method which had already been used successfully in more than 200 cooling towers in the UK in the last 30 years. The location and composition of the four 88 metre high towers also created additional challenges. Situated only 40 metres away from the UK's only nuclear Fuel Handling Plant, as well as other sensitive structures on the Sellafield site, the project had to address the impact of a number of key areas, including dust, ground vibration and air over pressure, to ensure that the demolition could be carried out safely and without significant impact on other operational areas on the site. At the same time, the towers had to be prepared for demolition in a way that minimised the amounts of radioactive or hazardous waste materials arising. This paper follows the four year journey from the initial decision to demolish the towers right through to the demolition itself as well as the clean up of the site post demolition. It will also consider the massive programme of work necessary not only to carry out the physical work safely but also to gain regulatory confidence and stakeholder support to carry out the project successfully. In summary: The demolition of the four Calder Hall cooling towers was a highly visible symbol of the changes that are

  1. Concentrating Solar Power Projects - SunCan Dunhuang 100 MW Phase II |

    Science.gov Websites

    Concentrating Solar Power | NREL 0 MW Phase II Status Date: January 11, 2017 Project Overview ): Beijing Shouhang IHW Technology: Power tower Turbine Capacity: Net: 100.0 MW Gross: 100.0 MW Status: Under construction Do you have more information, corrections, or comments? Background Technology: Power tower Status

  2. The Drop Tower Bremen -Experiment Operation

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  3. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.

    PubMed

    Sevda, Surajbhan; Sreekrishnan, T R

    2012-01-01

    The aim of this study was to investigate the feasibility of using agar salt bridges for proton transport in Microbial Fuel Cells (MFC). It also tries to elucidate and effect of mediators on electricity production from wastewaters through experimentation using a simulated wastewater. In order to offset the very high cost of proton exchange membrane, salt bridges have been used in dual chamber MFCs. When the concentration of salt was varied in agar salt bridges from 1% to 10%, the volumetric power density changed from 1.71 to 84.99 mW/m(3) with a concomitant variation in power density from 0.32 to 16.02 mW/m(2). The maximum power density was observed at 5% salt concentration with 10% agar, which was accompanied by 88.41% COD reduction. In the case of methylene blue (0.01 mM) as the electron mediator, the voltage and current generation were 0.551 V and 0.47 mA, respectively. A maximum open circuit voltage of 0.718 V was seen at 0.08 mM methylene blue concentration, whereas maximum power densities of 17.59 mW/m(2) and 89.22 mW/m(3) were obtained. Different concentrations of neutral red were also tried out as mediators. A maximum open circuit voltage of 0.730 V was seen at 0.01 mM neutral red, corresponding to a power density of 12.02 mW/m(2) (volumetric power density of 60.97 mW/m(3)). Biofilm formation on the electrode surface was not observed in the presence of mediators, but was present in the absence of mediators. The results clearly demonstrated the feasibility to use agar salt bridge for proton transport and role of mediators in MFCs to generate electricity.

  4. Executive Summary : Tower Cab System Integration Analysis

    DOT National Transportation Integrated Search

    1978-08-01

    This report summarizes the principal results of the study of the integration into the tower cab of the systems being developed under the Major Systems Development Program (MSDP). The impact of these systems on the tower cab is analyzed from several p...

  5. DETAIL OF VALVE TOWER SHOWING SLUICE GATE ON EAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF VALVE TOWER SHOWING SLUICE GATE ON EAST SIDE OF TOWER. VIEW FACING WEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  6. Main photoautotrophic components of biofilms in natural draft cooling towers.

    PubMed

    Hauer, Tomáš; Čapek, Petr; Böhmová, Petra

    2016-05-01

    While photoautotrophic organisms are an important component of biofilms that live in certain regions of natural draft cooling towers, little is known about these communities. We therefore examined 18 towers at nine sites to identify the general patterns of community assembly in three distinct tower parts, and we examined how community structures differ depending on geography. We also compared the newly acquired data with previously published data. The bottom sections of draft cooling towers are mainly settled by large filamentous algae, primarily Cladophora glomerata. The central portions of towers host a small amount of planktic algae biomass originating in the cooling water. The upper fourths of towers are colonized by biofilms primarily dominated by cyanobacteria, e.g., members of the genera Gloeocapsa and Scytonema. A total of 41 taxa of phototrophic microorganisms were identified. Species composition of the upper fourth of all towers was significantly affected by cardinal position. There was different species composition at positions facing north compared to positions facing south. West- and east-facing positions were transitory and highly similar to each other in terms of species composition. Biofilms contribute to the degradation of paint coatings inside towers.

  7. Hypotheses of calculation of the water flow rate evaporated in a wet cooling tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourillot, C.

    1983-08-01

    The method developed by Poppe at the University of Hannover to calculate the thermal performance of a wet cooling tower fill is presented. The formulation of Poppe is then validated using full-scale test data from a wet cooling tower at the power station at Neurath, Federal Republic of Germany. It is shown that the Poppe method predicts the evaporated water flow rate almost perfectly and the condensate content of the warm air with good accuracy over a wide range of ambient conditions. The simplifying assumptions of the Merkel theory are discussed, and the errors linked to these assumptions are systematicallymore » described, then illustrated with the test data.« less

  8. 2. Signal Tower, looking east. Delaware, Lackawanna & Western ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Signal Tower, looking east. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Mattes Street Signal Tower, 80 feet Southwest of Railroad Alley & Cedar Avenue, Scranton, Lackawanna County, PA

  9. Properties and heat transfer coefficients of four molten-salt high temperature heat transfer fluid candidates for concentrating solar power plants

    NASA Astrophysics Data System (ADS)

    Liu, T. L.; Liu, W. R.; Xu, X. H.

    2017-11-01

    Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.

  10. 3. West elevation of Signal Tower. Delaware, Lackawanna & ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. West elevation of Signal Tower. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Mattes Street Signal Tower, 80 feet Southwest of Railroad Alley & Cedar Avenue, Scranton, Lackawanna County, PA

  11. Surface and Tower Meteorological Instrumentation at NSA Handbook - January 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MT Ritsche

    2006-01-30

    The Surface and Tower Meteorological Instrumentation at Atqasuk (METTWR2H) uses mainly conventional in situ sensors to measure wind speed, wind direction, air temperature, dew point and humidity mounted on a 10-m tower. It also obtains barometric pressure, visibility, and precipitation data from sensors at or near the base of the tower. In addition, a Chilled Mirror Hygrometer is located at 1 m for comparison purposes. Temperature and relative humidity probes are mounted at 2 m and 5 m on the tower. For more information, see the Surface and Tower Meteorological Instrumentation at Atqasuk Handbook.

  12. Stimulatory effect of cooling tower biocides on amoebae.

    PubMed

    Srikanth, S; Berk, S G

    1993-10-01

    Two species of amoebae were isolated from the cooling tower of an air-conditioning system and examined for effects of exposure to four cooling tower biocides, a thiocarbamate compound, tributyltin neodecanoate mixed with quaternary ammonium compounds, another quaternary ammonium compound alone, and an isothiazolin derivative. The amoebae isolated were Acanthamoeba hatchetti and a Cochliopodium species. Two other amoeba cultures, an A. hatchetti culture and Cochliopodium bilimbosum, were obtained from the American Type Culture Collection (ATCC) and were also tested. The cooling tower isolates were more resistant to most of the biocides than the ATCC isolates were. The isothiazolin derivative was the least inhibitory to all four amoeba isolates, and tributyltin neodecanoate mixed with quaternary ammonium compounds was the most inhibitory to three of the four isolates. After exposure to lower concentrations of the biocides, including for one strain the manufacturer's recommended concentration of one biocide, the cooling tower amoeba populations increased significantly compared with unexposed controls, whereas the ATCC isolates were not stimulated at any of the concentrations tested. In some cases, concentrations which stimulated cooling tower amoebae inhibited the growth of the ATCC isolates. These results suggest that cooling tower amoebae may adapt to biocides, underscoring the need to use freshly isolated cooling tower organisms rather than organisms from culture collections for testing the efficacy of such biocides. The stimulatory effect of biocides on amoeba populations is an alarming observation, since these organisms may be reservoirs for legionellae. Biocides used to control microbial growth may actually enhance populations of host organisms for pathogenic bacteria.

  13. Small Liquid Hydrogen Tank for Drop Tower Tests

    NASA Image and Video Library

    1964-11-21

    A researcher fills a small container used to represent a liquid hydrogen tank in preparation for a microgravity test in the 2.2-Second Drop Tower at the National Aeronautics and Space Administration (NASA) Lewis Research Center. For over a decade, NASA Lewis endeavored to make liquid hydrogen a viable propellant. Hydrogen’s light weight and high energy made it very appealing for rocket propulsion. One of the unknowns at the time was the behavior of fluids in the microgravity of space. Rocket designers needed to know where the propellant would be inside the fuel tank in order to pump it to the engine. NASA Lewis utilized sounding rockets, research aircraft, and the 2.2 Second Drop Tower to study liquids in microgravity. The drop tower, originally built as a fuel distillation tower in 1948, descended into a steep ravine. By early 1961 the facility was converted into an eight-floor, 100-foot tower connected to a shop and laboratory space. Small glass tanks, like this one, were installed in experiment carts with cameras to film the liquid’s behavior during freefall. Thousands of drop tower tests in the early 1960s provided an increased understanding of low-gravity processes and phenomena. The tower only afforded a relatively short experiment time but was sufficient enough that the research could be expanded upon using longer duration freefalls on sounding rockets or aircraft. The results of the early experimental fluid studies verified predictions made by Lewis researchers that the total surface energy would be minimized in microgravity.

  14. Tower Mesonetwork Climatology and Interactive Display Tool

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the 45th Weather Squadron and Spaceflight Meteorology Group use data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria, and issue and verify forecasts for ground operations. Systematic biases in these parameters could adversely affect an analysis, forecast, or verification. Also, substantial geographical variations in temperature and wind speed can occur under specific wind directions. To address these concerns, the Applied Meteorology Unit (AMU) developed a climatology of temperatures and winds from the tower network, and identified the geographical variation and significant tower biases. The mesoclimate is largely driven by the complex land-water interfaces across KSC/CCAFS. Towers with close proximity to water typically had much warmer nocturnal temperatures and higher wind speeds throughout the year. The strongest nocturnal wind speeds occurred from October to March whereas the strongest mean daytime wind speeds occurred from February to May. These results of this project can be viewed by forecasters through an interactive graphical user interface developed by the AMU. The web-based interface includes graphical and map displays of mean, standard deviation, bias, and data availability for any combination of towers, variables, months, hours, and wind directions.

  15. Enumeration of Legionella pneumophila in cooling tower water systems.

    PubMed

    Türetgen, Irfan; Sungur, Esra Ilhan; Cotuk, Aysin

    2005-01-01

    Legionella pneumophila, the causative agent of Legionnaires' disease, is known to colonise and frequently grow in cooling tower waters. Disease is acquired by inhaling aerosol contaminated by legionellae. Determination of the count of Legionella pneumophila in cooling tower waters may, therefore, be useful for risk assessment. In our survey, 103 water samples from 50 cooling towers were examined over a five-year period to indicate the seasonal distribution and the ecology of L. pneumophila, as regards temperature and pH. L. pneumophila serogroup 1 was found in 44% of the isolated strains, which is primarily responsible for the majority of Legionnaires' disease. The large majority of examined towers had levels of L. pneumophila in the high-risk category. These cooling towers have been linked to many outbreaks of Legionnaires' disease.

  16. COOLING TOWER PUMP HOUSE, TRA606. THREE OF SIX SECTIONS OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COOLING TOWER PUMP HOUSE, TRA-606. THREE OF SIX SECTIONS OF COOLING TOWER ARE VISIBLE ABOVE RAILING. PUMP HOUSE IN FOREGROUND IS ON SOUTH SIDE OF COOLING TOWER. NOTE THREE PIPES TAKING WATER FROM PUMP HOUSE TO HOT DECK OF COOLING TOWER. EMERGENCY WATER SUPPLY TOWER IS ALSO IN VIEW. INL NEGATIVE NO. 6197. Unknown Photographer, 6/27/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. Rapid Identification of a Cooling Tower-Associated Legionnaires' Disease Outbreak Supported by Polymerase Chain Reaction Testing of Environmental Samples, New York City, 2014-2015.

    PubMed

    Benowitz, Isaac; Fitzhenry, Robert; Boyd, Christopher; Dickinson, Michelle; Levy, Michael; Lin, Ying; Nazarian, Elizabeth; Ostrowsky, Belinda; Passaretti, Teresa; Rakeman, Jennifer; Saylors, Amy; Shamoonian, Elena; Smith, Terry-Ann; Balter, Sharon

    2018-04-01

    We investigated an outbreak of eight Legionnaires' disease cases among persons living in an urban residential community of 60,000 people. Possible environmental sources included two active cooling towers (air-conditioning units for large buildings) <1 km from patient residences, a market misting system, a community-wide water system used for heating and cooling, and potable water. To support a timely public health response, we used real-time polymerase chain reaction (PCR) to identify Legionella DNA in environmental samples within hours of specimen collection. We detected L. pneumophila serogroup 1 DNA only at a power plant cooling tower, supporting the decision to order remediation before culture results were available. An isolate from a power plant cooling tower sample was indistinguishable from a patient isolate by pulsed-field gel electrophoresis, suggesting the cooling tower was the outbreak source. PCR results were available <1 day after sample collection, and culture results were available as early as 5 days after plating. PCR is a valuable tool for identifying Legionella DNA in environmental samples in outbreak settings.

  18. FAA Air Traffic Control Operations Concepts. Volume 7. ATCT (Airport Traffic Control Towers) Tower Controllers

    DTIC Science & Technology

    1989-04-21

    kift rIn FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS V olum e V iI:.................... ATCT Tower Controllers AmELECTE JUL 2 11989 21 April 1989 A...01 022.3013209-87-B 11 a FAA AIR TRAFFIC CONTROL OPERATIONS CONCEPTS VOLUME VII: ATCT TOWER CONTROLLERS CDRL Bl 12, VOL. VII CONTRACT DTF-AO1-85-Y...INCORPORATED 7150 Campus Drive, Suite 100 Colorado Springs, CO 80920 (719) 590-5100 DOT/FAA/AP-87-0i (VOL#7) 21 April 1989 FAA AIR TRAFFIC CONTROL OPERATIONS

  19. 8. VIEW OF THE EAST BASE CONNECTION OF ANTENNA TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF THE EAST BASE CONNECTION OF ANTENNA TOWER S-111 FACING NORTHEAST. BUILDING 1 AND ANTENNA TOWER S-110 IN THE BACKGROUND. - U.S. Naval Base, Pearl Harbor, Lualualei Radio Transmitter, Edison & Tower Drives, Pearl City, Honolulu County, HI

  20. Concentrating Solar Power Projects - Olivenza 1 | Concentrating Solar Power

    Science.gov Websites

    Manufacturer: Siemens Turbine Description: 5 extractions Output Type: Steam Rankine Power Cycle Pressure: 100.0 bar Cooling Method: Wet cooling Cooling Method Description: Cooling Towers

  1. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  2. 3. View from former light tower to Cape Elizabeth Light ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View from former light tower to Cape Elizabeth Light Tower, view northeast, southwest side of Cape Elizabeth Tower - Cape Elizabeth Light Station, Near Two Lights State Park at end of Two Lights Road, off State Highway 77, Cape Elizabeth, Cumberland County, ME

  3. Air/molten salt direct-contact heat-transfer experiment and economic analysis

    NASA Astrophysics Data System (ADS)

    Bohn, M. S.

    1983-11-01

    Direct-contact heat-transfer coefficients have been measured in a pilot-scale packed column heat exchanger for molten salt/air duty. Two types of commercial tower packings were tested: metal Raschig rings and initial Pall rings. Volumetric heat-transfer coefficients were measured and appeared to depend upon air flow but not on salt flow rate. An economic analysis was used to compare the cost-effectiveness of direct-contact heat exchange with finned-tube heat exchanger in this application. Incorporating the measured volumetric heat-transfer coefficients, a direct-contact system appeared to be from two to five times as cost-effective as a finned-tube heat exchanger, depending upon operating temperature. The large cost advantage occurs for higher operating temperatures (2700(0)C), where high rates of heat transfer and flexibility in materials choice give the cost advantage to the direct-contact heat exchanger.

  4. Rapid Identification of a Cooling Tower-Associated Legionnaires’ Disease Outbreak Supported by Polymerase Chain Reaction Testing of Environmental Samples, New York City, 2014–2015

    PubMed Central

    Benowitz, Isaac; Fitzhenry, Robert; Boyd, Christopher; Dickinson, Michelle; Levy, Michael; Lin, Ying; Nazarian, Elizabeth; Ostrowsky, Belinda; Passaretti, Teresa; Rakeman, Jennifer; Saylors, Amy; Shamoonian, Elena; Smith, Terry-Ann; Balter, Sharon

    2018-01-01

    We investigated an outbreak of eight Legionnaires’ disease cases among persons living in an urban residential community of 60,000 people. Possible environmental sources included two active cooling towers (air-conditioning units for large buildings) <1 km from patient residences, a market misting system, a community-wide water system used for heating and cooling, and potable water. To support a timely public health response, we used real-time polymerase chain reaction (PCR) to identify Legionella DNA in environmental samples within hours of specimen collection. We detected L. pneumophila serogroup 1 DNA only at a power plant cooling tower, supporting the decision to order remediation before culture results were available. An isolate from a power plant cooling tower sample was indistinguishable from a patient isolate by pulsed-field gel electrophoresis, suggesting the cooling tower was the outbreak source. PCR results were available <1 day after sample collection, and culture results were available as early as 5 days after plating. PCR is a valuable tool for identifying Legionella DNA in environmental samples in outbreak settings. PMID:29780175

  5. Two-Dimensional Neutronic and Fuel Cycle Analysis of the Transatomic Power Molten Salt Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    2017-01-15

    This status report presents the results from the first phase of the collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear, Nuclear Energy Voucher program. The TAP design is a molten salt reactor using movable moderator rods to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches andmore » time-dependent parameters necessary to simulate the continuously changing physics in this complex system. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this design. Additional analyses of time step sizes, mass feed rates and enrichments, and isotopic removals provide additional information to make informed design decisions. This work further demonstrates capabilities of ORNL modeling and simulation tools for analysis of molten salt reactor designs and strongly positions this effort for the upcoming three-dimensional core analysis.« less

  6. Legionella confirmation in cooling tower water

    PubMed Central

    Farhat, Maha; Shaheed, Raja A.; Al-Ali, Haidar H.; Al-Ghamdi, Abdullah S.; Al-Hamaqi, Ghadeer M.; Maan, Hawraa S.; Al-Mahfoodh, Zainab A.; Al-Seba, Hussain Z.

    2018-01-01

    Objectives: To investigate the presence of Legionella spp in cooling tower water. Legionella proliferation in cooling tower water has serious public health implications as it can be transmitted to humans via aerosols and cause Legionnaires’ disease. Methods: Samples of cooling tower water were collected from King Fahd Hospital of the University (KFHU) (Imam Abdulrahman Bin Faisal University, 2015/2016). The water samples were analyzed by a standard Legionella culture method, real-time polymerase chain reaction (RT-PCR), and 16S rRNA next-generation sequencing. In addition, the bacterial community composition was evaluated. Results: All samples were negative by conventional Legionella culture. In contrast, all water samples yielded positive results by real-time PCR (105 to 106 GU/L). The results of 16S rRNA next generation sequencing showed high similarity and reproducibility among the water samples. The majority of sequences were Alpha-, Beta-, and Gamma-proteobacteria, and Legionella was the predominant genus. The hydrogen-oxidizing gram-negative bacterium Hydrogenophaga was present at high abundance, indicating high metabolic activity. Sphingopyxis, which is known for its resistance to antimicrobials and as a pioneer in biofilm formation, was also detected. Conclusion: Our findings indicate that monitoring of Legionella in cooling tower water would be enhanced by use of both conventional culturing and molecular methods. PMID:29436561

  7. On the geological origin of Devils Tower (WY, USA)

    NASA Astrophysics Data System (ADS)

    Zavada, P.; Dedecek, P.; Holloway, S. D.; Chang, J. C.; Crain, K.; Keller, G. R.

    2011-12-01

    The Devils Tower is an exceptional igneous rock formation and a dominating landmark of the northern plains in Wyoming (USA). It rises 250 m above the surrounding sedimentary formations. Previous hypotheses suggested that the Devils Tower was originally part of a magmatic intrusion; volcanic conduit, magmatic stock or a laccolith. Our review of the geological evidence suggests that the Devils Tower is a remnant of an eroded lava lake that filled a broad phreatomagmatic volcano crater. Our hypothesis is based on a detailed study of a similar phonolite landmark in Czech Republic, called Boren, and analogue modeling, finite element numerical modeling of cooling for various shapes of volcanic bodies, and results of field and gravity surveys of the area. The Devils Tower together with a group of five phonolite bodies called Missouri Buttes, located 6 km NW from the Devils Tower, represent the easternmost products of the Tertiary tectonomagmatic events related to the lithospheric-scale uplift of the Black hills monocline. The phreatomagmatic deposits in the surroundings of the Missouri Buttes and the Devils Tower suggest that these phonolite bodies were originally emplaced into phreatomagmatic maar-diatreme volcanoes. To reveal the original shape of the Devils Tower, we employed the analogue modeling using plaster of Paris as analogue for phonolite magma to study internal fabrics and shapes of extrusive/intrusive magmatic bodies emplaced into the maar-diatreme volcanoes. Then, the resulting shapes of analogue magmatic bodies were used for the Finite Element thermal numerical models of their cooling using the thermophysical parameters of the phonolite magma and the rock units surrounding the Devils Tower and Missouri Buttes. Because the columnar joints grow perpendicular to the isotherms in cooling igneous and volcanic bodies, we analyzed the match between the thermal structure of the FE models and the columnar jointing pattern on the Devils Tower. The best fit of the

  8. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  9. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE PAGES

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; ...

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (η sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies η sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for themore » parabolic trough system.« less

  11. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  12. Enhanced MFC power production and struvite recovery by the addition of sea salts to urine.

    PubMed

    Merino-Jimenez, Irene; Celorrio, Veronica; Fermin, David J; Greenman, John; Ieropoulos, Ioannis

    2017-02-01

    Urine is an excellent fuel for electricity generation in Microbial Fuel Cells (MFCs), especially with practical implementations in mind. Moreover, urine has a high content in nutrients which can be easily recovered. Struvite (MgNH 4 PO 4 ·6H 2 O) crystals naturally precipitate in urine, but this reaction can be enhanced by the introduction of additional magnesium. In this work, the effect of magnesium additives on the power output of the MFCs and on the catholyte generation is evaluated. Several magnesium sources including MgCl 2 , artificial sea water and a commercially available sea salts mixture for seawater preparation (SeaMix) were mixed with real fresh human urine in order to enhance struvite precipitation. The supernatant of each mixture was tested as a feedstock for the MFCs and it was evaluated in terms of power output and catholyte generation. The commercial SeaMix showed the best performance in terms of struvite precipitation, increasing the amount of struvite in the solid collected from 21% to 94%. Moreover, the SeaMix increased the maximum power performance of the MFCs by over 10% and it also changed the properties of the catholyte collected by increasing the pH, conductivity and the concentration of chloride ions. These results demonstrate that the addition of sea-salts to real urine is beneficial for both struvite recovery and electricity generation in MFCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Troubleshooting crude vacuum tower overhead ejector systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, J.R.; Frens, L.L.

    1995-03-01

    Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less

  14. 77 FR 33422 - Utility Scale Wind Towers From the People's Republic of China: Preliminary Affirmative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-06

    ... support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation... joined with non-subject merchandise, such as nacelles or rotor blades, and whether or not they have... are nacelles and rotor blades, regardless of whether they are attached to the wind tower. Also...

  15. Sequoias, Mavericks, Open Doors...Composing Joan Tower

    ERIC Educational Resources Information Center

    Allsup, Randall Everett

    2011-01-01

    This essay interview with Joan Tower is a meditation on the importance of composing, understood as a process larger than the making of new sound combinations or musical scores, suggesting that the compositional act is self-educative and self-forming. Tower's musical life, one of teaching and learning, one of composing and self-composing, is an…

  16. Tower Shielding Reactor II design and operation report: Vol. 2. Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, L. B.; Kolb, J. O.

    1970-01-01

    Information on the Tower Shielding Reactor II is contained in the TSR-II Design and Operation Report and in the Tower Shielding Facility Manual. The TSR-II Design and Operating Report consists of three volumes. Volume 1 is Descriptions of the Tower Shielding Reactor II and Facility; Volume 2 is Safety analysis of the Tower Shielding Reactor II; and Volume 3 is the Assembly and Testing of the Tower Shielding Reactor II Control Mechanism Housing.

  17. FLUXNET: A Global Network of Eddy-Covariance Flux Towers

    NASA Astrophysics Data System (ADS)

    Cook, R. B.; Holladay, S. K.; Margle, S. M.; Olsen, L. M.; Gu, L.; Heinsch, F.; Baldocchi, D.

    2003-12-01

    The FLUXNET global network was established to aid in understanding the mechanisms controlling the exchanges of carbon dioxide, water vapor, and energy across a variety of terrestrial ecosystems. Flux tower data are also being used to validate ecosystem model outputs and to provide information for validating remote sensing based products, including surface temperature, reflectance, albedo, vegetation indices, leaf area index, photosynthetically active radiation, and photosynthesis derived from MODIS sensors on the Terra and Aqua satellites. The global FLUXNET database provides consistent and complete flux data to support global carbon cycle science. Currently FLUXNET consists of over 210 sites, with most flux towers operating continuously for 4 years or longer. Gap-filled data are available for 53 sites. The FLUXNET database contains carbon, water vapor, sensible heat, momentum, and radiation flux measurements with associated ancillary and value-added data products. Towers are located in temperate conifer and broadleaf forests, tropical and boreal forests, crops, grasslands, chaparral, wetlands, and tundra on five continents. Selected MODIS Land products in the immediate vicinity of the flux tower are subsetted and posted on the FLUXNET Web site for 169 flux-towers. The MODIS subsets are prepared in ASCII format for 8-day periods for an area 7 x 7 km around the tower.

  18. Method and system for simulating heat and mass transfer in cooling towers

    DOEpatents

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  19. Concentrating Solar Power Projects by Project Name | Concentrating Solar

    Science.gov Websites

    Tower Plant Gujarat Solar One Gulang 100MW Thermal Oil Parabolic Trough project Guzmán Hami 50 MW CSP ¼lich Solar Tower Kathu Solar Park KaXu Solar One Khi Solar One Kimberlina Solar Thermal Power Plant Solar Plant MINOS Mojave Solar Project Morón National Solar Thermal Power Facility Nevada Solar One

  20. Hopfield networks for solving Tower of Hanoi problems

    NASA Astrophysics Data System (ADS)

    Kaplan, G. B.; Güzeliş, Cüneyt

    2001-08-01

    In this paper, Hopfield neural networks have been considered in solving the Tower of Hanoi test which is used in the determining of deficit of planning capability of the human prefrontal cortex. The main difference between this paper and the ones in the literature which use neural networks is that the Tower of Hanoi problem has been formulated here as a special shortest-path problem. In the literature, some Hopfield networks are developed for solving the shortest path problem which is a combinatorial optimization problem having a diverse field of application. The approach given in this paper gives the possibility of solving the Tower of Hanoi problem using these Hopfield networks. Also, the paper proposes new Hopfield network models for the shortest path and hence the Tower of Hanoi problems and compares them to the available ones in terms of the memory and time (number of steps) needed in the simulations.

  1. Heart rate and blood pressure variabilities in salt-sensitive hypertension.

    PubMed

    Piccirillo, G; Bucca, C; Durante, M; Santagada, E; Munizzi, M R; Cacciafesta, M; Marigliano, V

    1996-12-01

    In salt-sensitive hypertension, a high sodium intake causes plasma catecholamines to rise and pulmonary baroreceptor plasticity to fall. In salt-sensitive and salt-resistant hypertensive subjects during low and high sodium intakes, we studied autonomic nervous system activity by power spectral analysis of heart rate and arterial pressure variabilities and baroreceptor sensitivity. In all subjects, high sodium intake significantly enhanced the low-frequency power of heart rate and arterial pressures at rest and after sympathetic stress. It also increased heart rate and arterial pressure variabilities. During high sodium intake, salt-sensitive hypertensive subjects had significantly higher low-frequency powers of systolic arterial pressure (7.5 mm Hg2, P < .05) and of heart rate at rest (59.2 +/- 2.4 normalized units [NU], P < .001) than salt-resistant subjects (6.6 +/- 0.3 mm Hg2, 55.0 +/- 3.2 NU) and normotensive control subjects (5.1 +/- 0.5 mm Hg2, 41.6 +/- 2.9 NU). In salt-sensitive subjects, low sodium intake significantly reduced low-frequency normalized units (P < .001) and the ratio of low- to high-power frequency (P < .001). High-sodium intake significantly increased baroreflex sensitivity in control subjects (from 10.0 +/- 0.7 to 17.5 +/- 0.7 ms/mm Hg, P < .001) and salt-resistant subjects (from 6.9 +/- 0.7 to 13.9 +/- 0.9, P < .05) but not in salt-sensitive subjects (7.4 +/- 0.3 to 7.9 +/- 0.4). In conclusion, a high sodium intake markedly enhances cardiac sympathetic activity in salt-sensitive and salt-resistant hypertension. In contrast, although reduced sodium intake lowers arterial pressure and sympathetic activity, it does so only in salt-sensitive subjects. Hence, in salt-resistant subjects, neither arterial pressure nor sympathetic activity depends on salt intake. During a high sodium intake in normotensive subjects and salt-resistant hypertensive subjects, increased sympathetic activity is probably compensated by enhanced baroreflex sensitivity.

  2. Use of cooling tower blow down in ethanol fermentation.

    PubMed

    Rajagopalan, N; Singh, V; Panno, B; Wilcoxon, M

    2010-01-01

    Reducing water consumption in bioethanol production conserves an increasingly scarce natural resource, lowers production costs, and minimizes effluent management issues. The suitability of cooling tower blow down water for reuse in fermentation was investigated as a means to lower water consumption. Extensive chemical characterization of the blow down water revealed low concentrations of toxic elements and total dissolved solids. Fermentation carried out with cooling tower blow down water resulted in similar levels of ethanol and residual glucose as a control study using deionized water. The study noted good tolerance by yeast to the specific scale and corrosion inhibitors found in the cooling tower blow down water. This research indicates that, under appropriate conditions, reuse of blow down water from cooling towers in fermentation is feasible.

  3. 1. Perspective of Mattes Street Signal Tower looking southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Perspective of Mattes Street Signal Tower looking southwest. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Mattes Street Signal Tower, 80 feet Southwest of Railroad Alley & Cedar Avenue, Scranton, Lackawanna County, PA

  4. 7. Detail of first floor doorway to Signal Tower. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Detail of first floor doorway to Signal Tower. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Mattes Street Signal Tower, 80 feet Southwest of Railroad Alley & Cedar Avenue, Scranton, Lackawanna County, PA

  5. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 4, Appendixes B-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced bymore » Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.« less

  6. Salt Lake City Area Integrated Projects Electric Power Marketing. Draft environmental impact statement: Volume 2, Sections 1-16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Salt Lake City Area Office of the Western Area Power Administration (Western) markets electricity produced at hydroelectric facilities operated by the Bureau of Reclamation. The facilities are known collectively as the Salt Lake City Area Integrated Projects (SLCA/IP) and include dams equipped for power generation on the Green, Gunnison, Rio Grande, and Colorado rivers and on Deer and Plateau creeks in the states of Wyoming, Utah, Colorado, Arizona, and New Mexico. Of these facilities, only the Glen Canyon Unit, the Flaming Gorge Unit, and the Aspinall Unit (which includes Blue Mesa, Morrow Point, and Crystal dams;) are influenced bymore » Western power scheduling and transmission decisions. The EIS alternatives, called commitment-level alternatives, reflect combinations of capacity and energy that would feasibly and reasonably fulfill Westerns firm power marketing responsibilities, needs, and statutory obligations. The viability of these alternatives relates directly to the combination of generation capability of the SLCA/IP with energy purchases and interchange. The economic and natural resource assessments in this environmental impact statement (EIS) include an analysis of commitment-level alternatives. Impacts of the no-action alternative are also assessed. Supply options, which include combinations of electrical power purchases and hydropower operational scenarios reflecting different operations of the dams, are also assessed. The EIS evaluates the impacts of these scenarios relative to socioeconomics, air resources, water resources, ecological resources, cultural resources, land use, recreation, and visual resources.« less

  7. Identification of tower-wake distortions using sonic anemometer and lidar measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine; Quelet, Paul T.; Choukulkar, Aditya

    The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairsmore » of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. Furthermorew, a vast majority of intervals

  8. Identification of tower-wake distortions using sonic anemometer and lidar measurements

    DOE PAGES

    McCaffrey, Katherine; Quelet, Paul T.; Choukulkar, Aditya; ...

    2017-02-02

    The eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign took place in March through May 2015 at the Boulder Atmospheric Observatory, utilizing its 300 m meteorological tower, instrumented with two sonic anemometers mounted on opposite sides of the tower at six heights. This allowed for at least one sonic anemometer at each level to be upstream of the tower at all times and for identification of the times when a sonic anemometer is in the wake of the tower frame. Other instrumentation, including profiling and scanning lidars aided in the identification of the tower wake. Here we compare pairsmore » of sonic anemometers at the same heights to identify the range of directions that are affected by the tower for each of the opposing booms. The mean velocity and turbulent kinetic energy are used to quantify the wake impact on these first- and second-order wind measurements, showing up to a 50% reduction in wind speed and an order of magnitude increase in turbulent kinetic energy. Comparisons of wind speeds from profiling and scanning lidars confirmed the extent of the tower wake, with the same reduction in wind speed observed in the tower wake, and a speed-up effect around the wake boundaries. Wind direction differences between pairs of sonic anemometers and between sonic anemometers and lidars can also be significant, as the flow is deflected by the tower structure. Comparisons of lengths of averaging intervals showed a decrease in wind speed deficit with longer averages, but the flow deflection remains constant over longer averages. Furthermore, asymmetry exists in the tower effects due to the geometry and placement of the booms on the triangular tower. An analysis of the percentage of observations in the wake that must be removed from 2 min mean wind speed and 20 min turbulent values showed that removing even small portions of the time interval due to wakes impacts these two quantities. Furthermorew, a vast majority of intervals

  9. Wind turbine generator application places unique demands on tower design and materials

    NASA Technical Reports Server (NTRS)

    Kita, J. P.

    1978-01-01

    The most relevant contractual tower design requirements and goal for the Mod-1 tower are related to steel truss tower construction, cost-effective state-of-the-art design, a design life of 30 years, and maximum wind conditions of 120 mph at 30 feet elevation. The Mod-1 tower design approach was an iterative process. Static design loads were calculated and member sizes and overall geometry chosen with the use of finite element computer techniques. Initial tower dynamic characteristics were then combined with the dynamic properties of the other wind turbine components, and a series of complex dynamic computer programs were run to establish a dynamic load set and then a second tower design.

  10. Visibility and Visual Characteristics of the Ivanpah Solar Electric Generating System Power Tower Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, Robert; Abplanalp, Jennifer M.

    2015-03-01

    This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19more » locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.« less

  11. Evaluation of Tower Shadowing on Anemometer Measurements at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruggeman, David Alan

    2016-06-14

    The objective of this study is to evaluate the effect of tower shadowing from the meteorology towers at LANL during 2014. This study is in response to the Department of Energy Meteorological Coordinating Council visit in 2015 that recommended an evaluation of any biases in the wind data introduced by the tower and boom alignment at all meteorology towers.

  12. Modelling of power lines in lightning incidence calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, A.M.; Srivastava, K.D.

    1990-01-01

    When applying the electrogeometric model to power lines to determine the frequency and characteristics of the collected lightning strokes, the power line has traditionally been represented by a set of horizontal wires, i.e. both the sag of the wires and the existence of the towers have been ignored. This approach has serious shortcomings including inability to determine the percentage of the strokes terminating on the towers, failure to correctly predict the effect of height on median current, and giving an approximate value for the number of collected strokes without telling the corresponding degree of error. This paper eliminates the abovemore » problems by presenting a computerized solution which takes into consideration the sag of the wires, the existence of the towers, and the inequality of the striking distances to towers and to wires. The features of the program are discussed in the paper, and some of its results are given.« less

  13. 10. VIEW OF ANTENNA TOWER S111 FROM THE NORTHEAST SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF ANTENNA TOWER S-111 FROM THE NORTHEAST SIDE LOOKING UP. A PARABLOIC ANTENNA MOUNTED ON THE TOWER IS LOCATED IN THE LOWER LEFT OF PHOTO. - U.S. Naval Base, Pearl Harbor, Lualualei Radio Transmitter, Edison & Tower Drives, Pearl City, Honolulu County, HI

  14. 14 CFR 170.13 - Airport Traffic Control Tower (ATCT) establishment criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airport Traffic Control Tower (ATCT... AIR TRAFFIC CONTROL SERVICES AND NAVIGATIONAL FACILITIES Airport Traffic Control Towers § 170.13 Airport Traffic Control Tower (ATCT) establishment criteria. (a) The following criteria along with general...

  15. Parametric study of closed wet cooling tower thermal performance

    NASA Astrophysics Data System (ADS)

    Qasim, S. M.; Hayder, M. J.

    2017-08-01

    The present study involves experimental and theoretical analysis to evaluate the thermal performance of modified Closed Wet Cooling Tower (CWCT). The experimental study includes: design, manufacture and testing prototype of a modified counter flow forced draft CWCT. The modification based on addition packing to the conventional CWCT. A series of experiments was carried out at different operational parameters. In view of energy analysis, the thermal performance parameters of the tower are: cooling range, tower approach, cooling capacity, thermal efficiency, heat and mass transfer coefficients. The theoretical study included develops Artificial Neural Network (ANN) models to predicting various thermal performance parameters of the tower. Utilizing experimental data for training and testing, the models simulated by multi-layer back propagation algorithm for varying all operational parameters stated in experimental test.

  16. 47 CFR 5.109 - Antenna and tower requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Antenna and tower requirements. 5.109 Section 5... BROADCAST) Technical Standards and Operating Requirements § 5.109 Antenna and tower requirements. (a) Applicants with fixed stations that use antennas that exceed 6 meters in height above the ground level or...

  17. 47 CFR 5.109 - Antenna and tower requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Antenna and tower requirements. 5.109 Section 5... BROADCAST) Technical Standards and Operating Requirements § 5.109 Antenna and tower requirements. (a) Applicants with fixed stations that use antennas that exceed 6 meters in height above the ground level or...

  18. 47 CFR 5.109 - Antenna and tower requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Antenna and tower requirements. 5.109 Section 5... BROADCAST) Technical Standards and Operating Requirements § 5.109 Antenna and tower requirements. (a) Applicants with fixed stations that use antennas that exceed 6 meters in height above the ground level or...

  19. Project Mercury Escape Tower Rockets Tests

    NASA Image and Video Library

    1960-04-21

    A Mercury capsule is mounted inside the Altitude Wind Tunnel for a test of its escape tower rockets at the National Aeronautics and Space Administration (NASA) Lewis Research Center. In October 1959 NASA’s Space Task Group allocated several Project Mercury assignments to Lewis. The Altitude Wind Tunnel was quickly modified so that its 51-foot diameter western leg could be used as a test chamber. The final round of tests in the Altitude Wind Tunnel sought to determine if the smoke plume from the capsule’s escape tower rockets would shroud or compromise the spacecraft. The escape tower, a 10-foot steel rig with three small rockets, was attached to the nose of the Mercury capsule. It could be used to jettison the astronaut and capsule to safety in the event of a launch vehicle malfunction on the pad or at any point prior to separation from the booster. Once actuated, the escape rockets would fire, and the capsule would be ejected away from the booster. After the capsule reached its apex of about 2,500 feet, the tower, heatshield, retropackage, and antenna would be ejected and a drogue parachute would be released. Flight tests of the escape system were performed at Wallops Island as part of the series of Little Joe launches. Although the escape rockets fired prematurely on Little Joe’s first attempt in August 1959, the January 1960 follow-up was successful.

  20. The Role of Atmospheric Measurements in Wind Power Statistical Models

    NASA Astrophysics Data System (ADS)

    Wharton, S.; Bulaevskaya, V.; Irons, Z.; Newman, J. F.; Clifton, A.

    2015-12-01

    The simplest wind power generation curves model power only as a function of the wind speed at turbine hub-height. While the latter is an essential predictor of power output, it is widely accepted that wind speed information in other parts of the vertical profile, as well as additional atmospheric variables including atmospheric stability, wind veer, and hub-height turbulence are also important factors. The goal of this work is to determine the gain in predictive ability afforded by adding additional atmospheric measurements to the power prediction model. In particular, we are interested in quantifying any gain in predictive ability afforded by measurements taken from a laser detection and ranging (lidar) instrument, as lidar provides high spatial and temporal resolution measurements of wind speed and direction at 10 or more levels throughout the rotor-disk and at heights well above. Co-located lidar and meteorological tower data as well as SCADA power data from a wind farm in Northern Oklahoma will be used to train a set of statistical models. In practice, most wind farms continue to rely on atmospheric measurements taken from less expensive, in situ instruments mounted on meteorological towers to assess turbine power response to a changing atmospheric environment. Here, we compare a large suite of atmospheric variables derived from tower measurements to those taken from lidar to determine if remote sensing devices add any competitive advantage over tower measurements alone to predict turbine power response.

  1. Model equations for the Eiffel Tower profile: historical perspective and new results

    NASA Astrophysics Data System (ADS)

    Weidman, Patrick; Pinelis, Iosif

    2004-07-01

    Model equations for the shape of the Eiffel Tower are investigated. One model purported to be based on Eiffel's writing does not give a tower with the correct curvature. A second popular model not connected with Eiffel's writings provides a fair approximation to the tower's skyline profile of 29 contiguous panels. Reported here is a third model derived from Eiffel's concern about wind loads on the tower, as documented in his communication to the French Civil Engineering Society on 30 March 1885. The result is a nonlinear, integro-differential equation which is solved to yield an exponential tower profile. It is further verified that, as Eiffel wrote, "in reality the curve exterior of the tower reproduces, at a determined scale, the same curve of the moments produced by the wind". An analysis of the actual tower profile shows that it is composed of two piecewise continuous exponentials with different growth rates. This is explained by specific safety factors for wind loading that Eiffel & Company incorporated in the design of the free-standing tower. To cite this article: P. Weidman, I. Pinelis, C. R. Mecanique 332 (2004).

  2. 78 FR 10210 - Utility Scale Wind Towers From China and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-13

    ...)] Utility Scale Wind Towers From China and Vietnam Determinations On the basis of the record \\1\\ developed... with material injury by reason of imports of utility scale wind towers from China and Vietnam, provided... of imports of utility scale wind towers from China and Vietnam. Commissioner Dean A. Pinkert...

  3. Advanced Electric Propulsion for Space Solar Power Satellites

    NASA Technical Reports Server (NTRS)

    Oleson, Steve

    1999-01-01

    The sun tower concept of collecting solar energy in space and beaming it down for commercial use will require very affordable in-space as well as earth-to-orbit transportation. Advanced electric propulsion using a 200 kW power and propulsion system added to the sun tower nodes can provide a factor of two reduction in the required number of launch vehicles when compared to in-space cryogenic chemical systems. In addition, the total time required to launch and deliver the complete sun tower system is of the same order of magnitude using high power electric propulsion or cryogenic chemical propulsion: around one year. Advanced electric propulsion can also be used to minimize the stationkeeping propulsion system mass for this unique space platform. 50 to 100 kW class Hall, ion, magnetoplasmadynamic, and pulsed inductive thrusters are compared. High power Hall thruster technology provides the best mix of launches saved and shortest ground to Geosynchronous Earth Orbital Environment (GEO) delivery time of all the systems, including chemical. More detailed studies comparing launch vehicle costs, transfer operations costs, and propulsion system costs and complexities must be made to down-select a technology. The concept of adding electric propulsion to the sun tower nodes was compared to a concept using re-useable electric propulsion tugs for Low Earth Orbital Environment (LEO) to GEO transfer. While the tug concept would reduce the total number of required propulsion systems, more launchers and notably longer LEO to GEO and complete sun tower ground to GEO times would be required. The tugs would also need more complex, longer life propulsion systems and the ability to dock with sun tower nodes.

  4. Control of Carbon Nanotube Density and Tower Height in an Array

    NASA Technical Reports Server (NTRS)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    A method for controlling density or tower height of carbon nanotube (CNT) arrays grown in spaced apart first and second regions on a substrate. CNTs having a first density range (or first tower height range) are grown in the first region using a first source temperature range for growth. Subsequently or simultaneously, CNTs having a second density range (or second tower height range), having an average density (or average tower height) in the second region different from the average density (or average tower height) for the first region, are grown in the second region, using supplemental localized hearing for the second region. Application for thermal dissipation and/or dissipation of electrical charge or voltage in an electronic device are discussed.

  5. Four Operational Strategies For The Tower of Pisa

    NASA Astrophysics Data System (ADS)

    Bartolozzi, F.

    The operational strategies proposed for safeguarding the Leaning Tower all agree on the urgent need to lay a sub-foundation for guaranteeing the stability of the foundation soil, considerably decreasing the current pressure to a value compatible with its resistance characteristics. Their second common property is the creation of a static beneficial effect on the material forming the monument. This effect may be achieved by reducing the pressure in the material forming the Tower, by making the present inclination decrease considerably, or by means of a reinforcement ring on the most stressed parts of the Tower - if the present inclination is to remain unchanged - or with the combined action of both the inclination decrease and the reinforcement ring. Clearly, the choice of each operation must be made within the framework of the present and particular resistance conditions of the material. On the other hand, the four techniques differ structurally and operationally. The former aspects refer to laying structural elements, all equally effective, but different in conception and function - such as pillars, beams, hinges and tubular devices ­ to be laid in order to integrate the common sub-foundation and to be utilised with respect to each operational technique. The operational differences mainly depend on the different executive needs with respect to the structural elements to be laid. The operational aspect of the fourth technique is very simple, but particularly delicate, as are all techniques concerning the Tower. In relation to this, the operation must clearly be managed by a highly qualified and professional group of technicians and workers using the most appropriate and modern technological apparatus. I believe that the considerable delicacy of the operational stage does not obstruct the application of the proposed techniques, both because of the precarious safety conditions of the building (requiring a radical solution), and because the operations put into

  6. Nuclear Hybrid Energy System: Molten Salt Energy Storage (Summer Report 2013)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabharwall, Piyush; mckellar, Michael George; Yoon, Su-Jong

    2013-11-01

    Effective energy use is a main focus and concern in the world today because of the growing demand for energy. The nuclear hybrid energy system (NHES) is a valuable technical concept that can potentially diversify and leverage existing energy technologies. This report considers a particular NHES design that combines multiple energy systems including a nuclear reactor, energy storage system (ESS), variable renewable generator (VRG), and additional process heat applications. Energy storage is an essential component of this particular NHES because its design allows the system to produce peak power while the nuclear reactor operates at constant power output. Many energymore » storage options are available, but this study mainly focuses on a molten salt ESS. The primary purpose of the molten salt ESS is to enable the nuclear reactor to be a purely constant heat source by acting as a heat storage component for the reactor during times of low demand, and providing additional capacity for thermo-electric power generation during times of peak electricity demand. This report will describe the rationale behind using a molten salt ESS and identify an efficient molten salt ESS configuration that may be used in load following power applications. Several criteria are considered for effective energy storage and are used to identify the most effective ESS within the NHES. Different types of energy storage are briefly described with their advantages and disadvantages. The general analysis to determine the most efficient molten salt ESS involves two parts: thermodynamic, in which energetic and exergetic efficiencies are considered; and economic. Within the molten salt ESS, the two-part analysis covers three major system elements: molten salt ESS designs (two tank direct and thermocline), the molten salt choice, and the different power cycles coupled with the molten salt ESS. Analysis models are formulated and analyzed to determine the most effective ESS. The results show that the

  7. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  8. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Papasin, Richard; Gawdiak, Yuri; Maluf, David A.; Leidich, Christopher; Tran, Peter B.

    2001-01-01

    Remote Tower Sensor Systems (RTSS) are proof-of-concept prototypes being developed by NASA/Ames Research Center (NASA/ARC) with collaboration with the FAA (Federal Aviation Administration) and NOAA (National Oceanic Atmospheric Administration). RTSS began with the deployment of an Airport Approach Zone Camera System that includes real-time weather observations at San Francisco International Airport. The goal of this research is to develop, deploy, and demonstrate remotely operated cameras and sensors at several major airport hubs and un-towered airports. RTSS can provide real-time weather observations of airport approach zone. RTSS will integrate and test airport sensor packages that will allow remote access to realtime airport conditions and aircraft status.

  9. Cooling towers, the neglected energy conservations and money making machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burger, R.

    1996-12-31

    The heat Rejection Industry defines a nominal cooling tower as circulating three gallons of water per minute (GPM) per ton of refrigeration from entering the tower at 95 {degrees}F, Hot Water temperature (HWT), Leaving at 85{degrees}F Cold Water Temperature (CWT) at a Design Wet Bulb of 70{degrees}F (WBT). Manufacturers then provide a selection chart based on various wet bulb temperatures and HWTs. The wet bulb fluctuates and varies throughout the world since it is the combination ambient temperature, relative humidity, and/or dew point. Different HWT and CWT requirements are usually charted as they change, so that the user can selectmore » the nominal cooling tower model recommended by the manufacturer. In the specification of cooling towers it is necessary to clearly understand the definition of nominal cooling tower, and to make sure the specification you need addressed can be met by the system you purchase. This should be tested prior to final acceptance.« less

  10. Visual Features Involving Motion Seen from Airport Control Towers

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Liston, Dorion

    2010-01-01

    Visual motion cues are used by tower controllers to support both visual and anticipated separation. Some of these cues are tabulated as part of the overall set of visual features used in towers to separate aircraft. An initial analyses of one motion cue, landing deceleration, is provided as a basis for evaluating how controllers detect and use it for spacing aircraft on or near the surface. Understanding cues like it will help determine if they can be safely used in a remote/virtual tower in which their presentation may be visually degraded.

  11. Research on Condition Assessment Method of Transmission Tower Under the Action of Strong Wind

    NASA Astrophysics Data System (ADS)

    Huang, Ren-mou; An, Li-qiang; Zhang, Rong-lun; Wu, Jiong; Liang, Ya-feng

    2018-03-01

    Transmission towers are often subjected to the external damage of severe weather like strong wind and so on, which may cause the collapse due to the yield and fracture of the tower material. Aiming this issue, an assessment method was proposed in this paper to assess the operation condition of transmission towers under strong wind. With a reasonable assess index system established firstly, then the internal force of the tower material was solved and its stability was determined through the mechanical analysis of the transmission tower finite element model. Meanwhile, the condition risk level of the tower was finally determined by considering the difference among the influences of other factors like corrosion and loose of members, slope on the transmission tower through the analytic hierarchy process. The assessment method was applied to assess the wind-induced collapse of towers in 110kV Bao Yi II line in Wenchang City, Hainan Province, of which the result proves the method can assess the condition of transmission tower under strong wind and of guiding significance for improving the windproof capability of transmission towers.

  12. 77 FR 9700 - Utility Scale Wind Towers From China and Vietnam

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-17

    ...)] Utility Scale Wind Towers From China and Vietnam Determinations On the basis of the record \\1\\ developed... threatened with material injury by reason of imports from China of utility scale wind towers, provided for in... with material injury by reason of imports from Vietnam of utility scale wind towers, provided for in...

  13. Legionella in Puerto Rico cooling towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negron-Alviro, A.; Perez-Suarez, I.; Hazen, T.C.

    1988-12-31

    Water samples from air conditioning cooling towers receiving different treatment protocols on five large municipal buildings in San Juan, Puerto Rico were assayed for various species and serogroups of Legionella spp. using direct immunofluorescence. Several water quality parameters were also measured with each sample. Guinea pigs were inoculated with water samples to confirm pathogenicity and recover viable organisms. Legionella pneumophila (1-6), L. bozemanii, L. micdadei, L. dumoffii, and L. gormanii were observed in at least one of the cooling towers. L. pneumophila was the most abundant species, reaching 10{sup 5} cells/ml, within the range that is considered potentially pathogenic tomore » humans. A significantly higher density of L. pneumophila was observed in the cooling tower water that was not being treated with biocides. Percent respiration (INT) and total cell activity (AODC), were inversely correlated with bacterial density. This study demonstrates that Legionella spp. are present in tropical air-conditioning cooling systems, and without continuous biocide treatment may reach densities that present a health risk.« less

  14. Dispatchable Solar Power Plant Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, Henry

    As penetration of intermittent renewable power increases, grid operators must manage greater variability in the supply and demand on the grid. One result is that utilities are planning to build many new natural gas peaking power plants that provide added flexibility needed for grid management. This report discusses the development of a dispatchable solar power (DSP) plant that can be used in place of natural gas peakers. Specifically, a new molten-salt tower (MST) plant has been developed that is designed to allow much more flexible operation than typically considered in concentrating solar power plants. As a result, this plant canmore » provide most of the capacity and ancillary benefits of a conventional natural gas peaker plant but without the carbon emissions. The DSP system presented was designed to meet the specific needs of the Arizona Public Service (APS) utility 2017 peaking capacity request for proposals (RFP). The goal of the effort was to design a MST peaker plant that had the operational capabilities required to meet the peaking requirements of the utility and be cost competitive with the natural gas alternative. The effort also addresses many perceived barriers facing the commercial deployment of MST technology in the US today. These include MST project development issues such as permitting, avian impacts, visual impacts of tower CSP projects, project schedule, and water consumption. The DSP plant design is based on considerable analyses using sophisticated solar system design tools and in-depth preliminary engineering design. The resulting DSP plant design uses a 250 MW steam power cycle, with solar field designed to fit on a square mile plot of land that has a design point thermal rating of 400 MWt. The DSP plant has an annual capacity factor of about 16% tailored to deliver greater than 90% capacity during the critical Arizona summer afternoon peak. The table below compares the All-In energy cost and capacity payment of conventional combustion

  15. VALVE TOWER FROM HIGH GROUND NEAR APPROACH BRIDGE. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VALVE TOWER FROM HIGH GROUND NEAR APPROACH BRIDGE. VIEW FACING NORTHEAST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  16. VIEW OF BUILDING 215A, THE WATER TOWER, LOOKING WEST, SOUTHWEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF BUILDING 215A, THE WATER TOWER, LOOKING WEST, SOUTHWEST. CONSTRUCTION ON BUILDING 215A BEGAN IN 1952. THE WATER TOWER IS 155 FEET TALL AND IS THE TALLEST STRUCTURE AT THE ROCKY FLATS PLANT - Rocky Flats Plant, Water Tower, Northwest quadrant of Plant near west terminus of Central Avenue, Golden, Jefferson County, CO

  17. Potentially pathogenic amoeba-associated microorganisms in cooling towers and their control.

    PubMed

    Pagnier, Isabelle; Merchat, Michèle; La Scola, Bernard

    2009-06-01

    Cooling towers provide a favorable environment for the proliferation of microorganisms. Cooling towers generate a biofilm and often aerosolize contaminated water, thereby increasing the risk of microorganism dissemination by human inhalation. This pathogen dissemination was first revealed by the epidemics of Legionnaires' disease that were directly related to the presence of cooling towers, and since then, the ecology of Legionella pneumophila has been well studied. Each country has specific standards regarding the acceptable amount of microorganisms in cooling tower systems. However, those standards typically only concern L. pneumophila, even though many other microorganisms can also be isolated from cooling towers, including protozoa, bacteria and viruses. Microbiological control of the cooling tower system can be principally achieved by chemical treatments and also by improving the system's construction. Several new treatments are being studied to improve the efficiency of disinfection. However, as most of these treatments continue to focus solely on L. pneumophila, reports of other types of pathogens continue to increase. Therefore, how their dissemination affects the human populous health should be addressed now.

  18. Systems Integration Analysis for Future Tower Cab Configurations/Systems

    DOT National Transportation Integrated Search

    1978-06-01

    This report presents the results of the analysis of various aspects of the integration of future ATC systems into the tower cab. The impact on the tower cab environment is analyzed from several points of view: how the systems information and displays...

  19. OVERVIEW OF VALVE TOWER FROM NORTHERN SIDE OF BASIN. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF VALVE TOWER FROM NORTHERN SIDE OF BASIN. VIEW FACING SOUTHWEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  20. Salt deposits in Arizona promise gas-storage opportunities

    USGS Publications Warehouse

    Rauzi, S.L.

    2002-01-01

    Massive salt formations and their proximity to pipeline systems and power plants make Arizona attractive for natural gas storage. Caverns dissolved in subsurface salt are used to store LPG at Ferrellgas Partners LP facility near Holbrook and the AmeriGas Partners LP facility near Glendale. Three other companies are investigating the feasibility of storing natural gas in Arizona salt: Copper Eagle Gas Storage LLC, Desert Crossing Gas Storage and Transportation System LLC, and Aquila Inc. The most extensive salt deposits are in the Colorado Plateau Province. Marine and nonmarine salt deposits are present in Arizona.

  1. 78 FR 11150 - Utility Scale Wind Towers From the Socialist Republic of Vietnam: Amended Final Determination of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ..., whether or not tapered, and sections thereof. Certain wind towers are designed to support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in excess of... part of a wind turbine (i.e., accompanying nacelles and/or rotor blades). Amendment to the Final...

  2. 6. View of south tower, facing south from Clover Island, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View of south tower, facing south from Clover Island, across boat moorage channel. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  3. Static and Motion-Based Visual Features Used by Airport Tower Controllers: Some Implications for the Design of Remote or Virtual Towers

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Liston, Dorion B.

    2011-01-01

    Visual motion and other visual cues are used by tower controllers to provide important support for their control tasks at and near airports. These cues are particularly important for anticipated separation. Some of them, which we call visual features, have been identified from structured interviews and discussions with 24 active air traffic controllers or supervisors. The visual information that these features provide has been analyzed with respect to possible ways it could be presented at a remote tower that does not allow a direct view of the airport. Two types of remote towers are possible. One could be based on a plan-view, map-like computer-generated display of the airport and its immediate surroundings. An alternative would present a composite perspective view of the airport and its surroundings, possibly provided by an array of radially mounted cameras positioned at the airport in lieu of a tower. An initial more detailed analyses of one of the specific landing cues identified by the controllers, landing deceleration, is provided as a basis for evaluating how controllers might detect and use it. Understanding other such cues will help identify the information that may be degraded or lost in a remote or virtual tower not located at the airport. Some initial suggestions how some of the lost visual information may be presented in displays are mentioned. Many of the cues considered involve visual motion, though some important static cues are also discussed.

  4. 28. WEST CONFEDERATE AVENUE, OBSERVATION TOWER, VIEW FROM THE TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. WEST CONFEDERATE AVENUE, OBSERVATION TOWER, VIEW FROM THE TOP OF TOWER TO SOUTH. NOTE FOREST AND AGRICULTURAL LANDSCAPES. VIEW S. - Gettysburg National Military Park Tour Roads, Gettysburg, Adams County, PA

  5. 2. Detail of tower foundation with lightning transfer wire, southeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Detail of tower foundation with lightning transfer wire, southeast corner - Cold Mountain Fire Lookout Station, Lookout Tower, Krassel District, Frank Church River of No Return Wilderness, Dixie, Idaho County, ID

  6. ECOLOGICAL EFFECTS OF AEROSOL DRIFT FROM A SALTWATER COOLING SYSTEM

    EPA Science Inventory

    The local terrestrial effects of salt aerosol drift from powered spray modules and a mechanical draft cooling tower at Turkey Point, Florida were evaluated through field and controlled exposure studies. Indigenous vegetation, soil and fresh water were sampled over a year long per...

  7. 1. View of north tower, facing northwest from dike on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of north tower, facing northwest from dike on north bank of the Columbia River. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  8. TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) AND 24. NOTE “LAZY JACK” TEMPERATURE COMPENSATOR IN FOREGROUND. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  9. 6. Detail of windows in north wall of Signal Tower. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Detail of windows in north wall of Signal Tower. - Delaware, Lackawanna & Western Railroad, Scranton Yards, Mattes Street Signal Tower, 80 feet Southwest of Railroad Alley & Cedar Avenue, Scranton, Lackawanna County, PA

  10. 4. VIEW, LOOKING SOUTHEAST, SHOWING NORTHWEST ELEVATION OF TOWER ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW, LOOKING SOUTHEAST, SHOWING NORTHWEST ELEVATION OF TOWER ND SIGNAL BRIDGE No. 6 AND DWARF SIGNAL IN FOREGROUND - South Station Tower No. 1 & Interlocking System, Dewey Square, Boston, Suffolk County, MA

  11. Some extemporaneous comments on our experiences with towers for wind generators

    NASA Technical Reports Server (NTRS)

    Hutter, U.

    1973-01-01

    A wind generator tower must be designed to withstand fatigue forces and gust winds loads. Optimum tower height depends on the energy cost to the customer because an increase in height results in an increase in the cost of the plant. It is suggested that costs are minimum for the shortest tower possible and that the rotor should be as large as possible.

  12. Interior of the mine observation tower building, showing the steel ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of the mine observation tower building, showing the steel compass ring in the tower. View facing east - U.S. Naval Base, Pearl Harbor, Waipio Peninsula, Waipo Peninsula, Pearl City, Honolulu County, HI

  13. Measurement of the tower wake of the Swedish prototype Wind Energy Conversion System (WECS) Maglarp (Sweden) and calculations of its effect on noise and blade loading

    NASA Astrophysics Data System (ADS)

    Barman, K.; Dahlberg, J. A.; Meijer, S.

    Hot-wire measurements of the velocity deficit in the wake behind the tower of a wind turbine are presented. The measurements were performed at one height and at three distances from the tower center when the turbine was not running. The low frequency noise caused by the passage of a turbine blade through the wake of the tower is calculated using wake data from the measurements. A comparision with noise emission measurements is included. The variation in blade loading and turbine power output caused by the wake are also calculated. Results show that wake deficits can be of the same order of magnitude as the freestream velocity.

  14. 37. VIEW LOOKING SOUTH AT THE STATIC TEST TOWER. THIS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. VIEW LOOKING SOUTH AT THE STATIC TEST TOWER. THIS VIEW SHOWS TWO MAJOR CHANGES TO THE STATIC TEST TOWER: THE ADDITION OF THE NASA LOGO TO THE FACADE AND THE ADDITION OF THE UPPER STAGES TO THE JUPITER MISSILE IN THE WEST POSITION ON THE TOWER TO REPRESENT THE JUNO II CONFIGURATION. 1961, PHOTOGRAPHER UNKNOWN, FRED ORDWAY COLLECTION, U. S. SPACE AND ROCKET CENTER, HUNTSVILLE, AL. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  15. Strong tidal modulation of net ecosystem exchange in a salt marsh in North Inlet, South Carolina

    NASA Astrophysics Data System (ADS)

    O'Halloran, T. L.; Smith, E. M.; Bogoev, I.

    2017-12-01

    Along the southeastern US, intertidal salt marshes represent a critical habitat at the interface of the terrestrial and marine environments and perform a variety of ecological functions and services that make them of great economic importance for coastal communities They provide essential fish and shellfish habitat, with a majority of all commercially- and recreationally important fish species being dependent on intertidal marsh habitat during some portion of their life cycle. The penaeid shrimp industry, South Carolina's most economically important fishery, would cease to exist without the critical nursery function provided by intertidal salt marshes. Smooth cordgrass (Spartina alterniflora) is a keystone species in the high salinity marshes of the southeastern U.S., and its functioning is essential to the health and survival of salt marshes under rising sea levels. To better quantify and facilitate prediction of future salt marsh productivity, in May of 2017, we established a new integrated eddy covariance tower system to measure the net ecosystem exchange of carbon in a salt marsh in coastal South Carolina. The tower site is co-located with long-term, ongoing measurements as part of the North Inlet-Winyah Bay National Estuarine Research Reserve (NI-WB NERR). Current sampling conducted within the eddy flux footprint includes: annual measures of the vegetation community at the time of peak biomass; bi-monthly measures of sediment elevation at Sediment Elevation Tables (SETs) located at the upper and lower ends of the flux footprint; monthly sediment porewater salinity and nutrient (ammonium, orthophosphate) and sulfide concentrations; and biannual sediment elevation surveys by RTK-GPS. A suite of water quality measurements are made every 15 minutes in the main creek that floods the marsh platform in the flux footprint. Here we present our first six months of observations investigating the abiotic drivers of productivity on daily (intratidal) to monthly timescales

  16. Ultrasonic oil recovery and salt removal from refinery tank bottom sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Thring, Ronald W; Arocena, Joselito

    2014-01-01

    The oil recovery and salt removal effects of ultrasonic irradiation on oil refinery tank bottom sludge were investigated, together with those of direct heating. Ultrasonic power, treatment duration, sludge-to-water ratio, and initial sludge-water slurry temperature were examined for their impacts on sludge treatment. It was found that the increased initial slurry temperature could enhance the ultrasonic irradiation performance, especially at lower ultrasonic power level (i.e., 21 W), but the application of higher-power ultrasound could rapidly increase the bulk temperature of slurry. Ultrasonic irradiation had a better oil recovery and salt removal performance than direct heating treatment. More than 60% of PHCs in the sludge was recovered at an ultrasonic power of 75 W, a treatment duration of 6 min, an initial slurry temperature of 25°C, and a sludge-to-water ratio of 1:4, while salt content in the recovered oil was reduced to <5 mg L(-1), thereby satisfying the salt requirement in refinery feedstock oil. In general, ultrasonic irradiation could be an effective method in terms of oil recovery and salt removal from refinery oily sludge, but the separated wastewater still contains relatively high concentrations of PHCs and salt which requires proper treatment.

  17. 4. View of center tower at Clover Island, facing northeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of center tower at Clover Island, facing northeast. Pasco-Kennewick automobile bridge in background, lower right. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  18. OVERVIEW OF VALVE TOWER FROM EASTERN SIDE OF BASIN SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF VALVE TOWER FROM EASTERN SIDE OF BASIN SHOWING BRIDGE SUPPORTS ON HILLTOP. VIEW FACING WEST - Schofield Barracks Military Reservation, Ku Tree Reservoir, Valve Tower, Kalakoa Stream, East Range, Wahiawa, Honolulu County, HI

  19. 3. View of north tower, facing north across the main ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of north tower, facing north across the main channel of the Columbus River from Clover Island. - Pasco-Kennewick Transmission Line, Columbia River Crossing Towers, Columbia Drive & Gum Street, Kennewick, Benton County, WA

  20. Oblique view of the mine observation tower and transformer buildings, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view of the mine observation tower and transformer buildings, with the tower building behind. View facing south-southeast - U.S. Naval Base, Pearl Harbor, Waipio Peninsula, Waipo Peninsula, Pearl City, Honolulu County, HI

  1. 12. GENERAL INTERIOR VIEW OF SIGNAL TOWER OFFICE FACING NORTH. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. GENERAL INTERIOR VIEW OF SIGNAL TOWER OFFICE FACING NORTH. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  2. Active tower damping and pitch balancing - design, simulation and field test

    NASA Astrophysics Data System (ADS)

    Duckwitz, Daniel; Shan, Martin

    2014-12-01

    The tower is one of the major components in wind turbines with a contribution to the cost of energy of 8 to 12% [1]. In this overview the load situation of the tower will be described in terms of sources of loads, load components and fatigue contribution. Then two load reduction control schemes are described along with simulation and field test results. Pitch Balancing is described as a method to reduce aerodynamic asymmetry and the resulting fatigue loads. Active Tower Damping is reducing the tower oscillations by applying appropiate pitch angle changes. A field test was conducted on an Areva M5000 wind turbine.

  3. Cooling tower water conditioning study. [using ozone

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.

    1979-01-01

    Successful elimination of cooling tower treatment chemicals was demonstrated. Three towers functioned for long periods of time with ozone as the only treatment for the water. The water in the systems was reused as much as 30 times (cycles of concentration) without deleterious effects to the heat exchangers. Actual system blow-down was eliminated and the only makeup water added was that required to replace the evaporation and mist entrainment losses. Minimum water savings alone are approximately 75.1 1/kg/year. Cost estimates indicate that a savings of 55 percent was obtained on the systems using ozone. A major problem experienced in the use of ozone for cooling tower applications was the difficulty of accurate concentration measurements. The ability to control the operational characteristics relies on easily and accurately determined concentration levels. Present methods of detection are subject to inaccuracies because of interfering materials and the rapid destruction of the ozone.

  4. 8. LOOKING EAST FROM TOP OF WATER TOWER: VIEW SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. LOOKING EAST FROM TOP OF WATER TOWER: VIEW SHOWS BUILDING #626 AND PORTION OF QUADRANGLE - Fort Sam Houston, San Antonio Depot, Water-Watch Tower, Grayson Street & New Braunfels Avenue, San Antonio, Bexar County, TX

  5. 29. Photocopy of 1921 photograph. Glass Negative Box IX, Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Photocopy of 1921 photograph. Glass Negative Box IX, Tower Grove, Missouri Botanical Garden. ITALIAN GARDEN AND NEW PALM HOUSE (DEMOLISHED), LOOKING NORTHEAST - Missouri Botanical Garden, 2345 Tower Grove Avenue, Saint Louis, Independent City, MO

  6. View of the southwest guard tower, cell blocks seven and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the southwest guard tower, cell blocks seven and eight, administration building west tower, and Fairmount Avenue, looking from the administration building facing west - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  7. Solar Power, Seville, Spain

    NASA Image and Video Library

    2009-09-01

    The world largest solar power tower recently began operating outside Seville, Spain -- and it marks a historic moment in the saga of renewable energy. This image was acquired by NASA Terra spacecraft.

  8. 14. CLOSEUP VIEW OF WINDOW IN SIGNAL TOWER OFFICE FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. CLOSE-UP VIEW OF WINDOW IN SIGNAL TOWER OFFICE FACING WEST. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  9. 10. ENTRANCE VIEW OF ELEVATOR SHAFT AT TOP OF TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. ENTRANCE VIEW OF ELEVATOR SHAFT AT TOP OF TOWER FACING SOUTHEAST. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  10. 27. View of 500,000 volt spreading yard that transfers power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View of 500,000 volt spreading yard that transfers power from underground cable, from Third Powerhouse, to overhead line; the towers are pipe-type transformer towers. Looking west. - Columbia Basin Project, Grand Coulee Dam Powerplant Complex, Grand Coulee, Grant County, WA

  11. 40 CFR 63.1329 - Process contact cooling towers provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DDD, shall maintain an ethylene glycol concentration in the process contact cooling tower at or below... to the process contact cooling tower. (1) To determine the ethylene glycol concentration, owners or... procedures specified in 40 CFR 60.564(j)(1)(i). An average ethylene glycol concentration by weight shall be...

  12. 4. Keeper's house and light tower, view south southeast, west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Keeper's house and light tower, view south southeast, west side of house, north and west sides of tower - Rockland Breakwater Light Station, At end of granite breakwater extending south from Jameson Point, Rockland, Knox County, ME

  13. View of EPA Farm metal weather tower, facing east, showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of EPA Farm metal weather tower, facing east, showing thirty-acre irrigated field - Nevada Test Site, Environmental Protection Agency Farm, Weather Tower, Area 15, Yucca Flat, 10-2 Road near Circle Road, Mercury, Nye County, NV

  14. 1. VIEW NORTHWEST, operations building, height finder radar tower, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHWEST, operations building, height finder radar tower, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. 1. Keeper's house and light tower, view northwest, south and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house and light tower, view northwest, south and east sides of keeper's house, southwest and southeast sides of light tower - Curtis Island Light Station, Curtis Island, at entrance to Camden Harbor, Camden, Knox County, ME

  16. Ozonation of cooling tower waters

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; French, K. R.; Howe, R. D. (Inventor)

    1979-01-01

    Continuous ozone injection into water circulating between a cooling tower and heat exchanger with heavy scale deposits inhibits formation of further deposits, promotes flaking of existing deposits, inhibits chemical corrosion and controls algae and bacteria.

  17. Wildlife and electric power transmission

    USGS Publications Warehouse

    Ellis, D.H.; Goodwin, J.G.; Hunt, J.R.; Fletcher, John L.; Busnel, R.G.

    1978-01-01

    Hundreds of thousands of miles of transmission lines have been introduced into our natural environment. These lines and their corridors can be damaging or beneficial to wildlife communities depending on how they are designed, where they are placed, and when they are constructed and maintained. With the current trend toward UHV systems, new problems (associated with additional increments in audible noise, electric and magnetic force fields, etc.) must be addressed. We recommend the following areas for careful study: (1) the response of wilderness species to transmission lines and line construction and maintenance activities (2) the magnitude of bird collision and electrocution mortality, (3) the response of power corridor and power tower in habiting wildlife to laboratory and field doses of electro-chemical oxidants, corona noise, electric and magnetic fields, etc., (4) the productivity of tower inhabiting birds compared with nearby non-tower nesters, and (5) the influence of powerline corridors on mammalian and avian migration patterns. It is our hope that the questions identified in this study will help stimulate further research so that we can maximize wildlife benefits and minimize wildlife detriments.

  18. 77 FR 75984 - Utility Scale Wind Towers From the Socialist Republic of Vietnam: Final Determination of Sales at...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ..., whether or not tapered, and sections thereof. Certain wind towers are designed to support the nacelle and rotor blades in a wind turbine with a minimum rated electrical power generation capacity in excess of... joined with nonsubject merchandise, such as nacelles or rotor blades, and whether or not they have...

  19. Cell Towers and Songbirds

    ERIC Educational Resources Information Center

    Klosterman, Michelle; Mesa, Jennifer; Milton, Katie

    2009-01-01

    This article describes how our common addiction to cell phones was used to launch a discussion about their use, impacts on the environment, and connections to issues of civic concern. By encouraging middle school science students to adopt the perspectives of special-interest groups debating communication tower restrictions designed to protect…

  20. The Ivory Tower Revisited

    ERIC Educational Resources Information Center

    Chantler, Abigail

    2016-01-01

    The corollary of the concept of the "ivory tower", as reflected in the writings of Plato and Newman amongst others, was, paradoxically, the vital importance of the university for wider society. Nevertheless from the mid-twentieth century, the esteem in which a "liberal" university education was held was diminished by rising…

  1. 15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF COAL TOWER No. 2, LOOKING WEST TO EAST FROM COAL TOWER No. 1 (FLOOR BELOW CRANE CONTROL) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  2. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.340 Digital television transmission towers...

  3. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS System Architecture § 10.340 Digital television transmission towers...

  4. 3. View looking E from top of World Trade Tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View looking E from top of World Trade Tower with World Trade Tower parapet in foreground. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  5. Cell block one and southeast guard tower, looking from the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cell block one and southeast guard tower, looking from the central guard tower, facing southeast (note view also includes cell block ten (left) and cell block nine (right)) - Eastern State Penitentiary, 2125 Fairmount Avenue, Philadelphia, Philadelphia County, PA

  6. 50. NORTHERN VIEW OF NONEVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. NORTHERN VIEW OF NON-EVAPORATIVE WASTE WATER TREATMENT COOLING TOWERS IN CENTER, AND EVAPORATIVE WASTE WATER COOLING TOWERS ON RIGHT. (Jet Lowe) - U.S. Steel Duquesne Works, Blast Furnace Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  7. 9. VIEW OF ENTRANCE TO SIGNAL TOWER OFFICE AT TOP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF ENTRANCE TO SIGNAL TOWER OFFICE AT TOP OF ELEVATOR FACING NORTHWEST. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  8. Disinfection of bacterial biofilms in pilot-scale cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron I.

    2015-01-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day−1. Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state. PMID:21547755

  9. Disinfection of bacterial biofilms in pilot-scale cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron I

    2011-04-01

    The impact of continuous chlorination and periodic glutaraldehyde treatment on planktonic and biofilm microbial communities was evaluated in pilot-scale cooling towers operated continuously for 3 months. The system was operated at a flow rate of 10,080 l day(-1). Experiments were performed with a well-defined microbial consortium containing three heterotrophic bacteria: Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. The persistence of each species was monitored in the recirculating cooling water loop and in biofilms on steel and PVC coupons in the cooling tower basin. The observed bacterial colonization in cooling towers did not follow trends in growth rates observed under batch conditions and, instead, reflected differences in the ability of each organism to remain attached and form biofilms under the high-through flow conditions in cooling towers. Flavobacterium was the dominant organism in the community, while P. aeruginosa and K. pneumoniae did not attach well to either PVC or steel coupons in cooling towers and were not able to persist in biofilms. As a result, the much greater ability of Flavobacterium to adhere to surfaces protected it from disinfection, whereas P. aeruginosa and K. pneumoniae were subject to rapid disinfection in the planktonic state.

  10. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission towers...

  11. 2. Light tower and keeper's house, view southwest, north northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Light tower and keeper's house, view southwest, north northeast side of tower, northeast and northwest sides of keeper's house - Wood Island Light Station, East end of Wood Island, at mouth of Soo River, Biddeford Pool, York County, ME

  12. 47 CFR 10.340 - Digital television transmission towers retransmission capability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Digital television transmission towers retransmission capability. 10.340 Section 10.340 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.340 Digital television transmission towers...

  13. 14. WEST ELEVATION OF COAL TOWER No. 2, LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. WEST ELEVATION OF COAL TOWER No. 2, LOOKING WEST TO EAST FROM COAL TOWER No. 1 (FLOOR BELOW THE CRANE CONTROL) - Delaware County Electric Company, Chester Station, Delaware River at South end of Ward Street, Chester, Delaware County, PA

  14. 1. Keeper's house and light tower, view north northeast, southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house and light tower, view north northeast, southwest and southeast sides of house, northwest and southwest sides of tower - Wood Island Light Station, East end of Wood Island, at mouth of Soo River, Biddeford Pool, York County, ME

  15. BOREAS TF-5 SSA-OJP Tower Flux and Meteorological Data

    NASA Technical Reports Server (NTRS)

    Baldocchi, Dennis; Vogel, Christoph; Hall, Forrest G. (Editor); Huemmrich, Karl (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Tower Flux (BOREAS TF-5) team collected tower flux data at the BOREAS Southern Study Area Old Jack Pine (SSA-OJP) site through the growing season of 1994. The data are available in tabular ASCII files.

  16. Cell-tower deployment of counter-sniper sensors

    NASA Astrophysics Data System (ADS)

    Storch, Michael T.

    2004-09-01

    Cellular telephone antenna towers are evaluated as sites for rapid, effective & efficient deployment of counter-sniper sensors, especially in urban environments. They are expected to offer a suitable density, excellent LOS, and a generally limited variety of known or readily-characterized mechanical interfaces. Their precise locations are easily mapped in advance of deployment, are easily accessible by ground and air, and are easily spotted by deployment teams in real-time. We survey issues of EMI & RFI, susceptibility to denial & ambush in military scenarios, and the impact of trends in cell tower design & construction.

  17. An Apollo compatible cloud physics experiment.

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Hollinden, A. B.; Satterblom, P. R.

    1973-01-01

    Consideration of the utilization of a low-gravity environment to obtain experimental information, in the area of cloud microphysics, which cannot be obtained in ground laboratories. The experiment discussed is designed to obtain quantitative answers about evaporation and breakup of salt particles from ocean spray and other sources. In addition to salt nuclei distribution mechanisms, this breakup has ecological importance in relation to the spreading of salt mists from salted highways and spreading of brine cooling tower spray from electrical power generation plants. This experiment is being submitted for consideration on the Apollo-Soyuz Test Program in 1975.

  18. Estimates of the solar internal angular velocity obtained with the Mt. Wilson 60-foot solar tower

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Woodard, Martin; Tomczyk, Steven; Korzennik, Sylvain

    1987-01-01

    Estimates are obtained of the solar internal angular velocity from measurements of the frequency splittings of p-mode oscillations. A 16-day time series of full-disk Dopplergrams obtained during July and August 1984 at the 60-foot tower telescope of the Mt. Wilson Observatory is analyzed. Power spectra were computed for all of the zonal, tesseral, and sectoral p-modes from l = 0 to 89 and for all of the sectoral p-modes from l = 90 to 200. A mean power spectrum was calculated for each degree up to 89. The frequency differences of all of the different nonzonal modes were calculated for these mean power spectra.

  19. Rheological stratification of the Hormuz Salt Formation in Iran - microstructural study of the dirty and pure rock salts from the Kuh-e-Namak (Dashti) salt diapir

    NASA Astrophysics Data System (ADS)

    Závada, Prokop; Desbois, Guillaume; Urai, Janos; Schulmann, Karel; Rahmati, Mahmoud; Lexa, Ondrej; Wollenberg, Uwe

    2014-05-01

    Significant viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between 'weak' terrestrial debris bearing rock salt types and 'strong' pure rock salt types are questioned for deformation mechanisms using detailed quantitative microstructural study including crystallographic preferred orientation (CPO) mapping of halite grains. While the solid impurity rich ("dirty") rock salts contain disaggregated siltstone and dolomite interlayers, "clean" salts (debris free) reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although flow in both, the recrystallized dirty and clean salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS) and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts are explained by significantly slower rates of intergranular diffusion and piling up of dislocations at hematite inclusions in clean salt types. Porphyroclasts of clean salts deform by semi-brittle and plastic mechanisms with intra-crystalline damage being induced also by fluid inclusions that explode in the crystals at high fluid pressures. Boudins of clean salt types with coarse grained and original sedimentary microstructure suggest that clean rock salts are associated with dislocation creep dominated power law flow in the source layer and the diapiric stem. Rheological contrasts between both rock salt classes apply in general for the variegated and terrestrial debris rich ("dirty") Lower Hormuz and the "clean" rock salt forming the Upper Hormuz, respectively, and suggest that large strain rate gradients likely exist along horizons of mobilized salt types of different composition and microstructure.

  20. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems.

    PubMed

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems.

  1. 2. Light tower and oil house, view west, southeast and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Light tower and oil house, view west, southeast and northeast sides of tower and south side of oil house - Goat Island Light Station, Goat Island, next to entrance to Cape Porpoise Harbor, just south of Trott Island, Cape Porpoise, York County, ME

  2. 32. VIEW LOOKING EAST AT THE STATIC TEST TOWER WHILE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. VIEW LOOKING EAST AT THE STATIC TEST TOWER WHILE A JUPITER MISSILE IS BEING POSITIONED ONTO THE TEST TOWER. DATE AND PHOTOGRAPHER UNKNOWN, MSFC PHOTO LAB. - Marshall Space Flight Center, Saturn Propulsion & Structural Test Facility, East Test Area, Huntsville, Madison County, AL

  3. 78 FR 17183 - Information Collection: Grey Towers Visitor Comment Card

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... DEPARTMENT OF AGRICULTURE Forest Service Information Collection: Grey Towers Visitor Comment Card... request: (1) An extension from the Office of Management and Budget; and (2) to merge the currently approved information collection 0596- 0222, ``Grey Towers Visitor Comment Card'' with 0596-0226, ``Forest...

  4. 2. Fog signal house and light tower, view west southwest, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Fog signal house and light tower, view west southwest, southeast and northeast sides of signal house, east and north sides of tower - Libby Island Light Station, At southern tip of Libby Island at entrance to Machias Bay, Machiasport, Washington County, ME

  5. 1. Light tower and fog signal house, view south southeast, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Light tower and fog signal house, view south southeast, east and north sides of tower, northeast and northwest sides of signal house - Libby Island Light Station, At southern tip of Libby Island at entrance to Machias Bay, Machiasport, Washington County, ME

  6. 15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT TOWARD ARIZONA MEMORIAL AND FORD ISLAND. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  7. 36. EASTERN VIEW OF BOTTOM CONE OF GAS COOLING TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. EASTERN VIEW OF BOTTOM CONE OF GAS COOLING TOWER No. 1 AND TWO GAS COOLING TOWER SERVICE WATER PUMPS IN THE GAS WASHER PUMP HOUSE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  8. Trends, Opportunities, and Challenges for Tall Wind Turbine and Tower Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lantz, Eric; Roberts, Owen; Dykes, Katherine

    This presentation summarizes recent analysis focused on characterizing the opportunity for Tall Wind technologies generally and for tall tower technologies specifically. It seeks to illuminate and explain the concept of Tall Wind, its impact on the wind industry to date, and the potential value of Tall Wind in the future. It also explores the conditions and locations under which the impacts of Tall Wind offer the most significant potential to increase wind technology performance. In addition, it seeks to examine the status of tall tower technology as a key sub-component of Tall Wind, focusing on the potential for continued innovationmore » in tubular steel wind turbine towers and the status and potential for a select set of alternative tall tower technologies.« less

  9. Legionella spp. in Puerto Rico cooling towers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Negron-Alvira, A.; Perez-Suarez, I.; Hazen, T.C.

    1988-10-01

    Water samples from air conditioning cooling towers receiving different treatment protocols on five large municipal buildings in San Juan, P.R., were assayed for various Legionella spp. and serogroups by using direct immunofluorescence. Several water quality parameters were also measured for each sample. Guinea pigs were inoculated with water samples to confirm pathogenicity and recover viable organisms. Legionella pneumophila serogroups 1 to 6, L. bozemanii, L. micdadei, L. dumoffii, and L. gormanii were observed in at least one of the cooling towers. L. pneumophila was the most abundant species; its density reached 10{sup 5} cells per ml, which is within themore » range that is considered potentially pathogenic to humans. A significantly higher density of L. pneumophila was observed in the cooling tower water that was not being treated with biocides. Percent respiration (INT) and total cell activity (acridine orange direct count) were inversely correlated with bacterial density. This study demonstrates that Legionella spp. are present in tropical air-conditioning cooling systems and that, without continuous biocide treatment, they may reach densities that present a health risk.« less

  10. Flow-driven Assembly of Microcapsule Towers

    NASA Astrophysics Data System (ADS)

    Shum, Henry; Balazs, Anna

    2016-11-01

    Large populations of the slime mold, Dictyostelium discoideum, are able to aggregate over a surface and collectively form a long, vertical stalk. Inspired by this biological behavior, we develop a synthetic mechanism for assembling tower-like structures using microcapsules as the building blocks. We accomplish this in simulations by generating a fluid flow field that draws microcapsules together along a surface and lifts them up at a central point. We considered a fluid flow generated by the local release of a chemical species from a patch on the surface. The concentration gradient of the diffusing chemical species causes radial diffusioosmotic flow along the solid surface toward the patch. Adhesive interactions keep the microcapsules attached to the surface as they are drawn together above the patch. To build a tower-like structure, some of the microcapsules must detach from the surface but remain attached to the rest of the cluster. The upward directed fluid flow above the patch then draws out the cluster into a tower shape. The final morphology of the aggregate structure depends on the flow field, the adhesive capsule-capsule and capsule-surface interaction strengths, and the sedimentation force on the capsules. Tuning these factors changes the structures that are produced.

  11. 2. Keeper's house, light tower and oil house, view north, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Keeper's house, light tower and oil house, view north, south and east sides of keeper's house, south side of tower and oil house - Owl's Head Light Station, Off State Highway 73 just east of Rockland on Owl's Head Bay, Owls Head, Knox County, ME

  12. 10. INDIAN HOUSE TOWER, FROM, THE EAST. ALSO SHOWS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. INDIAN HOUSE TOWER, FROM, THE EAST. ALSO SHOWS THE BALCONY AND ARCADE OF THE WEST WING. THE TOWER WAS ADDED IN 1916. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  13. 1. Oil house, keeper's house, Southern Light Tower and Northern ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Oil house, keeper's house, Southern Light Tower and Northern Light Tower, view northwest, south and east sides - Kennebec River Light Station, South side of Doubling Point Road, off State Highway 127, 1.8 miles south of U.S. Route 1, Arrowsic, Sagadahoc County, ME

  14. 7. Keeper's house, fog signal house and light tower, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Keeper's house, fog signal house and light tower, view north northeast, west and south sides of keeper's house and tower, southwest and southeast sides of fog signal house - West Quoddy Head Light Station, At eastern tip of West Quaddy Head, Lubec, Washington County, ME

  15. 2. Barn, light tower and keeper's house, view southeast, west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Barn, light tower and keeper's house, view southeast, west and north sides of barn, northwest side of light tower, and west northwest and north northeast sides of keeper's house - Curtis Island Light Station, Curtis Island, at entrance to Camden Harbor, Camden, Knox County, ME

  16. Seismic risk assessment of Trani's Cathedral bell tower in Apulia, Italy

    NASA Astrophysics Data System (ADS)

    Diaferio, Mariella; Foti, Dora

    2017-09-01

    The present paper deals with the evaluation of the seismic vulnerability of slender historical buildings; these structures, in fact, may manifest a high risk with respect to seismic actions as usually they have been designed to resist to gravitational loads only, and are characterized by a high flexibility. To evaluate this behavior, the bell tower of the Trani's Cathedral is investigated. The tower is 57 m tall and is characterized by an unusual building typology, i.e., the walls are composed of a concrete core coupled with external masonry stones. The dynamic parameters and the mechanical properties of the tower have been evaluated on the basis of an extensive experimental campaign that made use of ambient vibration tests and ground penetrating radar tests. Such data have been utilized to calibrate a numerical model of the examined tower. A linear static analysis, a dynamic analysis and a nonlinear static analysis have been carried out on such model to evaluate the displacement capacity of the tower and the seismic risk assessment in accordance with the Italian guidelines.

  17. Techno-economic optimization of a scaled-up solar concentrator combined with CSPonD thermal energy storage

    NASA Astrophysics Data System (ADS)

    Musi, Richard; Grange, Benjamin; Diago, Miguel; Topel, Monika; Armstrong, Peter; Slocum, Alexander; Calvet, Nicolas

    2017-06-01

    A molten salt direct absorption receiver, CSPonD, used to simultaneously collect and store thermal energy is being tested by Masdar Institute and MIT in Abu Dhabi, UAE. Whilst a research-scale prototype has been combined with a beam-down tower in Abu Dhabi, the original design coupled the receiver with a hillside heliostat field. With respect to a conventional power-tower setup, a hillside solar field presents the advantages of eliminating tower costs, heat tracing equipment, and high-pressure pumps. This analysis considers the industrial viability of the CSPonD concept by modeling a 10 MWe up-scaled version of a molten salt direct absorption receiver combined with a hillside heliostat field. Five different slope angles are initially simulated to determine the optimum choice using a combination of lowest LCOE and highest IRR, and sensitivity analyses are carried out based on thermal energy storage duration, power output, and feed-in tariff price. Finally, multi-objective optimization is undertaken to determine a Pareto front representing optimum cases. The study indicates that a 40° slope and a combination of 14 h thermal energy storage with a 40-50 MWe power output provide the best techno-economic results. By selecting one simulated result and using a feed-in tariff of 0.25 /kWh, a competitive IRR of 15.01 % can be achieved.

  18. An Estimate of Avian Mortality at Communication Towers in the United States and Canada

    PubMed Central

    Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G.; Sullivan, Lauren M.; Mutrie, Erin; Gauthreaux, Sidney A.; Avery, Michael L.; Crawford, Robert L.; Manville, Albert M.; Travis, Emilie R.; Drake, David

    2012-01-01

    Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action. PMID:22558082

  19. An estimate of avian mortality at communication towers in the United States and Canada.

    PubMed

    Longcore, Travis; Rich, Catherine; Mineau, Pierre; MacDonald, Beau; Bert, Daniel G; Sullivan, Lauren M; Mutrie, Erin; Gauthreaux, Sidney A; Avery, Michael L; Crawford, Robert L; Manville, Albert M; Travis, Emilie R; Drake, David

    2012-01-01

    Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.

  20. User's manual for the BNW-I optimization code for dry-cooled power plants. Volume III. [PLCIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, D.J.; Daniel, D.J.; De Mier, W.V.

    1977-01-01

    This appendix to User's Manual for the BNW-1 Optimization Code for Dry-Cooled Power Plants provides a listing of the BNW-I optimization code for determining, for a particular size power plant, the optimum dry cooling tower design using a plastic tube cooling surface and circular tower arrangement of the tube bundles. (LCL)

  1. 29 CFR 1910.219 - Mechanical power-transmission apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Mechanical power-transmission apparatus. 1910.219 Section... Mechanical power-transmission apparatus. (a) General requirements. (1) This section covers all types and... apparatus located in basements. All mechanical power transmission apparatus located in basements, towers...

  2. 29 CFR 1910.219 - Mechanical power-transmission apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Mechanical power-transmission apparatus. 1910.219 Section... Mechanical power-transmission apparatus. (a) General requirements. (1) This section covers all types and... apparatus located in basements. All mechanical power transmission apparatus located in basements, towers...

  3. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  4. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  5. Role of bacterial adhesion in the microbial ecology of biofilms in cooling tower systems

    PubMed Central

    Liu, Yang; Zhang, Wei; Sileika, Tadas; Warta, Richard; Cianciotto, Nicholas P.; Packman, Aaron

    2009-01-01

    The fate of the three heterotrophic biofilm forming bacteria, Pseudomonas aeruginosa, Klebsiella pneumoniae and Flavobacterium sp. in pilot scale cooling towers was evaluated both by observing the persistence of each species in the recirculating water and the formation of biofilms on steel coupons placed in each cooling tower water reservoir. Two different cooling tower experiments were performed: a short-term study (6 days) to observe the initial bacterial colonization of the cooling tower, and a long-term study (3 months) to observe the ecological dynamics with repeated introduction of the test strains. An additional set of batch experiments (6 days) was carried out to evaluate the adhesion of each strain to steel surfaces under similar conditions to those found in the cooling tower experiments. Substantial differences were observed in the microbial communities that developed in the batch systems and cooling towers. P. aeruginosa showed a low degree of adherence to steel surfaces both in batch and in the cooling towers, but grew much faster than K. pneumoniae and Flavobacterium in mixed-species biofilms and ultimately became the dominant organism in the closed batch systems. However, the low degree of adherence caused P. aeruginosa to be rapidly washed out of the open cooling tower systems, and Flavobacterium became the dominant microorganism in the cooling towers in both the short-term and long-term experiments. These results indicate that adhesion, retention and growth on solid surfaces play important roles in the bacterial community that develops in cooling tower systems. PMID:19177226

  6. 16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. TYPICAL VIEW OF PEARL HARBOR FROM SIGNAL TOWER OFFICE, LOOKING OUT AT MAIN CHANNEL ENTRANCE, WITH FORD ISLAND ON THE RIGHT. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI

  7. 1. Keeper's house, small boathouse, and light tower, view east, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Keeper's house, small boathouse, and light tower, view east, west and south sides of keeper's house, west side of boathouse and tower - Great Duck Island Light Station, At southern tip of Great Duck Island southeast of Bass Harbor & northeast of Frenchboro, Frenchboro, Hancock County, ME

  8. Techno-economic performance evaluation of direct steam generation solar tower plants with thermal energy storage systems based on high-temperature concrete and encapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Guédez, R.; Arnaudo, M.; Topel, M.; Zanino, R.; Hassar, Z.; Laumert, B.

    2016-05-01

    Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase.

  9. Approximate method for calculating free vibrations of a large-wind-turbine tower structure

    NASA Technical Reports Server (NTRS)

    Das, S. C.; Linscott, B. S.

    1977-01-01

    A set of ordinary differential equations were derived for a simplified structural dynamic lumped-mass model of a typical large-wind-turbine tower structure. Dunkerley's equation was used to arrive at a solution for the fundamental natural frequencies of the tower in bending and torsion. The ERDA-NASA 100-kW wind turbine tower structure was modeled, and the fundamental frequencies were determined by the simplified method described. The approximate fundamental natural frequencies for the tower agree within 18 percent with test data and predictions analyzed.

  10. PORFIDO on the NEMO Phase 2 tower

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ciaffoni, Orlando; Cordelli, Marco; Habel, Roberto

    We have designed and built an underwater measurement system, PORFIDO (Physical Oceanography by RFID Outreach) to gather oceanographic data from the Optical Modules of a neutrino telescope with a minimum of disturbance to the main installation. PORFIDO is composed of a sensor glued to the outside of an Optical Module, in contact with seawater, and of a reader placed inside the sphere, facing the sensor. Data are transmitted to the reader through the glass by RFID and to shore in real time for periods of years. The sensor gathers power from the radio frequency, thus eliminating the need for batteriesmore » or connectors through the glass. We have deployed four PORFIDO probes measuring temperatures with the NEMO-KM3Net-Italy Phase 2 tower in april 2013. The four probes are operative and are transmitting temperature data from 3500 m depth.« less

  11. GANTRY SIGNAL EAST OF TOWER AT MILEPOST 203.0, LOOKING WEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GANTRY SIGNAL EAST OF TOWER AT MILEPOST 203.0, LOOKING WEST, EQUIPPED WITH B&O COLOR-POSITION-LIGHT SIGNAL HEAD FOR WESTBOUND TRAINS. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  12. SIGNAL BRIDGE WEST OF TOWER AT MILEPOST 203.2, LOOKING WEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SIGNAL BRIDGE WEST OF TOWER AT MILEPOST 203.2, LOOKING WEST, EQUIPPED WITH B&O COLOR-POSITION-LIGHT SIGNAL HEADS FOR EASTBOUND TRAINS. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  13. Simulation of hybrid solar power plants

    NASA Astrophysics Data System (ADS)

    Dieckmann, Simon; Dersch, Jürgen

    2017-06-01

    Hybrid solar power plants have the potential to combine advantages of two different technologies at the cost of increased complexity. The present paper shows the potential of the software greenius for the techno-economic evaluation of hybrid solar power plants and discusses two exemplary scenarios. Depreciated Concentrated Solar Power (CSP) plants based on trough technology can be retrofitted with solar towers in order to reach higher steam cycle temperatures and hence efficiencies. Compared to a newly built tower plant the hybridization of a depreciated trough plant causes about 30% lower LCOE reaching 104 /MWh. The second hybrid scenario combines cost-efficient photovoltaics with dispatchable CSP technology. This hybrid plant offers very high capacity factors up to 69% based on 100% load from 8am to 11pm. The LCOE of the hybrid plant are only slightly lower (174 vs. 186 /MWh) compared to the pure CSP plant because the capital expenditure for thermal storage and power block remains the same while the electricity output is much lower.

  14. Improved reliability of wind turbine towers with active tuned mass dampers (ATMDs)

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Breiffni; Sarkar, Saptarshi; Staino, Andrea

    2018-04-01

    Modern multi-megawatt wind turbines are composed of slender, flexible, and lightly damped blades and towers. These components exhibit high susceptibility to wind-induced vibrations. As the size, flexibility and cost of the towers have increased in recent years, the need to protect these structures against damage induced by turbulent aerodynamic loading has become apparent. This paper combines structural dynamic models and probabilistic assessment tools to demonstrate improvements in structural reliability when modern wind turbine towers are equipped with active tuned mass dampers (ATMDs). This study proposes a multi-modal wind turbine model for wind turbine control design and analysis. This study incorporates an ATMD into the tower of this model. The model is subjected to stochastically generated wind loads of varying speeds to develop wind-induced probabilistic demand models for towers of modern multi-megawatt wind turbines under structural uncertainty. Numerical simulations have been carried out to ascertain the effectiveness of the active control system to improve the structural performance of the wind turbine and its reliability. The study constructs fragility curves, which illustrate reductions in the vulnerability of towers to wind loading owing to the inclusion of the damper. Results show that the active controller is successful in increasing the reliability of the tower responses. According to the analysis carried out in this paper, a strong reduction of the probability of exceeding a given displacement at the rated wind speed has been observed.

  15. Particle tower technology applied to metallurgic plants and peak-time boosting of steam power plants

    NASA Astrophysics Data System (ADS)

    Amsbeck, Lars; Buck, Reiner; Prosin, Tobias

    2016-05-01

    Using solar tower technology with ceramic particles as heat transfer and storage medium to preheat scrap for induction furnaces in foundries provides solar generated heat to save electricity. With such a system an unsubsidized payback time of only 4 years is achieved for a 70000t/a foundry in Brazil. The same system can be also used for heat treatment of metals. If electricity is used to heat inert atmospheres a favorable economic performance is also achievable for the particle system. The storage in a particle system enables solar boosting to be restricted to only peak times, enabling an interesting business case opportunity.

  16. Solar-power mountain concept

    NASA Technical Reports Server (NTRS)

    Clarke, V. C., Jr.

    1977-01-01

    Solar collectors on mountainside collect thermal energy for mountaintop powerplant. Sloped arrangement reduces heat-transport problem of level ground-based collector field. Heated air rises without mechanical pumps and buoyancy force supplies pumping power without further cost. Precision tracking requirement of power towers eliminated by butted-together Winston-type concentrator troughs. Low-cost native rock is used for heat storage.

  17. 84. INDIAN HOUSE TOWER, FROM THE EAST. ALSO SHOWS THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    84. INDIAN HOUSE TOWER, FROM THE EAST. ALSO SHOWS THE BALCONY AND ARCADE OF THE WEST WING. THE TOWER WAS ADDED IN 1916. SAME VIEW AS PA-107-10. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  18. OVERVIEW OF AERIAL TRAM SUPPORT TOWERS NINE, TEN, AND DEEP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF AERIAL TRAM SUPPORT TOWERS NINE, TEN, AND DEEP RAVINE,LOOKING SOUTH FROM BREAK OVER TOWER LOCATION. A SINGLE ORE BUCKET HANGS FROM THE CABLE AT CENTER. DEATH VALLEY'S FLOOR IS IN THE DISTANCE (TOP). - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  19. Proposed Guidance for Preparing and Reviewing Molten Salt Nonpower Reactor Licence Applications (NUREG-1537)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belles, Randy; Flanagan, George F.; Voth, Marcus

    Development of non-power molten salt reactor (MSR) test facilities is under consideration to support the analyses needed for development of a full-scale MSR. These non-power MSR test facilities will require review by the US Nuclear Regulatory Commission (NRC) staff. This report proposes chapter adaptations for NUREG-1537 in the form of interim staff guidance to address preparation and review of molten salt non-power reactor license applications. The proposed adaptations are based on a previous regulatory gap analysis of select chapters from NUREG-1537 for their applicability to non-power MSRs operating with a homogeneous fuel salt mixture.

  20. Growth and development of spring towers at Shiqiang, Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Peng, Xiaotong

    2017-01-01

    Throughout the world, high artesian pressures in hydrothermal areas have led to the growth of tall spring towers that have their vents at their summits. The factors that control their development and formative precipitates are poorly understood because these springs, irrespective of location, are mostly inactive. Spring towers found at Shiqiang (Yunnan Province, China), which are up to 4 m high and 3 m in diameter, are formed largely of calcite and aragonite crystal bushes, euhedral calcite crystals and coated grains with alternating Fe-poor and Fe-rich zones, calcite rafts, and cements formed of various combinations of calcite, aragonite, strontianite, Mg-Si reticulate, needle fiber calcite, calcified and non-calcified microbes, diatoms, and insects. Collectively, the limestones that form the towers can be divided into (1) Group A that are friable, porous and form the cores of the towers and have δ18OSMOW values of + 15.7 to + 19.7‰ (average 17.8‰) and δ13CPDB values of + 5.1 to + 6.9‰ (average 5.9‰), and (2) Group B that are hard and well lithified and found largely around the vents and the tower sides, and have δ18OSMOW values of + 13.0 to + 22.0‰ (average 17.6‰) and δ13CPDB values of + 1.4 to + 3.6‰ (average 2.6‰). The precipitates and the isotopic values indicate that these were thermogene springs. Growth of the Shiqiang spring towers involved (1) Phase IA when precipitation of calcite and aragonite bushes formed the core of the tower and Phase IB when calcite, commonly Fe-rich, was precipitated locally, (2) Phase II that involved the precipitation of white cements, formed of calcite, aragonite, strontianite, and Mg-Si reticulate coatings in cavities amid the Phase I precipitates, and (3) Phase III, which formed probably after spring activity ceased, when needle-fiber calcite was precipitated and the mounds were invaded by microbes (some now calcified), diatoms, and insects. At various times during this complex history, pore waters mediated

  1. New student-designed research and demonstration drop tower

    NASA Astrophysics Data System (ADS)

    Bell, Donald; Weislogel, Mark

    A new drop tower has been designed and constructed at Portland State University. The ap-proach incorporates innovative features to increase throughput and microgravity quality in a highly public facility. Push button operation with full wireless CCTV coverage and passive magnetic deceleration provides quiet, safe operation from a single control station with low re-cycle time. A two-stage coaxial release mechanism decouples the payload from the drag shield to minimize disturbances to the experiment during release. This is especially important for fluids experiments that are highly sensitive to initial conditions. Performance of the new tower is presented including release, free fall, and deceleration accelerometer data. The two second tower is used for research and educational outreach. The research efforts focus on capillary flows and phenomena relevant to spacecraft fluid systems. The outreach efforts utilize partnerships with local primary, secondary and post-secondary institutions to promote the fields of science, technology, engineering and mathematics.

  2. Cooling towers--a potential environmental source of slow-growing mycobacterial species.

    PubMed

    Black, Walter C; Berk, Sharon G

    2003-01-01

    Over the last decade a rise in the frequency of disease caused by nontuberculous mycobacteria (NTM) has occurred, especially among AIDS patients. The lack of evidence for person-to-person transmission indicates the environment is a source of infection. The ecology and environmental sources of NTMs are poorly understood, and many pathogenic strains have not been observed outside of clinical cases. Several species of NTMs have been reported from treated water distribution systems; however, one type of manmade environment that has not been examined for mycobacteria is that of cooling towers of air-conditioning systems. Such environments not only harbor a variety of microbial species, they also disseminate them in aerosols. The present investigation examined nine cooling towers from various locations in the United States. Cooling tower water was concentrated, treated with cetylpyridinium chloride, and plated onto Middlebrook 7H10 agar supplemented with OADC and cycloheximide. Colonies presumed to be mycobacterial species were isolated and acid-fast stained. Identification was made by amplifying and sequencing 1450 bp fragments of the 16S rRNA gene in both directions, and comparing resulting sequences with those in GenBank. Results showed that at least 75% of tower samples contained NTMs, and most of the isolates closely matched known mycobacterial pathogens. Isolates most closely matched the following GenBank sequences: Mycobacterium intracellulare, M. szulgai, M. bohemicum, M. gordonae, M. nonchromogenicum, and M. n. sp. "Fuerth 1999." This is the first report of specific NTMs in cooling tower water, and the first report of M. n. sp. "Fuerth 1999" from any environmental sample. Although cooling towers have a relatively high pH, they may favor the growth and dissemination of such potential pathogens, and future epidemiologic investigations should consider cooling towers as possible environmental sources of mycobacteria.

  3. How tall can gelatin towers be? An introduction to elasticity and buckling

    NASA Astrophysics Data System (ADS)

    Taberlet, Nicolas; Ferrand, Jérémy; Camus, Élise; Lachaud, Léa; Plihon, Nicolas

    2017-12-01

    The stability of elastic towers is studied through simple hands-on experiments. Using gelatin-based stackable bricks, one can investigate the maximum height a simple structure can reach before collapsing. We show through experiments and by using the classical linear elastic theory that the main limitation to the height of such towers is the buckling of the elastic structures under their own weight. Moreover, the design and architecture of the towers can be optimized to greatly improve their resistance to self-buckling. To this aim, the maximum height of hollow and tapered towers is investigated. The experimental and theoretical developments presented in this paper can help students grasp the fundamental concepts in elasticity and mechanical stability.

  4. Alkaline approach to treating cooling towers for control of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    States, S.J.; Conley, L.F.; Towner, S.G.

    1987-08-01

    Earlier field and laboratory studies have shown that Legionella species survive and multiply in the pH range 5.5 to 9.2. Additionally, the technical feasibility of operating cooling towers at elevated alkalinities and pH has previously been documented by published guidelines. The guidelines indicate that these conditions facilitate corrosion control and favor chlorine persistence which enhances the effectiveness of continuous chlorination in biofouling control. This information suggest that control of Legionella species in cooling towers can be accomplished by operating the towers under alkaline conditions. To test this possibility, we collected water samples over a period of months from a hospitalmore » cooling tower. The samples were analyzed for a variety of chemical parameters. Subsamples were pasteurized and inoculated with non-agar-passaged Legionella pneumophila which had been maintained in tap water. Correlation of subsequent Legionella growth with corresponding pH and alkalinity values revealed statistically significant inverse associations. These data support the hypothesis that operating cooling towers outside of the optimal conditions for Legionella growth (e.g., at elevated alkalinities and a pH greater than 9) may be a useful approach to controlling growth in this habitat.« less

  5. Applications to determine the shortest tower BTS distance using Dijkstra algorithm

    NASA Astrophysics Data System (ADS)

    Mardana, Herwin; Maharani, Septya; Hatta, Heliza Rahmania

    2017-02-01

    Telecommunications Tower or so-called BTS (Base Transceiver System) Toweris one of the main components in the network infrastructure that has experienced an increase in the number of construction. Telecommunications tower function as a place to put the antenna signal transmitter (access network) to provide communication services to customers around the tower. In addition, other use of telecommunications tower also to place the transmission signal antenna (transport network using microwave technology) for connecting customers with a central area. Therefore, in needed of a decision support system that can provide recommendations planting route of fiber optic cable with the shortest distance in purpose the use of fiber optic cable becoming more efficient. The results of the research were the shortest rule information, showing the distance to be travelled and the map view to enabling users to look at these.

  6. Design and Manufacturing of Composite Tower Structure for Wind Turbine Equipment

    NASA Astrophysics Data System (ADS)

    Park, Hyunbum

    2018-02-01

    This study proposes the composite tower design process for large wind turbine equipment. In this work, structural design of tower and analysis using finite element method was performed. After structural design, prototype blade manufacturing and test was performed. The used material is a glass fiber and epoxy resin composite. And also, sand was used in the middle part. The optimized structural design and analysis was performed. The parameter for optimized structural design is weight reduction and safety of structure. Finally, structure of tower will be confirmed by structural test.

  7. Detail of conning tower atop the submarine. Note the wire ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of conning tower atop the submarine. Note the wire rope wrapped around the base of the tower, which may have been used in an attempt to pull the submarine offshore. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  8. 348. Caltrans, Photographer December 27, 1935 "TOWER E3"; VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    348. Caltrans, Photographer December 27, 1935 "TOWER E-3"; VIEW OF TOWER E-3 AND CANTILEVER TRUSS EAST ANCHOR ARM UNDER CONSTRUCTION. 7-1128 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  9. The influence of liquid-gas velocity ratio on the noise of the cooling tower

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Liu, Xuanzuo; Chen, Chi; Zhao, Zhouli; Song, Jinchun

    2018-05-01

    The noise from the cooling tower has a great influence on psychological performance of human beings. The cooling tower noise mainly consists of fan noise, falling water noise and mechanical noise. This thesis used DES turbulence model with FH-W model to simulate the flow and sound pressure field in cooling tower based on CFD software FLUENT and analyzed the influence of different kinds noise, which affected by diverse factors, on the cooling tower noise. It can be concluded that the addition of cooling water can reduce the turbulence and vortex noise of the rotor fluid field in the cooling tower at some extent, but increase the impact noise of the liquid-gas two phase. In general, the cooling tower noise decreases with the velocity ratio of liquid to gas increasing, and reaches the lowest when the velocity ratio of liquid to gas is close to l.

  10. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey.

    PubMed

    Kucuk, Omer; Topaloglu, Ozer; Altunel, Arif Oguz; Cetin, Mehmet

    2017-07-01

    For a successful fire suppression, it is essential to detect and intervene forest fires as early as possible. Fire lookout towers are crucial assets in detecting forest fires, in addition to other technological advancements. In this study, we performed a visibility analysis on a network of fire lookout towers currently operating in a relatively fire-prone region in Turkey's Western Black Sea region. Some of these towers had not been functioning properly; it was proposed that these be taken out of the grid and replaced with new ones. The percentage of visible areas under the current network of fire lookout towers was 73%; it could rise to 81% with the addition of newly proposed towers. This study was the first research to conduct a visibility analysis of current and newly proposed fire lookout towers in the Western Black Sea region and focus on its forest fire problem.

  11. Quantifying the local influence at a tall tower site in nocturnal conditions

    DOE PAGES

    Werth, David; Buckley, Robert; Zhang, Gengsheng; ...

    2015-10-17

    The influence of the local terrestrial environment on nocturnal atmospheric CO 2 measurements at a 329-m television transmitter tower (and a component of a CO 2 monitoring network) was estimated in this paper with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released onmore » two contrasting nights—slightly stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO 2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. Finally, the contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.« less

  12. Quantifying the local influence at a tall tower site in nocturnal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, David; Buckley, Robert; Zhang, Gengsheng

    The influence of the local terrestrial environment on nocturnal atmospheric CO 2 measurements at a 329-m television transmitter tower (and a component of a CO 2 monitoring network) was estimated with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released on two contrasting nights—slightlymore » stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO 2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. The contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.« less

  13. Quantifying the local influence at a tall tower site in nocturnal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werth, David; Buckley, Robert; Zhang, Gengsheng

    The influence of the local terrestrial environment on nocturnal atmospheric CO 2 measurements at a 329-m television transmitter tower (and a component of a CO 2 monitoring network) was estimated in this paper with a tracer release experiment and a subsequent simulation of the releases. This was done to characterize the vertical transport of emissions from the surface to the uppermost tower level and how it is affected by atmospheric stability. The tracer release experiment was conducted over two nights in May of 2009 near the Department of Energy’s Savannah River Site (SRS) in South Carolina. Tracer was released onmore » two contrasting nights—slightly stable and moderately stable—from several upwind surface locations. Measurements at the 329-m level on both nights indicate that tracer was able to mix vertically within a relatively short (~24 km) distance, implying that nocturnal stable conditions do not necessarily prevent vertical dispersion in the boundary layer and that CO 2 measurements at the tower are at least partly influenced by nearby emissions. A simulation of the tracer release is used to calculate the tower footprint on the two nights to estimate the degree to which the local domain affects the tower readings. The effect of the nocturnal boundary layer on the area sampled by the tower can be seen clearly, as the footprints were affected by changes in stability. Finally, the contribution of local sources to the measurements at the tower was minimal, however, suggesting that nocturnal concentrations at upper levels are contributed mostly by regional sources.« less

  14. FLORIDA TOWER FOOTPRINT EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WATSON,T.B.; DIETZ, R.N.; WILKE, R.

    2007-01-01

    The Florida Footprint experiments were a series of field programs in which perfluorocarbon tracers were released in different configurations centered on a flux tower to generate a data set that can be used to test transport and dispersion models. These models are used to determine the sources of the CO{sub 2} that cause the fluxes measured at eddy covariance towers. Experiments were conducted in a managed slash pine forest, 10 km northeast of Gainesville, Florida, in 2002, 2004, and 2006 and in atmospheric conditions that ranged from well mixed, to very stable, including the transition period between convective conditions atmore » midday to stable conditions after sun set. There were a total of 15 experiments. The characteristics of the PFTs, details of sampling and analysis methods, quality control measures, and analytical statistics including confidence limits are presented. Details of the field programs including tracer release rates, tracer source configurations, and configuration of the samplers are discussed. The result of this experiment is a high quality, well documented tracer and meteorological data set that can be used to improve and validate canopy dispersion models.« less

  15. Hexcrete Tower for Harvesting Wind Energy at Taller Hub Heights - Budget Period 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sritharan, Sri

    Interest in designing taller towers for wind energy production in the United States (U.S.) has been steadily growing. In May 2015, it was revealed that taller towers will make wind energy production a reality in all 50 states, including some states that have nearly zero renewables in their energy portfolio. Facilitating wind energy production feasibility in all 50 states will no doubt contribute to increasing the electricity produced by wind from 4.5% in 2013 to a targeted scenario of 35% by 2050 in the Wind Vision report. This project focuses on the Hexcrete tower concept developed for tall towers usingmore » High Strength Concrete (HSC) and/or Ultra-High Performance Concrete (UHPC). Among other benefits, the Hexcrete concept overcomes transportation and logistical challenges, thus facilitating construction of towers with hub heights of 100-m (328-ft) and higher. The goal of this project is to facilitate widespread deployment of Hexcrete towers for harvesting wind energy at 120 to 140-m (394 to 459-ft) hub heights and reduce the Levelized Cost of Energy (LCOE) of wind energy production in the U.S. The technical scope of the project includes detailed design and optimization of at least three wind turbine towers using the Hexcrete concept together with experimental validation and LCOE analyses and development of a commercialization plan.« less

  16. 78 FR 11146 - Utility Scale Wind Towers From the People's Republic of China: Antidumping Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-981] Utility Scale Wind Towers...''), the Department is issuing an antidumping duty order on utility scale wind towers (``wind towers... investigation of wind towers from the PRC.\\1\\ On February 8, 2013, the ITC notified the Department of its...

  17. An Implementation of the Salt-Farm Monitoring System Using Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ju, Jonggil; Park, Ingon; Lee, Yongwoong; Cho, Jongsik; Cho, Hyunwook; Yoe, Hyun; Shin, Changsun

    In producing solar salt, natural environmental factors such as temperature, humidity, solar radiation, wind direction, wind speed and rain are essential elements which influence on the productivity and quality of salt. If we can manage the above mentioned environmental elements efficiently, we could achieve improved results in production of salt with good quality. To monitor and manage the natural environments, this paper suggests the Salt-Farm Monitoring System (SFMS) which is operated with renewable energy power. The system collects environmental factors directly from the environmental measure sensors and the sensor nodes. To implement a stand-alone system, we applied solar cell and wind generator to operate this system. Finally, we showed that the SFMS could monitor the salt-farm environments by using wireless sensor nodes and operate correctly without external power supply.

  18. Legionella species colonization in cooling towers: risk factors and assessment of control measures.

    PubMed

    Mouchtouri, Varvara A; Goutziana, Georgia; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2010-02-01

    Cooling towers can be colonized by Legionella spp, and inhalation of aerosols generated by their operation may cause Legionnaires' disease in susceptible hosts. Environmental investigations of Legionnaires' disease outbreaks linked with cooling towers have revealed poorly maintained systems, lack of control measures, and failure of system equipment. The purpose of this study was to identify Legionella-contaminated cooling towers, identify risk factors for contamination, and assess the effectiveness of control measures. A total of 96 cooling towers of public buildings were registered and inspected, and 130 samples were collected and microbiologically tested. Microbiological test results were associated with characteristics of cooling towers, water samples, inspection results, and maintenance practices. Of the total 96 cooling towers examined, 47 (48.9%) were colonized by Legionella spp, and 22 (22.9%) required remedial action. A total of 65 samples (50.0%) were positive (> or = 500 cfu L(-1)), and 30 (23%) were heavily contaminated (> or = 10(4) cfu L(-1)). Of the 69 isolates identified, 55 strains (79.7.%) were L pneumophila. Legionella colonization was positively associated with the absence of training on Legionella control (relative risk [RR] = 1.66; P = .02), absence of regular Legionella testing (RR = 2.07: P = .002), absence of sunlight protection (RR = 1.63: P = .02), with samples in which the free residual chlorine level in the water sample was < 0.5 mg/L (RR = 2.23; P = .01), and with total plate count (P =.001). Colonization was negatively associated with chemical disinfection (RR = 0.2; P = .0003) and with the presence of a risk assessment and management plan (RR = 0.12; P = .0005). A statistically significant higher age (P =.01) was found in legionellae-positive cooling towers (median, 17 years; interquartile range [IQR] =5.0 to 26.0 years) compared with noncolonized cooling towers (median age, 6 years; IQR =1.0 to 13.5 years). After the 22 legionellae

  19. Hydrologic and climatologic data, 1965, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District. contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Release No. 11 contains data collected through 1964. This release contains climatologic and surface-water data for the 1965 water year (October 1964 to September 1965) and ground-water data collected during the 1965 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  20. Hydrologic and climatologic data, 1966, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1967-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11 and 12 contain data collected through 1965. This release contains climatologic and surface-water data for the 1966 water year (October 1965 to September 1966) and groundwater data collected during the 1966 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  1. 16. Detail, northeast facade, operator's bow window and tower; note ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, northeast facade, operator's bow window and tower; note condition of slates on tower skirt roof, missing section of gutter at left side of skirt roof, missing window panes; note also knee braces carried on masonry ancons; view to southwest, 90mm lens. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA

  2. Eiffel Tower Plume

    NASA Image and Video Library

    2015-08-19

    This still image from an animation from NASA GSFC Solar Dynamics Observatory shows a single plume of plasma, many times taller than the diameter of Earth, spewing streams of particles for over two days Aug. 17-19, 2015 before breaking apart. At times, its shape resembled the Eiffel Tower. Other lesser plumes and streams of particles can be seen dancing above the solar surface as well. The action was observed in a wavelength of extreme ultraviolet light. http://photojournal.jpl.nasa.gov/catalog/PIA19875

  3. Vibration Monitoring of Power Distribution Poles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark Scott; Gail Heath; John Svoboda

    2006-04-01

    Some of the most visible and least monitored elements of our national security infrastructure are the poles and towers used for the distribution of our nation’s electrical power. Issues surrounding these elements within the United States include safety such as unauthorized climbing and access, vandalism such as nut/bolt removal or destructive small arms fire, and major vandalism such as the downing of power poles and towers by the cutting of the poles with a chainsaw or torches. The Idaho National Laboratory (INL) has an ongoing research program working to develop inexpensive and sensitive sensor platforms for the monitoring and characterizationmore » of damage to the power distribution infrastructure. This presentation covers the results from the instrumentation of a variety of power poles and wires with geophone assemblies and the recording of vibration data when power poles were subjected to a variety of stimuli. Initial results indicate that, for the majority of attacks against power poles, the resulting signal can be seen not only on the targeted pole but on sensors several poles away in the distribution network and a distributed sensor system can be used to monitor remote and critical structures.« less

  4. Droplet combustion experiment drop tower tests using models of the space flight apparatus

    NASA Technical Reports Server (NTRS)

    Haggard, J. B.; Brace, M. H.; Kropp, J. L.; Dryer, F. L.

    1989-01-01

    The Droplet Combustion Experiment (DCE) is an experiment that is being developed to ultimately operate in the shuttle environment (middeck or Spacelab). The current experiment implementation is for use in the 2.2 or 5 sec drop towers at NASA Lewis Research Center. Initial results were reported in the 1986 symposium of this meeting. Since then significant progress was made in drop tower instrumentation. The 2.2 sec drop tower apparatus, a conceptual level model, was improved to give more reproducible performance as well as operate over a wider range of test conditions. Some very low velocity deployments of ignited droplets were observed. An engineering model was built at TRW. This model will be used in the 5 sec drop tower operation to obtain science data. In addition, it was built using the flight design except for changes to accommodate the drop tower requirements. The mechanical and electrical assemblies have the same level of complexity as they will have in flight. The model was tested for functional operation and then delivered to NASA Lewis. The model was then integrated into the 5 sec drop tower. The model is currently undergoing initial operational tests prior to starting the science tests.

  5. Reusable Material for Drop Tower

    DTIC Science & Technology

    2011-08-01

    R3 Buna-N Rubber ............................................................................................... 32 B-3. R5 EPDM Rubber ...Butyl Rubber . Figure B-2. R3 Buna-N Rubber . Figure B-3. R5 EPDM Rubber . Figure B-4. R6 Gel Rubber . UNCLASSIFIED 33...11 Current Drop Tower Material & Setup .......................................................... 11 Bowling Ball Rubber Material Sample Test

  6. LaGuardia air traffic control tower.

    DOT National Transportation Integrated Search

    2011-01-01

    To celebrate FAA and its LaGuardia Airport employees past, : present, and future this booklet outlines the airports history and accomplishments and includes copies of some of the photographs in the : air traffic control towers history g...

  7. The Science of Salt: A focused review on salt-related knowledge, attitudes and behaviors, and gender differences.

    PubMed

    McKenzie, Briar; Santos, Joseph Alvin; Trieu, Kathy; Thout, Sudhir Raj; Johnson, Claire; Arcand, JoAnne; Webster, Jacqui; McLean, Rachael

    2018-05-01

    The aim of the current review was to examine the scope of studies published in the Science of Salt Weekly that contained a measure of self-reported knowledge, attitudes, and behavior (KAB) concerning salt. Specific objectives were to examine how KAB measures are used to evaluate salt reduction intervention studies, the questionnaires used, and whether any gender differences exist in self-reported KAB. Studies were reviewed from the commencement of Science of Salt Weekly, June 2013 to the end of August 2017. Seventy-five studies had relevant measures of KAB and were included in this review, 13 of these were salt-reduction intervention-evaluation studies, with the remainder (62) being descriptive KAB studies. The KAB questionnaires used were specific to the populations studied, without evidence of a best practice measure. 40% of studies used KAB alone as the primary outcome measure; the remaining studies used more quantitative measures of salt intake such as 24-hour urine. Only half of the descriptive studies showed KAB outcomes disaggregated by gender, and of those, 73% showed women had more favorable KAB related to salt. None of the salt intervention-evaluation studies showed disaggregated KAB data. Therefore, it is likely important that evaluation studies disaggregate, and are appropriately powered to disaggregate all outcomes by gender to address potential disparities. ©2018 Wiley Periodicals, Inc.

  8. Validation of the Dynamic Wake Meander model with focus on tower loads

    NASA Astrophysics Data System (ADS)

    Larsen, T. J.; Larsen, G. C.; Pedersen, M. M.; Enevoldsen, K.; Madsen, H. A.

    2017-05-01

    This paper presents a comparison between measured and simulated tower loads for the Danish offshore wind farm Nysted 2. Previously, only limited full scale experimental data containing tower load measurements have been published, and in many cases the measurements include only a limited range of wind speeds. In general, tower loads in wake conditions are very challenging to predict correctly in simulations. The Nysted project offers an improved insight to this field as six wind turbines located in the Nysted II wind farm have been instrumented to measure tower top and tower bottom moments. All recorded structural data have been organized in a database, which in addition contains relevant wind turbine SCADA data as well as relevant meteorological data - e.g. wind speed and wind direction - from an offshore mast located in the immediate vicinity of the wind farm. The database contains data from a period extending over a time span of more than 3 years. Based on the recorded data basic mechanisms driving the increased loading experienced by wind turbines operating in offshore wind farm conditions have been identified, characterized and modeled. The modeling is based on the Dynamic Wake Meandering (DWM) approach in combination with the state-of-the-art aeroelastic model HAWC2, and has previously as well as in this study shown good agreement with the measurements. The conclusions from the study have several parts. In general the tower bending and yaw loads show a good agreement between measurements and simulations. However, there are situations that are still difficult to match. One is tower loads of single-wake operation near rated ambient wind speed for single wake situations for spacing’s around 7-8D. A specific target of the study was to investigate whether the largest tower fatigue loads are associated with a certain downstream distance. This has been identified in both simulations and measurements, though a rather flat optimum is seen in the measurements.

  9. Dimensions of Air Traffic Control Tower Information Needs: From Information Requests to Display Design

    ERIC Educational Resources Information Center

    Durso, Francis T.; Johnson, Brian R.; Crutchfield, Jerry M.

    2010-01-01

    In an effort to determine the information needs of tower air traffic controllers, instructors from the Federal Aviation Administration's Academy in Oklahoma City were asked to control traffic in a high-fidelity tower cab simulator. Information requests were made apparent by eliminating access to standard tower information sources. Instead,…

  10. A Meso-Climatology Study of the High-Resolution Tower Network Over the Florida Spaceport

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; Bauman, William H., III

    2004-01-01

    Forecasters at the US Air Force 45th Weather Squadron (45 WS) use wind and temperature data from the tower network over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to evaluate Launch Commit Criteria and to issue and verify temperature and wind advisories, watches, and warnings for ground operations. The Spaceflight Meteorology Group at the Johnson Space Center in Houston, TX also uses these data when issuing forecasts for shuttle landings at the KSC Shuttle Landing Facility. Systematic biases in these parameters at any of the towers could adversely affect an analysis, forecast, or verification for all of these operations. In addition, substantial geographical variations in temperature and wind speed can occur under specific wind directions. Therefore, the Applied Meteorology Unit (AMU), operated by ENSCO Inc., was tasked to develop a monthly and hourly climatology of temperatures and winds from the tower network, and identify the geographical variation, tower biases, and the magnitude of those biases. This paper presents a sub-set of results from a nine-year climatology of the KSC/CCAFS tower network, highlighting the geographical variations based on location, month, times of day, and specific wind direction regime. Section 2 provides a description of the tower mesonetwork and instrumentation characteristics. Section 3 presents the methodology used to construct the tower climatology including QC methods and data processing. The results of the tower climatology are presented in Section 4 and Section 5 summarizes the paper.

  11. European dry cooling tower operating experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSteese, J.G.; Simhan, K.

    1976-03-01

    Interviews were held with representatives of major plants and equipment manufacturers to obtain current information on operating experience with dry cooling towers in Europe. The report documents the objectives, background, and organizational details of the study, and presents an itemized account of contacts made to obtain information. Plant selection was based on a merit index involving thermal capacity and length of service. A questionnaire was used to organize operational data, when available, into nine major categories of experience. Information was also solicited concerning the use of codes and standards to ensure the achievement of cooling tower performance. Several plant operatorsmore » provided finned-tube samples for metallographic analysis. Additionally, information on both operating experience and developing technology was supplied by European technical societies and research establishments. Information obtained from these contacts provides an updated and representative sample of European experience with dry cooling towers, which supplements some of the detailed reviews already available in the literature. In addition, the study presents categorized operating experience with installations which have not been reviewed so extensively, but nevertheless, have significant operational histories when ranked by the merit index. The contacts and interviews reported in the survey occurred between late March and October 1975. The study was motivated by the expressed interest of U.S. utility industry representatives who expect European experience to provide a basis of confidence that dry cooling is a reliable technology, applicable when necessary, to U.S. operating requirements.« less

  12. Within compound, from Guard Tower (Building 5762), looking southwest, Technical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Guard Tower (Building 5762), looking southwest, Technical Equipment Building (Building 5760) to left, Microwave Tower (associated with Building 5769) and Civil Engineering Storage Building (Building 5766) to left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. Ozone inhibits corrosion in cooling towers

    NASA Technical Reports Server (NTRS)

    French, K. R.; Howe, R. D.; Humphrey, M. F.

    1980-01-01

    Commercially available corona discharge ozone generator, fitted onto industrial cooling tower, significantly reduces formation of scales (calcium carbonate) and corrosion. System also controls growth of algae and other microorganisms. Modification lowers cost and improves life of cooling system.

  14. Sampling and detection of Legionella pneumophila aerosols generated from an industrial cooling tower.

    PubMed

    Ishimatsu, S; Miyamoto, H; Hori, H; Tanaka, I; Yoshida, S

    2001-08-01

    Cooling tower water has frequently been cited as a source of infection in outbreaks of Legionnaires' disease. However, there have been few reports on the presence of legionellae in aerosols from cooling towers. This paper describes our use of an impinger or a six-stage microbial impactor for detecting legionellae in air around a cooling tower contaminated with L. pneumophila (1.2+/-0.3x10(5) CFU/100 ml). Phosphate-buffered saline, Page's saline, 2% yeast extract solution and buffered yeast extract (BYE) broth were tested to evaluate their collection efficiency. These solutions were compared in laboratory experiments using an aerosol of L. pneumophila serogroup (SG) 1. Because BYE broth was the most efficient and storable collecting fluid among them, it was used for outdoor air sampling. In the outdoor air sampling, aerosolized L. pneumophila SG 6 was detected in the air around the cooling tower by the impinger (0.09 CFU/l. air). No legionellae were detected by the impactor with Legionella-selective agar plates (WYOalpha) because the plates were overgrown with fungi. Repetitive element PCR (rep-PCR) and arbitrarily primed PCR (AP-PCR) were employed to assess the epidemiological relationship among Legionella isolates from the air sample and the cooling tower water samples. L. pneumophila SG 6 isolated from the aerosols produced rep-PCR and AP-PCR fingerprints identical to those of L. pneumophila SG 6 strains from the cooling tower water, suggesting that the bacterium was aerosolized from the cooling tower.

  15. Concentrating Solar Power Projects in India | Concentrating Solar Power |

    Science.gov Websites

    ;alphabetical by project name. You can browse a project profile by clicking on the project name. Abhijeet Solar Project ACME Solar Tower Dadri ISCC Plant Dhursar Diwakar Godawari Solar Project Gujarat Solar One KVK Energy Solar Project Megha Solar Plant National Solar Thermal Power Facility

  16. Influence of detergents on water drift in cooling towers

    NASA Astrophysics Data System (ADS)

    Vitkovicova, Rut

    An influence of detergents on the water drift from the cooling tower was experimentally investigated. For this experimental measurements was used a model cooling tower, especially an experimental aerodynamic line, which is specially designed for the measurement and monitoring of processes taking place around the eliminators of the liquid phase. The effect of different concentrations of detergent in the cooling water on the drift of water droplets from a commonly used type eliminator was observed with visualization methods.

  17. Legionella in industrial cooling towers: monitoring and control strategies.

    PubMed

    Carducci, A; Verani, M; Battistini, R

    2010-01-01

    Legionella contamination of industrial cooling towers has been identified as the cause of sporadic cases and outbreaks of legionellosis among people living nearby. To evaluate and control Legionella contamination in industrial cooling tower water, microbiological monitoring was carried out to determine the effectiveness of the following different disinfection treatments: (i) continuous chlorine concentration of 0.01 ppm and monthly chlorine shock dosing (5 ppm) on a single cooling tower; (ii) continuous chlorine concentration of 0.4 ppm and monthly shock of biocide P3 FERROCID 8580 (BKG Water Solution) on seven towers. Legionella spp. and total bacterial count (TBC) were determined 3 days before and after each shock dose. Both strategies demonstrated that when chlorine was maintained at low levels, the Legionella count grew to levels above 10(4) CFU l(-1) while TBC still remained above 10(8 )CFU l(-1). Chlorine shock dosing was able to eliminate bacterial contamination, but only for 10-15 days. Biocide shock dosing was also insufficient to control the problem when the disinfectant concentration was administered at only one point in the plant and at the concentration of 30 ppm. On the other hand, when at a biocide concentration of 30 or 50 ppm was distributed throughout a number of points, depending on the plant hydrodynamics, Legionella counts decreased significantly and often remained below the warning limit. Moreover, the contamination of water entering the plant and the presence of sediment were also important factors for Legionella growth. For effective decontamination of outdoor industrial cooling towers, disinfectants should be distributed in a targeted way, taking into account the possible sources of contamination. The data of the research permitted to modify the procedure of disinfection for better reduce the water and aerosol contamination and consequently the exposure risk.

  18. The hydrogen sulfide emissions abatement program at the Geysers Geothermal Power Plant

    NASA Technical Reports Server (NTRS)

    Allen, G. W.; Mccluer, H. K.

    1974-01-01

    The scope of the hydrogen sulfide (H2S) abatement program at The Geysers Geothermal Power Plant and the measures currently under way to reduce these emissions are discussed. The Geysers steam averages 223 ppm H2S by weight and after passing through the turbines leaves the plant both through the gas ejector system and by air-stripping in the cooling towers. The sulfide dissolved in the cooling water is controlled by the use of an oxidation catalyst such as an iron salt. The H2S in the low Btu ejector off gases may be burned to sulfur dioxide and scrubbed directly into the circulating water and reinjected into the steam field with the excess condensate. Details are included concerning the disposal of the impure sulfur, design requirements for retrofitting existing plants and modified plant operating procedures. Discussion of future research aimed at improving the H2S abatement system is also included.

  19. Mapping carbon flux uncertainty and selecting optimal locations for future flux towers in the Great Plains

    USGS Publications Warehouse

    Gu, Yingxin; Howard, Daniel M.; Wylie, Bruce K.; Zhang, Li

    2012-01-01

    Flux tower networks (e. g., AmeriFlux, Agriflux) provide continuous observations of ecosystem exchanges of carbon (e. g., net ecosystem exchange), water vapor (e. g., evapotranspiration), and energy between terrestrial ecosystems and the atmosphere. The long-term time series of flux tower data are essential for studying and understanding terrestrial carbon cycles, ecosystem services, and climate changes. Currently, there are 13 flux towers located within the Great Plains (GP). The towers are sparsely distributed and do not adequately represent the varieties of vegetation cover types, climate conditions, and geophysical and biophysical conditions in the GP. This study assessed how well the available flux towers represent the environmental conditions or "ecological envelopes" across the GP and identified optimal locations for future flux towers in the GP. Regression-based remote sensing and weather-driven net ecosystem production (NEP) models derived from different extrapolation ranges (10 and 50%) were used to identify areas where ecological conditions were poorly represented by the flux tower sites and years previously used for mapping grassland fluxes. The optimal lands suitable for future flux towers within the GP were mapped. Results from this study provide information to optimize the usefulness of future flux towers in the GP and serve as a proxy for the uncertainty of the NEP map.

  20. National Dam Safety Program. Missouri Power and Light Dam (MO 10065), Mississippi - Salt - Quincy River Basin, Audrain County, Missouri. Phase I Inspection Report.

    DTIC Science & Technology

    1978-12-01

    Audrain Stream : Unnamed Tributary of North Fork of Salt River Date of Inspection: September 29 and 30, 1978 Missouri Power and Light Dam No. Mo.10065...for a power plant, and the reser- voir is also used for recreation. The only operating facility at the darnsite is the pump station adjacent to the...identify due to heavy vegetation. 3. Generally unstable rock wall protecting the up- stream slope. 4. Extensive rodent activity throughout the embankment

  1. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  2. Critical point wetting drop tower experiment

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Tcherneshoff, L. M.; Straits, S. R.

    1984-01-01

    Preliminary results for the Critical Point Wetting CPW Drop Tower Experiment are produced with immiscible systems. Much of the observed phenomena conformed to the anticipated behavior. More drops will be needed to test the CPW theory with these immiscible systems.

  3. Seismic response of a full-scale wind turbine tower using experimental and numerical modal analysis

    NASA Astrophysics Data System (ADS)

    Kandil, Kamel Sayed Ahmad; Saudi, Ghada N.; Eltaly, Boshra Aboul-Anen; El-khier, Mostafa Mahmoud Abo

    2016-12-01

    Wind turbine technology has developed tremendously over the past years. In Egypt, the Zafarana wind farm is currently generating at a capacity of 517 MW, making it one of the largest onshore wind farms in the world. It is located in an active seismic zone along the west side of the Gulf of Suez. Accordingly, seismic risk assessment is demanded for studying the structural integrity of wind towers under expected seismic hazard events. In the context of ongoing joint Egypt-US research project "Seismic Risk Assessment of Wind Turbine Towers in Zafarana wind Farm Egypt" (Project ID: 4588), this paper describes the dynamic performance investigation of an existing Nordex N43 wind turbine tower. Both experimental and numerical work are illustrated explaining the methodology adopted to investigate the dynamic behavior of the tower under seismic load. Field dynamic testing of the full-scale tower was performed using ambient vibration techniques (AVT). Both frequency domain and time domain methods were utilized to identify the actual dynamic properties of the tower as built in the site. Mainly, the natural frequencies, their corresponding mode shapes and damping ratios of the tower were successfully identified using AVT. A vibration-based finite element model (FEM) was constructed using ANSYS V.12 software. The numerical and experimental results of modal analysis were both compared for matching purpose. Using different simulation considerations, the initial FEM was updated to finally match the experimental results with good agreement. Using the final updated FEM, the response of the tower under the AQABA earthquake excitation was investigated. Time history analysis was conducted to define the seismic response of the tower in terms of the structural stresses and displacements. This work is considered as one of the pioneer structural studies of the wind turbine towers in Egypt. Identification of the actual dynamic properties of the existing tower was successfully performed

  4. Assessing the effects of underground mining activities on high-voltage overhead power lines

    NASA Astrophysics Data System (ADS)

    Gusev, Vladimir; Zhuravlyov, Alexei; Maliukhina, Elena

    2017-11-01

    This paper introduces a technique for predictive assessment of changes in the position of power transmission towers and condition of overhead power lines, located in the zone of influence of displacements and deformations of the Earth's surface caused by mining activities. A special approach for monitoring the technical condition of towers and cables is proposed. It is intended to address the issue of controlling the condition of transmission lines that are under the influence of underground mining activities and to checkmate such impact.

  5. Airport Remote Tower Sensor Systems

    NASA Technical Reports Server (NTRS)

    Maluf, David A.; Gawdiak, Yuri; Leidichj, Christopher; Papasin, Richard; Tran, Peter B.; Bass, Kevin

    2006-01-01

    Networks of video cameras, meteorological sensors, and ancillary electronic equipment are under development in collaboration among NASA Ames Research Center, the Federal Aviation Administration (FAA), and the National Oceanic Atmospheric Administration (NOAA). These networks are to be established at and near airports to provide real-time information on local weather conditions that affect aircraft approaches and landings. The prototype network is an airport-approach-zone camera system (AAZCS), which has been deployed at San Francisco International Airport (SFO) and San Carlos Airport (SQL). The AAZCS includes remotely controlled color video cameras located on top of SFO and SQL air-traffic control towers. The cameras are controlled by the NOAA Center Weather Service Unit located at the Oakland Air Route Traffic Control Center and are accessible via a secure Web site. The AAZCS cameras can be zoomed and can be panned and tilted to cover a field of view 220 wide. The NOAA observer can see the sky condition as it is changing, thereby making possible a real-time evaluation of the conditions along the approach zones of SFO and SQL. The next-generation network, denoted a remote tower sensor system (RTSS), will soon be deployed at the Half Moon Bay Airport and a version of it will eventually be deployed at Los Angeles International Airport. In addition to remote control of video cameras via secure Web links, the RTSS offers realtime weather observations, remote sensing, portability, and a capability for deployment at remote and uninhabited sites. The RTSS can be used at airports that lack control towers, as well as at major airport hubs, to provide synthetic augmentation of vision for both local and remote operations under what would otherwise be conditions of low or even zero visibility.

  6. Coagulation chemistries for silica removal from cooling tower water.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants deliveredmore » promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.« less

  7. Wireless monitoring of structural components of wind turbines including tower and foundations

    NASA Astrophysics Data System (ADS)

    Wondra, B.; Botz, M.; Grosse, C. U.

    2016-09-01

    Only few large wind turbines contain an extensive structural health monitoring (SHM) system. Such SHM systems could provide deeper insight into the real load history of a wind turbine along its standard lifetime of 20 years and support a justified extension of operation beyond the original intended period. This paper presents a new concept of a wireless SHM system based on acceleration measurement sensor nodes to permanently record acceleration of the tower structure at different heights. Exploitation of acceleration data and its referring position on the turbine tower enables calculation of vibration frequencies, their amplitudes and subsequently eigenmodes. Tower heights of 100 m and more are within the transmission range of wireless nodes, enabling a complete surveillance of the tower in three dimensions without the need for long cabling or electric signal amplification. Mounting of the sensor nodes on the tower is not limited to a few positions by the presence of an electric cable anymore. Still a comparison between data recorded by wireless sensors and data recorded by high-resolution wire-based sensors shows that the present resolution of the wireless sensors has to be improved to record accelerations more accurately and thus analyze vibration frequencies more precisely.

  8. Archaeoastronomy: the Newport Tower

    NASA Astrophysics Data System (ADS)

    Penhallow, William

    1997-07-01

    The Newport Tower is a masonry structure of fieldstone about 28 feet high and 22 feet in diameter located near the top of a hill overlooking the harbor in Newport, Rhode Island. In essence it is a cylinder with Romanesque arches resting on eight pillars. The cylinder has three major openings as well as four smaller ones. On the inside there are eight indentations for beams on a first floor and four for a second,. In addition there are seven niches and a fireplace on the inside. A careful photogrammetric survey of the tower done by the Technical University of Denmark for the Danish National Museum provided data for the calculation of declinations, azimuths and altitudes associated with possible pairs of features. Numerous alignments involving the Sun and Moon indicate an emphasis on determining the location of the nodes of the Moon's orbit. Accurate determination of true north by observing Polaris at upper culmination is evident. Possible observations of Sirius are indicated. These results provide strong evidence that astronomy was involved in the design and use of this intriguing structure first mentioned in Governor Arnold's will in 1677. Further study is clearly warranted. This paper was published in the New England Antiquities Research Association Journal, p. 44, 1994

  9. Fractal-like thickness and topography of the salt layer in a pillows province of the southern North Sea

    NASA Astrophysics Data System (ADS)

    Hernandez Maya, K.; Mitchell, N. C.; Huuse, M.

    2017-12-01

    Salt topography and thickness variations are important for testing theories of how halokinetic deformation proceeds. The ability to predict thickness variations of salt at small scale is also important for reservoir evaluations, as breach of the salt layer can lead to loss of petroleum fluids and can be difficult to evaluate from seismic reflection data. Relevant to these issues, we here report analysis of data on salt layer topography and thickness from the southern North Sea, where the salt is organized into pillows. These data were derived by the Geological Survey of the Netherlands (TNO) from industry 3D seismic reflection data combined with a dense network of well information. Highs and lows in the topography of the upper salt interface occur spaced over a variety of lengthscales. Power spectral analysis of the interface topography reveals a simple inverse power law relationship between power spectral density and spatial wave number. The relationship suggests that the interface is a self-affine fractal with a fractal dimension of 2.85. A similar analysis of the salt layer thickness also suggests a fractal-like power law. Whereas the layer thickness power law is unsurprising as the underlying basement topography dominates the thickness and it also has a fractal-like power spectrum, the salt topography is not so easily explained as not all the basement faults are overlaid by salt pillows, instead some areas of the dataset salt thinning overlies faults. We consider instead whether a spatially varied loading of the salt layer may have caused this fractal-like geometry. Varied density and thickness of overburdening layers seem unlikely causes, as thicknesses of layers and their reflectivities do not vary sympathetically with the topography of the interface. The composition of the salt layer varies with the relative proportions of halite and denser anhydrite and other minerals. Although limited in scope and representing the mobilized salt layer, the information from

  10. Collapse and pull - down analysis of high voltage electricity transmission towers subjected to cyclonic wind

    NASA Astrophysics Data System (ADS)

    Ahmed, Ammar; Arthur, Craig; Edwards, Mark

    2010-06-01

    Bulk electricity transmission lines are linear assets that can be very exposed to wind effects, particularly where they traverse steep topography or open coastal terrain in cyclonic regions. Interconnected nature of the lattice type towers and conductors also, present complex vulnerabilities. These relate to the direction of wind attack to the conductors and the cascading failure mechanisms in which the failure of a single tower has cascading effects on neighbouring towers. Such behaviour is exacerbated by the finely tuned nature of tower design which serves to minimize cost and reserve strength at design wind speeds. There is a clear need to better quantify the interdependent vulnerabilities of these critical infrastructure assets in the context of the severe wind hazard. This paper presents a novel methodology developed for the Critical Infrastructure Protection Modelling and Analysis (CIPMA) capability for assessing local wind speeds and the likelihood of tower failure for a range of transmission tower and conductor types. CIPMA is a program managed by the Federal Attorney-General's Department and Geoscience Australia is leading the technical development. The methodology then involves the development of heuristically derived vulnerability models that are consistent with Australian industry experience and full-scale static tower testing results, considering isolated tower loss along with three interdependent failure mechanisms to give overall likelihoods of failure.

  11. A study of the Civic Tower in Ravenna as an example of medieval towers' preservation problems

    NASA Astrophysics Data System (ADS)

    Bruni, Stefania; Maino, Giuseppe; Marrocchino, Elena; Vaccaro, Carmela; Volpe, Lisa

    2013-03-01

    Structuralstabilityis a major item when considering very high masonry buildings made of stones, bricks, etc., that can start sudden structural failures and collapses, often without any obvious signs of warning. A famous example is the collapse of the belfry of the Basilica of San Marco in Venice --the implementation of it began in the ninth century-- which took place in July 1902 a few days after the appearanceof a fissure. This paper discusses the scientific investigation performed on the Torre Civica (Civic Tower) in Ravenna (North-East Italy), in order to characterize its constituent materials, namely bricks and mortar. All this information and relevant data merge in a multimedia database which will help to design appropriate conservation and restoration works, mainly concerning the reconstruction of the apical part of the tower, that was foreshortened ten years ago for safety reasons, starting from the original materials catalogued and preserved up to the present day.

  12. Hospital-acquired legionellosis originating from a cooling tower during a period of thermal inversion.

    PubMed

    Engelhart, Steffen; Pleischl, Stefan; Lück, Christian; Marklein, Günter; Fischnaller, Edith; Martin, Sybille; Simon, Arne; Exner, Martin

    2008-07-01

    A case of hospital-acquired legionellosis occurred in a 75-year-old male patient who underwent surgery due to malignant melanoma. Legionellosis was proven by culture of Legionella pneumophila serogroup 1 from bronchoalveolar lavage (BAL) fluid. Being a chronic smoker the patient used to visit the sickroom balcony that was located about 90 m to the west of a hospital cooling tower. Routine cooling tower water samples drawn during the presumed incubation period revealed 1.0x10(4) CFU/100 ml (L. pneumophila serogroup 1). One of three isolates from the cooling tower water matched the patient's isolate by monoclonal antibody (mab)- and genotyping (sequence-based typing). Horizontal transport of cooling tower aerosols probably was favoured by meteorological conditions with thermal inversion. The case report stresses the importance of routine maintenance and microbiological control of hospital cooling towers.

  13. Applications of Meteorological Tower Data at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Altino, Karen M.; Barbre, Robert E., Jr.

    2009-01-01

    Members of the National Aeronautics and Space Administration (NASA) design and operation communities rely on meteorological information collected at Kennedy Space Center (KSC), located near Cape Canaveral, Florida, to correctly apply the ambient environment to various tasks. The Natural Environments Branch/EV44, located at Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is responsible for providing its NASA customers with meteorological data using various climatological data sources including balloons, surface stations, aircraft, hindcast models, and meteorological towers. Of the many resources available within the KSC region, meteorological towers are preferred for near-surface applications because they record data at regular, frequent intervals over an extensive period of record at a single location. This paper discusses the uses of data measured at several different meteorological towers for a common period of record and how the data can be applied to various engineering decisions for the new Constellation Program Ares and Orion space vehicles.

  14. Performance Evaluation of a Mechanical Draft Cross Flow Cooling Towers Employed in a Subtropical Region

    NASA Astrophysics Data System (ADS)

    Muthukumar, Palanisamy; Naik, Bukke Kiran; Goswami, Amarendra

    2018-02-01

    Mechanical draft cross flow cooling towers are generally used in a large-scale water cooled condenser based air-conditioning plants for removing heat from warm water which comes out from the condensing unit. During this process considerable amount of water in the form of drift (droplets) and evaporation is carried away along with the circulated air. In this paper, the performance evaluation of a standard cross flow induced draft cooling tower in terms of water loss, range, approach and cooling tower efficiency are presented. Extensive experimental studies have been carried out in three cooling towers employed in a water cooled condenser based 1200 TR A/C plant over a period of time. Daily variation of average water loss and cooling tower performance parameters have been reported for some selected days. The reported average water loss from three cooling towers is 4080 l/h and the estimated average water loss per TR per h is about 3.1 l at an average relative humidity (RH) of 83%. The water loss during peak hours (2 pm) is about 3.4 l/h-TR corresponding to 88% of RH and the corresponding efficiency of cooling towers varied between 25% and 45%.

  15. Occurrence of infected amoebae in cooling towers compared with natural aquatic environments: implications for emerging pathogens.

    PubMed

    Berk, S G; Gunderson, J H; Newsome, A L; Farone, A L; Hayes, B J; Redding, K S; Uddin, N; Williams, E L; Johnson, R A; Farsian, M; Reid, A; Skimmyhorn, J; Farone, M B

    2006-12-01

    Many species of bacteria pathogenic to humans, such as Legionella, are thought to have evolved in association with amoebal hosts. Several novel unculturable bacteria related to Legionella have also been found in amoebae, a few of which have been thought to be causes of nosocomial infections in humans. Because amoebae can be found in cooling towers, we wanted to know whether cooling tower environments might enhance the association between amoebae and bacterial pathogens of amoebae in order to identify potential "hot spots" for emerging human pathogens. To compare occurrence of infected amoebae in natural environments with those in cooling towers, 40 natural aquatic environments and 40 cooling tower samples were examined. Logistic regression analysis determined variables that were significant predictors of the occurrence of infected amoebae, which were found in 22 of 40 cooling tower samples but in only 3 of the 40 natural samples. An odds ratio showed that it is over 16 times more likely to encounter infected amoebae in cooling towers than in natural environments. Environmental data from cooling towers and natural habitats combined revealed dissolved organic carbon (DOC) and pH were predictors of the occurrence of the pathogens, however, when cooling tower data alone were analyzed, no variables accounted for the occurrence. Several bacteria have novel rRNA sequences, and most strains were not culturable outside of amoebae. Such pathogens of amoebae may spread to the environment via aerosols from cooling towers. Studies of emerging infectious diseases should strongly consider cooling towers as a source of amoeba-associated pathogens.

  16. Solar physics at the Einstein Tower

    NASA Astrophysics Data System (ADS)

    Denker, C.; Heibel, C.; Rendtel, J.; Arlt, K.; Balthasar, Juergen H.; Diercke, A.; González Manrique, S. J.; Hofmann, A.; Kuckein, C.; Önel, H.; Senthamizh Pavai, V.; Staude, J.; Verman, M.

    2016-11-01

    The solar observatory Einstein Tower ({Einsteinturm}) at the Telegrafenberg in Potsdam is both a landmark of modern architecture and an important place for solar physics. Originally built for high-resolution spectroscopy and measuring the gravitational redshift, research shifted over the years to understanding the active Sun and its magnetic field. Nowadays, telescope and spectrographs are used for research and development, i.e., testing instruments and in particular polarization optics for advanced instrumentation deployed at major European and international astronomical and solar telescopes. In addition, the Einstein Tower is used for educating and training of the next generation astrophysicists as well as for education and public outreach activities directed at the general public. This article comments on the observatory's unique architecture and the challenges of maintaining and conserving the building. It describes in detail the characteristics of telescope, spectrographs, and imagers; it portrays some of the research and development activities.

  17. Examination of Liquid Fluoride Salt Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets,more » and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat

  18. The 1984 solar oscillation program of the Mt. Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Tomczyk, Steven; Ulrich, Roger K.

    1986-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  19. The 1984 solar oscillation program of the Mount Wilson 60-foot tower

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Tomczyk, S.; Ulrich, R. K.

    1985-01-01

    The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations.

  20. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  1. Genotypic variability and persistence of Legionella pneumophila PFGE patterns in 34 cooling towers from two different areas.

    PubMed

    Sanchez, Inma; Garcia-Nuñez, Marian; Ragull, Sonia; Sopena, Nieves; Pedro-Botet, Maria Luisa; Estere, Maria; Rey-Joly, Celestino; Sabria, Miquel; Esteve, Maria

    2008-02-01

    Genotypic variability and clonal persistence are important concepts in molecular epidemiology as they facilitate the search for the source of sporadic cases or outbreaks of legionellosis. We studied the genotypic variability and persistence of Legionella pulsed-field gel electrophoresis (PFGE) patterns over time (period > 6 months) in 34 positive cooling towers from two different areas. In area A, radius of 70 km, 52 indistinguishable PFGE patterns were differentiated among the 27 cooling towers. In 13 cooling towers we observed >or= 2 PFGE patterns. Each cooling tower had its own indistinguishable Legionella PFGE pattern which was not shared with any other cooling tower. In area B, radius of 1 km, 10 indistinguishable PFGE patterns were obtained from the seven cooling towers. In four, we observed >or= 2 PFGE patterns. Three of these 10 indistinguishable PFGE patterns were shared by more than one cooling tower. In 27 of 34 cooling towers the same PFGE pattern was recovered after 6 months to up to 5 years of follow-up. The large genotypic diversity of Legionella observed in the cooling towers aids in the investigation of community outbreaks of Legionnaires' disease. However, shared patterns in small areas may confound the epidemiological investigation. The persistence of some PFGE patterns in cooling towers makes the recovery of the Legionella isolate causing the outbreak possible over time.

  2. Physical chemistry and evolution of salt tolerance in halobacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  3. Credit BG. West elevation of Test Stand "D" tower, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. West elevation of Test Stand "D" tower, with workshop on left, and tunnel entrance at right. Tower is accessed by exterior steel stairway; the vertical vacuum cell (Dv Cell) is obscured behind large square sunscreen. Below the sunscreen can be seen the end of the horizontal vacuum duct leading from the vacuum cell - Jet Propulsion Laboratory Edwards Facility, Test Stand D, Edwards Air Force Base, Boron, Kern County, CA

  4. Comparative assessment of anti-sway control strategy for tower crane system

    NASA Astrophysics Data System (ADS)

    Samin, Reza Ezuan; Mohamed, Zaharuddin

    2017-09-01

    Tower crane is also known as rotary crane and widely used in constructions due to limited human capability to carry the various types of load at the construction site. In general crane is used for the purpose of loading and unloading heavy material from one place to another. However, in order to transfer the material in minimum time from one location to another, swaying of the payload will occur. Hence, this research presents the investigation of tower crane system which mainly focusing on the swaying angle of the payload by implementing conventional and intelligent controllers. Its mathematical modeling is developed using the Newton's Second Law and simulation is done within the MATLAB/Simulink environment. Simulation results are presented in cart trajectory capability and payload sway angle reduction. A comparative assessment between conventional controller and intelligent controller for the tower crane system are presented and discussed. Furthermore, the effect of various rope length and payload mass of the tower crane system to the performance of trajectory capability and sway angle reduction are also presented and discussed.

  5. Legionnaires' Disease Outbreaks and Cooling Towers, New York City, New York, USA.

    PubMed

    Fitzhenry, Robert; Weiss, Don; Cimini, Dan; Balter, Sharon; Boyd, Christopher; Alleyne, Lisa; Stewart, Renee; McIntosh, Natasha; Econome, Andrea; Lin, Ying; Rubinstein, Inessa; Passaretti, Teresa; Kidney, Anna; Lapierre, Pascal; Kass, Daniel; Varma, Jay K

    2017-11-01

    The incidence of Legionnaires' disease in the United States has been increasing since 2000. Outbreaks and clusters are associated with decorative, recreational, domestic, and industrial water systems, with the largest outbreaks being caused by cooling towers. Since 2006, 6 community-associated Legionnaires' disease outbreaks have occurred in New York City, resulting in 213 cases and 18 deaths. Three outbreaks occurred in 2015, including the largest on record (138 cases). Three outbreaks were linked to cooling towers by molecular comparison of human and environmental Legionella isolates, and the sources for the other 3 outbreaks were undetermined. The evolution of investigation methods and lessons learned from these outbreaks prompted enactment of a new comprehensive law governing the operation and maintenance of New York City cooling towers. Ongoing surveillance and program evaluation will determine if enforcement of the new cooling tower law reduces Legionnaires' disease incidence in New York City.

  6. Legionnaires’ Disease Outbreaks and Cooling Towers, New York City, New York, USA

    PubMed Central

    Fitzhenry, Robert; Cimini, Dan; Balter, Sharon; Boyd, Christopher; Alleyne, Lisa; Stewart, Renee; McIntosh, Natasha; Econome, Andrea; Lin, Ying; Rubinstein, Inessa; Passaretti, Teresa; Kidney, Anna; Lapierre, Pascal; Kass, Daniel; Varma, Jay K.

    2017-01-01

    The incidence of Legionnaires’ disease in the United States has been increasing since 2000. Outbreaks and clusters are associated with decorative, recreational, domestic, and industrial water systems, with the largest outbreaks being caused by cooling towers. Since 2006, 6 community-associated Legionnaires’ disease outbreaks have occurred in New York City, resulting in 213 cases and 18 deaths. Three outbreaks occurred in 2015, including the largest on record (138 cases). Three outbreaks were linked to cooling towers by molecular comparison of human and environmental Legionella isolates, and the sources for the other 3 outbreaks were undetermined. The evolution of investigation methods and lessons learned from these outbreaks prompted enactment of a new comprehensive law governing the operation and maintenance of New York City cooling towers. Ongoing surveillance and program evaluation will determine if enforcement of the new cooling tower law reduces Legionnaires’ disease incidence in New York City. PMID:29049017

  7. Dynamic analysis of the BMW tower in Munich

    NASA Astrophysics Data System (ADS)

    Indacochea-Beltran, Joaquin; Elgindy, Pearl; Lee, Elaine; Vignesh, Thiviya; Ansourian, Peter; Tahmasebinia, Faham; Marroquín, Fernando Alonso

    2016-08-01

    In the 1970s, world famous Austrian architect Karl Schwanzer designed an avant-garde suspended skyscraper for the new BMW headquarters. The BMW Tower was envisioned to resemble a four-cylinder motor and become a symbol for the recent flourishing success of BMW. Throughout its four decades, the BMW Tower has become the main architectural feature of modern Munich and a pride for one of the World leading car manufacturers. The structural design of the BMW Tower represented a major challenge to Germany's finest engineers because the suspended 99.5m-high structure had to whitstand not only static loading but large wind dynamic loading while having deflections within appropriate serviceability limits. Strand7 has been used to determine the stresses and deflections the structure is subjected to in order to analyse its behavior under static and dynamic loadings. Ultimately, this analysis helps to understand the nature of suspended structures in relation to the Eurocode building standards. Finally, thermal resistance has also been analysed using Strand7 to simulate a fire scenario and analyse the behaviour of the cable structure, which is the most critical building component.

  8. Nineteenth century Parisian smoke variations inferred from Eiffel Tower atmospheric electrical observations

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Aplin, K. L.

    Atmospheric electrical measurements provide proxy data from which historic smoke pollution levels can be determined. This approach is applied to infer autumnal Parisian smoke levels in the 1890s, based on atmospheric electric potential measurements made at the surface and the summit of the Eiffel Tower (48.7°N, 2.4°E). A theoretical model of the development of the autumn convective boundary layer is used to determine when local pollution effects dominated the Eiffel Tower potential measurements. The diurnal variation of the Eiffel Tower potential showed a single oscillation, but it differs from the standard oceanic air potential gradient (PG) variations during the period 09-17 UT, when the model indicates that the Eiffel Tower summit should be within the boundary layer. Outside these hours, the potential changes closely follow the clean air PG variation: this finding is used to calibrate the Eiffel Tower measurements. The surface smoke pollution concentration found during the morning maximum was 60±30 μg m -3, substantially lower than the values previously inferred for Kew in 1863. A vertical smoke profile was also derived using a combination of the atmospheric electrical data and boundary layer meteorology theory. Midday smoke concentration decreased with height from 60 μg m -3 at the surface to 15 μg m -3 at the top of the Eiffel Tower. The 19th century PG measurements in both polluted and clean Parisian air present a unique resource for European air pollution and atmospheric composition studies, and early evidence of the global atmospheric electrical circuit.

  9. Environmental Assessment for Tower Construction at the Brandywine Communication Receiver Site, Prince George’s County, Maryland

    DTIC Science & Technology

    2005-05-01

    mobilization . • Place1nent of tower guy wires will be adjusted to avoid construction and disturbance to any wetlands or small tributaries through on...include combustion emissions (VOC, NOx, CO, SO2) and fugitive dust (PM10) from mobile heavy-duty diesel- and gasoline-powered equipment and soil...Pollutant Factors, Mobile Sources (AP 42). 4th Edition, U.S. Environmental Protection Agency, Ann Arbor, Michigan. Total estimated emissions for VOC and

  10. Aspects of cooling tower biocides and protozoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berk, S.G.; Ashburn, R.J.; Ting, R.S.

    1998-12-31

    Previous work has shown that certain cooling tower amoebae and ciliated protozoa are resistant to several cooling tower biocides, even at the manufacturer`s recommended dosages. For the present study, an Acunthumoeba species was isolated from a cooling tower in Australia. Suspensions of the trophozoites (feeding stages) were exposed to isothiazolones. Cysts were tested separately. The minimum lethal concentration (MLC) for trophozoites was between 31-62 ppm of the biocide product, which is slightly less than the MLC for an amoebae species from the United States; and cyst forms were twofold more resistant than those of the US species, with a MLCmore » of 62,500 ppm. A ciliate and an amoeba species were also exposed to bromochlorodimethylhydantoin. The MLC for the ciliate species was 1 ppm of the biocide product, and the MLC was 30--40 ppm for the amoeba trophozoites. Since amoebae can expel vesicles containing live Legionella, experiments were conducted to determine whether exposure of Acunthamoebu polyphugu to biocides influenced release of such potentially infectious particles. Vesicle release was not inhibited by any of the three biocides: quaternary ammonium compounds (QACs), isothiazolones, and a thiocarbamate compound. These results suggest that amoebae from various sources are resistant to recommended levels of biocides, and the amoebae may continue to release potentially infectious vesicles in the presence of biocides.« less

  11. X-ray emission from upward initiated lightning at Gaisberg tower

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, P.; Cooray, G. V.; Diendorfer, G.; Pichler, H.; Dwyer, J. R.; Rassoul, H.

    2016-12-01

    We report the occurrence of X-rays at ground level due to cloud to ground flashes of upward initiated lightning from Gaisberg tower in Austria which is located at a 1300m altitude. This is the first time that the X-rays from upward lightning from a tower top located in high altitude is observed. Measurement was carried out using scintillation detectors installed close to the tower top. X-rays were recorded in three subsequent strokes of two flashes out of the total 15 flashes recorded in the system in the period December 2014 to July 2015. In contrast to the observations from downward natural or triggered lightning, X-rays were observed only within 10 µs prior to the subsequent return stroke. This shows that X-rays were emitted when the dart leader is in the vicinity of the tower top and hence during the most intense phase of the dart leader. Both the detected energy and the fluence of X-rays are far lower compared to X-rays from downward natural or rocket triggered lightning. The X-ray waveforms together with current and electric field measurements is presented and comparison of this result to previous ground level observations of X-rays from natural and triggered lightning is discussed.

  12. [Genotypic variability and persistence of Legionella pulsed-field gel electrophoresis patterns in 16 cooling towers in Shanghai, China].

    PubMed

    Chen, Ming-liang; Wang, Gang-yi; Chen, Min; Zhou, Hai-jian; Shao, Zhu-jun; Zhang, Xi; Wu, Fan

    2010-07-01

    To investigate the genotypic characteristics and persistence of Legionella pulsed-field gel electrophoresis (PFGE) patterns in 16 air-conditioner cooling towers in six different public sites of Shanghai. From May to October, continuous sampling was operated once per month in 2007. Legionella strains isolated from the 16 cooling towers were confirmed by serological and latex agglutination. PFGE was applied for the fingerprinting of the isolates, while the cluster results of PFGE were analyzed by BioNumerics software. 131 strains of Legionella were isolated, including L. pneumophila, L. bozemanae, L. micdadei and L. anisa. 52 distinguishable PFGE patterns were differentiated among the 16 cooling towers, with 37 patterns were owned by just one cooling tower, which was not shared with other cooling towers, while 15 patterns were shared by more than 2 cooling towers. All the cooling towers had ≥ 2 PFGE patterns, while in 13 cooling towers the same PFGE patterns were recovered during the six months. From June to October of 2007, 18 strains of Legionella belonging to the PFGE pattern of LPAs.SH0078 were isolated continuously from 6 cooling towers. This study demonstrated great genotypic diversity and complexity of Legionella in cooling towers. Persistence of the PFGE patterns was observed in 81.25% of the cooling towers. The PFGE pattern of LPAs. SH0078 was distributed widely, suggesting it might be the dominate strain in Shanghai.

  13. Tracking plant physiological properties from multi-angular tower-based remote sensing.

    PubMed

    Hilker, Thomas; Gitelson, Anatoly; Coops, Nicholas C; Hall, Forrest G; Black, T Andrew

    2011-04-01

    Imaging spectroscopy is a powerful technique for monitoring the biochemical constituents of vegetation and is critical for understanding the fluxes of carbon and water between the land surface and the atmosphere. However, spectral observations are subject to the sun-observer geometry and canopy structure which impose confounding effects on spectral estimates of leaf pigments. For instance, the sun-observer geometry influences the spectral brightness measured by the sensor. Likewise, when considering pigment distribution at the stand level scale, the pigment content observed from single view angles may not necessarily be representative of stand-level conditions as some constituents vary as a function of the degree of leaf illumination and are therefore not isotropic. As an alternative to mono-angle observations, multi-angular remote sensing can describe the anisotropy of surface reflectance and yield accurate information on canopy structure. These observations can also be used to describe the bi-directional reflectance distribution which then allows the modeling of reflectance independently of the observation geometry. In this paper, we demonstrate a method for estimating pigment contents of chlorophyll and carotenoids continuously over a year from tower-based, multi-angular spectro-radiometer observations. Estimates of chlorophyll and carotenoid content were derived at two flux-tower sites in western Canada. Pigment contents derived from inversion of a CR model (PROSAIL) compared well to those estimated using a semi-analytical approach (r(2) = 0.90 and r(2) = 0.69, P < 0.05 for both sites, respectively). Analysis of the seasonal dynamics indicated that net ecosystem productivity was strongly related to total canopy chlorophyll content at the deciduous site (r(2) = 0.70, P < 0.001), but not at the coniferous site. Similarly, spectral estimates of photosynthetic light-use efficiency showed strong seasonal patterns in the deciduous stand, but not in conifers. We

  14. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  15. Energy 101: Concentrating Solar Power

    ScienceCinema

    None

    2018-02-07

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  16. Progress on Concepts for Next-Generation Drop Tower Systems

    NASA Astrophysics Data System (ADS)

    Könemann, Thorben; Eigenbrod, Christian; Von Kampen, Peter; Laemmerzahl, Claus; Kaczmarczik, Ulrich

    2016-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) founded by Prof. Dr.-Ing. Hans J. Rath in 1985 is part of the Department of Production Engineering at the University of Bremen, Germany. ZARM is mainly concentrated on fundamental investigations of gravitational and space-related phenomenas under conditions of weightlessness as well as questions and developments related to technologies for space. At ZARM about 100 scientists, engineers, and administrative staff as well as many students from different departments are employed. Today, ZARM is still one of the largest and most important research center for space sciences and technologies in Europe. With a height of 146 m the Bremen Drop Tower is the predominant facility of ZARM and also the only drop tower of its class in Europe. ZARM's ground-based laboratory offers the opportunity for daily short-term experiments under conditions of high-quality weightlessness at a level of 10-6 g (microgravity), which is one of the best achievable for ground-based flight opportunities. Scientists may choose up to three times a day between a single drop experiment with 4.74 s in simple free fall and an experiment in ZARM's worldwide unique catapult system with 9.3 s in weightlessness. Since the start of operation of the facility in 1990, over 7500 drops or catapult launches of more than 160 different experiment types from various scientific fields like fundamental physics, combustion, fluid dynamics, planetary formation / astrophysics, biology and materials sciences have been accomplished so far. In addition, more and more technology tests have been conducted under microgravity conditions at the Bremen Drop Tower in order to effectively prepare appropriate space missions in advance. In this paper we report on the progress on concepts for next-generation drop tower systems based on the GraviTower idea utilizing a guided electro-magnetic linear drive. Alternative concepts motivated by the scientific demand for higher

  17. Nuclear Power and the Environment.

    ERIC Educational Resources Information Center

    Dukert, Joseph M.

    Described are the major environmental effects resulting from the production of electricity by nuclear power plants. Discussed are effects of waste heat, radioactivity, radioactive waste elimination, costs, and future prospects. Included are diagrams illustrating cooling tower operation, effects of thermal discharge into water systems, radioactive…

  18. HARMON HOUSE ELEVATION VIEW OF WEST FAÇADE WITH OCTAGONAL TOWER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HARMON HOUSE ELEVATION VIEW OF WEST FAÇADE WITH OCTAGONAL TOWER. (The house was reroofed in the fall of 2006, after an attic fire in March of that same year. Image also shows Flora A. Engle’s octagon tower addition, the front entry to the house, and brooding chickens.) - Engle Farm, House, 89 South Ebey Road, Coupeville, Island County, WA

  19. 78 FR 11152 - Utility Scale Wind Towers from the People's Republic of China: Countervailing Duty Order

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-570-982] Utility Scale Wind Towers...''), the Department is issuing a countervailing duty order on utility scale wind towers (``wind towers..., 2012, the Department published the final determination in the countervailing duty investigation of wind...

  20. Energy Efficient Buildings, Salt Lake County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model amore » third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through