Sample records for salt process cell

  1. Tunable swelling of polyelectrolyte multilayers in cell culture media for modulating NIH-3T3 cells adhesion.

    PubMed

    Qi, Wei; Cai, Peng; Yuan, Wenjing; Wang, Hua

    2014-11-01

    For polyelectrolyte multilayers (PEMs) assembled by the layer-by-layer (LbL) assembly technique, their nanostructure and properties can be governed by many parameters during the building process. Here, it was demonstrated that the swelling of the PEMs containing poly(diallyldimethylammonium chloride) (PDDA) and poly(sodium 4-styrenesulfonate) (PSS) in cell culture media could be tuned with changing supporting salt solutions during the assembly process. Importantly, the influence of the PEMs assembled in different salt solutions on NIH-3T3 cell adhesion was observable. Specifically, the cells could possess a higher affinity for the films assembled in low salt concentration (i.e. 0.15M NaCl) or no salt, the poorly swelling films in cell culture media, which was manifested by the large cell spreading area and focal adhesions. In contrast, those were assembled in higher salt concentration, highly swelling films in cell culture media, were less attractive for the fibroblasts. As a result, the cell adhesion behaviors may be manipulated by tailoring the physicochemical properties of the films, which could be performed by changing the assembly conditions such as supporting salt concentration. Such a finding might promise a great potential in designing desired biomaterials for tissue engineering and regenerative medicine. © 2014 Wiley Periodicals, Inc.

  2. Factors affecting inactivation of Moraxell-Acinetobacter cells in an irradiation process. [/sup 137/Cs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firstenberg-Eden, R.; Rowley, D.B.; Shattuck, G.E.

    1980-09-01

    The effect of various stages of the irradiation processing of beef on the injury and inactivation of radiation-resistant Moraxella-Acinetobactor cells was studied. Moraxella-Acinetobacter cells were more resistant to heat inactivation and injury when heated in meat with salts (0.75% NaCl and 0.375% sodium tripolyphosphate) than in meat without salts. These salts had no effect on radiation resistance. Heated cells were more sensitive to radiation inactivation and injury than unheated cells. After repair, the cells regained their resistance to both NaCl and irradiation. Freezing and storage at -40/sup 0/C for 14 days had only a slight effect on either unstressed ormore » heat-stressed cells.« less

  3. Global analysis of gene expression profiles in physic nut (Jatropha curcas L.) seedlings exposed to salt stress.

    PubMed

    Zhang, Lin; Zhang, Chao; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many "biological processes" were affected by salt stress, particular those categories belong to "metabolic process", such as "primary metabolism process", "cellular metabolism process" and "macromolecule metabolism process". The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future.

  4. Method and apparatus for lysing and processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite H.; Di Salvo, Roberto

    2013-03-05

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells at lower temperatures than existing algae processing methods. A salt or salt solution is used as a separation agent and to remove water from the ionic liquid, allowing the ionic liquid to be reused. The used salt may be dried or concentrated and reused. The relatively low lysis temperatures and recycling of the ionic liquid and salt reduce the environmental impact of the algae processing while providing biofuels and other useful products.

  5. Impact of Salt Waste Processing Facility Streams on the Nitric-Glycolic Flowsheet in the Chemical Processing Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, C.

    An evaluation of the previous Chemical Processing Cell (CPC) testing was performed to determine whether the planned concurrent operation, or “coupled” operations, of the Defense Waste Processing Facility (DWPF) with the Salt Waste Processing Facility (SWPF) has been adequately covered. Tests with the nitricglycolic acid flowsheet, which were both coupled and uncoupled with salt waste streams, included several tests that required extended boiling times. This report provides the evaluation of previous testing and the testing recommendation requested by Savannah River Remediation. The focus of the evaluation was impact on flammability in CPC vessels (i.e., hydrogen generation rate, SWPF solvent components,more » antifoam degradation products) and processing impacts (i.e., acid window, melter feed target, rheological properties, antifoam requirements, and chemical composition).« less

  6. Process for making structure for a MCFC

    DOEpatents

    Pasco, Wayne D.; Arendt, Ronald H.

    1986-01-01

    A process of making a porous carbonate-containing structure for use in a molten carbonate fuel cell, wherein a suitable porous structure is prepared having disposed therein a metal salt selected from the alkali metals and the alkaline earth metals or mixtures thereof with at least a portion of the salt being a monobasic organic acid salt. The monobasic acid salt is converted to the carbonate in situ by heating in the presence of oxygen. Both electrode and electrolyte structures can be prepared. Formic acid is preferred.

  7. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures

    PubMed Central

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C.; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations. PMID:28676820

  8. Arabinogalactan Proteins Are Involved in Salt-Adaptation and Vesicle Trafficking in Tobacco by-2 Cell Cultures.

    PubMed

    Olmos, Enrique; García De La Garma, Jesús; Gomez-Jimenez, Maria C; Fernandez-Garcia, Nieves

    2017-01-01

    Arabinogalactan proteins (AGPs) are a highly diverse family of glycoproteins that are commonly found in most plant species. However, little is known about the physiological and molecular mechanisms of their function. AGPs are involved in different biological processes such as cell differentiation, cell expansion, tissue development and somatic embryogenesis. AGPs are also involved in abiotic stress response such as salinity modulating cell wall expansion. In this study, we describe how salt-adaptation in tobacco BY-2 cell cultures induces important changes in arabinogalactan proteins distribution and contents. Using the immuno-dot blot technique with different anti-AGP antibodies (JIM13, JIM15, and others), we observed that AGPs were highly accumulated in the culture medium of salt-adapted tobacco cells, probably due to the action of phospholipases. We located these AGP epitopes using immunogold labeling in the cytoplasm associated to the endoplasmic reticulum, the golgi apparatus, and vesicles, plasma membrane and tonoplast. Our results show that salt-adaptation induced a significant reduction of the cytoplasm, plasma membrane and tonoplast content of these epitopes. Yariv reagent was added to the control and salt-adapted tobacco cell cultures, leading to cell death induction in control cells but not in salt-adapted cells. Ultrastructural and immunogold labeling revealed that cell death induced by Yariv reagent in control cells was due to the interaction of Yariv reagent with the AGPs linked to the plasma membranes. Finally, we propose a new function of AGPs as a possible sodium carrier through the mechanism of vesicle trafficking from the apoplast to the vacuoles in salt-adapted tobacco BY-2 cells. This mechanism may contribute to sodium homeostasis during salt-adaptation to high saline concentrations.

  9. Scanning and transmission electron microscopy and X-ray analysisof leaf salt glands of Limoniastrum guyonianum Boiss. under NaCl salinity.

    PubMed

    Zouhaier, Barhoumi; Abdallah, Atia; Najla, Trabelsi; Wahbi, Djebali; Wided, Chaïbi; Aouatef, Ben Ammar; Chedly, Abdelly; Abderazzak, Smaoui

    2015-11-01

    Leaf salt glands of Limoniastrum guyonianum were examined by scanning and transmission electron microscopes and energy dispersive X-ray analysis (EDAX) system, after growing for three months on sandy soil with or without 300 mM NaCl. Results showed that salt glands were irregularly scattered on both leaf sides and sunk under the epidermal level. Salt excretion occurred in both conditions and is mainly composed of calcium and magnesium in control plants, and essentially sodium and chloride in plants subjected to salt treatment. A salt gland is comprised of collecting, accumulating, and central compartments, and is made up of total thirty-two cells. The collecting cells were characterized by large central vacuoles. Accumulating cells contain numerous, large, and unshaped vacuoles and rudimentary chloroplasts. The central compartment was comprised of four basal cells and each one is surmounted by an apical cell. The basal cells are granulated, containing large nucleus, numerous mitochondria, endoplasmic reticulum, ribosomes, polyribosomes, and small vacuoles or vesicles. Equally, the apical cells are rich in organelles. Application of 300 mM NaCl to the culture medium increased vacuoles number and size, and organelles density especially the mitochondria which suggests energy requirement for ions transport. The reduction in size and number of vacuoles toward the interior of salt glands of treated plants and the fusion of the smallest ones with the plasma membrane substantiate the implication of such vacuoles in salt excretion process. The current study which is the first report on L. guyonianum salt gland has provided an in-depth understanding on structure-function relationship in the multicellular salt glands. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Process of making structure for a MCFC

    DOEpatents

    Pasco, W.D.; Arendt, R.H.

    1985-04-03

    A process of making a porous carbonate-containing structure for use in a molten carbonate fuel cell is disclosed, wherein a suitable porous structure is prepared having disposed therein a metal salt selected from the alkali metals and the alkaline earth metals or mixtures thereof with at least a portion of the salt being a monobasic organic acid salt. The monobasic acid salt is converted to the carbonate in situ by heating in the presence of oxygen. Both electrode and electrolyte structures can be prepared. Formic acid is preferred.

  11. Efficient process for previous metal recovery from cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence; Matlin, Ramail; Heinz, Robert

    2010-05-04

    A method is provided for recovering a catalytic element from a fuel cell membrane electrode assembly. The method includes grinding the membrane electrode assembly into a powder, extracting the catalytic element by forming a slurry comprising the powder and an acid leachate adapted to dissolve the catalytic element into a soluble salt, and separating the slurry into a depleted powder and a supernatant containing the catalytic element salt. The depleted powder is washed to remove any catalytic element salt retained within pores in the depleted powder and the catalytic element is purified from the salt.

  12. High salt-induced excess reactive oxygen species production resulted in heart tube malformation during gastrulation.

    PubMed

    Gao, Lin-Rui; Wang, Guang; Zhang, Jing; Li, Shuai; Chuai, Manli; Bao, Yongping; Hocher, Berthold; Yang, Xuesong

    2018-09-01

    An association has been proved between high salt consumption and cardiovascular mortality. In vertebrates, the heart is the first functional organ to be formed. However, it is not clear whether high-salt exposure has an adverse impact on cardiogenesis. Here we report high-salt exposure inhibited basement membrane breakdown by affecting RhoA, thus disturbing the expression of Slug/E-cadherin/N-cadherin/Laminin and interfering with mesoderm formation during the epithelial-mesenchymal transition(EMT). Furthermore, the DiI + cell migration trajectory in vivo and scratch wound assays in vitro indicated that high-salt exposure restricted cell migration of cardiac progenitors, which was caused by the weaker cytoskeleton structure and unaltered corresponding adhesion junctions at HH7. Besides, down-regulation of GATA4/5/6, Nkx2.5, TBX5, and Mef2c and up-regulation of Wnt3a/β-catenin caused aberrant cardiomyocyte differentiation at HH7 and HH10. High-salt exposure also inhibited cell proliferation and promoted apoptosis. Most importantly, our study revealed that excessive reactive oxygen species(ROS)generated by high salt disturbed the expression of cardiac-related genes, detrimentally affecting the above process including EMT, cell migration, differentiation, cell proliferation and apoptosis, which is the major cause of malformation of heart tubes. © 2018 Wiley Periodicals, Inc.

  13. Method and apparatus for processing algae

    DOEpatents

    Chew, Geoffrey; Reich, Alton J.; Dykes, Jr., H. Waite; Di Salvo, Roberto

    2012-07-03

    Methods and apparatus for processing algae are described in which a hydrophilic ionic liquid is used to lyse algae cells. The lysate separates into at least two layers including a lipid-containing hydrophobic layer and an ionic liquid-containing hydrophilic layer. A salt or salt solution may be used to remove water from the ionic liquid-containing layer before the ionic liquid is reused. The used salt may also be dried and/or concentrated and reused. The method can operate at relatively low lysis, processing, and recycling temperatures, which minimizes the environmental impact of algae processing while providing reusable biofuels and other useful products.

  14. Separation of Isotopes by Electromigration in Fused Salts; SEPARATION DES ISOTOPES PAR ELECTROMIGRATION EN SELS FONDUS (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menes, F.

    1961-12-01

    A process is given for the separation of isotopes by reflux electromigration of fused salts. The process is carried out in a countercurrent manner on a fused mixture of a salt containing the isotopic cations with a salt having the same anion and a cation with a mobility as near as possible to that of the isotopic cations. An electrolytic cell for carrying out the process is described. Examples are presented of the process in which lithium-6 and lithium-7 are separated in a LiBr-KBr mixture, and calcium isotopes are separated in CaBr/sub 2/-KBr and CaBr/sub 2/- LiBr systems. (N.W.R.)

  15. Anhydrous Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin S.

    2005-01-01

    Polymeric electrolyte membranes that do not depend on water for conduction of protons are undergoing development for use in fuel cells. Prior polymeric electrolyte fuel-cell membranes (e.g., those that contain perfluorosulfonic acid) depend on water and must be limited to operation below a temperature of 125 C because they retain water poorly at higher temperatures. In contrast, the present developmental anhydrous membranes are expected to function well at temperatures up to 200 C. The developmental membranes exploit a hopping-and-reorganization proton- conduction process that can occur in the solid state in organic amine salts and is similar to a proton-conduction process in a liquid. This process was studied during the 1970s, but until now, there has been no report of exploiting organic amine salts for proton conduction in fuel cells.

  16. Process for manufacturing a lithium alloy electrochemical cell

    DOEpatents

    Bennett, William R.

    1992-10-13

    A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.

  17. Continuous process electrorefiner

    DOEpatents

    Herceg, Joseph E [Naperville, IL; Saiveau, James G [Hickory Hills, IL; Krajtl, Lubomir [Woodridge, IL

    2006-08-29

    A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.

  18. Microbial fuel cell treatment of fuel process wastewater

    DOEpatents

    Borole, Abhijeet P; Tsouris, Constantino

    2013-12-03

    The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.

  19. A green salt-leaching technique to produce sericin/PVA/glycerin scaffolds with distinguished characteristics for wound-dressing applications.

    PubMed

    Aramwit, Pornanong; Ratanavaraporn, Juthamas; Ekgasit, Sanong; Tongsakul, Duangta; Bang, Nipaporn

    2015-05-01

    Sericin/PVA/glycerin scaffolds could be fabricated using the freeze-drying technique; they showed good physical and biological properties and can be applied as wound dressings. However, freeze-drying is an energy- and time-consuming process with a high associated cost. In this study, an alternative, solvent-free, energy- and time-saving, low-cost salt-leaching technique is introduced as a green technology to produce sericin/PVA/glycerin scaffolds. We found that sericin/PVA/glycerin scaffolds were successfully fabricated without any crosslinking using a salt-leaching technique. The salt-leached sericin/PVA/glycerin scaffolds had a porous structure with pore interconnectivity. The sericin in the salt-leached scaffolds had a crystallinity that was as high as that of the freeze-dried scaffolds. Compared to the freeze-dried scaffolds with the same composition, the salt-leached sericin/PVA/glycerin scaffolds has larger pores, a lower Young's modulus, and faster rates of biodegradation and sericin release. When cultured with L929 mouse fibroblast cells, a higher number of cells were found in the salt-leached scaffolds. Furthermore, the salt-leached scaffolds were less adhesive to the wound, which would reduce pain upon removal. Therefore, salt-leached sericin/PVA/glycerin scaffolds with distinguished characteristics were introduced as another choice of wound dressing, and their production process was simpler, more energy efficient, and saved time and money compared to the freeze-dried scaffolds. © 2014 Wiley Periodicals, Inc.

  20. Halophilic Archaea determined from geothermal steam vent aerosols.

    PubMed

    Ellis, Dean G; Bizzoco, Richard W; Kelley, Scott T

    2008-06-01

    Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface.

  1. Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.

    PubMed

    Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa

    2017-03-01

    Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    PubMed

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Treatment of electrochemical cell components with lithium tetrachloroaluminate (LiAlCl.sub.4) to promote electrolyte wetting

    DOEpatents

    Eberhart, James G.; Battles, James E.

    1980-01-01

    Electrochemical cell components such as interelectrode separators, retaining screens and current collectors are contacted with lithium tetrachloroaluminate prior to contact with molten electrolytic salt to improve electrolyte wetting. The LiAlCl.sub.4 can be applied in powdered, molten or solution form but, since this material has a lower melting point than the electrolytic salt used in high-temperature cells, the powdered LiAlCl.sub.4 forms a molten flux prior to contact by the molten electrolyte when both materials are initially provided in solid form. Components of materials such as boron nitride and other materials which are difficult to wet with molten salts are advantageously treated by this process.

  4. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, Dominic Francis

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without ormore » with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration at ambient pressures. Synthesis and processing of these protic salts into proton-conducting membrane is far from optimized. This protic salt approach has great promise for more improvements in proton conducting membranes for making practical compact, lightweight and inexpensive fuel cells with uses ranging from small electronics (Power = 1 to 100 Watts) to transportation (kiloWatts) to stationary applications (>100 kiloWatts). This work clearly showed that proton can be conducted without water using protoic ionic liquids which are Bronsted salts which contain a proton and whose acid and base moieties have pK separated by more than 4 units and less than 14. A key finding is that the base used should be significantly different than the basicity of water or else water displaces the base and an ordinary acid membrane is left behind. This is the case where the acid moiety is sulfonic acid found on perfluorinated polymeric membranes. This PI suggests that a fruitful route for attaining highly proton-conductive stable protic salt membranes is to use the STABLE poly-phosphazene (-P=N-) polymer backbone with electrochemically STABLE pendant acid or base units on the phosphorous of poly-phosphazene and with suitable pK so the base is NOT the same pK as water. From this work this should give stable water-free proton conductors which should allow for stable fuel cells with Pt catalysts and possible with non-platinum catalyst for the hydrogen anode and oxygen cathode.« less

  5. Multitask Imidazolium Salt Additives for Innovative Poly(l-lactide) Biomaterials: Morphology Control, Candida spp. Biofilm Inhibition, Human Mesenchymal Stem Cell Biocompatibility, and Skin Tolerance.

    PubMed

    Schrekker, Clarissa M L; Sokolovicz, Yuri C A; Raucci, Maria G; Selukar, Balaji S; Klitzke, Joice S; Lopes, William; Leal, Claudio A M; de Souza, Igor O P; Galland, Griselda B; Dos Santos, João Henrique Z; Mauler, Raquel S; Kol, Moshe; Dagorne, Samuel; Ambrosio, Luigi; Teixeira, Mário L; Morais, Jonder; Landers, Richard; Fuentefria, Alexandre M; Schrekker, Henri S

    2016-08-24

    Candida species have great ability to colonize and form biofilms on medical devices, causing infections in human hosts. In this study, poly(l-lactide) films with different imidazolium salt (1-n-hexadecyl-3-methylimidazolium chloride (C16MImCl) and 1-n-hexadecyl-3-methylimidazolium methanesulfonate (C16MImMeS)) contents were prepared, using the solvent casting process. Poly(l-lactide)-imidazolium salt films were obtained with different surface morphologies (spherical and directional), and the presence of the imidazolium salt in the surface was confirmed. These films with different concentrations of the imidazolium salts C16MImCl and C16MImMeS presented antibiofilm activity against isolates of Candida tropicalis, Candida parapsilosis, and Candida albicans. The minor antibiofilm concentration assay enabled one to determine that an increasing imidazolium salt content promoted, in general, an increase in the inhibition percentage of biofilm formation. Scanning electron microscopy micrographs confirmed the effective prevention of biofilm formation on the imidazolium salt containing biomaterials. Lower concentrations of the imidazolium salts showed no cytotoxicity, and the poly(l-lactide)-imidazolium salt films presented good cell adhesion and proliferation percentages with human mesenchymal stem cells. Furthermore, no acute microscopic lesions were identified in the histopathological evaluation after contact between the films and pig ear skin. In combination with the good morphological, physicochemical, and mechanical properties, these poly(l-lactide)-based materials with imidazolium salt additives can be considered as promising biomaterials for use in the manufacturing of medical devices.

  6. Desiccation of adhering and biofilm Listeria monocytogenes on stainless steel: Survival and transfer to salmon products.

    PubMed

    Hansen, Lisbeth Truelstrup; Vogel, Birte Fonnesbech

    2011-03-15

    The foodborne bacterial pathogen, Listeria monocytogenes, commonly contaminates foods during processing, where the microorganisms are potentially subjected to low relative humidity (RH) conditions for extended periods of time. The objective of this study was to examine survival during desiccation (43% RH and 15 °C) of biofilm L. monocytogenes N53-1 cells on stainless steel coupons and to assess subsequent transfer to salmon products. Formation of static biofilm (2 days at 100% RH and 15 °C) prior to desiccation for 23 days significantly (P<0.05) improved survival of cells desiccated in initial low salt concentrations (0.5%) compared to the survival for non-biofilm cells also desiccated in low salt, indicating the protective effect of the biofilm matrix. Osmoadaptation of cells in 5% NaCl before formation of the static biofilm significantly (P<0.05) increased long-term desiccation survival (49 days) irrespectively of the initial salt levels (0.5% and 5% NaCl). The efficiency of transfer (EOT) of desiccated biofilm cells was significantly (P<0.05) lower than EOTs for desiccated non-biofilm bacteria, however, as biofilm formation enhanced desiccation survival more bacteria were still transferred to smoked and fresh salmon. In conclusion, the current work shows the protective effect of biofilm formation, salt and osmoadaptation on the desiccation survival of L. monocytogenes, which in turn increases the potential for cross-contamination during food processing. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Salt water and skin interactions: new lines of evidence

    NASA Astrophysics Data System (ADS)

    Carbajo, Jose Manuel; Maraver, Francisco

    2018-04-01

    In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.

  8. Evaluation of Li{sub 3}N accumulation in a fused LiCl/Li salt matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, C.S.

    1998-09-01

    Pyrochemical conditioning of spent nuclear fuel for the purpose of final disposal is currently being demonstrated at Argonne National Laboratory (ANL), and ongoing research in this area includes the demonstration of this process on spent oxide fuel. In conjunction with this research, a pilot scale of the preprocessing stage is being designed by ANL-West to demonstrate the in situ hot cell capability of the chemical reduction process. An impurity evaluation was completed for a Li/LiCl salt matrix in the presence of spent light water reactor uranium oxide fuel. A simple analysis was performed in which the sources of impurities inmore » the salt matrix were only from the cell atmosphere. Only reactions with the lithium were considered. The levels of impurities were shown to be highly sensitive system conditions. A predominance diagram for the Li-O-N system was constructed for the device, and the general oxidation, nitridation, and combined reactions were calculated as a function of oxygen and nitrogen partial pressure. These calculations and hot cell atmosphere data were used to determine the total number and type of impurities expected in the salt matrix, and the mass rate for the device was determined.« less

  9. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    PubMed

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  10. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  11. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  12. Changes in membrane lipid composition during saline growth of the fresh water cyanobacterium Synechococcus 6311

    NASA Technical Reports Server (NTRS)

    Huflejt, M. E.; Tremolieres, A.; Pineau, B.; Lang, J. K.; Hatheway, J.; Packer, L.

    1990-01-01

    Growth of Synechococcus 6311 in the presence of 0.5 molar NaCl is accompanied by significant changes in membrane lipid composition. Upon transfer of the cells from a low salt' (0.015 molar NaCl) to high salt' (0.5 molar NaCl) growth medium at different stages of growth, a rapid decrease in palmitoleic acid (C16:1 delta 9) content was accompanied by a concomitant increase in the amount of the two C18:1 acids (C18:1 delta 9, C18:1 delta 11), with the higher increase in oleic acid C18:1 delta 9 content. These changes began to occur within the first hour after the sudden elevation of NaCl and progressed for about 72 hours. The percentage of palmitic acid (C16:0) and stearic acid (C18:0) remained almost unchanged in the same conditions. High salt-dependent changes within ratios of polar lipid classes also occurred within the first 72 hours of growth. The amount of monogalactosyl diacylglycerol (bilayer-destabilizing lipid) decreased and that of the digalactosyl diacylglycerol (bilayer-stabilizing lipid) increased. Consequently, in the three day old cells, the ratio of monogalactosyl diacylglycerol to digalactosyl diacylglycerol in the membranes of high salt-grown cells was about half of that in the membranes of low salt-grown cells. The total content of anionic lipids (phosphatidylglycerol and sulfoquinovosyl diacylglycerol) was always higher in the isolated membranes and the whole cells from high salt-grown cultures compared to that in the cells and membranes from low salt-grown cultures. All the observed rearrangements in the lipid environment occurred in both thylakoid and cytoplasmic membranes. Similar lipid composition changes, however, to a much lesser extent, were also observed in the aging, low salt-grown cultures. The observed changes in membrane fatty acids and lipids composition correlate with the alterations in electron and ion transport activities, and it is concluded that the rearrangement of the membrane lipid environment is an essential part of the process by which cells control membrane function and stability.

  13. Regulation of ion homeostasis by aminolevulinic acid in salt-stressed wheat seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Türk, Hülya, E-mail: hulyaa.turk@hotmail.com; East Anatolian High Technology Research and Application Center, Ataturk University, Erzurum; Genişel, Mucip, E-mail: m.genisel@hotmail.com

    2016-04-18

    Salinity is regarded as a worldwide agricultural threat, as it seriously limits plant development and productivity. Salt stress reduces water uptake in plants by disrupting the osmotic balance of soil solution. In addition, it creates a damaged metabolic process by causing ion imbalance in cells. In this study, we aim to examine the negative effects of 5-aminolevulinic acid (ALA) (20 mg/l) on the ion balance in wheat seedling leaves exposed to salt stress (150 mM). Sodium is known to be highly toxic for plant cells at high concentrations, and is significantly increased by salt stress. However, it can be reduced by combinedmore » application of ALA and salt, compared to salt application alone. On the other hand, while the K{sup +}/Na{sup +} ratio was reduced by salt stress, ALA application changed this ratio in favor of K{sup +}. Manganese, iron, and copper were also able to reduce stress. However, ALA pre-treatment resulted in mineral level increments. Conversely, the stress-induced rise in magnesium, potassium, calcium, phosphorus, zinc, and molybdenum were further improved by ALA application. These data clearly show that ALA has an important regulatory effect of ion balance in wheat leaves.« less

  14. Yeast fuel cell: Application for desalination

    NASA Astrophysics Data System (ADS)

    Mardiana, Ummy; Innocent, Christophe; Cretin, Marc; Buchari, Buchari; Gandasasmita, Suryo

    2016-02-01

    Yeasts have been implicated in microbial fuel cells as biocatalysts because they are non-pathogenic organisms, easily handled and robust with a good tolerance in different environmental conditions. Here we investigated baker's yeast Saccharomyces cerevisiae through the oxidation of glucose. Yeast was used in the anolyte, to transfer electrons to the anode in the presence of methylene blue as mediator whereas K3Fe(CN)6 was used as an electron acceptor for the reduction reaction in the catholyte. Power production with biofuel cell was coupled with a desalination process. The maximum current density produced by the cell was 88 mA.m-2. In those conditions, it was found that concentration of salt was removed 64% from initial 0.6 M after 1-month operation. This result proves that yeast fuel cells can be used to remove salt through electrically driven membrane processes and demonstrated that could be applied for energy production and desalination. Further developments are in progress to improve power output to make yeast fuel cells applicable for water treatment.

  15. The World Hypertension League: where now and where to in salt reduction

    PubMed Central

    Lackland, Daniel T.; Lisheng, Liu; Zhang, Xin-Hua; Nilsson, Peter M.; Niebylski, Mark L.

    2015-01-01

    High dietary salt is a leading risk for death and disability largely by causing increased blood pressure. Other associated health risks include gastric and renal cell cancers, osteoporosis, renal stones, and increased disease activity in multiple sclerosis, headache, increased body fat and Meniere’s disease. The World Hypertension League (WHL) has prioritized advocacy for salt reduction. WHL resources and actions include a non-governmental organization policy statement, dietary salt fact sheet, development of standardized nomenclature, call for quality research, collaboration in a weekly salt science update, development of a process to set recommended dietary salt research standards and regular literature reviews, development of adoptable power point slide sets to support WHL positions and resources, and critic of weak research studies on dietary salt. The WHL plans to continue to work with multiple governmental and non-governmental organizations to promote dietary salt reduction towards the World Health Organization (WHO) recommendations. PMID:26090335

  16. Cytoprotection by fructose and other ketohexoses during bile salt-induced apoptosis of hepatocytes.

    PubMed

    Zeid, I M; Bronk, S F; Fesmier, P J; Gores, G J

    1997-01-01

    Toxic bile salts cause hepatocyte necrosis at high concentrations and apoptosis at lower concentrations. Although fructose prevents bile salt-induced necrosis, the effect of fructose on bile salt-induced apoptosis is unclear. Our aim was to determine if fructose also protects against bile salt-induced apoptosis. Fructose inhibited glycochenodeoxycholate (GCDC)-induced apoptosis in a concentration-dependent manner with a maximum inhibition of 72% +/- 10% at 10 mmol/L. First, we determined if fructose inhibited apoptosis by decreasing adenosine triphosphate (ATP) and intracellular pH (pHi). Although fructose decreased ATP to <25% of basal values, oligomycin (an ATP synthase inhibitor) did not inhibit apoptosis despite decreasing ATP to similar values. Fructose (10 mmol/L) decreased intracellular pH (pHi) by 0.2 U. However, extracellular acidification (pH 6.8), which decreased hepatocyte pHi 0.35 U and is known to inhibit necrosis, actually potentiated apoptosis 1.6-fold. Fructose cytoprotection also could not be explained by induction of bcl-2 transcription or metal chelation. Because we could not attribute fructose cytoprotection to metabolic effects, alterations in the expression of bcl-2, or metal chelation, we next determined if the poorly metabolized ketohexoses, tagatose and sorbose, also inhibited apoptosis; unexpectedly, both ketohexoses inhibited apoptosis. Because bile salt-induced apoptosis and necrosis are inhibited by fructose, these data suggest that similar processes initiate bile salt-induced hepatocyte necrosis and apoptosis. In contrast, acidosis, which inhibits necrosis, potentiates apoptosis. Thus, ketohexose-sensitive pathways appear to initiate both bile salt-induced cell apoptosis and necrosis, whereas dissimilar, pH-sensitive, effector mechanisms execute these two different cell death processes.

  17. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.

    PubMed

    Ben-Hayyim, G; Kochba, J

    1983-07-01

    A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.

  18. Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1

    PubMed Central

    Ben-Hayyim, Gozal; Kochba, Joshua

    1983-01-01

    A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067

  19. Electro Processing Research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Electroprocessing which is concerned with fluid dynamics of the electroreduction process to determine how it may be modified to improve the quality of the deposit was studied. Experimental techniques are used in this research. These techniques include laser Schlieren photography, laser Doppler velocimetry, and frequency spectrum analysis. Projects involve fluid flow studies of zinc plating in aqueous and molten salt electrolytes, study of cell design for magnesium chlorides electrolysis, digital signal analysis of manganese electrodeposition in molten chlorides, and electroplating of molybdenum from low melting salts. It is anticipated that the use of refractory metals as constructed materials in engineering will increase. Their electrodeposition from molten salt electrolytes is important in the extraction metallurgy of refractory metals.

  20. High V-PPase activity is beneficial under high salt loads, but detrimental without salinity.

    PubMed

    Graus, Dorothea; Konrad, Kai R; Bemm, Felix; Patir Nebioglu, Meliha Görkem; Lorey, Christian; Duscha, Kerstin; Güthoff, Tilman; Herrmann, Johannes; Ferjani, Ali; Cuin, Tracey Ann; Roelfsema, M Rob G; Schumacher, Karin; Neuhaus, H Ekkehard; Marten, Irene; Hedrich, Rainer

    2018-06-25

    The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H + -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP i hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na + sequestration. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima.

    PubMed

    Swapnil, Prashant; Rai, Ashwani K

    2018-05-01

    Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na 2 SO 4 ). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na 2 SO 4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na + concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na + and Ca 2+ and leakage of K + in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca 2+ under different salt treatments, ratio of Ca 2+ /Na + remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.

  2. Relationship between Salt Tolerance and Resistance to Polyethylene Glycol-Induced Water Stress in Cultured Citrus Cells 1

    PubMed Central

    Ben-Hayyim, Gozal

    1987-01-01

    Salt-tolerant selected cells of Shamouti orange (Citrus sinensis) and Sour orange (Citrus aurantium) grew considerably better than nonselected cells at any NaCl concentration tested up to 200 millimolar. Also, the growth response of each treatment was identical in the two species. However, the performance of cells of the two species under osmotic stress induced by polyethylene glycol (PEG), which is presumably a nonabsorbed osmoticum, was significantly different. The nonselected Shamouti cell lines were significantly more sensitive to osmotic stress than the selected cells. The salt adapted Shamouti cells were apparently also adapted to osmotic stress induced by PEG. In Sour orange, however, the selected lines had no advantage over the nonselected line in response to osmotic stress induced by PEG. This response was also similar quantitatively to the response of the selected salt-tolerant Shamouti cell line. It seems that the tolerance to salt in Shamouti, a partial salt excluder, involves an osmotic adaptation, whereas in Sour orange, a salt accumulator, such an adaptation apparently does not occur. PEG-induced osmotic stress causes an increase in the percent dry weight of salt-sensitive and salt-tolerant cells of both species. No such increase was found under salt stress. The size of control and stressed cells is not significantly different. PMID:16665715

  3. Electrolyte chemistry control in electrodialysis processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Thomas D.; Severin, Blaine F.

    Methods for controlling electrolyte chemistry in electrodialysis units having an anode and a cathode each in an electrolyte of a selected concentration and a membrane stack disposed therebetween. The membrane stack includes pairs of cationic selective and anionic membranes to segregate increasingly dilute salts streams from concentrated salts stream. Electrolyte chemistry control is via use of at least one of following techniques: a single calcium exclusionary cationic selective membrane at a cathode cell boundary, an exclusionary membrane configured as a hydraulically isolated scavenger cell, a multivalent scavenger co-electrolyte and combinations thereof.

  4. Carbon electrode for desalination purpose in capacitive deionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endarko,, E-mail: endarko@physics.its.ac.id; Fadilah, Nurul; Anggoro, Diky

    Carbon electrodes for desalination purpose have been successfully synthesized using activated carbon powder (BET surface area=700 – 1400 m{sup 2}/g), carbon black and polyvinyl alcohol (PVA) binder by cross-linking method with glutaric acid (GA) at 120 °C. The electrochemical properties of the carbon electrodes were analyzed using electrical impedance spectroscopy (EIS) and cyclic voltammetry (CV) whilst the physical properties were observed with scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX). In order to assess the desalting performance, salt removal experiments were performed by constructing a capacitive deionization unit cell with five pairs of carbon electrodes. For each pair consistedmore » of two parallel carbon electrodes separated by a spacer. Desalination and regeneration processes were also observed in the salt-removal experiments. The salt-removal experiments were carried out in single-pass mode using a solution with 0.1 M NaCl at a flow rate of 10 mL/min. A voltage of 3 V was applied to the cell for 60 minutes for both processes in desalination and regeneration. The result showed that the percentage value of the salt-removal was achieved at 20%.« less

  5. Salting out of proteins using ammonium sulfate precipitation.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Protein solubility is affected by ions. At low ion concentrations (<0.5 M), protein solubility increases along with ionic strength. Ions in the solution shield protein molecules from the charge of other protein molecules in what is known as 'salting-in'. At a very high ionic strength, protein solubility decreases as ionic strength increases in the process known as 'salting-out'. Thus, salting out can be used to separate proteins based on their solubility in the presence of a high concentration of salt. In this protocol, ammonium sulfate will be added incrementally to an E. coli cell lysate to isolate a recombinantly over-expressed protein of 20 kDa containing no cysteine residues or tags. © 2014 Elsevier Inc. All rights reserved.

  6. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering

    PubMed Central

    Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo

    2016-01-01

    Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032

  7. Molten salt CO2 capture and electro-transformation (MSCC-ET) into capacitive carbon at medium temperature: effect of the electrolyte composition.

    PubMed

    Deng, Bowen; Chen, Zhigang; Gao, Muxing; Song, Yuqiao; Zheng, Kaiyuan; Tang, Juanjuan; Xiao, Wei; Mao, Xuhui; Wang, Dihua

    2016-08-15

    Electrochemical transformation of CO2 into functional materials or fuels (i.e., carbon, CO) in high temperature molten salts has been demonstrated as a promising way of carbon capture, utilisation and storage (CCUS) in recent years. In a view of continuous operation, the electrolysis process should match very well with the CO2 absorption kinetics. At the same time, in consideration of the energy efficiency, a molten salt electrochemical cell running at lower temperature is more beneficial to a process powered by the fluctuating renewable electricity from solar/wind farms. Ternary carbonates (Li : Na : K = 43.5 : 31.5 : 25.0) and binary chlorides (Li : K = 58.5 : 41.5), two typical kinds of eutectic melt with low melting points and a wide electrochemical potential window, could be the ideal supporting electrolyte for the molten salt CO2 capture and electro-transformation (MSCC-ET) process. In this work, the CO2 absorption behaviour in Li2O/CaO containing carbonates and chlorides were investigated on a home-made gas absorption testing system. The electrode processes as well as the morphology and properties of carbon obtained in different salts are compared to each other. It was found that the composition of molten salts significantly affects the absorption of CO2, electrode processes and performance of the product. Furthermore, the relationship between the absorption and electro-transformation kinetics are discussed based on the findings.

  8. A9C sensitive Cl− - accumulation in A. thaliana root cells during salt stress is controlled by internal and external calcium

    PubMed Central

    Saleh, Livia; Plieth, Christoph

    2013-01-01

    The involvement of chloride in salt stress symptoms and salt tolerance mechanisms in plants has been less investigated in the past. Therefore, we studied the salt-induced chloride influx in Arabidopsis expressing the GFP-based anion indicator Clomeleon. High salt concentrations induce two phases of chloride influx. The fast kinetic phase is likely caused by membrane depolarization, and is assumed to be mediated by channels. This is followed by a slower "saturation" phase, where chloride is accumulated in the cytoplasm. Both phases of chloride uptake are dependent on the presence of external calcium. In general: with high [Ca2+] less chloride is accumulated in the cytoplasm. Surprisingly, also the internal calcium availability has an impact on chloride transport. A complete block of the second phase of chloride influx is achieved by the anion channel blocker A9C and trivalent cations (La3+, Gd3+, and Al3+). Other channel blockers and diuretics were found to inhibit the process partially. The results suggest that several transporter species are involved here, including electroneutral cation-chloride-cotransporters, and a part of chloride possibly enters the cells through cation channels after salt application. PMID:23603974

  9. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  10. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  11. 3D-printing porosity: A new approach to creating elevated porosity materials and structures.

    PubMed

    Jakus, A E; Geisendorfer, N R; Lewis, P L; Shah, R N

    2018-05-01

    We introduce a new process that enables the ability to 3D-print high porosity materials and structures by combining the newly introduced 3D-Painting process with traditional salt-leaching. The synthesis and resulting properties of three 3D-printable inks comprised of varying volume ratios (25:75, 50:50, 70:30) of CuSO 4 salt and polylactide-co-glycolide (PLGA), as well as their as-printed and salt-leached counterparts, are discussed. The resulting materials are comprised entirely of PLGA (F-PLGA), but exhibit porosities proportional to the original CuSO 4 content. The three distinct F-PLGA materials exhibit average porosities of 66.6-94.4%, elastic moduli of 112.6-2.7 MPa, and absorbency of 195.7-742.2%. Studies with adult human mesenchymal stem cells (hMSCs) demonstrated that elevated porosity substantially promotes cell adhesion, viability, and proliferation. F-PLGA can also act as carriers for weak, naturally or synthetically-derived hydrogels. Finally, we show that this process can be extended to other materials including graphene, metals, and ceramics. Porosity plays an essential role in the performance and function of biomaterials, tissue engineering, and clinical medicine. For the same material chemistry, the level of porosity can dictate if it is cell, tissue, or organ friendly; with low porosity materials being far less favorable than high porosity materials. Despite its importance, it has been difficult to create three-dimensionally printed structures that are comprised of materials that have extremely high levels of internal porosity yet are surgically friendly (able to handle and utilize during surgical operations). In this work, we extend a new materials-centric approach to 3D-printing, 3D-Painting, to 3D-printing structures made almost entirely out of water-soluble salt. The structures are then washed in a specific way that not only extracts the salt but causes the structures to increase in size. With the salt removed, the resulting medical polymer structures are almost entirely porous and contain very little solid material, but the maintain their 3D-printed form and are highly compatible with adult human stem cells, are mechanically robust enough to use in surgical manipulations, and can be filled with and act as carriers for biologically active liquids and gels. We can also extend this process to three-dimensionally printing other porous materials, such as graphene, metals, and even ceramics. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  13. Global Analysis of Gene Expression Profiles in Physic Nut (Jatropha curcas L.) Seedlings Exposed to Salt Stress

    PubMed Central

    Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2014-01-01

    Background Salt stress interferes with plant growth and production. Plants have evolved a series of molecular and morphological adaptations to cope with this abiotic stress, and overexpression of salt response genes reportedly enhances the productivity of various crops. However, little is known about the salt responsive genes in the energy plant physic nut (Jatropha curcas L.). Thus, excavate salt responsive genes in this plant are informative in uncovering the molecular mechanisms for the salt response in physic nut. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of physic nut plants (roots and leaves) 2 hours, 2 days and 7 days after the onset of salt stress. A total of 1,504 and 1,115 genes were significantly up and down-regulated in roots and leaves, respectively, under salt stress condition. Gene ontology (GO) analysis of physiological process revealed that, in the physic nut, many “biological processes” were affected by salt stress, particular those categories belong to “metabolic process”, such as “primary metabolism process”, “cellular metabolism process” and “macromolecule metabolism process”. The gene expression profiles indicated that the associated genes were responsible for ABA and ethylene signaling, osmotic regulation, the reactive oxygen species scavenging system and the cell structure in physic nut. Conclusions/Significance The major regulated genes detected in this transcriptomic data were related to trehalose synthesis and cell wall structure modification in roots, while related to raffinose synthesis and reactive oxygen scavenger in leaves. The current study shows a comprehensive gene expression profile of physic nut under salt stress. The differential expression genes detected in this study allows the underling the salt responsive mechanism in physic nut with the aim of improving its salt resistance in the future. PMID:24837971

  14. I-NERI-2007-004-K, DEVELOPMENT AND CHARACTERIZATION OF NEW HIGH-LEVEL WASTE FORMS FOR ACHIEVING WASTE MINIMIZATION FROM PYROPROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.M. Frank

    Work describe in this report represents the final year activities for the 3-year International Nuclear Energy Research Initiative (I-NERI) project: Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing. Used electrorefiner salt that contained actinide chlorides and was highly loaded with surrogate fission products was processed into three candidate waste forms. The first waste form, a high-loaded ceramic waste form is a variant to the CWF produced during the treatment of Experimental Breeder Reactor-II used fuel at the Idaho National Laboratory (INL). The two other waste forms were developed by researchers at the Korean Atomicmore » Energy Research Institute (KAERI). These materials are based on a silica-alumina-phosphate matrix and a zinc/titanium oxide matrix. The proposed waste forms, and the processes to fabricate them, were designed to immobilize spent electrorefiner chloride salts containing alkali, alkaline earth, lanthanide, and halide fission products that accumulate in the salt during the processing of used nuclear fuel. This aspect of the I-NERI project was to demonstrate 'hot cell' fabrication and characterization of the proposed waste forms. The outline of the report includes the processing of the spent electrorefiner salt and the fabrication of each of the three waste forms. Also described is the characterization of the waste forms, and chemical durability testing of the material. While waste form fabrication and sample preparation for characterization must be accomplished in a radiological hot cell facility due to hazardous radioactivity levels, smaller quantities of each waste form were removed from the hot cell to perform various analyses. Characterization included density measurement, elemental analysis, x-ray diffraction, scanning electron microscopy and the Product Consistency Test, which is a leaching method to measure chemical durability. Favorable results from this demonstration project will provide additional options for fission product immobilization and waste management associated the electrochemical/pyrometallurgical processing of used nuclear fuel.« less

  15. Mesoporous silicon synthesis and applications in Li-ion batteries and solar hydrogen fuel cells

    DOEpatents

    Wang, Donghai; Dai, Fang; Yi, Ran; Zai, Jianto

    2017-05-23

    We provide a mesoporous silicon material (PSi) prepared via a template-free and HF-free process. The production process is facile and scalable, and it may be conducted under mild reaction conditions. The silicon may be produced directly by the reduction of a silicon-halogenide precursor (for example, SiCl.sub.4) with an alkaline alloy (for example, NaK alloy). The resulting Si-salt matrix is then annealed for the pore formation and crystallite growth. Final product is obtained by removal of the salt by-products with water.

  16. Salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA.

    PubMed

    Gao, Qiuqiang; Liou, Liang-Chun; Ren, Qun; Bao, Xiaoming; Zhang, Zhaojie

    2014-03-03

    The yeast cell wall plays an important role in maintaining cell morphology, cell integrity and response to environmental stresses. Here, we report that salt stress causes cell wall damage in yeast cells lacking mitochondrial DNA (ρ 0 ). Upon salt treatment, the cell wall is thickened, broken and becomes more sensitive to the cell wall-perturbing agent sodium dodecyl sulfate (SDS). Also, SCW11 mRNA levels are elevated in ρ 0 cells. Deletion of SCW11 significantly decreases the sensitivity of ρ 0 cells to SDS after salt treatment, while overexpression of SCW11 results in higher sensitivity. In addition, salt stress in ρ 0 cells induces high levels of reactive oxygen species (ROS), which further damages the cell wall, causing cells to become more sensitive towards the cell wall-perturbing agent.

  17. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  18. Extremely halophilic archaea from ancient salt sediments and their possible survival in halite fluid inclusions

    NASA Astrophysics Data System (ADS)

    Stan-Lotter, H.; Fendrihan, S.; Gerbl, F. W.; Dornmayr-Pfaffenhuemer, M.; Frethem, C.

    2008-09-01

    Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, marine solar salterns and alkaline salt lakes; they have also been isolated from ancient subsurface salt sediments of great geological age (195-280 million years) and some of those strains were described as novel species (1). The cells survived perhaps while being enclosed within small fluid inclusions in the halite. The characterization of subsurface microbial life is of astrobiological relevance since extraterrestrial halite has been detected and since microbial life on Mars, if existent, may have retreated into the subsurface. We attempted to simulate the embedding process of extremely halophilic archaea and to analyse any cellular changes which might occur. When enclosing haloarchaea in laboratory grown halite, cells accumulated preferentially in fluid inclusions, as could be demonstrated by pre-staining with fluorescent dyes. With increased time of embedding, rod-shaped cells of Halobacterium salinarum strains were found to assume roundish morphologies. Upon dissolution of the salt crystals, these spheres were stable and viable for months when kept in buffers containing 4 M NaCl. Scanning electron microscopy (SEM) following fixation with glutaraldehyde suggested a potentially gradual transformation from rods to spheres. This notion was supported by fluorescence microscopy of Halobacterium cells, following embedding in halite and staining with SYTO 9. One-dimensional protein patterns of rods and spheres, following SDS polyacrylamide gel electrophoresis, were similar except that the S-layer protein appeared reduced by about 15 - 20 % in spheres. The reddish-orange pigmentation of spheres was much lighter compared to that of rod-shaped cells, suggesting lowered concentrations of carotenoids; this was confirmed by extraction and spectrometry of pigments. The data suggested that Halobacterium cells are capable of forming specific cellular structures upon embedding in fluid inclusions of halite. It is tempting to speculate that such structures may be responsible for long term survival in ancient geological materials such as salt sediments, including extraterrestrial salt. (1) Fendrihan S., Legat A., Pfaffenhuemer M., Gruber C., Weidler W., Gerbl F.W., Stan-Lotter H. (2006) Extremely halophilic archaea and the issue of long-term microbial survival. Reviews in Environmental Science and Bio/technology 5, 1569-1605.

  19. In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.

    PubMed

    Morais, S; Dias, N; Sousa, J P; Fernandes, M H; Carvalho, G S

    1999-02-01

    For periods up to 21 days human bone marrow was cultured in control conditions that favor the proliferation and differentiation of osteoblastic cells. The effect of AISI 316L corrosion products and the corresponding major separate metal ions (Fe, Cr, and Ni) were studied in three different phases of the culture period in order to investigate the effects of metal ions in cell populations representative of osteoblastic cells in different stages of differentiation. Toxicity consequences of the presence of metal ions in bone marrow cultures were evaluated by biochemical parameters (enzymatic reduction of MTT, alkaline phosphatase activity, and total protein content), histochemical assays (identification of ALP-positive cells and Ca and phosphates deposits), and observation of the cultures by light and scanning electron microscopy. Culture media were analyzed for total and ionized Ca and P and also for metal ions (Fe, Cr, and Ni). The presence of AISI 316L corrosion products and Ni salt in bone marrow cultures during the first and second weeks of culture significantly disturbs the normal behavior of these cultures, interfering in the lag phase and exponential phase of cell growth and ALP expression. However, the presence of these species during the third week of culture, when expression of osteoblastic functions occurs (mineralization process), did not result in any detectable effect. Fe salt also disturbs the behavior of bone marrow cell cultures when present during the lag phase and proliferation phase, and a somewhat compromised response between the normal pattern (control cultures) and intense inhibition (AISI 316L corrosion products and Ni salt-added cultures) was observed. Fe did not affect the progression of the mineralization phase. Osteogenic cultures exposed to Cr salt (Cr3+) presented a pattern similar to the controls, indicating that this element does not interfere, in the concentration studied, in the osteoblastic differentiation of bone marrow cells. Quantification of metal ions in the culture media showed that Cr (originated from AISI 316L corrosion products but from not Cr3+ salt) and Ni (originated from AISI 316L corrosion products and Ni salt) appear to be retained by the bone marrow cultures. Copyright 1999 John Wiley & Sons, Inc.

  20. Transcriptome Analysis of the Response to NaCl in Suaeda maritima Provides an Insight into Salt Tolerance Mechanisms in Halophytes

    PubMed Central

    Tambat, Subodh; Vasudevan, Madavan

    2016-01-01

    Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an emerging plant model for research on salt tolerance. Illumina sequencing revealed 72,588 clustered transcripts, including 27,434 that were annotated using BLASTX. Salt application resulted in the 2-fold or greater upregulation of 647 genes and downregulation of 735 genes. Of these, 391 proteins were homologous to proteins in the COGs (cluster of orthologous groups) database, and the majorities were grouped into the poorly characterized category. Approximately 50% of the genes assigned to MapMan pathways showed homology to S. maritima. The majority of such genes represented transcription factors. Several genes also contributed to cell wall and carbohydrate metabolism, ion relation, redox responses and G protein, phosphoinositide and hormone signaling. Real-time PCR was used to validate the results of the deep sequencing for the most of the genes. This study demonstrates the expression of protein kinase C, the target of diacylglycerol in phosphoinositide signaling, for the first time in plants. This study further reveals that the biochemical and molecular responses occurring at several levels are associated with salt tolerance in S. maritima. At the structural level, adaptations to high salinity levels include the remodeling of cell walls and the modification of membrane lipids. At the cellular level, the accumulation of glycinebetaine and the sequestration and exclusion of Na+ appear to be important. Moreover, this study also shows that the processes related to salt tolerance might be highly complex, as reflected by the salt-induced enhancement of transcription factor expression, including hormone-responsive factors, and that this process might be initially triggered by G protein and phosphoinositide signaling. PMID:27682829

  1. Down-Regulation of ZmEXPB6 (Zea mays β-Expansin 6) Protein Is Correlated with Salt-mediated Growth Reduction in the Leaves of Z. mays L.

    PubMed Central

    Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A.; Mühling, Karl Hermann; Zörb, Christian

    2015-01-01

    The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments. PMID:25750129

  2. Studies on the pathogenesis and survival of different culture forms of Listeria monocytogenes to pulsed UV-light irradiation after exposure to mild-food processing stresses.

    PubMed

    Bradley, Derek; McNeil, Brian; Laffey, John G; Rowan, Neil J

    2012-06-01

    The effects of mild conventional food-processing conditions on Listeria monocytogenes survival to pulsed UV (PUV) irradiation and virulence-associated characteristics were investigated. Specifically, this study describes the inability of 10 strains representative of 3 different culture forms or morphotypes of L. monocytogenes to adapt to normally lethal levels of PUV-irradiation after exposure to sub-lethal concentrations of salt (7.5% (w/v) NaCl for 1 h), acid (pH 5.5 for 1 h), heating (48 °C for 1 h) or PUV (UV dose 0.08 μJ/cm(2)). Findings showed that the order of increasing sensitivity of L. monocytogenes of non-adapted and stressed morphotypes to low pH (pH 3.5 for 5 h, adjusted with lactic), high salt (17.5% w/v NaCl for 5 h), heating (60 °C for 1 h) and PUV-irradiation (100 pulses at 7.2 J and 12.8 J, equivalent to UV doses of 2.7 and 8.4 μJ/cm(2) respectively) was typical wild-type smooth (S/WT), atypical filamentous rough (FR) and atypical multiple-cell-chain (MCR) variants. Exposure of L. monocytogenes cells to sub-lethal acid, salt or heating conditions resulted in similar or increased susceptibility to PUV treatments. Only prior exposure to mild heat stressing significantly enhanced invasion of Caco-2 cells, whereas subjection of L. monocytogenes cells to combined sub-lethal salt, acid and heating conditions produced the greatest reduction in invasiveness. Implications of these findings are discussed. This constitutes the first study to show that pre-exposure to mild conventional food-processing stresses enhances sensitivity of different culture morphotypes of L. monocytogenes to PUV, which is growing in popularity as an alternative or complementary approach for decontamination in the food environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  4. Salt-responsive gut commensal modulates TH17 axis and disease.

    PubMed

    Wilck, Nicola; Matus, Mariana G; Kearney, Sean M; Olesen, Scott W; Forslund, Kristoffer; Bartolomaeus, Hendrik; Haase, Stefanie; Mähler, Anja; Balogh, András; Markó, Lajos; Vvedenskaya, Olga; Kleiner, Friedrich H; Tsvetkov, Dmitry; Klug, Lars; Costea, Paul I; Sunagawa, Shinichi; Maier, Lisa; Rakova, Natalia; Schatz, Valentin; Neubert, Patrick; Frätzer, Christian; Krannich, Alexander; Gollasch, Maik; Grohme, Diana A; Côrte-Real, Beatriz F; Gerlach, Roman G; Basic, Marijana; Typas, Athanasios; Wu, Chuan; Titze, Jens M; Jantsch, Jonathan; Boschmann, Michael; Dechend, Ralf; Kleinewietfeld, Markus; Kempa, Stefan; Bork, Peer; Linker, Ralf A; Alm, Eric J; Müller, Dominik N

    2017-11-30

    A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (T H 17) cells, which can also contribute to hypertension. Induction of T H 17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating T H 17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased T H 17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.

  5. EDTA enhances high-throughput two-dimensional bioprinting by inhibiting salt scaling and cell aggregation at the nozzle surface.

    PubMed

    Parzel, Cheryl A; Pepper, Matthew E; Burg, Timothy; Groff, Richard E; Burg, Karen J L

    2009-06-01

    Tissue-engineering strategies may be employed in the development of in vitro breast tissue models for use in testing regimens of drug therapies and vaccines. The physical and chemical interactions that occur among cells and extracellular matrix components can also be elucidated with these models to gain an understanding of the progression of transformed epithelial cells into tumours and the ultimate metastases of tumour cells. The modified inkjet printer may be a useful tool for creating three-dimensional (3D) in vitro models, because it offers an inexpensive and high-throughput solution to microfabrication, and because the printer can be easily manipulated to produce varying tissue attributes. We hypothesized, however, that when ink is replaced with a biologically based fluid (i.e. a 'bio-ink'), specifically a serum-free cell culture medium, printer nozzle failure can result from salt scale build-up as fluid evaporates on the printhead surface. In this study, ethylene diamine tetra-acetic acid (EDTA) was used as a culture medium additive to prevent salt scaling and cell aggregation during the bioprinting process. The results showed that EDTA, at a concentration typically found in commercially available trypsin solutions (0.53 mM), prevented nozzle failure when a serum-free culture medium was printed from a nozzle at 1000 drops/s. Furthermore, increasing concentrations of EDTA appeared to mildly decrease aggregation of 4T07 cells. Cell viability studies were performed to demonstrate that addition of EDTA did not result in significant cell death. In conclusion, it is recommended that EDTA be incorporated into bio-ink solutions containing salts that could lead to nozzle failure.

  6. Bile salt tolerance of Lactococcus lactis is enhanced by expression of bile salt hydrolase thereby producing less bile acid in the cells.

    PubMed

    Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian

    2016-04-01

    Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.

  7. Protozoa inhibition by different salts: Osmotic stress or ionic stress?

    PubMed

    Li, Changhao; Li, Jingya; Lan, Christopher Q; Liao, Dankui

    2017-09-01

    Cell density and morphology changes were tested to examine the effects of salts including NaHCO 3 , NaCl, KHCO 3 , and KCl at 160 mM on protozoa. It was demonstrated that ionic stress rather than osmotic stress led to protozoa cell death and NaHCO 3 was shown to be the most effective inhibitor. Deformation of cells and cell shrinkage were observed when protozoan cells were exposed to polyethylene glycol (PEG) or any of the salts. However, while PEG treated cells could fully recover in both number and size, only a small portion of the salt-treated cells survive and cell size was 36-58% smaller than the regular. The disappearance of salt-treated protozoa cells was hypothetically attributed to disruption of the cytoplasmic membrane of these cells. It is further hypothesized that the PEG-treated protozoan cells carried out regulatory volume increase (RVI) after the osmotic shock but the RVI of salt-treated protozoa was hurdled to varied extents. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1418-1424, 2017. © 2017 American Institute of Chemical Engineers.

  8. Supercritical Water Mixture (SCWM) Experiment in the High Temperature Insert-Reflight (HTI-R)

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Garrabos, Yves; Lecoutre, Carole; Zappoli, Bernard

    2013-01-01

    Current research on supercritical water processes on board the International Space Station (ISS) focuses on salt precipitation and transport in a test cell designed for supercritical water. This study, known as the Supercritical Water Mixture Experiment (SCWM) serves as a precursor experiment for developing a better understanding of inorganic salt precipitation and transport during supercritical water oxidation (SCWO) processes for the eventual application of this technology for waste management and resource reclamation in microgravity conditions. During typical SCWO reactions any inorganic salts present in the reactant stream will precipitate and begin to coat reactor surfaces and control mechanisms (e.g., valves) often severely impacting the systems performance. The SCWM experiment employs a Sample Cell Unit (SCU) filled with an aqueous solution of Na2SO4 0.5-w at the critical density and uses a refurbished High Temperature Insert, which was used in an earlier ISS experiment designed to study pure water at near-critical conditions. The insert, designated as the HTI-Reflight (HTI-R) will be deployed in the DECLIC (Device for the Study of Critical Liquids and Crystallization) Facility on the International Space Station (ISS). Objectives of the study include measurement of the shift in critical temperature due to the presence of the inorganic salt, assessment of the predominant mode of precipitation (i.e., heterogeneously on SCU surfaces or homogeneously in the bulk fluid), determination of the salt morphology including size and shapes of particulate clusters, and the determination of the dominant mode of transport of salt particles in the presence of an imposed temperature gradient. Initial results from the ISS experiments will be presented and compared to findings from laboratory experiments on the ground.

  9. Process for synthesis of ammonia borane for bulk hydrogen storage

    DOEpatents

    Autrey, S Thomas [West Richland, WA; Heldebrant, David J [Richland, WA; Linehan, John C [Richland, WA; Karkamkar, Abhijeet J [Richland, WA; Zheng, Feng [Richland, WA

    2011-03-01

    The present invention discloses new methods for synthesizing ammonia borane (NH.sub.3BH.sub.3, or AB). Ammonium borohydride (NH.sub.4BH.sub.4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.

  10. Notch-mediated lateral inhibition regulates proneural wave propagation when combined with EGF-mediated reaction diffusion

    PubMed Central

    Sato, Makoto; Yasugi, Tetsuo; Minami, Yoshiaki; Miura, Takashi; Nagayama, Masaharu

    2016-01-01

    Notch-mediated lateral inhibition regulates binary cell fate choice, resulting in salt and pepper patterns during various developmental processes. However, how Notch signaling behaves in combination with other signaling systems remains elusive. The wave of differentiation in the Drosophila visual center or “proneural wave” accompanies Notch activity that is propagated without the formation of a salt and pepper pattern, implying that Notch does not form a feedback loop of lateral inhibition during this process. However, mathematical modeling and genetic analysis clearly showed that Notch-mediated lateral inhibition is implemented within the proneural wave. Because partial reduction in EGF signaling causes the formation of the salt and pepper pattern, it is most likely that EGF diffusion cancels salt and pepper pattern formation in silico and in vivo. Moreover, the combination of Notch-mediated lateral inhibition and EGF-mediated reaction diffusion enables a function of Notch signaling that regulates propagation of the wave of differentiation. PMID:27535937

  11. Quantification of the Effects of Salt Stress and Physiological State on Thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579

    PubMed Central

    den Besten, Heidy M. W.; Mataragas, Marios; Moezelaar, Roy; Abee, Tjakko; Zwietering, Marcel H.

    2006-01-01

    The food-borne pathogen Bacillus cereus can acquire enhanced thermal resistance through multiple mechanisms. Two Bacillus cereus strains, ATCC 10987 and ATCC 14579, were used to quantify the effects of salt stress and physiological state on thermotolerance. Cultures were exposed to increasing concentrations of sodium chloride for 30 min, after which their thermotolerance was assessed at 50°C. Linear and nonlinear microbial survival models, which cover a wide range of known inactivation curvatures for vegetative cells, were fitted to the inactivation data and evaluated. Based on statistical indices and model characteristics, biphasic models with a shoulder were selected and used for quantification. Each model parameter reflected a survival characteristic, and both models were flexible, allowing a reduction of parameters when certain phenomena were not present. Both strains showed enhanced thermotolerance after preexposure to (non)lethal salt stress conditions in the exponential phase. The maximum adaptive stress response due to salt preexposure demonstrated for exponential-phase cells was comparable to the effect of physiological state on thermotolerance in both strains. However, the adaptive salt stress response was less pronounced for transition- and stationary-phase cells. The distinct tailing of strain ATCC 10987 was attributed to the presence of a subpopulation of spores. The existence of a stable heat-resistant subpopulation of vegetative cells could not be demonstrated for either of the strains. Quantification of the adaptive stress response might be instrumental in understanding adaptation mechanisms and will allow the food industry to develop more accurate and reliable stress-integrated predictive modeling to optimize minimal processing conditions. PMID:16957208

  12. The salt marsh vegetation spread dynamics simulation and prediction based on conditions optimized CA

    NASA Astrophysics Data System (ADS)

    Guan, Yujuan; Zhang, Liquan

    2006-10-01

    The biodiversity conservation and management of the salt marsh vegetation relies on processing their spatial information. Nowadays, more attentions are focused on their classification surveying and describing qualitatively dynamics based on RS images interpreted, rather than on simulating and predicting their dynamics quantitatively, which is of greater importance for managing and planning the salt marsh vegetation. In this paper, our notion is to make a dynamic model on large-scale and to provide a virtual laboratory in which researchers can run it according requirements. Firstly, the characteristic of the cellular automata was analyzed and a conclusion indicated that it was necessary for a CA model to be extended geographically under varying conditions of space-time circumstance in order to make results matched the facts accurately. Based on the conventional cellular automata model, the author introduced several new conditions to optimize it for simulating the vegetation objectively, such as elevation, growth speed, invading ability, variation and inheriting and so on. Hence the CA cells and remote sensing image pixels, cell neighbors and pixel neighbors, cell rules and nature of the plants were unified respectively. Taking JiuDuanSha as the test site, where holds mainly Phragmites australis (P.australis) community, Scirpus mariqueter (S.mariqueter) community and Spartina alterniflora (S.alterniflora) community. The paper explored the process of making simulation and predictions about these salt marsh vegetable changing with the conditions optimized CA (COCA) model, and examined the links among data, statistical models, and ecological predictions. This study exploited the potential of applying Conditioned Optimized CA model technique to solve this problem.

  13. Comparative analysis of uranium bioassociation with halophilic bacteria and archaea

    PubMed Central

    Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten

    2018-01-01

    Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319

  14. Dielectric dispersion of short single-stranded DNA in aqueous solutions with and without added salt.

    PubMed

    Katsumoto, Yoichi; Omori, Shinji; Yamamoto, Daisuke; Yasuda, Akio; Asami, Koji

    2007-01-01

    Dielectric spectroscopy measurements were performed for aqueous solutions of short single-stranded DNA with 30 to 120 bases of thymine over a frequency range of 10;{5} to 10;{8}Hz . Dielectric dispersion was found to include two relaxation processes in the ranges from 10;{5} to 10;{6} and from 10;{6} to 10;{8}Hz , respectively, with the latter mainly discussed in this study. The dielectric increment and the relaxation time of the high-frequency relaxation of DNA in solutions without added salt exhibited concentration and polymer-length dependences eventually identical to those for dilute polyion solutions described in previous studies. For solutions with added salt, on the other hand, those dielectric parameters were independent of salt concentration up to a certain critical value and started to decrease with further increasing salt concentration. This critical behavior is well explained by our newly extended cell model that takes into account the spatial distribution of loosely bound counterions around DNA molecules as a function of salt concentration.

  15. THERMAL EVALUATION OF CONTAMINATED LIQUID ONTO CELL FLOORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NOEMAIL), J

    2009-05-04

    For the Salt Disposition Integration Project (SDIP), postulated events in the new Salt Waste Processing Facility (SWPF) can result in spilling liquids that contain Cs-137 and organics onto cell floors. The parameters of concern are the maximum temperature of the fluid following a spill and the time required for the maximum fluid temperature to be reached. Control volume models of the various process cells have been developed using standard conduction and natural convection relationships. The calculations are performed using the Mathcad modeling software. The results are being used in Consolidated Hazards Analysis Planning (CHAP) to determine the controls that maymore » be needed to mitigate the potential impact of liquids containing Cs-137 and flammable organics that spill onto cell floors. Model development techniques and the ease of making model changes within the Mathcad environment are discussed. The results indicate that certain fluid spills result in overheating of the fluid, but the times to reach steady-state are several hundred hours. The long times allow time for spill clean up without the use of expensive mitigation controls.« less

  16. Aluminum adjuvants elicit fibrin-dependent extracellular traps in vivo

    PubMed Central

    Munks, Michael W.; McKee, Amy S.; MacLeod, Megan K.; Powell, Roger L.; Degen, Jay L.; Reisdorph, Nichole A.; Kappler, John W.

    2010-01-01

    It has been recognized for nearly 80 years that insoluble aluminum salts are good immunologic adjuvants and that they form long-lived nodules in vivo. Nodule formation has long been presumed to be central for adjuvant activity by providing an antigen depot, but the composition and function of these nodules is poorly understood. We show here that aluminum salt nodules formed within hours of injection and contained the clotting protein fibrinogen. Fibrinogen was critical for nodule formation and required processing to insoluble fibrin by thrombin. DNase treatment partially disrupted the nodules, and the nodules contained histone H3 and citrullinated H3, features consistent with extracellular traps. Although neutrophils were not essential for nodule formation, CD11b+ cells were implicated. Vaccination of fibrinogen-deficient mice resulted in normal CD4 T-cell and antibody responses and enhanced CD8 T-cell responses, indicating that nodules are not required for aluminum's adjuvant effect. Moreover, the ability of aluminum salts to retain antigen in the body, the well-known depot effect, was unaffected by the absence of nodules. We conclude that aluminum adjuvants form fibrin-dependent nodules in vivo, that these nodules have properties of extracellular traps, and the nodules are not required for aluminum salts to act as adjuvants. PMID:20876456

  17. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L.

    PubMed

    Geilfus, Christoph-Martin; Ober, Dietrich; Eichacker, Lutz A; Mühling, Karl Hermann; Zörb, Christian

    2015-05-01

    The salt-sensitive crop Zea mays L. shows a rapid leaf growth reduction upon NaCl stress. There is increasing evidence that salinity impairs the ability of the cell walls to expand, ultimately inhibiting growth. Wall-loosening is a prerequisite for cell wall expansion, a process that is under the control of cell wall-located expansin proteins. In this study the abundance of those proteins was analyzed against salt stress using gel-based two-dimensional proteomics and two-dimensional Western blotting. Results show that ZmEXPB6 (Z. mays β-expansin 6) protein is lacking in growth-inhibited leaves of salt-stressed maize. Of note, the exogenous application of heterologously expressed and metal-chelate-affinity chromatography-purified ZmEXPB6 on growth-reduced leaves that lack native ZmEXPB6 under NaCl stress partially restored leaf growth. In vitro assays on frozen-thawed leaf sections revealed that recombinant ZmEXPB6 acts on the capacity of the walls to extend. Our results identify expansins as a factor that partially restores leaf growth of maize in saline environments. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The disastrous effects of salt dust deposition on cotton leaf photosynthesis and the cell physiological properties in the Ebinur Basin in Northwest China.

    PubMed

    Abuduwaili, Jilili; Zhaoyong, Zhang; Feng qing, Jiang; Dong wei, Liu

    2015-01-01

    Salt dust in rump lake areas in arid regions has long been considered an extreme stressor for both native plants and crops. In recent years, research on the harmful effects of salt dust on native plants has been published by many scholars, but the effect on crops has been little studied. In this work, in order to determine the impact of salt dust storms on cotton, we simulated salt dust exposure of cotton leaves in Ebinur Basin in Northwest China, and measured the particle sizes and salt ions in the dust, and the photosynthesis, the structure and the cell physiological properties of the cotton leaves. (1) Analysis found that the salt ions and particle sizes in the salt dust used in the experiments were consistent with the natural salt dust and modeled the salt dust deposition on cotton leaves in this region. (2) The main salt cations on the surface and inside the cotton leaves were Na+, Ca2+, Cl- and SO42-, while the amounts of CO3- and HCO3- were low. From the analysis, we can order the quantity of the salt cations and anions ions present on the surface and inside the cotton leaves as Na+>Ca2+>Mg2+>K+ and Cl->SO42->HCO3->CO3-, respectively. Furthermore, the five salt dust treatment groups in terms of the total salt ions on both the surface and inside the cotton leaves were A(500g.m-2)>B(400g.m-2)>C(300g.m-2)>D(200g.m-2)>E(100g.m-2)>F(0g.m-2). (3)The salt dust that landed on the surface of the cotton leaves can significantly influence the photosynthetic traits of Pn, PE, Ci, Ti, Gs, Tr, WUE, Ls, φ, Amax, k and Rady of the cotton leaves. (4)Salt dust can significantly damage the physiological functions of the cotton leaves, resulting in a decrease in leaf chlorophyll and carotenoid content, and increasing cytoplasmic membrane permeability and malondialdehyde (MDA) content by increasing the soluble sugar and proline to adjust for the loss of the cell cytosol. This increases the activity of antioxidant enzymes to eliminate harmful materials, such as the intracellular reactive oxygen and MDA, thus reducing the damage caused by the salt dust and maintaining normal physiological functioning. Overall, this work found that the salt dust deposition was a problem for the crop and the salt dust could significantly influence the physiological and biochemical processes of the cotton leaves. This will eventually damage the leaves and reduce the cotton production, leading to agricultural economic loss. Therefore, attention should be paid to salt dust storms in the Ebinur Basin and efficient measures should be undertaken to protect the environment.

  19. The Disastrous Effects of Salt Dust Deposition on Cotton Leaf Photosynthesis and the Cell Physiological Properties in the Ebinur Basin in Northwest China

    PubMed Central

    Abuduwaili, Jilili; Zhaoyong, Zhang; Feng qing, Jiang; Dong wei, Liu

    2015-01-01

    Salt dust in rump lake areas in arid regions has long been considered an extreme stressor for both native plants and crops. In recent years, research on the harmful effects of salt dust on native plants has been published by many scholars, but the effect on crops has been little studied. In this work, in order to determine the impact of salt dust storms on cotton, we simulated salt dust exposure of cotton leaves in Ebinur Basin in Northwest China, and measured the particle sizes and salt ions in the dust, and the photosynthesis, the structure and the cell physiological properties of the cotton leaves. (1) Analysis found that the salt ions and particle sizes in the salt dust used in the experiments were consistent with the natural salt dust and modeled the salt dust deposition on cotton leaves in this region. (2) The main salt cations on the surface and inside the cotton leaves were Na+, Ca2+, Cl- and SO4 2-, while the amounts of CO3 - and HCO3 - were low. From the analysis, we can order the quantity of the salt cations and anions ions present on the surface and inside the cotton leaves as Na+>Ca2+>Mg2+>K+ and Cl->SO4 2->HCO3 ->CO3 -, respectively. Furthermore, the five salt dust treatment groups in terms of the total salt ions on both the surface and inside the cotton leaves were A(500g.m-2)>B(400g.m-2)>C(300g.m-2)>D(200g.m-2)>E(100g.m-2)>F(0g.m-2). (3)The salt dust that landed on the surface of the cotton leaves can significantly influence the photosynthetic traits of Pn, PE, Ci, Ti, Gs, Tr, WUE, Ls, φ, Amax, k and Rady of the cotton leaves. (4)Salt dust can significantly damage the physiological functions of the cotton leaves, resulting in a decrease in leaf chlorophyll and carotenoid content, and increasing cytoplasmic membrane permeability and malondialdehyde (MDA) content by increasing the soluble sugar and proline to adjust for the loss of the cell cytosol. This increases the activity of antioxidant enzymes to eliminate harmful materials, such as the intracellular reactive oxygen and MDA, thus reducing the damage caused by the salt dust and maintaining normal physiological functioning. Overall, this work found that the salt dust deposition was a problem for the crop and the salt dust could significantly influence the physiological and biochemical processes of the cotton leaves. This will eventually damage the leaves and reduce the cotton production, leading to agricultural economic loss. Therefore, attention should be paid to salt dust storms in the Ebinur Basin and efficient measures should be undertaken to protect the environment. PMID:25970440

  20. Effects of metal salt catalysts on yeast cell growth in ethanol conversion

    Treesearch

    Chung-Yun Hse; Yin Lin

    2009-01-01

    The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...

  1. Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl2 -based Molten Salt.

    PubMed

    Yang, Xiao; Ji, Li; Zou, Xingli; Lim, Taeho; Zhao, Ji; Yu, Edward T; Bard, Allen J

    2017-11-20

    Electrodeposition of Si films from a Si-containing electrolyte is a cost-effective approach for the manufacturing of solar cells. Proposals relying on fluoride-based molten salts have suffered from low product quality due to difficulties in impurity control. Here we demonstrate the successful electrodeposition of high-quality Si films from a CaCl 2 -based molten salt. Soluble Si IV -O anions generated from solid SiO 2 are electrodeposited onto a graphite substrate to form a dense film of crystalline Si. Impurities in the deposited Si film are controlled at low concentrations (both B and P are less than 1 ppm). In the photoelectrochemical measurements, the film shows p-type semiconductor character and large photocurrent. A p-n junction fabricated from the deposited Si film exhibits clear photovoltaic effects. This study represents the first step to the ultimate goal of developing a cost-effective manufacturing process for Si solar cells based on electrodeposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Inorganic salt mixtures as electrolyte media in fuel cells

    NASA Technical Reports Server (NTRS)

    Angell, Charles Austen (Inventor); Francis-Gervasio, Dominic (Inventor); Belieres, Jean-Philippe (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  3. Viral Aggregation: Impact on Virus Behavior in the Environment.

    PubMed

    Gerba, Charles P; Betancourt, Walter Q

    2017-07-05

    Aggregates of viruses can have a significant impact on quantification and behavior of viruses in the environment. Viral aggregates may be formed in numerous ways. Viruses may form crystal like structures and aggregates in the host cell during replication or may form due to changes in environmental conditions after virus particles are released from the host cells. Aggregates tend to form near the isoelectric point of the virus, under the influence of certain salts and salt concentrations in solution, cationic polymers, and suspended organic matter. The given conditions under which aggregates form in the environment are highly dependent on the type of virus, type of salts in solution (cation, anion. monovalent, divalent) and pH. However, virus type greatly influences the conditions when aggregation/disaggregation will occur, making predictions difficult under any given set of water quality conditions. Most studies have shown that viral aggregates increase the survival of viruses in the environment and resistance to disinfectants, especially with more reactive disinfectants. The presence of viral aggregates may also result in overestimation of removal by filtration processes. Virus aggregation-disaggregation is a complex process and predicting the behavior of any individual virus is difficult under a given set of environmental circumstances without actual experimental data.

  4. Salt Inactivates Endothelial Nitric Oxide Synthase in Endothelial Cells12

    PubMed Central

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J.; Li, Xiang-An

    2009-01-01

    There is a 1–4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension. PMID:19176751

  5. Salt inactivates endothelial nitric oxide synthase in endothelial cells.

    PubMed

    Li, Juan; White, James; Guo, Ling; Zhao, Xiaomin; Wang, Jiafu; Smart, Eric J; Li, Xiang-An

    2009-03-01

    There is a 1-4 mmol/L rise in plasma sodium concentrations in individuals with high salt intake and in patients with essential hypertension. In this study, we used 3 independent assays to determine whether such a small increase in sodium concentrations per se alters endothelial nitric oxide synthase (eNOS) function and contributes to hypertension. By directly measuring NOS activity in living bovine aortic endothelial cells, we demonstrated that a 5-mmol/L increase in salt concentration (from 137 to 142 mmol/L) caused a 25% decrease in NOS activity. Importantly, the decrease in NOS activity was in a salt concentration-dependent manner. The NOS activity was decreased by 25, 45, and 70%, with the increase of 5, 10, and 20 mmol/L of NaCl, respectively. Using Chinese hamster ovary cells stably expressing eNOS, we confirmed the inhibitory effects of salt on eNOS activity. The eNOS activity was unaffected in the presence of equal milliosmol of mannitol, which excludes an osmotic effect. Using an ex vivo aortic angiogenesis assay, we demonstrated that salt attenuated the nitric oxide (NO)-dependent proliferation of endothelial cells. By directly monitoring blood pressure changes in response to salt infusion, we found that in vivo infusion of salt induced an acute increase in blood pressure in a salt concentration-dependent manner. In conclusion, our findings demonstrated that eNOS is sensitive to changes in salt concentration. A 5-mmol/L rise in salt concentration, within the range observed in essential hypertension patients or in individuals with high salt intake, could significantly suppress eNOS activity. This salt-induced reduction in NO generation in endothelial cells may contribute to the development of hypertension.

  6. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension.

    PubMed

    Liu, Yunmeng; Rafferty, Tonya M; Rhee, Sung W; Webber, Jessica S; Song, Li; Ko, Benjamin; Hoover, Robert S; He, Beixiang; Mu, Shengyu

    2017-01-09

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8 + T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8 + T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8 + T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K + channel Kir4.1, and stimulation of the Cl - channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.

  7. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension

    PubMed Central

    Liu, Yunmeng; Rafferty, Tonya M.; Rhee, Sung W.; Webber, Jessica S.; Song, Li; Ko, Benjamin; Hoover, Robert S.; He, Beixiang; Mu, Shengyu

    2017-01-01

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl− channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension. PMID:28067240

  8. Salt tolerance at single cell level in giant-celled Characeae

    PubMed Central

    Beilby, Mary J.

    2015-01-01

    Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt sensitive C. australis succumbs to 50–100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells are discussed in detail. PMID:25972875

  9. Differentiation of Induced Pluripotent Stem Cells to Neural Retinal Precursor Cells on Porous Poly-Lactic-co-Glycolic Acid Scaffolds

    PubMed Central

    Worthington, Kristan S.; Wiley, Luke A.; Guymon, C. Allan; Salem, Aliasger K.

    2016-01-01

    Abstract Purpose: Cell replacement therapy for the treatment of retinal degeneration is an increasingly feasible approach, but one that still requires optimization of the transplantation strategy. To this end, various polymer substrates can increase cell survival and integration, although the effect of their pore size on cell behavior, particularly differentiation, has yet to be explored. Methods: Salt crystals of varying known size were used to impart structure to poly(lactic-co-glycolic acid) (PLGA) scaffolds by a salt leaching/solvent evaporation process. Mouse induced pluripotent stem cells (miPSCs) were seeded to the polymer scaffolds and supplemented with retinal differentiation media for up to 2 weeks. Proliferation was measured during the course of 2 weeks, while differentiation was evaluated using cell morphology and expression of early retinal development markers. Results: The salt leaching method of porous PLGA fabrication resulted in amorphous smooth pores. Cells attached to these scaffolds and proliferated, reaching a maximum cell number at 10 days postseeding that was 5 times higher on porous PLGA than on nonporous controls. The morphology of many of these cells, including their formation of neurites, was suggestive of neural phenotypes, while their expression of Sox2, Pax6, and Otx2 indicates early retinal development. Conclusions: The use of porous PLGA scaffolds to differentiate iPSCs to retinal phenotypes is a feasible pretransplantation approach. This adds to an important knowledge base; understanding how developing retinal cells interact with polymer substrates with varying structure is a crucial component of optimizing cell therapy strategies. PMID:26692377

  10. 21 CFR 876.5885 - Tissue culture media for human ex vivo tissue and cell culture processing applications.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... chemically defined components (e.g., amino acids, vitamins, inorganic salts) that are essential for the ex... ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES GASTROENTEROLOGY-UROLOGY...

  11. Electrochemical Formation of a p-n Junction on Thin Film Silicon Deposited in Molten Salt.

    PubMed

    Zou, Xingli; Ji, Li; Yang, Xiao; Lim, Taeho; Yu, Edward T; Bard, Allen J

    2017-11-15

    Herein we report the demonstration of electrochemical deposition of silicon p-n junctions all in molten salt. The results show that a dense robust silicon thin film with embedded junction formation can be produced directly from inexpensive silicates/silicon oxide precursors by a two-step electrodeposition process. The fabricated silicon p-n junction exhibits clear diode rectification behavior and photovoltaic effects, indicating promise for application in low-cost silicon thin film solar cells.

  12. Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines?

    PubMed

    Pons, Raül; Cornejo, María Jesús; Sanz, Amparo

    2013-01-01

    The ability of plant cells to maintain cytoplasm ion homeostasis under saline stress is among the main mechanisms involved in salt tolerance. To cope with excess Na(+), cells extrude it from the cytoplasm, which requires expenditure of metabolic energy, provided by H(+) gradients generated by membrane-bound H(+)-pumps. ABA is well-known to be involved in physiological processes elicited or enhanced by stresses causing cell dehydration. In this work we studied the possible implication of this plant hormone in the control of salt-induced cellular mechanisms conducting to Na(+) extrusion from the cytoplasm. We used rice (Oryza sativa L.) cell lines selected for their different tolerance to salinity to measure the response to ABA of H(+)-pumps and Na(+)/H(+)-antiporters associated to the plasma membrane and the tonoplast. Our results show that ABA generally enhances H(+)-pumping under salt stress but not under control conditions. This effect occurs to a higher extent across the tonoplast in the more tolerant lines (L-T). Na(+)/H(+) antiport activity is practically undetectable in calli under control conditions, pre-treated or not with ABA, but shows a strong activation under salinity across the tonoplast, particularly in L-T lines (cv Bahia) and also across de plasma membrane in cv Bomba. In these lines, prior treatments with ABA tend to reduce the NaCl enhanced activity of both antiporters. Overall, under saline conditions ABA seems to affect synergistically H(+) pumping and antagonistically Na(+) extrusion. A complex network of positive and negative regulatory signals seems involved in restoring ion cell homeostasis under salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  13. Salt modulates gravity signaling pathway to regulate growth direction of primary roots in Arabidopsis.

    PubMed

    Sun, Feifei; Zhang, Wensheng; Hu, Haizhou; Li, Bao; Wang, Youning; Zhao, Yankun; Li, Kexue; Liu, Mengyu; Li, Xia

    2008-01-01

    Plant root architecture is highly plastic during development and can adapt to many environmental stresses. The proper distribution of roots within the soil under various conditions such as salinity, water deficit, and nutrient deficiency greatly affects plant survival. Salinity profoundly affects the root system architecture of Arabidopsis (Arabidopsis thaliana). However, despite the inhibitory effects of salinity on root length and the number of roots, very little is known concerning influence of salinity on root growth direction and the underlying mechanisms. Here we show that salt modulates root growth direction by reducing the gravity response. Exposure to salt stress causes rapid degradation of amyloplasts in root columella cells of Arabidopsis. The altered root growth direction in response to salt was found to be correlated with PIN-FORMED2 (PIN2) messenger RNA abundance and expression and localization of the protein. Furthermore, responsiveness to gravity of salt overly sensitive (sos) mutants is substantially reduced, indicating that salt-induced altered gravitropism of root growth is mediated by ion disequilibrium. Mutation of SOS genes also leads to reduced amyloplast degradation in root tip columella cells and the defects in PIN2 gene expression in response to salt stress. These results indicate that the SOS pathway may mediate the decrease of PIN2 messenger RNA in salinity-induced modification of gravitropic response in Arabidopsis roots. Our findings provide new insights into the development of a root system necessary for plant adaptation to high salinity and implicate an important role of the SOS signaling pathway in this process.

  14. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  15. Primary and secondary room temperature molten salt electrochemical cells

    NASA Astrophysics Data System (ADS)

    Reynolds, G. F.; Dymek, C. J., Jr.

    1985-07-01

    Three novel primary cells which use room temperature molten salt electrolytes are examined and found to have high open circuit potentials in the 1.75-2.19 V range, by comparison with the Al/AlCl3-MEICl concentration cell; their cathodes were of FeCl3-MEICl, WCl6-MEICl, and Br2/reticulated vitreous carbon together with Pt. Also, secondary electrochemical cell candidates were examined which combined the reversible Al/AlCl3-MEICl electrode with reversible zinc and cadmium molten salt electrodes to yield open circuit potentials of about 0.7 and 1.0 V, respectively. Room temperature molten salts' half-cell reduction potentials are given.

  16. Electrolytes including fluorinated solvents for use in electrochemical cells

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  17. Zinc Salts Block Hepatitis E Virus Replication by Inhibiting the Activity of Viral RNA-Dependent RNA Polymerase.

    PubMed

    Kaushik, Nidhi; Subramani, Chandru; Anang, Saumya; Muthumohan, Rajagopalan; Shalimar; Nayak, Baibaswata; Ranjith-Kumar, C T; Surjit, Milan

    2017-11-01

    Hepatitis E virus (HEV) causes an acute, self-limiting hepatitis in healthy individuals and leads to chronic disease in immunocompromised individuals. HEV infection in pregnant women results in a more severe outcome, with the mortality rate going up to 30%. Though the virus usually causes sporadic infection, epidemics have been reported in developing and resource-starved countries. No specific antiviral exists against HEV. A combination of interferon and ribavirin therapy has been used to control the disease with some success. Zinc is an essential micronutrient that plays crucial roles in multiple cellular processes. Zinc salts are known to be effective in reducing infections caused by few viruses. Here, we investigated the effect of zinc salts on HEV replication. In a human hepatoma cell (Huh7) culture model, zinc salts inhibited the replication of genotype 1 (g-1) and g-3 HEV replicons and g-1 HEV infectious genomic RNA in a dose-dependent manner. Analysis of a replication-defective mutant of g-1 HEV genomic RNA under similar conditions ruled out the possibility of zinc salts acting on replication-independent processes. An ORF4-Huh7 cell line-based infection model of g-1 HEV further confirmed the above observations. Zinc salts did not show any effect on the entry of g-1 HEV into the host cell. Furthermore, our data reveal that zinc salts directly inhibit the activity of viral RNA-dependent RNA polymerase (RdRp), leading to inhibition of viral replication. Taken together, these studies unravel the ability of zinc salts in inhibiting HEV replication, suggesting their possible therapeutic value in controlling HEV infection. IMPORTANCE Hepatitis E virus (HEV) is a public health concern in resource-starved countries due to frequent outbreaks. It is also emerging as a health concern in developed countries owing to its ability to cause acute and chronic infection in organ transplant and immunocompromised individuals. Although antivirals such as ribavirin have been used to treat HEV cases, there are known side effects and limitations of such therapy. Our discovery of the ability of zinc salts to block HEV replication by virtue of their ability to inhibit the activity of viral RdRp is important because these findings pave the way to test the efficacy of zinc supplementation therapy in HEV-infected patients. Since zinc supplementation therapy is known to be safe in healthy individuals and since high-dose zinc is used in the treatment of Wilson's disease, it may be possible to control HEV-associated health problems following a similar treatment regimen. Copyright © 2017 American Society for Microbiology.

  18. Amiloride-Insensitive Salt Taste Is Mediated by Two Populations of Type III Taste Cells with Distinct Transduction Mechanisms

    PubMed Central

    Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.

    2016-01-01

    Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding. PMID:26865617

  19. Molten salts and energy related materials.

    PubMed

    Fray, Derek

    2016-08-15

    Molten salts have been known for centuries and have been used for the extraction of aluminium for over one hundred years and as high temperature fluxes in metal processing. This and other molten salt routes have gradually become more energy efficient and less polluting, but there have been few major breakthroughs. This paper will explore some recent innovations that could lead to substantial reductions in the energy consumed in metal production and in carbon dioxide production. Another way that molten salts can contribute to an energy efficient world is by creating better high temperature fuel cells and novel high temperature batteries, or by acting as the medium that can create novel materials that can find applications in high energy batteries and other energy saving devices, such as capacitors. Carbonate melts can be used to absorb carbon dioxide, which can be converted into C, CO and carbon nanoparticles. Molten salts can also be used to create black silicon that can absorb more sunlight over a wider range of wavelengths. Overall, there are many opportunities to explore for molten salts to play in an efficient, low carbon world.

  20. Toxicological evaluation of some Malaysian locally processed raw food products.

    PubMed

    Sharif, R; Ghazali, A R; Rajab, N F; Haron, H; Osman, F

    2008-01-01

    Malaysian locally processed raw food products are widely used as main ingredients in local cooking. Previous studies showed that these food products have a positive correlation with the incidence of cancer. The cytotoxicity effect was evaluated using MTT assay (3-(4,5-dimetil-2-thiazolil)-2,5-diphenyl-2H-tetrazolium bromide) against Chang liver cells at 2000 microg/ml following 72 h incubation. Findings showed all methanol extracts caused a tremendous drop in the percentage of cell viability at 2000 microg/ml (shrimp paste - 41.69+/-3.36%, salted fish - 37.2+/-1.06%, dried shrimp - 40.32+/-1.8%, p<0.05). To detect DNA damage in a single cell, alkaline Comet Assay was used. None of the extracts caused DNA damage to the Chang liver cells at 62.5 microg/ml following 24 h incubation, as compared to the positive control, hydrogen peroxide (tail moment - 9.50+/-1.50; tail intensity - 30.50+/-2.50). Proximate analysis which was used for the evaluation of macronutrients in food showed that shrimp paste did not comply with the protein requirement (<25%) as in Food Act 1983. Salt was found in every sample with the highest percentage being detected in shrimp paste which exceeded 20%. Following heavy metal analysis (arsenic, cadmium, lead and mercury), arsenic was found in every sample with dried shrimps showing the highest value as compared to the other samples (6.16 mg/kg). In conclusion, several food extracts showed cytotoxic effect but did not cause DNA damage against Chang liver cells. Salt was found as the main additive and arsenic was present in every sample, which could be the probable cause of the toxicity effects observed.

  1. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundeen, S.G.; Savage, D.C.

    1990-08-01

    The authors have characterized and purified the bile salt hydrolase from Lactobacillus sp. strain 100-100. Bile salt hydrolase from cells of the strain was purified with column and high-performance liquid chromatography. The activity was assayed in whole cells and cell-free extracts with either a radiochemical assay involving ({sup 14}C)taurocholic acid or a nonradioactive assay involving trinitrobenzene sulfonate. The activity was detectable only in stationary-phase cells. Within 20 min after conjugated bile acids were added to stationary-phase cultures of strain 100-100, the activity in whole cells increased to levels three- to fivefold higher than in cells from cultures grown in mediummore » free of bile salts. In cell-free extracts, however, the activity was about equal whether or not the cells have been grown with bile salts present. When supernatant solutions from cultures grown in medium containing taurocholic acid were used to suspend cells grown in medium free of the bile salt, the bile salt hydrolase activity detected in whole cells increased two- to threefold. Two forms of the hydrolase were purified from the cells and designated hydrolases A and B. They eluted from anion-exchange high-performance liquid chromatography in two sets of fractions, A at 0.15 M NaCl and B at 0.18 M NaCl. Their apparent molecular weights in nondenaturing polyacrylamide gel electrophoresis were 115,000 and 105,000, respectively. However, discrepancies existed in the apparent molecular weights and number of peptides detected in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the two forms. Whether the enzyme exists in two forms in the cells remains to be determined.« less

  2. Cell growth and water relations of the halophyte, Atriplex nummularia L., in response to NaCl.

    PubMed

    Casas, A M; Bressan, R A; Hasegawa, P M

    1991-06-01

    Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic "over adjustment" as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118-125).

  3. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  4. Cell Partition in Two Polymer Aqueous Phases

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.

    1985-01-01

    In a reduced gravity environment the two polymer phases will not separate via density driven settling in an acceptably short length of time. It is to be expected that a certain amount of phase separation will take place, however, driven by the reduction in free energy gained when the interfacial area is reduced. This stage of separation process will therefore depend directly on the magnitude of the interfacial tension between the phases. In order to induce complete phase separation in a short time, electric field-induced separation which occurs because the droplets of one phase in the other have high electrophoretic mobilities which increase with droplet size was investigated. These mobilities are significant only in the presence of certain salts, particularly phosphates. The presence of such salts, in turn has a strong effect on the cell partition behavior in dextran-poly (ethylene glycol) (PEG) systems. The addition of the salts necessary to produce phase drop mobilities has a large effect on the interfacial tensions in the systems.

  5. Molten salt bath circulation design for an electrolytic cell

    DOEpatents

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  6. High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.

    PubMed

    Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N

    2015-11-02

    A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.

  7. Bioelectronic tongue of taste buds on microelectrode array for salt sensing.

    PubMed

    Liu, Qingjun; Zhang, Fenni; Zhang, Diming; Hu, Ning; Wang, Hua; Hsia, K Jimmy; Wang, Ping

    2013-02-15

    Taste has received great attention for its potential applications. In this work, we combine the biological tissue with micro-chips to establish a novel bioelectronic tongue system for salt taste detection. Before experiment, we established a computational model of action potential in salt taste receptor cell, simulating the responsive results to natural salt stimuli of NaCl solution with various concentrations. Then 36-channel microelectrode arrays (MEA) with the diameter of 30 μm were fabricated on the glass substrate, and taste epithelium was stripped from rat and fixed on MEA. When stimulated by the salt stimuli, electrophysiological activities of taste receptor cells in taste buds were measured through a multi-channel recording system. Both simulation and experiment results showed a dose-dependent increase in NaCl-induced potentials of taste receptor cells, which indicated good applications in salt measurements. The multi-channel analysis demonstrated that different groups of MEA channels were activated during stimulations, indicating non-overlapping populations of receptor cells in taste buds involved in salt taste perception. The study provides an effective and reliable biosensor platform to help recognize and distinguish salt taste components. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    PubMed

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  9. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twicemore » less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.« less

  10. Foods and risk of bladder cancer: a case-control study in Uruguay.

    PubMed

    Balbi, J C; Larrinaga, M T; De Stefani, E; Mendilaharsu, M; Ronco, A L; Boffetta, P; Brennan, P

    2001-10-01

    A case-control study on 144 cases of transitional cell bladder carcinoma and 576 hospitalized controls was conducted in Montevideo, Uruguay. Barbecued meat, salted meat and fried eggs were associated with significant increased risks of bladder cancer (odds ratio (OR) for high intake of salted meat 4.04, 95% confidence interval (CI) 2.24-7.27). On the other hand, all fruits, cooked vegetables, potatoes and cheese were associated with inverse associations (OR for high consumption of potatoes 0.38, 95% CI 0.23-0.64). The associations with salted and barbecued meat suggest that the way of preserving or cooking meat play a role in bladder carcinogenesis. More precisely, N-nitroso compounds and heterocyclic amines could be involved in this process.

  11. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.

  12. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity.

    PubMed

    Martínez-Ballesta, M Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-06-08

    Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWCNTs on growth in NaCl-treated plants was consequence of increased water uptake, promoted by more-favourable energetic forces driving this process, and enhanced net assimilation of CO2. MWCNTs induced changes in the lipid composition, rigidity and permeability of the root plasma membranes relative to salt-stressed plants. Also, enhanced aquaporin transduction occurred, which improved water uptake and transport, alleviating the negative effects of salt stress. Our work provides new evidences about the effect of MWCNTs on plasma membrane properties of the plant cell. The positive response to MWCNTs in broccoli plants opens novel perspectives for their technological uses in new agricultural practices, especially when 1plants are exposed to saline environments.

  13. Integrated compensatory network is activated in the absence of NCC phosphorylation.

    PubMed

    Grimm, P Richard; Lazo-Fernandez, Yoskaly; Delpire, Eric; Wall, Susan M; Dorsey, Susan G; Weinman, Edward J; Coleman, Richard; Wade, James B; Welling, Paul A

    2015-05-01

    Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase-deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H⁺-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG-activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.

  14. Integrated compensatory network is activated in the absence of NCC phosphorylation

    PubMed Central

    Grimm, P. Richard; Lazo-Fernandez, Yoskaly; Delpire, Eric; Wall, Susan M.; Dorsey, Susan G.; Weinman, Edward J.; Coleman, Richard; Wade, James B.; Welling, Paul A.

    2015-01-01

    Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase–deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H+-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG–activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy. PMID:25893600

  15. Effects of several salt marsh plants on mouse spleen and thymus cell proliferation using mtt assay

    NASA Astrophysics Data System (ADS)

    Seo, Youngwan; Lee, Hee-Jung; Kim, You Ah; Youn, Hyun Joo; Lee, Burm-Jong

    2005-12-01

    In the present study, we have tested the effects of 21 salt marsh plants on cell proliferation of mouse immune cells (spleen and thymus) using MTT assay in culture. The methanolic extracts of six salt marsh plants ( Rosa rugosa, Ixeris tamagawaensis, Artemisia capillaris, Tetragonia tetragonoides, Erigeron annus, and Glehnia littoralis) showed very powerful suppressive effects of mouse immune cell death and significant activities of cell proliferation in vitro. Especially, the methanolic extract of Rosa rugosa was found to have fifteen times compared to the control treatment, demonstrating that Rosa rugosa may have a potent stimulation effect on immune cell proliferation. These results suggest that several salt marsh plants including Rosa rugosa could be useful for further study as an immunomodulating agent.

  16. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans

    PubMed Central

    Prieto, Daniel; Román, Elvira; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract. PMID:28955659

  17. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans.

    PubMed

    Prieto, Daniel; Román, Elvira; Alonso-Monge, Rebeca; Pla, Jesús

    2017-01-01

    The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.

  18. Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model.

    PubMed

    Jin, Jun; Choi, Suh Hee; Lee, Jung Eun; Joo, Jin-Deok; Han, Jung Ho; Park, Su-Young; Kim, Chae-Yong

    2017-05-01

    Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo . These results suggest that SMA salt has significant antitumor effects on glioblastoma.

  19. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    PubMed Central

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; Ohnishi, Miwa; Mimura, Tetsuro; Cushman, John C.; Yen, Hungchen E.

    2016-01-01

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na+, we found that ice plant roots respond to an increased flux of Na+ by either secreting or storing Na+ in specialized cells. High-throughput sequencing was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na+ distribution, ice plant likely responds to increased salinity by using Na+ as an osmoticum for cell expansion and guard cell opening. Excessive Na+ could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level. PMID:27555850

  20. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na +, we found that ice plant roots respond to an increased flux of Na + by either secreting or storing Na + in specialized cells. High-throughput sequencingmore » was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na + distribution, ice plant likely responds to increased salinity by using Na + as an osmoticum for cell expansion and guard cell opening. Excessive Na + could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.« less

  1. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings

    DOE PAGES

    Chiang, Chih-Pin; Yim, Won C.; Sun, Ying-Hsuan; ...

    2016-08-09

    The halophyte Mesembryanthemum crystallinum (common or crystalline ice plant) is a useful model for studying molecular mechanisms of salt tolerance. The morphology, physiology, metabolism, and gene expression of ice plant have been studied and large-scale analyses of gene expression profiling have drawn an outline of salt tolerance in ice plant. A rapid root growth to a sudden increase in salinity was observed in ice plant seedlings. Using a fluorescent dye to detect Na +, we found that ice plant roots respond to an increased flux of Na + by either secreting or storing Na + in specialized cells. High-throughput sequencingmore » was used to identify small RNA profiles in 3-day-old seedlings treated with or without 200 mM NaCl. In total, 135 conserved miRNAs belonging to 21 families were found. The hairpin precursor of 19 conserved mcr-miRNAs and 12 novel mcr-miRNAs were identified. After 6 h of salt stress, the expression of most mcr-miRNAs showed decreased relative abundance, whereas the expression of their corresponding target genes showed increased mRNA relative abundance. The cognate target genes are involved in a broad range of biological processes: transcription factors that regulate growth and development, enzymes that catalyze miRNA biogenesis for the most conserved mcr-miRNA, and proteins that are involved in ion homeostasis and drought-stress responses for some novel mcr-miRNAs. Analyses of the functions of target genes revealed that cellular processes, including growth and development, metabolism, and ion transport activity are likely to be enhanced in roots under salt stress. The expression of eleven conserved miRNAs and two novel miRNAs were correlated reciprocally with predicted targets within hours after salt stress exposure. Several conserved miRNAs have been known to regulate root elongation, root apical meristem activity, and lateral root formation. Based upon the expression pattern of miRNA and target genes in combination with the observation of Na + distribution, ice plant likely responds to increased salinity by using Na + as an osmoticum for cell expansion and guard cell opening. Excessive Na + could either be secreted through the root epidermis or stored in specialized leaf epidermal cells. These responses are regulated in part at the miRNA-mediated post-transcriptional level.« less

  2. Cytoplasmic membrane changes during adaptation of the fresh water cyanobacterium Synechococcus 6311 to salinity

    NASA Technical Reports Server (NTRS)

    Lefort-Tran, M.; Pouphile, M.; Spath, S.; Packer, L.

    1988-01-01

    In this investigation, changes were characterized in cell structure and cytoplasmic membrane organization that occur when the freshwater cyanobacterium Synechococcus 6311 is transferred from 'low salt' (0.03 molar NaCl) to 'high salt' (0.5 molar NaCl) media (i.e. sea water concentration). Cells were examined at several time points after the imposition of the salt stress and compared to control cells, in thin sections and freeze fracture electron microscopy, and by flow cytometry. One minute after exposure to high salt, i.e. 'salt shock', virtually all intracellular granules disappeared, the density of the cytoplasm decreased, and the appearance of DNA material was changed. Glycogen and other granules, however, reappeared by 4 hours after salt exposure. The organization of the cytoplasmic membrane undergoes major reorganization following salt shock. Freeze-fracture electron microscopy showed that small intramembrane particles (diameter 7.5 and 8.5 nanometers) are reduced in number by two- to fivefold, whereas large particles, (diameters 14.5 and 17.5 nanometers) increase two- to fourfold in frequency, compared to control cells grown in low salt medium. The changes in particle size distribution suggest synthesis of new membrane proteins, in agreement with the known increases in respiration, cytochrome oxidase, and sodium proton exchange activity of the cytoplasmic membrane.

  3. Artemin protects cells and proteins against oxidative and salt stress.

    PubMed

    Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Moazzenzade, Taghi

    2017-02-01

    Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks. Also, for continuous monitoring of the effect of artemin in prevention of proteins aggregation/inactivation, co-expression of artemin and luciferase (as an intracellular reporter) in bacterial cells was performed. According to the results, residual activity of luciferase in artemin expressing E. coli cells exposing to different concentrations of H 2 O 2 and NaCl was significantly higher than non-expressing cells. The luciferase activity was rapidly lost in control cells under salt treatments while in co-transformed cells, the activity was considerably retained at higher salt concentrations. Also, analysis from cell viability assays showed that artemin-expressing cells exhibited more resistance to both stress conditions. In the present study, we document for the first time that artemin can protect proteins and bacterial cells against oxidative and salt stress conditions. These results can declare the resistance property of this crustacean against harsh environmental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Analysis of cell performance and thermal regeneration of a lithium-tin cell having an immobilized fused-salt electrolyte

    NASA Technical Reports Server (NTRS)

    Cairns, E. J.; Shimotake, H.

    1969-01-01

    Cell performance and thermal regeneration of a thermally regenerative cell uses lithium and tin and a fused-salt electrolyte. The emf of the Li-Sn cell, as a function of cathode-alloy composition, is shown to resemble that of the Na-Bi cell.

  5. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding

    PubMed Central

    Hanin, Moez; Ebel, Chantal; Ngom, Mariama; Laplaze, Laurent; Masmoudi, Khaled

    2016-01-01

    Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields. PMID:27965692

  6. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics.

    PubMed

    Per, Tasir S; Khan, Nafees A; Reddy, Palakolanu Sudhakar; Masood, Asim; Hasanuzzaman, Mirza; Khan, M Iqbal R; Anjum, Naser A

    2017-06-01

    Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.

    PubMed

    Adessi, Alessandra; Concato, Margherita; Sanchini, Andrea; Rossi, Federico; De Philippis, Roberto

    2016-03-01

    Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes.

  8. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization

    PubMed Central

    Sahu, Binod B; Shaw, Birendra P

    2009-01-01

    Background Despite wealth of information generated on salt tolerance mechanism, its basics still remain elusive. Thus, there is a need of continued effort to understand the salt tolerance mechanism using suitable biotechnological techniques and test plants (species) to enable development of salt tolerant cultivars of interest. Therefore, the present study was undertaken to generate information on salt stress responsive genes in a natural halophyte, Suaeda maritima, using PCR-based suppression subtractive hybridization (PCR-SSH) technique. Results Forward and reverse SSH cDNA libraries were constructed after exposing the young plants to 425 mM NaCl for 24 h. From the forward SSH cDNA library, 429 high quality ESTs were obtained. BLASTX search and TIGR assembler programme revealed overexpression of 167 unigenes comprising 89 singletons and 78 contigs with ESTs redundancy of 81.8%. Among the unigenes, 32.5% were found to be of special interest, indicating novel function of these genes with regard to salt tolerance. Literature search for the known unigenes revealed that only 17 of them were salt-inducible. A comparative analysis of the existing SSH cDNA libraries for NaCl stress in plants showed that only a few overexpressing unigenes were common in them. Moreover, the present study also showed increased expression of phosphoethanolamine N-methyltransferase gene, indicating the possible accumulation of a much studied osmoticum, glycinebetaine, in halophyte under salt stress. Functional categorization of the proteins as per the Munich database in general revealed that salt tolerance could be largely determined by the proteins involved in transcription, signal transduction, protein activity regulation and cell differentiation and organogenesis. Conclusion The study provided a clear indication of possible vital role of glycinebetaine in the salt tolerance process in S. maritima. However, the salt-induced expression of a large number of genes involved in a wide range of cellular functions was indicative of highly complex nature of the process as such. Most of the salt inducible genes, nonetheless, appeared to be species-specific. In light of the observations made, it is reasonable to emphasize that a comparative analysis of ESTs from SSH cDNA libraries generated systematically for a few halophytes with varying salt exposure time may clearly identify the key salt tolerance determinant genes to a minimum number, highly desirable for any genetic manipulation adventure. PMID:19497134

  9. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    NASA Astrophysics Data System (ADS)

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2014-05-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA, USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells' nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore, we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may also have contributed. The modified IFCB is a valuable tool for exploring the conditions that promote sexual transitions by dinoflagellate blooms but care is needed when interpreting results from samples in which parasitism is prevalent.

  10. Influence of periostin-positive cell-specific Klf5 deletion on aortic thickening in DOCA-salt hypertensive mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Fujiu, Katsuhito; Manabe, Ichiro; Conway, Simon J; Taniyama, Yoshiaki; Morishita, Ryuichi; Hirata, Yasunobu; Isobe, Mitsuaki; Nagai, Ryozo

    2016-11-01

    Chronic hypertension causes vascular remodeling that is associated with an increase in periostin- (postn) positive cells, including fibroblasts and smooth muscle cells. Krüppel-like factor (KLF) 5, a transcription factor, is also observed in vascular remodeling; however, it is unknown what role KLF5 plays in postn-positive cells during vascular remodeling induced by deoxycorticosterone-acetate (DOCA) salt. We used postn-positive cell-specific Klf5-deficient mice (Klf5 Postn KO: Klf5 flox/flox ; Postn Cre/- ) and wild-type mice (WT: Klf5 flox/flox ; Postn -/- ). We implanted a DOCA pellet and provided drinking water containing 0.9% NaCl for 8 weeks. The DOCA-salt treatment induced hypertension in both genotypes, as observed by increases in systolic blood pressure. In WT animals, DOCA-salt treatment increased the aortic medial area compared with the non-treated controls. Similarly, Tgfb1 was overexpressed in the aortas of the DOCA-salt treated WT mice compared with the controls. Immunofluorescence staining revealed that fibroblast-specific protein 1 (FSP1) + -α smooth muscle actin (αSMA) + myofibroblasts exist in the medial area of the WT aortas after DOCA-salt intervention. Importantly, these changes were not observed in the Klf5 Postn KO animals. In conclusion, the results of this study suggest that the presence of KLF5 in postn-positive cells contributes to the pathogenesis of aortic thickening induced by DOCA-salt hypertension.

  11. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    NASA Astrophysics Data System (ADS)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  12. The impact of high-salt exposure on cardiovascular development in the early chick embryo.

    PubMed

    Wang, Guang; Zhang, Nuan; Wei, Yi-Fan; Jin, Yi-Mei; Zhang, Shi-Yao; Cheng, Xin; Ma, Zheng-Lai; Zhao, Shu-Zhu; Chen, You-Peng; Chuai, Manli; Hocher, Berthold; Yang, Xuesong

    2015-11-01

    In this study, we show that high-salt exposure dramatically increases chick mortality during embryo development. As embryonic mortality at early stages mainly results from defects in cardiovascular development, we focused on heart formation and angiogenesis. We found that high-salt exposure enhanced the risk of abnormal heart tube looping and blood congestion in the heart chamber. In the presence of high salt, both ventricular cell proliferation and apoptosis increased. The high osmolarity induced by high salt in the ventricular cardiomyocytes resulted in incomplete differentiation, which might be due to reduced expression of Nkx2.5 and GATA4. Blood vessel density and diameter were suppressed by exposure to high salt in both the yolk sac membrane (YSM) and chorioallantoic membrane models. In addition, high-salt-induced suppression of angiogenesis occurred even at the vasculogenesis stage, as blood island formation was also inhibited by high-salt exposure. At the same time, cell proliferation was repressed and cell apoptosis was enhanced by high-salt exposure in YSM tissue. Moreover, the reduction in expression of HIF2 and FGF2 genes might cause high-salt-suppressed angiogenesis. Interestingly, we show that high-salt exposure causes excess generation of reactive oxygen species (ROS) in the heart and YSM tissues, which could be partially rescued through the addition of antioxidants. In total, our study suggests that excess generation of ROS might play an important role in high-salt-induced defects in heart and angiogenesis. © 2015. Published by The Company of Biologists Ltd.

  13. Process for the preparation of protected dihydroxypropyl trialkylammonium salts and derivatives thereof

    DOEpatents

    Hollingsworth, Rawle I.; Wang, Guijun

    2000-01-01

    A process for the preparation of protected dihydroxypropyl trialkylammonium salts, particularly in chiral form is described. In particular, a process for the preparation of (2,2-dimethyl-1,3-dioxolan-4-ylmethyl)trialkylammonium salts, particularly in chiral form is described. Furthermore, a process is described wherein the (2,2-dimethyl-1,3-dioxolan-4ylmethyl)trialkylammonium salts is a 2,2-dimethyl-1,3-dioxolan-4-ylmethyl trimethylammonium salt, preferably in chiral form. The protected dihydroxypropyl trialkylammonium salts lead to L-carnitine (9) when in chiral form (5).

  14. Toxicological effects of three types of silver nanoparticles and their salt precursors acting on human U-937 and HL-60 cells.

    PubMed

    Barbasz, Anna; Oćwieja, Magdalena; Walas, Stanisław

    2017-01-01

    The growing popularity of nanomaterials requires a systematic study of their effects on the human body. Silver nanoparticles (AgNPs), due to their antiseptic properties, are used in almost every area of life. The purpose of the study was to examine whether the precursor used for the synthesis of nanoparticles affects their bio-influence and modifies their impact on cells of the human immune system. To compare the effects of precursor silver salts (AgNO 3 , CH 3 COOAg and AgClO 4 ) and corresponding nanoparticles (TAN TAA and TAC) cytotoxicity study was conducted on two cell lines U-937 and HL-60. For both cell lines, silver salts are more toxic than the corresponding nanoparticles. Cell viability after treatment with the two forms of silver (salt/particle) is dependent on silver dose and degree of cells differentiation. Addition of the silver salt of doses greater than 5 mg/L results in decreased cell viability by over 60%, whereas nanoparticles' addition reduces cell viability on average by 30%. On the basis of the determined LD 50 values it can be stated that for the tested cells the most toxic are AgClO 4 and TAC. Production of nitric oxide, which is a mediator of inflammation, is the greatest after treatment of the cells by TAC. Different interactions of studied nanoparticles with albumin has been found and it was shown that addition of albumin to the cells treated by nanoparticles reduces their toxic effects. Obtained by us highly purified, mono-disperse AgNPs exhibit diverse effects relative to the biological systems, depending on the precursor salt used.

  15. Mercury intracellular partitioning and chelation in a salt marsh plant, Halimione portulacoides (L.) Aellen: strategies underlying tolerance in environmental exposure.

    PubMed

    Válega, M; Lima, A I G; Figueira, E M A P; Pereira, E; Pardal, M A; Duarte, A C

    2009-01-01

    In the presence of metal stress, plants can resort to a series of tolerance mechanisms. Therefore field studies should be undertaken in order to evaluate the real role of these mechanisms in stress coping. The aim of this paper was to clarify the biochemical processes behind mercury tolerance in Halimione portulacoides (L.) Aellen (Caryophyllales: Chenopodiaceae) collected in a mercury contaminated salt marsh. Different fractions of mercury were separated: buffer-soluble (mainly cytosolic) and insoluble mercury (mainly associated with membranes and cell walls). The amounts in each fraction of metal were compared and related to metal distribution within plant organs. Protein-mercury complexes were isolated and analysed for their thiol content in order to assess wether the tolerance of this salt marsh plant was associated with the induction of metal chelation by phytochelatins. Overall, the mercury tolerance strategies of the plant are likely to involve root cell wall immobilization as a major mechanism of metal resistance, rather than metal chelation in the cytosolic fraction. Nevertheless, phytochelatins were demonstrated to chelate mercury under environmental exposure.

  16. Assembly of the MHC I peptide-loading complex determined by a conserved ionic lock-switch

    PubMed Central

    Blees, Andreas; Reichel, Katrin; Trowitzsch, Simon; Fisette, Olivier; Bock, Christoph; Abele, Rupert; Hummer, Gerhard; Schäfer, Lars V.; Tampé, Robert

    2015-01-01

    Salt bridges in lipid bilayers play a decisive role in the dynamic assembly and downstream signaling of the natural killer and T-cell receptors. Here, we describe the identification of an inter-subunit salt bridge in the membrane within yet another key component of the immune system, the peptide-loading complex (PLC). The PLC regulates cell surface presentation of self-antigens and antigenic peptides via molecules of the major histocompatibility complex class I. We demonstrate that a single salt bridge in the membrane between the transporter associated with antigen processing TAP and the MHC I-specific chaperone tapasin is essential for the assembly of the PLC and for efficient MHC I antigen presentation. Molecular modeling and all-atom molecular dynamics simulations suggest an ionic lock-switch mechanism for the binding of TAP to tapasin, in which an unfavorable uncompensated charge in the ER-membrane is prevented through complex formation. Our findings not only deepen the understanding of the interaction network within the PLC, but also provide evidence for a general interaction principle of dynamic multiprotein membrane complexes in immunity. PMID:26611325

  17. Aluminum reference electrode

    DOEpatents

    Sadoway, D.R.

    1988-08-16

    A stable reference electrode is described for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na[sub 3]AlF[sub 6], wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution. 1 fig.

  18. A Possible Regenerative, Molten-Salt, Thermoelectric Fuel Cell

    NASA Technical Reports Server (NTRS)

    Greenberg, Jacob; Thaller, Lawrence H.; Weber, Donald E.

    1964-01-01

    Molten or fused salts have been evaluated as possible thermoelectric materials because of the relatively good values of their figures of merit, their chemical stability, their long liquid range, and their ability to operate in conjunction with a nuclear reactor to produce heat. In general, molten salts are electrolytic conductors; therefore, there will be a transport of materials and subsequent decomposition with the passage of an electric current. It is possible nonetheless to overcome this disadvantage by using the decomposition products of the molten-salt electrolyte in a fuel cell. The combination of a thermoelectric converter and a fuel cell would lead to a regenerative system that may be useful.

  19. Complexities of bloom dynamics in the toxic dinoflagellate Alexandrium fundyense revealed through DNA measurements by imaging flow cytometry coupled with species-specific rRNA probes

    PubMed Central

    Brosnahan, Michael L.; Farzan, Shahla; Keafer, Bruce A.; Sosik, Heidi M.; Olson, Robert J.; Anderson, Donald M.

    2013-01-01

    Measurements of the DNA content of different protist populations can shed light on a variety of processes, including cell division, sex, prey ingestion, and parasite invasion. Here, we modified an Imaging FlowCytobot (IFCB), a custom-built flow cytometer that records images of microplankton, to measure the DNA content of large dinoflagellates and other high-DNA content species. The IFCB was also configured to measure fluorescence from Cy3-labeled rRNA probes, aiding the identification of Alexandrium fundyense (syn. A. tamarense Group I), a photosynthetic dinoflagellate that causes paralytic shellfish poisoning (PSP). The modified IFCB was used to analyze samples from the development, peak and termination phases of an inshore A. fundyense bloom (Salt Pond, Eastham, MA USA), and from a rare A. fundyense ‘red tide’ that occurred in the western Gulf of Maine, offshore of Portsmouth, NH (USA). Diploid or G2 phase (‘2C’) A. fundyense cells were frequently enriched at the near-surface, suggesting an important role for aggregation at the air-sea interface during sexual events. Also, our analysis showed that large proportions of A. fundyense cells in both the Salt Pond and red tide blooms were planozygotes during bloom decline, highlighting the importance of sexual fusion to bloom termination. At Salt Pond, bloom decline also coincided with a dramatic rise in infections by the parasite genus Amoebophrya. The samples that were most heavily infected contained many large cells with higher DNA-associated fluorescence than 2C vegetative cells, but these cells’ nuclei were also frequently consumed by Amoebophrya trophonts. Neither large cell size nor increased DNA-associated fluorescence could be replicated by infecting an A. fundyense culture of vegetative cells. Therefore we attribute these characteristics of the large Salt Pond cells to planozygote maturation rather than Amoebophrya infection, though an interaction between infection and planozygote maturation may also have contributed. The modified IFCB is a valuable tool for exploring the conditions that promote sexual transitions by dinoflagellate blooms but care is needed when interpreting results from samples in which parasitism is prevalent. PMID:24891769

  20. Bile salts stimulate mucin secretion by cultured dog gallbladder epithelial cells independent of their detergent effect.

    PubMed

    Klinkspoor, J H; Yoshida, T; Lee, S P

    1998-05-15

    1. Bile salts stimulate mucin secretion by the gallbladder epithelium. We have investigated whether this stimulatory effect is due to a detergent effect of bile salts. 2. The bile salts taurocholic acid (TC) and tauroursodeoxycholic acid (TUDC) and the detergents Triton X-100 (12.5-400 microM) and Tween-20 (0.1-3.2 mM) were applied to monolayers of cultured dog gallbladder epithelial cells. Mucin secretion was studied by measuring the secretion of [3H]N-acetyl-d-glucosamine-labelled glycoproteins. We also attempted to alter the fluidity of the apical membrane of the cells through extraction of cholesterol with beta-cyclodextrin (2.5-15 mM). The effect on TUDC-induced mucin secretion was studied. Cell viability was assessed by measuring lactate dehydrogenase (LDH) leakage or 51Cr release. 3. In contrast with the bile salts, the detergents were not able to cause an increase in mucin secretion without causing concomitant cell lysis. Concentrations of detergent that increased mucin release (>100 microM Triton X-100, >0.8 mM Tween-20), caused increased LDH release. Incubation with beta-cyclodextrin resulted in effective extraction of cholesterol without causing an increase in 51Cr release. However, no effect of the presumed altered membrane fluidity on TUDC (10 mM)-induced mucin secretion was observed. 4. The stimulatory effect of bile salts on mucin secretion by gallbladder epithelial cells is not affected by the fluidity of the apical membrane of the cells and also cannot be mimicked by other detergents. We conclude that the ability of bile salts to cause mucin secretion by the gallbladder epithelium is not determined by their detergent properties.

  1. Controllable Spatial Configuration on Cathode Interface for Enhanced Photovoltaic Performance and Device Stability.

    PubMed

    Li, Jiangsheng; Duan, Chenghao; Wang, Ning; Zhao, Chengjie; Han, Wei; Jiang, Li; Wang, Jizheng; Zhao, Yingjie; Huang, Changshui; Jiu, Tonggang

    2018-05-08

    The molecular structure of cathode interface modification materials can affect the surface morphology of the active layer and key electron transfer processes occurring at the interface of polymer solar cells in inverted structures mostly due to the change of molecular configuration. To investigate the effects of spatial configuration of the cathode interfacial modification layer on polymer solar cells device performances, we introduced two novel organic ionic salts (linear NS2 and three-dimensional (3D) NS4) combined with the ZnO film to fabricate highly efficient inverted solar cells. Both organic ionic salts successfully decreased the surface traps of the ZnO film and made its work function more compatible. Especially NS4 in three-dimensional configuration increased the electron mobility and extraction efficiency of the interfacial film, leading to a significant improvement of device performance. Power conversion efficiency (PCE) of 10.09% based on NS4 was achieved. Moreover, 3D interfacial modification could retain about 92% of its initial PCE over 160 days. It is proposed that 3D interfacial modification retards the element penetration-induced degradation without impeding the electron transfer from the active layer to the ZnO film, which significantly improves device stability. This indicates that inserting three-dimensional organic ionic salt is an efficient strategy to enhance device performance.

  2. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOEpatents

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  3. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 tomore » December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.« less

  4. Bromine Explosions In Smog Chamber Experiments: A comparison of Cavity-Enhanced (CE) and White-cell DOAS

    NASA Astrophysics Data System (ADS)

    Buxmann, J.; Hoch, D. J.; Sihler, H.; Pöhler, D.; Platt, U.; Bleicher, S.; Balzer, N.; Zetzsch, C.

    2011-12-01

    Reactive halogen species (RHS), such as Cl, Br or BrO, can significantly influence chemical processes in the troposphere, including the destruction of ozone, change in the chemical balance of hydrogen radicals (OH, HO2), increased deposition of toxic compounds (like mercury) with potential consequences for the global climate. Previous studies have shown that salt lakes can be significant sources for gaseous RHS. Environmental conditions such as salt composition, relative humidity (RH), pH, and temperature (T) can strongly influence reactive bromine levels, but are difficult to quantify in the field. Therefore, we conducted laboratory experiments by exposing NaCl salt containing 0.33% (by weight) NaBr to simulated sunlight in a Teflon smog-chamber under various conditions of RH and ozone concentrations. BrO levels were observed by a Differential-Optical-Absorption-Spectrometer (DOAS) in combination with a multi-reflection cell (White-cell). The concentrations of OH- and Cl- radicals were quantified by the radical clock method. We present the first direct observation of BrO from the "Bromine Explosion" (auto catalytic release of reactive bromine from salt surfaces - key to ozone destruction) in the laboratory above a simulated salt pan. The maximum BrO mixing ratio of 6419±71 ppt at 60% RH was observed to be one order of magnitude higher than at 37% RH and 2% RH. The release of RHS from the salt pan is possibly controlled by the thickness of the quasi liquid layer, covering the reactive surface of the halide crystals, as the layer thickness strongly depends on RH. Furthermore, a new cavity enhanced DOAS (CE-DOAS) instrument was designed and successfully used in chamber experiments. For the first time, such an instrument uses a spectral interval in the UV - wavelength range (325-365 nm) to identify BrO. We show a comparison of the CE-DOAS and White-cell DOAS instrument in a series of experiments, where e.g. a peak BrO mixing ratio up to 380 ppt within the first minutes was observed by both instruments (relative humidity 29%, 20°C, initial [O3]=300ppb). The detection limits with a time resolution of less than five minutes per measurement were found for BrO at 25 ppt, for HCHO at 5.5 ppb, for O3 at 55 ppb for the CE-DOAS. The White-cell has a higher detection limit at a better minimal time resolution of one minute per measurement with BrO at 40 ppt, for HCHO at 10 ppb and for O3 at 300 ppb, respectively. The new BrO-CE DOAS instruments with high spatial resolution also looks very promising for future field measurement campaigns aimed at a better understanding of atmospheric processes, such as halogen activation.

  5. Multivariate analyses of salt stress and metabolite sensing in auto- and heterotroph Chenopodium cell suspensions.

    PubMed

    Wongchai, C; Chaidee, A; Pfeiffer, W

    2012-01-01

    Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  6. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration

    PubMed Central

    Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Purpose Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. Methods A literature search of the Medline database and a summary of recent studies that used human RPE cells. Results The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Conclusions Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration. PMID:28031693

  7. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration.

    PubMed

    Bringmann, Andreas; Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. A literature search of the Medline database and a summary of recent studies that used human RPE cells. The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration.

  8. The V-ATPase subunit A is essential for salt tolerance through participating in vacuolar Na+ compartmentalization in Salicornia europaea.

    PubMed

    Lv, Sulian; Jiang, Ping; Tai, Fang; Wang, Duoliya; Feng, Juanjuan; Fan, Pengxiang; Bao, Hexigeduleng; Li, Yinxin

    2017-12-01

    The V-ATPase subunit A participates in vacuolar Na + compartmentalization in Salicornia europaea regulating V-ATPase and V-PPase activities. Na + sequestration into the vacuole is an efficient strategy in response to salinity in many halophytes. However, it is not yet fully understood how this process is achieved. Particularly, the role of vacuolar H + -ATPase (V-ATPase) in this process is controversial. Our previous proteomic investigation in the euhalophyte Salicornia europaea L. found a significant increase of the abundance of V-ATPase subunit A under salinity. Here, the gene encoding this subunit named SeVHA-A was characterized, and its role in salt tolerance was demonstrated by RNAi directed downregulation in suspension-cultured cells of S. europaea. The transcripts of genes encoding vacuolar H + -PPase (V-PPase) and vacuolar Na + /H + antiporter (SeNHX1) also decreased significantly in the RNAi cells. Knockdown of SeVHA-A resulted in a reduction in both V-ATPase and vacuolar H + -PPase (V-PPase) activities. Accordingly, the SeVHA-A-RNAi cells showed increased vacuolar pH and decreased cell viability under different NaCl concentrations. Further Na + staining showed the reduced vacuolar Na + sequestration in RNAi cells. Taken together, our results evidenced that SeVHA-A participates in vacuolar Na + sequestration regulating V-ATPase and V-PPase activities and thereby vacuolar pH in S. europaea. The possible mechanisms underlying the reduction of vacuolar V-PPase activity in SeVHA-A-RNAi cells were also discussed.

  9. A high-throughput 2D-analytical technique to obtain single protein parameters from complex cell lysates for in silico process development of ion exchange chromatography.

    PubMed

    Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen

    2013-11-29

    The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Increased Dietary Sodium Induces COX2 Expression by activating NFκB in Renal Medullary Interstitial Cells

    PubMed Central

    Zhao, Min; Davis, Linda S.; Blackwell, Timothy S.; Yull, Fiona; Breyer, Matthew D.; Hao, Chuan-Ming

    2013-01-01

    High salt diet induces renal medullary COX2 expression. Selective blockade of renal medullary COX2 activity in rats causes salt sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8% NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6J mice. Co-immunofluorescence using a COX2 antibody and antibodies against AQP2, ClC-K, AQP1 and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a 7 fold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of EGFP expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet fed C57Bl/6J mice with selective IκB kinase inhibitor IMD-0354 (8mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary PGE2. These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium. PMID:23900806

  11. Salt reduction in sheeted dough: A successful technological approach.

    PubMed

    Diler, Guénaëlle; Le-Bail, Alain; Chevallier, Sylvie

    2016-10-01

    The challenge of reducing the salt content while maintaining shelf life, stability and acceptability of the products is major for the food industry. In the present study, we implemented processing adjustments to reduce salt content while maintaining the machinability and the saltiness perception of sheeted dough: the homogeneous distribution of a layer of encapsulated salt grains on the dough during the laminating process. During sheeting, for an imposed deformation of 0.67, the final strain remained unchanged around 0.50 for salt reduction below 50%, and then, increased significantly up to 0.53 for a dough without salt. This increase is, in fine, positive regarding the rolling process since the decrease of salt content induces less shrinkage of dough downstream, which is the main feature to be controlled in the process. Moreover, the final strain was negatively correlated to the resistance to extension measured with a texture analyzer, therefore providing a method to evaluate the machinability of the dough. From these results, a salt reduction of 25% was achieved by holding 50% of the salt in the dough recipe to maintain the dough properties and saving 25% as salt grains to create high-salted areas that would enhance the saltiness perception of the dough. The distributor mounted above the rollers of the mill proved to be able to distribute evenly salt grains at a calculated step of the rolling out process. An innovative method based on RX micro-tomography allowed to follow the salt dissolving and to demonstrate the capability of the coatings to delay the salt dissolving and consequently the diffusion of salt within the dough piece. Finally, a ranking test on the salted perception of different samples having either an even distribution of encapsulated salt grains, a single layer of salt grains or a homogeneous distribution of salt, demonstrated that increasing the saltiness perception in salt-reduced food product could be achieved by a technological approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts.

    PubMed

    Bhattacharyya, Anirban; Saha, Jayeeta; Haldar, Saubhik; Bhowmic, Asit; Mukhopadhyay, Ujjal Kumar; Mukherjee, Joydeep

    2014-03-01

    Haloferax mediterranei holds promise for competitive industrial-scale production of polyhydroxyalkanoate (PHA) because cheap carbon sources can be used thus lowering production costs. Although high salt concentration in production medium permits a non-sterile, low-cost process, salt disposal after process completion is a problem as current environmental standards do not allow total dissolved solids (TDS) above 2000 mg/l in discharge water. As the first objective of this work, the waste product of rice-based ethanol industry, stillage, was used for the production of PHA by H. mediterranei in shake flasks. Utilization of raw stillage led to 71 ± 2% (of dry cell weight) PHA accumulation and 16.42 ± 0.02 g/l PHA production. The product yield coefficient was 0.35 while 0.17 g/l h volumetric productivity was attained. Simultaneous reduction of BOD5 and COD values of stillage by 83% was accomplished. The PHA was isolated by osmotic lysis of cells, purification by sodium dodecyl sulfate and organic solvents. The biopolymer was identified as poly-3-(hydroxybutyrate-co-15.4 mol%-hydroxyvalerate) (PHBV). This first report on utilization of rice-based ethanol stillage for PHBV production by H. mediterranei is currently the most cost effective. As the second objective, directional properties of decanoic acid together with temperature dependence of water solubility in decanoic acid were applied for two-stage desalination of the spent stillage medium. We report for the first time, recovery and re-use of 96% of the medium salts for PHA production thus removing the major bottleneck in the potential application of H. mediterranei for industrial production of PHBV. Final discharge water had TDS content of 670 mg/l.

  13. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.

    PubMed

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-02-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin's function in soybeans and other crops. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  15. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  17. The Salt Overly Sensitive (SOS) pathway: established and emerging roles.

    PubMed

    Ji, Hongtao; Pardo, José M; Batelli, Giorgia; Van Oosten, Michael J; Bressan, Ray A; Li, Xia

    2013-03-01

    Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterogenous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.

  18. MICRURGICAL STUDIES IN CELL PHYSIOLOGY

    PubMed Central

    Chambers, Robert; Reznikoff, Paul

    1926-01-01

    By means of micro-dissection and injection Amœba proteus was treated with the chlorides of Na, K, Ca, and Mg alone, in combination, and with variations of pH. I. The Plasmalemma. 1. NaCl weakens and disrupts the surface membrane of the ameba. Tearing the membrane accelerates the disruption which spreads rapidly from the site of the tear. KCl has no disruptive effect on the membrane but renders it adhesive. 2. MgCl2 and CaCl2 have no appreciable effect on the integrity of the surface membrane of the ameba when applied on the outside. No spread of disruption occurs when the membrane is torn in these salts. When these salts are introduced into the ameba they render the pellicle of the involved region rigid. II. The Internal Protoplasm. 3. Injected water either diffuses through the protoplasm or becomes localized in a hyaline blister. Large amounts when rapidly injected produce a "rushing effect". 4. HCl at pH 1.8 solidifies the internal protoplasm and at pH 2.2 causes solidification only after several successive injections. The effect of the subsequent injections may be due to the neutralization of the cell-buffers by the first injection. 5. NaCl and KCl increase the fluidity of the internal protoplasm and induce quiescence. 6. CaCl2 and MgCl2 to a lesser extent solidify the internal protoplasm. With CaCl2 the solidification tends to be localized. With MgCl2 it tends to spread. The injection of CaCl2 accelerates movement in the regions not solidified whereas the injection of MgCl2 induces quiescence. III. Pinching-Off Reaction. 7. A hyaline blister produced by the injection of water may be pinched off. The pinched-off blister is a liquid sphere surrounded by a pellicle. 8. Pinching off always takes place with injections of HCl when the injected region is solidified. 9. The injection of CaCl2 usually results in the pinching off of the portion solidified. The rate of pinching off varies with the concentration of the salt. The injection of MgCl2 does not cause pinching off. IV. Reparability of Torn Surfaces. 10. The repair of a torn surface takes place readily in distilled water. In the different salt solutions, reparability varies specifically with each salt, with the concentration of the salt, and with the extent of the tear. In NaCl and in KCl repair occurs less readily than in water. In MgCl2 repair takes place with great difficulty. In CaCl2 a proper estimate of the process of repair is complicated by the pinching-off phenomenon. However, CaCl2 is the only salt found to increase the mobility of the plasmalemma, and this presumably enhances its reparability. 11. The repair of the surface is probably a function of the internal protoplasm and depends upon an interaction of the protoplasm with the surrounding medium. V. Permeability. 12. NaCl and KCl readily penetrate the ameba from the exterior. CaCl2 and MgCl2 do not. 13. All four salts when injected into an ameba readily diffuse through the internal protoplasm. In the case of CaCl2 the diffusion may be arrested by the pinching-off process. VI. Toxicity. 14. NaCl and KCl are more toxic to the exterior of the cell than to the interior, and the reverse is true for CaCl2 and MgCl2. 15. The relative non-toxicity of injected NaCl to the interior of the ameba is not necessarily due to its diffusion outward from the cell. 16. HCl is much more toxic to the exterior of a cell than to the interior; at pH 5.5 it is toxic to the surface whereas at pH 2.5 it is not toxic to the interior. NaOH to pH 9.8 is not toxic either to the surface or to the interior. VII. Antagonism. 17. The toxic effects of NaCl and of KCl on the exterior of the cell can be antagonized by CaCl2 and this antagonism occurs at the surface. Although the lethal effect of NaCl is thus antagonized, NaCl still penetrates but at a slower rate than if the ameba were immersed in a solution of this salt alone. 18. NaCl and HCl are mutually antagonistic in the interior of the ameba. No antagonism between the salts and HCl was found on the exterior of the ameba. No antagonism between the salts and NaOH was found on the interior or exterior of the ameba. 19. The pinching-off phenomenon can be antagonized by NaCl or by KCl, and the rate of the retardation of the pinching-off process varies with the concentration of the antagonizing salt. 20. The prevention of repair of a torn membrane by toxic solutions of NaCl or KCl can be antagonized by CaCl2. These experiments show directly the marked difference between the interior and the exterior of the cell in their behavior toward the chlorides of Na, K, Ca, and Mg. PMID:19872206

  19. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    NASA Astrophysics Data System (ADS)

    Rayner, John

    2017-02-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  20. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    ERIC Educational Resources Information Center

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  1. Dietary Salt Exacerbates Experimental Colitis.

    PubMed

    Tubbs, Alan L; Liu, Bo; Rogers, Troy D; Sartor, R Balfour; Miao, Edward A

    2017-08-01

    The Western diet is characterized by high protein, sugar, fat, and low fiber intake, and is widely believed to contribute to the incidence and pathogenesis of inflammatory bowel disease (IBD). However, high sodium chloride salt content, a defining feature of processed foods, has not been considered as a possible environmental factor that might drive IBD. We set out to bridge this gap. We examined murine models of colitis on either a high salt diet (HSD) or a low salt diet. We demonstrate that an HSD exacerbates inflammatory pathology in the IL-10-deficient murine model of colitis relative to mice fed a low salt diet. This was correlated with enhanced expression of numerous proinflammatory cytokines. Surprisingly, sodium accumulated in the colons of mice on an HSD, suggesting a direct effect of salt within the colon. Similar to the IL-10-deficient model, an HSD also enhanced cytokine expression during infection by Salmonella typhimurium This occurred in the first 3 d of infection, suggesting that an HSD potentiates an innate immune response. Indeed, in cultured dendritic cells we found that high salt media potentiates cytokine expression downstream of TLR4 activation via p38 MAPK and SGK1. A third common colitis model, administration of dextran sodium sulfate, was hopelessly confounded by the high sodium content of the dextran sodium sulfate. Our results raise the possibility that high dietary salt is an environmental factor that drives increased inflammation in IBD. Copyright © 2017 by The American Association of Immunologists, Inc.

  2. Metals Electroprocessing in Molten Salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1985-01-01

    The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.

  3. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi

    2006-03-01

    Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.

  4. Rice Shaker Potassium Channel OsKAT1 Confers Tolerance to Salinity Stress on Yeast and Rice Cells1[OA

    PubMed Central

    Obata, Toshihiro; Kitamoto, Hiroko K.; Nakamura, Atsuko; Fukuda, Atsunori; Tanaka, Yoshiyuki

    2007-01-01

    We screened a rice (Oryza sativa L. ‘Nipponbare’) full-length cDNA expression library through functional complementation in yeast (Saccharomyces cerevisiae) to find novel cation transporters involved in salt tolerance. We found that expression of a cDNA clone, encoding the rice homolog of Shaker family K+ channel KAT1 (OsKAT1), suppressed the salt-sensitive phenotype of yeast strain G19 (Δena1–4), which lacks a major component of Na+ efflux. It also suppressed a K+-transport-defective phenotype of yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+ uptake by OsKAT1. By the expression of OsKAT1, the K+ contents of salt-stressed G19 cells increased during the exponential growth phase. At the linear phase, however, OsKAT1-expressing G19 cells accumulated less Na+ than nonexpressing cells, but almost the same K+. The cellular Na+ to K+ ratio of OsKAT1-expressing G19 cells remained lower than nonexpressing cells under saline conditions. Rice cells overexpressing OsKAT1 also showed enhanced salt tolerance and increased cellular K+ content. These functions of OsKAT1 are likely to be common among Shaker K+ channels because OsAKT1 and Arabidopsis (Arabidopsis thaliana) KAT1 were able to complement the salt-sensitive phenotype of G19 as well as OsKAT1. The expression of OsKAT1 was restricted to internodes and rachides of wild-type rice, whereas other Shaker family genes were expressed in various organs. These results suggest that OsKAT1 is involved in salt tolerance of rice in cooperation with other K+ channels by participating in maintenance of cytosolic cation homeostasis during salt stress and thus protects cells from Na+. PMID:17586689

  5. 238Pu recovery and salt disposition from the molten salt oxidation process

    NASA Astrophysics Data System (ADS)

    Remerowski, M. L.; Stimmel, Jay J.; Wong, Amy S.; Ramsey, Kevin B.

    2000-07-01

    We have begun designing and optimizing our recovery and recycling processes by experimenting with samples of "spent salt" produced by MSO treatment of surrogate waste in the reaction vessel at the Naval Surface Warfare Center-Indian Head. One salt was produced by treating surrogate waste containing pyrolysis ash spiked with cerium. The other salt contains residues from MSO treatment of materials similar to those used in 238Pu processing, e.g., Tygon tubing, PVC bagout bags, HDPE bottles. Using these two salt samples, we will present results from our investigations.

  6. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration

    NASA Technical Reports Server (NTRS)

    Widmer, M. S.; Gupta, P. K.; Lu, L.; Meszlenyi, R. K.; Evans, G. R.; Brandt, K.; Savel, T.; Gurlek, A.; Patrick, C. W. Jr; Mikos, A. G.; hide

    1998-01-01

    We have fabricated porous, biodegradable tubular conduits for guided tissue regeneration using a combined solvent casting and extrusion technique. The biodegradable polymers used in this study were poly(DL-lactic-co-glycolic acid) (PLGA) and poly(L-lactic acid) (PLLA). A polymer/salt composite was first prepared by a solvent casting process. After drying, the composite was extruded to form a tubular construct. The salt particles in the construct were then leached out leaving a conduit with an open-pore structure. PLGA was studied as a model polymer to analyze the effects of salt weight fraction, salt particle size, and processing temperature on porosity and pore size of the extruded conduits. The porosity and pore size were found to increase with increasing salt weight fraction. Increasing the salt particle size increased the pore diameter but did not affect the porosity. High extrusion temperatures decreased the pore diameter without altering the porosity. Greater decrease in molecular weight was observed for conduits manufactured at higher temperatures. The mechanical properties of both PLGA and PLLA conduits were tested after degradation in vitro for up to 8 weeks. The modulus and failure strength of PLLA conduits were approximately 10 times higher than those of PLGA conduits. Failure strain was similar for both conduits. After degradation for 8 weeks, the molecular weights of the PLGA and PLLA conduits decreased to 38% and 43% of the initial values, respectively. However, both conduits maintained their shape and did not collapse. The PLGA also remained amorphous throughout the time course, while the crystallinity of PLLA increased from 5.2% to 11.5%. The potential of seeding the conduits with cells for transplantation or with biodegradable polymer microparticles for drug delivery was also tested with dyed microspheres. These porous tubular structures hold great promise for the regeneration of tissues which require tubular scaffolds such as peripheral nerve, long bone, intestine, or blood vessel.

  7. Mild Salt Stress Conditions Induce Different Responses in Root Hydraulic Conductivity of Phaseolus vulgaris Over-Time

    PubMed Central

    Calvo-Polanco, Monica; Sánchez-Romera, Beatriz; Aroca, Ricardo

    2014-01-01

    Plants respond to salinity by altering their physiological parameters in order to maintain their water balance. The reduction in root hydraulic conductivity is one of the first responses of plants to the presence of salt in order to minimize water stress. Although its regulation has been commonly attributed to aquaporins activity, osmotic adjustment and the toxic effect of Na+ and Cl− have also a main role in the whole process. We studied the effects of 30 mM NaCl on Phaseolus vulgaris plants after 9 days and found different responses in root hydraulic conductivity over-time. An initial and final reduction of root hydraulic conductivity, stomatal conductance, and leaf water potential in response to NaCl was attributed to an initial osmotic shock after 1 day of treatment, and to the initial symptoms of salt accumulation within the plant tissues after 9 days of treatment. After 6 days of NaCl treatment, the increase in root hydraulic conductivity to the levels of control plants was accompanied by an increase in root fructose content, and with the intracellular localization of root plasma membrane aquaporins (PIP) to cortex cells close to the epidermis and to cells surrounding xylem vessels. Thus, the different responses of bean plants to mild salt stress over time may be connected with root fructose accumulation, and intracellular localization of PIP aquaporins. PMID:24595059

  8. Salt stress induced lipid accumulation in heterotrophic culture cells of Chlorella protothecoides: Mechanisms based on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration.

    PubMed

    Wang, Tao; Ge, Haiyan; Liu, Tingting; Tian, Xiwei; Wang, Zejian; Guo, Meijin; Chu, Ju; Zhuang, Yingping

    2016-06-20

    Salt stress as an effective stress factor that could improve the lipid content and lipid yield of glucose in the heterotrophic culture cells of Chlorella protothecoides was demonstrated in this study. The highest lipid content of 41.2% and lipid yield of 185.8mg/g were obtained when C. protothecoides was stressed under 30g/L NaCl condition at its late logarithmic growth phase. Moreover, the effects of salt and osmotic stress on lipid accumulation were comparatively analyzed, and it was found that the effects of NaCl and KCl stress had no significant differences at the same osmolarity level of 1150mOsm/kg with lipid contents of 41.7 and 40.8% as well as lipid yields of 192.9 and 186.8mg/g, respectively, whereas these results were obviously higher than those obtained under the iso-osmotic glycerol and sorbitol stresses. Furthermore, basing on the multi-level analysis of oxidative response, key enzyme activity and biochemical alteration, the superior performance of salt stress driving lipid over-synthesis was probably ascribed to the more ROS production as a result of additional ion effect besides the osmotic effect, subsequently mediating the alteration from carbohydrate storage to lipid accumulation in signal transduction process of C. protothecoides. Copyright © 2016. Published by Elsevier B.V.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  10. Effect of varying the salt and fat content in Cheddar cheese on aspects of the performance of a commercial starter culture preparation during ripening.

    PubMed

    Yanachkina, Palina; McCarthy, Catherine; Guinee, Tim; Wilkinson, Martin

    2016-05-02

    Production of healthier reduced-fat and reduced-salt cheeses requires careful selection of starter bacteria, as any substantial alterations to cheese composition may prompt changes in the overall performance of starters during cheese ripening. Therefore, it is important to assess the effect of compositional alterations on the individual strain response during cheese ripening for each optimised cheese matrix. In the current study, the effect of varying fat and salt levels in Cheddar cheese on the performance of a commercial Lactococcus lactis culture preparation, containing one L. lactis subsp. lactis strain and one L. lactis subsp. cremoris strain was investigated. Compositional variations in fat or salt levels did not affect overall starter viability, yet reduction of fat by 50% significantly delayed non-starter lactic acid bacteria (NSLAB) populations at the initial ripening period. In comparison to starter viability, starter autolysis, as measured by release of intracellular lactate dehydrogenase (LDH) or post-proline dipeptidyl aminopeptidase (Pep X) into cheese juices, decreased significantly with lower salt addition levels in full-fat Cheddar. Conversely, reducing fat content of cheese resulted in a significantly higher release of intracellular Pep X, and to a lesser extent intracellular LDH, into juices over ripening. Flow cytometry (FCM) indicated that the permeabilised and dead cell sub-populations were generally lower in juices from cheeses with reduced salt content, however no significant differences were observed between different salt and fat treatments. Interestingly, fat reductions by 30 and 50% in cheeses with reduced or half added salt contents appeared to balance out the effect of salt, and enhanced cell permeabilisation, cell death, and also cell autolysis in these variants. Overall, this study has highlighted that alterations in both salt and fat levels in cheese influence certain aspects of starter performance during ripening, including autolysis, permeabilisation, and intracellular enzyme release. However, it may be possible to reduce the fat and salt content of Cheddar cheese by 30 or 50%, respectively, without largely altering permeabilised and dead cell sub-populations and, in turn, the amount of released intracellular Pep X activity, such that these performance parameters are similar to those observed for control full-fat, full-salt Cheddar cheese. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Stieger, Bruno; Meier, Peter J; Hofmann, Alan F; Sugiyama, Yuichi

    2005-01-01

    Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.

  12. Comparative Toxicities of Salts on Microbial Processes in Soil

    PubMed Central

    Maheshwari, Arpita; Bengtson, Per; Rousk, Johannes

    2016-01-01

    Soil salinization is a growing threat to global agriculture and carbon sequestration, but to date it remains unclear how microbial processes will respond. We studied the acute response to salt exposure of a range of anabolic and catabolic microbial processes, including bacterial (leucine incorporation) and fungal (acetate incorporation into ergosterol) growth rates, respiration, and gross N mineralization and nitrification rates. To distinguish effects of specific ions from those of overall ionic strength, we compared the addition of four salts frequently associated with soil salinization (NaCl, KCl, Na2SO4, and K2SO4) to a nonsaline soil. To compare the tolerance of different microbial processes to salt and to interrelate the toxicity of different salts, concentration-response relationships were established. Growth-based measurements revealed that fungi were more resistant to salt exposure than bacteria. Effects by salt on C and N mineralization were indistinguishable, and in contrast to previous studies, nitrification was not found to be more sensitive to salt exposure than other microbial processes. The ion-specific toxicity of certain salts could be observed only for respiration, which was less inhibited by salts containing SO42− than Cl− salts, in contrast to the microbial growth assessments. This suggested that the inhibition of microbial growth was explained solely by total ionic strength, while ion-specific toxicity also should be considered for effects on microbial decomposition. This difference resulted in an apparent reduction of microbial growth efficiency in response to exposure to SO42− salts but not to Cl− salts; no evidence was found to distinguish K+ and Na+ salts. PMID:26801570

  13. Intestinal metaplasia with a high salt diet induces epithelial proliferation and alters cell composition in the gastric mucosa of mice.

    PubMed

    Xiao, Fang; Crissey, Mary Ann S; Lynch, John P; Kaestner, Klaus H; Silberg, Debra G; Suh, Eunran

    2005-06-01

    Intestinal metaplasia of the gastric mucosa is an important component in the pathway to adenocarcinoma. The mechanisms that induce the progression from intestinal metaplasia to cancer have not been elucidated. High dietary salt has been known as one of the risk factors for gastric cancer development in humans. Therefore, we investigated the role of high salt diet on gastric epithelial cell proliferation and differentiation, using our mouse model that ectopically expressed Cdx2 homeodomain transcription factor and induced an intestinal metaplastic phenotype in the gastric epithelia. Sixty Cdx2 transgenic and sixty age-matched wild-type littermates were studied. Fifty-percent Cdx2 transgenic and wild type mice were administered a high-salt diet and the other fifty-percent was fed a standard diet starting at 12 weeks after birth. At 10, 20 and 40 weeks after initiation of the diets, histopathological changes were determined by Hemotoxylin and Eosin, alcian blue, and periodic acid-Schiff (PAS) staining. Cell types and cell kinetics were assessed by immunohistochemistry. At 52 weeks, significant alterations in pathology were observed in the Cdx2 transgenic mice fed a high-salt diet, including elongation of gastric pits, reduction of the glandular zone in the gastric corpus, and deepening of glands in the antrum. In the Cdx2 transgenic mice fed a high salt diet, the parietal and chief cells were significantly decreased in the gastric corpus. A significant increase in cell proliferation and apoptosis in the corpus and antrum were observed in Cdx2 transgenic mice fed a high-salt diet as compared to wild-type littermates. Taken together, these data implicate that intestinal metaplasia in concert with a high-salt diet induces epithelial proliferation, apoptosis, and alters cellular types in the gastric mucosa of mice. Alteration in the composition of the gastric epithelium may play a role in influencing the microenvironment to engender susceptibility to carcinogens.

  14. Effects of catalase on chloroplast arrangement in Opuntia streptacantha chlorenchyma cells under salt stress.

    PubMed

    Arias-Moreno, Diana Marcela; Jiménez-Bremont, Juan Francisco; Maruri-López, Israel; Delgado-Sánchez, Pablo

    2017-08-17

    In arid and semiarid regions, low precipitation rates lead to soil salinity problems, which may limit plant establishment, growth, and survival. Herein, we investigated the NaCl stress effect on chlorophyll fluorescence, photosynthetic-pigments, movement and chloroplasts ultrastructure in chlorenchyma cells of Opuntia streptacantha cladodes. Cladodes segments were exposed to salt stress at 0, 100, 200, and 300 mM NaCl for 8, 16, and 24 h. The results showed that salt stress reduced chlorophyll content, F v /F m , ΦPSII, and qP values. Under the highest salt stress treatments, the chloroplasts were densely clumped toward the cell center and thylakoid membranes were notably affected. We analyzed the effect of exogenous catalase in salt-stressed cladode segments during 8, 16, and 24 h. The catalase application to salt-stressed cladodes counteracted the NaCl adverse effects, increasing the chlorophyll fluorescence parameters, photosynthetic-pigments, and avoided chloroplast clustering. Our results indicate that salt stress triggered the chloroplast clumping and affected the photosynthesis in O. streptacantha chlorenchyma cells. The exogenous catalase reverted the H 2 O 2 accumulation and clustering of chloroplast, which led to an improvement of the photosynthetic efficiency. These data suggest that H 2 O 2 detoxification by catalase is important to protect the chloroplast, thus conserving the photosynthetic activity in O. streptacantha under stress.

  15. Polyfluorinated boron cluster based salts: A new electrolyte for application in nonaqueous asymmetric AC/Li 4Ti 5O 12 supercapacitors

    NASA Astrophysics Data System (ADS)

    Ionica-Bousquet, C. M.; Muñoz-Rojas, D.; Casteel, W. J.; Pearlstein, R. M.; Kumar, G. Girish; Pez, G. P.; Palacín, M. R.

    Solutions of novel fluorinated lithium dodecaborate (Li 2B 12F xH 12- x) salts have been evaluated as electrolytes in nonaqueous asymmetric supercapacitors with Li 4Ti 5O 12 as negative electrode, and activated carbon (AC) as positive electrode. The results obtained with these new electrolytes were compared with those obtained with cells built using standard 1 M LiPF 6 dissolved in ethylene carbonate and dimethyl carbonate (EC:DMC; 1:1, v/v) as electrolyte. The specific energy, rate capability, and cycling performances of nonaqueous asymmetric cells based on these new electrolyte salts were studied. Cells assembled using the new fluoroborate salts show excellent reversibility, coulombic efficiency, rate capability and improved cyclability when compared with the standard electrolyte. These features confirm the suitability of lithium-fluoro-borate based salts to be used in nonaqueous asymmetric supercapacitors.

  16. Atomic force microscopy of chromatin arrays reveal non-monotonic salt dependence of array compaction in solution

    PubMed Central

    Krzemien, Katarzyna M.; Beckers, Maximilian; Quack, Salina; Michaelis, Jens

    2017-01-01

    Compaction of DNA in chromatin is a hallmark of the eukaryotic cell and unravelling its structure is required for an understanding of DNA involving processes. Despite strong experimental efforts, many questions concerning the DNA packing are open. In particular, it is heavily debated whether an ordered structure referred to as the “30 nm fibre” exist in vivo. Scanning probe microscopy has become a cutting edge technology for the high-resolution imaging of DNA- protein complexes. Here, we perform high-resolution atomic force microscopy of non-cross-linked chromatin arrays in liquid, under different salt conditions. A statistical analysis of the data reveals that array compaction is salt dependent in a non-monotonic fashion. A simple physical model can qualitatively explain the observed findings due to the opposing effects of salt dependent stiffening of DNA, nucleosome stability and histone-histone interactions. While for different salt concentrations different compaction states are observed, our data do not provide support for the existence of regular chromatin fibres. Our studies add new insights into chromatin structure, and with that contribute to a further understanding of the DNA condensation. PMID:28296908

  17. A thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts.

    PubMed

    Wang, Kun; Chartrand, Patrice

    2018-06-15

    This paper presents a quantitative thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts, which is of technological importance to the Hall-Héroult electrolytic aluminum extraction cell. The Modified Quasichemical Model in the Quadruplet Approximation (MQMQA), as used to treat a large variety of molten salt systems, was adopted to thermodynamically describe the present liquid phase; all solid solutions were modeled using the Compound Energy Formalism (CEF); the gas phase was thermodynamically treated as an ideal mixture of all possible species. The model parameters were mainly obtained by critical evaluations and optimizations of thermodynamic and phase equilibrium data available from relative experimental measurements and theoretical predictions (first-principles calculations and empirical estimations) for the lower-order subsystems. These optimized model parameters were thereafter merged within the Kohler/Toop interpolation scheme, facilitating the prediction of gas solubility (H2O, HF and H2) in multicomponent cryolite-base molten salts using the FactSage thermochemical software. Several interesting diagrams were finally obtained in order to provide useful information for the industrial partners dedicated to the Hall-Héroult electrolytic aluminum production or other molten-salt technologies (the purification process and electroslag refining).

  18. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Preparation of Ferrotitanium from Ilmenite by Electrolysis-Assisted Calciothermic Reduction in CaCl2-NaCl Molten Salt

    NASA Astrophysics Data System (ADS)

    Zhou, Zhongren; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Gong, Kai; Ru, Juanjian; Xiong, Li

    2016-02-01

    Electrolysis-assisted calciothermic reduction method is proposed and successfully used to prepare ferrotitanium alloy from ilmenite by using equal-molar CaCl2-NaCl molten salt as electrolyte, molybdenum rod as cathode, and graphite as anode at 973 K with cell voltages of 3.2-4.4 V under inert atmosphere. Thermodynamics analysis of the process is presented, and the products obtained are examined with x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. It is demonstrated that the calciothermic reduction of ilmenite is a stepwise process since intermediate CaTiO3 is observed in the products partially reduced. In the calciothermic reduction process, the reduction of FeTiO3 first gives rise to the formation of Fe and CaTiO3, which as intermediates will further react with calcium metal to form ferrotitanium alloys. This is in good agreement with the prediction of thermodynamics. Experimental results also show that increasing cell voltage can accelerate the formation of calcium metal through electrolysis of CaO and CaCl2 and, hence, promote the calciothermic reduction of ilmenite. As the electrolytic zone and reduction zone are combined in the same bath, the theoretical energy requirement for the production of FeTi in the calciothermic process is lower than that in the aluminothermic process.

  20. Influence of NaCl on Growth, Proline, and Phosphoenolpyruvate Carboxylase Levels in Mesembryanthemum crystallinum Suspension Cultures 1

    PubMed Central

    Thomas, John C.; De Armond, Richard L.; Bohnert, Hans J.

    1992-01-01

    The facultative halophyte Mesembryanthemum crystallinum responds to salt stress by increasing the levels of phosphoenolpyruvate carboxylase (PEPCase) and other enzymes associated with Crassulacean acid metabolism. A more common response to salt stress in sensitive and tolerant species, including M. crystallinum, is the accumulation of proline. We have established M. crystallinum suspension cultures to investigate whether both these salt-induced responses occur at the cellular level. Leaf-and root-derived cultures maintain 5% of the total soluble amino acids as proline. Cell culture growth slows upon addition of 400 millimolar NaCl, and proline levels increase to 40% of the total soluble amino acids. These results suggest a functional salt-stress and response program in Mesembryanthemum cells. Suspension cultures grown with or without 400 millimolar NaCl have PEPCase levels that compare with those from roots and unstressed leaves. The predominant protein cross-reacting with an anti-PEPCase antibody corresponds to 105 kilodaltons (apparent molecular mass), whereas a second species of approximately 110 kilodaltons is present at low levels. In salt-stressed leaves, the 110 kilodalton protein is more prevalent. Levels of mRNA for both ppc1 (salt stress induced in leaves) and ppc2 (constitutive) genes in salt-treated suspensions cultures are equal to unstressed leaves, and only twice the levels found in untreated suspension cultures. Whereas cells accumulate proline in response to NaCl, PEPCase protein amounts remain similar in salt-treated and untreated cultures. The induction upon salt stress of the 110 kilodalton PEPCase protein and other Crassulacean acid metabolism enzymes in organized tissues is not observed in cell culture and may depend on tissue-dependent or photoautotrophy-dependent programs. ImagesFigure 4Figure 5 PMID:16668687

  1. Increased dietary sodium induces COX2 expression by activating NFκB in renal medullary interstitial cells.

    PubMed

    He, Wenjuan; Zhang, Min; Zhao, Min; Davis, Linda S; Blackwell, Timothy S; Yull, Fiona; Breyer, Matthew D; Hao, Chuan-Ming

    2014-02-01

    High salt diet induces renal medullary cyclooxygenase 2 (COX2) expression. Selective blockade of renal medullary COX2 activity in rats causes salt-sensitive hypertension, suggesting a role for renal medullary COX2 in maintaining systemic sodium balance. The present study characterized the cellular location of COX2 induction in the kidney of mice following high salt diet and examined the role of NFκB in mediating this COX2 induction in response to increased dietary salt. High salt diet (8 % NaCl) for 3 days markedly increased renal medullary COX2 expression in C57Bl/6 J mice. Co-immunofluorescence using a COX2 antibody and antibodies against aquaporin-2, ClC-K, aquaporin-1, and CD31 showed that high salt diet-induced COX2 was selectively expressed in renal medullary interstitial cells. By using NFκB reporter transgenic mice, we observed a sevenfold increase of luciferase activity in the renal medulla of the NFκB-luciferase reporter mice following high salt diet, and a robust induction of enhanced green fluorescent protein (EGFP) expression mainly in renal medullary interstitial cells of the NFκB-EGFP reporter mice following high salt diet. Treating high salt diet-fed C57Bl/6 J mice with selective IκB kinase inhibitor IMD-0354 (8 mg/kg bw) substantially suppressed COX2 induction in renal medulla, and also significantly reduced urinary prostaglandin E2 (PGE2). These data therefore suggest that renal medullary interstitial cell NFκB plays an important role in mediating renal medullary COX2 expression and promoting renal PGE2 synthesis in response to increased dietary sodium.

  2. Investigation of chromatography and polymer/salt aqueous two-phase processes for downstream processing development of recombinant phenylalanine dehydrogenase.

    PubMed

    Omidinia, Eskandar; Shahbaz Mohamadi, Hamid; Dinarvand, Rassoul; Taherkhani, Heshmat-Allah

    2010-03-01

    This work presents a comprehensive study between the polymer/salt aqueous two-phase systems (ATPS) and chromatography process for downstream processing of recombinant Bacillus badius phenylalanine dehydrogenase (PheDH). First, the partitioning behavior of recombinant PheDH in polyethylene glycol (PEG)/K2HPO4 ATPS was examined. For comparative purpose, a classical chromatographic protocol was performed as well. Investigation of chromatography and ATPS procedures revealed that the ATPS comprising of 9% (w/w) PEG-6000, 16% (w/w) K2HPO4 and 16% (w/w) KCl with pH of 8.0, volume ratio (V ( R )) of 0.25, temperature of 25 degrees C and 40% (w/w) cell lysate ensured the most favorable approach for PheDH downstream process. A specific activity of 4,231.4 U/mg, a yield of 96.7% and a recovery of 162.0% were obtained. Furthermore, the shorter process time (4 vs. 48 h) and the lower total cost (4 vs. 20 euro) were additionally features that confirmed the suitability of proposed technique.

  3. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    EPA Science Inventory

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  4. Transcriptomic identification of salt-related genes and de novo assembly in common buckwheat (F. esculentum).

    PubMed

    Lu, Qi-Huan; Wang, Ya-Qi; Song, Jin-Nan; Yang, Hong-Bing

    2018-06-01

    Common buckwheat (F. esculentum), annually herbaceous crop, is prevalent in people's daily life with the increasing development of economics. Compared with wheat, it is highly praised with high content of rutin and flavonoid. Common buckwheat is recognized as healthy food with good taste, and the product price of which such as noodles, flour, bread and so on are higher than wheat, and the seeds of which are bigger than that of tartary buckwheat, so if common buckwheat are planted more widely, people will spend less money on this healthy and delicious food. However, soil salinity has been a giant problem for agriculture production. The cultivation of salt tolerant crop varieties is an effective way to make full use of saline alkali land, and the highest salinity that the common buckwheat can sow is at 6.0%, so we chose 100 mM as the concentration of NaCl for treatment. Then we conducted transcriptome comparison between control and treatment groups. Potential regulatory genes related salt stress in common buckwheat were identified. A total of 29.36 million clean reads were produced via an illumina sequencing approach. We de novo assembled these reads into a transcriptome dataset containing 43,772 unigenes with N50 length of 1778 bp. A total of 26,672 unigenes could be found matches in public databases. GO, KEGG and Swiss-Prot classification suggested the enrichment of these unigenes in 47 sub-categories, 25 KOG and 129 pathways, respectively. We got 385 differentially expressed genes (DEGs) after comparing the transcriptome data between salt treatment and control groups. There are some genes encoded for responsing to stimulus, cell killing, metabolic process, signaling, multi-organism process, growth and cellular process might be relevant to salt stress in common buckwheat, which will provide a valuable references for the study on mechanism of salt tolerance and will be used as a genetic information for cultivating strong salt tolerant common buckwheat varieties in the future. Copyright © 2018. Published by Elsevier Masson SAS.

  5. Reconstitution radicicol containing apolipoprotein B lipoparticle and tracing its cell uptake process by super resolution fluorescent microscopy.

    NASA Astrophysics Data System (ADS)

    Lin, Chung Ching; Lin, Po-Yen; Chang, Chia-Ching

    Apolipoprotein B (apoB) is the only protein of LDL. LDL delivers cholesterol, triacylglycerides and lipids to the target cells. Reconstitute apoB lipoparticle (rABL) will be an idea drug delivery vehicle for hydrophobic and amphiphilic materials delivery. It is challenged to renature ApoB into its functional state from denatured state. By using modified bile salt and radicicol (Rad) added over-critical refolding process, apoB can be restored into its native like state. The intrinsic fluorescence of apoB increased during the refolding process. Moreover, radicicol (Rad) molecules have been encapsulated into reconstitute rABL (Rad@rABL). To investigate the cell uptake mechanism of Rad@rABL, a super resolution ground state depletion (GSD) microscopy is used in this research. Fluorescence labeled Rad@rABL can be traced within the tumor cell. Key words: LDL, radicicol, protein refolding, super resolution microscopy.

  6. Molten salt electrolyte battery cell with overcharge tolerance

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  7. Abscisic Acid Metabolism in Salt-Stressed Cells of Dunaliella salina

    PubMed Central

    Cowan, A. Keith; Rose, Peter D.

    1991-01-01

    The interrelationship between abscisic acid (ABA) production and β-carotene accumulation was investigated in salt-stressed cells of the halotolerant green alga Dunaliella salina var bardawil. Cells were supplied with either R-[2-14C]mevalonolactone or [14C] sodium bicarbonate for 20 hours and then exposed to increased salinity (1.5 to 3.0 molar NaCl) for various lengths of time. Incorporation of label into abscisic acid and phaseic acid and the distribution of [14C]ABA between the cells and incubation media were monitored. [14C]ABA and [14C]phaseic acid were identified as products of both R-[2-14C]mevalonolactone and [14C]sodium bicarbonate metabolism. ABA metabolism was enhanced by hypersalinity stress. Actinomycin D, chloramphenicol, and cycloheximide abolished the stress-induced production of ABA, suggesting a role for gene activation in the process. Kinetic analysis of both ABA and β-carotene production demonstrated two stages of accelerated β-carotene production. In addition, ABA levels increased rapidly, and this increase occurred coincident with the early period of accelerated β-carotene production. A possible role for ABA as a regulator of carotenogenesis in cells of D. salina is therefore discussed. PMID:16668469

  8. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  9. Salt stress-induced transcription of σB- and CtsR-regulated genes in persistent and non-persistent Listeria monocytogenes strains from food processing plants.

    PubMed

    Ringus, Daina L; Ivy, Reid A; Wiedmann, Martin; Boor, Kathryn J

    2012-03-01

    Listeria monocytogenes is a foodborne pathogen that can persist in food processing environments. Six persistent and six non-persistent strains from fish processing plants and one persistent strain from a meat plant were selected to determine if expression of genes in the regulons of two stress response regulators, σ(B) and CtsR, under salt stress conditions is associated with the ability of L. monocytogenes to persist in food processing environments. Subtype data were also used to categorize the strains into genetic lineages I or II. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to measure transcript levels for two σ(B)-regulated genes, inlA and gadD3, and two CtsR-regulated genes, lmo1138 and clpB, before and after (t=10 min) salt shock (i.e., exposure of exponential phase cells to BHI+6% NaCl for 10 min at 37°C). Exposure to salt stress induced higher transcript levels relative to levels under non-stress conditions for all four stress and virulence genes across all wildtype strains tested. Analysis of variance (ANOVA) of induction data revealed that transcript levels for one gene (clpB) were induced at significantly higher levels in non-persistent strains compared to persistent strains (p=0.020; two-way ANOVA). Significantly higher transcript levels of gadD3 (p=0.024; two-way ANOVA) and clpB (p=0.053; two-way ANOVA) were observed after salt shock in lineage I strains compared to lineage II strains. No clear association between stress gene transcript levels and persistence was detected. Our data are consistent with an emerging model that proposes that establishment of L. monocytogenes persistence in a specific environment occurs as a random, stochastic event, rather than as a consequence of specific bacterial strain characteristics.

  10. Exploring Orthogonal Hydrogen Bonding towards Designing Organic-Salt-Based Supramolecular Gelators: Synthesis, Structures, and Anticancer Properties.

    PubMed

    Chakraborty, Poulami; Dastidar, Parthasarathi

    2018-05-18

    A series of primary ammonium monocarboxylate (PAM) salts derived from β-alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide⋅⋅⋅amide and PAM synthons on gelation. Single-crystal X-ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure-property correlation based on SXRD and powder X-ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA-MB-231, revealed that one of the PAM salts in the series, namely, PAA.B2, displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Asymmetric breathing motions of nucleosomal DNA and the role of histone tails

    NASA Astrophysics Data System (ADS)

    Chakraborty, Kaushik; Loverde, Sharon M.

    2017-08-01

    The most important packing unit of DNA in the eukaryotic cell is the nucleosome. It undergoes large-scale structural re-arrangements during different cell cycles. For example, the disassembly of the nucleosome is one of the key steps for DNA replication, whereas reassembly occurs after replication. Thus, conformational dynamics of the nucleosome is crucial for different DNA metabolic processes. We perform three different sets of atomistic molecular dynamics simulations of the nucleosome core particle at varying degrees of salt conditions for a total of 0.7 μs simulation time. We find that the conformational dynamics of the nucleosomal DNA tails are oppositely correlated from each other during the initial breathing motions. Furthermore, the strength of the interaction of the nucleosomal DNA tail with the neighboring H2A histone tail modulates the conformational state of the nucleosomal DNA tail. With increasing salt concentration, the degree of asymmetry in the conformation of the nucleosomal DNA tails decreases as both tails tend to unwrap. This direct correlation between the asymmetric breathing motions of the DNA tails and the H2A histone tails, and its decrease at higher salt concentrations, may play a significant role in the molecular pathway of unwrapping.

  12. Opposite extremes in ethylene/nitric oxide ratio induce cell death in suspension culture and root apices of tomato exposed to salt stress.

    PubMed

    Poór, P; Borbély, P; Kovács, Judit; Papp, Anita; Szepesi, Ágnes; Takács, Z; Tari, Irma

    2014-12-01

    The plant hormone ethylene or the gaseous signalling molecule nitric oxide (NO) may enhance salt stress tolerance by maintaining ion homeostasis, first of all K+/Na+ ratio of tissues. Ethylene and NO accumulation increased in the root apices and suspension culture cells of tomato at sublethal salt stress caused by 100 mM NaCl, however, the induction phase of programmed cell death (PCD) was different at lethal salt concentration. The production of ethylene by root apices and the accumulation of NO in the cells of suspension culture did not increase during the initiation of PCD after 250 mM NaCl treatment. Moreover, cells in suspension culture accumulated higher amount of reactive oxygen species which, along with NO deficiency contributed to cell death induction. The absence of ethylene in the apical root segments and the absence of NO accumulation in the cell suspension resulted in similar ion disequilibrium, namely K+/Na+ ratio of 1.41 ± 0.1 and 1.68 ± 0.3 in intact plant tissues and suspension culture cells, respectively that was not tolerated by tomato.

  13. Development of Biomimetic Hybrid Porous Scaffold of Chitosan/Polyvinyl Alcohol/Carboxymethyl Cellulose by Freeze-Dried and Salt Leached Technique.

    PubMed

    Kanimozhi, K; Basha, S Khaleel; Kumari, V Sugantha; Kaviyarasu, K

    2018-07-01

    Freeze drying and salt leaching methods were applied to fabricate Chitosan/Poly(vinyl alcohol)/Carboxymethyl cellulose (CPCMC) biomimetic porous scaffolds for soft tissue engineering. The properties of these scaffolds were investigated and compared to those by freeze drying and salt leaching methods respectively. The salt-leached CS/PVA/CMC scaffolds were easily formed into desired shapes with a uniformly distributed and interconnected pore structure with an average pore size. The mechanical strength of the scaffolds increased with the porosity, and were easily modulated by the addition of carboxymethyl cellulose. The morphology of the porous scaffolds observed using a SEM exhibited good porosity and interconnectivity of pores. MTT assay using L929 fibroblast cells demonstrated that the cell viability of the porous scaffold was good. Scaffolds prepared by salt leached method show larger swelling capacity, and mechanical strength, potent antibacterial activity and more cell viability than freeze dried method. It is found that salt leaching method has distinguished characteristics of simple, efficient, feasible and less economic than freeze dried scaffolds.

  14. Experiments and Modeling in Support of Generic Salt Repository Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generatingmore » nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.« less

  15. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    NASA Technical Reports Server (NTRS)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  16. Design of a bioresorbable polymeric scaffold for osteoblast culture

    NASA Astrophysics Data System (ADS)

    Ditaranto, Vincent M., Jr.

    Bioresorbable polymeric scaffolds were designed for the purpose of growing rat osteosarcoma cells (ROS 17/2.8) using the compression molding method. The material used in the construction of the scaffolds was a mixture of polycaprolactone (PCL), Hydroxyapatite (HA), Glycerin (GL) and salt (NaCl) for porosity. The concentration of the several materials utilized, was determined by volume. Past research at the University of Massachusetts Lowell (UML) has successfully utilized the compression molding method for the construction of scaffolds, but was unable to accomplish the goal of long term cell survival and complete cellular proliferation throughout a three dimensional scaffold. This research investigated various concentrations of the materials and molding temperatures used for the manufacture of scaffolds in order to improve the scaffold design and address those issues. The design of the scaffold using the compression molding process is detailed in the Method and Materials section of this thesis. The porogen (salt) used for porosity was suspected as a possible source of contamination causing cell apoptosis in past studies. This research addressed the issues for cell survival and proliferation throughout a three dimensional scaffold. The leaching of the salt was one major design modification. This research successfully used ultrasonic leaching in addition to the passive method. Prior to cell culture, the scaffolds were irradiated to 2.75 Mrad, with cobalt-60 gamma radionuclide. The tissue culture consisted of two trials: (1) cell culture in scaffolds cleaned with passive leaching; (2) cell culture with scaffolds cleaned with ultrasonic leaching. Cell survival and proliferation was accomplished only with the addition of ultrasonic leaching of the scaffolds. Analysis of the scaffolds included Scanning Electron Microscopy (SEM), Nikon light microscopy and x-ray mapping of the calcium, sodium and chloride ion distribution. The cells were analyzed by Environmental Scanning Electron Microscopy (ESEM) and Nikon light microscopy. The high magnification of ESEM up to 60,000 x revealed an unexpected discovery. The osteoblasts appeared to be remodeling the PCL scaffold shown in the last two figures of this research.

  17. Role of phi cells and the endodermis under salt stress in Brassica oleracea.

    PubMed

    Fernandez-Garcia, N; Lopez-Perez, L; Hernandez, M; Olmos, E

    2009-01-01

    Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.

  18. Improving bioelectricity generation and COD removal of sewage sludge in microbial desalination cell.

    PubMed

    Ebrahimi, Atieh; Yousefi Kebria, Daryoush; Darzi, Ghasem Najafpour

    2018-05-01

    Improving wastewater treatment process and water desalination are two important solutions for increasing the available supply of fresh water. Microbial desalination cells (MDCs) with common electrolytes display relatively low organic matter removal and high cost. In this study, sewage sludge was used as the substrate in the Microbial desalination cell (MDC) under three different initial salt concentrations (5, 20 and 35 g.L -1 ) and the maximum salt removal rates of 50.6%, 64% and 69.6% were obtained under batch condition, respectively. The MDC also produced the maximum power density of 47.1 W m -3 and the averaged chemical oxygen demand (COD) removal of 58.2 ± 0.89% when the initial COD was 6610 ± 83 mg L -1 . Employing treated sludge as catholyte enhanced COD removal and power density to 87.3% and 54.4 W m -3 , respectively, with counterbalancing pH variation in treated effluent. These promising results showed, for the first time, that the excess sewage sludge obtained from biological wastewater treatment plants could be successfully used as anolyte and catholyte in MDC, achieving organic matter biodegradation along with salt removal and energy production. In addition, using treated sludge as catholyte will improve the performance of MDC and introduce a more effective method for both sludge treatment and desalination.

  19. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives.

    PubMed

    Stockert, Juan C; Horobin, Richard W; Colombo, Lucas L; Blázquez-Castro, Alfonso

    2018-04-01

    For many years various tetrazolium salts and their formazan products have been employed in histochemistry and for assessing cell viability. For the latter application, the most widely used are 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and 5-cyano-2,3-di-(p-tolyl)-tetrazolium chloride (CTC) for viability assays of eukaryotic cells and bacteria, respectively. In these cases, the nicotinamide-adenine-dinucleotide (NAD(P)H) coenzyme and dehydrogenases from metabolically active cells reduce tetrazolium salts to strongly colored and lipophilic formazan products, which are then quantified by absorbance (MTT) or fluorescence (CTC). More recently, certain sulfonated tetrazolium, which give rise to water-soluble formazans, have also proved useful for cytotoxicity assays. We describe several aspects of the application of tetrazolium salts and formazans in biomedical cell biology research, mainly regarding formazan-based colorimetric assays, cellular reduction of MTT, and localization and fluorescence of the MTT formazan in lipidic cell structures. In addition, some pharmacological and labeling perspectives of these compounds are also described. Copyright © 2018 Elsevier GmbH. All rights reserved.

  20. Projected Salt Waste Production from a Commercial Pyroprocessing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, Michael F.

    Pyroprocessing of used nuclear fuel inevitably produces salt waste from electrorefining and/or oxide reduction unit operations. Various process design characteristics can affect the actual mass of such waste produced. This paper examines both oxide and metal fuel treatment, estimates the amount of salt waste generated, and assesses potential benefit of process options to mitigate the generation of salt waste. For reference purposes, a facility is considered in which 100 MT/year of fuel is processed. Salt waste estimates range from 8 to 20 MT/year from considering numerous scenarios. It appears that some benefit may be derived from advanced processes for separatingmore » fission products from molten salt waste, but the degree of improvement is limited. Waste form production is also considered but appears to be economically unfavorable. Direct disposal of salt into a salt basin type repository is found to be the most promising with respect to minimizing the impact of waste generation on the economic feasibility and sustainability of pyroprocessing.« less

  1. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Raymond, Carolyn

    2016-05-10

    Epidermal bladder cells (EBC) are large single-celled, specialized, and modified trichomes found on the aerial parts of the halophyte Mesembryanthemum crystallinum. Recent development of a simple but high throughput technique to extract the contents from these cells has provided an opportunity to conduct detailed single-cell-type analyses of their molecular characteristics at high resolution to gain insight into the role of these cells in the salt tolerance of the plant. In this study, we carry out large-scale complementary quantitative proteomic studies using both a label (DIGE) and label-free (GeLC-MS) approach to identify salt-responsive proteins in the EBC extract. Additionally we perform an ionomics analysis (ICP-MS) to follow changes in the amounts of 27 different elements. Using these methods, we were able to identify 54 proteins and nine elements that showed statistically significant changes in the EBC from salt-treated plants. GO enrichment analysis identified a large number of transport proteins but also proteins involved in photosynthesis, primary metabolism and Crassulacean acid metabolism (CAM). Validation of results by western blot, confocal microscopy and enzyme analysis helped to strengthen findings and further our understanding into the role of these specialized cells. As expected EBC accumulated large quantities of sodium, however, the most abundant element was chloride suggesting the sequestration of this ion into the EBC vacuole is just as important for salt tolerance. This single-cell type omics approach shows that epidermal bladder cells of M. crystallinum are metabolically active modified trichomes, with primary metabolism supporting cell growth, ion accumulation, compatible solute synthesis and CAM. Data are available via ProteomeXchange with identifier PXD004045.

  2. The Compound of Mangiferin-Berberine Salt Has Potent Activities in Modulating Lipid and Glucose Metabolisms in HepG2 Cells

    PubMed Central

    Wang, Can; Jiang, Jian-Dong; Wu, Wei; Kong, Wei-Jia

    2016-01-01

    The mangiferin-berberine (MB) salt was synthesized by ionic bonding of mangiferin (M) and berberine (B) at an equal molecular ratio. This study aimed to investigate the activities of MB salt in modulating lipid and glucose metabolisms in HepG2 cells. After 24 h treatment of the studying compounds, cellular AMP-activated protein kinase α (AMPKα)/acetyl-CoA carboxylase (ACC) protein levels and carnitine palmitoyltransferase (CPT) 1 activities, intracellular lipid contents, mRNA expression levels of target genes, glucose consumption, and glucose production amounts were determined. Compound C (CC) was used in the blocking experiments. Our results showed that MB salt increased p-AMPKα (Thr172)/p-ACC (Ser79) levels and CPT1 activity and suppressed oleic acid- (OA-) induced lipid accumulation and upregulation of lipogenic genes potently in HepG2 cells. The above activities of MB salt were AMPK dependent and were superior to those of M or B when administered at an equal molar concentration. MB salt enhanced basal and insulin-stimulated glucose consumption and suppressed gluconeogenesis more potently than M or B alone. The inhibiting activity of MB salt on cellular gluconeogenesis was AMPK dependent. Our results may support MB salt as a new kind of agent for the development of novel lipid or glucose-lowering drugs in the future. PMID:27123455

  3. γ-Aminobutyric Acid Imparts Partial Protection from Salt Stress Injury to Maize Seedlings by Improving Photosynthesis and Upregulating Osmoprotectants and Antioxidants

    PubMed Central

    Wang, Yongchao; Gu, Wanrong; Meng, Yao; Xie, Tenglong; Li, Lijie; Li, Jing; Wei, Shi

    2017-01-01

    γ-Aminobutyric acid (GABA) has high physiological activity in plant stress physiology. This study showed that the application of exogenous GABA by root drenching to moderately (MS, 150 mM salt concentration) and severely salt-stressed (SS, 300 mM salt concentration) plants significantly increased endogenous GABA concentration and improved maize seedling growth but decreased glutamate decarboxylase (GAD) activity compared with non-treated ones. Exogenous GABA alleviated damage to membranes, increased in proline and soluble sugar content in leaves, and reduced water loss. After the application of GABA, maize seedling leaves suffered less oxidative damage in terms of superoxide anion (O2·−) and malondialdehyde (MDA) content. GABA-treated MS and SS maize seedlings showed increased enzymatic antioxidant activity compared with that of untreated controls, and GABA-treated MS maize seedlings had a greater increase in enzymatic antioxidant activity than SS maize seedlings. Salt stress severely damaged cell function and inhibited photosynthesis, especially in SS maize seedlings. Exogenous GABA application could reduce the accumulation of harmful substances, help maintain cell morphology, and improve the function of cells during salt stress. These effects could reduce the damage to the photosynthetic system from salt stress and improve photosynthesis and chlorophyll fluorescence parameters. GABA enhanced the salt tolerance of maize seedlings. PMID:28272438

  4. Immunological biomarkers in salt miners exposed to salt dust, diesel exhaust and nitrogen oxides.

    PubMed

    Backé, Eva; Lotz, Gabriele; Tittelbach, Ulrike; Plitzko, Sabine; Gierke, Erhardt; Schneider, Wolfram Dietmar

    2004-06-01

    Air pollutants can affect lung function and also the immune system. In a study about lung function of salt miners in relation to the complex exposure in a salt mine, we also analysed selected immunological parameters and inflammation markers in the blood of miners. Effect of salt dust, diesel exhaust, nitrogen oxides (NOx) and smoking on the biomarkers was analysed. Blood was drawn from 286 salt miners, and the soluble intercellular adhesion molecule-1 (s-ICAM), monocyte chemotactic protein (MCP-1) and clara cell protein (CC16) were analysed by an immunoassay, blood profile was done and lymphocyte subpopulations (CD3, CD3/CD4, CD3/CD8, CD19, NK-cells, CD3/HLA-DR) were determined by flow cytometry. Salt dust was measured by two-step gravimetry (personal sampling). Diesel exhaust was measured as elemental carbon concentration by coulometry. NOx were determined by an electrochemical cell method. Differences between non-smokers, former smokers and active smokers were analysed by analysis of variance. Linear regression analysis to describe exposure-response relationships was done with regard to confounding factors [smoking, inflammatory diseases, time of blood drawing, respiratory infection and body-mass index (BMI)]. Significant differences between non-smokers and active smokers were found for most of the leukocyte types (e.g. granulocytes P = 0.000, lymphocytes P = 0.002, T-cells P = 0.033) and for some soluble parameters (ICAM P = 0.000, IgM P = 0.007, IgE P = 0.035). Increasing numbers of total lymphocytes, T-cells and HLA-DR positive T-cells in relation to exposure were found by linear regression analysis (e.g. for inhalable dust:total lymphocytes P = 0.011, T-cells P = 0.061, HLA-DR positive T-cells P = 0.007). CONCLUSION. Comparison of immunological markers in non-smokers and active smokers confirms leukocytosis and inflammation following tobacco consumption. The combined exposure of salt dust, diesel exhaust and NOx seems to influence the immune system. Together, the results suggest that the analysis of leukocytes and their subsets can complete other investigations (lung function, questionnaire) to monitor exposure-response relationships in occupational studies investigating the effect of inhaled substances. Longitudinal studies will be necessary to determine the predictive value of the immunological changes. Copyright 2004 Springer-Verlag

  5. Coupling desalination and energy storage with redox flow electrodes.

    PubMed

    Hou, Xianhua; Liang, Qian; Hu, Xiaoqiao; Zhou, Yu; Ru, Qiang; Chen, Fuming; Hu, Shejun

    2018-06-26

    Both freshwater shortage and energy crisis are global issues. Herein, we present a double-function system of faradaic desalination and a redox flow battery consisting of VCl3|NaI redox flow electrodes and a feed stream. The system has a nominal cell potential (E0 = +0.79 V). During the discharge process, the salt ions in the feed are extracted by the redox reaction of the flow electrodes, which is indicated by salt removal. Stable and reversible salt removal capacity and electricity can be achieved up to 30 cycles. The energy consumption is as low as 10.27 kJ mol-1 salt. The energy efficiency is as high as 50% in the current aqueous redox flow battery. With energy recovery, the desalination energy consumption decreases greatly to 5.38 kJ mol-1; this is the lowest reported value to date. This "redox flow battery desalination generator" can be operated in a voltage range of 0.3-1.1 V. Our research provides a novel method for obtaining energy-saving desalination and redox flow batteries.

  6. Molten carbonate fuel cell cathode with mixed oxide coating

    DOEpatents

    Hilmi, Abdelkader; Yuh, Chao-Yi

    2013-05-07

    A molten carbonate fuel cell cathode having a cathode body and a coating of a mixed oxygen ion conductor materials. The mixed oxygen ion conductor materials are formed from ceria or doped ceria, such as gadolinium doped ceria or yttrium doped ceria. The coating is deposited on the cathode body using a sol-gel process, which utilizes as precursors organometallic compounds, organic and inorganic salts, hydroxides or alkoxides and which uses as the solvent water, organic solvent or a mixture of same.

  7. Effects of salinity on the cellular physiological responses of Natrinema sp. J7-2

    PubMed Central

    Mei, Yunjun; Liu, Huan; Zhang, Shunxi; Yang, Ming; Hu, Chun; Zhang, Jian; Shen, Ping; Chen, Xiangdong

    2017-01-01

    The halophilic archaea (haloarchaea) live in hyersaline environments such as salt lakes, salt ponds and marine salterns. To cope with the salt stress conditions, haloarchaea have developed two fundamentally different strategies: the "salt-in" strategy and the "compatible-solute" strategy. Although investigation of the molecular mechanisms underlying the tolerance to high salt concentrations has made outstanding achievements, experimental study from the aspect of transcription is rare. In the present study, we monitored cellular physiology of Natrinema sp. J7-2 cells incubated in different salinity media (15%, 25% and 30% NaCl) from several aspects, such as cellular morphology, growth, global transcriptome and the content of intracellular free amino acids. The results showed that the cells were polymorphic and fragile at a low salt concentration (15% NaCl) but had a long, slender rod shape at high salt concentrations (25% and 30% NaCl). The cells grew best in 25% NaCl, mediocre in 30% NaCl and struggled in 15% NaCl. An RNA-seq analysis revealed differentially expressed genes (DEGs) in various salinity media. A total of 1,148 genes were differentially expressed, consisting of 719 DEGs (348 up-regulated and 371 down-regulated genes) between cells in 15% vs 25% NaCl, and 733 DEGs (521 up-regulated and 212 down-regulated genes) between cells in 25% vs 30% NaCl. Moreover, 304 genes were commonly differentially expressed in both 15% vs 25% and 25% vs30% NaCl. The DEGs were enriched in different KEGG metabolic pathways, such as amino acids, glycerolipid, ribosome, nitrogen, protoporphyrin, porphyrin and porhiniods. The intracellular predominant free amino acids consisted of the glutamate family (Glu, Arg and Pro), aspartate family (Asp) and aromatic amino acids (Phe and Trp), especially Glu and Asp. PMID:28926633

  8. Influence of salt content and processing time on sensory characteristics of cooked "lacón".

    PubMed

    Purriños, Laura; Bermúdez, Roberto; Temperán, Sara; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2011-04-01

    The influence of salt content and processing time on the sensory properties of cooked "lacón" were determined. "Lacón" is a traditional dry-cured and ripened meat product made in the north-west of Spain from the fore leg of the pig, following a similar process to that of dry-cured ham. Six batches of "lacón" were salted with different amounts of salt (LS (3 days of salting), MS (4 days of salting) and HS (5 days of salting)) and ripened during two times (56 and 84 days of dry-ripening). Cured odour in all batches studied, red colour and rancid odour in MS and HS batches, flavour intensity in MS batch and fat yellowness, rancid flavour and hardness in the HS batch were significantly different with respect to the time of processing. Appearance, odour, flavour and texture were not significantly affected by the salt content (P>0.05). However, the saltiness score showed significant differences with respect to the salt levels in all studied batches (56 and 84 days of process). The principal component analysis showed that physicochemical traits were the most important ones concerning the quality of dry-cured "lacón" and offered a good separation of the mean samples according to the dry ripening days and salt level. © 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  9. Electrodeposition of Dense Chromium Coatings from Molten Salt Electrolytes

    DTIC Science & Technology

    1991-04-01

    AD-A235 978 . JUN 03 391 ELECTRODEPOSITION OF DENSE CHROMIUM COATINGS FROM MOLTEN SALT ELECTROLYTES Final Technical Report J t ]Vgca or by ~ 4 OTC... molten salts , pulsed currents, electrodeposition. 2. The results, on the electrodeposition of dense chromium coatings from molten salt electrolytes... salts dissolved in molten salts using the cell Cl2/C/!Cr 2 + in LiCI-KCI//Cr metal The chromium ions are introduced by anodizing a piece of chromium and

  10. Transcript analysis in two alfalfa salt tolerance selected breeding populations relative to a non-tolerant population.

    PubMed

    Gruber, M Y; Xia, J; Yu, M; Steppuhn, H; Wall, K; Messer, D; Sharpe, A G; Acharya, S N; Wishart, D S; Johnson, D; Miller, D R; Taheri, A

    2017-02-01

    With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while expression remained unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population was observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa.

  11. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    PubMed

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  12. Production of carboxylic acid and salt co-products

    DOEpatents

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  13. New promising lithium malonatoborate salts for high voltage lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao -Guang; Wan, Shun; Guang, Hong Yu

    Here, three new lithium salts, lithium difluoro-2-methyl-2-fluoromalonaoborate (LiDFMFMB), lithium difluoro-2-ethyl-2-fluoromalonaoborate (LiDFEFMB), and lithium difluoro-2-propyl-2-fluoro malonaoborate (LiDFPFMB), have been synthesized and evaluated for application in lithium ion batteries. These new salts are soluble in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.) and 1.0 M salt solutions can be easily prepared. The ionic conductivities of these new salts are close to those of LiBF 4 and LiPF 6. Cyclic voltammograms reveal that these new salt based electrolytes can passivate both natural graphite and high voltage spinel LiNi 0.5Mn 1.5O 4 (LNMO) to form effective solidmore » electrolyte interphases (SEIs). In addition, these new salts based electrolytes exhibit good cycling stability with high coulombic efficiencies in both LiNi 0.5Mn 1.5O 4 and graphite based half-cells and full cells.« less

  14. New promising lithium malonatoborate salts for high voltage lithium ion batteries

    DOE PAGES

    Sun, Xiao -Guang; Wan, Shun; Guang, Hong Yu; ...

    2016-12-01

    Here, three new lithium salts, lithium difluoro-2-methyl-2-fluoromalonaoborate (LiDFMFMB), lithium difluoro-2-ethyl-2-fluoromalonaoborate (LiDFEFMB), and lithium difluoro-2-propyl-2-fluoro malonaoborate (LiDFPFMB), have been synthesized and evaluated for application in lithium ion batteries. These new salts are soluble in a mixture of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (1:2 by wt.) and 1.0 M salt solutions can be easily prepared. The ionic conductivities of these new salts are close to those of LiBF 4 and LiPF 6. Cyclic voltammograms reveal that these new salt based electrolytes can passivate both natural graphite and high voltage spinel LiNi 0.5Mn 1.5O 4 (LNMO) to form effective solidmore » electrolyte interphases (SEIs). In addition, these new salts based electrolytes exhibit good cycling stability with high coulombic efficiencies in both LiNi 0.5Mn 1.5O 4 and graphite based half-cells and full cells.« less

  15. Influence of the salting time on volatile compounds during the manufacture of dry-cured pork shoulder "lacón".

    PubMed

    Purriños, Laura; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2012-12-01

    The effect of the length of salting time on volatile compounds throughout the manufacture of dry-cured "lacón" was studied using a purge-and-trap extraction and GC/MS analysis. For this study, six treatments of "lacón" were salted with different amounts of salt (LS (3 days of salting), MS (4 days of salting) and HS (5 days of salting)). The total area of volatile compounds increased significantly (P<0.001) as the length of salting time increased. Significant differences were found for the total area of all aldehydes for each salting time at the end of process. Hexanal presented the most relative abundance, showing highest content in HS treatments while LS treatments showed the lowest one at the end of salting, post-salting and drying-ripening stage. The influence of salting time on the content of 3-Octen-2-one was significant on salting stage (P<0.001) and drying-ripening stage (P<0.01). The salting time affected (P<0.001) the relative abundance of esters at the end of salting and at the end of drying-ripening stage. The salting time affected significantly (P<0.001) on alcohols content at the end of drying-ripening process. However, no significant effect of salt level (P>0.05) was detected on total hydrocarbons and total furans at the end of process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Exogenous trehalose largely alleviates ionic unbalance, ROS burst, and PCD occurrence induced by high salinity in Arabidopsis seedlings

    PubMed Central

    Yang, Lei; Zhao, Xiaoju; Zhu, Hong; Paul, Matthew; Zu, Yuangang; Tang, Zhonghua

    2014-01-01

    Trehalose (Tre) has been reported to play a critical role in plant response to salinity and the involved mechanisms remain to be investigated in detail. Here, the putative roles of Tre in regulation of ionic balance, cellular redox state, cell death were studied in Arabidopsis under high salt condition. Our results found that the salt-induced restrictions on both vegetative and reproductive growth in salt-stressed plants were largely alleviated by exogenous supply with Tre. The microprobe analysis of ionic dynamics in the leaf and stem of florescence highlighted the Tre ability to retain K and K/Na ratio in plant tissues to improve salt tolerance. The flow cytometry assay of cellular levels of reactive oxygen species and programmed cell death displayed that Tre was able to antagonized salt-induced damages in redox state and cell death and sucrose did not play the same role with Tre. By comparing ionic distribution in leaf and inflorescence stem (IS), we found that Tre was able to restrict Na transportation to IS from leaves since that the ratio of Na accumulation in leaves relative to IS was largely improved due to Tre. The marked decrease of Na ion and improved sucrose level in IS might account for the promoted floral growth when Tre was included in the saline solution. At the same time, endogenous soluble sugars and antioxidant enzyme activities in the salt-stressed plants were also elevated by Tre to counteract high salt stress. We concluded that Tre could improve Arabidopsis salt resistance with respect to biomass accumulation and floral transition in the means of regulating plant redox state, cell death, and ionic distribution. PMID:25400644

  17. Comparative study of imide-based Li salts as electrolyte additives for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sharova, Varvara; Moretti, Arianna; Diemant, Thomas; Varzi, Alberto; Behm, R. Jürgen; Passerini, Stefano

    2018-01-01

    Herein, we report the results of a detailed study on the use of different Li imide salts (LiTFSI, LiFSI, and LiFTFSI) as electrolyte additives for lithium-ion batteries. The introduction of lithium imide salts in the electrolyte is shown to considerably improve the first cycle coulombic efficiency and the long-term cycling stability of graphite/LiFePO4 cells. Using LiTFSI, a capacity fading of only ∼2% occurred over 600 cycles while the control cell with the state-of-the-art additive (VC) lost ∼20% of the initial capacity at 20 °C. The results of the XPS and impedance spectroscopy measurements of graphite electrodes show that, after the formation cycle, the SEI obtained in the presence of imide salts is thinner, contains more LiF and is less resistive than that obtained using VC. Despite the beneficial effect of the imide salts on the lithium-ion cell performance, a slightly reduced thermal stability of the SEI is observed.

  18. Exacerbation of lupus nephritis by high sodium chloride related to activation of SGK1 pathway.

    PubMed

    Yang, Xi; Yao, Genhong; Chen, Weiwei; Tang, Xiaojun; Feng, Xuebing; Sun, Lingyun

    2015-12-01

    The objective of this study is to explore the effects of high salt diet (HSD) on the severity of lupus nephritis (LN) and its mechanism. MRL/lpr mice were randomly divided into two groups, which were fed with normal diet or sodium-rich chow and tap. C57BL/6 mice were selected as control. Spleen Th1, Th2, Th17 and Treg cells were detected by flow cytometry. Serum TGF-β and IL-17 were measured by enzyme-linked immunosorbent assay. CD4(+) T cells from Systemic Lupus Erythematosus (SLE) patients and healthy donors were treated by NaCl with or without SGK1 inhibitor. Then, Th17 and Treg cells were detected. The HSD MRL/lpr mice had decreased survival rate and increased disease severity. The frequencies of Th1 and Th17 cells increased in HSD treatment group. The ratios of Th1/Th2 and Th17/Treg in HSD treated MRL/lpr mice significantly increased. Serum TGF-β increased after HSD treatment. In vitro, high salt could up-regulate Th17 cells of CD4(+) T cells. The effects of high salt treatment on CD4(+) T cells were reversed by SGK1 inhibitor. Our findings demonstrated that excessive intake of salt in diet is an aggravating factor for LN. High salt diet may deteriorate LN through SGK1 pathway. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Production and engineering methods for CARB: TEK (trade name) batteries in fork lift trucks

    NASA Astrophysics Data System (ADS)

    Schaefer, J. C.

    1975-03-01

    The purpose of this program is to develop the manufacturing technology of the Carb Tek molten salt Li/Cl battery to the prototype level. This purpose is being accomplished by actually constructing cells on a pilot line, optimizing process steps, establishing quality control procedures, and engineering appropriate changes. The majority of the cell work is performed in a controlled argon atmosphere. Results show that the carbon selected for the cell cathode can develop the required 5 Whr/cubic inch even when damaged by stress cracks. Anode contamination and fabrication problems have been reduced by a new alloying technique. Cell yields are dependent on weld quality.

  20. Nitrate salts suppress sporulation and production of enterotoxin in Clostridium perfringens strain NCTC8239.

    PubMed

    Yasugi, Mayo; Otsuka, Keisuke; Miyake, Masami

    2016-10-01

    Clostridium perfringens type A is a common source of food-borne illness in humans. Ingested vegetative cells sporulate in the small intestinal tract and in the process produce C. perfringens enterotoxin (CPE). Although sporulation plays a critical role in the pathogenesis of food-borne illness, the molecules triggering/inhibiting sporulation are still largely unknown. It has previously been reported by our group that sporulation is induced in C. perfringens strain NCTC8239 co-cultured with Caco-2 cells in Dulbecco's Modified Eagle Medium (DMEM). In contrast, an equivalent amount of spores was not observed when bacteria were co-cultured in Roswell Park Memorial Institute-1640 medium (RPMI). In the present study it was found that, when these two media are mixed, RPMI inhibits sporulation and CPE production induced in DMEM. When a component of RPMI was added to DMEM, it was found that calcium nitrate (Ca[NO 3 ] 2 ) significantly inhibits sporulation and CPE production. The number of spores increased when Ca(NO 3 ) 2 -deficient RPMI was used. The other nitrate salts significantly suppressed sporulation, whereas the calcium salts used did not. qPCR revealed that nitrate salts increased expression of bacterial nitrate/nitrite reductase. Furthermore, it was found that nitrite and nitric oxide suppress sporulation. In the sporulation stages, Ca(NO 3 ) 2 down-regulated the genes controlled by Spo0A, a master regulator of sporulation, but not spo0A itself. Collectively, these results indicate that nitrate salts suppress sporulation and CPE production by down-regulating Spo0A-regulated genes in C. perfringens strain NCTC8239. Nitrate reduction may be associated with inhibition of sporulation. © 2016 The Societies and John Wiley & Sons Australia, Ltd.

  1. Incorporation of quaternary ammonium salts containing different counterions to improve the performance of inverted perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Yan, Po-Ruei; Huang, Wei-Jie; Yang, Sheng-Hsiung

    2017-02-01

    In this research, three quaternary ammonium salts containing different counterions, including tetrabutylammonium bromide (TBABr), tetrabutylammonium tetrafluoroborate (TBABF4), and tetrabutylammonium hexafluorophosphate (TBAPF6), were incorporated into [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) as electron transporting layer (ETL). These salts-doped PCBM films revealed higher electron mobility and Fermi levels compared with the un-doped one. Better charge transfer at the interface between perovskite and salts-doped PCBM was also obtained from PL quenching experiments. Inverted perovskite solar cells with the configuration of ITO/PEDOT:PSS/CH3NH3PbI3/PCBM + salts/Ag were fabricated, and the JSC and FF of devices were significantly enhanced using salts-doped PCBM as ETL. The best device based on TBABF4-doped PCBM delivered a power conversion efficiency (PCE) up to 13.41%, which was superior to the one with undoped PCBM layer (PCE = 8.77%).

  2. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria

    USGS Publications Warehouse

    Hatzinger, P.B.; Palmer, P.; Smith, R.L.; Penarrieta, C.T.; Yoshinari, T.

    2003-01-01

    A study was undertaken to measure aerobic respiration by indigenous bacteria in a sand and gravel aquifer on western Cape Cod, MA using tetrazolium salts and by direct oxygen consumption using gas chromatography (GC). In groundwater and aquifer slurries, the rate of aerobic respiration calculated from the direct GC assay was more than 600 times greater than that using the tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl tetrazolium chloride (INT). To explain this discrepancy, the toxicity of INT and two additional tetrazolium salts, sodium 3???-[1-(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro) benzenesulfonic acid hydrate (XTT) and 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), to bacterial isolates from the aquifer was investigated. Each of the three tetrazolium salts was observed to be toxic to some of the groundwater isolates at concentrations normally used in electron transport system (ETS) and viability assays. For example, incubation of cells with XTT (3 mM) caused the density of four of the five groundwater strains tested to decline by more than four orders of magnitude. A reasonable percentage (>57%) of cells killed by CTC and INT contained visible formazan crystals (the insoluble, reduced form of the salts) after 4 h of incubation. Thus, many of the cells reduced enough CTC or INT prior to dying to be considered viable by microscopic evaluation. However, one bacterium (Pseudomonas fluorescens) that remained viable and culturable in the presence of INT and CTC, did not incorporate formazan crystals into more than a few percent of cells, even after 24 h of incubation. This strain would be considered nonviable based on traditional tetrazolium salt reduction assays. The data show that tetrazolium salt assays are likely to dramatically underestimate total ETS activity in groundwater and, although they may provide a reasonable overall estimate of viable cell numbers in a community of groundwater bacteria, some specific strains may be falsely considered nonviable by this assay due to poor uptake or reduction of the salts. ?? 2003 Elsevier Science B.V. All rights reserved.

  3. Enhanced Carrier Collection from CdS Passivated Grains in Solution-Processed Cu2ZnSn(S,Se)4 Solar Cells.

    PubMed

    Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N

    2015-06-10

    Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zidan, Ragaiy

    A process of using an electrochemical cell to generate aluminum hydride (AlH.sub.3) and other high capacity hydrides is provided. The electrolytic cell uses an electro-catalytic-additive within a polar non-salt containing solvent to solubilize an ionic hydride such as NaAlH.sub.4 or LiAlH.sub.4. The resulting electrochemical process results in the formation of AlH.sub.3 adduct. AlH.sub.3 is obtained from the adduct by heating under vacuum. The AlH.sub.3 can be recovered and used as a source of hydrogen for the automotive industry. The resulting spent aluminum can be regenerated into NaAlH.sub.4 or LiAlH.sub.4 as part of a closed loop process of AlH.sub.3 generation.

  5. ADR salt pill design and crystal growth process for hydrated magnetic salts

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  6. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  7. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  8. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  9. Water-Free Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin

    2007-01-01

    Poly-4-vinylpyridinebisulfate (P4VPBS) is a polymeric salt that has shown promise as a water-free proton-conducting material (solid electrolyte) suitable for use in membrane/electrode assemblies in fuel cells. Heretofore, proton-conducting membranes in fuel cells have been made from perfluorinated ionomers that cannot conduct protons in the absence of water and, consequently, cannot function at temperatures >100 C. In addition, the stability of perfluorinated ionomers at temperatures >100 C is questionable. However, the performances of fuel cells of the power systems of which they are parts could be improved if operating temperatures could be raised above 140 C. What is needed to make this possible is a solid-electrolyte material, such as P4VPBS, that can be cast into membranes and that both retains proton conductivity and remains stable in the desired higher operating temperature range. A family of solid-electrolyte materials different from P4VPBS was described in Anhydrous Proton-Conducting Membranes for Fuel Cells (NPO-30493), NASA Tech Briefs, Vol. 29, No. 8 (August 2005), page 48. Those materials notably include polymeric quaternized amine salts. If molecules of such a polymeric salt could be endowed with flexible chain structures, it would be possible to overcome the deficiencies of simple organic amine salts that must melt before being able to conduct protons. However, no polymeric quaternized amine salts have yet shown to be useful in this respect. The present solid electrolyte is made by quaternizing the linear polymer poly- 4-vinylpyridine (P4VP) to obtain P4VPBS. It is important to start with P4VP having a molecular weight of 160,000 daltons because P4VPBS made from lower-molecular-weight P4VP yields brittle membranes. In an experimental synthesis, P4VP was dissolved in methanol and then reacted with an excess of sulfuric acid to precipitate P4VPBS. The precipitate was recovered, washed several times with methanol to remove traces of acid, and dried to a white granular solid. In another synthesis, nanoparticles of silica rich with surface hydroxyl groups were added to P4VP in methanol solution, which was then reacted with excess sulfuric acid to precipitate granules of a composite that most probably had the composition (P4VPBS)-SiO2-SiO(HSO4)2. The granular P4VPBS produced in the first-mentioned synthesis was dissolved in water to make a glue-like, turbid solution; the granular P4VPBS/silica composite produced in the second-mentioned synthesis was mixed with water to make a turbid, glue-like suspension. The proportions of polymer salt to water in such preparations can be varied; it was found that approximately equal parts of water and polymer salt yield a solution or suspension amenable to further processing.

  10. Influence of aldosterone and salt or ouabain in a10 rat aorta smooth muscle cells.

    PubMed

    Schwerdt, Gerald; Frisch, Annett; Mildenberger, Sigrid; Hilgenfeld, Tim; Grossmann, Claudia; Gekle, Michael

    2012-01-01

    It is currently under debate whether aldosterone is able to induce fibrosis or whether it acts only as a cofactor under pathological conditions, e.g. as an elevated salt (NaCl) load. We tested the interaction of 10 nM aldosterone, 15 mM NaCl and 1 μM ouabain using rat aorta smooth muscle cells (A10) with respect to the following parameters: necrosis, apoptosis, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase activity, glutathione (GSH) content, collagen and fibronectin homeostasis and intracellular calcium distribution. Necrosis rates were increased after 48 h of incubation with aldosterone, salt or ouabain and in the combination of aldosterone and salt or ouabain. Apoptosis rates were decreased. A reduced defense capacity against oxidative stress was mirrored in the decreased G6PD activity and GSH content. Collagen III or fibronectin synthesis rates were unchanged, but gelatinase activity was increased resulting in a decreased media collagen III and fibronectin content. Calcium stores were increased by aldosterone in combination with ouabain. Aldosterone and salt per se can lead to cell injury that is aggravated in combination or with cardiotonic steroids. In cooperation with other vascular cells, this can generate a permissive milieu enabling aldosterone or salt to promote more extensive vascular injury. Copyright © 2012 S. Karger AG, Basel.

  11. Physiologic regulation of atrial natriuretic peptide receptors in rat renal glomeruli.

    PubMed Central

    Ballermann, B J; Hoover, R L; Karnovsky, M J; Brenner, B M

    1985-01-01

    Isolated rat renal glomeruli and cultured glomerular mesangial and epithelial cells were examined for atrial natriuretic peptide (ANP) receptors, and for ANP-stimulated cyclic guanosine monophosphate (cGMP) generation. In glomeruli from normal rats, human (1-28) 125I-ANP bound to a single population of high affinity receptors with a mean equilibrium dissociation constant of 0.46 nM. Human (1-28) ANP markedly stimulated cGMP generation, but not cAMP generation in normal rat glomeruli. Analogues of ANP that bound to the glomerular ANP receptor with high affinity stimulated cGMP accumulation, whereas the (13-28) ANP fragment, which failed to bind to the receptor, was devoid of functional activity. Cell surface receptors for ANP were expressed on cultured glomerular mesangial but not epithelial cells, and appreciable ANP-stimulated cGMP accumulation was elicited only in mesangial cells. Approximately 12,000 ANP receptor sites were present per mesangial cell, with an average value for the equilibrium dissociation constant of 0.22 nM. Feeding of a low-salt diet to rats for 2 wk resulted in marked up regulation of the glomerular ANP receptor density to a mean of 426 fmol/mg protein, compared with 116 fmol/mg in rats given a high-salt diet. A modest reduction in the affinity of glomerular ANP receptors was also observed in rats fed the low-salt diet. ANP-stimulated cGMP generation in glomeruli did not change with alterations in salt intake. We conclude that high salt feeding in the rat results in reduced glomerular ANP receptor density relative to values in salt restricted rats. Furthermore, the mesangial cell is a principal target for ANP binding in the glomerulus. Images PMID:3001139

  12. Retinal vasculopathy is reduced by dietary salt restriction: involvement of Glia, ENaCα, and the renin-angiotensin-aldosterone system.

    PubMed

    Deliyanti, Devy; Armani, Roksana; Casely, David; Figgett, William A; Agrotis, Alex; Wilkinson-Berka, Jennifer L

    2014-09-01

    Neovascularization and vaso-obliteration are vision-threatening events that develop by interactions between retinal vascular and glial cells. A high-salt diet is causal in cardiovascular and renal disease, which is linked to modulation of the renin-angiotensin-aldosterone system. However, it is not known whether dietary salt influences retinal vasculopathy and if the renin-angiotensin-aldosterone system is involved. We examined whether a low-salt (LS) diet influenced vascular and glial cell injury and the renin-angiotensin-aldosterone system in ischemic retinopathy. Pregnant Sprague Dawley rats were fed LS (0.03% NaCl) or normal salt (0.3% NaCl) diets, and ischemic retinopathy was induced in the offspring. An LS diet reduced retinal neovascularization and vaso-obliteration, the mRNA and protein levels of the angiogenic factors, vascular endothelial growth factor, and erythropoietin. Microglia, which influence vascular remodeling in ischemic retinopathy, were reduced by LS as was tumor necrosis factor-α. Macroglial Müller cells maintain the integrity of the blood-retinal barrier, and in ischemic retinopathy, LS reduced their gliosis and also vascular leakage. In retina, LS reduced mineralocorticoid receptor, angiotensin type 1 receptor, and renin mRNA levels, whereas, as expected, plasma levels of aldosterone and renin were increased. The aldosterone/mineralocorticoid receptor-sensitive epithelial sodium channel alpha (ENaCα), which is expressed in Müller cells, was increased in ischemic retinopathy and reduced by LS. In cultured Müller cells, high salt increased ENaCα, which was prevented by mineralocorticoid receptor and angiotensin type 1 receptor blockade. Conversely, LS reduced ENaCα, angiotensin type 1 receptor, and mineralocorticoid receptor expression. An LS diet reduced retinal vasculopathy, by modulating glial cell function and the retinal renin-angiotensin-aldosterone system. © 2014 American Heart Association, Inc.

  13. The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production.

    PubMed

    Hounslow, Emily; Kapoore, Rahul Vijay; Vaidyanathan, Seetharaman; Gilmour, D James; Wright, Phillip C

    2016-11-01

    Algal cells produce neutral lipid when stressed and this can be used to generate biodiesel. Salt stressed cells of the model microalgal species Chlamydomonas reinhardtii were tested for their suitability to produce lipid for biodiesel. The starchless mutant of C. reinhardtii (CC-4325) was subjected to salt stress (0.1, 0.2 and 0.3 M NaCl) and transesterification and GC analysis were used to determine fatty acid methyl ester (FAME) content and profile. Fatty acid profile was found to vary under salt stress conditions, with a clear distinction between 0.1 M NaCl, which the algae could tolerate, and the higher levels of NaCl (0.2 and 0.3 M), which caused cell death. Lipid content was increased under salt conditions, either through long-term exposure to 0.1 M NaCl, or short-term exposure to 0.2 and 0.3 M NaCl. Palmitic acid (C16:0) and linolenic acid (C18:3n3) were found to increase significantly at the higher salinities. Salt increase can act as a lipid trigger for C. reinhardtii.

  14. Platinum Recovery from Synthetic Extreme Environments by Halophilic Bacteria.

    PubMed

    Maes, Synthia; Props, Ruben; Fitts, Jeffrey P; Smet, Rebecca De; Vilchez-Vargas, Ramiro; Vital, Marius; Pieper, Dietmar H; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-03-01

    Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.

  15. Nanoparticle/Polymer assembled microcapsules with pH sensing property.

    PubMed

    Zhang, Pan; Song, Xiaoxue; Tong, Weijun; Gao, Changyou

    2014-10-01

    The dual-labeled microcapsules via nanoparticle/polymer assembly based on polyamine-salt aggregates can be fabricated for the ratiometric intracellular pH sensing. After deposition of SiO2 nanoparticles on the poly(allylamine hydrochloride)/multivalent anionic salt aggregates followed by silicic acid treatment, the generated microcapsules are stable in a wide pH range (3.0 ∼ 8.0). pH sensitive dye and pH insensitive dye are simultaneously labeled on the capsules, which enable the ratiometric pH sensing. Due to the rough and positively charged surface, the microcapsules can be internalized by several kinds of cells naturally. Real-time measurement of intracellular pH in several living cells shows that the capsules are all located in acidic organelles after being taken up. Furthermore, the negatively charged DNA and dyes can be easily encapsulated into the capsules via charge interaction. The microcapsules with combination of localized pH sensing and drug loading abilities have many advantages, such as following the real-time transportation and processing of the carriers in cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Lee, Ok Joo; Lee, Min Chae; Moon, Bo Mi; Ju, Hyung Woo; Lee, Jung min; Kim, Jung-Ho; Kim, Dong Wook; Park, Chan Hum

    2015-01-01

    Silk fibroin is a biomaterial being actively studied in the field of bone tissue engineering. In this study, we aimed to select the best strategy for bone reconstruction on scaffolds by changing various conditions. We compared the characteristics of each scaffold via structural analysis using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), the swelling ratio, water uptake, porosity, compressive strength, cell infiltration and cell viability (CCK-8). The scaffolds had high porosity with good inter pore connectivity and showed high compressive strength and modulus. In addition, to confirm bone reconstruction, animal studies were conducted in which samples were implanted in rat calvaria and investigated by micro-CT scans. In conclusion, the presented study indicates that using sucrose produces scaffolds showing better pore interconnectivity and cell infiltration than scaffolds made by using a salt process. In addition, in vivo experiments showed that hydroxyapatite accelerates bone reconstruction on implanted scaffolds. Accordingly, our scaffold will be expected to have a useful application in bone reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Process for making silver metal filaments

    DOEpatents

    Bamberger, Carlos E.

    1997-01-01

    A process for making silver metal particles from silver salt particles having the same morphology. Precursor silver salt particles selected from the group consisting of silver acetate and silver sulfide having a selected morphology are contained in a reactor vessel having means for supporting the particles in an air suspension to prevent the agglomeration of the particles. Air is flowed through the reactor vessel at a flow rate sufficient to suspend the particles in the reactor vessel. The suspended precursor silver salt particles are heated to a processing temperature and at a heating rate below which the physical deterioration of the suspended precursor silver salt particles takes place. The suspended precursor silver salt particles are maintained at the processing temperature for a period of time sufficient to convert the particles into silver metal particles having the same morphology as the precursor silver salt particles.

  18. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, John P.; Johnson, Terry R.

    1994-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  19. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner.

  20. Process to remove rare earth from IFR electrolyte

    DOEpatents

    Ackerman, J.P.; Johnson, T.R.

    1994-08-09

    The invention is a process for the removal of rare earths from molten chloride electrolyte salts used in the reprocessing of integrated fast reactor fuel (IFR). The process can be used either continuously during normal operation of the electrorefiner or as a batch process. The process consists of first separating the actinide values from the salt before purification by removal of the rare earths. After replacement of the actinides removed in the first step, the now-purified salt electrolyte has the same uranium and plutonium concentration and ratio as when the salt was removed from the electrorefiner. 1 fig.

  1. Integrated processes for desalination and salt production: A mini-review

    NASA Astrophysics Data System (ADS)

    Wenten, I. Gede; Ariono, Danu; Purwasasmita, Mubiar; Khoirudin

    2017-03-01

    The scarcity of fresh water due to the rapid growth of population and industrial activities has increased attention on desalination process as an alternative freshwater supply. In desalination process, a large volume of saline water is treated to produce freshwater while a concentrated brine is discharged back into the environment. The concentrated brine contains a high concentration of salt and also chemicals used during desalination operations. Due to environmental impacts arising from improper treatment of the brine and more rigorous regulations of the pollution control, many efforts have been devoted to minimize, treat, or reuse the rejected brine. One of the most promising alternatives for brine handling is reusing the brine which can reduce pollution, minimize waste volume, and recover valuable salt. Integration of desalination and salt production can be implemented to reuse the brine by recovering water and the valuable salts. The integrated processes can achieve zero liquid discharge, increase water recovery, and produce the profitable salt which can reduce the overall desalination cost. This paper gives an overview of desalination processes and the brine impacts. The integrated processes, including their progress and advantages in dual-purpose desalination and salt production are discussed.

  2. Nutritional modelling: distributions of salt intake from processed foods in New Zealand.

    PubMed

    Thomson, Barbara M

    2009-09-01

    The salt content of processed foods is important because of the high intake of Na by most New Zealanders. A database of Na concentrations in fifty-eight processed foods was compiled from existing and new data and combined with 24 h diet recall data from two national nutrition surveys (5771 respondents) to derive salt intakes for seven population groups. Mean salt intakes from processed foods ranged from 6.9 g/d for young males aged 19-24 years to 3.5 g/d for children aged 5-6 years. A total of > or = 50 % of children aged 5-6 years, boys aged 11-14 years and young males aged 19-24 years had salt intakes that exceeded the upper limit for Na, calculated as salt (3.2-5.3 g/d), from processed foods only. Bread accounted for the greatest contribution to salt intake for each population group (35-43 % of total salt intake). Other foods that contributed 2 % or more and common across most age groups were sausage, meat pies, pizza, instant noodles and cheese. The Na concentrations of key foods have changed little over the 16-year period from 1987 to 2003 except for corned beef and whole milk that have decreased by 34 and 50 % respectively. Bread is an obvious target for salt reduction but the implication on iodine intake needs consideration as salt is used as a vehicle for iodine fortification of bread.

  3. Synthesis, anti-proliferative activity, SAR study, and preliminary in vivo toxicity study of substituted N,N'-bis(arylmethyl)benzimidazolium salts against a panel of non-small cell lung cancer cell lines.

    PubMed

    Shelton, Kerri L; DeBord, Michael A; Wagers, Patrick O; Southerland, Marie R; Williams, Travis M; Robishaw, Nikki K; Shriver, Leah P; Tessier, Claire A; Panzner, Matthew J; Youngs, Wiley J

    2017-01-01

    A series of N,N'-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N 1 (N 3 )) and highly lipophilic substituents at the carbon atoms (C 2 and C 5 (C 6 )) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute's Developmental Therapeutics Program tested 1, 3-5, 10, 11, 13-18, 20-25, and 28-30 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extractive cultivation of recombinant Escherichia coli using aqueous two-phase systems for production and separation of intracellular heat shock proteins.

    PubMed

    Umakoshi, H; Yano, K; Kuboi, R; Komasawa, I

    1996-01-01

    The extractive cultivation of recombinant Escherichia coli cells to produce, release, and separate heat shock proteins (HSPs; GroEL and GroES) using poly(ethylene glycol) (PEG)/dextran (Dex) aqueous two-phase systems was developed. The growth rate of E. coli OW10/pND5 cells in the PEG/Dex two-phase media was almost the same value as that in the control media. The addition of 0.1 M potassium phosphate salts (KPi) increased the productivity of HSPs with keeping the growth rate of E. coli cells relatively high. The partition coefficients of HSPs were improved to greater values when phosphate salts were added at a concentration of more than 0.1 M. As a result, PEG/Dex systems supplemented with 0.1 M KPi were found to be the optimized two-phase systems for the extractive cultivation of E. coli cells. In the systems, the HSPs were selectively partitioned to the top phase while cells occupied the bottom phase and the interface between the two phases. This integrated process was extended to a semicontinuous operating mode, where the top phase containing the HSPs was recovered following intermittent heating and ultrasonic irradiation. The bottom phase containing cells and cell debris was recycled together with new top phase solution to repeat production and recovery of HSPs.

  5. STUDIES UPON CALCAREOUS DEGENERATION

    PubMed Central

    Klotz, Oskar

    1905-01-01

    It will be seen from the above that we have studied the conditions associated with the deposit of calcareous salts: (I) in connection with normal and pathological ossification, and (2) in pathological calcification as exhibited in (a) atheroma of the vessels; (b) calcification of caseating tubercular lesions; (c) calcification of inflammatory new growth, and (d) degenerating tumors; and we have induced experimentally deposits of calcareous salts in the lower animals: (a) within celloidin capsules containing fats and soaps; (b) in the kidney, and (c) in connection with fat necrosis. I. We have found that bone formation and pathological calcareous infiltration are wholly distinct processes. In the former there is no evidence of associated fatty change, and the cells associated with the process of deposition of calcium are functionally active. In the latter there is an antecedent fatty change in the affected areas, and the cells involved present constant evidences of degeneration. The view that would seem to account best for the changes observed in the latter case is that with lowered vitality the cells are unable to utilize the products brought to them by the blood, or which they continue to absorb, so that the normal series of decompositions associated with their metabolism fails to take place and hence they interact among themselves in the cytoplasm with the result that insoluble compounds replace soluble ones. II. Besides the fact that calcification is always preceded by fatty change within the cells, another fact should be emphasized. namely: that combination of the fats present with calcium salts to form calcium soaps tends to occur. The stages immediately preceding these are difficult to follow with anything approaching certainty, perhaps because the earlier stages vary under different conditions. In fat necrosis, for instance, the cells affected are normally storehouses for neutral fats, and as long as they remain healthy neutral fats alone are present in them. When they are subjected to the action of the pancreatic juice with its fat-splitting ferment the cells are killed and coincidently the neutral fats are decomposed, fatty acids being deposited. The fatty acids now slowly combine with the calcium salts. In degenerating lipomata the process would seem to be similar. But in other cases the cells are not obviously fat-containing in the normal state; nevertheless prior to calcification they undergo so-called fatty degeneration, which is really a form of cell degeneration accompanied by fat infiltration. As regards the source of the cell fats in general we may safely accept: 1. That fats are transported in the blood as diffusible soaps. 2. That taken up by the cells these soaps may either— (a) Be reconverted into neutral fats and become stored in the cytoplasm as such, or (b) undergo assimilation proper, becoming part and parcel of the cell substance, in which case they are not recognizable by the ordinary microchemical tests. 3. If these two possibilities be accepted it follows that the appearance of fats and soaps in the degenerating cell may be due to either— (a) Absorption or infiltration of soaps from the surrounding medium, the degenerating cell retaining the power of splitting off the fat but being unable to utilize this in metabolism. (b) Cytoplasmic disintegration with dissociation of the soap-albumen combination or, more broadly, liberation of the fats from their combination with the cytoplasm. The appearances seen in the cells of atheromatous areas indicate that the first of these does occur. III. In areas undergoing calcareous infiltration we have demonstrated. the presence of soaps, and this often in such quantities that they can be isolated and estimated by gross chemical methods. By microchemical methods also we have been able to show that after removing all the neutral fats and fatty acids by petroleum ether there remains behind a substance giving with Sudan III the reaction we associate with the presence of soap. And experimentally we have produced these soaps within the organism, more particularly by placing capsules containing fats and fatty acids within the tissues and after several days finding that the capsules contain calcium soaps and possess a calcium content far in excess of that of the normal blood and lymph. IV. While these are the facts, certain of the details of this reaction demand elucidation. The existence of sodium and it may be potassium soaps in the degenerated cells is comprehensible if we accept that these are present in the circulating lymph and simply undergoing absorption. But even then, as these are diffusible substances how is it to be explained that they become stored up in these particular areas? We have found that, as a matter of fact, in regions which give the reaction for soaps, but which give no reaction for calcium (which therefore presumably contain at most amounts of the insoluble calcium soap too small to need consideration, the ordinary solvents for potassium and sodium soaps do not forthwith remove the stainable material; they are relatively insoluble. The reason for this insolubility is suggested by the observations made in the test tube, that soap solutions mixed with solutions of white of egg or blood serum form a precipitate of combined soap and albumen, which likewise is insoluble in water and alcohol. The indications are therefore that in cells undergoing degeneration, with degeneration of the cytoplasm, certain albuminous molecules unite with the soaps present to form relatively insoluble soap-albuminate. V. With regard to calcium soaps, these are also present and in certain stages appear to be the dominating form in the affected tissues. Two questions suggest themselves, viz.: what is the source of calcium, and what is the process by which they become formed? As to the source, the amount present in well-marked calcification is far in excess of the normal calcium contents of the affected tissue. If in the kidneys of experimental calcification three hundred times as much calcium may be present as in the normal kidney (von Kossa), the calcium must be conveyed to the part by the blood and lymph, and that this is so is demonstrated, as we have pointed out, by the distribution of the infiltration in solid organs, that like ovarian fibroids have undergone necrosis, in which the earliest deposits are superficial. As to the process, there are three possibilities: 1. That sodium and potassium soaps and soap albuminates are first formed and that interaction occurs between them and the diffused calcium salts from the lymph, the less soluble-calcium replacing the sodium and potassium. 2. That under certain conditions the calcium salts act directly on the neutral fats present in the degenerating cells. 3. That the neutral fats are first broken down into fatty acids and that these react with the calcium salts to form the soaps. We are assured that the first process occurs and that because in the boundary zone of areas of calcification we can detect soapy particles devoid of calcium, identical in position and arrangement with the particles more deeply placed which give the calcium reactions. But this is not the only reaction. In case of fat necrosis we see clearly that the third process is in evidence. And we are far from being convinced that the second does not also obtain. We have been impressed by the large accumulation of neutral fats in the cells in cases of early atheroma and the absence at any stage of the process of recognizable fatty acid. While soaps, it is true, are compounds of fatty acids with alkalies, it is recognized in ordinary domestic life that they can be formed by the direct action of strong lye upon ordinary fats, and this even in the cold. It is quite possible therefore that there occurs a similar direct process in the organism. The point is worth noting, however, that this does not occur in healthy cells the seat of fatty infiltration. We therefore leave this an open question, only laying down that, as indicated by the hyalin albuminous matrix left when calcium salts are dissolved out of an area of calcification, there must exist a calcium soap- or fat-albuminate similar to the potassium and sodium soap-albuminates already mentioned—such an albuminate as we can form with calcium soaps in the test tube. VI. In old areas of calcification soaps are largely if not entirely wanting, although these are to be detected at the periphery, when the process is still advancing. The reactions given by these older areas are almost entirely those of calcium phosphate, though some calcium carbonate is at times to be made out. This seems surely to indicate that the final stage in calcification is an interaction between the calcium soap-albuminates and substances containing phosphoric and carbonic acids. Such substances, it is needless to say, are present in considerable amounts in the lymph and blood. We must conclude that the acid sodium phosphates of the lymph act on the calcium soap, the highly insoluble calcium phosphates being formed (plus the albuminous moiety of the original compound) and diffusible sodium soap being liberated, while similarly alkaline carbonates form calcium carbonate and liberate sodium and potassium soaps. Calcium phosphate and calcium carbonate thus become the insoluble earthy salts of old crystalline areas of calcification. VII. As already stated very little soap is to be found in these old areas. It is possibly worth suggestion that the soaps liberated in this last reaction, as they diffuse out, again react with diffusible calcium salts and form calcium soaps which once more react with the alkaline salts to produce the phosphates and carbonates; that, in short, they have a katalytic action. Certain it is that old calcareous areas are extraordinarily dense, and have a coarse crystalline structure, wholly at variance with the finely granular appearance of the more recent areas, and these large crystalline masses, it would seem, can only be formed by successive deposition of new material and eventual fusion, as the interspaces become filled in between the original masses. PMID:19867016

  6. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li-O 2 Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Kah Chun; Lu, Jun; Low, John

    2014-03-13

    The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li2O2) in an aprotic Li-O2 cell is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during discharge of a Li-O2 cell. According to DFT calculations, the formation of lithium oxalate as the reaction product is exothermic, and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the Li-O2 cell, and therefore LiBOB is probably not suitable to be used as the salt in Li-O2 cell electrolytes.

  7. Calcium alloy as active material in secondary electrochemical cell

    DOEpatents

    Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.

    1976-01-01

    Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.

  8. Synthesis, crystal structure and antitumor activities of water soluble protonated salt of 20(S)-camptothecin

    NASA Astrophysics Data System (ADS)

    Lu, Wen; Wang, Yong; Wang, Luna; Zhao, Fengyi; Yang, Shilong; Xi, Chengjie; Yang, Yu; Xu, Li; Chi, Xingwei

    2018-03-01

    A water soluble camptothecin protonated salt has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR and 1H NMR. The CPT was protonated as (CPT+H+) cations, the cationic protonation occurred on the N position at pyridine group, which fromed a cation-anion compound with perchlorate ion that determined by X-Ray diffraction. Its activities against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver) and HUVEC (umbilical vein, normal cell) were investigated. The toxicity of the protonated salt was slightly lower than camptothecin. IC50 values of 7.01 μM against HepG-2 cell, 8.61 μM against A549 cell, 17.82 μM against McF-7 cell, all of them are lower than the IC50 values of CPT against these cells except Hela cell.

  9. Salt tectonics and shallow subseafloor fluid convection: Models of coupled fluid-heat-salt transport

    USGS Publications Warehouse

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  10. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    PubMed

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction. Published by Elsevier B.V.

  11. SAMPLING DEVICE FOR pH MEASUREMENT IN PROCESS STREAMS

    DOEpatents

    Michelson, C.E.; Carson, W.N. Jr.

    1958-11-01

    A pH cell is presented for monitoring the hydrogen ion concentration of a fluid in a process stream. The cell is made of glass with a side entry arm just above a reservoir in which the ends of a glass electrode and a reference electrode are situated. The glass electrode contains the usual internal solution which is connected to a lead. The reference electrode is formed of saturated calomel having a salt bridge in its bottom portion fabricated of a porous glass to insure low electrolyte flow. A flush tube leads into the cell through which buffer and flush solutions are introduced. A ground wire twists about both electrode ends to insure constant electrical grounding of the sample. The electrode leads are electrically connected to a pH meter of aay standard type.

  12. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer

    PubMed Central

    Samal, Sabindra K.; Routray, Samapika; Veeramachaneni, Ganesh Kumar; Dash, Rupesh; Botlagunta, Mahendran

    2015-01-01

    DDX3 belongs to DEAD box RNA helicase family and is involved in the progression of several types of cancer. In this work, we employed a High Throughput Virtual screening approach to identify bioactive compounds against DDX3 from ZINC natural database. Ketorolac salt was selected based on its binding free energy less than or equals to −5 Kcal/mol with reference to existing synthetic DDX3 inhibitors and strong hydrogen bond interactions as similar to crystallized DDX3 protein (2I4I). The anti-cancer activity of Ketorolac salt against DDX3 was tested using oral squamous cell carcinoma (OSCC) cell lines. This compound significantly down regulated the expression of DDX3 in human OSCC line (H357) and the half maximal growth inhibitory concentration (IC50) of Ketorolac salt in H357 cell line is 2.6 µM. Ketorolac salt also inhibited the ATP hydrolysis by directly interacting with DDX3. More importantly, we observed decreased number of neoplastic tongue lesions and reduced lesion severity in Ketorolac salt treated groups in a carcinogen induced tongue tumor mouse model. Taken together, our result demonstrates that Ketorolac salt is a newly discovered bioactive compound against DDX3 and this compound can be used as an ideal drug candidate to treat DDX3 associated oral cancer. PMID:25918862

  13. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer.

    PubMed

    Samal, Sabindra K; Routray, Samapika; Veeramachaneni, Ganesh Kumar; Dash, Rupesh; Botlagunta, Mahendran

    2015-04-28

    DDX3 belongs to DEAD box RNA helicase family and is involved in the progression of several types of cancer. In this work, we employed a High Throughput Virtual screening approach to identify bioactive compounds against DDX3 from ZINC natural database. Ketorolac salt was selected based on its binding free energy less than or equals to -5 Kcal/mol with reference to existing synthetic DDX3 inhibitors and strong hydrogen bond interactions as similar to crystallized DDX3 protein (2I4I). The anti-cancer activity of Ketorolac salt against DDX3 was tested using oral squamous cell carcinoma (OSCC) cell lines. This compound significantly down regulated the expression of DDX3 in human OSCC line (H357) and the half maximal growth inhibitory concentration (IC50) of Ketorolac salt in H357 cell line is 2.6 µM. Ketorolac salt also inhibited the ATP hydrolysis by directly interacting with DDX3. More importantly, we observed decreased number of neoplastic tongue lesions and reduced lesion severity in Ketorolac salt treated groups in a carcinogen induced tongue tumor mouse model. Taken together, our result demonstrates that Ketorolac salt is a newly discovered bioactive compound against DDX3 and this compound can be used as an ideal drug candidate to treat DDX3 associated oral cancer.

  14. [Food processing industry--the salt shock to the consumers].

    PubMed

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  15. Electrolytes for magnesium electrochemical cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  16. An application of LOTEM around salt dome near Houston, Texas

    NASA Astrophysics Data System (ADS)

    Paembonan, Andri Yadi; Arjwech, Rungroj; Davydycheva, Sofia; Smirnov, Maxim; Strack, Kurt M.

    2017-07-01

    A salt dome is an important large geologic structure for hydrocarbon exploration. It may seal a porous reservoir of rocks that form petroleum reservoirs. Several techniques such as seismic, gravity, and electromagnetic including magnetotelluric have successfully yielded salt dome interpretation. Seismic has difficulties seeing through the salt because the seismic energy gets trapped by the salt due to its high velocity. Gravity and electromagnetics are more ideal methods. Long Offset Transient Electromagnetic (LOTEM) and Focused Source Electromagnetic (FSEM) were tested over a salt dome near Houston, Texas. LOTEM data were recorded at several stations with varying offset, and the FSEM tests were also made at some receiver locations near a suspected salt overhang. The data were processed using KMS's processing software: First, for assurance, including calibration and header checking; then transmitter and receiver data are merged and microseismic data is separated; Finally, data analysis and processing follows. LOTEM processing leads to inversion or in the FSEM case 3D modeling. Various 3D models verify the sensitivity under the salt dome. In addition, the processing was conducted pre-stack, stack, and post-stack. After pre-stacking, the noise was reduced, but showed the ringing effect due to a low-pass filter. Stacking and post-stacking with applying recursive average could reduce the Gibbs effect and produce smooth data.

  17. Effect of salts on the Co-fermentation of glucose and xylose by a genetically engineered strain of Saccharomyces cerevisiae

    PubMed Central

    2013-01-01

    Background A challenge currently facing the cellulosic biofuel industry is the efficient fermentation of both C5 and C6 sugars in the presence of inhibitors. To overcome this challenge, microorganisms that are capable of mixed-sugar fermentation need to be further developed for increased inhibitor tolerance. However, this requires an understanding of the physiological impact of inhibitors on the microorganism. This paper investigates the effect of salts on Saccharomyces cerevisiae 424A(LNH-ST), a yeast strain capable of effectively co-fermenting glucose and xylose. Results In this study, we show that salts can be significant inhibitors of S. cerevisiae. All 6 pairs of anions (chloride and sulfate) and cations (sodium, potassium, and ammonium) tested resulted in reduced cell growth rate, glucose consumption rate, and ethanol production rate. In addition, the data showed that the xylose consumption is more strongly affected by salts than glucose consumption at all concentrations. At a NaCl concentration of 0.5M, the xylose consumption rate was reduced by 64.5% compared to the control. A metabolomics study found a shift in metabolism to increased glycerol production during xylose fermentation when salt was present, which was confirmed by an increase in extracellular glycerol titers by 4 fold. There were significant differences between the different cations. The salts with potassium cations were the least inhibitory. Surprisingly, although salts of sulfate produced twice the concentration of cations as compared to salts of chloride, the degree of inhibition was the same with one exception. Potassium salts of sulfate were less inhibitory than potassium paired with chloride, suggesting that chloride is more inhibitory than sulfate. Conclusions When developing microorganisms and processes for cellulosic ethanol production, it is important to consider salt concentrations as it has a significant negative impact on yeast performance, especially with regards to xylose fermentation. PMID:23718686

  18. Drying bacterial biosaline patterns capable of vital reanimation upon rehydration: novel hibernating biomineralogical life formations.

    PubMed

    Gómez Gómez, José María; Medina, Jesús; Hochberg, David; Mateo-Martí, Eva; Martínez-Frías, Jesús; Rull, Fernando

    2014-07-01

    Water is the fundamental molecule for life on Earth. Thus, the search for hibernating life-forms in waterless environments is an important research topic for astrobiology. To date, however, the organizational patterns containing microbial life in extremely dry places, such as the deserts of Earth, the Dry Valleys of Antarctica, or Mars analog regolith, have been poorly characterized. Here, we report on the formation of bacterial biosaline self-organized drying patterns formed over plastic surfaces. These emerge during the evaporation of sessile droplets of aqueous NaCl salt 0.15 M solutions containing Escherichia coli cells. In the present study, scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) analyses indicated that the bacterial cells and the NaCl in these biosaline formations are organized in a two-layered characteristic 3-D architectural morphology. A thin filmlike top layer formed by NaCl conjugated to, and intermingled with, "mineralized" bacterial cells covers a bottom layer constructed by the bulk of the nonmineralized bacterial cells; both layers have the same morphological pattern. In addition, optical microscopic time-lapsed movies show that the formation of these patterns is a kinetically fast process that requires the coupled interaction between the salt and the bacterial cells. Apparently, this mutual interaction drives the generative process of self-assembly that underlies the drying pattern formation. Most notably, the bacterial cells inside these drying self-assembled patterns enter into a quiescent suspended anhydrobiotic state resistant to complete desiccation and capable of vital reanimation upon rehydration. We propose that these E. coli biosaline drying patterns represent an excellent experimental model for understanding different aspects of anhydrobiosis phenomena in bacteria as well as for revealing the mechanisms of bacterially induced biomineralization, both highly relevant topics for the search of life in extraterrestrial locations.

  19. γ-Aminobutyric acid transaminase deficiency impairs central carbon metabolism and leads to cell wall defects during salt stress in Arabidopsis roots.

    PubMed

    Renault, Hugues; El Amrani, Abdelhak; Berger, Adeline; Mouille, Grégory; Soubigou-Taconnat, Ludivine; Bouchereau, Alain; Deleu, Carole

    2013-05-01

    Environmental constraints challenge cell homeostasis and thus require a tight regulation of metabolic activity. We have previously reported that the γ-aminobutyric acid (GABA) metabolism is crucial for Arabidopsis salt tolerance as revealed by the NaCl hypersensitivity of the GABA transaminase (GABA-T, At3g22200) gaba-t/pop2-1 mutant. In this study, we demonstrate that GABA-T deficiency during salt stress causes root and hypocotyl developmental defects and alterations of cell wall composition. A comparative genome-wide transcriptional analysis revealed that expression levels of genes involved in carbon metabolism, particularly sucrose and starch catabolism, were found to increase upon the loss of GABA-T function under salt stress conditions. Consistent with the altered mutant cell wall composition, a number of cell wall-related genes were also found differentially expressed. A targeted quantitative analysis of primary metabolites revealed that glutamate (GABA precursor) accumulated while succinate (the final product of GABA metabolism) significantly decreased in mutant roots after 1 d of NaCl treatment. Furthermore, sugar concentration was twofold reduced in gaba-t/pop2-1 mutant roots compared with wild type. Together, our results provide strong evidence that GABA metabolism is a major route for succinate production in roots and identify GABA as a major player of central carbon adjustment during salt stress. © 2012 Blackwell Publishing Ltd.

  20. High temperature in-situ synchrotron-based XRD study on the crystal structure evolution of C/C composite impregnated by FLiNaK molten salt.

    PubMed

    Feng, Shanglei; Yang, Yingguo; Li, Li; Zhang, Dongsheng; Yang, Xinmei; Xia, Huihao; Yan, Long; Tsang, Derek K L; Huai, Ping; Zhou, Xingtai

    2017-09-06

    An in-situ real-time synchrotron-based grazing incidence X-ray diffraction was systematically used to investigate the crystal structural evolution of carbon fiber reinforced carbon matrix (C/C) composite impregnated with FLiNaK molten salt during the heat-treatment process. It was found that the crystallographic thermal expansion and contraction rate of interlayer spacing d 002 in C/C composite with FLiNaK salt impregnation is smaller than that in the virgin sample, indicating the suppression on interlayer spacing from FLiNaK salt impregnated. Meanwhile the crystallite size L C002 of C/C composite with FLiNaK salt impregnation is larger than the virgin one after whole heat treatment process, indicating that FLiNaK salt impregnation could facilitate the crystallization of C/C composite after heat treatment process. This improved crystallization in C/C composite with FLiNaK salt impregnation suggests the synthetic action of the salt squeeze effect on crooked carbon layer and the release of internal residual stress after heating-cooling process. Thus, the present study not only contribute to reveal the interaction mechanism between C/C composite and FLiNaK salt in high temperature environment, but also promote the design of safer and more reliable C/C composite materials for the next generation molten salt reactor.

  1. Iodine Intake through Processed Food: Case Studies from Egypt, Indonesia, the Philippines, the Russian Federation and Ukraine, 2010–2015

    PubMed Central

    Knowles, Jacky; Shehata, Magdy; Gerasimov, Gregory; Bimo, Bimo; Cavenagh, Bettina; Maramag, Cherry C.; Otico, Edward; Izwardy, Doddy; Spohrer, Rebecca; Garrett, Greg S.

    2017-01-01

    The current performance indicator for universal salt iodisation (USI) is the percentage of households using adequately iodised salt. However, the proportion of dietary salt from household salt is decreasing with the increase in consumption of processed foods and condiments globally. This paper reports on case studies supported by the Global Alliance for Improved Nutrition (GAIN)-UNICEF USI Partnership Project to investigate processed food industry use of adequately iodised salt in contrasting national contexts. Studies were conducted in Egypt, Indonesia, the Philippines, the Russian Federation, and Ukraine. In all cases, the potential iodine intake from iodised salt in selected food products was modelled according to the formula: quantity of salt per unit of food product × minimum regulated iodine level of salt at production × average daily per capita consumption of the product. The percent of adult recommended nutrient intake for iodine potentially provided by the average daily intake of bread and frequently consumed foods and condiments was from 10% to 80% at the individual product level. The potential contribution to iodine intake from the use of iodised salt in the processed food industry is of growing significance. National USI strategies should encourage co-operative industry engagement and include regulatory monitoring of iodised salt use in the food industry in order to achieve optimal population iodine status. PMID:28933750

  2. Processed foods as an integral part of universal salt iodization programs: a review of global experience and analyses of Bangladesh and Pakistan.

    PubMed

    Spohrer, Rebecca; Garrett, Greg S; Timmer, Arnold; Sankar, Rajan; Kar, Basanta; Rasool, Faiz; Locatelli-Rossi, Lorenzo

    2012-12-01

    Despite the reference to salt for food processing in the original definition of universal salt iodization (USI), national USI programs often do not explicitly address food industry salt. This may affect program impact and sustainability, given the increasing consumption of processed foods in developing countries. To review experience of the use of iodized salt in the food industry globally, and analyze the market context in Bangladesh and Pakistan to test whether this experience may be applicable to inform improved national USI programming in developing countries. A review of relevant international experience was undertaken. In Bangladesh and Pakistan, local rural market surveys were carried out. In Bangladesh, structured face-to-face interviews with bakers and indepth interviews with processed food wholesalers and retailers were conducted. In Pakistan, face-to-face structured interviews were conducted with food retailers and food labels were checked. Experience from industrialized countries reveals impact resulting from the use of iodized salt in the food industry. In Bangladesh and Pakistan, bread, biscuits, and snacks containing salt are increasingly available in rural areas. In Bangladesh, the majority of bakers surveyed claimed to use iodized salt. In Pakistan, 6 of 362 unique product labels listed iodized salt. Successful experience from developed countries needs to be adapted to the developing country context. The increasing availability of processed foods in rural Bangladesh and Pakistan provides an opportunity to increase iodine intake. However, the impact of this intervention remains to be quantified. To develop better national USI programs, further data are required on processed food consumption across population groups, iodine contents of food products, and the contribution of processed foods to iodine nutrition.

  3. The tomato res mutant which accumulates JA in roots in non-stressed conditions restores cell structure alterations under salinity.

    PubMed

    Garcia-Abellan, José O; Fernandez-Garcia, Nieves; Lopez-Berenguer, Carmen; Egea, Isabel; Flores, Francisco B; Angosto, Trinidad; Capel, Juan; Lozano, Rafael; Pineda, Benito; Moreno, Vicente; Olmos, Enrique; Bolarin, Maria C

    2015-11-01

    Jasmonic acid (JA) regulates a wide spectrum of plant biological processes, from plant development to stress defense responses. The role of JA in plant response to salt stress is scarcely known, and even less known is the specific response in root, the main plant organ responsible for ionic uptake and transport to the shoot. Here we report the characterization of the first tomato (Solanum lycopersicum) mutant, named res (restored cell structure by salinity), that accumulates JA in roots prior to exposure to stress. The res tomato mutant presented remarkable growth inhibition and displayed important morphological alterations and cellular disorganization in roots and leaves under control conditions, while these alterations disappeared when the res mutant plants were grown under salt stress. Reciprocal grafting between res and wild type (WT) (tomato cv. Moneymaker) indicated that the main organ responsible for the development of alterations was the root. The JA-signaling pathway is activated in res roots prior to stress, with transcripts levels being even higher in control condition than in salinity. Future studies on this mutant will provide significant advances in the knowledge of JA role in root in salt-stress tolerance response, as well as in the energy trade-off between plant growth and response to stress. © 2015 Scandinavian Plant Physiology Society.

  4. [Analysis on component difference in Citrus reticulata before and after being processed with salt by UPLC-Q-TOF/MS].

    PubMed

    Zeng, Rui; Fu, Juan; Wu, La-Bin; Huang, Lin-Fang

    2013-07-01

    To analyze components of Citrus reticulata and salt-processed C. reticulata by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS), and compared the changes in components before and after being processed with salt. Principal component analysis (PCA) and partial least squares discriminant analysis (OPLS-DA) were adopted to analyze the difference in fingerprint between crude and processed C. reticulata, showing increased content of eriocitrin, limonin, nomilin and obacunone increase in salt-processed C. reticulata. Potential chemical markers were identified as limonin, obacunone and nomilin, which could be used for distinguishing index components of crude and processed C. reticulata.

  5. ET-1 increases reactive oxygen species following hypoxia and high-salt diet in the mouse glomerulus.

    PubMed

    Heimlich, J B; Speed, J S; Bloom, C J; O'Connor, P M; Pollock, J S; Pollock, D M

    2015-03-01

    This study was designed to determine whether ET-1 derived from endothelial cells contributes to oxidative stress in the glomerulus of mice subjected to a high-salt diet and/or hypoxia. C57BL6/J control mice or vascular endothelial cell ET-1 knockout (VEET KO) mice were subjected to 3-h exposure to hypoxia (8% O₂) and/or 2 weeks of high-salt diet (4% NaCl) prior to metabolic cage assessment of renal function and isolation of glomeruli for the determination of reactive oxygen species (ROS). In control mice, hypoxia significantly increased urinary protein excretion during the initial 24 h, but only in animals on a high-salt diet. Hypoxia increased glomerular ET-1 mRNA expression in control, but not in vascular endothelial cell ET-1 knockout (VEET KO) mice. Under normoxic conditions, mice on a high-salt diet had approx. 150% higher glomerular ET-1 mRNA expression compared with a normal-salt diet (P < 0.05). High-salt diet administration significantly increased glomerular ROS production in flox control, but not in glomeruli isolated from VEET KO mice. In C57BL6/J mice, the ETA receptor-selective antagonist, ABT-627, significantly attenuated the increase in glomerular ROS production produced by high-salt diet. In addition, chronic infusion of C57BL6/J mice with a subpressor dose of ET-1 (osmotic pumps) significantly increased the levels of glomerular ROS that were prevented by ETA antagonist treatment. These data suggest that both hypoxia and a high-salt diet increase glomerular ROS production via endothelial-derived ET-1-ETA receptor activation and provide a potential mechanism for ET-1-induced nephropathy. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Changes on protein expression associated with salinity tolerance in Brassica cell cultures.

    PubMed

    Martín, J P; Elavummoottil, O C; Moreno, M L

    1993-09-01

    The synthesis of proteins from salt-tolerant Brassica oleracea L. var. botrytis L. subvar. cauliflora (Gars.) DC. (cauliflower) cell cultures is modified in relation to controls in several features. There are nine newly induced polypeptides in tolerant cultures (absent in control conditions). Some of them are only present under low salt levels (85 mM NaCl). Another group seems to be representative of moderate and high salt levels (170 and 255 mM NaCl), and a third group is present in all the salt conditions tested. On the other hand, the synthesis of most of the polypeptides present in control conditions is modified in salt-tolerant cultures by increasing, decreasing or stopping their synthesis in any of the tested conditions. The relationship between these changes in Brassica and other plant systems is discussed.

  7. Caleosin from Chlorella vulgaris TISTR 8580 is salt-induced and heme-containing protein.

    PubMed

    Charuchinda, Pairpilin; Waditee-Sirisattha, Rungaroon; Kageyama, Hakuto; Yamada, Daisuke; Sirisattha, Sophon; Tanaka, Yoshito; Mahakhant, Aparat; Takabe, Teruhiro

    2015-01-01

    Physiological and functional properties of lipid droplet-associated proteins in algae remain scarce. We report here the caleosin gene from Chlorella vulgaris encodes a protein of 279 amino acid residues. Amino acid sequence alignment showed high similarity to the putative caleosins from fungi, but less to plant caleosins. When the C. vulgaris TISTR 8580 cells were treated with salt stress (0.3 M NaCl), the level of triacylglycerol increased significantly. The mRNA contents for caleosin in Chlorella cells significantly increased under salt stress condition. Caleosin gene was expressed in E. coli. Crude extract of E. coli cells exhibited the cumene hydroperoxide-dependent oxidation of aniline. Absorption spectroscopy showed a peak around 415 nm which was decreased upon addition of cumene hydroperoxide. Native polyacrylamide gel electrophoresis suggests caleosin existed as the oligomer. These data indicate that a fresh water C. vulgaris TISTR 8580 contains a salt-induced heme-protein caleosin.

  8. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.)

    PubMed Central

    2012-01-01

    Background It is well known that salt stress has different effects on old and young tissues. However, it remains largely unexplored whether old and young tissues have different regulatory mechanism during adaptation of plants to salt stress. The aim of this study was to investigate whether salt stress has different effects on the ion balance and nitrogen metabolism in the old and young leaves of rice, and to compare functions of both organs in rice salt tolerance. Results Rice protected young leaves from ion harm via the large accumulation of Na+ and Cl− in old leaves. The up-regulation of OsHKT1;1, OsHAK10 and OsHAK16 might contribute to accumulation of Na+ in old leaves under salt stress. In addition, lower expression of OsHKT1;5 and OsSOS1 in old leaves may decrease frequency of retrieving Na+ from old leaf cells. Under salt stress, old leaves showed higher concentration of NO3− content than young leaves. Up-regulation of OsNRT1;2, a gene coding nitrate transporter, might contribute to the accumulation of NO3− in the old leaves of salt stressed-rice. Salt stress clearly up-regulated the expression of OsGDH2 and OsGDH3 in old leaves, while strongly down-regulated expression of OsGS2 and OsFd-GOGAT in old leaves. Conclusions The down-regulation of OsGS2 and OsFd-GOGAT in old leaves might be a harmful response to excesses of Na+ and Cl−. Under salt stress, rice might accumulate Na+ and Cl− to toxic levels in old leaves. This might influence photorespiration process, reduce NH4+ production from photorespiration, and immediately down-regulate the expression of OsGS2 and OsFd-GOGAT in old leaves of salt stressed rice. Excesses of Na+ and Cl− also might change the pathway of NH4+ assimilation in old leaves of salt stressed rice plants, weaken GOGAT/GS pathway and elevate GDH pathway. PMID:23082824

  9. Physics of Spin-Polarized Media

    DTIC Science & Technology

    2007-11-21

    midsection of the cell serving as the cathode, and liquid molten salt outside the cell serving as the anode [5]. This new method is very promising for of...filling atomic clock and magnetometer cells by electrolysis through the glass walls; (6) new investigations of optical pumping and magnetic resonances...cesium vapor can be used to polarize 3 Cs nuclei in CsH salt that coats the walls of a vapor cell. This result, an important first step, has been

  10. Desalination of sea water with aquatic lily (Eichhornia crassipes).

    PubMed

    Arámburo-Miranda, Isela Victoria; Ruelas-Ramírez, Emmanuel Hammurabi

    2017-11-01

    During the last decades, methods of halo conditioning have been developed to increase the tolerance to salinity in glucophyta crops. Some experiments have carried out the application of hydrogen peroxide (H 2 O 2 ), in support to the modification of cell tolerance in saline medium. The first objective of this study was to evaluate the effects of the incorporation of H 2 O 2 in salinity tolerance development of the aquatic lily (Eichhornia crassipes). Results showed that the incorporation of 0.03 % H 2 O 2 salinity tolerance developed in salt concentrations similar to seawater. Saline stress tolerance in aquatic lily was shown by the excretion of salts in its leaves; this process helped also in removing salt from seawater. At the same time, the reproduction of the lily is intimately linked to the content of nitrogen (N) and phosphorus (P) (nutrients) in water. This reason is important to control the concentrations of these elements in the water. This will allow maintaining a control in the dissemination of the lily. Considering the mentioned above, the second objective was to continue development of the adaptation of the aquatic lily in seawater, using H 2 O 2 and the required amount of nutrients. This paper points out the importance of considering a biological process for the treatments in the desalination of seawater, making the process more sustainable.

  11. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1989-03-21

    A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  13. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.

    1988-07-12

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.

  14. Process to separate transuranic elements from nuclear waste

    DOEpatents

    Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.

    1989-01-01

    A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).

  15. PURIFICATION OF URANIUM FUELS

    DOEpatents

    Niedrach, L.W.; Glamm, A.C.

    1959-09-01

    An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.

  16. [Reason for dietary salt reduction and potential effect on population health--WHO recommendation].

    PubMed

    Kaić-Rak, Antoinette; Pucarin-Cvetković, Jasna; Heim, Inge; Skupnjak, Berislav

    2010-05-01

    It is well known that reduction of salt results in lowering blood pressure and cardiovascular incidents. Daily salt is double the recommended daily quantity and mainly comes from processed food. The assessment of daily salt intake for Croatia is 12 g/day (WHO recommendation is <5 g/day). The main source of sodium is processed food and food prepared in restaurants (77%), natural content of sodium in food (12%), added salt at table (6%) and prepared meals at home (5%). Reduction of salt by 50% would save nearly 180,000 lives per year in Europe. It is necessary to establish better collaboration with food manufacturers in order to reduce the content of salt in processed food and to achieve appropriate salt intake per day in accordance with the WHO recommendation. Further, it is necessary to encourage food manufacturers to produce food and meals with low or reduced salt content (shops, catering, changes in recipes, offer salt substitutions). This kind of collaboration is based on bilateral interests that can result in positive health effects. One of the most important public health tasks is to educate consumers and to give them choice when buying food. This can be achieved by effective campaigns and social marketing, by ensuring a declaration of salt content on the product, or specially designed signs for food products with low or reduced salt content.

  17. Effect of salt types and concentrations on the high-pressure inactivation of Listeria monocytogenes in ground chicken.

    PubMed

    Balamurugan, S; Ahmed, Rafath; Chibeu, Andrew; Gao, Anli; Koutchma, Tatiana; Strange, Phil

    2016-02-02

    National and international health agencies have recommended a significant reduction in daily intake of sodium by reducing the amount of NaCl in foods, specifically processed meats. However, sodium reduction could increase the risk of survival and growth of spoilage and pathogenic microorganisms on these products. Therefore, alternate processing technologies to improve safety of sodium reduced foods are necessary. This study examined the effects of three different salt types and concentrations on high-pressure inactivation of Listeria monocytogenes in pre-blended ground chicken formulations. Ground chicken formulated with three salt types (NaCl, KCl, CaCl2), at three concentrations (0, 1.5, 2.5%) and inoculated with a four strain cocktail of L. monocytogenes (10(8) CFU g(-1)) were subjected to four pressure treatments (0, 100, 300, 600 MPa) and two durations (60, 180 s) in an experiment with factorial design. Surviving cells were enumerated by plating on Oxford agar and analysed by factorial ANOVA. Pressure treatments at 100 or 300 MPa did not significantly (P=0.19-050) reduce L. monocytogenes populations. Neither salt type nor concentration had a significant effect on L. monocytogenes populations at these pressure levels. At 600 MPa, salt types, concentrations and duration of pressure treatment all had a significant effect on L. monocytogenes populations. Formulations with increasing concentrations of NaCl or KCl showed significantly lower reduction in L. monocytogenes, while increase in CaCl2 concentration resulted in a significantly higher L. monocytogenes reduction. For instance, increase in NaCl concentration from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 2.49 and 1.29, respectively, when exposed to 600 MPa for 60s. In the case of CaCl2, increase from 0 to 1.5 or 2.5% resulted in a log reduction of 6.16, 7.28 and 7.47, respectively. These results demonstrate that high-pressure processing is a viable process to improve microbial safety of sodium reduced poultry products. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  18. Enhanced oral bioavailability of vinpocetine through mechanochemical salt formation: physico-chemical characterization and in vivo studies.

    PubMed

    Hasa, Dritan; Voinovich, Dario; Perissutti, Beatrice; Grassi, Mario; Bonifacio, Alois; Sergo, Valter; Cepek, Cinzia; Chierotti, Michele R; Gobetto, Roberto; Dall'Acqua, Stefano; Invernizzi, Sergio

    2011-08-01

    Enhancing oral bioavailability of vinpocetine by forming its amorphous citrate salt through a solvent-free mechanochemical process, in presence of micronised crospovidone and citric acid. The impact of formulation and process variables (amount of polymer and citric acid, and milling time) on vinpocetine solubilization kinetics from the coground was studied through an experimental design. The best performing samples were characterized by employing a multidisciplinary approach, involving Differential scanning calorimetry, X-ray diffraction, Raman imaging/spectroscopy, X-ray photoelectron spectroscopy, solid-state NMR spectroscopy, porosimetry and in vivo studies on rats to ascertain the salt formation, their solid-state characteristics and oral bioavailability in comparison to vinpocetine citrate salt (Oxopocetine(®)). The analyses attested that the mechanochemical process is a viable way to produce in absence of solvents vinpocetine citrate salt in an amorphous state. From the in vivo studies on rats the obtained salt was four times more bioavailable than its physical mixture and bioequivalent to the commercial salt produced by conventional synthetic process implying the use of solvent.

  19. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models.

    PubMed

    Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Platinum recovery from industrial process streams by halophilic bacteria: Influence of salt species and platinum speciation.

    PubMed

    Maes, Synthia; Claus, Mathias; Verbeken, Kim; Wallaert, Elien; De Smet, Rebecca; Vanhaecke, Frank; Boon, Nico; Hennebel, Tom

    2016-11-15

    The increased use and criticality of platinum asks for the development of effective low-cost strategies for metal recovery from process and waste streams. Although biotechnological processes can be applied for the valorization of diluted aqueous industrial streams, investigations considering real stream conditions (e.g., high salt levels, acidic pH, metal speciation) are lacking. This study investigated the recovery of platinum by a halophilic microbial community in the presence of increased salt concentrations (10-80 g L -1 ), different salt matrices (phosphate salts, sea salts and NH 4 Cl) and a refinery process stream. The halophiles were able to recover 79-99% of the Pt at 10-80 g L -1 salts and at pH 2.3. Transmission electron microscopy suggested a positive correlation between intracellular Pt cluster size and elevated salt concentrations. Furthermore, the halophiles recovered 46-95% of the Pt-amine complex Pt[NH 3 ] 4 2+ from a process stream after the addition of an alternative Pt source (K 2 PtCl 4 , 0.1-1.0 g L -1 Pt). Repeated Pt-tetraamine recovery (from an industrial process stream) was obtained after concomitant addition of fresh biomass and harvesting of Pt saturated biomass. This study demonstrates how aqueous Pt streams can be transformed into Pt rich biomass, which would be an interesting feed of a precious metals refinery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Positive electrode current collector for liquid metal cells

    DOEpatents

    Shimotake, Hiroshi; Bartholme, Louis G.

    1984-01-01

    A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.

  2. The LiAl/FeS2 battery power source for the future

    NASA Technical Reports Server (NTRS)

    Briscoe, J. Douglass; Embrey, J.; Oweis, S.; Press, K.

    1992-01-01

    Advanced high power density rechargeable batteries are currently under development. These batteries have the potential of greatly increasing the power and energy densities available for space applications. Depending on whether the system is optimized for high power or high energy, values up to 150 Wh/kg and 2100 W/kg (including hardware) are projected. This is due to the fact that the system uses a high conductivity molten salt electrolyte. The electrolyte also serves as a separator layer with unlimited freeze thaw capabilities. Life of 1000 cycles and ten calendar years is projected. The electrochemistry consists of a lithium aluminum alloy negative electrode, iron disulfide positive electrode, and magnesium oxide powder immobilized molten salt electrolyte. Processed powders are cold compacted into circular discs which are assembled into bipolar cell hardware with peripheral ceramic salts. The culmination of the work will be a high energy battery of 40 kWh and a high power battery of 28 kWh.

  3. A trip to inner space: insights into salt balance from cosmonauts.

    PubMed

    Ortiz-Melo, David; Coffman, Thomas M

    2013-01-08

    The epidemiological association between high salt intake and hypertension is well established. However, in most patients, the specific defect causing salt-dependent hypertension cannot be discerned. In this issue of Cell Metabolism, Rakova and associates use an unprecedented study design to characterize long-term salt balance in humans (Rakova et al., 2012). Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  5. Redefining the effect of salt on thermophilic starter cell viability, culturability and metabolic activity in cheese.

    PubMed

    Hickey, C D; Fallico, V; Wilkinson, M G; Sheehan, J J

    2018-02-01

    This study investigated the differential effect of salt concentration in the outside and inside layers of brine salted cheeses on viability, culturability and enzyme activity of starter bacteria. The high-salt environment of the outside layer caused a sharp decrease in L. helveticus viability as measured by traditional plate counts. Remarkably, this was associated with lower release of intracellular enzymes (LDH), reduced levels of proteolysis and larger membrane integrity as measured by flow cytometry (FC) following classical Live/Dead staining. FC analysis of light scattering properties highlighted a significant reduction in size and granularity of the microbiota located in the cheese surface, suggestive of cell shrinkage and condensation of internal macromolecules probably due to hyperosmotic stress. The microbiota of the cheese surface were found to experience greater oxidative stress, as measured by FC analysis of the total levels of reactive oxygen species, compared to that of the interior layer. These results lead us to postulate that the physiology and health status of the microbiota were significantly different in the outer and inner layers of the cheese. The hyperosmotic environment of the outer layer resulted in reduced cell lysis, as measurable by assays based upon membrane integrity, but rather triggered cell death via mechanisms involving cell shrinkage and ROS-mediated damage of vital intracellular components. This study challenges the current thinking on how salt controls microbial activity in ripening cheese, especially in cheeses which are brine salted as local variations in biochemical ripening indices can differ significantly from the outside to the inside of a ripening cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Foam Separation of Pseudomonas fluorescens and Bacillus subtilis var. niger

    PubMed Central

    Grieves, R. B.; Wang, S. L.

    1967-01-01

    An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 μeq/ml of NaCl, KCl, Na2SO4, K2SO4, CaCl2, CaSO4, MgCl2, or MgSO4 produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 × 105 up to 1.6 × 106 to 2.8 × 107 cells per milliliter (initial suspensions contain from 3.3 × 107 to 4.8 × 107 cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 μeq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 × 104 to about 4.0 × 105 cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis. PMID:4961933

  7. Formation of zinc protoporphyrin IX in Parma-like ham without nitrate or nitrite.

    PubMed

    Wakamatsu, Jun-ichi; Uemura, Juichi; Odagiri, Hiroko; Okui, Jun; Hayashi, Nobutaka; Hioki, Shoji; Nishimura, Takanori; Hattori, Akihito

    2009-04-01

    Zinc protoporphyrin IX (ZPP) is a characteristic red pigment in meat products that are manufactured without the addition of a curing agent such as nitrate or nitrite. To examine the effects of impurities such as mineral components in sea salt on the formation of ZPP, we manufactured Parmatype dry-cured hams that were salted with refined salt or sea salt and examined the involvement of oxidation-reduction potential (ORP) in the formation of ZPP. The content of ZPP was increased drastically after 40 weeks. Microscopic observation showed strong fluorescence caused by ZPP muscle fiber after 40 weeks. Conversely, heme content varied considerably during processing. ORP increased during processing. However, there was no obvious difference between ham salted with refined salt and that salted with sea salt. Therefore, it was concluded that impurities in sea salt were not involved in the formation of ZPP.

  8. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    USDA-ARS?s Scientific Manuscript database

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  9. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  10. Effect of iron salt type and dosing mode on Fenton-based pretreatment of rice straw for enzymatic hydrolysis.

    PubMed

    Gan, Yu-Yan; Zhou, Si-Li; Dai, Xiao; Wu, Han; Xiong, Zi-Yao; Qin, Yuan-Hang; Ma, Jiayu; Yang, Li; Wu, Zai-Kun; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2018-06-15

    Fenton-based processes with four different iron salts in two different dosing modes were used to pretreat rice straw (RS) samples to increase their enzymatic digestibility. The composition analysis shows that the RS sample pretreated by the dosing mode of iron salt adding into H 2 O 2 has a much lower hemicellulose content than that pretreated by the dosing mode of H 2 O 2 adding into iron salt, and the RS sample pretreated by the chloride salt-based Fenton process has a much lower lignin content and a slightly lower hemicellulose content than that pretreated by the sulphate salt-based Fenton process. The higher concentration of reducing sugar observed on the RS sample with lower lignin and hemicellulose contents justifies that the Fenton-based process could enhance the enzymic hydrolysis of RS by removing hemicellulose and lignin and increasing its accessibility to cellulase. FeCl 3 ·6H 2 O adding into H 2 O 2 is the most efficient Fenton-based process for RS pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  12. Methods of producing sulfate salts of cations from heteroatomic compounds and dialkyl sulfates and uses thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-09-29

    Methods of preparing sulfate salts of heteroatomic compounds using dialkyl sulfates as a primary reactant are disclosed. Also disclosed are methods of making ionic liquids from the sulfate salts of the heteroatomic compound, and electrochemical cells comprising the ionic liquids.

  13. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization.

    PubMed

    Smejkal, Benjamin; Agrawal, Neeraj J; Helk, Bernhard; Schulz, Henk; Giffard, Marion; Mechelke, Matthias; Ortner, Franziska; Heckmeier, Philipp; Trout, Bernhardt L; Hekmat, Dariusch

    2013-09-01

    The potential of process crystallization for purification of a therapeutic monoclonal IgG1 antibody was studied. The purified antibody was crystallized in non-agitated micro-batch experiments for the first time. A direct crystallization from clarified CHO cell culture harvest was inhibited by high salt concentrations. The salt concentration of the harvest was reduced by a simple pretreatment step. The crystallization process from pretreated harvest was successfully transferred to stirred tanks and scaled-up from the mL-scale to the 1 L-scale for the first time. The crystallization yield after 24 h was 88-90%. A high purity of 98.5% was reached after a single recrystallization step. A 17-fold host cell protein reduction was achieved and DNA content was reduced below the detection limit. High biological activity of the therapeutic antibody was maintained during the crystallization, dissolving, and recrystallization steps. Crystallization was also performed with impure solutions from intermediate steps of a standard monoclonal antibody purification process. It was shown that process crystallization has a strong potential to replace Protein A chromatography. Fast dissolution of the crystals was possible. Furthermore, it was shown that crystallization can be used as a concentrating step and can replace several ultra-/diafiltration steps. Molecular modeling suggested that a negative electrostatic region with interspersed exposed hydrophobic residues on the Fv domain of this antibody is responsible for the high crystallization propensity. As a result, process crystallization, following the identification of highly crystallizable antibodies using molecular modeling tools, can be recognized as an efficient, scalable, fast, and inexpensive alternative to key steps of a standard purification process for therapeutic antibodies. Copyright © 2013 Wiley Periodicals, Inc.

  14. Improved Low Temperature Performance of Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  15. Two antagonistic gustatory receptor neurons responding to sweet-salty and bitter taste in Drosophila.

    PubMed

    Hiroi, Makoto; Meunier, Nicolas; Marion-Poll, Frédéric; Tanimura, Teiichi

    2004-12-01

    In Drosophila, gustatory receptor neurons (GRNs) occur within hair-like structures called sensilla. Most taste sensilla house four GRNs, which have been named according to their preferred sensitivity to basic stimuli: water (W cell), sugars (S cell), salt at low concentration (L1 cell), and salt at high concentration (L2 cell). Labellar taste sensilla are classified into three types, l-, s-, and i-type, according to their length and location. Of these, l- and s-type labellar sensilla possess these four cells, but most i-type sensilla house only two GRNs. In i-type sensilla, we demonstrate here that the first GRN responds to sugar and to low concentrations of salt (10-50 mM NaCl). The second GRN detects a range of bitter compounds, among which strychnine is the most potent; and also to salt at high concentrations (over 400 mM NaCl). Neither type of GRN responds to water. The detection of feeding stimulants in i-type sensilla appears to be performed by one GRN with the combined properties of S+L1 cells, while the other GRN detects feeding inhibitors in a similar manner to bitter-sensitive L2 cells on the legs. These sensilla thus house two GRNs having an antagonistic effect on behavior, suggesting that the expression of taste receptors is segregated across them accordingly. copyright (c) 2004 Wiley Periodicals, Inc.

  16. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons.

    PubMed

    Jeong, Jong Hee; Noh, Min-Young; Choi, Jae-Hyeok; Lee, Haiwon; Kim, Seung Hyun

    2016-04-01

    Bamboo salt (BS) and soy sauce (SS) are traditional foods in Asia, which contain antioxidants that have cytoprotective effects on the body. The majority of SS products contain high levels of common salt, consumption of which has been associated with numerous detrimental effects on the body. However, BS may be considered a healthier substitute to common salt. The present study hypothesized that SS made from BS, known as bamboo salt soy sauce (BSSS), may possess enhanced cytoprotective properties; this was evaluated using a hydrogen peroxide (H 2 O 2 )-induced neuronal cell death rat model. Rat neuronal cells were pretreated with various concentrations (0.001, 0.01, 0.1, 1 and 10%) of BSSS, traditional soy sauce (TRSS) and brewed soy sauce (BRSS), and were subsequently exposed to H 2 O 2 (100 µM). The viability of neuronal cells, and the occurrence of DNA fragmentation, was subsequently examined. Pretreatment of neuronal cells with TRSS and BRSS reduced cell viability in a concentration-dependent manner, whereas neuronal cells pretreated with BSSS exhibited increased cell viability, as compared with non-treated neuronal cells. Furthermore, neuronal cells pretreated with 0.01% BSSS exhibited the greatest increase in viability. Exposure of neuronal cells to H 2 O 2 significantly increased the levels of reactive oxygen species (ROS), B-cell lymphoma 2-associated X protein, poly (ADP-ribose), cleaved poly (ADP-ribose) polymerase, cytochrome c , apoptosis-inducing factor, cleaved caspase-9 and cleaved caspase-3, in all cases. Pretreatment of neuronal cells with BSSS significantly reduced the levels of ROS generated by H 2 O 2 , and increased the levels of phosphorylated AKT and phosphorylated glycogen synthase kinase-3β. Furthermore, the observed effects of BSSS could be blocked by administration of 10 µM LY294002, a phosphatidylinositol 3-kinase inhibitor. The results of the present study suggested that BSSS may exert positive neuroprotective effects against H 2 O 2 -induced cell death by reducing oxidative stress, enhancing survival signaling, and inhibiting death signals.

  17. Isolation of intact RNA from murine CD4+ T cells after intracellular cytokine staining and fluorescence-activated cell sorting.

    PubMed

    Kunnath-Velayudhan, Shajo; Porcelli, Steven A

    2018-05-01

    Intracellular cytokine staining (ICS) is a powerful method for identifying functionally distinct lymphocyte subsets, and for isolating these by fluorescence activated cell sorting (FACS). Although transcriptomic analysis of cells sorted on the basis of ICS has many potential applications, this is rarely performed because of the difficulty in isolating intact RNA from cells processed using standard fixation and permeabilization buffers for ICS. To address this issue, we compared three buffers shown previously to preserve RNA in nonhematopoietic cells subjected to intracellular staining for their effects on RNA isolated from T lymphocytes processed for ICS. Our results showed that buffers containing the recombinant ribonuclease inhibitor RNasin or high molar concentrations of salt yielded intact RNA from fixed and permeabilized T cells. As proof of principle, we successfully used the buffer containing RNasin to isolate intact RNA from CD4 + T cells that were sorted by FACS on the basis of specific cytokine production, thus demonstrating the potential of this approach for coupling ICS with transcriptomic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Identification and Characterization of a Novel Issatchenkia orientalis GPI-Anchored Protein, IoGas1, Required for Resistance to Low pH and Salt Stress

    PubMed Central

    Matsushika, Akinori; Negi, Kanako; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu

    2016-01-01

    The use of yeasts tolerant to acid (low pH) and salt stress is of industrial importance for several bioproduction processes. To identify new candidate genes having potential roles in low-pH tolerance, we screened an expression genomic DNA library of a multiple-stress-tolerant yeast, Issatchenkia orientalis (Pichia kudriavzevii), for clones that allowed Saccharomyces cerevisiae cells to grow under highly acidic conditions (pH 2.0). A genomic DNA clone containing two putative open reading frames was obtained, of which the putative protein-coding gene comprising 1629 bp was retransformed into the host. This transformant grew significantly at pH 2.0, and at pH 2.5 in the presence of 7.5% Na2SO4. The predicted amino acid sequence of this new gene, named I. orientalis GAS1 (IoGAS1), was 60% identical to the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity, and 58–59% identical to Candida albicans Phr1 and Phr2, pH-responsive proteins implicated in cell wall assembly and virulence. Northern hybridization analyses indicated that, as for the C. albicans homologs, IoGAS1 expression was pH-dependent, with expression increasing with decreasing pH (from 4.0 to 2.0) of the medium. These results suggest that IoGAS1 represents a novel pH-regulated system required for the adaptation of I. orientalis to environments of diverse pH. Heterologous expression of IoGAS1 complemented the growth and morphological defects of a S. cerevisiae gas1Δ mutant, demonstrating that IoGAS1 and the corresponding S. cerevisiae gene play similar roles in cell wall biosynthesis. Site-directed mutagenesis experiments revealed that two conserved glutamate residues (E161 and E262) in the IoGas1 protein play a crucial role in yeast morphogenesis and tolerance to low pH and salt stress. Furthermore, overexpression of IoGAS1 in S. cerevisiae remarkably improved the ethanol fermentation ability at pH 2.5, and at pH 2.0 in the presence of salt (5% Na2SO4), compared to that of a reference strain. Our results strongly suggest that constitutive expression of the IoGAS1 gene in S. cerevisiae could be advantageous for several fermentation processes under these stress conditions. PMID:27589271

  19. New insights into saline water evaporation from porous media: Complex interaction between evaporation rates, precipitation, and surface temperature

    NASA Astrophysics Data System (ADS)

    Shokri-Kuehni, Salomé M. S.; Vetter, Thomas; Webb, Colin; Shokri, Nima

    2017-06-01

    Understanding salt transport and deposition patterns during evaporation from porous media is important in many engineering and hydrological processes such as soil salinization, ecosystem functioning, and land-atmosphere interaction. As evaporation proceeds, salt concentration increases until it exceeds solubility limits, locally, and crystals precipitate. The interplay between transport processes, crystallization, and evaporation influences where crystallization occurs. During early stages, the precipitated salt creates an evolving porous structure affecting the evaporation kinetics. We conducted a comprehensive series of experiments to investigate how the salt concentration and precipitation influence evaporation dynamics. Our results illustrate the contribution of the evolving salt crust to the evaporative mass losses. High-resolution thermal imaging enabled us to investigate the complex temperature dynamics at the surface of precipitated salt, providing further confirmation of salt crust contribution to the evaporation. We identify different phases of saline water evaporation from porous media with the corresponding dominant mechanisms in each phase and extend the physical understanding of such processes.

  20. The biopsychology of salt hunger and sodium deficiency

    PubMed Central

    Hurley, Seth W.; Johnson, Alan Kim

    2015-01-01

    Sodium is a necessary dietary macromineral that tended to be sparsely distributed in mankind’s environment in the past. Evolutionary selection pressure shaped physiological mechanisms including hormonal systems and neural circuits that serve to promote sodium ingestion. Sodium deficiency triggers the activation of these hormonal systems and neural circuits to engage motivational processes that elicit a craving for salty substances and a state of reward when salty foods are consumed. Sodium deficiency also appears to be associated with aversive psychological states including anhedonia, impaired cognition, and fatigue. Under certain circumstances the psychological processes that promote salt intake can become powerful enough to cause “salt gluttony,” or salt intake far in excess of physiological need. The present review discusses three aspects of the biopsychology of salt hunger and sodium deficiency: 1) the psychological processes that promote salt intake during sodium deficiency, 2) the effects of sodium deficiency on mood and cognition, and 3) the sensitization of sodium appetite as a possible cause of salt gluttony. PMID:25572931

  1. Biochemical studies of the differentiation of HL-60 cells into monocytes by either IFN, VIT, D/sub 3/ or TPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, S.; Whyzmuzis, C.; Oronsky, B.

    The authors have studied the differentiation process of the human promyelocytic cell line, HL-60, by treatment of these cells with either gamma interferon, 1, 25 dihydroxyvitamin D/sub 3/ or a phorbol ester, TPA. The cells were grown in RPMI 1640, 10% FCS with each respective agent, then pulsed labeled with /sup 35/S-Met, harvested, lysed and subfractionated by centrifugation into post-ribosomal and ribosomal salt was fractions (RSW). These fractions were examined by SDS gel electrophoresis. The culture supernatant from the treated cells was dialyzed and passed over a heparin agarose affinity column. The absorbed material was eluted from the column bymore » a step-wise salt gradient and analyzed by SDS gel electrophoresis. They have also observed that in a rabbit reticulocyte lysate assay, the RSW from control cells show inhibition of protein synthesis. The RSW from cells treated with either high concentrations (200-1000 units/ml) of gamma interferon, Vit D/sub 3/ or TPA did not show this inhibition. Some possible explanations for this phenomenon are the loss or inactivation of a component necessary for protein synthesis which is triggered by differentiation, or the differentiation-related modulation of translational inhibitor(s). They have used FPLC to further analyze the RSW, but because the factor(s) are present in such small quantities further analytical and more sensitive procedures need to be pursued.« less

  2. Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.

    PubMed

    Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying

    2018-02-05

    The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Differential response of nucleus pulposus intervertebral disc cells to high salt, sorbitol, and urea.

    PubMed

    Mavrogonatou, Eleni; Kletsas, Dimitris

    2012-03-01

    Nucleus pulposus intervertebral disc cells are routinely confronted with high osmolality in their microenvironment and respond to this stress in vitro by regulating cell cycle progression and by activating a DNA repair machinery in order to counteract its genotoxic effect. In the present study, we attempted to identify the origin of this osmo-regulatory response, by using an ionic NaCl/KCl solution, the compatible osmolyte sorbitol, and the readily permeant urea. High salt and sorbitol were found to activate similar molecular pathways, including the p38 MAPK and the p53-p21(WAF1)-pRb axis, that were not stimulated by high urea. On the other hand, only high urea led to the phosphorylation of ERKs and JNKs. Furthermore, salt- and sorbitol-treated cells were able to phosphorylate histone H2A.X on Ser139, in contrast to cells exposed to urea, indicating a common mechanism for DNA repair, which was achieved by a p53-dependent activation of the G1 checkpoint by both solutes. DNA repair, as directly measured by a host cell reactivation assay, occurred under conditions of hyperosmolar salt and sorbitol, although to a lesser extent in sorbitol-treated cells than in cells exposed to high salinity. Taken as a whole, our findings suggest that the hyperosmolality-provoked DNA damage and the responses of nucleus pulposus cells induced by this genotoxic stress most probably originate from cell volume alterations mediated by hypertonicity and not from increased intracellular ionic concentration. Copyright © 2011 Wiley Periodicals, Inc.

  4. Structural determinants of ligand binding in the ternary complex of human ileal bile acid binding protein with glycocholate and glycochenodeoxycholate obtained from solution NMR.

    PubMed

    Horváth, Gergő; Bencsura, Ákos; Simon, Ágnes; Tochtrop, Gregory P; DeKoster, Gregory T; Covey, Douglas F; Cistola, David P; Toke, Orsolya

    2016-02-01

    Besides aiding digestion, bile salts are important signal molecules exhibiting a regulatory role in metabolic processes. Human ileal bile acid binding protein (I-BABP) is an intracellular carrier of bile salts in the epithelial cells of the distal small intestine and has a key role in the enterohepatic circulation of bile salts. Positive binding cooperativity combined with site selectivity of glycocholate and glycochenodeoxycholate, the two most abundant bile salts in the human body, make human I-BABP a unique member of the family of intracellular lipid binding proteins. Solution NMR structure of the ternary complex of human I-BABP with glycocholate and glycochenodeoxycholate reveals an extensive network of hydrogen bonds and hydrophobic interactions stabilizing the bound bile salts. Conformational changes accompanying bile salt binding affects four major regions in the protein including the C/D, E/F and G/H loops as well as the helical segment. Most of these protein regions coincide with a previously described network of millisecond time scale fluctuations in the apo protein, a motion absent in the bound state. Comparison of the heterotypic doubly ligated complex with the unligated form provides further evidence of a conformation selection mechanism of ligand entry. Structural and dynamic aspects of human I-BABP-bile salt interaction are discussed and compared with characteristics of ligand binding in other members of the intracellular lipid binding protein family. The coordinates of the 10 lowest energy structures of the human I-BABP : GCDA : GCA complex as well as the distance restraints used to calculate the final ensemble have been deposited in the Brookhaven Protein Data Bank with accession number 2MM3. © 2015 FEBS.

  5. Ectopic expression of wheat expansin gene TaEXPA2 improved the salt tolerance of transgenic tobacco by regulating Na+ /K+ and antioxidant competence.

    PubMed

    Chen, Yanhui; Han, Yangyang; Kong, Xiangzhu; Kang, Hanhan; Ren, Yuanqing; Wang, Wei

    2017-02-01

    High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na + but higher K + accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na + /K + homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance. © 2016 Scandinavian Plant Physiology Society.

  6. Cardioprotective effects of calcitonin gene-related peptide in isolated rat heart and in H9c2 cells via redox signaling.

    PubMed

    Tullio, Francesca; Penna, Claudia; Cabiale, Karine; Femminò, Saveria; Galloni, Marco; Pagliaro, Pasquale

    2017-06-01

    The calcitonin-gene-related-peptide (CGRP) release is coupled to the signaling of Angeli's salt in determining vasodilator effects. However, it is unknown whether CGRP is involved in Angeli's salt cardioprotective effects and which are the mechanisms of protection. We aimed to determine whether CGRP is involved in myocardial protection induced by Angeli's salt. We also analyzed the intracellular signaling pathway activated by CGRP. Isolated rat hearts were pre-treated with Angeli's salt or Angeli's salt plus CGRP 8-37 , a specific CGRP-receptor antagonist, and subjected to ischemia (30-min) and reperfusion (120-min). Moreover, we studied CGRP-induced protection during oxidative stress (H 2 O 2 ) and hypoxia/reoxygenation protocols in H9c2 cardiomyocytes. Cell vitality and mitochondrial membrane potential (ΔYm, MMP) were measured using MTT and JC-1 dyes. Angeli's salt reduced infarct size and ameliorated post-ischemic cardiac function via a CGRP-receptor-dependent mechanism. Pre-treatment with CGRP increased H9c2 survival upon challenging with either H 2 O 2 (redox stress) or hypoxia/reoxygenation (H/R stress). Under these stress conditions, reduction in MMP and cell death were partly prevented by CGRP. These CGRP beneficial effects were blocked by CGRP 8-37. During H/R stress, pre-treatment with either CGRP-receptor, protein kinase C (PKC) or mitochondrial K ATP channel antagonists, and pre-treatment with an antioxidant (2-mercaptopropionylglycine) blocked the protection mediated by CGRP. In conclusion, CGRP is involved in the cardioprotective effects of Angeli's salt. In H9c2 cardiomyocytes, CGRP elicits PKC-dependent and mitochondrial-K ATP -redox-dependent mechanisms. Hence, CGRP is an important factor in the redox-sensible cardioprotective effects of Angeli's salt. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. SOS2 Promotes Salt Tolerance in Part by Interacting with the Vacuolar H+-ATPase and Upregulating Its Transport Activity▿

    PubMed Central

    Batelli, Giorgia; Verslues, Paul E.; Agius, Fernanda; Qiu, Quansheng; Fujii, Hiroaki; Pan, Songqin; Schumaker, Karen S.; Grillo, Stefania; Zhu, Jian-Kang

    2007-01-01

    The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance. PMID:17875927

  8. A systematic technique for the sequential restoration of salt structures

    NASA Astrophysics Data System (ADS)

    Rowan, Mark G.

    1993-12-01

    A method is described for the sequential restoration of cross sections in areas of salt tectonics where deformation is confined to the salt and higher layers. The subsurface geometry evolves with time through the interaction of various processes: sedimentation, compaction, isostatic adjustment, thermal subsidence (if present), faulting, and salt withdrawal/ diapirism. The technique systematically calculates and removes the effects of each of these processes during specified time intervals defined by the interpreted horizons. It makes no assumptions about salt kinematics and generally results in the area of the salt layer changing through time. The method is described for restoration of extensional terranes, but it is also suitable for areas of contractional salt tectonics with only minor modifications. After converting an interpreted seismic profile to depth, the top layer is stripped off and the underlying section is decompacted according to standard porosity-depth functions. A deep baseline, unaffected by compaction or deformation, is used to restore any isostatic compensation or thermal subsidence. Isostasy is calculated according to the Airy model, and differential sedimentary loading across a section is shown to be approximately balanced by changes in salt thickness so that the load is evenly distributed. After these processes have been reversed, the resulting geometry and the seismic data are used to create the sea-floor template for structural restoration. Fault offsets are removed and the layers down to the top salt are restored to this template, while the base salt remains fixed. The resulting space between the restored top salt and the fixed base salt defines the restored salt geometry. In addition, the difference between the sea-floor template and a fixed sea level provides a measure of the change in water depth (ignoring eustatic changes in sea level). The technique is applied to an interpreted seismic profile from the eastern Green Canyon/Ewing Bank area of offshore Louisiana. The section is characterized by a variety of salt structures, including salt rollers, a diapiric massif, a remnant salt sheet, and a salt weld, which are shown to have derived from an originally continuous salt sheet which has been modified by sedimentary loading. Early loading created vertical basin growth that was accommodated primarily by salt withdrawal and associated diapiric rise through the process of downbuilding. Once the salt weld formed, continued sedimentation was accommodated by a lateral increase in basin size caused by down-dip extension on listric growth faults.

  9. Improved Design and Fabrication of Hydrated-Salt Pills

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  10. High-speed electrodeposition of copper-tin-zinc stacks from liquid metal salts for Cu2ZnSnSe4 solar cells.

    PubMed

    Steichen, Marc; Malaquias, João C; Arasimowicz, Monika; Djemour, Rabie; Brooks, Neil R; Van Meervelt, Luc; Fransaer, Jan; Binnemans, Koen; Dale, Phillip J

    2017-01-16

    Cu 2 ZnSnSe 4 -based solar cells with 5.5% power conversion efficiency were fabricated from Cu/Sn/Zn stacks electrodeposited from liquid metal salts. These electrolytes allow metal deposition rates one order of magnitude higher than those of other deposition methods.

  11. Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-L stainless steel: role of cell surface hydrophobicity.

    PubMed Central

    Vanhaecke, E; Remon, J P; Moors, M; Raes, F; De Rudder, D; Van Peteghem, A

    1990-01-01

    Fifteen different isolates of Pseudomonas aeruginosa were used to study the kinetics of adhesion to 304 and 316-L stainless steel. Stainless steel plates were incubated with approximately 1.5 X 10(7) CFU/ml in 0.01 M phosphate-buffered saline (pH 7.4). After the plates were rinsed with the buffer, the number of adhering bacteria was determined by a bioluminescence assay. Measurable adhesion, even to the electropolished surfaces, occurred within 30 s. Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to hydrocarbons test and the contact angle measurement test, was the major parameter influencing the adhesion rate constant for the first 30 min of adhesion. A parabolic relationship between the CAM values and the logarithm of the adhesion rate constants (In k) was established. No correlation between either the salt aggregation or the improved salt aggregation values and the bacterial adhesion rate constants could be found. Since there was no significant correlation between the bacterial electrophoretic mobilities and the In k values, the bacterial cell surface charge seemed of minor importance in the process of adhesion of P. aeruginosa to 304 and 316-L stainless steel. PMID:2107796

  12. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  13. Thermal regeneration of an electrochemical concentration cell

    DOEpatents

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  14. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    EPA Science Inventory

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  15. Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species.

    PubMed

    Janz, Dennis; Lautner, Silke; Wildhagen, Henning; Behnke, Katja; Schnitzler, Jörg-Peter; Rennenberg, Heinz; Fromm, Jörg; Polle, Andrea

    2012-04-01

    • Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  16. Effects of current generation and electrolyte pH on reverse salt flux across thin film composite membrane in osmotic microbial fuel cells.

    PubMed

    Qin, Mohan; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-15

    Osmotic microbial fuel cells (OsMFCs) take advantages of synergy between forward osmosis (FO) and microbial fuel cells (MFCs) to accomplish wastewater treatment, current generation, and high-quality water extraction. As an FO based technology, OsMFCs also encounter reverse salt flux (RSF) that is the backward transport of salt ions across the FO membrane into the treated wastewater. This RSF can reduce water flux, contaminate the treated wastewater, and increase the operational expense, and thus must be properly addressed before any possible applications. In this study, we aimed to understand the effects of current generation and electrolyte pH on RSF in an OsMFC. It was found that electricity generation could greatly inhibit RSF, which decreased from 16.3 ± 2.8 to 3.9 ± 0.7 gMH when the total Coulomb production increased from 0 to 311 C. The OsMFC exhibited 45.9 ± 28.4% lower RSF at the catholyte pH of 3 than that at pH 11 when 40 Ω external resistance was connected. The amount of sodium ions transported across the FO membrane was 18.3-40.7% more than that of chloride ions. Ion transport was accomplished via diffusion and electrically-driven migration, and the theoretical analysis showed that the inhibited electrically-driven migration should be responsible for the reduced RSF. These findings are potentially important to control and reduce RSF in OsMFCs or other osmotic-driven processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. New functionalized mercaptoundecahydrododecaborate derivatives for potential application in boron neutron capture therapy: synthesis, characterization and dynamic visualization in cells.

    PubMed

    Genady, Afaf R; Ioppolo, Joseph A; Azaam, Mohamed M; El-Zaria, Mohamed E

    2015-03-26

    A series of mercaptoundecahydrododecaborate (B12H11SH(2-), BSH) bearing mono- and dicarboxyalkyl derivatives was prepared, characterized, and their reactivity towards amidation and esterification in DMF was evaluated. Symmetrical alkylation of BSH was achieved by treatment with primary haloalkyl carboxylic acids in aqueous acetonitrile to produce S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate tetramethylammonium salts. Unsymmetrically substituted sulfonium salts were obtained through a similar treatment of cyanoethylthioether-undecahydro-closo-dodecaborate tetramethylammonium salt with haloalkyl carboxylic acid. Selective removal of the remaining cyanoethyl group upon treatment with tetramethylammonium hydroxide yielded S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate ditetramethylammonium salts. N,N'-dicyclohexylcarbodiimide (DCC) activated amidation of S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate or S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate tetramethylammonium salts with propargylamine provided the opportunity to install terminal acetylene groups for further conjugation. These compounds acted as powerful building blocks for the synthesis of a broad range of 1,4-disubstituted 1,2,3-triazole products in high yields, utilizing the Cu(I)-mediated click cycloaddition reaction. The synthesis of BSH-lipid with a two-tailed moiety was also achieved, by esterification of S,S-bis(carboxyethyl)sulfoniumundecahydro-closo-dodecaborate(1-) tetramethylammonium salt with 1,2-O-distearoyl-sn-3-glycerol, which may prove useful in the liposomal boron delivery system. The bio-compatibility of the azide-alkyne click reaction was then utilized by performing this reaction in cell culture. The distribution of BSH in HeLa cells could be visualized by treating the cells first with a BSH-alkyne compound and then with Alexa Fluor 488(®) azide dye. The BSH-dye conjugate, which did not wash out, revealed the distribution of boron in the HeLa cells. Cytotoxicity assays of these BSH derivatives revealed that the synthesized BSH-conjugated triazoles possessed low cytotoxicity in HeLa cancer cells. Of these compounds, BSH conjugated triazole 15 induced a significant increase in the level of boron accumulation in HeLa cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. Complementary functions of the flippase ATP8B1 and the floppase ABCB4 in maintaining canalicular membrane integrity.

    PubMed

    Groen, Annemiek; Romero, Marta Rodriguez; Kunne, Cindy; Hoosdally, Sarah J; Dixon, Peter H; Wooding, Carol; Williamson, Catherine; Seppen, Jurgen; Van den Oever, Karin; Mok, Kam S; Paulusma, Coen C; Linton, Kenneth J; Oude Elferink, Ronald P J

    2011-11-01

    Progressive familial intrahepatic cholestasis can be caused by mutations in ABCB4 or ATP8B1; each encodes a protein that translocates phospholipids, but in opposite directions. ABCB4 flops phosphatidylcholine from the inner to the outer leaflet, where it is extracted by bile salts. ATP8B1, in complex with the accessory protein CDC50A, flips phosphatidylserine in the reverse direction. Abcb4(-/-) mice lack biliary secretion of phosphatidylcholine, whereas Atp8b1-deficient mice have increased excretion of phosphatidylserine into bile. Each system is thought to have a role protecting the canalicular membrane from bile salts. To investigate the relationship between the mechanisms of ABCB4 and ATP8B1, we expressed the transporters separately and together in cultured cells and studied viability and phospholipid transport. We also created mice with disruptions in ABCB4 and ATP8B1 (double knockouts) and studied bile formation and hepatic damage in mice fed bile salts. Overexpression of ABCB4 was toxic to HEK293T cells; the toxicity was counteracted by coexpression of the ATP8B1-CDC50A complex. In Atp8b1-deficient mice, bile salts induced extraction of phosphatidylserine and ectoenzymes from the canalicular membrane; this process was not observed in the double-knockout mice. ATP8B1 is required for hepatocyte function, particularly in the presence of ABCB4. This is most likely because the phosphatidylserine flippase complex of ATP8B1-CDC50A counteracts the destabilization of the membrane that occurs when ABCB4 flops phosphatidylcholine. Lipid asymmetry is therefore important for the integrity of the canalicular membrane; ABCB4 and ATP8B1 cooperate to protect hepatocytes from bile salts. Copyright © 2011 AGA Institute. Published by Elsevier Inc. All rights reserved.

  19. Studies on stability of PEC cells formed with CdS:Al films

    NASA Astrophysics Data System (ADS)

    Lokhande, C. D.; Pawar, S. H.

    1984-02-01

    Aluminum doped and undoped CdS films are deposited on stainless steel substrates by chemical bath deposition technique and are employed in PEC cells. The effects of heat treatment to photoanode and addition of salts like KCl and NaCl in an electrolyte on the stability of the PEC cells are studied. It is found that though the PEC cells formed with CdS films are stable in NaOH-Na 2S-S electrolyte, the stability of PEC cells formed with Al doped CdS films is achieved only after the addition of saturated salts in the electrolyte.

  20. Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin

    PubMed Central

    Kotlo, Kumar; Bhattacharyya, Sumit; Yang, Bo; Feferman, Leonid; Tejaskumar, Shah; Linhardt, Robert; Danziger, Robert

    2013-01-01

    N -acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation. PMID:23385884

  1. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions

    PubMed Central

    Schmidt III, WF; McManus, TJ

    1977-01-01

    Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction. PMID:894251

  2. Impact of salt exposure on N-acetylgalactosamine-4-sulfatase (arylsulfatase B) activity, glycosaminoglycans, kininogen, and bradykinin.

    PubMed

    Kotlo, Kumar; Bhattacharyya, Sumit; Yang, Bo; Feferman, Leonid; Tejaskumar, Shah; Linhardt, Robert; Danziger, Robert; Tobacman, Joanne K

    2013-10-01

    N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) is the enzyme that removes sulfate groups from the N-acetylgalactosamine-4-sulfate residue at the non-reducing end of chondroitin-4-sulfate (C4S) and dermatan sulfate (DS). Previous studies demonstrated reduction in cell-bound high molecular weight kininogen in normal rat kidney (NRK) epithelial cells when chondroitin-4-sulfate content was reduced following overexpression of ARSB activity, and chondroitinase ABC produced similar decline in cell-bound kininogen. Reduction in the cell-bound kininogen was associated with increase in secreted bradykinin. In this report, we extend the in vitro findings to in vivo models, and present findings in Dahl salt-sensitive (SS) rats exposed to high (SSH) and low salt (SSL) diets. In the renal tissue of the SSH rats, ARSB activity was significantly less than in the SSL rats, and chondroitin-4-sulfate and total sulfated glycosaminoglycan content were significantly greater. Disaccharide analysis confirmed marked increase in C4S disaccharides in the renal tissue of the SSH rats. In contrast, unsulfated, hyaluronan-derived disaccharides were increased in the rats on the low salt diet. In the SSH rats, with lower ARSB activity and higher C4S levels, cell-bound, high-molecular weight kininogen was greater and urinary bradykinin was lower. ARSB activity in renal tissue and NRK cells declined when exogenous chloride concentration was increased in vitro. The impact of high chloride exposure in vivo on ARSB, chondroitin-4-sulfation, and C4S-kininogen binding provides a mechanism that links dietary salt intake with bradykinin secretion and may be a factor in blood pressure regulation.

  3. Method for recovering catalytic elements from fuel cell membrane electrode assemblies

    DOEpatents

    Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ; Heinz, Robert [Ludwigshafen, DE

    2012-06-26

    A method for recovering catalytic elements from a fuel cell membrane electrode assembly is provided. The method includes converting the membrane electrode assembly into a particulate material, wetting the particulate material, forming a slurry comprising the wetted particulate material and an acid leachate adapted to dissolve at least one of the catalytic elements into a soluble catalytic element salt, separating the slurry into a depleted particulate material and a supernatant containing the catalytic element salt, and washing the depleted particulate material to remove any catalytic element salt retained within pores in the depleted particulate material.

  4. Cellular mechanisms to survive salt in the halophyte Cakile maritima.

    PubMed

    Arbelet-Bonnin, Delphine; Ben Hamed-Laouti, Ibtissem; Laurenti, Patrick; Abdelly, Chedly; Ben Hamed, Karim; Bouteau, François

    2018-07-01

    We recently identified two behaviours in cultured cells of the salt accumulating halophyte Cakile maritima: one related to a sustained depolarization due to Na + influx through the non-selective cation channels leading to programmed cell death of these cells, a second one related to a transient depolarization allowing cells to survive (Ben Hamed-Laouti, 2016). In this study, we considered at the cellular level mechanisms that could participate to the exclusion of Na + out of the cell and thus participate in the regulation of the internal contents of Na + and cell survival. Upon addition of NaCl in the culture medium of suspension cells of C. maritima, we observed a rapid influx of Na + followed by an efflux dependent of the activity of plasma membrane H + -ATPases, in accordance with the functioning of a Na + /H + antiporter and the ability of some cells to repolarize. The Na + efflux was shown to be dependent on Na + -dependent on Ca 2+ influx like the SOS1 Na + /H + antiporter. We further could observe in response to salt addition, an early production of singlet oxygen ( 1 O 2 ) probably due to peroxidase activities. This early 1 O 2 production seemed to be a prerequisite to the Na + efflux. Our findings suggest that in addition to the pathway leading to PCD (Ben Hamed-Laouti, 2016), a second pathway comprising an SOS-like system could participate to the survival of a part of the C. maritima cultured cells challenged by salt stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model.

    PubMed

    Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of

  6. Consumer acceptance of reformulated food products: A systematic review and meta-analysis of salt-reduced foods.

    PubMed

    Jaenke, Rachael; Barzi, Federica; McMahon, Emma; Webster, Jacqui; Brimblecombe, Julie

    2017-11-02

    Food product reformulation is promoted as an effective strategy to reduce population salt intake and address the associated burden of chronic disease. Salt has a number of functions in food processing, including impacting upon physical and sensory properties. Manufacturers must ensure that reformulation of foods to reduce salt does not compromise consumer acceptability. The aim of this systematic review is to determine to what extent foods can be reduced in salt without detrimental effect on consumer acceptability. Fifty studies reported on salt reduction, replacement or compensation in processed meats, breads, cheeses, soups, and miscellaneous products. For each product category, levels of salt reduction were collapsed into four groups: <40%, 40-59%, 60-79% and ≥80%. Random effects meta-analyses conducted on salt-reduced products showed that salt could be reduced by approximately 40% in breads [mean change in acceptability for reduction <40% (-0.27, 95% confidence interval (CI) -0.62, 0.08; p = 0.13)] and approximately 70% in processed meats [mean change in acceptability for reductions 60-69% (-0.18, 95% CI -0.44, 0.07; p = 0.15)] without significantly impacting consumer acceptability. Results varied for other products. These results will support manufacturers to make greater reductions in salt when reformulating food products, which in turn will contribute to a healthier food supply.

  7. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  8. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  9. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    PubMed

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  10. New molten salt systems for high temperature molten salt batteries: Ternary and quaternary molten salt systems based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr

    NASA Astrophysics Data System (ADS)

    Fujiwara, Syozo; Inaba, Minoru; Tasaka, Akimasa

    Using a new simulative technique developed by us, we systematically investigated new ternary or quaternary molten salt systems, which are based on LiF-LiCl, LiF-LiBr, and LiCl-LiBr binary systems, for use as electrolytes in thermal batteries, and evaluated their ionic conductivities and melting points experimentally. It was confirmed experimentally that LiF-LiBr-KF (melting point: 425 °C, ionic conductivity at 500 °C: 2.52 S cm -1), LiCl-LiBr-KF (405 °C, 2.56 S cm -1), LiCl-LiBr-NaF-KF (425 °C, 3.11 S cm -1), LiCl-LiBr-NaCl-KCl (420 °C, 2.73 S cm -1), and LiCl-LiBr-NaBr-KBr (420 °C, 2.76 S cm -1) meet our targets for both melting point (350-430 °C) and ionic conductivity (2.0 S cm -1 and higher at 500 °C). A single cell using the newly developed LiCl-LiBr-NaCl-KCl molten salt as an electrolyte was prepared, and the DC-IR of the cell decreased by 20% than that of a single cell using the conventional LiCl-KCl molten salt. It was therefore concluded that the use of new quaternary molten salt systems can improve the discharge rate-capability in practical battery applications because of their high ionic conductivities.

  11. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  12. An Electrochemical Cell for Selective Lithium Capture from Seawater.

    PubMed

    Kim, Joo-Seong; Lee, Yong-Hee; Choi, Seungyeon; Shin, Jaeho; Dinh, Hung-Cuong; Choi, Jang Wook

    2015-08-18

    Lithium (Li) is a core element of Li-ion batteries (LIBs). Recent developments in mobile electronics such as smartphones and tablet PCs as well as advent of large-scale LIB applications including electrical vehicles and grid-level energy storage systems have led to an increase in demand for LIBs, giving rise to a concern on the availability and market price of Li resources. However, the current Lime-Soda process that is responsible for greater than 80% of worldwide Li resource supply is applicable only in certain regions on earth where the Li concentrations are sufficiently high (salt lakes or salt pans). Moreover, not only is the process time-consuming (12-18 months), but post-treatments are also required for the purification of Li. Here, we have devised a location-independent electrochemical system for Li capture, which can operate within a short time period (a few hours to days). By engaging olivine LiFePO4 active electrode that improves interfacial properties via polydopamine coating, the electrochemical cell achieves 4330 times amplification in Li/Na ion selectivity (Li/Na molar ratio of initial solution = 0.01 and Li/Na molar ratio of final electrode = 43.3). In addition, the electrochemical system engages an I(-)/I3(-) redox couple in the other electrode for balancing of the redox states on both electrode sides and sustainable operations of the entire cell. Based on the electrochemical results, key material and interfacial properties that affect the selectivity in Li capture are identified.

  13. Foam separation of Pseudomonas fluorescens and Bacillus subtilis var. niger.

    PubMed

    Grieves, R B; Wang, S L

    1967-01-01

    An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 mueq/ml of NaCl, KCl, Na(2)SO(4), K(2)SO(4), CaCl(2), CaSO(4), MgCl(2), or MgSO(4) produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 x 10(5) up to 1.6 x 10(6) to 2.8 x 10(7) cells per milliliter (initial suspensions contain from 3.3 x 10(7) to 4.8 x 10(7) cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 mueq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 x 10(4) to about 4.0 x 10(5) cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis.

  14. DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eibling, R

    The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based uponmore » the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less

  15. LiGa(OTf)(sub 4) as an Electrolyte Salt for Li-Ion Cells

    NASA Technical Reports Server (NTRS)

    Reddy, V. Prakash; Prakash, G. K. Syria; Hu, Jinbo; Yan, Ping; Smart, Marshall; Bugga, ratnakumar; Chin, Keith; Surampudi, Subarao

    2008-01-01

    Lithium tetrakis(trifluoromethane sulfo - nato)gallate [abbreviated "LiGa(OTf)4" (wherein "OTf" signifies trifluoro - methanesulfonate)] has been found to be promising as an electrolyte salt for incorporation into both liquid and polymer electrolytes in both rechargeable and non-rechargeable lithium-ion electrochemical cells. This and other ingredients have been investigated in continuing research oriented toward im proving the performances of rechargeable lithium-ion electrochemical cells, especially at low temperatures. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. As described in more detail in those articles, lithiumion cells most commonly contain nonaqueous electrolyte solutions consisting of lithium hexafluorophosphate (LiPF6) dissolved in mixtures of cyclic and linear alkyl carbonates, including ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). Although such LiPF6-based electrolyte solutions are generally highly ionically conductive and electrochemically stable, as needed for good cell performance, there is interest in identifying alternate lithium electrolyte salts that, relative to LiPF6, are more resilient at high temperature and are less expensive. Experiments have been performed on LiGa(OTf)4 as well as on several other candidate lithium salts in pursuit of this interest. As part of these experiments, LiGa(OTf)4 was synthesized by the reaction of Ga(OTf)3 with an equimolar portion of LiOTf in a solvent consisting of anhydrous acetonitrile. Evaporation of the solvent yielded LiGa(OTf)4 as a colorless crystalline solid. The LiGa(OTf)4 and the other salts were incorporated into solutions with PC and DMC. The resulting electrolyte solutions exhibited reasonably high ionic conductivities over a relatively wide temperature range down to 40 C (see figure). In cyclic voltammetry measurements, LiGa(OTf)4 and the other salts exhibited acceptably high electrochemical stability over the relatively wide potential window of 0 to 5 V versus Li+/Li. 13C nuclear-magneticresonance measurements yielded results that suggested that in comparison with the other candidate salts, LiGa(OTf)4 exhibits less ion pairing. Planned further development will include optimization of the salt and solvent contents of such electrolyte solutions and incorporation of LiGa(OTf)4 into gel and solid-state polymer electrolytes. Of the salts, LiGa(OTf)4 is expected to be especially desirable for incorporation into lithium polymer electrolytes, wherein decreased ion pairing is advantageous and the large delocalized anions can exert a plasticizing effect.

  16. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974). However, irrespectively of the climatic environment a liquid brine is a necessity for salt induced fragmentation of rocks.M. C. Malin (1974) JGR Vol 79,26 p 3888-3894

  17. Microstructural observations of reconsolidated granular salt to 250°C

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Hansen, F.; Bauer, S. J.; Stormont, J.

    2014-12-01

    Very low permeability is a principal reason salt formations are considered viable hosts for disposal of nuclear waste and spent nuclear fuel. Granular salt is likely to be used as back-fill material and as a seal system component. Granular salt is expected to reconsolidate to a low permeability condition because of external pressure from the surrounding salt formation. Understanding the consolidation processes--known to depend on the stress state, moisture availability and temperature--is important for predicting achievement of sealing functions and long-term repository performance. As granular salt consolidates, initial void reduction is accomplished by brittle processes of grain rearrangement and cataclastic flow. At porosities of less than 10%, grain boundary processes and crystal-plastic mechanisms govern further porosity reduction. We investigate the micro-mechanisms operative in granular salt that has been consolidated under high temperatures to relatively low porosity. These conditions would occur proximal to heat-generating canisters. Mine-run salt from the Waste Isolation Pilot Plant was used to create cylindrical samples which were consolidated at 250°C and stresses to 20 MPa. From samples consolidated to fractional densities of 86% and 97% polished thin sections, etched cleavage chips, and fragments were fabricated. Microstructural techniques included scanning electron and optical microscopy. Microstructure of undeformed mine-run salt was compared to the deformed granular salt. Observed deformation mechanisms include glide, cross slip, climb, fluid-assisted creep, pressure-solution redeposition, and annealing. Documentation of operative deformation mechanisms within the consolidating granular salt, particularly at grain boundaries, is essential to establish effects of moisture, stress, and temperature. Future work will include characterization of pore structures. Information gleaned in these studies supports evaluation of a constitutive model for reconsolidating granular salt, which will be used to predict the thermal-mechanical-hydrologic response of salt repository seal structures and backfilled rooms.

  18. Demand driven salt clean-up in a molten salt fast reactor - Defining a priority list.

    PubMed

    Merk, B; Litskevich, D; Gregg, R; Mount, A R

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified.

  19. Bile

    MedlinePlus

    ... the digestive tract. Bile contains: Mostly cholesterol Bile acids (also called bile salts) Bilirubin (a breakdown product or red blood cells) It also contains: Water Body salts (such as potassium and sodium) Copper and other metals

  20. Investigation and Taguchi Optimization of Microbial Fuel Cell Salt Bridge Dimensional Parameters

    NASA Astrophysics Data System (ADS)

    Sarma, Dhrupad; Barua, Parimal Bakul; Dey, Nabendu; Nath, Sumitro; Thakuria, Mrinmay; Mallick, Synthia

    2018-01-01

    One major problem of two chamber salt bridge microbial fuel cells (MFCs) is the high resistance offered by the salt bridge to anion flow. Many researchers who have studied and optimized various parameters related to salt bridge MFC, have not shed much light on the effect of salt bridge dimensional parameters on the MFC performance. Therefore, the main objective of this research is to investigate the effect of length and cross sectional area of salt bridge and the effect of solar radiation and atmospheric temperature on MFC current output. An experiment has been designed using Taguchi L9 orthogonal array, taking length and cross sectional area of salt bridge as factors having three levels. Nine MFCs were fabricated as per the nine trial conditions. Trials were conducted for 3 days and output current of each of the MFCs along with solar insolation and atmospheric temperature were recorded. Analysis of variance shows that salt bridge length has significant effect both on mean (with 53.90% contribution at 95% CL) and variance (with 56.46% contribution at 87% CL), whereas the effect of cross sectional area of the salt bridge and the interaction of these two factors is significant on mean only (with 95% CL). Optimum combination was found at 260 mm salt bridge length and 506.7 mm2 cross sectional area with 4.75 mA of mean output current. The temperature and solar insolation data when correlated with each of the MFCs average output current, revealed that both external factors have significant impact on MFC current output but the correlation coefficient varies from MFC to MFC depending on salt bridge dimensional parameters.

  1. Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts

    PubMed Central

    Nickerson, Kourtney P.; Chanin, Rachael B.; Sistrunk, Jeticia R.; Fink, Peter J.; Barry, Eileen M.; Nataro, James P.

    2017-01-01

    ABSTRACT The Shigella species cause millions of cases of watery or bloody diarrhea each year, mostly in children in developing countries. While many aspects of Shigella colonic cell invasion are known, crucial gaps in knowledge regarding how the bacteria survive, transit, and regulate gene expression prior to infection remain. In this study, we define mechanisms of resistance to bile salts and build on previous research highlighting induced virulence in Shigella flexneri strain 2457T following exposure to bile salts. Typical growth patterns were observed within the physiological range of bile salts; however, growth was inhibited at higher concentrations. Interestingly, extended periods of exposure to bile salts led to biofilm formation, a conserved phenotype that we observed among members of the Enterobacteriaceae. Characterization of S. flexneri 2457T biofilms determined that both bile salts and glucose were required for formation, dispersion was dependent upon bile salts depletion, and recovered bacteria displayed induced adherence to HT-29 cells. RNA-sequencing analysis verified an important bile salt transcriptional profile in S. flexneri 2457T, including induced drug resistance and virulence gene expression. Finally, functional mutagenesis identified the importance of the AcrAB efflux pump and lipopolysaccharide O-antigen synthesis for bile salt resistance. Our data demonstrate that S. flexneri 2457T employs multiple mechanisms to survive exposure to bile salts, which may have important implications for multidrug resistance. Furthermore, our work confirms that bile salts are important physiological signals to activate S. flexneri 2457T virulence. This work provides insights into how exposure to bile likely regulates Shigella survival and virulence during host transit and subsequent colonic infection. PMID:28348056

  2. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  3. Platyamoeba pseudovannellida n. sp., a naked amoeba with wide salt tolerance isolated from the Salton Sea, California.

    PubMed

    Hauer, G; Rogerson, A; Anderson, O R

    2001-01-01

    A new species of naked amoeba, Platyamoeba pseudovannellida n.sp., is described on the basis of light microscopic and fine structural features. The amoeba was isolated from the Salton Sea, California, from water at a salinity of ca. 44%. Locomotive amoebae occasionally had a spatulate outline and floating cells had radiating pseudopodia, sometimes with pointed tips. Both these features are reminiscent of the genus Vannella. However, the surface coat (glycocalyx) as revealed by TEM indicates that this is a species of Platyamoeba. Although salinity was not used as a diagnostic feature, this species was found to have remarkable tolerance to fluctuating salinity levels, even when changes were rapid. Amoebae survived over the range 0 per thousand to 150 per thousand salt and grew within the range 0 per thousand to 138 per thousand salt. The generation time of cells averaged 29 h and was not markedly affected by salt concentration. This is longer than expected for an amoeba of this size and suggests a high energetic cost of coping with salinity changes. The morphology of cells changed with increasing salinity: at 0 per thousand cells were flattened and active and at the other extreme (138 per thousand) amoebae were wrinkled and domed and cell movement was very slow. At the ultrastructural level, the cytoplasm of cells grown at high salinity (98 per thousand was considerably denser than that of cells reared at 0 per thousand.

  4. Integrated in situ gas stripping-salting-out process for high-titer acetone-butanol-ethanol production from sweet sorghum bagasse.

    PubMed

    Wen, Hao; Chen, Huidong; Cai, Di; Gong, Peiwen; Zhang, Tao; Wu, Zhichao; Gao, Heting; Li, Zhuangzhuang; Qin, Peiyong; Tan, Tianwei

    2018-01-01

    The production of biobutanol from renewable biomass resources is attractive. The energy-intensive separation process and low-titer solvents production are the key constraints on the economy-feasible acetone-butanol-ethanol (ABE) production by fermentation. To decrease energy consumption and increase the solvents concentration, a novel two-stage gas stripping-salting-out system was established for effective ABE separation from the fermentation broth using sweet sorghum bagasse as feedstock. The ABE condensate (143.6 g/L) after gas stripping, the first-stage separation, was recovered and introduced to salting-out process as the second-stage. K 4 P 2 O 7 and K 2 HPO 4 were used, respectively. The effect of saturated salt solution temperature on final ABE concentration was also investigated. The results showed high ABE recovery (99.32%) and ABE concentration (747.58 g/L) when adding saturated K 4 P 2 O 7 solution at 323.15 K and 3.0 of salting-out factor. On this condition, the energy requirement of the downstream distillation process was 3.72 MJ/kg of ABE. High-titer cellulosic ABE production was separated from the fermentation broth by the novel two-stage gas stripping-salting-out process. The process was effective, which reduced the downstream process energy requirement significantly.

  5. Reduced temperature aluminum production in an electrolytic cell having an inert anode

    DOEpatents

    Dawless, Robert K.; Ray, Siba P.; Hosler, Robert B.; Kozarek, Robert L.; LaCamera, Alfred F.

    2000-01-01

    Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

  6. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation

    PubMed Central

    Yin, Liang; Xue, Yanfen; Ma, Yanhe

    2015-01-01

    The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 is often exposed to salt stress in its natural habitats. In this study, we used one-colour microarrays to investigate adaptive responses of Bacillus sp. N16-5 transcriptome to long-term growth at different salinity levels (0%, 2%, 8%, and 15% NaCl) and to a sudden salt increase from 0% to 8% NaCl. The common strategies used by bacteria to survive and grow at high salt conditions, such as K+ uptake, Na+ efflux, and the accumulation of organic compatible solutes (glycine betaine and ectoine), were observed in Bacillus sp. N16-5. The genes of SigB regulon involved in general stress responses and chaperone-encoding genes were also induced by high salt concentration. Moreover, the genes regulating swarming ability and the composition of the cytoplasmic membrane and cell wall were also differentially expressed. The genes involved in iron uptake were down-regulated, whereas the iron homeostasis regulator Fur was up-regulated, suggesting that Fur may play a role in the salt adaption of Bacillus sp. N16-5. In summary, we present a comprehensive gene expression profiling of alkaliphilic Bacillus sp. N16-5 cells exposed to high salt stress, which would help elucidate the mechanisms underlying alkaliphilic Bacillus spp. survival in and adaptation to salt stress. PMID:26030352

  7. The role of T cells in the pathogenesis of primary hypertension

    PubMed Central

    Quiroz, Yasmir; Johnson, Richard J.; Rodríguez-Iturbe, Bernardo

    2012-01-01

    Accumulating evidence indicates that T cells play an important role in the pathogenesis of hypertension. Here we review the investigations that have shown that T cells are infiltrating the kidney in hypertension. Interstitial accumulation of immune cells is associated with increments in oxidative stress and renal angiotensin II activity that result in the impairment in pressure natriuresis. The severity of salt-sensitive hypertension is directly correlated with the intensity of immune cell infiltration in the kidney. Reducing the renal infiltration of T cells prevents or ameliorates hypertension and the induction of tubulointerstitial inflammation results in salt-sensitive hypertension. The potential participation of autoimmune mechanisms in the renal infiltration of immune competent cells is discussed. PMID:23036901

  8. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation

    PubMed Central

    Brown, Leon D.; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J.; Reinhard, Christina; Connor, Leigh D.; Inman, Douglas; Brett, Daniel J. L.; Shearing, Paul R.

    2017-01-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO2 to U metal in LiCl–KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl–KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems. PMID:28244437

  9. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation.

    PubMed

    Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R

    2017-03-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.

  10. Enjoyment of Spicy Flavor Enhances Central Salty-Taste Perception and Reduces Salt Intake and Blood Pressure.

    PubMed

    Li, Qiang; Cui, Yuanting; Jin, Rongbing; Lang, Hongmei; Yu, Hao; Sun, Fang; He, Chengkang; Ma, Tianyi; Li, Yingsha; Zhou, Xunmei; Liu, Daoyan; Jia, Hongbo; Chen, Xiaowei; Zhu, Zhiming

    2017-12-01

    High salt intake is a major risk factor for hypertension and is associated with cardiovascular events. Most countries exhibit a traditionally high salt intake; thus, identification of an optimal strategy for salt reduction at the population level may have a major impact on public health. In this multicenter, random-order, double-blind observational and interventional study, subjects with a high spice preference had a lower salt intake and blood pressure than subjects who disliked spicy food. The enjoyment of spicy flavor enhanced salt sensitivity and reduced salt preference. Salt intake and salt preference were related to the regional metabolic activity in the insula and orbitofrontal cortex (OFC) of participants. Administration of capsaicin-the major spicy component of chili pepper-enhanced the insula and OFC metabolic activity in response to high-salt stimuli, which reversed the salt intensity-dependent differences in the metabolism of the insula and OFC. In animal study, OFC activity was closely associated with salt preference, and salty-taste information processed in the OFC was affected in the presence of capsaicin. Thus, interventions related to this region may alter the salt preference in mice through fiber fluorometry and optogenetic techniques. In conclusion, enjoyment of spicy foods may significantly reduce individual salt preference, daily salt intake, and blood pressure by modifying the neural processing of salty taste in the brain. Application of spicy flavor may be a promising behavioral intervention for reducing high salt intake and blood pressure. © 2017 American Heart Association, Inc.

  11. Molecular dynamics simulations on the Tre1 G protein-coupled receptor: exploring the role of the arginine of the NRY motif in Tre1 structure

    PubMed Central

    2013-01-01

    Background The arginine of the D/E/NRY motif in Rhodopsin family G protein-coupled receptors (GPCRs) is conserved in 96% of these proteins. In some GPCRs, this arginine in transmembrane 3 can form a salt bridge with an aspartic acid or glutamic acid in transmembrane 6. The Drosophila melanogaster GPCR Trapped in endoderm-1 (Tre1) is required for normal primordial germ cell migration. In a mutant form of the protein, Tre1sctt, eight amino acids RYILIACH are missing, resulting in a severe disruption of primordial germ cell development. The impact of the loss of these amino acids on Tre1 structure is unknown. Since the missing amino acids in Tre1sctt include the arginine that is part of the D/E/NRY motif in Tre1, molecular dynamics simulations were performed to explore the hypothesis that these amino acids are involved in salt bridge formation and help maintain Tre1 structure. Results Structural predictions of wild type Tre1 (Tre1+) and Tre1sctt were subjected to over 250 ns of molecular dynamics simulations. The ability of the model systems to form a salt bridge between the arginine of the D/E/NRY motif and an aspartic acid residue in transmembrane 6 was analyzed. The results indicate that a stable salt bridge can form in the Tre1+ systems and a weak salt bridge or no salt bridge, using an alternative arginine, is likely in the Tre1sctt systems. Conclusions The weak salt bridge or lack of a salt bridge in the Tre1sctt systems could be one possible explanation for the disrupted function of Tre1sctt in primordial germ cell migration. These results provide a framework for studying the importance of the arginine of the D/E/NRY motif in the structure and function of other GPCRs that are involved in cell migration, such as CXCR4 in the mouse, zebrafish, and chicken. PMID:24044607

  12. Molecular dynamics simulations on the Tre1 G protein-coupled receptor: exploring the role of the arginine of the NRY motif in Tre1 structure.

    PubMed

    Pruitt, Margaret M; Lamm, Monica H; Coffman, Clark R

    2013-09-18

    The arginine of the D/E/NRY motif in Rhodopsin family G protein-coupled receptors (GPCRs) is conserved in 96% of these proteins. In some GPCRs, this arginine in transmembrane 3 can form a salt bridge with an aspartic acid or glutamic acid in transmembrane 6. The Drosophila melanogaster GPCR Trapped in endoderm-1 (Tre1) is required for normal primordial germ cell migration. In a mutant form of the protein, Tre1sctt, eight amino acids RYILIACH are missing, resulting in a severe disruption of primordial germ cell development. The impact of the loss of these amino acids on Tre1 structure is unknown. Since the missing amino acids in Tre1sctt include the arginine that is part of the D/E/NRY motif in Tre1, molecular dynamics simulations were performed to explore the hypothesis that these amino acids are involved in salt bridge formation and help maintain Tre1 structure. Structural predictions of wild type Tre1 (Tre1+) and Tre1sctt were subjected to over 250 ns of molecular dynamics simulations. The ability of the model systems to form a salt bridge between the arginine of the D/E/NRY motif and an aspartic acid residue in transmembrane 6 was analyzed. The results indicate that a stable salt bridge can form in the Tre1+ systems and a weak salt bridge or no salt bridge, using an alternative arginine, is likely in the Tre1sctt systems. The weak salt bridge or lack of a salt bridge in the Tre1sctt systems could be one possible explanation for the disrupted function of Tre1sctt in primordial germ cell migration. These results provide a framework for studying the importance of the arginine of the D/E/NRY motif in the structure and function of other GPCRs that are involved in cell migration, such as CXCR4 in the mouse, zebrafish, and chicken.

  13. Polyelectrolytes and Their Biological Interactions

    PubMed Central

    Katchalsky, A.

    1964-01-01

    Polyelectrolytes are water-soluble electrically charged polymers. Their properties are determined by the interplay of the electrical forces, the Brownian motion of the macromolecular chain, and intermolecular Van der Waals forces. Charged polyacids or polybases are stretched by the electrostatic forces, as evidenced by increase in solution viscosity, or by the stretching of polyelectrolyte gels. The electrical field of the polyions is neutralized by a dense atmosphere of counter-ions. The counter-ion attraction to the polyions is expressed by a reduction of the osmotic activity of the polyion—the osmotic pressure being only 15 to 20 per cent of the ideal in highly charged polyelectrolytes neutralized by monovalent counter-ions, and as low as 1 to 3 per cent of the ideal for polyvalent counter-ions. Since the ionic atmosphere is only slightly dependent on added low molecular salt, the osmotic pressure of polyelectrolyte salt mixtures is approximately equal to the sum of the osmotic pressure of polyelectrolyte and salt alone. Acidic and basic polyelectrolytes interact electrostatically with precipitation at the point of polymeric electroneutrality. At higher salt concentrations the interaction is inhibited by the screening of polymeric fixed charges. The importance of these interactions in enzymatic processes is discussed. The electrical double layer is polarizable as may be deduced from dielectric and conductometric studies. The polarizability leads to strong dipole formation in an electrical field. These macromolecular dipoles may play a role in the adsorption of polyelectrolytes on charged surfaces. The final part of the paper is devoted to interactions of polyelectrolytes with cell membranes and the gluing of cells to higher aggregates by charged biocolloids. ImagesFigure 17Figure 18Figure 19Figure 20 PMID:14104085

  14. Thermal regeneration of an electrochemical concentration cell

    DOEpatents

    Krumpelt, M.; Bates, J.K.

    1980-05-09

    A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  15. Electrolysis of a molten semiconductor

    PubMed Central

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-01-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525

  16. Electrolysis of a molten semiconductor.

    PubMed

    Yin, Huayi; Chung, Brice; Sadoway, Donald R

    2016-08-24

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  17. Electrolysis of a molten semiconductor

    NASA Astrophysics Data System (ADS)

    Yin, Huayi; Chung, Brice; Sadoway, Donald R.

    2016-08-01

    Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.

  18. De-icing salt contamination reduces urban tree performance in structural soil cells.

    PubMed

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the saltmore » in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.« less

  20. Glass-wool study of laser-induced spin currents en route to hyperpolarized Cs salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2011-07-15

    The nuclear spin polarization of optically pumped Cs atoms flows to the surface of Cs hydride in a vapor cell. A fine glass wool lightly coated with the salt helps greatly increase the surface area in contact with the pumped atoms and enhance the spin polarization of the salt nuclei. Even though the glass wool randomly scatters the pump light, the atomic vapor can be polarized with unpolarized light in a magnetic field. The measured enhancement in the salt enables study of the polarizations of light and atomic nuclei very near the salt surface.

  1. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  2. Salinization in a stratified aquifer induced by heat transfer from well casings

    NASA Astrophysics Data System (ADS)

    van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan; Cirkel, D. Gijsbert; Raoof, Amir

    2015-12-01

    The temperature inside wells used for gas, oil and geothermal energy production, as well as steam injection, is in general significantly higher than the groundwater temperature at shallower depths. While heat loss from these hot wells is known to occur, the extent to which this heat loss may result in density-driven flow and in mixing of surrounding groundwater has not been assessed so far. However, based on the heat and solute effects on density of this arrangement, the induced temperature contrasts in the aquifer due to heat transfer are expected to destabilize the system and result in convection, while existing salt concentration contrasts in an aquifer would act to stabilize the system. To evaluate the degree of impact that may occur under field conditions, free convection in a 50-m-thick aquifer driven by the heat loss from penetrating hot wells was simulated using a 2D axisymmetric SEAWAT model. In particular, the salinization potential of fresh groundwater due to the upward movement of brackish or saline water in a stratified aquifer is studied. To account for a large variety of well applications and configurations, as well as different penetrated aquifer systems, a wide range of well temperatures, from 40 to 100 °C, together with a range of salt concentration (1-35 kg/m3) contrasts were considered. This large temperature difference with the native groundwater (15 °C) required implementation of a non-linear density equation of state in SEAWAT. We show that density-driven groundwater flow results in a considerable salt mass transport (up to 166,000 kg) to the top of the aquifer in the vicinity of the well (radial distance up to 91 m) over a period of 30 years. Sensitivity analysis showed that density-driven groundwater flow and the upward salt transport was particularly enhanced by the increased heat transport from the well into the aquifer by thermal conduction due to increased well casing temperature, thermal conductivity of the soil, as well as decreased porosity values. Enhanced groundwater flow and salt transport was also observed for increased hydraulic conductivity of the aquifer. While advective salt transport was dominant for lower salt concentration contrasts, under higher salt concentration contrasts transport was controlled by dispersive mixing at the fresh-salt water interface between the two separate convection cells in the fresh and salt water layers. The results of this study indicate heat loss from hot well casings can induce density-driven transport and mixing processes in surrounding groundwater. This process should therefore be considered when monitoring for long-term groundwater quality changes near wells through which hot fluids or gases are transported.

  3. Micromechanical processes in consolidated granular salt

    DOE PAGES

    Mills, Melissa Marie; Stormont, John C.; Bauer, Stephen J.

    2018-03-27

    Here, granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hostingmore » the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.« less

  4. Micromechanical processes in consolidated granular salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, Melissa Marie; Stormont, John C.; Bauer, Stephen J.

    Here, granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hostingmore » the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.« less

  5. Two-dimensional blue native/SDS-PAGE analysis of whole cell lysate protein complexes of rice in response to salt stress.

    PubMed

    Hashemi, Amenehsadat; Gharechahi, Javad; Nematzadeh, Ghorbanali; Shekari, Faezeh; Hosseini, Seyed Abdollah; Salekdeh, Ghasem Hosseini

    2016-08-01

    To understand the biology of a plant in response to stress, insight into protein-protein interactions, which almost define cell behavior, is thought to be crucial. Here, we provide a comparative complexomics analysis of leaf whole cell lysate of two rice genotypes with contrasting responses to salt using two-dimensional blue native/SDS-PAGE (2D-BN/SDS-PAGE). We aimed to identify changes in subunit composition and stoichiometry of protein complexes elicited by salt. Using mild detergent for protein complex solubilization, we were able to identify 9 protein assemblies as hetero-oligomeric and 30 as homo-oligomeric complexes. A total of 20 proteins were identified as monomers in the 2D-BN/SDS-PAGE gels. In addition to identifying known protein complexes that confirm the technical validity of our analysis, we were also able to discover novel protein-protein interactions. Interestingly, an interaction was detected for glycolytic enzymes enolase (ENO1) and triosephosphate isomerase (TPI) and also for a chlorophyll a-b binding protein and RuBisCo small subunit. To show changes in subunit composition and stoichiometry of protein assemblies during salt stress, the differential abundance of interacting proteins was compared between salt-treated and control plants. A detailed exploration of some of the protein complexes provided novel insight into the function, composition, stoichiometry and dynamics of known and previously uncharacterized protein complexes in response to salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  7. Ceramic waste form production and development at ANL-West.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, T. J.; Goff, K. M.; Bateman, K. J.

    2002-08-21

    Argonne National Laboratory has developed a method to stabilize spent electrolyte salt discarded from electrorefiners (ER) used to treat spent nuclear fuel. The salt is stabilized in a ceramic using a pressureless consolidation technique. The starting material is zeolite 4A which is used as the host for the fission product and actinide rich salt. Glass frit is added to the salt loaded zeolite before processing to act as a binder. The zeolite 4A is converted to sodalite during processing via pressureless consolidation. This process differs from one used in the past that employed a hot isostatic press. Ceramic is createdmore » at 925 C and atmospheric pressure instead of the high pressures used in hot isostatic pressing. Process flow sheets, off-gas test results, processing equipment, and leech test results are presented.« less

  8. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  9. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  10. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  11. Biological production of products from waste gases

    DOEpatents

    Gaddy, James L.

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  12. Gate modulation of proton transport in a nanopore.

    PubMed

    Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi

    2016-03-14

    Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.

  13. Direct reduction processes for titanium oxide in molten salt

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryosuke O.

    2007-02-01

    Molten salt electrolysis using CaCl2 is employed to produce pure titanium and its alloys directly from TiO2 and a mixture of elemental oxides, respectively, as an alternate to the Kroll process. This is because CaO, which is a reduction by-product, is highly soluble in CaCl2. Good-quality titanium containing only a small amount of residual oxygen has been successfully produced and scaled to industrial levels. Thermochemical and electrochemical bases are reviewed to optimize the process conditions. Several processes using molten salt are being examined for future progress in titanium processing.

  14. Drowning-out crystallisation of sodium sulphate using aqueous two-phase systems.

    PubMed

    Taboada, M E; Graber, T A; Asenjo, J A; Andrews, B A

    2000-06-23

    A novel method to obtain crystals of pure, anhydrous salt, using aqueous two-phase systems was studied. A concentrated salt solution is mixed with polyethylene glycol (PEG), upon which three phases are formed: salt crystals, a PEG-rich liquid and a salt-rich liquid. After removal of the solid salt, a two-phase system is obtained. Both liquid phases are recycled, allowing the design of a continuous process, which could be exploited industrially. The phase diagram of the system water-Na2SO4-PEG 3350 at 28 degrees C was used. Several process alternatives are proposed and their economic potential is discussed. The process steps needed to produce sodium sulphate crystals include mixing, crystallisation, settling and, optionally, evaporation of water. The yield of sodium sulphate increases dramatically if an evaporation step is used.

  15. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOEpatents

    Daniels, Edward J.; Jody, Bassam J.; Bonsignore, Patrick V.

    1994-01-01

    A process and system for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled.

  16. Process for separating dissolved solids from a liquid using an anti-solvent and multiple effect evaporators

    DOEpatents

    Daniels, E.J.; Jody, B.J.; Bonsignore, P.V.

    1994-07-19

    A process and system are disclosed for treating aluminum salt cake containing water soluble halide salts by contacting the salt cake with water to dissolve water soluble halide salts forming a saturated brine solution. Transporting a portion of about 25% of the saturated brine solution to a reactor and introducing into the saturated brine solution at least an equal volume of a water-miscible low-boiling organic material such as acetone to precipitate a portion of the dissolved halide salts forming a three-phase mixture of an aqueous-organic-salt solution phase and a precipitated salt phase and an organic rich phase. The precipitated salt phase is separated from the other phases and the organic rich phase is recycled to the reactor. The remainder of the saturated brine solution is sent to a multiple effect evaporator having a plurality of stages with the last stage thereof producing low grade steam which is used to boil off the organic portion of the solution which is recycled. 3 figs.

  17. Demand driven salt clean-up in a molten salt fast reactor – Defining a priority list

    PubMed Central

    Litskevich, D.; Gregg, R.; Mount, A. R.

    2018-01-01

    The PUREX technology based on aqueous processes is currently the leading reprocessing technology in nuclear energy systems. It seems to be the most developed and established process for light water reactor fuel and the use of solid fuel. However, demand driven development of the nuclear system opens the way to liquid fuelled reactors, and disruptive technology development through the application of an integrated fuel cycle with a direct link to reactor operation. The possibilities of this new concept for innovative reprocessing technology development are analysed, the boundary conditions are discussed, and the economic as well as the neutron physical optimization parameters of the process are elucidated. Reactor physical knowledge of the influence of different elements on the neutron economy of the reactor is required. Using an innovative study approach, an element priority list for the salt clean-up is developed, which indicates that separation of Neodymium and Caesium is desirable, as they contribute almost 50% to the loss of criticality. Separating Zirconium and Samarium in addition from the fuel salt would remove nearly 80% of the loss of criticality due to fission products. The theoretical study is followed by a qualitative discussion of the different, demand driven optimization strategies which could satisfy the conflicting interests of sustainable reactor operation, efficient chemical processing for the salt clean-up, and the related economic as well as chemical engineering consequences. A new, innovative approach of balancing the throughput through salt processing based on a low number of separation process steps is developed. Next steps for the development of an economically viable salt clean-up process are identified. PMID:29494604

  18. Immobilization of LiCl-Li2O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.; Frank, Steven M.

    2018-04-01

    In this study, hydrothermal and salt-occlusion processes were used to make chlorosodalite through reactions with a high-LiCl salt simulating a waste stream generated from pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and to aid in densification. Hydrothermal processes included reaction of the salt simulant in an autoclave with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% for the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.

  19. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations are analysed to quantify the key sensitivities of the processes connecting the physical drivers of sea salt aerosol to the mass tendency. The analysis employs a semi-empirical model based on the time-tendency of the aerosol mass. This approach of focusing on the time-tendency of the sea salt aerosol concentration provides a framework for the process evaluation of sea salt aerosol concentrations in global models. The same analysis methodology can be applied to output from global models. A process of comparing the sensitivity parameters derived from observations and models will reveal model inadequacies and thus guide model improvements. Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann G. W., Rae, J. G. L, Woodward, S., Kulmala, M. (2010). Atmos. Chem. Phys., 10, 1701-1737 IPCC (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Monahan, E. C., Spiel, D. E., Davidson, K. L. (1986) Oceanic Whitecaps ed. Monahan E. C. & MacNiochaill, D. Reidel, Norwell, Mass. Texor, C., et al. (2006) Atmos. Chem. Phys., 6, 1777-1813.

  20. Energy storage as heat-of-fusion in containerized salts. Report on energy storage boiler tank

    NASA Astrophysics Data System (ADS)

    Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.

    1980-06-01

    This report is concerned with energy storage based on heat-of-fusion in containerized salt. The 'energy storage boiler tank' uses evaporation and condensation of a heat transfer fluid to provide heat transfer into and out of stacked cans of salt. The 'energy storage superheater tank' uses a network of alkali metal heat pipes to distribute heat throughout a building filled with salt cans. It uses a radiation to transfer energy to and from stacked cans of salt. The paper summarizes the rationale for energy storage in containerized salt, it discusses salt availability, salt processing, container requirements, can technology and heat transfer fluid degradation problems. These discussions lead to estimates of energy storage system costs. The Naval Research Laboratory is building a 2 MWht proof-of-concept energy storage boiler tank. Laboratory investigations studying the compatibility of the heat transfer fluid with the molten storage salt are described, along with measurements of temperature drops associated with the energy input process. An assessment of the current status of the energy storage boiler tank is presented.

  1. A dileucine motif is involved in plasma membrane expression and endocytosis of rat sodium taurocholate cotransporting polypeptide (Ntcp).

    PubMed

    Stross, Claudia; Kluge, Stefanie; Weissenberger, Katrin; Winands, Elisabeth; Häussinger, Dieter; Kubitz, Ralf

    2013-11-15

    The sodium taurocholate cotransporting polypeptide (Ntcp) is the major uptake transporter for bile salts into liver parenchymal cells, and PKC-mediated endocytosis was shown to regulate the number of Ntcp molecules at the plasma membrane. In this study, mechanisms of Ntcp internalization were analyzed by flow cytometry, immunofluorescence, and Western blot analyses in HepG2 cells. PKC activation induced endocytosis of Ntcp from the plasma membrane by ~30%. Endocytosis of Ntcp was clathrin dependent and was followed by lysosomal degradation. A dileucine motif located in the third intracellular loop of Ntcp was essential for endocytosis but also for processing and plasma membrane targeting, suggesting a dual function of this motif for intracellular trafficking of Ntcp. Mutation of two of five potential phosphorylation sites surrounding the dileucine motif (Thr225 and Ser226) inhibited PKC-mediated endocytosis. In conclusion, we could identify a motif, which is critical for Ntcp plasma membrane localization. Endocytic retrieval protects hepatocytes from elevated bile salt concentrations and is of special interest, because NTCP has been identified as a receptor for the hepatitis B and D virus.

  2. Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness

    PubMed Central

    Okuzaki, Daisuke; Kuwana, Ritsuko; Takamatsu, Hiromu; Fujita, Masaya; Sarker, Mahfuzur R.; Miyake, Masami

    2016-01-01

    ABSTRACT Clostridium perfringens type A is a common source of foodborne illness (FBI) in humans. Vegetative cells sporulate in the small intestinal tract and produce the major pathogenic factor C. perfringens enterotoxin. Although sporulation plays a critical role in the pathogenesis of FBI, the mechanisms inducing sporulation remain unclear. Bile salts were shown previously to induce sporulation, and we confirmed deoxycholate (DCA)-induced sporulation in C. perfringens strain NCTC8239 cocultured with human intestinal epithelial Caco-2 cells. In the present study, we performed transcriptome analyses of strain NCTC8239 in order to elucidate the mechanism underlying DCA-induced sporulation. Of the 2,761 genes analyzed, 333 were up- or downregulated during DCA-induced sporulation and included genes for cell division, nutrient metabolism, signal transduction, and defense mechanisms. In contrast, the virulence-associated transcriptional regulators (the VirR/VirS system, the agr system, codY, and abrB) were not activated by DCA. DCA markedly increased the expression of signaling molecules controlled by Spo0A, the master regulator of the sporulation process, whereas the expression of spo0A itself was not altered in the presence or absence of DCA. The phosphorylation of Spo0A was enhanced in the presence of DCA. Collectively, these results demonstrated that DCA induced sporulation, at least partially, by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes in strain NCTC8239 while altering the expression of various genes. IMPORTANCE Disease caused by Clostridium perfringens type A consistently ranks among the most common bacterial foodborne illnesses in humans in developed countries. The sporulation of C. perfringens in the small intestinal tract is a key event for its pathogenesis, but the factors and underlying mechanisms by which C. perfringens sporulates in vivo currently remain unclear. Bile salts, major components of bile, which is secreted from the liver for the emulsification of lipids, were shown to induce sporulation. However, the mechanisms underlying bile salt-induced sporulation have not yet been clarified. In the present study, we demonstrate that deoxycholate (one of the bile salts) induces sporulation by facilitating the phosphorylation of Spo0A and activating Spo0A-regulated genes using a transcriptome analysis. Thus, this study enhances our understanding of the mechanisms underlying sporulation, particularly that of bile salt-induced sporulation, in C. perfringens. PMID:26969700

  3. Molten salt oxidation of organic hazardous waste with high salt content.

    PubMed

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  4. Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2016-08-01

    This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli.

  5. Faraday Discussion 160 Introductory Lecture: Interpreting and Predicting Hofmeister Salt Ion and Solute Effects on Biopolymer and Model Processes Using the Solute Partitioning Model

    PubMed Central

    Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of interface formation and large-scale conformational changes in the steps of a biopolymer mechanism. PMID:23795491

  6. Identification of cation-binding sites on actin that drive polymerization and modulate bending stiffness

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; McCullough, Brannon R.; Pierre, Anaëlle; Grintsevich, Elena E.; Reisler, Emil; De La Cruz, Enrique M.

    2012-01-01

    The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as “polymerization” and “stiffness” sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments. PMID:23027950

  7. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.

    PubMed

    Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon

    2012-09-01

    A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dietary salt blunts vasodilation by stimulating epithelial sodium channels in endothelial cells from salt-sensitive Dahl rats.

    PubMed

    Wang, Zi-Rui; Liu, Hui-Bin; Sun, Ying-Ying; Hu, Qing-Qing; Li, Yu-Xia; Zheng, Wei-Wan; Yu, Chang-Jiang; Li, Xin-Yuan; Wu, Ming-Ming; Song, Bin-Lin; Mu, Jian-Jun; Yuan, Zu-Yi; Zhang, Zhi-Ren; Ma, He-Ping

    2018-04-01

    Our recent studies show that the reduced activity of epithelial sodium channels (ENaC) in endothelial cells accounts for the adaptation of vasculature to salt in Sprague-Dawley rats. The present study examines a hypothesis that enhanced ENaC activity mediates the loss of vasorelaxation in Dahl salt-sensitive (SS) rats. We used the cell-attached patch-clamp technique to record ENaC activity in split-open mesenteric arteries. Western blot and immunofluorescence staining were used to evaluate the levels of aldosterone, ENaC, eNOS and NO. Blood pressure was measured with the tail-cuff method and the artery relaxation was measured with the wire myograph assay. High-salt (HS) diet significantly increased plasma aldosterone and ENaC activity in the endothelial cells of Dahl SS rats. The endothelium-dependent artery relaxation was blunted by HS challenge in these rats. Amiloride, a potent blocker of ENaC, increased both phosphorylated eNOS and NO and therefore prevented the HS-induced loss of vasorelaxation. As, in SS rats, endogenous aldosterone was already elevated by HS challenge, exogenous aldosterone did not further elevate ENaC activity in the rats fed with HS. Eplerenone, a mineralocorticoid receptor antagonist, attenuated the effects of HS on both ENaC activity and artery relaxation. These data suggest that HS diet blunts artery relaxation and causes hypertension via a pathway associated with aldosterone-dependent activation of ENaC in endothelial cells. This pathway provides one of the mechanisms by which HS causes hypertension in Dahl SS rats. This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc. © 2017 The British Pharmacological Society.

  9. Congo red agar, a differential medium for Aeromonas salmonicida, detects the presence of the cell surface protein array involved in virulence.

    PubMed Central

    Ishiguro, E E; Ainsworth, T; Trust, T J; Kay, W W

    1985-01-01

    Strains of the fish pathogen Aeromonas salmonicida which possess the cell surface protein array known as the A-layer (A+) involved in virulence formed deep red colonies on tryptic soy agar containing 30 micrograms of Congo red per ml. These were readily distinguished from colorless or light orange colonies of avirulent mutants lacking A-layer (A-). The utility of Congo red agar for quantifying A+ and A- cells in the routine assessment of culture virulence was demonstrated. Intact A+ cells adsorbed Congo red, whereas A- mutants did not bind Congo red unless first permeabilized with EDTA. The dye-binding component of A+ cells was shown to be the 50,000-Mr A-protein component of the surface array. Purified A-protein avidly bound Congo red at a dye-to-protein molar ratio of about 30 by a nonspecific hydrophobic mechanism enhanced by high salt concentrations. Neither A+ nor A- cells adsorbed to Congo red-Sepharose columns at low salt concentrations. On the other hand, A+ (but not A-) cells were avidly bound at high salt concentrations. Images PMID:3934141

  10. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation potential and further work on this subject is in need.

  11. The Arabidopsis SOS5 Locus Encodes a Putative Cell Surface Adhesion Protein and Is Required for Normal Cell Expansion

    PubMed Central

    Shi, Huazhong; Kim, YongSig; Guo, Yan; Stevenson, Becky; Zhu, Jian-Kang

    2003-01-01

    Cell surface proteoglycans have been implicated in many aspects of plant growth and development, but genetic evidence supporting their function has been lacking. Here, we report that the Salt Overly Sensitive5 (SOS5) gene encodes a putative cell surface adhesion protein and is required for normal cell expansion. The sos5 mutant was isolated in a screen for Arabidopsis salt-hypersensitive mutants. Under salt stress, the root tips of sos5 mutant plants swell and root growth is arrested. The root-swelling phenotype is caused by abnormal expansion of epidermal, cortical, and endodermal cells. The SOS5 gene was isolated through map-based cloning. The predicted SOS5 protein contains an N-terminal signal sequence for plasma membrane localization, two arabinogalactan protein–like domains, two fasciclin-like domains, and a C-terminal glycosylphosphatidylinositol lipid anchor signal sequence. The presence of fasciclin-like domains, which typically are found in animal cell adhesion proteins, suggests a role for SOS5 in cell-to-cell adhesion in plants. The SOS5 protein was present at the outer surface of the plasma membrane. The cell walls are thinner in the sos5 mutant, and those between neighboring epidermal and cortical cells in sos5 roots appear less organized. SOS5 is expressed ubiquitously in all plant organs and tissues, including guard cells in the leaf. PMID:12509519

  12. Salt gland distribution in limonium bicolor at the individual level

    NASA Astrophysics Data System (ADS)

    Leng, B. Y.; Yuan, F.; Dong, X. X.; Wang, B. S.

    2018-02-01

    Limonium bicolor is a typical exo-recretohalophyte with multi-cellular salt glands. A differential interference contrast (DIC) microscope were applied to investigate the pattern of salt gland distribution in L. bicolor at the individual level. For a single mature leaf, more salt glands are distributed in the leaf central and apical regions than leaf base. For the leaves in different developmental stages, firstly, the density of salt glands linearly decreased at the beginning of leaf expansion and kept a relatively constant value in the later periods, which was mainly due to the rapid expansion of epidermal cells. Secondly, the total number of glands per leaf showed a reversed trend compared to the density of salt glands. These results suggested that the salt gland density was adapted to the leaf age and area as more and more salt accumulated in the saline soils.

  13. Injection-salting and cold-smoking of farmed atlantic cod (Gadus morhua L.) and Atlantic salmon (Salmo salar L.) at different stages of Rigor Mortis: effect on physical properties.

    PubMed

    Akse, L; Birkeland, S; Tobiassen, T; Joensen, S; Larsen, R

    2008-10-01

    Processing of fish is generally conducted postrigor, but prerigor processing is associated with some potential advantages. The aim of this study was to study how 5 processing regimes of cold-smoked cod and salmon conducted at different stages of rigor influenced yield, fillet shrinkage, and gaping. Farmed cod and salmon was filleted, salted by brine injection of 25% NaCl, and smoked for 2 h at different stages of rigor. Filleting and salting prerigor resulted in increased fillet shrinkage and less increase in weight during brine injection, which in turn was correlated to the salt content of the fillet. These effects were more pronounced in cod fillets when compared to salmon. Early processing reduced fillet gaping and fillets were evaluated as having a firmer texture. In a follow-up trial with cod, shrinkage and weight gain during injection was studied as an effect of processing time postmortem. No changes in weight gain were observed for fillets salted the first 24 h postmortem; however, by delaying the processing 12 h postmortem, the high and rapid shrinking of cod fillets during brine injection was halved.

  14. Morphological and Structural Aspects of the Extremely Halophilic Archaeon Haloquadratum walsbyi

    PubMed Central

    Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria

    2011-01-01

    Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16–20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies. PMID:21559517

  15. Morphological and structural aspects of the extremely halophilic archaeon Haloquadratum walsbyi.

    PubMed

    Sublimi Saponetti, Matilde; Bobba, Fabrizio; Salerno, Grazia; Scarfato, Alessandro; Corcelli, Angela; Cucolo, Annamaria

    2011-04-29

    Ultrathin square cell Haloquadratum walsbyi from the Archaea domain are the most abundant microorganisms in the hypersaline water of coastal salterns and continental salt lakes. In this work, we explore the cell surface of these microorganisms using amplitude-modulation atomic-force microscopy in nearly physiological conditions. We demonstrate the presence of a regular corrugation with a periodicity of 16-20 nm attributed to the surface layer (S-layer) protein lattice, striped domains asymmetrically distributed on the cell faces and peculiar bulges correlated with the presence of intracellular granules. Besides, subsequent images of cell evolution during the drying process indicate the presence of an external capsule that might correspond to the giant protein halomucin, predicted by the genome but never before observed by other microscopy studies.

  16. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.

  17. Brine flow in heated geologic salt.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlman, Kristopher L.; Malama, Bwalya

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide varietymore » of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.« less

  18. Effects of Imide–Orthoborate Dual-Salt Mixtures in Organic Carbonate Electrolytes on the Stability of Lithium Metal Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Zheng, Jianming; Engelhard, Mark H.

    The effects of lithium imide and lithium orthoborate dual-salt electrolytes of different salt chemistries in carbonate solvents on the cycling stability of Li metal batteries were systematically and comparatively investigated. Two imide salts (LiTFSI and LiFSI) and two orthoborate salts (LiBOB and LiDFOB) were chosen for this study and compared with the conventional LiPF6 salt. The cycling stability of the Li metal cells with the electrolytes follows the order from good to poor as LiTFSI-LiBOB > LiTFSI-LiDFOB > LiPF6 > LiFSI-LiBOB > LiFSI-LiDFOB, indicating that LiTFSI behaves better than LiFSI and LiBOB over LiDFOB in these four dual-salt mixtures. Themore » LiTFSI-LiBOB can effectively protect the Al substrate and form a more robust surface film on Li metal anode, while the LiFSI-LiBOB results in serious corrosion to the stainless steel cell case and a thicker and looser surface film on Li anode. Computational calculations indicate that the chemical and electrochemical stabilities also follow the order of LiTFSI-LiBOB > LiTFSI-LiDFOB > LiFSI-LiBOB > LiFSI-LiDFOB. The key findings of this work emphasize that the salt chemistry is critically important for enhancing the interfacial stability of Li metal anode and should be carefully manipulated in the development of high performance Li metal batteries.« less

  19. Overexpression of a novel salt stress-induced glycine-rich protein gene from alfalfa causes salt and ABA sensitivity in Arabidopsis.

    PubMed

    Long, Ruicai; Yang, Qingchuan; Kang, Junmei; Zhang, Tiejun; Wang, Huimin; Li, Mingna; Zhang, Ze

    2013-08-01

    We cloned a novel salt stress-induced glycine-rich protein gene ( MsGRP ) from alfalfa. Its overexpression retards seed germination and seedling growth of transgenic Arabidopsis after salt and ABA treatments. Since soil salinity is one of the most significant abiotic stresses, salt tolerance is required to overcome salinity-induced reductions in crop productivity. Many glycine-rich proteins (GRPs) have been implicated in plant responses to environmental stresses, but the function and importance of some GRPs in stress responses remain largely unknown. Here, we report on a novel salt stress-induced GRP gene (MsGRP) that we isolated from alfalfa. Compared with some glycine-rich RNA-binding proteins, MsGRP contains no RNA recognition motifs and localizes in the cell membrane or cell wall according to the subcellular localization result. MsGRP mRNA is induced by salt, abscisic acid (ABA), and drought stresses in alfalfa seedlings, and its overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in Arabidopsis plants confers salinity and ABA sensitivity compared with WT plants. MsGRP retards seed germination and seedling growth of transgenic Arabidopsis plants after salt and ABA treatments, which implies that MsGRP may affect germination and growth through an ABA-dependent regulation pathway. These results provide indirect evidence that MsGRP plays important roles in seed germination and seedling growth of alfalfa under some abiotic stress conditions.

  20. Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots.

    PubMed

    Wu, Jianqiang; Shu, Sheng; Li, Chengcheng; Sun, Jin; Guo, Shirong

    2018-07-01

    Hydrogen peroxide (H 2 O 2 ) is a key signaling molecule that mediates a variety of physiological processes and defense responses against abiotic stress in higher plants. In this study, our aims are to clarify the role of H 2 O 2 accumulation induced by the exogenous application of spermidine (Spd) to cucumber (Cucumis sativus) seedlings in regulating the antioxidant capacity of roots under salt stress. The results showed that Spd caused a significant increase in endogenous polyamines and H 2 O 2 levels, and peaked at 2 h after salt stress. Spd-induced H 2 O 2 accumulation was blocked under salt stress by pretreatment with a H 2 O 2 scavenger and respective inhibitors of cell wall peroxidase (CWPOD; EC: 1.11.1.7), polyamine oxidase (PAO; EC: 1.5.3.11) and NADPH oxidase (NOX; EC: 1.6.3.1); among these three inhibitors, the largest decrease was found in response to the addition of the inhibitor of polyamine oxidase. In addition, we observed that exogenous Spd could increase the activities of the enzymes superoxide dismutase (SOD; EC: 1.15.1.1), peroxidase (POD; EC: 1.11.1.7) and catalase (CAT; EC: 1.11.1.6) as well as the expression of their genes in salt-stressed roots, and the effects were inhibited by H 2 O 2 scavengers and polyamine oxidase inhibitors. These results suggested that, by regulating endogenous PAs-mediated H 2 O 2 signaling in roots, Spd could enhance antioxidant enzyme activities and reduce oxidative damage; the main source of H 2 O 2 was polyamine oxidation, which was associated with improved tolerance and root growth recovery of cucumber under salt stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Solid polymer electrolyte electrochemical storage cell containing a redox shuttle additive for overcharge protection

    DOEpatents

    Richardson, Thomas J.; Ross, Philip N.

    1999-01-01

    A class of organic redox shuttle additives is described, preferably comprising nitrogen-containing aromatics compounds, which can be used in a high temperature (85.degree. C. or higher) electrochemical storage cell comprising a positive electrode, a negative electrode, and a solid polymer electrolyte to provide overcharge protection to the cell. The organic redox additives or shuttles are characterized by a high diffusion coefficient of at least 2.1.times.10.sup.-8 cm.sup.2 /second and a high onset potential of 2.5 volts or higher. Examples of such organic redox shuttle additives include an alkali metal salt of 1,2,4-triazole, an alkali metal salt of imidazole, 2,3,5,6-tetramethylpyrazine, 1,3,5-tricyanobenzene, and a dialkali metal salt of 3-4-dihydroxy-3-cyclobutene-1,2-dione.

  2. Operating experiences with electrolytes containing lithium fluoride

    NASA Astrophysics Data System (ADS)

    Wendt, Günther

    1971-12-01

    Additions of lithium salts to the cryolite bath of horizontal stud Soederberg cells have been tested for the last 10 years, at first with some pilot cells and then with full potlines of 35 and 40 kamp cells. Under special conditions, economic benefits result. Voltage, power, anode paste, and fluorine electrolyte consumptions are lower; current efficiency is increased. On the other hand, more attention is necessary in pot operations because the alumina solubility is reduced. The addition of a readily soluble alumina is advantageous. The LiF-content in the electrolyte seems to be limited according to type of pot to 2 to 5 pct. Type and method of adding the lithium salts affect the consumption of lithium salts. The influence of supplementary additions, as CaF2, KF, MgF2, and NaCl, will be discussed.

  3. Investigation of the Decomposition Mechanism of Lithium Bis(oxalate)borate (LiBOB) Salt in the Electrolyte of an Aprotic Li–O 2 Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Kah Chun; Lu, Jun; Low, John

    2014-03-13

    The stability of the lithium bis(oxalate) borate (LiBOB) salt against lithium peroxide (Li 2O 2) formation in an aprotic Li–O 2 (Li–air) battery is investigated. From theoretical and experimental findings, we find that the chemical decomposition of LiBOB in electrolytes leads to the formation lithium oxalate during the discharge of a Li–O 2 cell. According to density functional theory (DFT) calculations, the formation of lithium oxalate as the reaction product is exothermic and therefore is thermodynamically feasible. This reaction seems to be independent of solvents used in the Li–O 2 cell, and therefore LiBOB is probably not suitable to bemore » used as the salt in Li–O 2 cell electrolytes.« less

  4. Vacuum distillation of a mixture of LiCl-KCl eutectic salts and RE oxidative precipitates and a dechlorination and oxidation of RE oxychlorides.

    PubMed

    Eun, Hee Chul; Yang, Hee Chul; Cho, Yung Zun; Lee, Han Soo; Kim, In Tae

    2008-12-30

    In this study, a vacuum distillation of a mixture of LiCl-KCl eutectic salt and rare-earth oxidative precipitates was performed to separate a pure LiCl-KCl eutectic salt from the mixture. Also, a dechlorination and oxidation of the rare-earth oxychlorides was carried out to stabilize a final waste form. The mixture was distilled under a range of 710-759.5Torr of a reduced pressure at a fixed heating rate of 4 degrees C/min and the LiCl-KCl eutectic salt was completely separated from the mixture. The required time for the salt distillation and the starting temperature for the salt vaporization were lowered with a reduction in the pressure. Dechlorination and oxidation of the rare-earth oxychlorides was completed at a temperature below 1300 degrees C and this was dependent on the partial pressure of O2. The rare-earth oxychlorides (NdOCl/PrOCl) were transformed to oxides (Nd2O3/PrO2) during the dechlorination and oxidation process. These results will be utilized to design a concept for a process for recycling the waste salt from an electrorefining process.

  5. Density functional theory study of oxygen migration in molten carbonate

    NASA Astrophysics Data System (ADS)

    Lei, Xueling; Haines, Kahla; Huang, Kevin; Qin, Changyong

    2016-02-01

    The process of oxygen migration in alkali molten carbonate salts has been examined using density functional theory method. All geometries were optimized at the B3LYP/6-31G(d) level, while single point energy corrections were performed using MP4 and CCSD(T). At TS, a O-O-O linkage is formed and O-O bond forming and breaking is concerted. A cooperative ;cogwheel; mechanism as described in the equation of CO42- + CO32- →CO32- ⋯O ⋯CO32- →CO32- + CO42- is involved. The energy barrier is calculated to be 103.0, 136.3 and 127.9 kJ/mol through an intra-carbonate pathway in lithium, sodium and potassium carbonate, respectively. The reliability and accuracy of B3LYP/6-31G(d) were confirmed by CCSD(T). The calculated low values of activation energy indicate that the oxygen transfer in molten carbonate salts is fairly easy. In addition, it is found that lithium carbonate is not only a favorable molten carbonate salt for better cathode kinetics, but also it is widely used for reducing the melting point of Li/Na and Li/K eutectic MC mixtures. The current results imply that the process of oxygen reduction in MC modified cathodes is facilitated by the presence of MC, resulting in an enhancement of cell performance at low operating temperatures.

  6. Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials

    PubMed Central

    Adamiak, Justyna; Bonifay, Vincent; Otlewska, Anna; Sunner, Jan A.; Beech, Iwona B.; Stryszewska, Teresa; Kańka, Stanisław; Oracz, Joanna; Żyżelewicz, Dorota; Gutarowska, Beata

    2017-01-01

    The aim of the study was to explore the halophile metabolome in building materials using untargeted metabolomics which allows for broad metabolome coverage. For this reason, we used high-performance liquid chromatography interfaced to high-resolution mass spectrometry (HPLC/HRMS). As an alternative to standard microscopy techniques, we introduced pioneering Coherent Anti-stokes Raman Scattering Microscopy (CARS) to non-invasively visualize microbial cells. Brick samples saturated with salt solution (KCl, NaCl (two salinity levels), MgSO4, Mg(NO3)2), were inoculated with the mixture of preselected halophilic microorganisms, i.e., bacteria: Halobacillus styriensis, Halobacillus naozhouensis, Halobacillus hunanensis, Staphylococcus succinus, Marinococcus halophilus, Virgibacillus halodenitryficans, and yeast: Sterigmatomyces halophilus and stored at 28°C and 80% relative humidity for a year. Metabolites were extracted directly from the brick samples and measured via HPLC/HRMS in both positive and negative ion modes. Overall, untargeted metabolomics allowed for discovering the interactions of halophilic microorganisms with buildings materials which together with CARS microscopy enabled us to elucidate the biodeterioration process caused by halophiles. We observed that halophile metabolome was differently affected by different salt solutions. Furthermore, we found indications for haloadaptive strategies and degradation of brick samples due to microbial pigment production as a salt stress response. Finally, we detected changes in lipid content related to changes in the structure of phospholipid bilayers and membrane fluidity. PMID:29321766

  7. Simulation of salt production process

    NASA Astrophysics Data System (ADS)

    Muraveva, E. A.

    2017-10-01

    In this paper an approach to the use of simulation software iThink to simulate the salt production system has been proposed. The dynamic processes of the original system are substituted by processes simulated in the abstract model, but in compliance with the basic rules of the original system, which allows one to accelerate and reduce the cost of the research. As a result, a stable workable simulation model was obtained that can display the rate of the salt exhaustion and many other parameters which are important for business planning.

  8. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  9. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  10. Adaptation of the nematode Caenorhabditis elegans to extreme osmotic stress.

    PubMed

    Lamitina, S Todd; Morrison, Rebecca; Moeckel, Gilbert W; Strange, Kevin

    2004-04-01

    The ability to control osmotic balance is essential for cellular life. Cellular osmotic homeostasis is maintained by accumulation and loss of inorganic ions and organic osmolytes. Although osmoregulation has been studied extensively in many cell types, major gaps exist in our molecular understanding of this essential process. Because of its numerous experimental advantages, the nematode Caenorhabditis elegans provides a powerful model system to characterize the genetic basis of animal cell osmoregulation. We therefore characterized the ability of worms to adapt to extreme osmotic stress. Exposure of worms to high-salt growth agar causes rapid shrinkage. Survival is normal on agar containing up to 200 mM NaCl. When grown on 200 mM NaCl for 2 wk, worms are able to survive well on agar containing up to 500 mM NaCl. HPLC analysis demonstrated that levels of the organic osmolyte glycerol increase 15- to 20-fold in nematodes grown on 200 mM NaCl agar. Accumulation of glycerol begins 3 h after exposure to hypertonic stress and peaks by 24 h. Glycerol accumulation is mediated primarily by synthesis from metabolic precursors. Consistent with this finding, hypertonicity increases transcriptional expression of glycerol 3-phosphate dehydrogenase, an enzyme that is rate limiting for hypertonicity-induced glycerol synthesis in yeast. Worms adapted to high salt swell and then return to their initial body volume when exposed to low-salt agar. During recovery from hypertonic stress, glycerol levels fall rapidly and glycerol excretion increases approximately fivefold. Our studies provide the first description of osmotic adaptation in C. elegans and provide the foundation for genetic and functional genomic analysis of animal cell osmoregulation.

  11. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast.

    PubMed

    Panadero, Joaquín; Hernández-López, Maria José; Prieto, José Antonio; Randez-Gil, Francisca

    2007-08-01

    Recent years have shown a huge growth in the market of industrial baker's yeasts (Saccharomyces cerevisiae), with the need for strains affording better performance in prefrozen dough. Evidence suggests that during the freezing process, cells can suffer biochemical damage caused by osmotic stress. Nevertheless, the involvement of ion-responsive transcriptional factors and pathways in conferring freeze resistance has not yet been examined. Here, we have investigated the role of the salt-responsive calcineurin-Crz1p pathway in mediating tolerance to freezing by industrial baker's yeast. Overexpression of CRZ1 in the industrial HS13 strain increased both salt and freeze tolerance and improved the leavening ability of baker's yeast in high-sugar dough. Moreover, engineered cells were able to produce more gas during fermentation of prefrozen dough than the parental strain. Similar effects were observed for overexpression of TdCRZ1, the homologue to CRZ1 in Torulaspora delbrueckii, suggesting that expression of calcineurin-Crz1p target genes can alleviate the harmful effects of ionic stress during freezing. However, overexpression of STZ and FTZ, two unrelated Arabidopsis thaliana genes encoding Cys(2)/His(2)-type zinc finger proteins, also conferred freeze resistance in yeast. Furthermore, experiments with Deltacnb1 and Deltacrz1 mutants failed to show a freeze-sensitive phenotype, even in cells pretreated with NaCl. Overall, our results demonstrate that overexpression of CRZ1 has the potential to be a useful tool for increasing freeze tolerance and fermentative capacity in industrial strains. However, these effects do not appear to be mediated through activation of known salt-responding pathways.

  12. Numerical analysis of impurity separation from waste salt by investigating the change of concentration at the interface during zone refining process

    NASA Astrophysics Data System (ADS)

    Choi, Ho-Gil; Shim, Moonsoo; Lee, Jong-Hyeon; Yi, Kyung-Woo

    2017-09-01

    The waste salt treatment process is required for the reuse of purified salts, and for the disposal of the fission products contained in waste salt during pyroprocessing. As an alternative to existing fission product separation methods, the horizontal zone refining process is used in this study for the purification of waste salt. In order to evaluate the purification ability of the process, three-dimensional simulation is conducted, considering heat transfer, melt flow, and mass transfer. Impurity distributions and decontamination factors are calculated as a function of the heater traverse rate, by applying a subroutine and the equilibrium segregation coefficient derived from the effective segregation coefficients. For multipass cases, 1d solutions and the effective segregation coefficient obtained from three-dimensional simulation are used. In the present study, the topic is not dealing with crystal growth, but the numerical technique used is nearly the same since the zone refining technique was just introduced in the treatment of waste salt from nuclear power industry because of its merit of simplicity and refining ability. So this study can show a new application of single crystal growth techniques to other fields, by taking advantage of the zone refining multipass possibility. The final goal is to achieve the same high degree of decontamination in the waste salt as in zone freezing (or reverse Bridgman) method.

  13. Nickel cobalt phosphorous low stress electroplating

    NASA Technical Reports Server (NTRS)

    Engelhaupt, Darell E. (Inventor); Ramsey, Brian D. (Inventor)

    2002-01-01

    An electrolytic plating process is provided for electrodepositing a nickel or nickel cobalt alloy which contains at least about 2% to 25% by atomic volume of phosphorous. The process solutions contains nickel and optionally cobalt sulfate, hypophosphorous acid or a salt thereof, boric acid or a salt thereof, a monodentate organic acid or a salt thereof, and a multidentate organic acid or a salt thereof. The pH of the plating bath is from about 3.0 to about 4.5. An electroplating process is also provided which includes electroplating from the bath a nickel or nickel cobalt phosphorous alloy. This process can achieve a deposit with high microyield of at least about 84 kg/mm.sup.2 (120 ksi) and a density lower than pure nickel of about 8.0 gm/cc. This process can be used to plate a deposit of essentially zero stress at plating temperatures from ambient to 70.degree. C.

  14. [A novel gene (Aa-accA ) encoding acetyl-CoA carboxyltransferase alpha-subunit of Alkalimonas amylolytica N10 enhances salt and alkali tolerance of Escherichia coli and tobacco BY-2 cells].

    PubMed

    Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe

    2013-08-04

    Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to NaCl and alkali stresses.

  15. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from idealmore » solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.« less

  16. Proteomic and transcriptional analysis of Lactobacillus johnsonii PF01 during bile salt exposure by iTRAQ shotgun proteomics and quantitative RT-PCR.

    PubMed

    Lee, Ji Yoon; Pajarillo, Edward Alain B; Kim, Min Jeong; Chae, Jong Pyo; Kang, Dae-Kyung

    2013-01-04

    Lactobacillus johnsonii PF01 has been reported to be highly resistant to bile, a key property of probiotic microorganisms. Here, we examine the nature of the bile-salt tolerance of L. johnsonii PF01. Growth inhibition and surface morphology and physiology aberrations were observed after overnight exposure to bile stress. Quantitative proteomic profiles using iTRAQ-LC-MS/MS technology identified 8307 peptides from both untreated PF01 cells and those exposed to 0.1%, 0.2%, and 0.3% bile salts. Some 215 proteins exhibited changed levels in response to bile stress; of these, levels of 94 peptides increased while those of 121 decreased. These were classified into the following categories: stress responses, cell division, transcription, translation, nucleotide metabolism, carbohydrate transport and metabolism, cell wall biosynthesis, and amino acid biosynthesis, and 16 of unidentified function. Analysis of the mRNA expression of selected genes by quantitative reverse transcriptase-PCR verified the proteomic data. Both proteomic and mRNA data provided evidence for increased phosphotransferase activity and cell wall biosynthesis. In addition, three bile salt hydrolases were significantly upregulated by bile exposure. These findings provide a basis for future evaluations of the tolerance of potential probiotic strains toward the various gastrointestinal challenges, including bile stress.

  17. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  18. Influence of the aging process on the dealloying activity of an induction salt bath

    NASA Astrophysics Data System (ADS)

    Simonenko, A. N.

    1992-12-01

    The process of dealloying of the surface of high-alloy steels in heating in induction salt baths with a graphite crucible is neutralized by the process of carburizing and electrochemical interaction in a high-frequency electromagnetic field.

  19. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci.

    PubMed

    Sass, Vera; Schneider, Tanja; Wilmes, Miriam; Körner, Christian; Tossi, Alessandro; Novikova, Natalia; Shamova, Olga; Sahl, Hans-Georg

    2010-06-01

    Human beta-defensin 3 (hBD3) is a highly charged (+11) cationic host defense peptide, produced by epithelial cells and neutrophils. hBD3 retains antimicrobial activity against a broad range of pathogens, including multiresistant Staphylococcus aureus, even under high-salt conditions. Whereas antimicrobial host defense peptides are assumed to act by permeabilizing cell membranes, the transcriptional response pattern of hBD3-treated staphylococcal cells resembled that of vancomycin-treated cells (V. Sass, U. Pag, A. Tossi, G. Bierbaum, and H. G. Sahl, Int. J. Med. Microbiol. 298:619-633, 2008) and suggested that inhibition of cell wall biosynthesis is a major component of the killing process. hBD3-treated cells, inspected by transmission electron microscopy, showed localized protrusions of cytoplasmic contents, and analysis of the intracellular pool of nucleotide-activated cell wall precursors demonstrated accumulation of the final soluble precursor, UDP-MurNAc-pentapeptide. Accumulation is typically induced by antibiotics that inhibit membrane-bound steps of cell wall biosynthesis and also demonstrates that hBD3 does not impair the biosynthetic capacity of cells and does not cause gross leakage of small cytoplasmic compounds. In in vitro assays of individual membrane-associated cell wall biosynthesis reactions (MraY, MurG, FemX, and penicillin-binding protein 2 [PBP2]), hBD3 inhibited those enzymes which use the bactoprenol-bound cell wall building block lipid II as a substrate; quantitative analysis suggested that hBD3 may stoichiometrically bind to lipid II. We report that binding of hBD3 to defined, lipid II-rich sites of cell wall biosynthesis may lead to perturbation of the biosynthesis machinery, resulting in localized lesions in the cell wall as demonstrated by electron microscopy. The lesions may then allow for osmotic rupture of cells when defensins are tested under low-salt conditions.

  20. Human β-Defensin 3 Inhibits Cell Wall Biosynthesis in Staphylococci▿

    PubMed Central

    Sass, Vera; Schneider, Tanja; Wilmes, Miriam; Körner, Christian; Tossi, Alessandro; Novikova, Natalia; Shamova, Olga; Sahl, Hans-Georg

    2010-01-01

    Human β-defensin 3 (hBD3) is a highly charged (+11) cationic host defense peptide, produced by epithelial cells and neutrophils. hBD3 retains antimicrobial activity against a broad range of pathogens, including multiresistant Staphylococcus aureus, even under high-salt conditions. Whereas antimicrobial host defense peptides are assumed to act by permeabilizing cell membranes, the transcriptional response pattern of hBD3-treated staphylococcal cells resembled that of vancomycin-treated cells (V. Sass, U. Pag, A. Tossi, G. Bierbaum, and H. G. Sahl, Int. J. Med. Microbiol. 298:619-633, 2008) and suggested that inhibition of cell wall biosynthesis is a major component of the killing process. hBD3-treated cells, inspected by transmission electron microscopy, showed localized protrusions of cytoplasmic contents, and analysis of the intracellular pool of nucleotide-activated cell wall precursors demonstrated accumulation of the final soluble precursor, UDP-MurNAc-pentapeptide. Accumulation is typically induced by antibiotics that inhibit membrane-bound steps of cell wall biosynthesis and also demonstrates that hBD3 does not impair the biosynthetic capacity of cells and does not cause gross leakage of small cytoplasmic compounds. In in vitro assays of individual membrane-associated cell wall biosynthesis reactions (MraY, MurG, FemX, and penicillin-binding protein 2 [PBP2]), hBD3 inhibited those enzymes which use the bactoprenol-bound cell wall building block lipid II as a substrate; quantitative analysis suggested that hBD3 may stoichiometrically bind to lipid II. We report that binding of hBD3 to defined, lipid II-rich sites of cell wall biosynthesis may lead to perturbation of the biosynthesis machinery, resulting in localized lesions in the cell wall as demonstrated by electron microscopy. The lesions may then allow for osmotic rupture of cells when defensins are tested under low-salt conditions. PMID:20385753

  1. Spin-injection optical pumping of molten cesium salt and its NMR diagnosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, Kiyoshi

    2015-07-15

    Nuclear spin polarization of cesium ions in the salt was enhanced during optical pumping of cesium vapor at high magnetic field. Significant motional narrowing and frequency shift of NMR signals were observed by intense laser heating of the salt. When the hyperpolarized salt was cooled by blocking the heating laser, the signal width and frequency changed during cooling and presented the phase transition from liquid to solid. Hence, we find that the signal enhancement is mostly due to the molten salt and nuclear spin polarization is injected into the salt efficiently in the liquid phase. We also show that opticalmore » pumping similarly induces line narrowing in the solid phase. The use of powdered salt provided an increase in effective surface area and signal amplitude without glass wool in the glass cells.« less

  2. Fractionation of yeast extract by nanofiltration process to assess key compounds involved in CHO cell culture improvement.

    PubMed

    Mosser, Mathilde; Kapel, Romain; Chevalot, Isabelle; Olmos, Eric; Marc, Ivan; Marc, Annie; Oriol, Eric

    2015-01-01

    Yeast extract (YE) is known to greatly enhance mammalian cell culture performances, but its undefined composition decreases process reliability. Accordingly, in the present study, the nature of YE compounds involved in the improvement of recombinant CHO cell growth and IgG production was investigated. First, the benefits of YE were verified, revealing that it increased maximal concentrations of viable cells and IgG up to 73 and 60%, respectively compared to a reference culture. Then, the analyses of YE composition highlighted the presence of molecules such as amino acids, vitamins, salts, nucleobase, and glucose that were contained in reference medium, while others including peptides, trehalose, polysaccharides, and nucleic acids were not. Consequently, YE was fractionated by a nanofiltration process to deeper evaluate its effects on CHO cell cultures. The YE molecules already contained in reference medium were mainly isolated in the permeate fraction together with trehalose and short peptides, while other molecules were concentrated in the retentate. Permeate, which was free of macromolecules, exhibited a similar positive effect than raw YE on maximal concentrations. Additional studies on cell energetic metabolism underlined that dipeptides and tripeptides in permeate were used as an efficient source of nitrogenous substrates. © 2015 American Institute of Chemical Engineers.

  3. Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress.

    PubMed

    Radhakrishnan, Ramalingam; Leelapriya, Thasari; Kumari, Bollipo Diana Ranjitha

    2012-12-01

    The effects of magnetic field (MF) treatments of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress were investigated under controlled conditions. Soybean seeds were exposed to a 1.0 Hz sinusoidal uniform pulsed magnetic field (PMF) of 1.5 µT for 5 h/day for 20 days. Non-treated seeds were considered as controls. For callus regeneration, the embryonic axis explants were taken from seeds and inoculated in a saline medium with a concentration of 10 mM NaCl for calli growth analysis and biochemical changes. The combined treatment of MF and salt stress was found to significantly increase calli fresh weight, total soluble sugar, total protein, and total phenol contents, but it decreased the ascorbic acid, lipid peroxidation, and catalase activity of calli from magnetically exposed seeds compared to the control calli. PMF treatment significantly improved calli tolerance to salt stress in terms of an increase in flavonoid, flavone, flavonole, alkaloid, saponin, total polyphenol, genistein, and daidzein contents under salt stress. The results suggest that PMF treatment of soybean seeds has the potential to counteract the adverse effects of salt stress on calli growth by improving primary and secondary metabolites under salt stress conditions. Copyright © 2012 Wiley Periodicals, Inc.

  4. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9.

    PubMed

    Chen, Lin; Liu, Yunpeng; Wu, Gengwei; Veronican Njeri, Kimani; Shen, Qirong; Zhang, Nan; Zhang, Ruifu

    2016-09-01

    Salt stress reduces plant growth and is now becoming one of the most important factors restricting agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear. In this study, hydroponic experiments indicated that the PGPR strain Bacillus amyloliquefaciens SQR9 could help maize plants tolerate salt stress. After exposure to salt stress for 20 days, SQR9 significantly promoted the growth of maize seedlings and enhanced the chlorophyll content compared with the control. Additional analysis showed that the involved mechanisms could be the enhanced total soluble sugar content for decreasing cell destruction, improved peroxidase/catalase activity and glutathione content for scavenging reactive oxygen species, and reduced Na(+) levels in the plant to decrease Na(+) toxicity. These physiological appearances were further confirmed by the upregulation of RBCS, RBCL, H(+) -PPase, HKT1, NHX1, NHX2 and NHX3, as well as downregulation of NCED expression, as determined by quantitative reverse transcription-polymerase chain reaction. However, SQR9 counteracted the increase of abscisic acid in response to salt stress. In summary, these results show that SQR9 confers plant salt tolerance by protecting the plant cells and managing Na(+) homeostasis. Hence, it can be used in salt stress prone areas, thereby promoting agricultural production. © 2016 Scandinavian Plant Physiology Society.

  5. Ion-dipole interactions in concentrated organic electrolytes.

    PubMed

    Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel

    2003-06-16

    An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.

  6. Population Dynamics of Viral Inactivation

    NASA Astrophysics Data System (ADS)

    Freeman, Krista; Li, Dong; Behrens, Manja; Streletzky, Kiril; Olsson, Ulf; Evilevitch, Alex

    We have investigated the population dynamics of viral inactivation in vitrousing time-resolved cryo electron microscopy combined with light and X-ray scattering techniques. Using bacteriophage λ as a model system for pressurized double-stranded DNA viruses, we found that virions incubated with their cell receptor eject their genome in a stochastic triggering process. The triggering of DNA ejection occurs in a non synchronized manner after the receptor addition, resulting in an exponential decay of the number of genome-filled viruses with time. We have explored the characteristic time constant of this triggering process at different temperatures, salt conditions, and packaged genome lengths. Furthermore, using the temperature dependence we determined an activation energy for DNA ejections. The dependences of the time constant and activation energy on internal DNA pressure, affected by salt conditions and encapsidated genome length, suggest that the triggering process is directly dependent on the conformational state of the encapsidated DNA. The results of this work provide insight into how the in vivo kinetics of the spread of viral infection are influenced by intra- and extra cellular environmental conditions. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1252522.

  7. Spliceosomal protein U1A is involved in alternative splicing and salt stress tolerance in Arabidopsis thaliana

    PubMed Central

    Gu, Jinbao; Xia, Zhiqiang; Luo, Yuehua; Jiang, Xingyu; Qian, Bilian; Xie, He; Zhu, Jian-Kang; Xiong, Liming; Zhu, Jianhua; Wang, Zhen-Yu

    2018-01-01

    Abstract Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants. PMID:29228330

  8. The Origin of Salt-Encased Sediment Packages: Observations from the SE Precaspian Basin (Kazakhstan)

    NASA Astrophysics Data System (ADS)

    Fernandez, Naiara; Duffy, Oliver B.; Hudec, Michael R.; Jackson, Martin P. A.; Burg, George; Jackson, Christopher A.-L.; Dooley, Tim P.

    2017-04-01

    Intrasalt sediment packages containing siliciclastic sediments, carbonate sediments, or non-halite evaporites such as gypsum or anhydrite are common within most salt sequences. Intrasalt sediment packages may have been deposited before, during, or after salt deposition and be incorporated into the salt by various processes. Understanding the origin and evolution of intrasalt sediment packages may yield important insights into the tectonic and geodynamic history of the basin, and also into the understanding of salt tectonics. Despite the importance of intrasalt sediment packages, currently there is no systematic description of their possible origins and their distinguishing criteria. This work is divided in three parts. First, we outline the possible origins of intrasalt sediment packages, as well as criteria to determine if they originated as subsalt, suprasalt or intrasalt sequences. Second, we examine how sediment packages that originated on top of salt, such as minibasins, can be encased within salt. We propose four key processes by which salt can be expelled and emplaced above minibasins to encase them: a) salt expulsion from beneath a minibasin experiencing density-driven subsidence; b) salt expulsion from beneath adjacent subsiding minibasins; c) salt expulsion associated with lateral shortening; d) override of minibasins by a salt sheet sourced from elsewhere. Third, we present a case study from the SE Precaspian Basin, Kazakhstan, where, using a borehole-constrained 3D seismic reflection dataset, the proposed criteria are applied to an area with abundant, newly discovered sediment packages within salt.

  9. Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium hirsutum L.) using the Me-DIP sequencing technology.

    PubMed

    Lu, X K; Shu, N; Wang, J J; Chen, X G; Wang, D L; Wang, S; Fan, W L; Guo, X N; Guo, L X; Ye, W W

    2017-06-29

    Cytosine DNA methylation is a significant form of DNA modification closely associated with gene expression in eukaryotes, fungi, animals, and plants. Although the reference genomes of cotton (Gossypium hirsutum L.) have been publically available, the salinity-stress-induced DNA methylome alterations in cotton are not well understood. Here, we constructed a map of genome-wide DNA methylation characteristics of cotton leaves under salt stress using the methylated DNA immunoprecipitation sequencing method. The results showed that the methylation reads on chromosome 9 were most comparable with those on the other chromosomes, but the greatest changes occurred on chromosome 8 under salt stress. The DNA methylation pattern analysis indicated that a relatively higher methylation density was found in the upstream2k and downstream2k elements of the CDS region and CG-islands. Almost 94% of the reads belonged to LTR-gspsy and LTR-copia, and the number of methylation reads in LTR-gypsy was four times greater than that in LTR-copia in both control and stressed samples. The analysis of differentially methylated regions (DMRs) showed that the gene elements upstream2k, intron, and downstream2k were hypomethylated, but the CDS regions were hypermethylated. The GO (Gene Ontology) analysis suggested that the methylated genes were most enriched in cellular processes, metabolic processes, cell parts and catalytic activities, which might be closely correlated with response to NaCl stress. In this study, we completed a genomic DNA methylation profile and conducted a DMR analysis under salt stress, which provided valuable information for the better understanding of epigenetics in response to salt stress in cotton.

  10. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other is considered. (Abstract shortened by UMI.)

  11. Enhanced charging capability of lithium metal batteries based on lithium bis(trifluoromethanesulfonyl)imide-lithium bis(oxalato)borate dual-salt electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Hongfa; Shi, Pengcheng; Bhattacharya, Priyanka

    2016-06-01

    Rechargeable lithium (Li) metal batteries with conventional LiPF6-carbonate electrolytes have been reported to fail quickly at charging current densities of about 1.0 mA cm-2 and above. In this work, we demonstrate the rapid charging capability of the Li||LiNi0.8Co0.15Al0.05O2 (NCA) cells enabled by a dual-salt electrolyte of LiTFSI-LiBOB in a carbonate solvent mixture. It is found that the thickness of solid electrolyte interphase (SEI) layer on Li metal anode largely increases with increasing charging current density. However, the cells using the LiTFSI-LiBOB dual-salt electrolyte significantly outperforms those using the LiPF6 electrolyte at high charging current densities. At the charging current densitymore » of 1.50 mA cm-2, the Li||NCA cells with the dual-salt electrolyte can still deliver a discharge capacity of 131 mAh g-1 and a capacity retention of 80% after 100 cycles, while those with the LiPF6 electrolyte start to show fast capacity fading after the 30th cycle and only exhibit a low capacity of 25 mAh g-1 and a low retention of 15% after 100 cycles. The reasons for the good chargeability and cycling stability of the cells using LiTFSI-LiBOB dual-salt electrolyte can be attributed to the good film-formation ability of the electrolyte on lithium metal anode and the highly conductive nature of the sulfur-rich interphase layer.« less

  12. Diverse Microhabitats Experienced by Halomonas variabilis on Salt-Secreting Leaves

    PubMed Central

    Burch, Adrien Y.; Finkel, Omri M.; Cho, Juliana K.; Belkin, Shimshon

    2013-01-01

    The leaf surfaces of the salt-excreting tree Tamarix aphylla harbor a wide diversity of halophilic microorganisms, including Halomonas sp., but little is known of the factors that shape community composition in this extreme habitat. We isolated a strain of Halomonas variabilis from the leaf surface of T. aphylla and used it to determine the heterogeneity of salt concentrations experienced by bacteria in this environment. This halophilic strain was transformed with a proU::gfp reporter gene fusion, the fluorescence of which was responsive to NaCl concentrations up to 200 g liter−1. These bioreporting cells were applied to T. aphylla leaves and were subsequently recovered from dew droplets adhering to the leaf surface. Although cells from within a given dew droplet exhibited similar green fluorescent protein fluorescence, the fluorescence intensity varied between droplets and was correlated with the salt concentration measured in each drop. Growth of H. variabilis was observed in all droplets, regardless of the salt concentration. However, cells found in desiccated microniches between dew drops were low in abundance and generally dead. Other bacteria recovered from T. aphylla displayed higher desiccation tolerance than H. variabilis, both in culture and on inoculated plants, despite having lower osmotic tolerance. Thus, the Tamarix leaf surface can be described as a salty desert with occasional oases where water droplets form under humid conditions. While halotolerant bacteria such as Halomonas grow in high concentrations of salt in such wet microniches, other organisms are better suited to survive desiccation in sites that are not wetted. PMID:23160133

  13. Effects of Salts on the Halophilic Alga Dunaliella viridis1

    PubMed Central

    Johnson, Mary K.; Johnson, Emmett J.; MacElroy, Robert D.; Speer, Henry L.; Bruff, Barbara S.

    1968-01-01

    Determinations of the salt sensitivity of enzymes extracted from the halophilic alga Dunaliella viridis revealed that pentose phosphate isomerase, ribulose diphosphate carboxylase, glucose-6-phosphate dehydrogenase, and phosphohexose isomerase were inhibited by NaCl concentrations far lower than that in the growth medium (3.75 m). The inhibition was reversible and was not prevented by preparing the extracts in the presence of salt. Potassium, lithium, and cesium chlorides were equally inhibitory. In contrast, whole cells require rather high levels of NaCl for optimal growth, whereas growth is inhibited by low levels of the other cations. The results suggest a specific mechanism for the exclusion of sodium from the interior of the cell. Images PMID:5646631

  14. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  15. Treatment of textile wastewaters using Eutectic Freeze Crystallization.

    PubMed

    Randall, D G; Zinn, C; Lewis, A E

    2014-01-01

    A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate.

  16. Age-dependent salt hypertension in Dahl rats: fifty years of research.

    PubMed

    Zicha, J; Dobešová, Z; Vokurková, M; Rauchová, H; Hojná, S; Kadlecová, M; Behuliak, M; Vaněčková, I; Kuneš, J

    2012-01-01

    Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.

  17. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974). However, irrespectively of the climatic environment a liquid brine is a necessity for salt induced fragmentation of rocks. If salt weathering is responsible for the fragmented rocks on the Martian surface it implies a temporary present of liquid H_2O. However, due to the present dry atmosphere on Mars brines can only be present in restricted places without being in equilibrium with the atmosphere (Clark and van Hart 1980). M. C. Malin (1974) JGR Vol 79,26 p 3888-3894 B. C. Clark and D. C. vanHart (1980) ICARUS 45, 370-378

  18. From Reflux Esophagitis to Esophageal Adenocarcinoma

    PubMed Central

    Souza, Rhonda F.

    2016-01-01

    Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hedgehog signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hedgehog signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-κB activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage, and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-κB activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention. PMID:27331918

  19. From Reflux Esophagitis to Esophageal Adenocarcinoma.

    PubMed

    Souza, Rhonda F

    Reflux esophagitis causes Barrett's metaplasia, an abnormal esophageal mucosa predisposed to adenocarcinoma. Medical therapy for reflux esophagitis focuses on decreasing gastric acid production with proton pump inhibitors. We have reported that reflux esophagitis in a rat model develops from a cytokine-mediated inflammatory injury, not from a caustic chemical (acid) injury. In this model, refluxed acid and bile stimulate the release of inflammatory cytokines from esophageal squamous cells, recruiting lymphocytes first to the submucosa and later to the luminal surface. Emerging studies on acute reflux esophagitis in humans support this new concept, suggesting that reflux-induced cytokine release may be a future target for medical therapies. Sometimes, reflux esophagitis heals with Barrett's metaplasia, a process facilitated by reflux-related nitric oxide (NO) production and Sonic Hedgehog (Hh) secretion by squamous cells. We have shown that NO reduces expression of genes that promote a squamous cell phenotype, while Hh signaling induces genes that mediate the development of the columnar cell phenotypes of Barrett's metaplasia. Agents targeting esophageal NO production or Hh signaling conceivably could prevent the development of Barrett's esophagus. Persistent reflux promotes cancer in Barrett's metaplasia. We have reported that acid and bile salts induce DNA damage in Barrett's cells. Bile salts also cause NF-x03BA;B activation in Barrett's cells, enabling them to resist apoptosis in the setting of DNA damage and likely contributing to carcinogenesis. Oral treatment with ursodeoxycholic acid prevents the esophageal DNA damage and NF-x03BA;B activation induced by toxic bile acids. Altering bile acid composition might be another approach to cancer prevention. © 2016 S. Karger AG, Basel.

  20. Calculation of NaCl, KCl and LiCl Salts Activity Coefficients in Polyethylene Glycol (PEG4000)-Water System Using Modified PHSC Equation of State, Extended Debye-Hückel Model and Pitzer Model

    NASA Astrophysics Data System (ADS)

    Marjani, Azam

    2016-07-01

    For biomolecules and cell particles purification and separation in biological engineering, besides the chromatography as mostly applied process, aqueous two-phase systems (ATPS) are of the most favorable separation processes that are worth to be investigated in thermodynamic theoretically. In recent years, thermodynamic calculation of ATPS properties has attracted much attention due to their great applications in chemical industries such as separation processes. These phase calculations of ATPS have inherent complexity due to the presence of ions and polymers in aqueous solution. In this work, for target ternary systems of polyethylene glycol (PEG4000)-salt-water, thermodynamic investigation for constituent systems with three salts (NaCl, KCl and LiCl) has been carried out as PEG is the most favorable polymer in ATPS. The modified perturbed hard sphere chain (PHSC) equation of state (EOS), extended Debye-Hückel and Pitzer models were employed for calculation of activity coefficients for the considered systems. Four additional statistical parameters were considered to ensure the consistency of correlations and introduced as objective functions in the particle swarm optimization algorithm. The results showed desirable agreement to the available experimental data, and the order of recommendation of studied models is PHSC EOS > extended Debye-Hückel > Pitzer. The concluding remark is that the all the employed models are reliable in such calculations and can be used for thermodynamic correlation/predictions; however, by using an ion-based parameter calculation method, the PHSC EOS reveals both reliability and universality of applications.

  1. A High Salt Diet Inhibits Obesity and Delays Puberty in the Female Rat

    PubMed Central

    Pitynski-Miller, Dori; Ross, Micah; Schmill, Margaret; Schambow, Rachel; Fuller, Teresa; Flynn, Francis W.; Skinner, Donal C.

    2017-01-01

    Background/Objectives Processed foods are considered major contributors to the worldwide obesity epidemic. In addition to high sugar and fat contents, processed foods contain large amounts of salt. Due to correlations with rising adiposity, salt has recently been proposed to be obesogenic. This study investigated three hypotheses: i) high salt contributes to weight gain and adiposity in juvenile female rats, ii) puberty onset would be altered because salt is known to affect neuronal systems involved in activating the reproductive system, and iii) enhanced adiposity will act synergistically with salt to drive early puberty onset. Design Female weanling rats (post-natal day 21, n=105) were fed a low fat/low salt diet, low fat/high salt diet, high fat/low salt diet, or a high salt/high fat diet for 24 days. Metabolic measures, including weight gain, food intake, fecal output, activity, and temperature were recorded in subsets of animals. Results Body weight, retroperitoneal and perirenal fat pad weight, and adipocyte size were all lower in animals fed high fat/high salt compared to animals fed high fat alone. Leptin levels were reduced in high fat/high salt fed animals compared to high fat/low salt fed animals. Daily calorie intake was higher initially but declined with adjusted food intake and was not different among groups after 5 days. Osmolality and corticosterone were not different among groups. Fecal analysis showed excess fat excretion and a decreased digestive efficiency in animals fed high fat/low salt but not in animals fed high fat/high salt. Although respiratory exchange ratio was reduced by high dietary fat or salt, aerobic resting metabolic rate was not affected by diet. High salt delayed puberty onset, regardless of dietary fat content. Conclusions Salt delays puberty and prevents the obesogenic effect of a high fat diet. The reduced weight gain evident in high salt fed animals is not due to differences in food intake or digestive efficiency. PMID:28674441

  2. Chitosan scaffolds containing calcium phosphate salts and rhBMP-2: in vitro and in vivo testing for bone tissue regeneration.

    PubMed

    Guzmán, Rodrigo; Nardecchia, Stefania; Gutiérrez, María C; Ferrer, María Luisa; Ramos, Viviana; del Monte, Francisco; Abarrategi, Ander; López-Lacomba, José Luis

    2014-01-01

    Numerous strategies that are currently used to regenerate bone depend on employing biocompatible materials exhibiting a scaffold structure. These scaffolds can be manufactured containing particular active compounds, such as hydroxyapatite precursors and/or different growth factors to enhance bone regeneration process. Herein, we have immobilized calcium phosphate salts (CPS) and bone morphogenetic protein 2 (BMP-2)--combined or alone--into chitosan scaffolds using ISISA process. We have analyzed whether the immobilized bone morphogenetic protein preserved its osteoinductive capability after manufacturing process as well as BMP-2 in vitro release kinetic. We have also studied both the in vitro and in vivo biocompatibility of the resulting scaffolds using a rabbit model. Results indicated that rhBMP-2 remained active in the scaffolds after the manufacturing process and that its release kinetic was different depending on the presence of CPS. In vitro and in vivo findings showed that cells grew more in scaffolds with both CPS and rhBMP-2 and that these scaffolds induced more bone formation in rabbit tibia. Thus chitosan scaffolds containing both CPS and rhBMP-2 were more osteoinductive than their counterparts alone indicating that could be useful for bone regeneration purposes, such as some applications in dentistry.

  3. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching.

    PubMed

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-04-01

    Limitations in controlling scaffold architecture using traditional fabrication techniques are a problem when constructing engineered tissues/organs. Recently, integration of two pore architectures to generate dual-pore scaffolds with tailored physical properties has attracted wide attention in tissue engineering community. Such scaffolds features primary structured pores which can efficiently enhance nutrient/oxygen supply to the surrounding, in combination with secondary random pores, which give high surface area for cell adhesion and proliferation. Here, we present a new technique to fabricate dual-pore scaffolds for various tissue engineering applications where 3D printing of poly(vinyl alcohol) (PVA) mould is combined with salt leaching process. In this technique the sacrificial PVA mould, determining the structured pore architecture, was filled with salt crystals to define the random pore regions of the scaffold. After crosslinking the casted polymer the combined PVA-salt mould was dissolved in water. The technique has advantages over previously reported ones, such as automated assembly of the sacrificial mould, and precise control over pore architecture/dimensions by 3D printing parameters. In this study, polydimethylsiloxane and biodegradable poly(ϵ-caprolactone) were used for fabrication. However, we show that this technique is also suitable for other biocompatible/biodegradable polymers. Various physical and mechanical properties of the dual-pore scaffolds were compared with control scaffolds with either only structured or only random pores, fabricated using previously reported methods. The fabricated dual-pore scaffolds supported high cell density, due to the random pores, in combination with uniform cell distribution throughout the scaffold, and higher cell proliferation and viability due to efficient nutrient/oxygen transport through the structured pores. In conclusion, the described fabrication technique is rapid, inexpensive, scalable, and compatible with different polymers, making it suitable for engineering various large scale organs/tissues. Copyright © 2015. Published by Elsevier B.V.

  4. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  5. Novel waste printed circuit board recycling process with molten salt

    PubMed Central

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  6. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  7. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  8. Chain stiffness, salt valency, and concentration influences on titration curves of polyelectrolytes: Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Carnal, Fabrice; Stoll, Serge

    2011-01-01

    Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.

  9. Chain stiffness, salt valency, and concentration influences on titration curves of polyelectrolytes: Monte Carlo simulations.

    PubMed

    Carnal, Fabrice; Stoll, Serge

    2011-01-28

    Monte Carlo simulations have been used to study two different models of a weak linear polyelectrolyte surrounded by explicit counterions and salt particles: (i) a rigid rod and (ii) a flexible chain. We focused on the influence of the pH, chain stiffness, salt concentration, and valency on the polyelectrolyte titration process and conformational properties. It is shown that chain acid-base properties and conformational properties are strongly modified when multivalent salt concentration variation ranges below the charge equivalence. Increasing chain stiffness allows to minimize intramolecular electrostatic monomer interactions hence improving the deprotonation process. The presence of di and trivalent salt cations clearly promotes the chain degree of ionization but has only a limited effect at very low salt concentration ranges. Moreover, folded structures of fully charged chains are only observed when multivalent salt at a concentration equal or above charge equivalence is considered. Long-range electrostatic potential is found to influence the distribution of charges along and around the polyelectrolyte backbones hence resulting in a higher degree of ionization and a lower attraction of counterions and salt particles at the chain extremities.

  10. Comparison of a rational vs. high throughput approach for rapid salt screening and selection.

    PubMed

    Collman, Benjamin M; Miller, Jonathan M; Seadeek, Christopher; Stambek, Julie A; Blackburn, Anthony C

    2013-01-01

    In recent years, high throughput (HT) screening has become the most widely used approach for early phase salt screening and selection in a drug discovery/development setting. The purpose of this study was to compare a rational approach for salt screening and selection to those results previously generated using a HT approach. The rational approach involved a much smaller number of initial trials (one salt synthesis attempt per counterion) that were selected based on a few strategic solubility determinations of the free form combined with a theoretical analysis of the ideal solvent solubility conditions for salt formation. Salt screening results for sertraline, tamoxifen, and trazodone using the rational approach were compared to those previously generated by HT screening. The rational approach produced similar results to HT screening, including identification of the commercially chosen salt forms, but with a fraction of the crystallization attempts. Moreover, the rational approach provided enough solid from the very initial crystallization of a salt for more thorough and reliable solid-state characterization and thus rapid decision-making. The crystallization techniques used in the rational approach mimic larger-scale process crystallization, allowing smoother technical transfer of the selected salt to the process chemist.

  11. The Efficiency of Different Salts to Screen Charge Interactions in Proteins: A Hofmeister Effect?

    PubMed Central

    Perez-Jimenez, Raul; Godoy-Ruiz, Raquel; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M.

    2004-01-01

    Understanding the screening by salts of charge-charge interactions in proteins is important for at least two reasons: a), screening by intracellular salt concentration may modulate the stability and interactions of proteins in vivo; and b), the in vitro experimental estimation of the contributions from charge-charge interactions to molecular processes involving proteins is generally carried out on the basis of the salt effect on process energetics, under the assumption that these interactions are screened out by moderate salt concentrations. Here, we explore experimentally the extent to which the screening efficiency depends on the nature of the salt. To this end, we have carried out an energetic characterization of the effect of NaCl (a nondenaturing salt), guanidinium chloride (a denaturing salt), and guanidinium thiocyanate (a stronger denaturant) on the stability of the wild-type form and a T14K variant of Escherichia coli thioredoxin. Our results suggest that the efficiency of different salts to screen charge-charge interactions correlates with their denaturing strength and with the position of the constituent ions in the Hofmeister rankings. This result appears consistent with the plausible relation of the Hofmeister rankings with the extent of solute accumulation/exclusion from protein surfaces. PMID:15041679

  12. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains.

    PubMed

    Srivastava, Amrita; Singh, Anumeha; Singh, Satya S; Mishra, Arun K

    2017-04-16

    An appreciation of comparative microbial survival is most easily done while evaluating their adaptive strategies during stress. In the present experiment, antioxidative and whole cell proteome variations based on spectrophotometric analysis and SDS-PAGE and 2-dimensional gel electrophoresis have been analysed among salt-tolerant and salt-sensitive Frankia strains. This is the first report of proteomic basis underlying salt tolerance in these newly isolated Frankia strains from Hippophae salicifolia D. Don. Salt-tolerant strain HsIi10 shows higher increment in the contents of superoxide dismutase, catalase and ascorbate peroxidase as compared to salt-sensitive strain HsIi8. Differential 2-DGE profile has revealed differential profiles for salt-tolerant and salt-sensitive strains. Proteomic confirmation of salt tolerance in the strains with inbuilt efficiency of thriving in nitrogen-deficient locales is a definite advantage for these microbes. This would be equally beneficial for improvement of soil nitrogen status. Efficient protein regulation in HsIi10 suggests further exploration for its potential use as biofertilizer in saline soils.

  13. Dietary salt intake and risk of gastric cancer.

    PubMed

    D'Elia, Lanfranco; Galletti, Ferruccio; Strazzullo, Pasquale

    2014-01-01

    Humans began to use large amounts of salt for the main purpose of food preservation approximately 5,000 years ago and, although since then advanced technologies have been developed allowing drastic reduction in the use of salt for food storage, excess dietary salt intake remains very common. Gastric cancer is a common neoplasia, and dietary factors, including salt consumption, are considered relevant to its causation. A number of experimental studies supported the cocarcinogenic effect of salt through synergic action with Helicobacter pylori infection, in addition to some independent effects such as increase in the rate of cell proliferation and of endogenous mutations. Many epidemiological studies analyzed the relationship between excess salt intake and risk of gastric cancer. Both cross-sectional and prospective studies indicated a possibly dose-dependent positive association. In particular, a comprehensive meta-analysis of longitudinal studies detected a strong adverse effect of total salt intake and salt-rich foods on the risk of gastric cancer in the general population. Altogether, the epidemiological, clinical, and experimental evidence supports the possibility of a substantial reduction in the rates of gastric cancer through progressive reduction in population salt intake.

  14. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay.

    PubMed

    Patankar, Himanshu V; Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W

    2018-06-01

    Although date palm is a relatively salt-tolerant plant, the molecular basis of this tolerance is complex and poorly understood. Therefore, this study aimed to identify the genes involved in salinity tolerance using a basic yeast functional bioassay. To achieve this, a date palm cDNA library was overexpressed in Saccharomyces cerevisiae cells. The expression levels of selected genes that make yeast cells tolerant to salt were subsequently validated in the leaf and root tissues of date palm seedlings using a quantitative PCR method. About 6000 yeast transformant cells were replica printed and screened on a synthetic minimal medium containing 1.0 M of NaCl. The screening results showed the presence of 62 salt-tolerant transformant colonies. Sequence analysis of the recombinant yeast plasmids revealed the presence of a group of genes with potential salt-tolerance functions, such as aquaporins (PIP), serine/threonine protein kinases (STKs), ethylene-responsive transcription factor 1 (ERF1), and peroxidases (PRX). The expression pattern of the selected genes endorsed the hypothesis that these genes may be involved in salinity tolerance, as they showed a significant (p < 0.05) overexpression trend in both the leaf and root tissues in response to salinity. The genes identified in this project are suitable candidates for the further functional characterization of date palms.

  15. Mild process to design silk scaffolds with reduced β-sheet structure and various topographies at nanometer scale

    PubMed Central

    Pei, Yazhen; Liu, Xi; Liu, Shanshan; Lu, Qiang; Liu, Jing; Kaplan, David L; Zhu, Hesun

    2014-01-01

    Three-dimensional (3D) porous silk scaffolds with good biocompatibility and minimal immunogenicity, have promising applications in different tissue regenerations. However, a challenge remains to effectively fabricate their microstructures and mechanical properties to satisfy specific requirements of different tissues. In this study, silk scaffolds were fabricated to form extracellular matrix (ECM) mimetic nanofibrous architecture in a mild process. A slowly increasing concentration process was applied to regulate silk self-assembly into nanofibers in aqueous solution. Then glycerol was blended with the nanofiber solution and induced silk crystallization in lyophilization process, endowing freeze-dried scaffolds water-stability. The glycerol was leached from the scaffolds, leaving similar porous structure at a micrometer scale but different topographies at nanoscale. Compared to previous salt-leached and methanol annealed scaffolds, the present scaffolds showed lower β-sheet content, softer mechanical property, and improved cell growth and differentiation behaviors, implying their promising future as platforms for controlling stem cell fate and soft tissue regeneration. PMID:25463497

  16. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Matt Ebner; Manohar Sohal

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  17. Does the tissue engineering architecture of poly(3-hydroxybutyrate) scaffold affects cell-material interactions?

    PubMed

    Masaeli, Elahe; Morshed, Mohammad; Rasekhian, Parsa; Karbasi, Saeed; Karbalaie, Khadije; Karamali, Fereshte; Abedi, Daryoush; Razavi, Shahnaz; Jafarian-Dehkordi, Abbas; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein

    2012-07-01

    A critical element in tissue engineering involves the fabrication of a three-dimensional scaffold. The scaffold provides a space for new tissue formation, supports cellular ingrowth, and proliferation and mimics many roles of the extracellular matrix. Poly(3-hydroxybutyrate) (PHB) is the most thoroughly investigated member of the polyhydroxyalkanoates (PHAs) family that has various degrees of biocompatibility and biodegradability for tissue engineering applications. In this study, we fabricated PHB scaffolds by utilizing electrospinning and salt-leaching procedures. The behavior of monkey epithelial kidney cells (Vero) and mouse mesenchymal stem cells (mMSCs) on these scaffolds was compared by the MTS assay and scanning electron microscopy. Additionally, this study investigated the mechanical and physical properties of these scaffolds by measuring tensile strength and modulus, dynamic contact angle and porosity. According to our results, the salt-leached scaffolds showed more wettability and permeability, but inferior mechanical properties when compared with nanofibrous scaffolds. In terms of cell response, salt-leached scaffolds showed enhanced Vero cell proliferation, whereas both scaffolds responded similarly in the case of mMSCs proliferation. In brief, nanofibrous scaffolds can be a better substrate for cell attachment and morphology. Copyright © 2012 Wiley Periodicals, Inc.

  18. On the Interaction between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kazil, J.; Feingold, G.; Wang, Hailong

    2014-01-02

    The interaction between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with interactive surface fluxes of sensible heat, latent heat, and of sea salt aerosol, and with a detailed representation of the interaction between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric air, the spatial distribution of surface air temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface air temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of sea salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface air temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in sea-salt fluxes, it also enhances the sea-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found to have only a small effect on cloud properties in the investigated cases. This indicates that sub-grid scale spatial variability in the surface flux of sensible and latent heat and of sea salt aerosol may not be required in large scale and global models to describe marine boundary layer cellular cloudiness.« less

  19. Immobilization of LiCl-Li 2 O pyroprocessing salt wastes in chlorosodalite using glass-bonded hydrothermal and salt-occlusion methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Peterson, Jacob A.; Kroll, Jared O.

    In this study, salt occlusion and hydrothermal processes were used to make chlorosodalite through reaction with a high-LiCl salt simulating a waste stream following pyrochemical treatment of oxide-based used nuclear fuel. Some products were reacted with glass binders to increase chlorosodalite yield through alkali ion exchange and aide in densification. Hydrothermal processes included reaction of the salt simulant in an acid digestion vessel with either zeolite 4A or sodium aluminate and colloidal silica. Chlorosodalite yields in the crystalline products were nearly complete in the glass-bonded materials at values of 100 mass% for the salt-occlusion method, up to 99.0 mass% formore » the hydrothermal synthesis with zeolite 4A, and up to 96 mass% for the hydrothermal synthesis with sodium aluminate and colloidal silica. These results show promise for using chemically stable chlorosodalite to immobilize oxide reduction salt wastes.« less

  20. Process for removal of sulfur compounds from fuel gases

    DOEpatents

    Moore, Raymond H.; Stegen, Gary E.

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  1. Differential effects of selenite and selenate on human melanocytes, keratinocytes, and melanoma cells.

    PubMed

    Bandura, Laura; Drukala, Justyna; Wolnicka-Glubisz, Agnieszka; Björnstedt, Mikael; Korohoda, Wlodzimierz

    2005-04-01

    Among the substances that attracted the attention of oncologists in recent years are selenium-containing compounds, both inorganic and organic. Several epidemiological studies have shown an inverse correlation between selenium intake and cancer incidence. In the experiments reported here, we compared the effects of 2 inorganic selenium-containing salts that differed in the level of selenium oxidation, selenite IV and selenate VI. We tested the effects of these 2 compounds on cell survival and growth, cell cycle processing, cell morphology, cytoskeleton, and lipid peroxidation in 3 human skin cell types: normal keratinocytes, melanocytes, and human melanoma cell line HTB140. The different effects of selenite and selenate on the viability, growth, and morphology of normal cells and tumor cells are reported and provide a base for future research and treatment of some neoplastic diseases. The attention is paid to cell apoptosis induced by selenite and not by selenate, and the effects of tested substances on thioredoxin reductase system are postulated.

  2. Synthesis, Characterization and Conductivity Study of Poly(vinyl 4-HYDROXY-3-METHOXY Benzal) and its Sodio Salt in Solid State

    NASA Astrophysics Data System (ADS)

    Borah, P.; Hussain, S.; Dutta, A.

    Among the various ion-conducting materials, polymer salt complexes are of current interest due to their possible application as solid electrolyte as well as their physical nature in advanced high-energy electrochemical devices such as batteries, fuel cells, electrochromic display devices, photo electro-chemical solar cells52-55 etc. The main advantages of polymeric electrolytes are their mechanical properties, ease of fabrication of thin films of desired sizes and their ability to form proper electrode-electrolyte contact. Polymer electrolyte usually consists of a polymer and a salt and is considered to be solid solutions in which the polymer functions as solvent. In the present paper the synthesis, characterization and the conductivity study of the polymer poly (vinyl 4-hydroxy-3-methoxy benzal) (PV-HMB) and its sodio salt (PV-HMB-Na) have been reported. The polymer was prepared by carrying out homogenous acetalization between the prepolymer poly vinylalcohol (PVA) and 4-hydroxy-3-methoxy benzaldehyde (vanilline). PVA was dissolved in dimethyl formamide (DMF) and lithium chloride (LiCl) system i.e., in non-aqueous medium. The sodio salt was prepared by alkalization. The polymer and its salt were characterized by IR, 1H NMR and DSC. Frequency and temperature dependence of ac conductivity has been studied to learn about the electrical conduction behaviour in this material. The electrical conductivity of the new polymeric salt was found to be in the range 10-4 to 10-6 Scm-1. There is about 103 to 104 fold increase in the conductivity of the new polymer salt. Apparent activation energy of the polymer and its salt were found to be 0.139 and 0.08998 ev respectively.

  3. 8-channel prototype of SALT readout ASIC for Upstream Tracker in the upgraded LHCb experiment

    NASA Astrophysics Data System (ADS)

    Abellan Beteta, C.; Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kane, C.; Moron, J.; Swientek, K.; Wang, J.

    2017-02-01

    SALT is a new 128-channel readout ASIC for silicon strip detectors in the upgraded Upstream Tracker of the LHCb experiment. It will extract and digitise analogue signals from the sensor, perform digital processing and transmit serial output data. SALT is designed in CMOS 130 nm process and uses a novel architecture comprising of an analogue front-end and an ultra-low power (<0.5 mW) fast (40 MSps) sampling 6-bit ADC in each channel. An 8-channel prototype (SALT8), comprising all important functionalities was designed, fabricated and tested. A full 128-channel version was also submitted. The design and test results of the SALT8 prototype are presented showing its full functionality.

  4. A novel bread making process using salt-stressed Baker's yeast.

    PubMed

    Yeh, Lien-Te; Charles, Albert Linton; Ho, Chi-Tang; Huang, Tzou-Chi

    2009-01-01

    By adjusting the mixing order of ingredients in traditional formula, an innovative bread making process was developed. The effect of salt-stressed Baker's yeast on bread dough of different sugar levels was investigated. Baker's yeast was stressed in 7% salt solution then mixed into dough, which was then evaluated for fermentation time, dough fermentation producing gas, dough expansion, bread specific volumes, and sensory and physical properties. The results of this study indicated that salt-stressed Baker's yeast shortened fermentation time in 16% and 24% sugar dough. Forty minutes of salt stress produced significant amount of gas and increased bread specific volumes. The bread was softer and significantly improved sensory properties for aroma, taste, and overall acceptability were obtained.

  5. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  6. Considerations of the Differences between Bedded and Domal Salt Pertaining to Disposal of Heat-Generating Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Francis D.; Kuhlman, Kristopher L.; Sobolik, Steven R.

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. As both nations revisit nuclear waste disposal options, the choice between bedded, domal, or intermediate pillow formations is once again a contemporary issue. For decades, favorable attributes of salt as a disposal medium have been extoled and evaluated, carefully and thoroughly. Yet, a sense of discovery continues as science and engineering interrogate naturally heterogeneous systems. Salt formations are impermeable to fluids. Excavation-induced fractures heal as sealmore » systems are placed or natural closure progresses toward equilibrium. Engineering required for nuclear waste disposal gains from mining and storage industries, as humans have been mining salt for millennia. This great intellectual warehouse has been honed and distilled, but not perfected, for all nuances of nuclear waste disposal. Nonetheless, nations are able and have already produced suitable license applications for radioactive waste disposal in salt. A remaining conundrum is site location. Salt formations provide isolation, and geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Positive attributes for isolation in salt have many commonalities independent of the geologic setting. In some cases, specific details of the environment will affect the disposal concept and thereby define interaction of features, events and processes, while simultaneously influencing scenario development. Here we identify and discuss high-level differences and similarities of bedded and domal salt formations. Positive geologic and engineering attributes for disposal purposes are more common among salt formations than are significant differences. Developing models, testing material, characterizing processes, and analyzing performance all have overlapping application regardless of the salt formation of interest.« less

  7. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2011-06-07

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  8. Metallization of bacterial cellulose for electrical and electronic device manufacture

    DOEpatents

    Evans, Barbara R [Oak Ridge, TN; O'Neill, Hugh M [Knoxville, TN; Jansen, Valerie Malyvanh [Memphis, TN; Woodward, Jonathan [Knoxville, TN

    2010-09-28

    A method for the deposition of metals in bacterial cellulose and for the employment of the metallized bacterial cellulose in the construction of fuel cells and other electronic devices is disclosed. The method for impregnating bacterial cellulose with a metal comprises placing a bacterial cellulose matrix in a solution of a metal salt such that the metal salt is reduced to metallic form and the metal precipitates in or on the matrix. The method for the construction of a fuel cell comprises placing a hydrated bacterial cellulose support structure in a solution of a metal salt such that the metal precipitates in or on the support structure, inserting contact wires into two pieces of the metal impregnated support structure, placing the two pieces of metal impregnated support structure on opposite sides of a layer of hydrated bacterial cellulose, and dehydrating the three layer structure to create a fuel cell.

  9. Cellular uptake of titanium and vanadium from addition of salts or fretting corrosion in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, A.M.; Merritt, K.; Brown, S.A.

    1994-02-01

    The use of titanium and titanium-6% aluminum-4% vanadium alloy for dental and orthopedic implants has increased in the last decade. The implants are presumed to be compatible because oseointegration, bony apposition, and cell attachment are known. However, the cellular association of titanium and vanadium have remained unknown. This study examined the uptake of salts or fretting corrosion products. Titanium was not observed to be toxic to the cells. Vanadium was toxic at levels greater than 10[mu]g/mL. The percentage of cellular association of titanium was shown to be about 10 times that of vanadium. The percentage of cellular association of eithermore » element was greater from fretting corrosion than from the addition of salts. The presence of vanadium did not affect the cellular uptake of titanium. The presence of titanium decreased the cell association of vanadium.« less

  10. Results Of Initial Analyses Of The Salt (Macro) Batch 9 Tank 21H Qualification Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, T.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Interim Salt Disposition Project (ISDP) Salt (Macro) Batch 9 for processing through the Actinide Removal Process (ARP) and the Modular Caustic-Side Solvent Extraction Unit (MCU). This document reports the initial results of the analyses of samples of Tank 21H. Analysis of the Tank 21H Salt (Macro) Batch 9 composite sample indicates that the material does not display any unusual characteristics. Further results on the chemistry and other tests will be issued in the future.

  11. Brine rejection from freezing salt solutions: a molecular dynamics study.

    PubMed

    Vrbka, Lubos; Jungwirth, Pavel

    2005-09-30

    The atmospherically and technologically very important process of brine rejection from freezing salt solutions is investigated with atomic resolution using molecular dynamics simulations. The present calculations allow us to follow the motion of each water molecule and salt ion and to propose a microscopic mechanism of brine rejection, in which a fluctuation (reduction) of the ion density in the vicinity of the ice front is followed by the growth of a new ice layer. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next to a disordered brine layer.

  12. I-NERI Annual Technical Progress Report 2007-004-K Development and Characterization of New High-Level Waste Forms for Achieving Waste Minimization from Pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. Frank

    The current method for the immobilization of fission products that accumulate in electrorefiner salt during the electrochemical processing of used metallic nuclear fuel is to encapsulate the electrorefiner salt in a glass-bonded sodalite ceramic waste form. This process was developed by Argonne National Laboratory in the USA and is currently performed at the Idaho National Laboratory for the treatment of Experimental Breeder Reactor-II (EBR-II) used fuel. This process utilizes a “once-through” option for the disposal of spent electrorefiner salt; where, after the treatment of the EBR-II fuel, the electrorefiner salt containing the active fission products will be disposed of inmore » the ceramic waste form (CWF). The CWF produced will have low fission product loading of approximately 2 to 5 weight percent due to the limited fuel inventory currently being processed. However; the design and implementation of advanced electrochemical processing facilities to treat used fuel would process much greater quantities fuel. With an advanced processing facility, it would be necessary to selectively remove fission products from the electrorefiner salt for salt recycle and to concentrate the fission products to reduce the volume of high-level waste from the treatment facility. The Korean Atomic Energy Research Institute and the Idaho National Laboratory have been collaborating on I-NERI research projects for a number of years to investigate both aspects of selective fission product separation from electrorefiner salt, and to develop advanced waste forms for the immobilization of the collected fission products. The first joint KAERI/INL I-NERI project titled: 2006-002-K, Separation of Fission Products from Molten LiCl-KCl Salt Used for Electrorefining of Metal Fuels, was successfully completed in 2009 by concentrating and isolating fission products from actual electrorefiner salt used for the treated used EBR-II fuel. Two separation methods were tested and from these tests were produced concentrated salt products that acted as the feed material for development of advanced waste forms investigated in this proposal. Accomplishments from the first year activities associated with this I-NERI project included the down selection of candidate waste forms to immobilize fission products separated from electrorefiner salt, and the design of equipment to fabricate actual waste forms in the Hot Fuels Examination Facility (HFEF) at the INL. Reported in this document are accomplishments from the second year (FY10) work performed at the INL, and includes the testing of waste form fabrication equipment, repeating the fission product precipitation experiment, and initial waste form fabrication efforts.« less

  13. Dynamics of Alexandrium fundyense blooms and shellfish toxicity in the Nauset Marsh System of Cape Cod (Massachusetts, USA)

    PubMed Central

    Crespo, Bibiana G.; Keafer, Bruce A.; Ralston, David K.; Lind, Henry; Farber, Dawson; Anderson, Donald M.

    2017-01-01

    Paralytic Shellfish Poisoning (PSP) toxins are annually recurrent along the Massachusetts coastline (USA), which includes many small embayments and salt ponds. Among these is the Nauset Marsh System (NMS), which has a long history of PSP toxicity. Little is known, however, about the bloom dynamics of the causative organism Alexandrium fundyense within that economically and socially important system. The overall goal of this work was to characterize the distribution and dynamics of A. fundyense blooms within the NMS and adjacent coastal waters by documenting the distribution and abundance of resting cysts and vegetative cells. Cysts were found predominantly in three drowned kettle holes or salt ponds at the distal ends of the NMS – Salt Pond, Mill Pond, and Town Cove. The central region of the NMS had a much lower concentration of cysts. Two types of A. fundyense blooms were observed. One originated entirely within the estuary, seeded by cysts in the three seedbeds. These blooms developed independently of each other and of the A. fundyense population observed in adjacent coastal waters outside the NMS. The temporal development of the blooms was different in the three salt ponds, with initiation differing by as much as 30 days. These differences do not appear to reflect the initial cyst abundances in these locations, and may simply result from higher cell retention and higher nutrient concentrations in Mill Pond, the first site to bloom. Germination of cysts accounted for a small percentage of the peak cell densities in the ponds, so population size was influenced more by the factors affecting growth than by cyst abundance. Subsurface cell aggregation (surface avoidance) limited advection of the vegetative A. fundyense cells out of the salt ponds through the shallow inlet channels. Thus, the upper reaches of the NMS are at the greatest risk for PSP since the highest cyst abundances and cell concentrations were found there. After these localized blooms in the salt ponds peaked and declined, a second, late season bloom occurred within the central portions of the NMS. The timing of this second bloom relative to those within the salt ponds and the coastal circulation patterns at that time strongly suggest that those cells originated from a regional A. fundyense bloom in the Gulf of Maine, delivered to the central marsh from coastal waters outside the NMS through Nauset Inlet. These results will guide policy decisions about water quality as well as shellfish monitoring and utilization within the NMS and highlight the potential for “surgical” closures of shellfish during PSP events, leaving some areas open for harvesting while others are closed. PMID:28690476

  14. Fundamental and Applied Studies of Polymer Membranes

    NASA Astrophysics Data System (ADS)

    Imbrogno, Joseph

    Four major areas have been studied in this research: 1) synthesizing novel monomers, e.g. chiral monomers, to produce new types of functionalized membranes for the biotechnology and pharmaceutical industries, 2) hydrophobic brush membranes for desalinating brackish water, sea water, and separating organics, 3) fundamental studies of water interactions at surfaces using sum frequency generation (SFG), and 4) discovering new surface chemistries that will control the growth and differentiation of stem cells. We have developed a novel synthesis method in order to increase the breadth of our high throughput screening library. This library was generated using maleimide chemistry to react a common methacrylate linker with a variety of different functions groups (R groups) in order to form new monomers that were grafted from the surface of PES ultrafiltration membranes. From this work, we discovered that the chirality of a membrane can affect performance when separating chiral feed streams. This effect was observed when filtering bovine serum albumin (BSA) and ovalbumin in a high salt phosphate buffered saline (PBS, 150 mM salt). The Phe grafted membranes showed a large difference in performance when filtering BSA with selectivity of 1.13 and 1.00 for (S) and (R) Phe, respectively. However, when filtering ovalbumin, the (S) and (R) modified surfaces showed selectivity of 2.06 and 2.31, respectively. The higher selectivity enantiomer switched for the two different proteins. Permeability when filtering BSA was 3.06 LMH kPa-1 and 4.31 LMH kPa -1 for (S)- and (R)- Phe, respectively, and 2.65 LMH kPa -1 and 2.10 LMH kPa-1 when filtering ovalbumin for (S)- and (R)- Phe, respectively. Additionally, these effects were no longer present when using a low salt phosphate buffer (PB, 10 mM salt). Since, to our knowledge, membrane chirality is not considered in current industrial systems, this discovery could have a large impact on the pharmaceutical and biotechnology industries. We have developed hydrophobic brush membranes that were able to selectively separate valuable organics (isobutanol) from water, while rejecting other undesirable species, such as enzymes, using pervaporation (PV). These membranes (grafted from nanofiltration (NF) support membranes) had a selectivity ˜1.5x higher than the current industrial standard, polydimethylsiloxane (PDMS), with alpha = 10.1 +/- 0.9 for our brush membranes and alpha = 6.7 +/- 0.1 for PDMS membranes. Since the mechanism of pervaporation is based on the solution diffusion (SD) model, these membranes may be used to desalinate water or fractionate gases since they are also based on the SD mechanism. We have discovered that hydrophobic brush membranes are able to reject monovalent salt ions. This type of membrane is analogous to carbon nanotubes (CNTs), which are believed to have extremely high water fluxes through them due to near frictionless flow caused by a lack of hydrogen bonding. Using these brush membranes we were able to achieve 42% monovalent (NaCl) salt rejection of simulated seawater (32,000 ppm salt). These membranes are easier to scale-up than current composite membranes produced using interfacial polymerization. We have been using SFG to study interfacial water on membrane surfaces. We believe that water interactions with the membrane surface and with the feed species, e.g. proteins, play a critical role during the fouling process. Relevant buffers, such as phosphate buffered saline (PBS) and phosphate buffer, contain ions that are known to restructure water at interfaces. Sum frequency generation spectroscopy (SFG) was used to characterize interfacial water structure at poly(ether sulfone) (PES) thin films in the presence of 0.01 M phosphate buffer (low salt) and 0.01 M phosphate buffered saline (high salt). Three model surfaces were studied: unmodified PES, hydrophobic alkane (C18) modified PES, and poly(ethylene glycol) (PEG) modified PES. In the presence of the low salt phosphate buffer (10 mM salt), phosphate anions were excluded from the PEG-modified PES film. This led to a charge separation between the phosphate anions and sodium cations, creating a surface potential which strongly ordered water molecules into the bulk. When using high salt PBS (138 mM salt) the sodium chloride ions screened this charge and reduced water ordering. Interestingly, this effect was the greatest for the PEG modified surface, with minor or no effects observed for the C18 modified PES and unmodified PES, respectively. Using our high throughput screening platform, we were able to determine that (N-[3-(dimethylamino)propyl] methacrylamide), DMAPMA, supported strong attachment and long-term self-renewal of mouse embryonic stem (ES) cells while preventing differentiation (maintaining pluripotency). After developing this platform, it was used to screen for a surface that could instead induce differentiation of bovine and human retinal pigment epithelium (RPE) cells while promoting cell growth. Several PEG based surfaces were able to induce cobblestone morphology of the RPE cells, which is indicative of differentiation. (Abstract shortened by UMI.).

  15. Global Metabolic Responses to Salt Stress in Fifteen Species

    PubMed Central

    Pollak, Georg R.; Kuehne, Andreas; Sauer, Uwe

    2016-01-01

    Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance. PMID:26848578

  16. On the applicability of a hybrid bioreactor operated with polymeric tubing for the biological treatment of saline wastewater.

    PubMed

    Tomei, M Concetta; Mosca Angelucci, Domenica; Stazi, Valentina; Daugulis, Andrew J

    2017-12-01

    Effective biological treatment of high salt content wastewater requires consideration of both salt and organic toxicity. This study treated a synthetic saline wastewater containing NaCl (100gL -1 ) and 2,4-dimethylphenol (1.2gL -1 ) with a hybrid system consisting of a biological reactor containing spiral-coiled polymeric tubing through which the mixed feed was pumped. The tubing wall was permeable to the organic contaminant, but not to the salt, which allowed transfer of the organic into the cell-containing bioreactor contents for degradation, while not exposing the cells to high salt concentrations. Different grades of DuPont Hytrel polymer were examined on the basis of organic affinity predictions and experimental partition and mass transfer tests. Hytrel G3548 tubing showed the highest permeability for 2,4-dimethylphenol while exerting an effective salt barrier, and was used to verify the feasibility of the proposed system. Very high organic removal (99% after just 5h of treatment) and effective biodegradation of the organic fraction of the wastewater (>90% at the end of the test) were observed. Complete salt separation from the microbial culture was also achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Halophilic archaea cultivated from surface sterilized middle-late eocene rock salt are polyploid.

    PubMed

    Jaakkola, Salla T; Zerulla, Karolin; Guo, Qinggong; Liu, Ying; Ma, Hongling; Yang, Chunhe; Bamford, Dennis H; Chen, Xiangdong; Soppa, Jörg; Oksanen, Hanna M

    2014-01-01

    Live bacteria and archaea have been isolated from several rock salt deposits of up to hundreds of millions of years of age from all around the world. A key factor affecting their longevity is the ability to keep their genomic DNA intact, for which efficient repair mechanisms are needed. Polyploid microbes are known to have an increased resistance towards mutations and DNA damage, and it has been suggested that microbes from deeply buried rock salt would carry several copies of their genomes. Here, cultivable halophilic microbes were isolated from a surface sterilized middle-late Eocene (38-41 million years ago) rock salt sample, drilled from the depth of 800 m at Yunying salt mine, China. Eight unique isolates were obtained, which represented two haloarchaeal genera, Halobacterium and Halolamina. We used real-time PCR to show that our isolates are polyploid, with genome copy numbers of 11-14 genomes per cell in exponential growth phase. The ploidy level was slightly downregulated in stationary growth phase, but the cells still had an average genome copy number of 6-8. The polyploidy of halophilic archaea living in ancient rock salt might be a factor explaining how these organisms are able to overcome the challenge of prolonged survival during their entombment.

  18. Multilayered control of peroxisomal activity upon salt stress in Saccharomyces cerevisiae.

    PubMed

    Manzanares-Estreder, Sara; Espí-Bardisa, Joan; Alarcón, Benito; Pascual-Ahuir, Amparo; Proft, Markus

    2017-06-01

    Peroxisomes are dynamic organelles and the sole location for fatty acid β-oxidation in yeast cells. Here, we report that peroxisomal function is crucial for the adaptation to salt stress, especially upon sugar limitation. Upon stress, multiple layers of control regulate the activity and the number of peroxisomes. Activated Hog1 MAP kinase triggers the induction of genes encoding enzymes for fatty acid activation, peroxisomal import and β-oxidation through the Adr1 transcriptional activator, which transiently associates with genes encoding fatty acid metabolic enzymes in a stress- and Hog1-dependent manner. Moreover, Na + and Li + stress increases the number of peroxisomes per cell in a Hog1-independent manner, which depends instead of the retrograde pathway and the dynamin related GTPases Dnm1 and Vps1. The strong activation of the Faa1 fatty acyl-CoA synthetase, which specifically localizes to lipid particles and peroxisomes, indicates that adaptation to salt stress requires the enhanced mobilization of fatty acids from internal lipid stores. Furthermore, the activation of mitochondrial respiration during stress depends on peroxisomes, mitochondrial acetyl-carnitine uptake is essential for salt resistance and the number of peroxisomes attached to the mitochondrial network increases during salt adaptation, which altogether indicates that stress-induced peroxisomal β-oxidation triggers enhanced respiration upon salt shock. © 2017 John Wiley & Sons Ltd.

  19. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  20. Effect of acid tolerance response (ATR) on attachment of Listeria monocytogenes Scott A to stainless steel under extended exposure to acid or/and salt stress and resistance of sessile cells to subsequent strong acid challenge.

    PubMed

    Chorianopoulos, Nikos; Giaouris, Efstathios; Grigoraki, Ioanna; Skandamis, Panagiotis; Nychas, George-John

    2011-02-28

    The aim of this study was to investigate the potential effect of adaptive stationary phase acid tolerance response (ATR) of Listeria monocytogenes Scott A cells on their attachment to stainless steel (SS) under low pH or/and high salt conditions and on the subsequent resistance of sessile cells to strong acid challenge. Nonadapted or acid-adapted stationary-phase L. monocytogenes cells were used to inoculate (ca. 10⁸ CFU/ml) Brain Heart (BH) broth (pH 7.4, 0.5% w/v NaCl) in test tubes containing vertically placed SS coupons (used as abiotic substrates for bacterial attachment). Incubation was carried out at 16 °C for up to 15 days, without any nutrient refreshment. L. monocytogenes cells, prepared as described above, were also exposed to low pH (4.5; adjusted with HCl) or/and high salt (5.5% w/v NaCl) stresses, during attachment. On the 5th, 10th and 15th day of incubation, cells attached to SS coupons were detached (through bead vortexing) and enumerated (by agar plating). Results revealed that ATR significantly (p<0.05) affected bacterial attachment, when the latter took place under moderate acidic conditions (pH 4.5, 0.5 or 5.5% w/v NaCl), with the acid-adapted cells adhering slightly more than the nonadapted ones. Regardless of acidity/salinity conditions during attachment, ATR also enhanced the resistance of sessile cells to subsequent lethal acid challenge (exposure to pH 2 for 6 min; pH adjusted with either hydrochloric or lactic acid). The trend observed with viable count data agreed well with conductance measurements, used to indirectly quantify remaining attached bacteria (following the strong acid challenge) via their metabolic activity. To sum, this study demonstrates that acid adaptation of L. monocytogenes cells during their planktonic growth enhances their subsequent attachment to SS under extended exposure (at 16 °C for up to 15 days) to mild acidic conditions (pH 4.5), while it also improves the resistance of sessile cells to extreme acid treatment (pH 2). Therefore, the ATR of bacterial cells should be carefully considered when applying acidic decontamination strategies to eradicate L. monocytogenes attached to food processing equipment. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    PubMed

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Inaugural Maximum Values for Sodium in Processed Food Products in the Americas.

    PubMed

    Campbell, Norm; Legowski, Barbara; Legetic, Branka; Nilson, Eduardo; L'Abbé, Mary

    2015-08-01

    Reducing dietary salt/sodium is one of the most cost-effective interventions to improve population health. There are five initiatives in the Americas that independently developed targets for reformulating foods to reduce salt/sodium content. Applying selection criteria, recommended by the Pan American Health Organization (PAHO)/World Health Organization (WHO) Technical Advisory Group on Dietary Salt/Sodium Reduction, a consortium of governments, civil society, and food companies (the Salt Smart Consortium) agreed to an inaugural set of regional maximum targets (upper limits) for salt/sodium levels for 11 food categories, to be achieved by December 2016. Ultimately, to substantively reduce dietary salt across whole populations, targets will be needed for the majority of processed and pre-prepared foods. Cardiovascular and hypertension organizations are encouraged to utilize the regional targets in advocacy and in monitoring and evaluation of progress by the food industry. © 2015 Wiley Periodicals, Inc.

  3. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity.

    PubMed

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. The gene delivery efficiency of amino acid-based cationic assemblies is influenced by the amino acids (ie, arginine or lysine) present as the hydrophilic head group and their associated counterions.

  4. Arginine-based cationic liposomes for efficient in vitro plasmid DNA delivery with low cytotoxicity

    PubMed Central

    Sarker, Satya Ranjan; Aoshima, Yumiko; Hokama, Ryosuke; Inoue, Takafumi; Sou, Keitaro; Takeoka, Shinji

    2013-01-01

    Background Currently available gene delivery vehicles have many limitations such as low gene delivery efficiency and high cytotoxicity. To overcome these drawbacks, we designed and synthesized two cationic lipids comprised of n-tetradecyl alcohol as the hydrophobic moiety, 3-hydrocarbon chain as the spacer, and different counterions (eg, hydrogen chloride [HCl] salt or trifluoroacetic acid [TFA] salt) in the arginine head group. Methods Cationic lipids were hydrated in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer to prepare cationic liposomes and characterized in terms of their size, zeta potential, phase transition temperature, and morphology. Lipoplexes were then prepared and characterized in terms of their size and zeta potential in the absence or presence of serum. The morphology of the lipoplexes was determined using transmission electron microscopy and atomic force microscopy. The gene delivery efficiency was evaluated in neuronal cells and HeLa cells and compared with that of lysine-based cationic assemblies and Lipofectamine™ 2000. The cytotoxicity level of the cationic lipids was investigated and compared with that of Lipofectamine™ 2000. Results We synthesized arginine-based cationic lipids having different counterions (ie, HCl-salt or TFA-salt) that formed cationic liposomes of around 100 nm in size. In the absence of serum, lipoplexes prepared from the arginine-based cationic liposomes and plasmid (p) DNA formed large aggregates and attained a positive zeta potential. However, in the presence of serum, the lipoplexes were smaller in size and negative in zeta potential. The morphology of the lipoplexes was vesicular. Arginine-based cationic liposomes with HCl-salt showed the highest transfection efficiency in PC-12 cells. However, arginine-based cationic liposomes with TFA salt showed the highest transfection efficiency in HeLa cells, regardless of the presence of serum, with very low associated cytotoxicity. Conclusion The gene delivery efficiency of amino acid-based cationic assemblies is influenced by the amino acids (ie, arginine or lysine) present as the hydrophilic head group and their associated counterions. PMID:23630419

  5. Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.

    PubMed

    Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing

    2015-12-01

    A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Process Evaluation and Costing of a Multifaceted Population-Wide Intervention to Reduce Salt Consumption in Fiji.

    PubMed

    Webster, Jacqui; Pillay, Arti; Suku, Arleen; Gohil, Paayal; Santos, Joseph Alvin; Schultz, Jimaima; Wate, Jillian; Trieu, Kathy; Hope, Silvia; Snowdon, Wendy; Moodie, Marj; Jan, Stephen; Bell, Colin

    2018-01-30

    This paper reports the process evaluation and costing of a national salt reduction intervention in Fiji. The population-wide intervention included engaging food industry to reduce salt in foods, strategic health communication and a hospital program. The evaluation showed a 1.4 g/day drop in salt intake from the 11.7 g/day at baseline; however, this was not statistically significant. To better understand intervention implementation, we collated data to assess intervention fidelity, reach, context and costs. Government and management changes affected intervention implementation, meaning fidelity was relatively low. There was no active mechanism for ensuring food companies adhered to the voluntary salt reduction targets. Communication activities had wide reach but most activities were one-off, meaning the overall dose was low and impact on behavior limited. Intervention costs were moderate (FJD $277,410 or $0.31 per person) but the strategy relied on multi-sector action which was not fully operationalised. The cyclone also delayed monitoring and likely impacted the results. However, 73% of people surveyed had heard about the campaign and salt reduction policies have been mainstreamed into government programs. Longer-term monitoring of salt intake is planned through future surveys and lessons from this process evaluation will be used to inform future strategies in the Pacific Islands and globally.

  7. Process Evaluation and Costing of a Multifaceted Population-Wide Intervention to Reduce Salt Consumption in Fiji

    PubMed Central

    Webster, Jacqui; Pillay, Arti; Suku, Arleen; Gohil, Paayal; Santos, Joseph Alvin; Schultz, Jimaima; Wate, Jillian; Trieu, Kathy; Hope, Silvia; Snowdon, Wendy; Moodie, Marj; Jan, Stephen; Bell, Colin

    2018-01-01

    This paper reports the process evaluation and costing of a national salt reduction intervention in Fiji. The population-wide intervention included engaging food industry to reduce salt in foods, strategic health communication and a hospital program. The evaluation showed a 1.4 g/day drop in salt intake from the 11.7 g/day at baseline; however, this was not statistically significant. To better understand intervention implementation, we collated data to assess intervention fidelity, reach, context and costs. Government and management changes affected intervention implementation, meaning fidelity was relatively low. There was no active mechanism for ensuring food companies adhered to the voluntary salt reduction targets. Communication activities had wide reach but most activities were one-off, meaning the overall dose was low and impact on behavior limited. Intervention costs were moderate (FJD $277,410 or $0.31 per person) but the strategy relied on multi-sector action which was not fully operationalised. The cyclone also delayed monitoring and likely impacted the results. However, 73% of people surveyed had heard about the campaign and salt reduction policies have been mainstreamed into government programs. Longer-term monitoring of salt intake is planned through future surveys and lessons from this process evaluation will be used to inform future strategies in the Pacific Islands and globally. PMID:29385758

  8. Process for preparing titanium nitride powder

    DOEpatents

    Bamberger, C.E.

    1988-06-17

    A process for making titanium nitride powder by reaction of titanium phosphates with sodium cyanide. The process of this invention may comprise mixing one or more phosphates of Ti with a cyanide salt in the absence of oxygen and heating to a temperature sufficient to cause reaction to occur. In the preferred embodiment the ratio of cyanide salt to Ti should be at least 2 which results in the major Ti-containing product being TiN rather than sodium titanium phosphate byproducts. The process is an improvement over prior processes since the byproducts are water soluble salts of sodium which can easily be removed from the preferred TiN product by washing. 2 tabs.

  9. Method for preparing salt solutions having desired properties

    DOEpatents

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  10. Effects of pretreatment processes for Zr electrorefining of oxidized Zircaloy-4 cladding tubes

    NASA Astrophysics Data System (ADS)

    Hwa Lee, Chang; Lee, Yoo Lee; Jeon, Min Ku; Choi, Yong Taek; Kang, Kweon Ho; Park, Geun Il

    2014-06-01

    The effect of pretreatment processes for the Zr electrorefining of oxidized Zircaloy-4 cladding tubes is examined in LiCl-KCl-ZrCl4 molten salts at 500 °C. The cyclic voltammetries reveal that the Zr dissolution kinetics is highly dependent on the thickness of a Zr oxide layer formed at 500 °C under air atmosphere. For the Zircaloy-4 tube covered with a 1 μm thick oxide layer, the Zr dissolution process is initiated from a non-stoichiometric Zr oxide surface through salt treatment at an open circuit potential in the molten salt electrolyte. The Zr dissolution of the samples in the middle range of oxide layer thickness appears to be more effectively derived by the salt treatment coupled with an anodic potential application at an oxidation potential of Zr. A modification of the process scheme offers an applicability of Zr electrorefining for the treatment of oxidized cladding hull wastes.

  11. Salt enrichment of municipal sewage: New prevention approaches in Israel

    NASA Astrophysics Data System (ADS)

    Weber, Baruch; Avnimelech, Yoram; Juanico, Marcelo

    1996-07-01

    Wastewater irrigation is an environmentally sound wastewater disposal practice, but sewage is more saline than the supplied fresh water and the salts are recycled together with the water. Salts have negative environmental effects on crops, soils, and groundwater. There are no inexpensive ways to remove the salts once they enter sewage, and the prevention of sewage salt enrichment is the most immediately available solution. The body of initiatives presently structured by the Ministry of the Environment of Israel are herein described, with the aim to contribute to the search for a long-term solution of salinity problems in arid countries. The new initiatives are based on: (1) search for new technologies to reduce salt consumption and discharge into sewage; (2) different technologies to cope with different situations; (3) raising the awareness of the public and industry on the environmental implications of salinity pollution; and (4) an elastic legal approach expressed through new state-of-the-art regulations. The main contributor to the salinity of sewage in Israel is the watersoftening process followed by the meat koshering process. Some of the adopted technical solutions are: the discharge of the brine into the sea, the substitution of sodium by potassium salts in the ion-exchangers, the construction of centralized systems for the supply of soft water in industrial areas, the precipitation of Ca and Mg in the effluents from ion-exchangers and recycling of the NaCI solution, a reduction of the discharge of salts by the meat koshering process, and new membrane technology for salt recovery.

  12. Investigation of salt loss from the Bonneville Salt Flats, northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer.A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  13. Low-hazard metallography of moisture-sensitive electrochemical cells.

    PubMed

    Wesolowski, D E; Rodriguez, M A; McKenzie, B B; Papenguth, H W

    2011-08-01

    A low-hazard approach is presented to prepare metallographic cross-sections of moisture-sensitive battery components. The approach is tailored for evaluation of thermal (molten salt) batteries composed of thin pressed-powder pellets, but has general applicability to other battery electrochemistries. Solution-cast polystyrene is used to encapsulate cells before embedding in epoxy. Nonaqueous grinding and polishing are performed in an industrial dry room to increase throughput. Lapping oil is used as a lubricant throughout grinding. Hexane is used as the solvent throughout processing; occupational exposure levels are well below the limits. Light optical and scanning electron microscopy on cross-sections are used to analyse a thermal battery cell. Spatially resolved X-ray diffraction on oblique angle cut cells complement the metallographic analysis. Published 2011. This article is a US Government work and is in the public domain in the USA.

  14. Injury and destruction of Moraxella-Acinetobacter in the radappertization process. Final Report Apr 78-1 May 80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxcy, R.B.; Rowley, D.B.

    1981-02-01

    Some highly radiation-resistant Moraxella-Acinetobacter (M-A) may survive the radappertization process for meat preservation, because these vegetative bacteria are more resistant than spores to radiation. They are, however, more susceptible than spores to other destructive factors. This work was to determine the effect of some environmental factors that influence the radappertization process. M-A, M. radiodurans, and B. cereus spores varied greatly in their response to changes in temperature of radiation and menstruum in which they were suspended. Available water was critical in response of vegetative cells to radiation. Salts at the level incorporated into meat for the radappertization process suppressed growthmore » of both injured and uninjured M-A. This effect was attributed to reduction in water activity of the menstruum. Freezing and thawing of M-A indicated some destruction and some injury. The injured cells recovered during subsequent incubation. Thus, specific food products and conditions of radappertization must be considered for setting processing parameters. When all the factors of injury, destruction, and suppression of microbial growth are considered in the radappertization process, it is apparent there is little likelihood any of the low number of naturally occurring M-A cells would survive.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, V.; Shah, H.; Bannochie, C. J.

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed themore » Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated forms in the assembled salt batches in Tanks 21/49 pass through the Actinide Removal Process (ARP) / Modular Caustic Side Solvent Extraction Unit (MCU) process to Tank 50 with no significant change in the mercury chemistry. (3) In Tank 50, Decontaminated Salt Solution (DSS) from ARP/MCU is the major contributor to the total mercury including MHg. (4) Speciation analyses of TCLP leached solutions of the grout samples prepared from Tank 21, as well as Tank 50 samples, show the majority of the mercury released in the solution is MHg.« less

  16. Dynamically controlled crystallization method and apparatus and crystals obtained thereby

    NASA Technical Reports Server (NTRS)

    Arnowitz, Leonard (Inventor); Steinberg, Emanuel (Inventor)

    1999-01-01

    A method and apparatus for dynamically controlling the crystallization of proteins including a crystallization chamber or chambers for holding a protein in a salt solution, one or more salt solution chambers, two communication passages respectively coupling the crystallization chamber with each of the salt solution chambers, and transfer mechanisms configured to respectively transfer salt solution between each of the salt solution chambers and the crystallization chamber. The transfer mechanisms are interlocked to maintain the volume of salt solution in the crystallization chamber substantially constant. Salt solution of different concentrations is transferred into and out of the crystallization chamber to adjust the salt concentration in the crystallization chamber to achieve precise control of the crystallization process.

  17. Targets and timelines for reducing salt in processed food in the Americas.

    PubMed

    Campbell, Norm; Legowski, Barbara; Legetic, Branka; Ferrante, Daniel; Nilson, Eduardo; Campbell, Christine; L'Abbé, Mary

    2014-09-01

    Reducing dietary salt is one of the most effective interventions to lessen the burden of premature death and disability. In high-income countries and those in nutrition transition, processed foods are a significant if not the main source of dietary salt. Reformulating these products to reduce their salt content is recommended as a best buy to prevent chronic diseases across populations. In the Americas, there are targets and timelines for reduced salt content of processed foods in 8 countries--Argentina, Brazil, Canada, Chile, Ecuador, Mexico, and the National Salt Reduction Initiative in the United States and Paraguay. While there are common elements across the countries, there are notable differences in their approaches: 4 countries have exclusively voluntary targets, 2 countries have combined voluntary and regulated components, and 1 country has only regulations. The countries have set different types of targets and in some cases combined them: averages, sales-weighted averages, upper limits, and percentage reductions. The foods to which the targets apply vary from single categories to comprehensive categories accounting for all processed products. The most accessible and transparent targets are upper limits per food category. Most likely to have a substantive and sustained impact on salt intake across whole populations is the combination of sales-weighted averages and upper limits. To assist all countries with policies to improve the overall nutritional value of processed foods, the authors call for food companies to supply food composition data and product sales volume data to transparent and open-access platforms and for global companies to supply the products that meet the strictest targets to all markets. Countries participating in common markets at the subregional level can consider harmonizing targets, nutrition labels, and warning labels. ©2014 Wiley Periodicals, Inc.

  18. Crystal structures of the diastereomeric salt pair of the prostaglandin intermediate 1 R, 2 S(+)- cis-2-hydroxycyclopent-4-enylacetic acid with S- and R- 1-phenylethylamine

    NASA Astrophysics Data System (ADS)

    Czugler, Mátyás; Csöregh, Ingeborg; Kálmán, Alajos; Faigl, Ferenc; Ács, Mária

    1989-05-01

    Crystal structures of an enantiomeric salt pair formed between 1 R,2 S- cis-2-hydroxycyclopent-4-enylacetic acid ( S-HCA) and R(+)-1-phenylethylamine ( R-PEA) and the corresponding S-PEA salt have been determined by X-ray crystallography. The S-HCA: R-PEA 1:1 salt ( R-HCA-PEA hereafter) is orthorhombic, P2 12 12 1, with the unit-cell parameters a = 5.806(1), b = 9.261(1), c = 27.624(2) Å and R = 0.056 for 1162 reflections at ambient temperature. The S-HCA: S-PEA 1:1 salt ( S-HCAPEA) is also orthorhombic, P2 12 12 1, with the unit-cell data a = 6.034(2), b = 11.840(7), c = 20.198(11) Å at 170 K, R = 0.082 for 1196 data measured at low temperatures (170 K). The R-HCAPEA salt has its two components assembled into an elongated rod-like shape via two-dimensional hydrogen bonding between cations and anions thus forming a well-ordered crystal. In contrast, the cation and anion in the S-HCAPEA salt forms a more globular aggregate and displays orientation disorder in the five-membered ring part of the anion and maintains an essentially one-dimensional hydrogen-bond network, while the total number of hydrogen bonds between cationic and anionic species remains three in both crystals.

  19. A1 and A2, two novel haloarchaeal isolates from bore cores of ancient Alpine rock salt deposits

    NASA Astrophysics Data System (ADS)

    Gruber, C.; Pfaffenhuemer, M.; Weidler, G.; Radax, C.; Stan-Lotter, H.

    2003-04-01

    Previously several novel halophilic archaea, for instance Haloccocus salifodinae BIp and Halococcus dombrowskii, were isolated from Permo-Triassic rock salt (age 200 - 250 million years) in our laboratory. By using molecular methods we found evidence for the presence of numerous additional haloarchaeal taxa. We investigated freshly drilled salt cores from a depth of about 600 m below surface in the salt mine of Altaussee, Austria, which were dissolved immediately in sterile water. After plating the dissolved salts on high salt nutrient agar, we were able to isolate, following incubation for 3 months, two red pigmented colonies, which were designated A1 and A2 and cultivated for further investigation. A1 and A2 showed the same antibiotic susceptibility as Halobacterium salinarum DSM 3754 and Halobacterium sp. NRC-1, which were cultivated from surface waters. Additionally, the cell morphology of the new isolates was highly similar to both reference strains. According to 16S rRNA gene sequences, whole cell protein patterns following SDS polyacrylamide gel electrophoresis, and restriction digestion patterns of their DNA following pulsed field gel electrophoresis, the isolates A1 and A2 could not be distinguished. 16S rRNA gene sequences indicated that the closest relative of strains A1 and A2 was Halobacterium salinarum DSM 3754 (sequence similarity 97,1%). Our results suggest that the isolates A1 and A2 might constitute a new haloarchaeal species, entrapped in ancient rock salt.

  20. Low temperature electrolytes for lithium/silver vanadium oxide cells

    NASA Technical Reports Server (NTRS)

    Tuhovak, Denise R.; Takeuchi, Esther S.

    1991-01-01

    Combinations of methyl formate (MF) and propylene carbonate (PC) using salt concentrations of 0.6 to 2.4 M, with lithium hexafluoroarsenate and lithium tetrafluoroborate in a five to one molar ratio, were investigated as electrolytes in lithium/silver vanadium oxide batteries. The composition of the electrolyte affected cell performance at low temperature, self-discharge and abuse resistance as characterized by short circuit and crush testing. The electrolyte that provided the best combination of good low temperature performance, low cell self-discharge and abuse resistance was 0.6 M salt in 10:90 PC/MF.

Top