Oshone, Rediet; Ngom, Mariama; Chu, Feixia; Mansour, Samira; Sy, Mame Ourèye; Champion, Antony; Tisa, Louis S
2017-08-18
Soil salinization is a worldwide problem that is intensifying because of the effects of climate change. An effective method for the reclamation of salt-affected soils involves initiating plant succession using fast growing, nitrogen fixing actinorhizal trees such as the Casuarina. The salt tolerance of Casuarina is enhanced by the nitrogen-fixing symbiosis that they form with the actinobacterium Frankia. Identification and molecular characterization of salt-tolerant Casuarina species and associated Frankia is imperative for the successful utilization of Casuarina trees in saline soil reclamation efforts. In this study, salt-tolerant and salt-sensitive Casuarina associated Frankia strains were identified and comparative genomics, transcriptome profiling, and proteomics were employed to elucidate the molecular mechanisms of salt and osmotic stress tolerance. Salt-tolerant Frankia strains (CcI6 and Allo2) that could withstand up to 1000 mM NaCl and a salt-sensitive Frankia strain (CcI3) which could withstand only up to 475 mM NaCl were identified. The remaining isolates had intermediate levels of salt tolerance with MIC values ranging from 650 mM to 750 mM. Comparative genomic analysis showed that all of the Frankia isolates from Casuarina belonged to the same species (Frankia casuarinae). Pangenome analysis revealed a high abundance of singletons among all Casuarina isolates. The two salt-tolerant strains contained 153 shared single copy genes (most of which code for hypothetical proteins) that were not found in the salt-sensitive(CcI3) and moderately salt-tolerant (CeD) strains. RNA-seq analysis of one of the two salt-tolerant strains (Frankia sp. strain CcI6) revealed hundreds of genes differentially expressed under salt and/or osmotic stress. Among the 153 genes, 7 and 7 were responsive to salt and osmotic stress, respectively. Proteomic profiling confirmed the transcriptome results and identified 19 and 8 salt and/or osmotic stress-responsive proteins in the salt-tolerant (CcI6) and the salt-sensitive (CcI3) strains, respectively. Genetic differences between salt-tolerant and salt-sensitive Frankia strains isolated from Casuarina were identified. Transcriptome and proteome profiling of a salt-tolerant strain was used to determine molecular differences correlated with differential salt-tolerance and several candidate genes were identified. Mechanisms involving transcriptional and translational regulation, cell envelop remodeling, and previously uncharacterized proteins appear to be important for salt tolerance. Physiological and mutational analyses will further shed light on the molecular mechanism of salt tolerance in Casuarina associated Frankia isolates.
Prospects for improving the salt tolerance of forest trees: A review
Allen, J.A.; Chambers, J.L.; Stine, M.
1994-01-01
Three major themes related to the improvement of salt tolerance in forest tree species are examined. First, evidence demonstrating that substantial intraspecific variation in salt tolerance exists in many species is presented. This evidence is important because it suggests that efforts to improve salt tolerance through conventional plant breeding techniques are justified. Second, the physiological and genetic mechanisms controlling salt tolerance are discussed briefly. Although salt tolerance involves the integration of numerous physiological processes, there is considerable evidence that differences in the ability to exclude Na+ and Cl- from leaves are the most important factors underlying intraspecific differences in tolerance. It is also becoming apparent that, although salt tolerance is a multigenic trait, major genes play an important role. Third, progress to date in improving salt tolerance of forest tree species is assessed. Compared with agricultural crops, relatively little progress has been made with either conventional or biotechnological methods, but field trials designed to test clones identified as salt tolerant in screening trials are underway now in several countries. We conclude that there is justification for cautious optimism about the prospects for improving salt tolerance in forest tree species.
Rozema, Jelte; Cornelisse, Danny; Zhang, Yuancheng; Li, Hongxiu; Bruning, Bas; Katschnig, Diana; Broekman, Rob; Ji, Bin; van Bodegom, Peter
2015-01-01
Salt tolerance of higher plants is determined by a complex set of traits, the timing and rate of evolution of which are largely unknown. We compared the salt tolerance of cultivars of sugar beet and their ancestor, sea beet, in hydroponic studies and evaluated whether traditional domestication and more recent breeding have changed salt tolerance of the cultivars relative to their ancestor. Our comparison of salt tolerance of crop cultivars is based on values of the relative growth rate (RGR) of the entire plant at various salinity levels. We found considerable salt tolerance of the sea beet and slightly, but significantly, reduced salt tolerance of the sugar beet cultivars. This indicates that traditional domestication by selection for morphological traits such as leaf size, beet shape and size, enhanced productivity, sugar content and palatability slightly affected salt tolerance of sugar beet cultivars. Salt tolerance among four sugar beet cultivars, three of which have been claimed to be salt tolerant, did not differ. We analysed the components of RGR to understand the mechanism of salt tolerance at the whole-plant level. The growth rate reduction at higher salinity was linked with reduced leaf area at the whole-plant level (leaf area ratio) and at the individual leaf level (specific leaf area). The leaf weight fraction was not affected by increased salinity. On the other hand, succulence and leaf thickness and the net assimilation per unit of leaf area (unit leaf rate) increased in response to salt treatment, thus partially counteracting reduced capture of light by lower leaf area. This compensatory mechanism may form part of the salt tolerance mechanism of sea beet and the four studied sugar beet cultivars. Together, our results indicate that domestication of the halophytic ancestor sea beet slightly reduced salt tolerance and that breeding for improved salt tolerance of sugar beet cultivars has not been effective. PMID:25492122
Diversity and Evolution of Salt Tolerance in the Genus Vigna
Iseki, Kohtaro; Takahashi, Yu; Muto, Chiaki; Naito, Ken; Tomooka, Norihiko
2016-01-01
Breeding salt tolerant plants is difficult without utilizing a diversity of wild crop relatives. Since the genus Vigna (family Fabaceae) is comprised of many wild relatives adapted to various environmental conditions, we evaluated the salt tolerance of 69 accessions of this genus, including that of wild and domesticated accessions originating from Asia, Africa, Oceania, and South America. We grew plants under 50 mM and 200 mM NaCl for two weeks and then measured the biomass, relative quantum yield of photosystem II, leaf Na+ concentrations, and leaf K+ concentrations. The accessions were clustered into four groups: the most tolerant, tolerant, moderately susceptible, and susceptible. From the most tolerant group, we selected six accessions, all of which were wild accessions adapted to coastal environments, as promising sources of salt tolerance because of their consistently high relative shoot biomass and relative quantum yield. Interestingly, variations in leaf Na+ concentration were observed between the accessions in the most tolerant group, suggesting different mechanisms were responsible for their salt tolerance. Phylogenetic analysis with nuclear DNA sequences revealed that salt tolerance had evolved independently at least four times in the genus Vigna, within a relatively short period. The findings suggested that simple genetic changes in a few genes might have greatly affected salt tolerances. The elucidation of genetic mechanisms of salt tolerances in the selected accessions may contribute to improving the poor salt tolerance in legume crops. PMID:27736995
Salt tolerance evolves more frequently in C4 grass lineages.
Bromham, L; Bennett, T H
2014-03-01
Salt tolerance has evolved many times in the grass family, and yet few cereal crops are salt tolerant. Why has it been so difficult to develop crops tolerant of saline soils when salt tolerance has evolved so frequently in nature? One possible explanation is that some grass lineages have traits that predispose them to developing salt tolerance and that without these background traits, salt tolerance is harder to achieve. One candidate background trait is photosynthetic pathway, which has also been remarkably labile in grasses. At least 22 independent origins of the C4 photosynthetic pathway have been suggested to occur within the grass family. It is possible that the evolution of C4 photosynthesis aids exploitation of saline environments, because it reduces transpiration, increases water-use efficiency and limits the uptake of toxic ions. But the observed link between the evolution of C4 photosynthesis and salt tolerance could simply be due to biases in phylogenetic distribution of halophytes or C4 species. Here, we use a phylogenetic analysis to investigate the association between photosynthetic pathway and salt tolerance in the grass family Poaceae. We find that salt tolerance is significantly more likely to occur in lineages with C4 photosynthesis than in C3 lineages. We discuss the possible links between C4 photosynthesis and salt tolerance and consider the limitations of inferring the direction of causality of this relationship. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.
Bacterial growth tolerance to concentrations of chlorate and perchlorate salts relevant to Mars
NASA Astrophysics Data System (ADS)
Al Soudi, Amer F.; Farhat, Omar; Chen, Fei; Clark, Benton C.; Schneegurt, Mark A.
2017-07-01
The Phoenix lander at Mars polar cap found appreciable levels of (per)chlorate salts, a mixture of perchlorate and chlorate salts of Ca, Fe, Mg and Na at levels of ~0.6% in regolith. These salts are highly hygroscopic and can form saturated brines through deliquescence, likely producing aqueous solutions with very low freezing points on Mars. To support planetary protection efforts, we have measured bacterial growth tolerance to (per)chlorate salts. Existing bacterial isolates from the Great Salt Plains of Oklahoma (NaCl-rich) and Hot Lake in Washington (MgSO4-rich) were tested in high concentrations of Mg, K and Na salts of chlorate and perchlorate. Strong growth was observed with nearly all of these salinotolerant isolates at 1% (~0.1 M) (per)chlorate salts, similar to concentrations observed in bulk soils on Mars. Growth in perchlorate salts was observed at concentrations of at least 10% (~1.0 M). Greater tolerance was observed for chlorate salts, where growth was observed to 2.75 M (>25%). Tolerance to K salts was greatest, followed by Mg salts and then Na salts. Tolerances varied among isolates, even among those within the same phylogenetic clade. Tolerant bacteria included genera that also are found in spacecraft assembly facilities. Substantial microbial tolerance to (per)chlorate salts is a concern for planetary protection since tolerant microbes contaminating spacecraft would have a greater chance for survival and proliferation, despite the harsh chemical conditions found near the surface of Mars.
Ravelombola, Waltram; Shi, Ainong; Weng, Yuejin; Mou, Beiquan; Motes, Dennis; Clark, John; Chen, Pengyin; Srivastava, Vibha; Qin, Jun; Dong, Lingdi; Yang, Wei; Bhattarai, Gehendra; Sugihara, Yuichi
2018-01-01
This is the first report on association analysis of salt tolerance and identification of SNP markers associated with salt tolerance in cowpea. Cowpea (Vigna unguiculata (L.) Walp) is one of the most important cultivated legumes in Africa. The worldwide annual production in cowpea dry seed is 5.4 million metric tons. However, cowpea is unfavorably affected by salinity stress at germination and seedling stages, which is exacerbated by the effects of climate change. The lack of knowledge on the genetic underlying salt tolerance in cowpea limits the establishment of a breeding strategy for developing salt-tolerant cowpea cultivars. The objectives of this study were to conduct association mapping for salt tolerance at germination and seedling stages and to identify SNP markers associated with salt tolerance in cowpea. We analyzed the salt tolerance index of 116 and 155 cowpea accessions at germination and seedling stages, respectively. A total of 1049 SNPs postulated from genotyping-by-sequencing were used for association analysis. Population structure was inferred using Structure 2.3.4; K optimal was determined using Structure Harvester. TASSEL 5, GAPIT, and FarmCPU involving three models such as single marker regression, general linear model, and mixed linear model were used for the association study. Substantial variation in salt tolerance index for germination rate, plant height reduction, fresh and dry shoot biomass reduction, foliar leaf injury, and inhibition of the first trifoliate leaf was observed. The cowpea accessions were structured into two subpopulations. Three SNPs, Scaffold87490_622, Scaffold87490_630, and C35017374_128 were highly associated with salt tolerance at germination stage. Seven SNPs, Scaffold93827_270, Scaffold68489_600, Scaffold87490_633, Scaffold87490_640, Scaffold82042_3387, C35069468_1916, and Scaffold93942_1089 were found to be associated with salt tolerance at seedling stage. The SNP markers were consistent across the three models and could be used as a tool to select salt-tolerant lines for breeding improved cowpea tolerance to salinity.
Molecular response of canola to salt stress: insights on tolerance mechanisms.
Shokri-Gharelo, Reza; Noparvar, Pouya Motie
2018-01-01
Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.
Prusty, Manas R; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G Q; Jena, Kshirod K
2018-01-01
Cultivated rice ( Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na + exclusion mechanism in root which removes Na + from the xylem stream by membrane Na + and K + transporters, and resulted in low Na + accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species ( O . alta, O . latifolia , and O . coarctata ) and four species ( O . rhizomatis, O . eichingeri, O . minuta , and O . grandiglumis ) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na + concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na + in leaf of wild species might be affected by OsHKT1;4 -mediated Na + exclusion in leaf and the following Na + sequestration in leaf might be occurring independent of tonoplast-localized OsNHX1. The newly isolated wild rice accessions will be valuable materials for both rice improvement to salinity stress and the study of salt tolerance mechanism in plants.
Mini-review of knowledge gaps in salt tolerance of plants applied to willows and poplars
Jaconette Mirck; Ronald S. Zalesny
2015-01-01
Salt tolerance of agricultural crops has been studied since the 1940, but knowledge regarding salt tolerance of woody crops is still in its initial phase. Salt tolerance of agricultural crops has been expressed as the yield decrease due to a certain salt concentration within the root zone as compared to a non-saline control. The most well-known plant response curve to...
Mapping of a major QTL for salt tolerance of mature field-grown maize plants based on SNP markers.
Luo, Meijie; Zhao, Yanxin; Zhang, Ruyang; Xing, Jinfeng; Duan, Minxiao; Li, Jingna; Wang, Naishun; Wang, Wenguang; Zhang, Shasha; Chen, Zhihui; Zhang, Huasheng; Shi, Zi; Song, Wei; Zhao, Jiuran
2017-08-15
Salt stress significantly restricts plant growth and production. Maize is an important food and economic crop but is also a salt sensitive crop. Identification of the genetic architecture controlling salt tolerance facilitates breeders to select salt tolerant lines. However, the critical quantitative trait loci (QTLs) responsible for the salt tolerance of field-grown maize plants are still unknown. To map the main genetic factors contributing to salt tolerance in mature maize, a double haploid population (240 individuals) and 1317 single nucleotide polymorphism (SNP) markers were employed to produce a genetic linkage map covering 1462.05 cM. Plant height of mature maize cultivated in the saline field (SPH) and plant height-based salt tolerance index (ratio of plant height between saline and control fields, PHI) were used to evaluate salt tolerance of mature maize plants. A major QTL for SPH was detected on Chromosome 1 with the LOD score of 22.4, which explained 31.2% of the phenotypic variation. In addition, the major QTL conditioning PHI was also mapped at the same position on Chromosome 1, and two candidate genes involving in ion homeostasis were identified within the confidence interval of this QTL. The detection of the major QTL in adult maize plant establishes the basis for the map-based cloning of genes associated with salt tolerance and provides a potential target for marker assisted selection in developing maize varieties with salt tolerance.
Yang, Zemao; Lu, Ruike; Dai, Zhigang; Yan, An; Tang, Qing; Cheng, Chaohua; Xu, Ying; Yang, Wenting; Su, Jianguang
2017-01-01
High salinity is a major environmental stressor for crops. To understand the regulatory mechanisms underlying salt tolerance, we conducted a comparative transcriptome analysis between salt-tolerant and salt-sensitive jute (Corchorus spp.) genotypes in leaf and root tissues under salt stress and control conditions. In total, 68,961 unigenes were identified. Additionally, 11,100 unigenes (including 385 transcription factors (TFs)) exhibited significant differential expression in salt-tolerant or salt-sensitive genotypes. Numerous common and unique differentially expressed unigenes (DEGs) between the two genotypes were discovered. Fewer DEGs were observed in salt-tolerant jute genotypes whether in root or leaf tissues. These DEGs were involved in various pathways, such as ABA signaling, amino acid metabolism, etc. Among the enriched pathways, plant hormone signal transduction (ko04075) and cysteine/methionine metabolism (ko00270) were the most notable. Eight common DEGs across both tissues and genotypes with similar expression profiles were part of the PYL-ABA-PP2C (pyrabactin resistant-like/regulatory components of ABA receptors-abscisic acid-protein phosphatase 2C). The methionine metabolism pathway was only enriched in salt-tolerant jute root tissue. Twenty-three DEGs were involved in methionine metabolism. Overall, numerous common and unique salt-stress response DEGs and pathways between salt-tolerant and salt-sensitive jute have been discovered, which will provide valuable information regarding salt-stress response mechanisms and help improve salt-resistance molecular breeding in jute. PMID:28927022
Effects, tolerance mechanisms and management of salt stress in grain legumes.
Farooq, Muhammad; Gogoi, Nirmali; Hussain, Mubshar; Barthakur, Sharmistha; Paul, Sreyashi; Bharadwaj, Nandita; Migdadi, Hussein M; Alghamdi, Salem S; Siddique, Kadambot H M
2017-09-01
Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt-affected soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Plant salt-tolerance mechanisms
Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...
2014-06-01
Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less
Srivastava, Amrita; Singh, Anumeha; Singh, Satya S; Mishra, Arun K
2017-04-16
An appreciation of comparative microbial survival is most easily done while evaluating their adaptive strategies during stress. In the present experiment, antioxidative and whole cell proteome variations based on spectrophotometric analysis and SDS-PAGE and 2-dimensional gel electrophoresis have been analysed among salt-tolerant and salt-sensitive Frankia strains. This is the first report of proteomic basis underlying salt tolerance in these newly isolated Frankia strains from Hippophae salicifolia D. Don. Salt-tolerant strain HsIi10 shows higher increment in the contents of superoxide dismutase, catalase and ascorbate peroxidase as compared to salt-sensitive strain HsIi8. Differential 2-DGE profile has revealed differential profiles for salt-tolerant and salt-sensitive strains. Proteomic confirmation of salt tolerance in the strains with inbuilt efficiency of thriving in nitrogen-deficient locales is a definite advantage for these microbes. This would be equally beneficial for improvement of soil nitrogen status. Efficient protein regulation in HsIi10 suggests further exploration for its potential use as biofertilizer in saline soils.
Kaur, Navdeep; Dhawan, Manish; Sharma, Isha; Pati, Pratap Kumar
2016-06-10
Salinity stress is a major constrain in the global rice production and hence serious efforts are being undertaken towards deciphering its remedial strategies. The comparative analysis of differential response of salt sensitive and salt tolerant lines is a judicious approach to obtain essential clues towards understanding the acquisition of salinity tolerance in rice plants. However, adaptation to salt stress is a fairly complex process and operates through different mechanisms. Among various mechanisms involved, the reactive oxygen species mediated salinity tolerance is believed to be critical as it evokes cascade of responses related to stress tolerance. In this background, the present paper for the first time evaluates the ROS generating and the scavenging system in tandem in both salt sensitive and salt tolerant cultivars of rice for getting better insight into salinity stress adaptation. Comparative analysis of ROS indicates the higher level of hydrogen peroxide (H2O2) and lower level of superoxide ions (O(2-)) in the salt tolerant as compared to salt sensitive cultivars. Specific activity of ROS generating enzyme, NADPH oxidase was also found to be more in the tolerant cultivars. Further, activities of various enzymes involved in enzymatic and non enzymatic antioxidant defence system were mostly higher in tolerant cultivars. The transcript level analysis of antioxidant enzymes were in alignment with the enzymatic activity. Other stress markers like proline were observed to be higher in tolerant varieties whereas, the level of malondialdehyde (MDA) equivalents and chlorophyll content were estimated to be more in sensitive. The present study showed significant differences in the level of ROS production and antioxidant enzymes activities among sensitive and tolerant cultivars, suggesting their possible role in providing natural salt tolerance to selected cultivars of rice. Our study demonstrates that the cellular machinery for ROS production and scavenging system works in an interdependent manner to offer better salt stress adaptation in rice. The present work further highlights that the elevated level of H2O2 which is considered as a key determinant for conferring salt stress tolerance to rice might have originated through an alternative route of photocatalytic activity of chlorophyll.
Prusty, Manas R.; Kim, Sung-Ryul; Vinarao, Ricky; Entila, Frederickson; Egdane, James; Diaz, Maria G. Q.; Jena, Kshirod K.
2018-01-01
Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. So far a few rice landraces have been identified as a source of salt tolerance and utilized in rice improvement. These tolerant lines primarily use Na+ exclusion mechanism in root which removes Na+ from the xylem stream by membrane Na+ and K+ transporters, and resulted in low Na+ accumulation in shoot. Identification of a new donor source conferring high salt tolerance is imperative. Wild relatives of rice having wide genetic diversity are regarded as a potential source for crop improvement. However, they have been less exploited against salt stress. Here, we simultaneously evaluated all 22 wild Oryza species along with the cultivated tolerant lines including Pokkali, Nona Bokra, and FL478, and sensitive check varieties under high salinity (240 mM NaCl). Based on the visual salt injury score, three species (O. alta, O. latifolia, and O. coarctata) and four species (O. rhizomatis, O. eichingeri, O. minuta, and O. grandiglumis) showed higher and similar level of tolerance compared to the tolerant checks, respectively. All three CCDD genome species exhibited salt tolerance, suggesting that the CCDD genome might possess the common genetic factors for salt tolerance. Physiological and biochemical experiments were conducted using the newly isolated tolerant species together with checks under 180 mM NaCl. Interestingly, all wild species showed high Na+ concentration in shoot and low concentration in root unlike the tolerant checks. In addition, the wild-tolerant accessions showed a tendency of a high tissue tolerance in leaf, low malondialdehyde level in shoot, and high retention of chlorophyll in the young leaves. These results suggest that the wild species employ tissue tolerance mechanism to manage salt stress. Gene expression analyses of the key salt tolerance-related genes suggested that high Na+ in leaf of wild species might be affected by OsHKT1;4-mediated Na+ exclusion in leaf and the following Na+ sequestration in leaf might be occurring independent of tonoplast-localized OsNHX1. The newly isolated wild rice accessions will be valuable materials for both rice improvement to salinity stress and the study of salt tolerance mechanism in plants. PMID:29740456
Yin, Lina; Wang, Shiwen; Tanaka, Kiyoshi; Fujihara, Shinsuke; Itai, Akihiro; Den, Xiping; Zhang, Suiqi
2016-02-01
Silicon (Si) is generally considered a beneficial element for the growth of higher plants, especially under stress conditions, but the mechanisms remain unclear. Here, we tested the hypothesis that Si improves salt tolerance through mediating important metabolism processes rather than acting as a mere mechanical barrier. Seedlings of sorghum (Sorghum bicolor L.) growing in hydroponic culture were treated with NaCl (100 mm) combined with or without Si (0.83 mm). The result showed that supplemental Si enhanced sorghum salt tolerance by decreasing Na(+) accumulation. Simultaneously, polyamine (PA) levels were increased and ethylene precursor (1-aminocyclopropane-1-carboxylic acid: ACC) concentrations were decreased. Several key PA synthesis genes were up-regulated by Si under salt stress. To further confirm the role of PA in Si-mediated salt tolerance, seedlings were exposed to spermidine (Spd) or a PA synthesis inhibitor (dicyclohexylammonium sulphate, DCHA) combined with salt and Si. Exogenous Spd showed similar effects as Si under salt stress whereas exogenous DCHA eliminated Si-enhanced salt tolerance and the beneficial effect of Si in decreasing Na(+) accumulation. These results indicate that PAs and ACC are involved in Si-induced salt tolerance in sorghum and provide evidence that Si plays an active role in mediating salt tolerance. © 2015 John Wiley & Sons Ltd.
Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen
2016-01-01
Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress. PMID:26838812
Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen
2016-02-03
Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.
Ali, Zulfiqar; Zhang, Da Yong; Xu, Zhao Long; Xu, Ling; Yi, Jin Xin; He, Xiao Lan; Huang, Yi Hong; Liu, Xiao Qing; Khan, Asif Ali; Trethowan, Richard M.; Ma, Hong Xiang
2012-01-01
Soil salinity has very adverse effects on growth and yield of crop plants. Several salt tolerant wild accessions and cultivars are reported in soybean. Functional genomes of salt tolerant Glycine soja and a salt sensitive genotype of Glycine max were investigated to understand the mechanism of salt tolerance in soybean. For this purpose, four libraries were constructed for Tag sequencing on Illumina platform. We identify around 490 salt responsive genes which included a number of transcription factors, signaling proteins, translation factors and structural genes like transporters, multidrug resistance proteins, antiporters, chaperons, aquaporins etc. The gene expression levels and ratio of up/down-regulated genes was greater in tolerant plants. Translation related genes remained stable or showed slightly higher expression in tolerant plants under salinity stress. Further analyses of sequenced data and the annotations for gene ontology and pathways indicated that soybean adapts to salt stress through ABA biosynthesis and regulation of translation and signal transduction of structural genes. Manipulation of these pathways may mitigate the effect of salt stress thus enhancing salt tolerance. PMID:23209559
Stress tolerance in plants via habitat-adapted symbiosis
Rodriguez, R.J.; Henson, J.; Van Volkenburgh, E.; Hoy, M.; Wright, L.; Beckwith, F.; Kim, Y.-O.; Redman, R.S.
2008-01-01
We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.The ISME Journal (2008) 2, 404-416; doi:10.1038/ismej.2007.106; published online 7 February 2008. ?? 2008 International Society for Microbial Ecology All rights reserved.
Singh, Vijayata; Singh, Ajit Pal; Bhadoria, Jyoti; Giri, Jitender; Singh, Jogendra; T V, Vineeth; Sharma, P C
2018-05-08
The understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt-tolerant rice (Oryza sativa L.) varieties. To explore these facts, rice genotypes CSR10 and MI48 with contrasting salt tolerance were characterized under salt stress (control, 75 and 150 mM NaCl) conditions. CSR10 expressed higher rate of physio-biochemical parameters, maintained lower Na/K ratio in shoots, and restricted Na translocation from roots to shoots than MI48. The higher expression of genes related to the osmotic module (DREB2A and LEA3) and ionic module (HKT2;1 and SOS1) in roots of CSR10 suppresses the stress, enhances electrolyte leakage, promotes the higher compatible solute accumulation, and maintains cellular ionic homeostasis leading to better salt stress tolerance than MI48. This study further adds on the importance of these genes in salt tolerance by comparing their behaviour in contrasting rice genotypes and utilizing specific marker to identify salinity-tolerant accessions/donors among germplasm; overexpression of these genes which accelerate the selection procedure precisely has been shown.
Lei, Yunting; Xu, Yuxing; Hettenhausen, Christian; Lu, Chengkai; Shen, Guojing; Zhang, Cuiping; Li, Jing; Song, Juan; Lin, Honghui; Wu, Jianqiang
2018-02-15
Soil salinity is an important factor affecting growth, development, and productivity of almost all land plants, including the forage crop alfalfa (Medicago sativa). However, little is known about how alfalfa responds and adapts to salt stress, particularly among different salt-tolerant cultivars. Among seven alfalfa cultivars, we found that Zhongmu-1 (ZM) is relatively salt-tolerant and Xingjiang Daye (XJ) is salt-sensitive. Compared to XJ, ZM showed slower growth under low-salt conditions, but exhibited stronger tolerance to salt stress. RNA-seq analysis revealed 2237 and 1125 differentially expressed genes (DEGs) between ZM and XJ in the presence and absence of salt stress, among which many genes are involved in stress-related pathways. After salt treatment, compared with the controls, the number of DEGs in XJ (19373) was about four times of that in ZM (4833). We also detected specific differential gene expression patterns: In response to salt stress, compared with XJ, ZM maintained relatively more stable expression levels of genes related to the ROS and Ca 2+ pathways, phytohormone biosynthesis, and Na + /K + transport. Notably, several salt resistance-associated genes always showed greater levels of expression in ZM than in XJ, including a transcription factor. Consistent with the suppression of plant growth resulting from salt stress, the expression of numerous photosynthesis- and growth hormone-related genes decreased more dramatically in XJ than in ZM. By contrast, the expression levels of photosynthetic genes were lower in ZM under low-salt conditions. Compared with XJ, ZM is a salt-tolerant alfalfa cultivar possessing specific regulatory mechanisms conferring exceptional salt tolerance, likely by maintaining high transcript levels of abiotic and biotic stress resistance-related genes. Our results suggest that maintaining this specific physiological status and/or plant adaptation to salt stress most likely arises by inhibition of plant growth in ZM through plant hormone interactions. This study identifies new candidate genes that may regulate alfalfa tolerance to salt stress and increases the understanding of the genetic basis for salt tolerance.
Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis.
Ben-Hayyim, G; Kochba, J
1983-07-01
A NaCl-tolerant cell line which was selected from ovular callus of ;Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na(+) and Cl(-) uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K(+) and Cl(-) accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl(-). (d) Removal of Ca(2+) from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change.
Aspects of Salt Tolerance in a NaCl-Selected Stable Cell Line of Citrus sinensis1
Ben-Hayyim, Gozal; Kochba, Joshua
1983-01-01
A NaCl-tolerant cell line which was selected from ovular callus of `Shamouti' orange (Citrus sinensis L. Osbeck) proved to be a true cell line variant. This conclusion is based on the following observations. (a) Cells which have been removed from the selection pressure for at least four passages retain the same NaCl tolerance as do cells which are kept constantly on 0.2 molar NaCl. (b) Na+ and Cl− uptake are considerably lower in salt-tolerant cells (R-10) than in salt-sensitive cells (L-5) at a given external NaCl concentration. (c) Growth of salt-tolerant cells is markedly suppressed upon replacement of NaCl by KCl, whereas the growth of salt-sensitive cells is only slightly affected. Accumulation of K+ and Cl− accompanies the inhibition of growth. Experiments carried out with sodium and potassium sulfate suggest that the toxic effect is due to the accumulated Cl−. (d) Removal of Ca2+ from the growth medium severely inhibits the growth of salt-tolerant cells in the presence of NaCl, while it has a minor effect on growth of salt-sensitive cells in the presence of NaCl. (e) Electron micrographs show that the salt-tolerant cells have very big vacuoles when exposed to salt, while the size of the vacuoles of the salt-sensitive cells does not change. Images Fig. 3 PMID:16663067
Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong
2015-01-01
Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the "candidate genes" and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops.
Kumar, Manu; Choi, Ju-Young; Kumari, Nisha; Pareek, Ashwani; Kim, Seong-Ryong
2015-01-01
Salinity is one of the important abiotic factors for any crop management in irrigated as well as rainfed areas, which leads to poor harvests. This yield reduction in salt affected soils can be overcome by improving salt tolerance in crops or by soil reclamation. Salty soils can be reclaimed by leaching the salt or by cultivation of salt tolerance crops. Salt tolerance is a quantitative trait controlled by several genes. Poor knowledge about mechanism of its inheritance makes slow progress in its introgression into target crops. Brassica is known to be a good reclamation crop. Inter and intra specific variation within Brassica species shows potential of molecular breeding to raise salinity tolerant genotypes. Among the various molecular markers, SSR markers are getting high attention, since they are randomly sparsed, highly variable and show co-dominant inheritance. Furthermore, as sequencing techniques are improving and softwares to find SSR markers are being developed, SSR markers technology is also evolving rapidly. Comparative SSR marker studies targeting Arabidopsis thaliana and Brassica species which lie in the same family will further aid in studying the salt tolerance related QTLs and subsequent identification of the “candidate genes” and finding out the origin of important QTLs. Although, there are a few reports on molecular breeding for improving salt tolerance using molecular markers in Brassica species, usage of SSR markers has a big potential to improve salt tolerance in Brassica crops. In order to obtain best harvests, role of SSR marker driven breeding approaches play important role and it has been discussed in this review especially for the introgression of salt tolerance traits in crops. PMID:26388887
Enhanced salt tolerance of alfalfa (Medicago sativa) by rstB gene transformation.
Zhang, Wan-Jun; Wang, Tao
2015-05-01
Generating salt tolerance forage plant is essential for use of the land affected by high salinity. A salt tolerance gene rstB was used as a selectable marker gene in Agrobacterium-mediated transformation of tobacco under a selective regime of 170mM NaCl. The transgenic plants showed clear improvement in salt tolerance. To improve salt tolerance of alfalfa (Medicago sativa L.), rstB gene was introduced into alfalfa genome by Agrobacterium-mediated transformation. No abnormal phenotype was observed among the transgenic plants when compared with wild type (wt) plants. Significant enhancement of resistance to salt-shock treatment was noted on the rstB transgenic (T0) plants. Transgenic second-generation (T1) seeds showed improved germination rate and seedling growth under salt-stress condition. Hindered Na(+) accumulation, but enhanced Ca(2+) accumulation was observed on the rstB T1 plants when subjected to salt-stresses. Enhanced calcium accumulation in transgenic plants was also verified by cytohistochemical localization of calcium. Under salt-stress of 50mM NaCl, about 15% of the transgenic plants finished their life-cycle but the wt plants had no flower formation. The results demonstrated that the expression of rstB gene improved salt tolerance in transgenic alfalfa. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Transcriptome analysis of hexaploid hulless oat in response to salinity stress
Wu, Bin; Hu, Yani; Huo, Pengjie; Zhang, Qian; Chen, Xin; Zhang, Zongwen
2017-01-01
Background Oat is a cereal crop of global importance used for food, feed, and forage. Understanding salinity stress tolerance mechanisms in plants is an important step towards generating crop varieties that can cope with environmental stresses. To date, little is known about the salt tolerance of oat at the molecular level. To better understand the molecular mechanisms underlying salt tolerance in oat, we investigated the transcriptomes of control and salt-treated oat using RNA-Seq. Results Using Illumina HiSeq 4000 platform, we generated 72,291,032 and 356,891,432 reads from non-stressed control and salt-stressed oat, respectively. Assembly of 64 Gb raw sequence data yielded 128,414 putative unique transcripts with an average length of 1,189 bp. Analysis of the assembled unigenes from the salt stressed and control libraries indicated that about 65,000 unigenes were differentially expressed at different stages. Functional annotation showed that ABC transporters, plant hormone signal transduction, plant-pathogen interactions, starch and sucrose metabolism, arginine and proline metabolism, and other secondary metabolite pathways were enriched under salt stress. Based on the RPKM values of assembled unigenes, 24 differentially expressed genes under salt stress were selected for quantitative RT-PCR validation, which successfully confirmed the results of RNA-Seq. Furthermore, we identified 18,039 simple sequence repeats, which may help further elucidate salt tolerance mechanisms in oat. Conclusions Our global survey of transcriptome profiles of oat plants in response to salt stress provides useful insights into the molecular mechanisms underlying salt tolerance in this crop. These findings also represent a rich resource for further analysis of salt tolerance and for breeding oat with improved salt tolerance through the use of salt-related genes. PMID:28192458
Genetic Diversity of Salt Tolerance in Miscanthus
Chen, Chang-Lin; van der Schoot, Hanneke; Dehghan, Shiva; Alvim Kamei, Claire L.; Schwarz, Kai-Uwe; Meyer, Heike; Visser, Richard G. F.; van der Linden, C. Gerard
2017-01-01
Miscanthus is a woody rhizomatous C4 grass that can be used as a CO2 neutral biofuel resource. It has potential to grow in marginal areas such as saline soils, avoiding competition for arable lands with food crops. This study explored genetic diversity for salt tolerance in Miscanthus and discovered mechanisms and traits that can be used to improve the yield under salt stress. Seventy genotypes of Miscanthus (including 57 M. sinensis, 5 M. sacchariflorus, and 8 hybrids) were evaluated for salt tolerance under saline (150 mM NaCl) and normal growing conditions using a hydroponic system. Analyses of shoot growth traits and ion concentrations revealed the existence of large variation for salt tolerance in the genotypes. We identified genotypes with potential for high biomass production both under control and saline conditions that may be utilized for growth under marginal, saline conditions. Several relatively salt tolerant genotypes had clearly lower Na+ concentrations and showed relatively high K+/Na+ ratios in the shoots under salt stress, indicating that a Na+ exclusion mechanism was utilized to prevent Na+ accumulation in the leaves. Other genotypes showed limited reduction in leaf expansion and growth rate under saline conditions, which may be indicative of osmotic stress tolerance. The genotypes demonstrating potentially different salt tolerance mechanisms can serve as starting material for breeding programs aimed at improving salinity tolerance of Miscanthus. PMID:28261243
Bi, Jie; Liu, Song; Du, Guocheng; Chen, Jian
2016-04-01
Changes of bile salt tolerance, morphology and amount of bile acid within cells were studied to evaluate the exact effects of bile salt hydrolase (BSH) on bile salt tolerance of microorganism. The effect of BSHs on the bile salt tolerance of Lactococcus lactis was examined by expressing two BSHs (BSH1 and BSH2). Growth of L. lactis expressing BSH1 or BSH2 was better under bile salt stress compared to wild-type L. lactis. As indicated by transmission electron microscopy, bile acids released by the action of BSH induced the formation of micelles around the membrane surface of cells subject to conjugated bile salt stress. A similar micelle containing bile acid was observed in the cytoplasm by liquid chromatography-mass spectrometry. BSH1 produced fewer bile acid micelles in the cytoplasm and achieved better cell growth of L. lactis compared to BSH2. Expression of BSH improved bile salt tolerance of L. lactis but excessive production by BSH of bile acid micelles in the cytoplasm inhibited cell growth.
NASA Astrophysics Data System (ADS)
Paul, D.; Tripathi, S.; Harsha, K. S.; Adla, S.; Dash, S. K.; Chander, Y.; Mahajan, P.; Tripathi, S. N.; Sen, I. S.; Sinha, R.
2016-12-01
Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the effect of salt-tolerance on salt concentration patterns pointing out how vegetation imposes an upper bound to concentration of soluble salts in the soil. The long-term effects of plant salt tolerance on soil salinization are also discussed by an approximated expression for the salt mass pdf.
Salinity controls on plant transpiration and soil water balance
NASA Astrophysics Data System (ADS)
Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.
2017-12-01
Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the effect of salt-tolerance on salt concentration patterns pointing out how vegetation imposes an upper bound to concentration of soluble salts in the soil. The long-term effects of plant salt tolerance on soil salinization are also discussed by an approximated expression for the salt mass pdf.
de Abreu, Carlos Eduardo Braga; Araújo, Gyedre dos Santos; Monteiro-Moreira, Ana Cristina de Oliveira; Costa, José Hélio; Leite, Hugo de Brito; Moreno, Frederico Bruno Mendes Batista; Prisco, José Tarquinio; Gomes-Filho, Enéas
2014-08-01
Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity. The objective of this study was to examine differential proteomic responses to salt stress in leaves of the cowpea cultivars Pitiúba (salt tolerant) and TVu 2331 (salt sensitive). Plants of both cultivars were subjected to salt stress (75 mM NaCl) followed by a recovery period of 5 days. Proteins extracted from leaves of both cultivars were analyzed by two-dimensional electrophoresis (2-DE) under salt stress and after recovery. In total, 22 proteins differentially regulated by both salt and recovery were identified by LC-ESI-MS/MS. Our current proteome data revealed that cowpea cultivars adopted different strategies to overcome salt stress. For the salt-tolerant cultivar (Pitiúba), increase in abundance of proteins involved in photosynthesis and energy metabolism, such as rubisco activase, ribulose-5-phosphate kinase (Ru5PK) (EC 2.7.1.19), glycine decarboxylase (EC 1.4.4.2) and oxygen-evolving enhancer (OEE) protein 2, was observed. However, these vital metabolic processes were more profoundly affected in salt-sensitive cultivar (TVu), as indicated by the down-regulation of OEE protein 1, Mn-stabilizing protein-II, carbonic anhydrase (EC 4.2.1.1) and Rubisco (EC 4.1.1.39), leading to energy reduction and a decline in plant growth. Other proteins differentially regulated in both cultivars corresponded to different physiological responses. Overall, our results provide information that could lead to a better understanding of the molecular basis of salt tolerance and sensitivity in cowpea plants.
Tavakkoli, Ehsan; Fatehi, Foad; Rengasamy, Pichu; McDonald, Glenn K.
2012-01-01
Success in breeding crops for yield and other quantitative traits depends on the use of methods to evaluate genotypes accurately under field conditions. Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. In this study, the salt tolerance, ion concentrations, and accumulation of compatible solutes of genotypes of barley with a range of putative salt tolerance were investigated using three growing conditions (hydroponics, soil in pots, and natural saline field). Initially, 60 genotypes of barley were screened for their salt tolerance and uptake of Na+, Cl–, and K+ at 150 mM NaCl and, based on this, a subset of 15 genotypes was selected for testing in pots and in the field. Expression of salt tolerance in saline solution culture was not a reliable indicator of the differences in salt tolerance between barley plants that were evident in saline soil-based comparisons. Significant correlations were observed in the rankings of genotypes on the basis of their grain yield production at a moderately saline field site and their relative shoot growth in pots at ECe 7.2 [Spearman’s rank correlation (rs)=0.79] and ECe 15.3 (rs=0.82) and the crucial parameter of leaf Na+ (rs=0.72) and Cl– (rs=0.82) concentrations at ECe 7.2 dS m−1. This work has established screening procedures that correlated well with grain yield at sites with moderate levels of soil salinity. This study also showed that both salt exclusion and osmotic tolerance are involved in salt tolerance and that the relative importance of these traits may differ with the severity of the salt stress. In soil, ion exclusion tended to be more important at low to moderate levels of stress but osmotic stress became more important at higher stress levels. Salt exclusion coupled with a synthesis of organic solutes were shown to be important components of salt tolerance in the tolerant genotypes and further field tests of these plants under stress conditions will help to verify their potential utility in crop-improvement programmes. PMID:22442423
Sathiyaraj, Gayathri; Srinivasan, Sathiyaraj; Kim, Yu-Jin; Lee, Ok Ran; Parvin, Shonana; Balusamy, Sri Renuka Devi; Khorolragchaa, Atlanzul; Yang, Deok Chun
2014-06-01
The effect of exogenously applied hydrogen peroxide on salt stress tolerance was investigated in Panax ginseng. Pretreatment of ginseng seedlings with 100 μM H2O2 increased the physiological salt tolerance of the ginseng plant and was used as the optimum concentration to induce salt tolerance capacity. Treatment with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in ginseng seedlings by increasing the activities of ascorbate peroxidase, catalase and guaiacol peroxidase and by decreasing the concentrations of malondialdehyde (MDA) and endogenous H2O2 as well as the production rate of superoxide radical (O2(-)). There was a positive physiological effect on the growth and development of salt-stressed seedlings by exogenous H2O2 as measured by ginseng dry weight and both chlorophyll and carotenoid contents. Exogenous H2O2 induced changes in MDA, O2(-), antioxidant enzymes and antioxidant compounds, which are responsible for increases in salt stress tolerance. Salt treatment caused drastic declines in ginseng growth and antioxidants levels; whereas, acclimation treatment with H2O2 allowed the ginseng seedlings to recover from salt stress by up-regulation of defense-related proteins such as antioxidant enzymes and antioxidant compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Lophopyrum elongatum is a highly salt-tolerant relative of wheat. Its salt tolerance is partially expressed in the amphiploid from a cross between wheat cv. Chinese Spring and L. elongatum. Genetic studies showed that the tolerance of gradually imposed salt stress is controlled by L. elongatum chromosomes 3E, 4E, 5E, and 7E and the tolerance of suddenly imposed salt stress by chromosomes 3E, 5E, 6E, and 7E. In wheat, rye, barley, and Dasypyrum, chromosomes of the same homoeologous groups, 3, 5, 6, and 7, were found to control the tolerance of these stress regimes. To gain insight into the physiological mechanismsmore » of salt tolerance by wheat and L. elongatum, accumulation of Na and K, 20 protein amino acids, glycinebetaine, aminobutyrate, all TCA cycle intermediates, oxalate, glycerol-3-P, glyceraldehyde-3-P, pyruvate, lactate, ornithine, taurine, glucose, sucrose and other sugars was examined in the amphiploid and Chinese Spring by gas chromatography and H-NMR.« less
Yousuf, Peerzada Yasir; Ahmad, Altaf; Aref, Ibrahim M; Ozturk, Munir; Hemant; Ganie, Arshid Hussain; Iqbal, Muhammad
2016-11-01
Brassica juncea is mainly cultivated in the arid and semi-arid regions of India where its production is significantly affected by soil salinity. Adequate knowledge of the mechanisms underlying the salt tolerance at sub-cellular levels must aid in developing the salt-tolerant plants. A proper functioning of chloroplasts under salinity conditions is highly desirable to maintain crop productivity. The adaptive molecular mechanisms offered by plants at the chloroplast level to cope with salinity stress must be a prime target in developing the salt-tolerant plants. In the present study, we have analyzed differential expression of chloroplast proteins in two Brassica juncea genotypes, Pusa Agrani (salt-sensitive) and CS-54 (salt-tolerant), under the effect of sodium chloride. The chloroplast proteins were isolated and resolved using 2DE, which facilitated identification and quantification of 12 proteins that differed in expression in the salt-tolerant and salt-sensitive genotypes. The identified proteins were related to a variety of chloroplast-associated molecular processes, including oxygen-evolving process, PS I and PS II functioning, Calvin cycle and redox homeostasis. Expression analysis of genes encoding differentially expressed proteins through real time PCR supported our findings with proteomic analysis. The study indicates that modulating the expression of chloroplast proteins associated with stabilization of photosystems and oxidative defence plays imperative roles in adaptation to salt stress.
40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts are...
40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts are...
40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts are...
40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts are...
40 CFR 180.1068 - C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false C12-C18 fatty acid potassium salts... RESIDUES IN FOOD Exemptions From Tolerances § 180.1068 C12-C18 fatty acid potassium salts; exemption from the requirement of a tolerance. C12-C18 fatty acids (saturated and unsaturated) potassium salts are...
Zhang, Huiming; Kim, Mi-Seong; Sun, Yan; Dowd, Scot E; Shi, Huazhong; Paré, Paul W
2008-06-01
Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.
Yu, Xiang; Kikuchi, Akira; Shimazaki, Takayoshi; Yamada, Akiyo; Ozeki, Yoshihiro; Matsunaga, Etsuko; Ebinuma, Hiroyasu; Watanabe, Kazuo N
2013-01-01
Increasing soil salinization of arable land has a major impact on the global ecosystem. One approach to increase the usable global forest area is to develop transgenic trees with higher tolerance to conditions of salt stress. An allene oxide cyclase homolog, mangrin, contains a core protein domain that enhances the salt tolerance of its host. We utilized this feature to develop improved salt-tolerant eucalyptus trees, by using transgenic Eucalyptus camaldulensis carrying the mangrin gene as a model. Since the Japanese government requires an environmental biosafety assessment for the surrounding biosphere, we performed experiments on trees grown in a special netted-house. This study examined the transgenic E. camaldulensis carrying the mangrin gene to assess the feasibility of using these transformants, and assessed their salt tolerance and environmental biosafety. We found that seven of 36 transgenic genotypes had significantly higher salt tolerance than non-transformants, and more importantly, that these plants had no significant impact on environmental biosafety. These results suggest that introduction of the mangrin gene may be one approach to safely enhance salt tolerance in genetically modified Eucalyptus species, and that the transformants have no apparent risks in terms of environmental biosafety. Thus, this study provides valuable information regarding the use of transgenic trees in situ.
Ben-Hayyim, Gozal
1987-01-01
Salt-tolerant selected cells of Shamouti orange (Citrus sinensis) and Sour orange (Citrus aurantium) grew considerably better than nonselected cells at any NaCl concentration tested up to 200 millimolar. Also, the growth response of each treatment was identical in the two species. However, the performance of cells of the two species under osmotic stress induced by polyethylene glycol (PEG), which is presumably a nonabsorbed osmoticum, was significantly different. The nonselected Shamouti cell lines were significantly more sensitive to osmotic stress than the selected cells. The salt adapted Shamouti cells were apparently also adapted to osmotic stress induced by PEG. In Sour orange, however, the selected lines had no advantage over the nonselected line in response to osmotic stress induced by PEG. This response was also similar quantitatively to the response of the selected salt-tolerant Shamouti cell line. It seems that the tolerance to salt in Shamouti, a partial salt excluder, involves an osmotic adaptation, whereas in Sour orange, a salt accumulator, such an adaptation apparently does not occur. PEG-induced osmotic stress causes an increase in the percent dry weight of salt-sensitive and salt-tolerant cells of both species. No such increase was found under salt stress. The size of control and stressed cells is not significantly different. PMID:16665715
Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun
2016-01-01
Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice.
Zhou, Yi; Yang, Ping; Cui, Fenglei; Zhang, Fantao; Luo, Xiangdong; Xie, Jiankun
2016-01-01
Dongxiang wild rice (Oryza rufipogon Griff.) is the progenitor of cultivated rice (Oryza sativa L.), and is well known for its superior level of tolerance against cold, drought and diseases. To date, however, little is known about the salt-tolerant character of Dongxiang wild rice. To elucidate the molecular genetic mechanisms of salt-stress tolerance in Dongxiang wild rice, the Illumina HiSeq 2000 platform was used to analyze the transcriptome profiles of the leaves and roots at the seedling stage under salt stress compared with those under normal conditions. The analysis results for the sequencing data showed that 6,867 transcripts were differentially expressed in the leaves (2,216 up-regulated and 4,651 down-regulated) and 4,988 transcripts in the roots (3,105 up-regulated and 1,883 down-regulated). Among these differentially expressed genes, the detection of many transcription factor genes demonstrated that multiple regulatory pathways were involved in salt stress tolerance. In addition, the differentially expressed genes were compared with the previous RNA-Seq analysis of salt-stress responses in cultivated rice Nipponbare, indicating the possible specific molecular mechanisms of salt-stress responses for Dongxiang wild rice. A large number of the salt-inducible genes identified in this study were co-localized onto fine-mapped salt-tolerance-related quantitative trait loci, providing candidates for gene cloning and elucidation of molecular mechanisms responsible for salt-stress tolerance in rice. PMID:26752408
Bushman, B Shaun; Amundsen, Keenan L; Warnke, Scott E; Robins, Joseph G; Johnson, Paul G
2016-01-13
Kentucky bluegrass (Poa pratensis L.) is a prominent turfgrass in the cool-season regions, but it is sensitive to salt stress. Previously, a relatively salt tolerant Kentucky bluegrass accession was identified that maintained green colour under consistent salt applications. In this study, a transcriptome study between the tolerant (PI 372742) accession and a salt susceptible (PI 368233) accession was conducted, under control and salt treatments, and in shoot and root tissues. Sample replicates grouped tightly by tissue and treatment, and fewer differentially expressed transcripts were detected in the tolerant PI 372742 samples compared to the susceptible PI 368233 samples, and in root tissues compared to shoot tissues. A de novo assembly resulted in 388,764 transcripts, with 36,587 detected as differentially expressed. Approximately 75 % of transcripts had homology based annotations, with several differences in GO terms enriched between the PI 368233 and PI 372742 samples. Gene expression profiling identified salt-responsive gene families that were consistently down-regulated in PI 372742 and unlikely to contribute to salt tolerance in Kentucky bluegrass. Gene expression profiling also identified sets of transcripts relating to transcription factors, ion and water transport genes, and oxidation-reduction process genes with likely roles in salt tolerance. The transcript assembly represents the first such assembly in the highly polyploidy, facultative apomictic Kentucky bluegrass. The transcripts identified provide genetic information on how this plant responds to and tolerates salt stress in both shoot and root tissues, and can be used for further genetic testing and introgression.
Gupta, Poulami; De, Bratati
2017-07-03
A GC-MS based analytical approach was undertaken to understand the metabolomic responses of seedlings of 2 salt sensitive (Sujala and MTU 7029) and 2 tolerant varieties (Bhutnath, and Nonabokra) of indica rice (Oryza sativa L.) to NaCl induced stress. The 4 varieties responded differently to NaCl treatment with respect to the conserved primary metabolites (sugars, polyols, amino acids, organic acids and certain purine derivatives) of the leaf of rice seedlings. However, there were significant differences in salt induced production of chorismic acid derivatives. Serotonin level was increased in both the salt tolerant varieties in response to NaCl induced stress. In both the salt tolerant varieties, increased production of the signaling molecule gentisic acid in response to NaCl treatment was noticed. Salt tolerant varieties also produced increased level of ferulic acid and vanillic acid. In the salt sensitive varieties, cinnamic acid derivatives, 4-hydroxycinnamic acid (in Sujala) and 4-hydroxybenzoic acid (in MTU 7029), were elevated in the leaves. So increased production of the 2 signaling molecules serotonin and gentisic acid may be considered as 2 important biomarker compounds produced in tolerant varieties contributing toward NaCl tolerance.
Hester, M.W.; Mendelssohn, I.A.; McKee, K.L.
2001-01-01
Panicum hemitomon, Spartina patens, and Spartina alterniflora are wide-spread dominant grasses of fresh, brackish, and salt marsh plant communities, respectively. Our previous research identified significant intraspecific variation in salt tolerance and morphology among populations within each species. In this study our objectives were to determine shorter-term physiological/biochemical responses to salinity stress and identify potential indicators of salt tolerance, with the ultimate goal of discerning similarities and differences in the mechanisms of salinity stress resistance. We subjected a subset of six populations within each species, ranging from high to low salt tolerance, to sublethal salinity levels (4, 20, and 30 ppt, respectively, for species) and monitored physiological and growth responses after 1 week (early harvest) and 5 weeks (late harvest). In all three species sublethal salinity levels generally resulted in significantly reduced net CO2 assimilation, leaf expansion, midday leaf xylem pressure, water use efficiency, and live and total biomass; and significantly increased leaf Na+/K+ ratio, leaf proline, leaf glycine betaine, leaf sucrose, root-to-shoot ratio, and dead:total aboveground biomass ratio. All three species displayed significant population (intraspecific) variation in net CO2 assimilation, leaf expansion, water use efficiency, midday leaf xylem pressure, leaf proline, leaf glycine betaine (except Panicum, where it could not be accurately determined), leaf Na+/K+ ratio, leaf sucrose, total plant biomass, dead:total aboveground biomass ratio, and root-to-shoot ratio. General indicators of salt tolerance (regardless of species) included high net CO2 assimilation rates and water use efficiencies, and low ratios of root-to-shoot and dead:total aboveground biomass. Factor analysis and a-priori linear contrasts revealed some unique differences between species in terms of the relative importance of morphology and physiology in explaining intraspecific variation in salt tolerance. Plant morphology (size attributes) were strongly associated with salt tolerance in P. hemitomon, weakly associated with salt tolerance in S. patens, and not associated with salt tolerance in S. alterniflora. Highly salt-tolerant populations of Spartina alterniflora displayed the greatest ion selectivity (lower leaf Na+/K+ ratios), which was not displayed by the other two species. These results suggest that plant size attributes can be very important in explaining population differences in salt tolerance in glycophytes, but may be independent of salt tolerance in halophytes, which have specialized physiological (and/or anatomical) adaptations that can confer salinity stress resistance through mechanisms such as selective ion exclusion and secretion. ?? 2001 Elsevier Science B.V. All rights reserved.
Jayaraman, Ananthi; Puranik, Swati; Rai, Neeraj Kumar; Vidapu, Sudhakar; Sahu, Pranav Pankaj; Lata, Charu; Prasad, Manoj
2008-11-01
Plant growth and productivity are affected by various abiotic stresses such as heat, drought, cold, salinity, etc. The mechanism of salt tolerance is one of the most important subjects in plant science as salt stress decreases worldwide agricultural production. In our present study we used cDNA-AFLP technique to compare gene expression profiles of a salt tolerant and a salt-sensitive cultivar of foxtail millet (Seteria italica) in response to salt stress to identify early responsive differentially expressed transcripts accumulated upon salt stress and validate the obtained result through quantitative real-time PCR (qRT-PCR). The expression profile was compared between a salt tolerant (Prasad) and susceptible variety (Lepakshi) of foxtail millet in both control condition (L0 and P0) and after 1 h (L1 and P1) of salt stress. We identified 90 transcript-derived fragments (TDFs) that are differentially expressed, out of which 86 TDFs were classified on the basis of their either complete presence or absence (qualitative variants) and 4 on differential expression pattern levels (quantitative variants) in the two varieties. Finally, we identified 27 non-redundant differentially expressed cDNAs that are unique to salt tolerant variety which represent different groups of genes involved in metabolism, cellular transport, cell signaling, transcriptional regulation, mRNA splicing, seed development and storage, etc. The expression patterns of seven out of nine such genes showed a significant increase of differential expression in tolerant variety after 1 h of salt stress in comparison to salt-sensitive variety as analyzed by qRT-PCR. The direct and indirect relationship of identified TDFs with salinity tolerance mechanism is discussed.
Wang, Cong; Dong, Kuan Hu; Liu, Qiang; Yang, Wen Zhu; Zhao, Xiang; Liu, Sheng Qiang; He, Ting Ting; Liu, Zhuang Yu
2011-05-01
Mixing salt-tolerant plants with other plants may affect rumen fermentation, which could result in an increase of feed conversion rate. The objective of this study was to evaluate the effects of partially or entirely replacing the corn stover with a mixture of salt-tolerant forage (Dahurian wildrye grass, weeping alkaligrass and erect milkvetch) in the diet of lambs on ruminal fermentation, feed digestibility and nitrogen (N) balance. Ratios of corn stover to the mixture of salt-tolerant forages in the four experimental diets were 100:0, 67:33, 33:67 and 0:100, respectively, for control, low (LF), medium (MF) and high (HF). Ruminal pH was lower (P = 0.048) with LF and MF than with control and HF diets. Total VFA concentration was consistently higher (P = 0.039) for LF and MF than for control and HF with increasing amount of salt-tolerant forage. Ratio of acetate to propionate was linearly (P = 0.019) decreased due to the decrease in acetate production. Digestibilities of OM, NDF and CP in the whole tract linearly (P < 0.002) decreased with increasing amount of salt-tolerant forage. Similarly, retained N and ratio of retained N to digestible N also linearly (P < 0.005) decreased. Feeding salt-tolerant forage cultivated in saline-alkaline land improved rumen fermentation with increased total VFA production, and changed the rumen fermentation pattern to increased butyrate production. However, the decreased feed digestibility in the whole digestive tract of lamb may reduce nutrient availability to animals and thus adversely affect animal productivity. Additionally, feeding salt-tolerant forages may require more protein supplement to meet animal requirements, because of the low protein content and low protein digestibility of the salt-tolerant forages. Copyright © 2011 Society of Chemical Industry.
Ren, Shuxin; Lyle, Chimera; Jiang, Guo-Liang; Penumala, Abhishek
2016-01-01
Abiotic stresses, including high soil salinity, significantly reduce crop production worldwide. Salt tolerance in plants is a complex trait and is regulated by multiple mechanisms. Understanding the mechanisms and dissecting the components on their regulatory pathways will provide new insights, leading to novel strategies for the improvement of salt tolerance in agricultural and economic crops of importance. Here we report that soybean salt tolerance 1, named GmST1, exhibited strong tolerance to salt stress in the Arabidopsis transgenic lines. The GmST1-overexpressed Arabidopsis also increased sensitivity to ABA and decreased production of reactive oxygen species under salt stress. In addition, GmST1 significantly improved drought tolerance in Arabidopsis transgenic lines. GmST1 belongs to a 3-prime part of Glyma.03g171600 gene in the current version of soybean genome sequence annotation. However, comparative reverse transcription-polymerase chain reaction analysis around Glyma.03g171600 genomic region confirmed that GmST1 might serve as an intact gene in soybean leaf tissues. Unlike Glyma.03g171600 which was not expressed in leaves, GmST1 was strongly induced by salt treatment in the leaf tissues. By promoter analysis, a TATA box was detected to be positioned close to GmST1 start codon and a putative ABRE and a DRE cis-acting elements were identified at about 1 kb upstream of GmST1 gene. The data also indicated that GmST1-transgenic lines survived under drought stress and showed a significantly lower water loss than non-transgenic lines. In summary, our results suggest that overexpression of GmST1 significantly improves Arabidopsis tolerance to both salt and drought stresses and the gene may be a potential candidate for genetic engineering of salt- and drought-tolerant crops.
The Yeast HAL1 Gene Improves Salt Tolerance of Transgenic Tomato1
Gisbert, Carmina; Rus, Ana M.; Bolarín, M. Carmen; López-Coronado, J. Miguel; Arrillaga, Isabel; Montesinos, Consuelo; Caro, Manuel; Serrano, Ramon; Moreno, Vicente
2000-01-01
Overexpression of the HAL1 gene in yeast has a positive effect on salt tolerance by maintaining a high internal K+ concentration and decreasing intracellular Na+ during salt stress. In the present work, the yeast gene HAL1 was introduced into tomato (Lycopersicon esculentum Mill.) by Agrobacterium tumefaciens-mediated transformation. A sample of primary transformants was self-pollinated, and progeny from both transformed and non-transformed plants (controls) were evaluated for salt tolerance in vitro and in vivo. Results from different tests indicated a higher level of salt tolerance in the progeny of two different transgenic plants bearing four copies or one copy of the HAL1 gene. In addition, measurement of the intracellular K+ to Na+ ratios showed that transgenic lines were able to retain more K+ than the control under salt stress. Although plants and yeast cannot be compared in an absolute sense, these results indicate that the mechanism controlling the positive effect of the HAL1 gene on salt tolerance may be similar in transgenic plants and yeast. PMID:10806256
Gao, Xianli; Yin, Yiyun; Zhou, Cunshan
2018-02-01
A salt-tolerant aspartyl aminopeptidase (approximately 57kDa) from Aspergillus oryzae 3.042 was purified and identified. Specific inhibitor experiments indicated that it was an aminopeptidase containing Zn 2+ . Its optimal and stable pH values and temperatures were 7 and 50°C, respectively. Its relative activity remained beyond 30% in 3M NaCl solution for 15d, and its K m and V max were slightly affected in 3M NaCl solution, indicating its excellent salt-tolerance. A comprehensive analysis including protein homology modelling, molecular dynamics simulation, secondary structure, acidic residues and hydrophobicity of interior residues demonstrated that aspartyl aminopeptidase had a greater stability than non-salt-tolerant protease in high salinity. Higher contents of ordered secondary structures, more salt bridges between hydrated surface acidic residues and specific basic residues and stronger hydrophobicity of interior residues were the salt-tolerance mechanisms of aspartyl aminopeptidase. Copyright © 2017. Published by Elsevier Ltd.
Do, Tuyen Duc; Chen, Huatao; Hien, Vu Thi Thu; Hamwieh, Aladdin; Yamada, Tetsuya; Sato, Tadashi; Yan, Yongliang; Cong, Hua; Shono, Mariko; Suenaga, Kazuhiro; Xu, Donghe
2016-01-08
Salt stress inhibits soybean growth and reduces gain yield. Genetic improvement of salt tolerance is essential for sustainable soybean production in saline areas. In this study, we isolated a gene (Ncl) that could synchronously regulate the transport and accumulation of Na(+), K(+), and Cl(-) from a Brazilian soybean cultivar FT-Abyara using map-based cloning strategy. Higher expression of the salt tolerance gene Ncl in the root resulted in lower accumulations of Na(+), K(+), and Cl(-) in the shoot under salt stress. Transfer of Ncl with the Agrobacterium-mediated transformation method into a soybean cultivar Kariyutaka significantly enhanced its salt tolerance. Introgression of the tolerance allele into soybean cultivar Jackson, using DNA marker-assisted selection (MAS), produced an improved salt tolerance line. Ncl could increase soybean grain yield by 3.6-5.5 times in saline field conditions. Using Ncl in soybean breeding through gene transfer or MAS would contribute to sustainable soybean production in saline-prone areas.
Cadmium hampers salt tolerance of Sesuvium portulacastrum.
Wali, Mariem; Martos, Soledad; Pérez-Martín, Laura; Abdelly, Chedly; Ghnaya, Tahar; Poschenrieder, Charlotte; Gunsé, Benet
2017-06-01
It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 μM CdCl 2 . Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na + concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H + -ATPase 1) and SOS1 (plasma membrane Na + transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na + concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Improving crop salt tolerance.
Flowers, T J
2004-02-01
Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced tolerance, where properly established, is due to the chance alteration of a factor that is limiting in a complex chain or an effect on signalling remains to be elucidated. After ten years of research using transgenic plants to alter salt tolerance, the value of this approach has yet to be established in the field.
Krauss, Ken W.; Chambers, Jim L.; Creech, David L.
2007-01-01
Worldwide, the intrusion of salinity into irrigated and natural landscapes has major economic and cultural impacts and has resulted in large reductions in crop yields (Epstein et al. 1980; Flowers 2003). Losses have prompted wide-scale programs to improve the salt tolerance of many agronomic species or to identify crop species that can tolerate lands affected by low levels of salinity. Few historic research efforts have considered forest tree species in the United States, especially in nonurban areas. Newer programs have focused on identifying salt tolerance in forest tree species but have mainly limited these efforts to compiling lists of salt tolerant species to be used in afforestation projects (Gogate et al. 1984; Shrivastava et al. 1988; Beckmann 1991; Bell 1999). Gogate et al. (1984), for instance, listed 26 potential species from Australia with silvicultural application to salt affected lands in India. More comprehensive efforts have considered species lists along with specific site requirements (Bell 1999); species tolerant to saline irrigation waters on dry land, for example, will not often be tolerant of salinity increases in wetland settings. Similar ideas have spawned field trials of native and nonnative tree species in India, Pakistan, Thailand, Australia, and the United States (Thomson 1988; Beckmann 1991; Krauss et al. 2000; Conner and Ozalp 2002; Marcar and Crawford 2004; Conner and Inabinette 2005). Concerted attempts at salt tolerance improvement of forest tree species have been limited, owing in part to the diversity of regional issues that such programs must consider. Whereas food, fodder, and pulp yield may be the major improvement goal on salt affected lands in India (Mathur and Sharma 1984), identifying trees that can survive deicing salts (Townsend 1989), oil and gas brine discharges (Auchmoody and Walters 1988), or sea-level rise induced salinity changes (Pezeshki et al. 1987, 1990) are of greater interest to larger industrial nations. Nevertheless, salt tolerance research on a range of tree species has converged on one very important finding; among the mechanisms proposed for salt tolerance in nonhalophytes (Greenway and Munns 1980; Munns and Termaat 1986; Cheeseman 1988), ion exclusion from cellular processes, especially exclusion of Cl- , ranks high (Townsend 1989). Identifying the principal mechanism and location of ion exclusion and determining the range of additive genetic variation available among physiological, morphological, and growth attributes for individual species have been the major elements of salt tolerance improvement programs for trees (Allen et al. 1994a).
Recent progress in drought and salt tolerance studies in Brassica crops
Zhang, Xuekun; Lu, Guangyuan; Long, Weihua; Zou, Xiling; Li, Feng; Nishio, Takeshi
2014-01-01
Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops. PMID:24987291
Invasive Knotweeds are Highly Tolerant to Salt Stress
NASA Astrophysics Data System (ADS)
Rouifed, Soraya; Byczek, Coline; Laffray, Daniel; Piola, Florence
2012-12-01
Japanese knotweed s.l. are some of the most invasive plants in the world. Some genotypes are known to be tolerant to the saline concentrations found in salt marshes. Here we focus on tolerance to higher concentrations in order to assess whether the species are able to colonize and establish in highly stressful environments, or whether salt is an efficient management tool. In a first experiment, adult plants of Fallopia japonica, Fallopia × bohemica and Fallopia sachalinensis were grown under salt stress conditions by watering with saline concentrations of 6, 30, 120, or 300 g L-1 for three weeks to assess the response of the plants to a spill of salt. At the two highest concentrations, their leaves withered and fell. There were no effects on the aboveground parts at the lowest concentrations. Belowground dry weight and number of buds were reduced from 30 and 120 g L-1 of salt, respectively. In a second experiment, a single spraying of 120 g L-1 of salt was applied to individuals of F. × bohemica and their stems were clipped to assess the response to a potential control method. 60 % of the plants regenerated. Regeneration was delayed by the salt treatment and shoot growth slowed down. This study establishes the tolerance of three Fallopia taxa to strong salt stress, with no obvious differences between taxa. Their salt tolerance could be an advantage in their ability to colonize polluted environments and to survive to spills of salt.
Salt tolerance at single cell level in giant-celled Characeae
Beilby, Mary J.
2015-01-01
Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt sensitive C. australis succumbs to 50–100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells are discussed in detail. PMID:25972875
The response of transgenic Brassica species to salt stress: a review.
Shah, Nadil; Anwar, Sumera; Xu, Jingjing; Hou, Zhaoke; Salah, Akram; Khan, Shahbaz; Gong, Jianfang; Shang, Zhengwei; Qian, Li; Zhang, Chunyu
2018-06-01
Salt stress is considered one of the main abiotic factors to limit crop growth and productivity by affecting morpho-physiological and biochemical processes. Genetically, a number of salt tolerant Brassica varieties have been developed and introduced, but breeding of such varieties is time consuming. Therefore, current focus is on transgenic technology, which plays an important role in the development of salt tolerant varieties. Various salt tolerant genes have been characterized and incorporated into Brassica. Therefore, such genetic transformation of Brassica species is a significant step for improvement of crops, as well as conferring salt stress resistance qualities to Brassica species. Complete genome sequencing has made the task of genetically transforming Brassica species easier, by identifying desired candidate genes. The present review discusses relevant information about the principles which should be employed to develop transgenic Brassica species, and also will recommend tools for improved tolerance to salinity.
Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha
2013-06-01
Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.
Matsushika, Akinori; Suzuki, Toshihiro; Goshima, Tetsuya; Hoshino, Tamotsu
2017-08-01
We previously showed that overexpression of IoGAS1, which was isolated from the multiple stress-tolerant yeast Issatchenkia orientalis, endows Saccharomyces cerevisiae cells with the ability to grow and ferment under acidic and high-salt conditions. The deduced amino acid sequence of the IoGAS1 gene product exhibits 60% identity with the S. cerevisiae Gas1 protein, a glycosylphosphatidylinositol-anchored protein essential for maintaining cell wall integrity. However, the functional roles of ScGAS1 in stress tolerance and pH regulation remain unclear. In the present study, we characterized ScGAS1 regarding its roles in tolerance to low pH and high salt concentrations. Transcriptional analysis indicated that, as for the IoGAS1 gene, ScGAS1 expression was pH dependent, with maximum expression at pH 3.0; the presence of salt increased endogenous expression of both GAS1 genes at almost all pH levels. These results suggested that ScGAS1, like IoGAS1, is involved in a novel acid- and salt-stress adaptation mechanism in S. cerevisiae. Overexpression of ScGAS1 in S. cerevisiae improved growth and ethanol production from glucose under acid stress without added salt, although the stress tolerance of the ScGAS1-overexpressing strain was inferior to that of the IoGAS1-overexpressing strain. However, overexpression of ScGAS1 did not result in increased tolerance of S. cerevisiae to combined acid and salt stress, even though ScGAS1 appears to be a salt-responsive gene. Thus, ScGAS1 is directly implicated in tolerance to low pH but does not confer salinity tolerance, supporting the view that ScGAS1 and IoGAS1 have overlapping yet distinct roles in stress tolerance in yeast. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kumar, Suresh; Beena, Ananda Sankara; Awana, Monika; Singh, Archana
2017-04-01
Plants have evolved several strategies, including regulation of genes through epigenetic modifications, to cope with environmental stresses. DNA methylation is dynamically regulated through the methylation and demethylation of cytosine in response to environmental perturbations. High-affinity potassium transporters (HKTs) have accounted for the homeostasis of sodium and potassium ions in plants under salt stress. Wheat (Triticum aestivum L.) is sensitive to soil salinity, which impedes its growth and development, resulting in decreased productivity. The differential expression of HKTs has been reported to confer tolerance to salt stress in plants. In this study, we investigated variations in cytosine methylation and their effects on the expression of HKT genes in contrasting wheat genotypes under salt stress. We observed a genotype- and tissue-specific increase in cytosine methylation induced by NaCl stress that downregulated the expression of TaHKT2;1 and TaHKT2;3 in the shoot and root tissues of Kharchia-65, thereby contributing to its improved salt-tolerance ability. Although TaHKT1;4 was expressed only in roots and was downregulated under the stress in salt-tolerant genotypes, it was not regulated through variations in cytosine methylation. Thus, understanding epigenetic regulation and the function of HKTs would enable an improvement in salt tolerance and the development of salt-tolerant crops.
Liang, Chengzhen; Meng, Zhaohong; Meng, Zhigang; Malik, Waqas; Yan, Rong; Lwin, Khin Myat; Lin, Fazhuang; Wang, Yuan; Sun, Guoqing; Zhou, Tao; Zhu, Tao; Li, Jianying; Jin, Shuangxia; Guo, Sandui; Zhang, Rui
2016-10-07
The bZIP transcription factor (TF) act as an important regulator for the abscisic acid (ABA) mediated abiotic stresses signaling pathways in plants. Here, we reported the cloning and characterization of GhABF2, encoding for typical cotton bZIP TF. Overexpression of GhABF2 significantly improved drought and salt stress tolerance both in Arabidopsis and cotton. However, silencing of GhABF2 made transgenic cotton sensitive to PEG osmotic and salt stress. Expression of GhABF2 was induced by drought and ABA treatments but repressed by high salinity. Transcriptome analysis indicated that GhABF2 increases drought and salt tolerance by regulating genes related to ABA, drought and salt response. The proline contents, activity of superoxide dismutase (SOD) and catalase (CAT) were also significantly increased in GhABF2-overexpression cottons in comparison to wild type after drought and salt treatment. Further, an increase in fiber yield under drought and saline-alkali wetland exhibited the important role of GhABF2 in enhancing the drought and salt tolerance in transgenic lines. In conclusion, manipulation of GhABF2 by biotechnological tools could be a sustainable strategy to deploy drought and salt tolerance in cotton.
Wang, Ning; Qiao, Wenqing; Liu, Xiaohong; Shi, Jianbin; Xu, Qinghua; Zhou, Hong; Yan, Gentu; Huang, Qun
2017-10-01
In this study, the role of specific components of different coping strategies to salt load were identified. A pot experiment was conducted with four cotton (Gossypium hirsutum L.) cultivars (differing in salt-sensitivity) under salinity stress. Based on observed responses in growth performance and physiological characteristics, CZ91 was the most tolerant of the four cultivars, followed by cultivars CCRI44 and CCRI49, with Z571 being much more sensitive to salt stress. To perform this tolerant response, they implement different adaptative mechanisms to cope with salt-stress. The superior salt tolerance of CZ91 was conferred by at least three complementary physiological mechanisms: its ability to regulate K + and Na + transport more effectively, its higher photochemical efficiency and better antioxidant defense capacity. However, only one or a few specific components of these defense systems play crucial roles in moderately salt tolerant CCRI44 and CCRI49. Lower ROS load in CCRI44 may be attributed to simultaneous induction of antioxidant defenses by maintaining an unusually high level of SOD, and higher activities of CAT, APX, and POD during salt stress. CCRI49 could reduce the excess generation of ROS not only by maintaining a higher selective absorption of K + over Na + in roots across the membranes through SOS1, AKT1, and HAK5, but also by displaying higher excess-energy dissipation (e.g., higher ETR, P R and qN) during salt stress. Overall, our data provide a mechanistic explanation for differential salt stress tolerance among these cultivars and shed light on the different strategies employed by cotton cultivars to minimize the ill effects of stress. Copyright © 2017. Published by Elsevier Masson SAS.
Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters
Mishra, Avinash; Tanna, Bhakti
2017-01-01
Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile, and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters (NHX, SOS, HKT, VTPase), ion channels (Cl−, Ca2+, aquaporins), antioxidant encoding genes (APX, CAT, GST, BADH, SOD) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering. PMID:28572812
Halophytes: Potential Resources for Salt Stress Tolerance Genes and Promoters.
Mishra, Avinash; Tanna, Bhakti
2017-01-01
Halophytes have demonstrated their capability to thrive under extremely saline conditions and thus considered as one of the best germplasm for saline agriculture. Salinity is a worldwide problem, and the salt-affected areas are increasing day-by-day because of scanty rainfall, poor irrigation system, salt ingression, water contamination, and other environmental factors. The salinity stress tolerance mechanism is a very complex phenomenon, and some pathways are coordinately linked for imparting salinity tolerance. Though a number of salt responsive genes have been reported from the halophytes, there is always a quest for promising stress-responsive genes that can modulate plant physiology according to the salt stress. Halophytes such as Aeluropus, Mesembryanthemum, Suaeda, Atriplex, Thellungiella, Cakile , and Salicornia serve as a potential candidate for the salt-responsive genes and promoters. Several known genes like antiporters ( NHX, SOS, HKT, VTPase ), ion channels (Cl - , Ca 2+ , aquaporins), antioxidant encoding genes ( APX, CAT, GST, BADH, SOD ) and some novel genes such as USP, SDR1, SRP etc. were isolated from halophytes and explored for developing stress tolerance in the crop plants (glycophytes). It is evidenced that stress triggers salt sensors that lead to the activation of stress tolerance mechanisms which involve multiple signaling proteins, up- or down-regulation of several genes, and finally the distinctive or collective effects of stress-responsive genes. In this review, halophytes are discussed as an excellent platform for salt responsive genes which can be utilized for developing salinity tolerance in crop plants through genetic engineering.
Tolerance of Bacteria to High Concentrations of NaCl and Glycerol in the Growth Medium
Marshall, Betty J.; Ohye, D. F.; Christian, J. H. B.
1971-01-01
When compared at similar levels of water activity, glycerol was more inhibitory than sodium chloride to relatively salt-tolerant bacteria and less inhibitory than salt to salt-sensitive species. PMID:5549707
A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi.
Li, Qingtian; Liu, Jia; Tan, Dunxian; Allan, Andrew C; Jiang, Yuzhuang; Xu, Xuefeng; Han, Zhenhai; Kong, Jin
2013-10-18
In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees.
A Genome-Wide Expression Profile of Salt-Responsive Genes in the Apple Rootstock Malus zumi
Li, Qingtian; Liu, Jia; Tan, Dunxian; Allan, Andrew C.; Jiang, Yuzhuang; Xu, Xuefeng; Han, Zhenhai; Kong, Jin
2013-01-01
In some areas of cultivation, a lack of salt tolerance severely affects plant productivity. Apple, Malus x domestica Borkh., is sensitive to salt, and, as a perennial woody plant the mechanism of salt stress adaption will be different from that of annual herbal model plants, such as Arabidopsis. Malus zumi is a salt tolerant apple rootstock, which survives high salinity (up to 0.6% NaCl). To examine the mechanism underlying this tolerance, a genome-wide expression analysis was performed, using a cDNA library constructed from salt-treated seedlings of Malus zumi. A total of 15,000 cDNA clones were selected for microarray analysis. In total a group of 576 cDNAs, of which expression changed more than four-fold, were sequenced and 18 genes were selected to verify their expression pattern under salt stress by semi-quantitative RT-PCR. Our genome-wide expression analysis resulted in the isolation of 50 novel Malus genes and the elucidation of a new apple-specific mechanism of salt tolerance, including the stabilization of photosynthesis under stress, involvement of phenolic compounds, and sorbitol in ROS scavenging and osmoprotection. The promoter regions of 111 genes were analyzed by PlantCARE, suggesting an intensive cross-talking of abiotic stress in Malus zumi. An interaction network of salt responsive genes was constructed and molecular regulatory pathways of apple were deduced. Our research will contribute to gene function analysis and further the understanding of salt-tolerance mechanisms in fruit trees. PMID:24145753
USDA-ARS?s Scientific Manuscript database
Seed germination is a crucial phase of the plant life cycle that affects its establishment and productivity. However, information on salt tolerance at this phase is limited. Pima cotton (Gossypium barbadense L.) may be more salt tolerant during germination than Upland cotton (G. hirsutum L.) based o...
Sahu, Binod B; Shaw, Birendra P
2009-01-01
Background Despite wealth of information generated on salt tolerance mechanism, its basics still remain elusive. Thus, there is a need of continued effort to understand the salt tolerance mechanism using suitable biotechnological techniques and test plants (species) to enable development of salt tolerant cultivars of interest. Therefore, the present study was undertaken to generate information on salt stress responsive genes in a natural halophyte, Suaeda maritima, using PCR-based suppression subtractive hybridization (PCR-SSH) technique. Results Forward and reverse SSH cDNA libraries were constructed after exposing the young plants to 425 mM NaCl for 24 h. From the forward SSH cDNA library, 429 high quality ESTs were obtained. BLASTX search and TIGR assembler programme revealed overexpression of 167 unigenes comprising 89 singletons and 78 contigs with ESTs redundancy of 81.8%. Among the unigenes, 32.5% were found to be of special interest, indicating novel function of these genes with regard to salt tolerance. Literature search for the known unigenes revealed that only 17 of them were salt-inducible. A comparative analysis of the existing SSH cDNA libraries for NaCl stress in plants showed that only a few overexpressing unigenes were common in them. Moreover, the present study also showed increased expression of phosphoethanolamine N-methyltransferase gene, indicating the possible accumulation of a much studied osmoticum, glycinebetaine, in halophyte under salt stress. Functional categorization of the proteins as per the Munich database in general revealed that salt tolerance could be largely determined by the proteins involved in transcription, signal transduction, protein activity regulation and cell differentiation and organogenesis. Conclusion The study provided a clear indication of possible vital role of glycinebetaine in the salt tolerance process in S. maritima. However, the salt-induced expression of a large number of genes involved in a wide range of cellular functions was indicative of highly complex nature of the process as such. Most of the salt inducible genes, nonetheless, appeared to be species-specific. In light of the observations made, it is reasonable to emphasize that a comparative analysis of ESTs from SSH cDNA libraries generated systematically for a few halophytes with varying salt exposure time may clearly identify the key salt tolerance determinant genes to a minimum number, highly desirable for any genetic manipulation adventure. PMID:19497134
Overexpression of SeNHX1 improves both salt tolerance and disease resistance in tobacco.
Chen, Xianyang; Bao, Hexigeduleng; Guo, Jie; Jia, Weitao; Li, Yinxin
2015-01-01
Recently, we found NHX1, the gene encoding a Na(+)/H(+) exchanger, participated in plant disease defense. Although NHX1 has been confirmed to be involved in plant salt tolerance, whether the NHX1 transgenic plants exhibit both salt tolerance and disease resistance has not been investigated. The T1 progenies of Nicotiana tabacum L. lines expressing SeNHX1 (from Salicornia europaea) were generated for the present study. Compared with PBI-type control plants, SeNHX1 transgenic tobaccos exhibited more biomass, longer root length, and higher K(+)/Na(+) ratio at post germination or seedling stage under NaCl treatment, indicating enhanced salt tolerance. The vacuolar H(+) efflux in SeNHX1 transgenic tobacco was increased after treatment of NaCl with different concentration. Meanwhile, the SeNHX1 transgenic tobaccos showed smaller wilted spot area, less H2O2 accumulation in leaves after infection of Phytophthora parasitica var. nicotianae. Further investigation demonstrated a larger NAD(P)(H) pool in SeNHX1 transgenic tobacco. These evidences revealed that overexpression of SeNHX1 intensified the compartmentation of Na(+) into vacuole under salt stress and improved the ability of eliminating ROS after pathogen attack, which then enhanced salt tolerance and disease resistance simultaneously in tobacco. Our findings indicate NHX1 has potential value in creating crops with both improved salt tolerance and disease resistance.
Chen, Yanhui; Han, Yangyang; Kong, Xiangzhu; Kang, Hanhan; Ren, Yuanqing; Wang, Wei
2017-02-01
High salinity is one of the most serious environmental stresses that limit crop growth. Expansins are cell wall proteins that regulate plant development and abiotic stress tolerance by mediating cell wall expansion. We studied the function of a wheat expansin gene, TaEXPA2, in salt stress tolerance by overexpressing it in tobacco. Overexpression of TaEXPA2 enhanced the salt stress tolerance of transgenic tobacco plants as indicated by the presence of higher germination rates, longer root length, more lateral roots, higher survival rates and more green leaves under salt stress than in the wild type (WT). Further, when leaf disks of WT plants were incubated in cell wall protein extracts from the transgenic tobacco plants, their chlorophyll content was higher under salt stress, and this improvement from TaEXPA2 overexpression in transgenic tobacco was inhibited by TaEXPA2 protein antibody. The water status of transgenic tobacco plants was improved, perhaps by the accumulation of osmolytes such as proline and soluble sugar. TaEXPA2-overexpressing tobacco lines exhibited lower Na + but higher K + accumulation than WT plants. Antioxidant competence increased in the transgenic plants because of the increased activity of antioxidant enzymes. TaEXPA2 protein abundance in wheat was induced by NaCl, and ABA signaling was involved. Gene expression regulation was involved in the enhanced salt stress tolerance of the TaEXPA2 transgenic plants. Our results suggest that TaEXPA2 overexpression confers salt stress tolerance on the transgenic plants, and this is associated with improved water status, Na + /K + homeostasis, and antioxidant competence. ABA signaling participates in TaEXPA2-regulated salt stress tolerance. © 2016 Scandinavian Plant Physiology Society.
Gruber, M Y; Xia, J; Yu, M; Steppuhn, H; Wall, K; Messer, D; Sharpe, A G; Acharya, S N; Wishart, D S; Johnson, D; Miller, D R; Taheri, A
2017-02-01
With the growing limitations on arable land, alfalfa (a widely cultivated, low-input forage) is now being selected to extend cultivation into saline lands for low-cost biofeedstock purposes. Here, minerals and transcriptome profiles were compared between two new salinity-tolerant North American alfalfa breeding populations and a more salinity-sensitive western Canadian alfalfa population grown under hydroponic saline conditions. All three populations accumulated two-fold higher sodium in roots than shoots as a function of increased electrical conductivity. At least 50% of differentially expressed genes (p < 0.05) were down-regulated in the salt-sensitive population growing under high salinity, while expression remained unchanged in the saline-tolerant populations. In particular, most reduction in transcript levels in the salt-sensitive population was observed in genes specifying cell wall structural components, lipids, secondary metabolism, auxin and ethylene hormones, development, transport, signalling, heat shock, proteolysis, pathogenesis-response, abiotic stress, RNA processing, and protein metabolism. Transcript diversity for transcription factors, protein modification, and protein degradation genes was also more strongly affected in salt-tolerant CW064027 than in salt-tolerant Bridgeview and salt-sensitive Rangelander, while both saline-tolerant populations showed more substantial up-regulation in redox-related genes and B-ZIP transcripts. The report highlights the first use of bulked genotypes as replicated samples to compare the transcriptomes of obligate out-cross breeding populations in alfalfa.
Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong
2016-01-01
The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na+/H+) antiporter that transports Na+ into the vacuole and exports H+ into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na+/H+ antiporter that exports Na+ to the extracellular space and imports H+ into the plant cell. Plants rely on these enzymes either to keep Na+ out of the cell or to sequester Na+ into vacuoles to avoid the toxic level of Na+ in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. PMID:26985021
Xiong, Hongchun; Guo, Huijun; Xie, Yongdun; Zhao, Linshu; Gu, Jiayu; Zhao, Shirong; Li, Junhui; Liu, Luxiang
2017-06-02
Salinity stress has become an increasing threat to food security worldwide and elucidation of the mechanism for salinity tolerance is of great significance. Induced mutation, especially spaceflight mutagenesis, is one important method for crop breeding. In this study, we show that a spaceflight-induced wheat mutant, named salinity tolerance 1 (st1), is a salinity-tolerant line. We report the characteristics of transcriptomic sequence variation induced by spaceflight, and show that mutations in genes associated with sodium ion transport may directly contribute to salinity tolerance in st1. Furthermore, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between salinity-treated st1 and wild type suggested that the homeostasis of oxidation-reduction process is important for salt tolerance in st1. Through KEGG pathway analysis, "Butanoate metabolism" was identified as a new pathway for salinity responses. Additionally, key genes for salinity tolerance, such as genes encoding arginine decarboxylase, polyamine oxidase, hormones-related, were not only salt-induced in st1 but also showed higher expression in salt-treated st1 compared with salt-treated WT, indicating that these genes may play important roles in salinity tolerance in st1. This study presents valuable genetic resources for studies on transcriptome variation caused by induced mutation and the identification of salt tolerance genes in crops.
Batelli, Giorgia; Verslues, Paul E.; Agius, Fernanda; Qiu, Quansheng; Fujii, Hiroaki; Pan, Songqin; Schumaker, Karen S.; Grillo, Stefania; Zhu, Jian-Kang
2007-01-01
The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance. PMID:17875927
Salt acclimation process: a comparison between a sensitive and a tolerant Olea europaea cultivar.
Pandolfi, Camilla; Bazihizina, Nadia; Giordano, Cristiana; Mancuso, Stefano; Azzarello, Elisa
2017-03-01
Saline soils are highly heterogeneous in time and space, and this is a critical factor influencing plant physiology and productivity. Temporal changes in soil salinity can alter plant responses to salinity, and pre-treating plants with low NaCl concentrations has been found to substantially increase salt tolerance in different species in a process called acclimation. However, it still remains unclear whether this process is common to all plants or is only expressed in certain genotypes. We addressed this question by assessing the physiological changes to 100 mM NaCl in two contrasting olive cultivars (the salt-sensitive Leccino and the salt-tolerant Frantoio), following a 1-month acclimation period with 5 or 25 mM NaCl. The acclimation improved salt tolerance in both cultivars, but activated substantially different physiological adjustments in the tolerant and the sensitive cultivars. In the tolerant Frantoio the acclimation with 5 mM NaCl was more effective in increasing plant salt tolerance, with a 47% increase in total plant dry mass compared with non-acclimated saline plants. This enhanced biomass accumulation was associated with a 50% increase in K+ retention ability in roots. On the other hand, in the sensitive Leccino, although the acclimation process did not improve performance in terms of plant growth, pre-treatment with 5 and 25 mM NaCl substantially decreased salt-induced leaf cell ultrastructural changes, with leaf cell relatively similar to those of control plants. Taken together these results suggest that in the tolerant cultivar the acclimation took place primarily in the root tissues, while in the sensitive they occurred mainly at the shoot level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bioinformatics approach of salt tolerance gene in mangrove plant Rhizophora stylosa
NASA Astrophysics Data System (ADS)
Basyuni, M.; Sumardi
2017-01-01
This study descibes bioinformatics approach on the analyze of the salt tolerance genes in mangrove plant, Rhizophora stylosa on DDBJ/EMBL/GenBank as well as similarity, phylogenetic, potential peptide, and subcellular localization. The DNA sequence between salt tolerance gene from R. stylosa exhibited 42-11% between themselves The target peptide value of mitochondria varied from 0.163 to 0.430, indicated it was possible to exist. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove OSC genes. To clarify the relationship among the salt-tolerant genes in R. stylosa, a phylogenetic tree was constructed. The phylogenetic tree shows that there are three clusters, first branch of Cu/Zn SOD and reverse transcriptase genes, the second branch consists of the majority genes and the last group was MAP3K alpha protein kinase only. The present study, therefore, suggested that salt tolerance genes form distinct clusters in the tree.
Changes on protein expression associated with salinity tolerance in Brassica cell cultures.
Martín, J P; Elavummoottil, O C; Moreno, M L
1993-09-01
The synthesis of proteins from salt-tolerant Brassica oleracea L. var. botrytis L. subvar. cauliflora (Gars.) DC. (cauliflower) cell cultures is modified in relation to controls in several features. There are nine newly induced polypeptides in tolerant cultures (absent in control conditions). Some of them are only present under low salt levels (85 mM NaCl). Another group seems to be representative of moderate and high salt levels (170 and 255 mM NaCl), and a third group is present in all the salt conditions tested. On the other hand, the synthesis of most of the polypeptides present in control conditions is modified in salt-tolerant cultures by increasing, decreasing or stopping their synthesis in any of the tested conditions. The relationship between these changes in Brassica and other plant systems is discussed.
Lu, Shaoyun; Peng, Xinxiang; Guo, Zhenfei; Zhang, Gengyun; Wang, Zhongcheng; Wang, Congying; Pang, Chaoshu; Fan, Zhen; Wang, Jihua
2007-08-01
A protocol was established for in vitro selection of salinity tolerant somaclonal variations from suspension cultured calli of triploid bermudagrass cv. TifEagle. To induce somaclonal variations the calli were subcultured for 18 months and were then subject to three-round selections for salt-tolerant calli by placing on solid medium containing 0.3 M NaCl for 10 days followed by a recovery for 2 weeks. The surviving calli were regenerated on regeneration medium containing 0.1 M NaCl. Three somaclonal variant lines (2, 71, and 77) were obtained and analyzed. The selected somaclonal lines showed higher relative growth and less injury than TifEagle under salt stress, indicating that they increased salt tolerance. In addition, they had higher relative water content and lower electrolyte leakage than TifEagle after withholding irrigation, indicating that they also increased drought tolerance. The three somaclonal variant lines had higher proline content than TifEagle under normal growth condition. The line 71 had a higher K(+)/Na(+) ratio, whereas the lines 2 and 77 had higher CAT activity under control and salt stress conditions, indicating that different mechanisms for salt tolerance might exist in these three lines.
Sbei, Hanen; Sato, Kazuhiro; Shehzad, Tariq; Harrabi, Moncef; Okuno, Kazutoshi
2014-01-01
Two hundred ninety-six Asian barley (Hordeum vulgare L.) accessions were assessed to detect QTLs underlying salt tolerance by association analysis using a 384 single nucleotide polymorphism (SNP) marker system. The experiment was laid out at the seedling stage in a hydroponic solution under control and 250 mM NaCl solution with three replications of four plants each. Salt tolerance was assessed by leaf injury score (LIS) and salt tolerance indices (STIs) of the number of leaves (NL), shoot length (SL), root length (RL), shoot dry weight (SDW) and root dry weight (RDW). LIS was scored from 1 to 5 according to the severity of necrosis and chlorosis observed on leaves. There was a wide variation in salt tolerance among Asian barley accessions. LIS and STI (SDW) were the most suitable traits for screening salt tolerance. Association was estimated between markers and traits to detect QTLs for LIS and STI (SDW). Seven significant QTLs were located on chromosomes 1H (2 QTLs), 2H (2 QTLs), 3H (1 QTL), 4H (1 QTL) and 5H (1 QTL). Five QTLs were associated with LIS and 2 QTLs with STI (SDW). Two QTLs associated with LIS were newly identified on chromosomes 3H and 4H. PMID:25914593
A Tolerant Behavior in Salt-Sensitive Tomato Plants can be Mimicked by Chemical Stimuli
Flors, Víctor; Paradís, Mercedes; García-Andrade, Javier; Cerezo, Miguel; González-Bosch, Carmen
2007-01-01
Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accumulation. Salinity-induced oxidative stress was also ameliorated by DAAME treatments. Oxidative membrane damage and ethylene emission were both reduced in DAAME-treated plants. This effect is probably a consequence of an increase of both non-enzymatic antioxidant activity as well as peroxidase activity. DAAME-mediated tolerance resulted in an unaltered photosynthetic rate and a stimulation of the decrease in transpiration under stress conditions without a cost in growth due to salt stress. The reduction in transpiration rate was concomitant with a reduction in phytotoxic Na+ and Cl− accumulation under saline stress. Interestingly, the ABA deficient tomato mutant sitiens was insensitive to DAAME-induced tolerance following NaCl stress exposure. Additionally, DAAME treatments increased the ABA content of leaves, therefore, an intact ABA signalling pathway seems to be important to express DAAME-induced salt tolerance. Here, we show a possibility of enhance tomato stress tolerance by chemical induction of the major plant defences against salt stress. DAAME-induced tolerance against salt stress could be complementary to or share elements with induced resistance against biotic stress. This might be the reason for the observed wide spectrum of effectiveness of this compound. PMID:19516968
Diray-Arce, Joann; Clement, Mark; Gul, Bilquees; Khan, M Ajmal; Nielsen, Brent L
2015-05-06
Improvement of crop production is needed to feed the growing world population as the amount and quality of agricultural land decreases and soil salinity increases. This has stimulated research on salt tolerance in plants. Most crops tolerate a limited amount of salt to survive and produce biomass, while halophytes (salt-tolerant plants) have the ability to grow with saline water utilizing specific biochemical mechanisms. However, little is known about the genes involved in salt tolerance. We have characterized the transcriptome of Suaeda fruticosa, a halophyte that has the ability to sequester salts in its leaves. Suaeda fruticosa is an annual shrub in the family Chenopodiaceae found in coastal and inland regions of Pakistan and Mediterranean shores. This plant is an obligate halophyte that grows optimally from 200-400 mM NaCl and can grow at up to 1000 mM NaCl. High throughput sequencing technology was performed to provide understanding of genes involved in the salt tolerance mechanism. De novo assembly of the transcriptome and analysis has allowed identification of differentially expressed and unique genes present in this non-conventional crop. Twelve sequencing libraries prepared from control (0 mM NaCl treated) and optimum (300 mM NaCl treated) plants were sequenced using Illumina Hiseq 2000 to investigate differential gene expression between shoots and roots of Suaeda fruticosa. The transcriptome was assembled de novo using Velvet and Oases k-45 and clustered using CDHIT-EST. There are 54,526 unigenes; among these 475 genes are downregulated and 44 are upregulated when samples from plants grown under optimal salt are compared with those grown without salt. BLAST analysis identified the differentially expressed genes, which were categorized in gene ontology terms and their pathways. This work has identified potential genes involved in salt tolerance in Suaeda fruticosa, and has provided an outline of tools to use for de novo transcriptome analysis. The assemblies that were used provide coverage of a considerable proportion of the transcriptome, which allows analysis of differential gene expression and identification of genes that may be involved in salt tolerance. The transcriptome may serve as a reference sequence for study of other succulent halophytes.
Hyperspectral imaging to identify salt-tolerant wheat lines
NASA Astrophysics Data System (ADS)
Moghimi, Ali; Yang, Ce; Miller, Marisa E.; Kianian, Shahryar; Marchetto, Peter
2017-05-01
In order to address the worldwide growing demand for food, agriculture is facing certain challenges and limitations. One of the important threats limiting crop productivity is salinity. Identifying salt tolerate varieties is crucial to mitigate the negative effects of this abiotic stress in agricultural production systems. Traditional measurement methods of this stress, such as biomass retention, are labor intensive, environmentally influenced, and often poorly correlated to salinity stress alone. In this study, hyperspectral imaging, as a non-destructive and rapid method, was utilized to expedite the process of identifying relatively the most salt tolerant line among four wheat lines including Triticum aestivum var. Kharchia, T. aestivum var. Chinese Spring, (Ae. columnaris) T. aestivum var. Chinese Spring, and (Ae. speltoides) T. aestivum var. Chinese Spring. To examine the possibility of early detection of a salt tolerant line, image acquisition was started one day after stress induction and continued on three, seven, and 12 days after adding salt. Simplex volume maximization (SiVM) method was deployed to detect superior wheat lines in response to salt stress. The results of analyzing images taken as soon as one day after salt induction revealed that Kharchia and (columnaris)Chinese Spring are the most tolerant wheat lines, while (speltoides) Chinese Spring was a moderately susceptible, and Chinese Spring was a relatively susceptible line to salt stress. These results were confirmed with the measuring biomass performed several weeks later.
Hasanuzzaman, Mirza; Alam, Md. Mahabub; Rahman, Anisur; Hasanuzzaman, Md.; Nahar, Kamrun; Fujita, Masayuki
2014-01-01
The present study investigates the roles of exogenous proline (Pro, 5 mM) and glycine betaine (GB, 5 mM) in improving salt stress tolerance in salt sensitive (BRRI dhan49) and salt tolerant (BRRI dhan54) rice (Oryza sativa L.) varieties. Salt stresses (150 and 300 mM NaCl for 48 h) significantly reduced leaf relative water (RWC) and chlorophyll (chl) content and increased endogenous Pro and increased lipid peroxidation and H2O2 levels. Ascorbate (AsA), glutathione (GSH) and GSH/GSSG, ascorbate peroxidae (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione peroxidase (GPX), catalase (CAT), and glyoxalase I (Gly I) activities were reduced in sensitive variety and these were increased in tolerant variety due to salt stress. The glyoxalase II (Gly II), glutathione S-transferase (GST), and superoxide dismutase (SOD) activities were increased in both cultivars by salt stress. Exogenous Pro and GB application with salt stress improved physiological parameters and reduced oxidative damage in both cultivars where BRRI dhan54 showed better tolerance. The result suggests that exogenous application of Pro and GB increased rice seedlings' tolerance to salt-induced oxidative damage by upregulating their antioxidant defense system where these protectants rendered better performance to BRRI dhan54 and Pro can be considered as better protectant than GB. PMID:24991566
Yang, Tao; Zhang, Liang; Hao, Hongyan; Zhang, Peng; Zhu, Haowei; Cheng, Wei; Wang, Yongli; Wang, Xinyu; Wang, Chongying
2015-12-01
Salt stress from soil or irrigation water limits plant growth. A T-DNA insertion mutant in C24, named athspr (Arabidopsis thaliana heat shock protein-related), showed several phenotypes, including reduced organ size and enhanced sensitivity to environmental cues. The athspr mutant is severely impaired under salinity levels at which wild-type (WT) plants grow normally. AtHSPR encodes a nuclear-localized protein with ATPase activity, and its expression was enhanced by high salinity and abscisic acid (ABA). Overexpression (OE) of AtHSPR significantly enhanced tolerance to salt stress by increasing the activities of the antioxidant system and by maintaining K(+) /Na(+) homeostasis. Quantitative RT-PCR analyses showed that OE of AtHSPR increased the expression of ABA/stress-responsive, salt overly sensitive (SOS)-related and antioxidant-related genes. In addition, ABA content was reduced in athspr plants with or without salt stress, and exogenous ABA restored WT-like salt tolerance to athspr plants. athspr exhibited increased leaf stomatal density and stomatal index, slower ABA-induced stomatal closure and reduced drought tolerance relative to the WT. AtHSPR OE enhanced drought tolerance by reducing leaf water loss and stomatal aperture. Transcript profiling in athspr showed a differential salt-stress response for genes involved in accumulation of reactive oxygen species (ROS), ABA signaling, cell death, stress response and photosynthesis. Taken together, our results suggested that AtHSPR is involved in salt tolerance in Arabidopsis through modulation of ROS levels, ABA-dependent stomatal closure, photosynthesis and K(+) /Na(+) homeostasis. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Transcriptomic analysis of Aegilops tauschii during long-term salinity stress.
Mansouri, Mehdi; Naghavi, Mohammad Reza; Alizadeh, Hoshang; Mohammadi-Nejad, Ghasem; Mousavi, Seyed Ahmad; Salekdeh, Ghasem Hosseini; Tada, Yuichi
2018-06-21
Aegilops tauschii is the diploid progenitor of the bread wheat D-genome. It originated from Iran and is a source of abiotic stress tolerance genes. However, little is known about the molecular events of salinity tolerance in Ae. tauschii. This study investigates the leaf transcriptional changes associated with long-term salt stress. Total RNA extracted from leaf tissues of control and salt-treated samples was sequenced using the Illumina technology, and more than 98 million high-quality reads were assembled into 255,446 unigenes with an average length of 1398 bp and an N50 of 2269 bp. Functional annotation of the unigenes showed that 93,742 (36.69%) had at least a significant BLAST hit in the SwissProt database, while 174,079 (68.14%) showed significant similarity to proteins in the NCBI nr database. Differential expression analysis identified 4506 salt stress-responsive unigenes. Bioinformatic analysis of the differentially expressed unigenes (DEUs) revealed a number of biological processes and pathways involved in the establishment of ion homeostasis, signaling processes, carbohydrate metabolism, and post-translational modifications. Fine regulation of starch and sucrose content may be important features involved in salt tolerance in Ae. tauschii. Moreover, 82% of DEUs mapped to the D-subgenome, including known QTL for salt tolerance, and these DEUs showed similar salt stress responses in other accessions of Ae. tauschii. These results could provide fundamental insight into the regulatory process underlying salt tolerance in Ae. tauschii and wheat and facilitate identification of genes involved in their salt tolerance mechanisms.
Overexpression of a Chimeric Gene, OsDST-SRDX, Improved Salt Tolerance of Perennial Ryegrass
Cen, Huifang; Ye, Wenxing; Liu, Yanrong; Li, Dayong; Wang, Kexin; Zhang, Wanjun
2016-01-01
The Drought and Salt Tolerance gene (DST) encodes a C2H2 zinc finger transcription factor, which negatively regulates salt tolerance in rice (Oryza sativa). Phylogenetic analysis of six homologues of DST genes in different plant species revealed that DST genes were conserved evolutionarily. Here, the rice DST gene was linked to an SRDX domain for gene expression repression based on the Chimeric REpressor gene-Silencing Technology (CRES-T) to make a chimeric gene (OsDST-SRDX) construct and introduced into perennial ryegrass by Agrobacterium-mediated transformation. Integration and expression of the OsDST-SRDX in transgenic plants were tested by PCR and RT-PCR, respectively. Transgenic lines overexpressing the OsDST-SRDX fusion gene showed obvious phenotypic differences and clear resistance to salt-shock and to continuous salt stresses compared to non-transgenic plants. Physiological analyses including relative leaf water content, electrolyte leakage, proline content, malondialdehyde (MDA) content, H2O2 content and sodium and potassium accumulation indicated that the OsDST-SRDX fusion gene enhanced salt tolerance in transgenic perennial ryegrass by altering a wide range of physiological responses. To our best knowledge this study is the first report of utilizing Chimeric Repressor gene-Silencing Technology (CRES-T) in turfgrass and forage species for salt-tolerance improvement. PMID:27251327
Bertazzini, Michele; Sacchi, Gian Attilio; Forlani, Giuseppe
2018-04-27
Rice is very sensitive to salt stress at the seedling level, with consequent poor crop establishment. A natural variability in susceptibility to moderate saline environments was found in a group of six Italian temperate japonica rice cultivars, and the physiological determinants for salt tolerance were investigated. Cation (Na + , K + and Mg ++ ) levels were determined in shoots from individual rice plantlets grown in the absence or in the presence of inhibitory, yet sublethal salt levels, and at increasing time after salt treatments. Significant variations were found among genotypes, but these were unrelated to the relative tolerance, which seems to result from neither mechanism(s) for reduced Na + translocation to the aerial part, nor its increased retrieval from the xylem mediating Na + exclusion from leaves. Accordingly, thiobarbituric acid reactive substance levels raised in leaf tissues of salt-treated seedlings, and osmo-induced proline accumulation was found in all genotypes. Data suggest that the difference in salt tolerance most likely depends on mechanisms for osmotic adjustment and/or antioxidative defence. Copyright © 2018 Elsevier GmbH. All rights reserved.
77 FR 21676 - Silicic Acid, Sodium Salt etc.; Tolerance Exemption
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-11
... Silicic acid, sodium salt, reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction..., reaction products with chlorotrimethylsilane and iso-propyl alcohol, reaction with poly(oxypropylene)-poly... from the requirement of a tolerance for residues of Silicic acid, sodium salt, reaction products with...
[Progress on salt resistance in autopolyploid plants].
Zhu, Hong Ju; Liu, Wen Ge
2018-04-20
Polyploidization is a key driving force that plays a vital role in the evolution of higher plants. Autopolyploid plants often demonstrate altered physiology phenomena due to the different genome composition and gene expression patterns. For example, autopolyploid plants are more resistant to stresses than their homologous diploid ancestors. Soil salinity and secondary salinization are two vital factors affecting crop production which severely limit the sustainable development of agriculture in China. Polyploid plants are important germplasm resources in crop genetic improvement due to their higher salt tolerance. Revealing the mechanism of salt tolerance in homologous plants will provide a foundation for breeding new plants with improved salt resistance. In this review, we describe the existing and ongoing characterization of the mechanism of salt tolerance in autopolyploid plants, including the salt tolerance evolution, physiology, biochemistry, cell structure and molecular level researches. Finally, we also discuss the prospects in this field by using polyploid watermelon as an example, which will be helpful in polyploid research and plant breeding.
Physical chemistry and evolution of salt tolerance in halobacteria
NASA Technical Reports Server (NTRS)
Lanyi, J. K.
1980-01-01
The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.
Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism
Hazzouri, Khaled M.; Khraiwesh, Basel; Amiri, Khaled M. A.; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K.; Nelson, David; Mansour, Alain L.; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled
2018-01-01
Sodium (Na+) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5-like gene was a major gene in the QTL for salt tolerance, named Nax2. In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley (Hordeum vulgare). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na+) and potassium (K+) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na+ and K+ were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide stronger evidence that HKT1;5 gene in barley play a key role in withdrawing Na+ from the xylem and therefore reducing its transport to leaves. Given all that, these data support the hypothesis that HKT1;5 gene is responsible for Na+ unloading to the xylem and controlling its distribution in the shoots, which provide new insight into the understanding of this QTL for salinity tolerance in barley. PMID:29515598
Hazzouri, Khaled M; Khraiwesh, Basel; Amiri, Khaled M A; Pauli, Duke; Blake, Tom; Shahid, Mohammad; Mullath, Sangeeta K; Nelson, David; Mansour, Alain L; Salehi-Ashtiani, Kourosh; Purugganan, Michael; Masmoudi, Khaled
2018-01-01
Sodium (Na + ) accumulation in the cytosol will result in ion homeostasis imbalance and toxicity of transpiring leaves. Studies of salinity tolerance in the diploid wheat ancestor Triticum monococcum showed that HKT1;5 -like gene was a major gene in the QTL for salt tolerance, named Nax2 . In the present study, we were interested in investigating the molecular mechanisms underpinning the role of the HKT1;5 gene in salt tolerance in barley ( Hordeum vulgare ). A USDA mini-core collection of 2,671 barley lines, part of a field trial was screened for salinity tolerance, and a Genome Wide Association Study (GWAS) was performed. Our results showed important SNPs that are correlated with salt tolerance that mapped to a region where HKT1;5 ion transporter located on chromosome four. Furthermore, sodium (Na + ) and potassium (K + ) content analysis revealed that tolerant lines accumulate more sodium in roots and leaf sheaths, than in the sensitive ones. In contrast, sodium concentration was reduced in leaf blades of the tolerant lines under salt stress. In the absence of NaCl, the concentration of Na + and K + were the same in the roots, leaf sheaths and leaf blades between the tolerant and the sensitive lines. In order to study the molecular mechanism behind that, alleles of the HKT1;5 gene from five tolerant and five sensitive barley lines were cloned and sequenced. Sequence analysis did not show the presence of any polymorphism that distinguishes between the tolerant and sensitive alleles. Our real-time RT-PCR experiments, showed that the expression of HKT1;5 gene in roots of the tolerant line was significantly induced after challenging the plants with salt stress. In contrast, in leaf sheaths the expression was decreased after salt treatment. In sensitive lines, there was no difference in the expression of HKT1;5 gene in leaf sheath under control and saline conditions, while a slight increase in the expression was observed in roots after salt treatment. These results provide stronger evidence that HKT1;5 gene in barley play a key role in withdrawing Na + from the xylem and therefore reducing its transport to leaves. Given all that, these data support the hypothesis that HKT1;5 gene is responsible for Na + unloading to the xylem and controlling its distribution in the shoots, which provide new insight into the understanding of this QTL for salinity tolerance in barley.
40 CFR 180.129 - o-Phenylphenol and its sodium salt; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false o-Phenylphenol and its sodium salt; tolerances for residues. 180.129 Section 180.129 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific Tolerances § 180.129 o-Phenylphenol an...
40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Polyoxin D zinc salt; exemption from the requirement of a tolerance. 180.1285 Section 180.1285 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1285...
40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Polyoxin D zinc salt; exemption from the requirement of a tolerance. 180.1285 Section 180.1285 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1285...
40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Polyoxin D zinc salt; exemption from the requirement of a tolerance. 180.1285 Section 180.1285 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1285...
Adverse effect of urease on salt stress during seed germination in Arabidopsis thaliana.
Bu, Yuanyuan; Kou, Jing; Sun, Bo; Takano, Testuo; Liu, Shenkui
2015-05-22
Seed germination is a critical stage in the development of crops that grow in saline soils. We noticed that seeds of an Arabidopsis urease mutant have significantly increased salt stress tolerance. To understand why, we treated the wild type (WT) with a urease inhibitor and found that its salt stress tolerance was also improved. We hypothesized that urease acting on urea generates NH₄⁺, which probably exacerbates salt stress. As expected, the urease inhibitor significantly decreased the NH₄⁺ level in WT seeds. These findings suggest that blocking urease activity improves salt tolerance during seed germination by lowering the concentration of NH₄⁺. Copyright © 2015. Published by Elsevier B.V.
Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes
Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K.
2015-01-01
Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080
Sandhu, Devinder; Cornacchione, Monica V.; Ferreira, Jorge F. S.; Suarez, Donald L.
2017-01-01
Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index of the genotypes ranged from 0.39 to 1. The most salt-tolerant genotypes SISA14-1 (G03) and AZ-90ST (G10), the top performers for biomass, exhibited the least effect on shoot number and height. SISA14-1 (G03) accumulated low Na and Cl under salinity. Most genotypes exhibited a net reduction in shoot Ca, Mg, P, Fe, and Cu, while Mn and Zn increased under salinity. Salinity reduced foliar area and stomatal conductance; while net photosynthetic rate and transpiration were not affected. Interestingly, salinity increased chlorophyll and antioxidant capacity in most genotypes; however neither parameter correlated well to ST index. Salt-tolerant genotypes showed upregulation of the SOS1, SOS2, SOS3, HKT1, AKT1, NHX1, P5CS1, HSP90.7, HSP81.2, HSP71.1, HSPC025, OTS1, SGF29 and SAL1 genes. Gene expression analyses allowed us to classify genotypes based on their ability to regulate different components of the salt tolerance mechanism. Pyramiding different components of the salt tolerance mechanism may lead to superior salt-tolerant alfalfa genotypes. PMID:28225027
Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G
2014-01-01
The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.
Patankar, Himanshu V; Al-Harrasi, Ibtisam; Al-Yahyai, Rashid; Yaish, Mahmoud W
2018-06-01
Although date palm is a relatively salt-tolerant plant, the molecular basis of this tolerance is complex and poorly understood. Therefore, this study aimed to identify the genes involved in salinity tolerance using a basic yeast functional bioassay. To achieve this, a date palm cDNA library was overexpressed in Saccharomyces cerevisiae cells. The expression levels of selected genes that make yeast cells tolerant to salt were subsequently validated in the leaf and root tissues of date palm seedlings using a quantitative PCR method. About 6000 yeast transformant cells were replica printed and screened on a synthetic minimal medium containing 1.0 M of NaCl. The screening results showed the presence of 62 salt-tolerant transformant colonies. Sequence analysis of the recombinant yeast plasmids revealed the presence of a group of genes with potential salt-tolerance functions, such as aquaporins (PIP), serine/threonine protein kinases (STKs), ethylene-responsive transcription factor 1 (ERF1), and peroxidases (PRX). The expression pattern of the selected genes endorsed the hypothesis that these genes may be involved in salinity tolerance, as they showed a significant (p < 0.05) overexpression trend in both the leaf and root tissues in response to salinity. The genes identified in this project are suitable candidates for the further functional characterization of date palms.
Using growth-based methods to determine direct effects of salinity on soil microbial communities
NASA Astrophysics Data System (ADS)
Rath, Kristin; Rousk, Johannes
2015-04-01
Soil salinization is a widespread agricultural problem and increasing salt concentrations in soils have been found to be correlated with decreased microbial activity. A central challenge in microbial ecology is to link environmental factors, such as salinity, to responses in the soil microbial community. That is, it can be difficult to distinguish direct from indirect effects. In order to determine direct salinity effects on the community we employed the ecotoxicological concept of Pollution-Induced Community Tolerance (PICT). This concept is built on the assumption that if salinity had an ecologically relevant effect on the community, it should have selected for more tolerant species and strains, resulting in an overall higher community tolerance to salt in communities from saline soils. Growth-based measures, such as the 3H-leucine incorporation into bacterial protein , provide sensitive tools to estimate community tolerance. They can also provide high temporal resolution in tracking changes in tolerance over time. In our study we used growth-based methods to investigate: i) at what levels of salt exposure and over which time scales salt tolerance can be induced in a non-saline soil, and (ii) if communities from high salinity sites have higher tolerance to salt exposure along natural salinity gradients. In the first part of the study, we exposed a non-saline soil to a range of salinities and monitored the development of community tolerance over time. We found that community tolerance to intermediate salinities up to around 30 mg NaCl per g soil can be induced at relatively short time scales of a few days, providing evidence that microbial communities can adapt rapidly to changes in environmental conditions. In the second part of the study we used soil samples originating from natural salinity gradients encompassing a wide range of salinity levels, with electrical conductivities ranging from 0.1 dS/m to >10 dS/m. We assessed community tolerance to salt by measuring the bacterial growth response to added NaCl in a soil suspension. The bacterial community tolerance to salt increased along the salt gradients with higher in situ soil salinity. In samples from the low-saline end of the gradient, bacterial growth rates in the soil suspension showed a clear concentration-response relationship to NaCl resulting in inhibition curves. This relationship gradually changed toward higher salt concentrations. In soil samples from high salinity sites, bacterial growth was no longer inhibited by adding high concentrations of NaCl to the bacterial soil suspension. In fact, adding NaCl even promoted bacterial growth rates. These results show that salinity played an ecologically significant role in shaping communities at the highly saline end of the gradients and provide evidence for a direct salt effect on the microbial community
Pehlivan, Necla; Sun, Li; Jarrett, Philip; Yang, Xiaojie; Mishra, Neelam; Chen, Lin; Kadioglu, Asim; Shen, Guoxin; Zhang, Hong
2016-05-01
The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
Jaarsma, Rinse; de Vries, Rozemarijn S. M.; de Boer, Albertus H.
2013-01-01
Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na+ homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na+ levels in root and stem with the highest leaf Na+ concentration of all cultivars, resulting in a high Na+ shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na+ accumulation was found and the SDI for Na+ points to a role of stem Na+ accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na+ accumulation in stem tissue, resulting in reduced Na+ transport to the leaves. PMID:23533673
Singh, Jogendra; Singh, Vijayata; Sharma, P C
2018-05-01
The growth of chickpea ( Cicer arietinum L.) is extremely hampered by salt stress. Understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt tolerant chickpea varieties. To explore these facts, two genotypes CSG8962 and HC5 with contrasting salt tolerance were evaluated in the salinity stress (Control and 120 mM NaCl) conditions. CSG8962 maintained lower Na/K ratio in root and shoot, trammeled Na translocation to the shoots from roots compared to HC5 which ascribed to better exclusion of salt from its roots and compartmentation in the shoot. In chickpea, salt stress specifically induced genes/sequences involved at several levels in the salt stress signaling pathway. Higher induction of trehalose 6 phosphate synthase and protein kinase genes pertaining to the osmotic and signaling modules, respectively, were evident in CSG8962 compared to HC5. Further transcripts of late embryogenesis abundant, non-specific lipid transfer protein, HI and 219 genes/sequences were also highly induced in CSG8962 compared to HC5 which emphasizes the better protection of cellular membranous network and membrane-bound macromolecules under salt stress. This further suppressed the stress enhanced electrolyte leakage, loss of turgidity, promoted the higher compatible solute accumulation and maintained better cellular ion homoeostasis in CSG8962 compared to HC5. Our study further adds to the importance of these genes in salt tolerance by comparing their behavior in contrasting chickpea genotypes.
Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping
2016-01-01
Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses. PMID:27446182
Yu, Long-Xi; Liu, Xinchun; Boge, William; Liu, Xiang-Ping
2016-01-01
Salinity is one of major abiotic stresses limiting alfalfa (Medicago sativa L.) production in the arid and semi-arid regions in US and other counties. In this study, we used a diverse panel of alfalfa accessions previously described by Zhang et al. (2015) to identify molecular markers associated with salt tolerance during germination using genome-wide association study (GWAS) and genotyping-by-sequencing (GBS). Phenotyping was done by germinating alfalfa seeds under different levels of salt stress. Phenotypic data of adjusted germination rates and SNP markers generated by GBS were used for marker-trait association. Thirty six markers were significantly associated with salt tolerance in at least one level of salt treatments. Alignment of sequence tags to the Medicago truncatula genome revealed genetic locations of the markers on all chromosomes except chromosome 3. Most significant markers were found on chromosomes 1, 2, and 4. BLAST search using the flanking sequences of significant markers identified 14 putative candidate genes linked to 23 significant markers. Most of them were repeatedly identified in two or three salt treatments. Several loci identified in the present study had similar genetic locations to the reported QTL associated with salt tolerance in M. truncatula. A locus identified on chromosome 6 by this study overlapped with that by drought in our previous study. To our knowledge, this is the first report on mapping loci associated with salt tolerance during germination in autotetraploid alfalfa. Further investigation on these loci and their linked genes would provide insight into understanding molecular mechanisms by which salt and drought stresses affect alfalfa growth. Functional markers closely linked to the resistance loci would be useful for MAS to improve alfalfa cultivars with enhanced resistance to drought and salt stresses.
Li, Jingtao; Sun, Xinhua; Liu, Yanzhi; Wang, Xueliang; Zhang, Hao; Pan, Hongyu
2017-01-01
Plant productivity is limited by salinity stress, both in natural and agricultural systems. Identification of salt stress-related genes from halophyte can provide insights into mechanisms of salt stress tolerance in plants. Atriplex canescens is a xero-halophyte that exhibits optimum growth in the presence of 400 mM NaCl. A cDNA library derived from highly salt-treated A. canescens plants was constructed based on a yeast expression system. A total of 53 transgenic yeast clones expressing enhanced salt tolerance were selected from 105 transformants. Their plasmids were sequenced and the gene characteristics were annotated using a BLASTX search. Retransformation of yeast cells with the selected plasmids conferred salt tolerance to the resulting transformants. The expression patterns of 28 of these stress-related genes were further investigated in A. canescens leaves by quantitative reverse transcription-PCR. In this study, we provided a rapid and robust assay system for large-scale screening of genes for varied abiotic stress tolerance with high efficiency in A. canescens. PMID:29149055
Li, Xuyang; Yuan, Yizhong; Cheng, Dujia; Gao, Juan; Kong, Lingzhao; Zhao, Quanyu; Wei, Wei; Sun, Yuhan
2018-02-01
Enhancement of stress tolerance to high concentration of salt and CO 2 is beneficial for CO 2 capture by microalgae. Adaptive evolution was performed for improving the tolerance of a freshwater strain, Chlorella sp. AE10, to 30 g/L salt. A resulting strain denoted as Chlorella sp. S30 was obtained after 46 cycles (138 days). The stress tolerance mechanism was analyzed by comparative transcriptomic analysis. Although the evolved strain could tolerate 30 g/L salt, high salinity caused loss to photosynthesis, oxidative phosphorylation, fatty acid biosynthesis and tyrosine metabolism. The related genes of antioxidant enzymes, CO 2 fixation, amino acid biosynthesis, central carbon metabolism and ABC transporter proteins were up-regulated. Besides the up-regulation of several genes in Calvin-Benson cycle, they were also identified in C4 photosynthetic pathway and crassulacean acid metabolism pathway. They were essential for the survival and CO 2 fixation of Chlorella sp. S30 under 30 g/L salt and 10% CO 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.
Fan, Xinqi; Guo, Qi; Xu, Peng; Gong, YuanYong; Shu, Hongmei; Yang, Yang; Ni, Wanchao; Zhang, Xianggui; Shen, Xinlian
2015-01-01
WRKY transcription factors are plant-specific, zinc finger-type transcription factors. The WRKY superfamily is involved in abiotic stress responses in many crops including cotton, a major fiber crop that is widely cultivated and consumed throughout the world. Salinity is an important abiotic stress that results in considerable yield losses. In this study, we identified 109 WRKY genes (GarWRKYs) in a salt-tolerant wild cotton species Gossypium aridum from transcriptome sequencing data to elucidate the roles of these factors in cotton salt tolerance. According to their structural features, the predicted members were divided into three groups (Groups I-III), as previously described for Arabidopsis. Furthermore, 28 salt-responsive GarWRKY genes were identified from digital gene expression data and subjected to real-time quantitative RT-PCR analysis. The expression patterns of most GarWRKY genes revealed by this analysis are in good agreement with those revealed by RNA-Seq analysis. RT-PCR analysis revealed that 27 GarWRKY genes were expressed in roots and one was exclusively expressed in roots. Analysis of gene orthology and motif compositions indicated that WRKY members from Arabidopsis, rice and soybean generally shared the similar motifs within the same subgroup, suggesting they have the similar function. Overexpression-GarWRKY17 and -GarWRKY104 in Arabidopsis revealed that they could positively regulate salt tolerance of transgenic Arabidopsis during different development stages. The comprehensive data generated in this study provide a platform for elucidating the functions of WRKY transcription factors in salt tolerance of G. aridum. In addition, GarWRKYs related to salt tolerance identified in this study will be potential candidates for genetic improvement of cultivated cotton salt stress tolerance.
Thiam, Mahamadou; Ourèye SY, Mame
2013-01-01
Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important grain legumes in sub-Saharian regions. It contributes to man food security by providing a protein-rich diet. However, its production is limited by abiotic stresses such as salinity. This study aims to evaluate the salt tolerance of 15 cowpea cultivars, at germination stage. The seed germination process consisted of sowing them in agarified water (8 g·L−1) supplemented with 6 different concentrations of NaCl (0, 10, 50, 100, 150, and 200 mM). Results highlighted that high salt concentrations drastically reduced germination and significantly delayed the process for all varieties. A cowpea varietal effect towards the salt tolerance was noticed. Genotypes Diongoma, 58-78, and 58-191 were more salt-tolerant cultivars while Mougne and Yacine were more salt-sensitive ones as confirmed in the three groups of the dendrogram. NaCl effects on the early vegetative growth of seedlings were assessed with a tolerant (58-191) and a susceptible (Yacine) cultivar. Morphological (length and dry biomass) and physiological (chlorophyll and proline contents) parameter measurements revealed a negative effect of high (NaCl). However, 58-191 was much more salt tolerant, and the chlorophyll and proline contents were higher than those of Yacine genotype at increasing salt concentrations. PMID:25937976
Nautiyal, Chandra Shekhar; Srivastava, Suchi; Chauhan, Puneet Singh; Seem, Karishma; Mishra, Aradhana; Sopory, Sudhir Kumar
2013-05-01
Growth and productivity of rice and soil inhabiting microbial population is negatively affected by soil salinity. However, some salt resistant, rhizosphere competent bacteria improve plant health in saline stress. Present study evaluated the effect of salt tolerant Bacillus amyloliquefaciens NBRISN13 (SN13) inoculation on rice plants in hydroponic and soil conditions exposed to salinity. SN13 increased plant growth and salt tolerance (NaCl 200 mM) and expression of at least 14 genes under hydroponic and soil conditions in rice. Among these 14 genes 4 (NADP-Me2, EREBP, SOSI, BADH and SERK1) were up-regulated and 2 (GIG and SAPK4) repressed under salt stress in hydroponic condition. In greenhouse experiment, salt stress resulted in accumulation of MAPK5 and down-regulation of the remaining 13 transcripts was observed. SN13 treatment, with or without salt gave similar expression for all tested genes as compared to control. Salt stress caused changes in the microbial diversity of the rice rhizosphere and stimulated population of betaine-, sucrose-, trehalose-, and glutamine-utilizing bacteria in salt-treated rice rhizosphere (SN13 + salt). The observations imply that SN13 confers salt tolerance in rice by modulating differential transcription in a set of at least 14 genes. Stimulation of osmoprotectant utilizing microbial population as a mechanism of inducing salt tolerance in rice is reported for the first time in this study to the best of our knowledge. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Wheat TaSP gene improves salt tolerance in transgenic Arabidopsis thaliana.
Ma, Xiaoli; Cui, Weina; Liang, Wenji; Huang, Zhanjing
2015-12-01
A novel salt-induced gene with unknown functions was cloned through analysis of gene expression profile of a salt-tolerant wheat mutant RH8706-49 under salt stress. The gene was named Triticum aestivum salt-related protein (TaSP) and deposited in GenBank (Accession No. KF307326). Quantitative polymerase chain reaction (qPCR) results showed that TaSP expression was induced under salt, abscisic acid (ABA), and polyethylene glycol (PEG) stresses. Subcellular localization revealed that TaSP was mainly localized in cell membrane. Overexpression of TaSP in Arabidopsis could improve salt tolerance of 35S::TaSP transgenic Arabidopsis. 35S::TaSP transgenic Arabidopsis lines after salt stress presented better physiological indexes than the control group. In the non-invasive micro-test (NMT), an evident Na(+) excretion was observed at the root tip of salt-stressed 35S::TaSP transgenic Arabidopsis. TaSP promoter was cloned, and its beta-glucuronidase (GUS) activities before and after ABA, salt, cold, heat, and salicylic acid (SA) stresses were determined. Full-length TaSP promoter contained ABA and salt response elements. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Prasad, Kasavajhala V. S. K.; Abdel-Hameed, Amira A. E.; Xing, Denghui; Reddy, Anireddy S. N.
2016-01-01
Abiotic and biotic stresses cause significant yield losses in all crops. Acquisition of stress tolerance in plants requires rapid reprogramming of gene expression. SR1/CAMTA3, a member of signal responsive transcription factors (TFs), functions both as a positive and a negative regulator of biotic stress responses and as a positive regulator of cold stress-induced gene expression. Using high throughput RNA-seq, we identified ~3000 SR1-regulated genes. Promoters of about 60% of the differentially expressed genes have a known DNA binding site for SR1, suggesting that they are likely direct targets. Gene ontology analysis of SR1-regulated genes confirmed previously known functions of SR1 and uncovered a potential role for this TF in salt stress. Our results showed that SR1 mutant is more tolerant to salt stress than the wild type and complemented line. Improved tolerance of sr1 seedlings to salt is accompanied with the induction of salt-responsive genes. Furthermore, ChIP-PCR results showed that SR1 binds to promoters of several salt-responsive genes. These results suggest that SR1 acts as a negative regulator of salt tolerance by directly repressing the expression of salt-responsive genes. Overall, this study identified SR1-regulated genes globally and uncovered a previously uncharacterized role for SR1 in salt stress response. PMID:27251464
Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica
2016-01-01
Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in "La Albufera" Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves-where they are presumably compartmentalized in vacuoles-and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na(+) and Cl(-) contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K(+) transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level-estimated from malondialdehyde accumulation-was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study.
Al Hassan, Mohamad; Chaura, Juliana; López-Gresa, María P.; Borsai, Orsolya; Daniso, Enrico; Donat-Torres, María P.; Mayoral, Olga; Vicente, Oscar; Boscaiu, Monica
2016-01-01
Dittrichia viscosa is a Mediterranean ruderal species that over the last decades has expanded into new habitats, including coastal salt marshes, ecosystems that are per se fragile and threatened by human activities. To assess the potential risk that this native-invasive species represents for the genuine salt marsh vegetation, we compared its distribution with that of Inula crithmoides, a taxonomically related halophyte, in three salt marshes located in “La Albufera” Natural Park, near the city of Valencia (East Spain). The presence of D. viscosa was restricted to areas of low and moderate salinity, while I. crithmoides was also present in the most saline zones of the salt marshes. Analyses of the responses of the two species to salt and water stress treatments in controlled experiments revealed that both activate the same physiological stress tolerance mechanisms, based essentially on the transport of toxic ions to the leaves—where they are presumably compartmentalized in vacuoles—and the accumulation of specific osmolytes for osmotic adjustment. The two species differ in the efficiency of those mechanisms: salt-induced increases in Na+ and Cl− contents were higher in I. crithmoides than in D. viscosa, and the osmolytes (especially glycine betaine, but also arabinose, fructose and glucose) accumulated at higher levels in the former species. This explains the (slightly) higher stress tolerance of I. crithmoides, as compared to D. viscosa, established from growth inhibition measurements and their distribution in nature. The possible activation of K+ transport to the leaves under high salinity conditions may also contribute to salt tolerance in I. crithmoides. Oxidative stress level—estimated from malondialdehyde accumulation—was higher in the less tolerant D. viscosa, which consequently activated antioxidant responses as a defense mechanism against stress; these responses were weaker or absent in the more tolerant I. crithmoides. Based on these results, we concluded that although D. viscosa cannot directly compete with true halophytes in highly saline environments, it is nevertheless quite stress tolerant and therefore represents a threat for the vegetation located on the salt marshes borders, where several endemic and threatened species are found in the area of study. PMID:27148301
NASA Astrophysics Data System (ADS)
Rath, Kristin; Fierer, Noah; Rousk, Johannes
2017-04-01
Our knowledge of the dynamics structuring microbial communities and the consequences this has for soil functions is rudimentary. In particular, predictions of the response of microbial communities to environmental change and the implications for associated ecosystem processes remain elusive. Understanding how environmental factors structure microbial communities and regulate the functions they perform is key to a mechanistic understanding of how biogeochemical cycles respond to environmental change. Soil salinization is an agricultural problem in many parts of the world. The activity of soil microorganisms is reduced in saline soils compared to non-saline soil. However, soil salinity often co-varies with other factors, making it difficult to assign responses of microbial communities to direct effects of salinity. A trait-based approach allows us to connect the environmental factor salinity with the responses of microbial community composition and functioning. Salinity along a salinity gradient serves as a filter for the community trait distribution of salt tolerance, selecting for higher salt tolerance at more saline sites. This trait-environment relationship can be used to predict responses of microbial communities to environmental change. Our aims were to (i) use salinity along natural salinity gradients as an environmental filter, and (ii) link the resulting filtered trait-distributions of the communities (the trait being salt tolerance) to the community composition. Soil samples were obtained from two replicated salinity gradients along an Australian salt lake, spanning a wide range of soil salinities (0.1 dS m-1 to >50 dS m-1). In one of the two gradients salinity was correlated with pH. Community trait distributions for salt tolerance were assessed by establishing dose-dependences for extracted bacterial communities using growth rate assays. In addition, functional parameters were measured along the salt gradients. Community composition of sites was compared through 16S rRNA gene amplicon sequencing. Microbial community composition changed greatly along the salinity gradients. Using the salt-tolerance assessments to estimate bacterial trait-distributions we could determine substantial differences in tolerance to salt revealing a strong causal connection between environment and trait distributions. By constraining the community composition with salinity tolerance in ordinations, we could assign which community differences were directly due to a shift in community trait distributions. These analyses revealed that a substantial part (up to 30%) of the community composition differences were directly driven by environmental salt concentrations.. Even though communities in saline soils had trait-distributions aligned to their environment, their performance (respiration, growth rates) was lower than those in non-saline soils and remained low even after input of organic material. Using a trait-based approach we could connect filtered trait distributions along environmental gradients, to the composition of the microbial community. We show that soil salinity played an important role in shaping microbial community composition by selecting for communities with higher salt tolerance. The shift toward bacterial communities with trait distributions matched to salt environments probably compensated for much of the potential loss of function induced by salinity, resulting in a degree of apparent functional redundancy for decomposition. However, more tolerant communities still showed reduced functioning, suggesting a trade-off between salt tolerance and performance.
Nitrification and occurrence of salt-tolerant nitrifying bacteria in the Negev desert soils.
Nejidat, Ali
2005-03-01
Ammonia oxidation potential, major ammonia oxidizers and occurrence of salt-tolerant nitrifying bacteria were studied in soil samples collected from diverse ecosystems along the northern Negev desert. Great diversity in ammonia oxidation potential was observed among the soil samples, and ammonia oxidizers were the rate-limiting step of nitrification. Denaturing gradient gel electrophoresis and partial 16S rRNA gene sequences indicate that members of the genus Nitrosospira are the major ammonia oxidizers in the natural desert soil samples. Upon enrichment with different salt concentrations, salt-tolerant nitrifying enrichments were established from several soil samples. In two enrichments, nitrification was not inhibited by 400 mM NaCl. Electrophoretic analysis and partial 16S rRNA gene sequences indicate that Nitrosomonas species were dominant in the 400 mM salt enrichment. The results point towards the potential of the desert ecosystem as a source of stress-tolerant nitrifying bacteria or other microorganisms with important properties.
40 CFR 180.383 - Sodium salt of acifluorfen; tolerances for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific... established for combined residues of the herbicide sodium salt of acifluorfen, sodium 5-[2-chloro-4...
Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit.
Zhang, H X; Blumwald, E
2001-08-01
Transgenic tomato plants overexpressing a vacuolar Na+/H+ antiport were able to grow, flower, and produce fruit in the presence of 200 mM sodium chloride. Although the leaves accumulated high sodium concentrations, the tomato fruit displayed very low sodium content. Contrary to the notion that multiple traits introduced by breeding into crop plants are needed to obtain salt-tolerant plants, the modification of a single trait significantly improved the salinity tolerance of this crop plant. These results demonstrate that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated. The accumulation of sodium in the leaves and not in the fruit demonstrates the utility of such a modification in preserving the quality of the fruit.
Gläser, H U; Thomas, D; Gaxiola, R; Montrichard, F; Surdin-Kerjan, Y; Serrano, R
1993-01-01
The progressive salinization of irrigated land poses a threat to the future of agriculture in arid regions. The identification of crucial metabolic steps in salt tolerance is important for the understanding of stress physiology and may provide the tools for its genetic engineering. In the yeast Saccharomyces cerevisiae we have isolated a gene, HAL2, which upon increase in gene dosage improves growth under NaCl and LiCl stresses. The HAL2 protein is homologous to inositol phosphatases, enzymes known to be inhibited by lithium salts. Complementation analysis demonstrated that HAL2 is identical to MET22, a gene involved in methionine biosynthesis. Accordingly, methionine supplementation improves the tolerance of yeast to NaCl and LiCl. These results demonstrate an unsuspected interplay between methionine biosynthesis and salt tolerance. Images PMID:8393782
Parthasarathy, Meera; Pemaiah, Brindha; Natesan, Ravichandran; Padmavathy, Saralla R; Pachiappan, Jayaraman
2015-02-01
Salt glands are specialized organelles present in the leaf tissues of halophytes, which impart salt-tolerance capability to the plant species. These glands are usually identified only by their morphology using conventional staining procedures coupled with optical microscopy. In this work, we have employed scanning electrochemical microscopy to identify the salt glands not only by their morphology but also by their salt excretion behavior. Bermuda grass (Cynodon dactylon L.) species was chosen for the study as they are known to be salt-tolerant and contain salt glands on leaf surfaces. Scanning electrochemical microscopy performed in sodium chloride medium in the presence and absence of potassium ferrocyanide as redox mediator, reveals the identity of salt glands. More insight into the ion expulsion behavior of these glands was obtained by mapping lateral and vertical variations in ion concentrations using surface impedance measurements which indicated five times higher resistance over the salt glands compared to the surrounding tissues and bulk solution. The protocol could be used to understand the developmental processes in plants grown in different soil/water conditions in order to improve salt tolerance of food crops by genetic engineering and hence improve their agricultural productivity.
USDA-ARS?s Scientific Manuscript database
: In this study, we used a diverse panel of alfalfa accessions to identify molecular markers associated with salt tolerance during germination by genome-wide association (GWA) mapping and genotyping-by-sequencing (GBS). Three levels of salt treatments were applied during seed germination. Phenotypic...
40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables, fruiting...
40 CFR 180.1285 - Polyoxin D zinc salt; exemption from the requirement of a tolerance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Polyoxin D zinc salt; exemption from... FOOD Exemptions From Tolerances § 180.1285 Polyoxin D zinc salt; exemption from the requirement of a... biochemical pesticide polyoxin D zinc when used as a fungicide on almonds, cucurbit vegetables, fruiting...
Polle, Andrea; Chen, Shaoliang
2015-09-01
Saline and sodic soils that cannot be used for agriculture occur worldwide. Cultivating stress-tolerant trees to obtain biomass from salinized areas has been suggested. Various tree species of economic importance for fruit, fibre and timber production exhibit high salinity tolerance. Little is known about the mechanisms enabling tree crops to cope with high salinity for extended periods. Here, the molecular, physiological and anatomical adjustments underlying salt tolerance in glycophytic and halophytic model tree species, such as Populus euphratica in terrestrial habitats, and mangrove species along coastlines are reviewed. Key mechanisms that have been identified as mediating salt tolerance are discussed at scales from the genetic to the morphological level, including leaf succulence and structural adjustments of wood anatomy. The genetic and transcriptomic bases for physiological salt acclimation are salt sensing and signalling networks that activate target genes; the target genes keep reactive oxygen species under control, maintain the ion balance and restore water status. Evolutionary adaptation includes gene duplication in these pathways. Strategies for and limitations to tree improvement, particularly transgenic approaches for increasing salt tolerance by transforming trees with single and multiple candidate genes, are discussed. © 2014 John Wiley & Sons Ltd.
Ren, Cheng-Gang; Kong, Cun-Cui; Xie, Zhi-Hong
2018-05-03
Strigolactones (SLs) are considered to be a novel class of phytohormone involved in plant defense responses. Currently, their relationships with other plant hormones, such as abscisic acid (ABA), during responses to salinity stress are largely unknown. In this study, the relationship between SL and ABA during the induction of H 2 O 2 - mediated tolerance to salt stress were studied in arbuscular mycorrhizal (AM) Sesbania cannabina seedlings. The SL levels increased after ABA treatments and decreased when ABA biosynthesis was inhibited in AM plants. Additionally, the expression levels of SL-biosynthesis genes in AM plants increased following treatments with exogenous ABA and H 2 O 2 . Furthermore, ABA-induced SL production was blocked by a pre-treatment with dimethylthiourea, which scavenges H 2 O 2 . In contrast, ABA production was unaffected by dimethylthiourea. Abscisic acid induced only partial and transient increases in the salt tolerance of TIS108 (a SL synthesis inhibitor) treated AM plants, whereas SL induced considerable and prolonged increases in salt tolerance after a pre-treatment with tungstate. These results strongly suggest that ABA is regulating the induction of salt tolerance by SL in AM S. cannabina seedlings.
Vera-Estrella, Rosario; Barkla, Bronwyn J; Pantoja, Omar
2014-12-05
Halophytes have evolved unique molecular strategies to overcome high soil salinity but we still know very little about the main mechanisms that these plants use to complete their lifecycle under salinity stress. One useful approach to further our understanding in this area is to directly compare the response to salinity of two closely related species which show diverse levels of salt tolerance. Here we present a comparative proteomic study using DIGE of leaf microsomal proteins to identify salt-responsive membrane associated proteins in Arabidopsis thaliana (a glycophyte) and Thellungiella salsuginea (a halophyte). While a small number of distinct protein abundance changes were observed upon salt stress in both species, the most notable differences were observed between species and specifically, in untreated plants with a total of 36 proteins displaying significant abundance changes. Gene ontology (GO) term enrichment analysis showed that the majority of these proteins were distributed into two functional categories; transport (31%) and carbohydrate metabolism (17%). Results identify several novel salt responsive proteins in this system and support the theory that T. salsuginea shows a high degree of salt-tolerance because molecular mechanisms are primed to deal with the stress. This intrinsic ability to anticipate salinity stress distinguishes it from the glycophyte A. thaliana. There is significant interest in understanding the molecular mechanisms that plants use to tolerate salinity as soil salinization is becoming an increasing concern for agriculture with high soil Na(+) levels leading to reduced yields and economic loss. Much of our knowledge on the molecular mechanisms employed by plants to combat salinity stress has come from work on salt-sensitive plants, but studies on naturally occurring highly salt-resistant plants, halophytes, and direct comparisons between closely related glycophytes and halophytes, could help to further our understanding of salinity tolerance mechanisms. In this study, employing two closely related species which differ markedly in their salt-tolerance, we carried out a quantitative proteomic approach using 2D-DIGE to identify salt-responsive proteins and compare and contrast the differences between the two plant species. Our work complements a previous study using iTRAQ technology (34) and highlights the benefits of using alternative technologies and approaches to gain a broader representation of the salt-responsive proteome in these species. Copyright © 2014 Elsevier B.V. All rights reserved.
Effective salt criteria in callus-cultured tomato genotypes.
Dogan, Mahmut; Tipirdamaz, Rukiye; Demir, Yavuz
2010-01-01
Na+, Cl-, K+, Ca2+, and proline contents, the rate of lipid peroxidation level in terms of malondialdehyde (MDA) and chlorophyll content, and the changes in the activity of antioxidant enzymes, such as superoxide dismutase (SOD: EC 1.15.1.1), catalase (CAT: EC 1.11.1.6), ascorbate peroxidase (APX: EC 1.11.1.11), and glutathione reductase (GR: EC 1.6.4.2), in tissues of five tomato cultivars in salt tolerance were investigated in a callus culture. The selection of effective parameters used in these tomato genotypes and to find out the use of in vitro tests in place of in vivo salt tolerance tests were investigated. As a material, five different tomato genotypes during a 10-day time period were used, and 150 mM NaCl was applied at callus plant tissue. The exposure to NaCl induced a significant increase in MDA content in both salt-resistant and salt-sensitive cultivars. But the MDA content was higher in salt-sensitive cultivars. The chlorophyll content was more decreased in salt-sensitive than in salt-resistant ones. The proline amount was more increased in salt-sensitive than in salt-resistant ones. It has been reported that salt-tolerant plants, besides being able to regulate the ion and water movements, also exhibit a strong antioxidative enzyme system for effective removal of ROS. The degree of damage depends on the balance between the formation of ROS and its removal by the antioxidative scavenging system that protects against them. Exclusion or inclusion of Na+, Cl-, K+, and Ca2+, antioxidant enzymes and MDA concentration play a key protective role against stress, and this feature at the callus plant tissue used as an identifier for tolerance to salt proved to be an effective criterion.
Molten salt electrolyte battery cell with overcharge tolerance
Kaun, Thomas D.; Nelson, Paul A.
1989-01-01
A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.
Guo, Hailin; Ding, Wanwen; Chen, Jingbo; Chen, Xuan; Zheng, Yiqi; Wang, Zhiyong; Liu, Jianxiu
2014-01-01
Zoysiagrass (Zoysia Willd.) is an important warm season turfgrass that is grown in many parts of the world. Salt tolerance is an important trait in zoysiagrass breeding programs. In this study, a genetic linkage map was constructed using sequence-related amplified polymorphism markers and random amplified polymorphic DNA markers based on an F1 population comprising 120 progeny derived from a cross between Zoysia japonica Z105 (salt-tolerant accession) and Z061 (salt-sensitive accession). The linkage map covered 1211 cM with an average marker distance of 5.0 cM and contained 24 linkage groups with 242 marker loci (217 sequence-related amplified polymorphism markers and 25 random amplified polymorphic DNA markers). Quantitative trait loci affecting the salt tolerance of zoysiagrass were identified using the constructed genetic linkage map. Two significant quantitative trait loci (qLF-1 and qLF-2) for leaf firing percentage were detected; qLF-1 at 36.3 cM on linkage group LG4 with a logarithm of odds value of 3.27, which explained 13.1% of the total variation of leaf firing and qLF-2 at 42.3 cM on LG5 with a logarithm of odds value of 2.88, which explained 29.7% of the total variation of leaf firing. A significant quantitative trait locus (qSCW-1) for reduced percentage of dry shoot clipping weight was detected at 44.1 cM on LG5 with a logarithm of odds value of 4.0, which explained 65.6% of the total variation. This study provides important information for further functional analysis of salt-tolerance genes in zoysiagrass. Molecular markers linked with quantitative trait loci for salt tolerance will be useful in zoysiagrass breeding programs using marker-assisted selection.
Jaarsma, Rinse; de Boer, Albertus H.
2018-01-01
Potato is an important cultivated crop species and since it is moderately salt sensitive there is a need to develop more salt tolerant cultivars. A high activity of Na+ transport across the tonoplast in exchange for H+ is essential to reduce Na+ toxicity. The proton motive force (PMF) generated by the V-H+-ATPase and the V-H+-PPase energizes the Na+(K+)/H+ antiport. We compared the activity, gene expression, and protein levels of the vacuolar proton pumps and the Na+/H+ antiporters in two potato cultivars (Solanum tuberosum) contrasting in their salt tolerance (cv. Desiree; tolerant and Mozart; sensitive) grown at 0 and 60 mM NaCl. Tonoplast-enriched vesicles were used to study the pump activity and protein levels of the V-H+-ATPase and the V-H+-PPase and the activity of the Na+/H+ antiporter. Although salt stress reduced the V-H+-ATPase and the V-H+-PPase activity in both cultivars, the decline in H+ pump activity was more severe in the salt-sensitive cultivar Mozart. After salt treatment, protein amounts of the vacuolar H+ pumps decreased in Mozart but remained unchanged in the cultivar Desiree. Decreased protein amounts of the V-H+-PPase found in Mozart may explain the reduced V-H+-PPase activity found for Mozart after salt stress. Under non-stress conditions, protein amounts of V-H+-PPase were equal in both cultivars while the V-H+-PPase activity was already twice as high and remained higher after salt treatment in the cultivar Desiree as compared to Mozart. This cultivar-dependent V-H+-PPase activity may explain the higher salt tolerance of Desiree. Moreover, combined with reduced vacuolar H+ pump activity, Mozart showed a lower Na+/H+ exchange activity and the Km for Na+ is at least twofold lower in tonoplast vesicles from Desiree, what suggests that NHXs from Desiree have a higher affinity for Na+ as compared to Mozart. From these results, we conclude that the higher capacity in combination with the higher affinity for Na+ uptake can be an important factor to explain the differences in salt tolerance of these two potato cultivars. PMID:29922314
Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice
Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel
2016-01-01
Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt tolerant mutants illustrates the complexity of this trait evidencing the breadth of the plant responses to salinity including simultaneous cooperation of alternative or complementary mechanisms. PMID:27733859
Jaarsma, Rinse; de Boer, Albertus H
2018-01-01
Potato is an important cultivated crop species and since it is moderately salt sensitive there is a need to develop more salt tolerant cultivars. A high activity of Na + transport across the tonoplast in exchange for H + is essential to reduce Na + toxicity. The proton motive force (PMF) generated by the V-H + -ATPase and the V-H + -PPase energizes the Na + (K + )/H + antiport. We compared the activity, gene expression, and protein levels of the vacuolar proton pumps and the Na + /H + antiporters in two potato cultivars ( Solanum tuberosum ) contrasting in their salt tolerance (cv. Desiree; tolerant and Mozart; sensitive) grown at 0 and 60 mM NaCl. Tonoplast-enriched vesicles were used to study the pump activity and protein levels of the V-H + -ATPase and the V-H + -PPase and the activity of the Na + /H + antiporter. Although salt stress reduced the V-H + -ATPase and the V-H + -PPase activity in both cultivars, the decline in H + pump activity was more severe in the salt-sensitive cultivar Mozart. After salt treatment, protein amounts of the vacuolar H + pumps decreased in Mozart but remained unchanged in the cultivar Desiree. Decreased protein amounts of the V-H + -PPase found in Mozart may explain the reduced V-H + -PPase activity found for Mozart after salt stress. Under non-stress conditions, protein amounts of V-H + -PPase were equal in both cultivars while the V-H + -PPase activity was already twice as high and remained higher after salt treatment in the cultivar Desiree as compared to Mozart. This cultivar-dependent V-H + -PPase activity may explain the higher salt tolerance of Desiree. Moreover, combined with reduced vacuolar H + pump activity, Mozart showed a lower Na + /H + exchange activity and the K m for Na + is at least twofold lower in tonoplast vesicles from Desiree, what suggests that NHXs from Desiree have a higher affinity for Na + as compared to Mozart. From these results, we conclude that the higher capacity in combination with the higher affinity for Na + uptake can be an important factor to explain the differences in salt tolerance of these two potato cultivars.
Eshel, Gil; Shaked, Ruth; Kazachkova, Yana; Khan, Asif; Eppel, Amir; Cisneros, Aroldo; Acuna, Tania; Gutterman, Yitzhak; Tel-Zur, Noemi; Rachmilevitch, Shimon; Fait, Aaron; Barak, Simon
2017-01-01
The search for novel stress tolerance determinants has led to increasing interest in plants native to extreme environments – so called “extremophytes.” One successful strategy has been comparative studies between Arabidopsis thaliana and extremophyte Brassicaceae relatives such as the halophyte Eutrema salsugineum located in areas including cold, salty coastal regions of China. Here, we investigate stress tolerance in the desert species, Anastatica hierochuntica (True Rose of Jericho), a member of the poorly investigated lineage III Brassicaceae. We show that A. hierochuntica has a genome approximately 4.5-fold larger than Arabidopsis, divided into 22 diploid chromosomes, and demonstrate that A. hierochuntica exhibits tolerance to heat, low N and salt stresses that are characteristic of its habitat. Taking salt tolerance as a case study, we show that A. hierochuntica shares common salt tolerance mechanisms with E. salsugineum such as tight control of shoot Na+ accumulation and resilient photochemistry features. Furthermore, metabolic profiling of E. salsugineum and A. hierochuntica shoots demonstrates that the extremophytes exhibit both species-specific and common metabolic strategies to cope with salt stress including constitutive up-regulation (under control and salt stress conditions) of ascorbate and dehydroascorbate, two metabolites involved in ROS scavenging. Accordingly, A. hierochuntica displays tolerance to methyl viologen-induced oxidative stress suggesting that a highly active antioxidant system is essential to cope with multiple abiotic stresses. We suggest that A. hierochuntica presents an excellent extremophyte Arabidopsis relative model system for understanding plant survival in harsh desert conditions. PMID:28144244
Zhou, Lian; Zhou, Jing; Xiong, Yuhan; Liu, Chaoxian; Wang, Jiuguang; Wang, Guoqiang; Cai, Yilin
2018-01-01
Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.
Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean
Wang, Youjing; Jiang, Lin; Chen, Jiaqi; Tao, Lei; An, Yimin; Cai, Hongsheng
2018-01-01
The WRKY transcription factors play an important role in the regulation of transcriptional reprogramming associated with plant abiotic stress responses. In this study, the WRKY transcription factor MsWRKY11, containing the plant-specific WRKY zinc finger DNA–binding motif, was isolated from alfalfa. The MsWRKY11 gene was detected in all plant tissues (root, stem, leaf, flower, and fruit), with high expression in root and leaf tissues. MsWRKY11 was upregulated in response to a variety of abiotic stresses, including salinity, alkalinity, cold, abscisic acid, and drought. Overexpression of MsWRKY11 in soybean enhanced the salt tolerance at the seedling stage. Transgenic soybean had a better salt-tolerant phenotype, and the hypocotyls were significantly longer than those of wild-type seeds after salt treatment. Furthermore, MsWRKY11 overexpression increased the contents of chlorophyll, proline, soluble sugar, superoxide dismutase, and catalase, but reduced the relative electrical conductivity and the contents of malonaldehyde, H2O2, and O2-. Plant height, pods per plant, seeds per plant, and 100-seed weight of transgenic MsWRKY11 soybean were higher than those of wild-type soybean, especially OX2. Results of the salt experiment showed that MsWRKY11 is involved in salt stress responses, and its overexpression improves salt tolerance in soybean. PMID:29466387
Gu, Jinbao; Xia, Zhiqiang; Luo, Yuehua; Jiang, Xingyu; Qian, Bilian; Xie, He; Zhu, Jian-Kang; Xiong, Liming; Zhu, Jianhua; Wang, Zhen-Yu
2018-01-01
Abstract Soil salinity is a significant threat to sustainable agricultural production worldwide. Plants must adjust their developmental and physiological processes to cope with salt stress. Although the capacity for adaptation ultimately depends on the genome, the exceptional versatility in gene regulation provided by the spliceosome-mediated alternative splicing (AS) is essential in these adaptive processes. However, the functions of the spliceosome in plant stress responses are poorly understood. Here, we report the in-depth characterization of a U1 spliceosomal protein, AtU1A, in controlling AS of pre-mRNAs under salt stress and salt stress tolerance in Arabidopsis thaliana. The atu1a mutant was hypersensitive to salt stress and accumulated more reactive oxygen species (ROS) than the wild-type under salt stress. RNA-seq analysis revealed that AtU1A regulates AS of many genes, presumably through modulating recognition of 5′ splice sites. We showed that AtU1A is associated with the pre-mRNA of the ROS detoxification-related gene ACO1 and is necessary for the regulation of ACO1 AS. ACO1 is important for salt tolerance because ectopic expression of ACO1 in the atu1a mutant can partially rescue its salt hypersensitive phenotype. Our findings highlight the critical role of AtU1A as a regulator of pre-mRNA processing and salt tolerance in plants. PMID:29228330
Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Ángela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel
2014-01-01
Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants. PMID:25429292
Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel
2014-01-01
Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.
USDA-ARS?s Scientific Manuscript database
Drought and salt tolerances are complex traits and controlled by multiple genes, environmental factors and their interactions. Drought and salt stresses can result in more than 50% yield loss in Upland cotton (Gossypium hirsutum L.). G. barbadense L. (the source of Pima cotton) carries desirable tra...
New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding
Hanin, Moez; Ebel, Chantal; Ngom, Mariama; Laplaze, Laurent; Masmoudi, Khaled
2016-01-01
Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields. PMID:27965692
Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha
2018-07-01
Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.
Tambat, Subodh; Vasudevan, Madavan
2016-01-01
Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an emerging plant model for research on salt tolerance. Illumina sequencing revealed 72,588 clustered transcripts, including 27,434 that were annotated using BLASTX. Salt application resulted in the 2-fold or greater upregulation of 647 genes and downregulation of 735 genes. Of these, 391 proteins were homologous to proteins in the COGs (cluster of orthologous groups) database, and the majorities were grouped into the poorly characterized category. Approximately 50% of the genes assigned to MapMan pathways showed homology to S. maritima. The majority of such genes represented transcription factors. Several genes also contributed to cell wall and carbohydrate metabolism, ion relation, redox responses and G protein, phosphoinositide and hormone signaling. Real-time PCR was used to validate the results of the deep sequencing for the most of the genes. This study demonstrates the expression of protein kinase C, the target of diacylglycerol in phosphoinositide signaling, for the first time in plants. This study further reveals that the biochemical and molecular responses occurring at several levels are associated with salt tolerance in S. maritima. At the structural level, adaptations to high salinity levels include the remodeling of cell walls and the modification of membrane lipids. At the cellular level, the accumulation of glycinebetaine and the sequestration and exclusion of Na+ appear to be important. Moreover, this study also shows that the processes related to salt tolerance might be highly complex, as reflected by the salt-induced enhancement of transcription factor expression, including hormone-responsive factors, and that this process might be initially triggered by G protein and phosphoinositide signaling. PMID:27682829
Yang, Chao; Ma, Biao; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Yin, Cui-Cui; Chen, Hui; Lu, Xiang; Chen, Shou-Yi; Zhang, Jin-Song
2015-01-01
Ethylene plays important roles in plant growth, development, and stress responses. The ethylene signaling pathway has been studied extensively, mainly in Arabidopsis (Arabidopsis thaliana). However, the molecular mechanism of ethylene signaling is largely unknown in rice (Oryza sativa). Previously, we have isolated a set of rice ethylene-response mutants. Here, we characterized the mutant maohuzi6 (mhz6). Through map-based cloning, we found that MHZ6 encodes ETHYLENE INSENSITIVE3-LIKE1 (OsEIL1), a rice homolog of ETHYLENE INSENSITIVE3 (EIN3), which is the master transcriptional regulator of ethylene signaling in Arabidopsis. Disruption of MHZ6/OsEIL1 caused ethylene insensitivity mainly in roots, whereas silencing of the closely related OsEIL2 led to ethylene insensitivity mainly in coleoptiles of etiolated seedlings. This organ-specific functional divergence is different from the functional features of EIN3 and EIL1, both of which mediate the incomplete ethylene responses of Arabidopsis etiolated seedlings. In Arabidopsis, EIN3 and EIL1 play positive roles in plant salt tolerance. In rice, however, lack of MHZ6/OsEIL1 or OsEIL2 functions improves salt tolerance, whereas the overexpressing lines exhibit salt hypersensitivity at the seedling stage, indicating that MHZ6/OsEIL1 and OsEIL2 negatively regulate salt tolerance in rice. Furthermore, this negative regulation by MHZ6/OsEIL1 and OsEIL2 in salt tolerance is likely attributable in part to the direct regulation of HIGH-AFFINITY K+ TRANSPORTER2;1 expression and Na+ uptake in roots. Additionally, MHZ6/OsEIL1 overexpression promotes grain size and thousand-grain weight. Together, our study provides insights for the functional diversification of MHZ6/OsEIL1 and OsEIL2 in ethylene response and finds a novel mode of ethylene-regulated salt stress response that could be helpful for engineering salt-tolerant crops. PMID:25995326
Screening of Purslane (Portulaca oleracea L.) Accessions for High Salt Tolerance
Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah
2014-01-01
Purslane (Portulaca oleracea L.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1 NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P ≤ 0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production. PMID:25003141
Tabassum, Tahira; Farooq, Muhammad; Ahmad, Riaz; Zohaib, Ali; Wahid, Abdul
2017-09-01
This study was conducted to evaluate the potential of seed priming following terminal drought on tolerance against salt stress in bread wheat. Drought was imposed in field sown wheat at reproductive stage (BBCH growth stage 49) and was maintained till physiological maturity (BBCH growth stage 83). Seeds of bread wheat, collected from crop raised under terminal drought and/or well-watered conditions, were subjected to hydropriming and osmopriming (with 1.5% CaCl 2 ) and were sown in soil-filled pots. After stand establishment, salt stress treatments viz. 10 mM NaCl (control) and 100 mM NaCl were imposed. Seed from terminal drought stressed source had less fat (5%), and more fibers (11%), proteins (22%) and total soluble phenolics (514%) than well-watered seed source. Salt stress reduced the plant growth, perturbed water relations and decreased yield. However, an increase in osmolytes accumulation (4-18%), malondialdehyde (MDA) (27-35%) and tissue Na + contents (149-332%) was observed under salt stress. The seeds collected from drought stressed crop had better tolerance against salt stress as indicated by better yield (28%), improved water relations (3-18%), osmolytes accumulation (21-33%), and less MDA (8%) and Na contents (35%) than progeny of well-watered crop. Seed priming, osmopriming in particular, further improved the tolerance against salt stress through improvement in leaf area, water relations, leaf proline, glycine betaine and grain yield while lowering MDA and Na + contents. In conclusion, changed seed composition during terminal drought and seed priming improved the salt tolerance in wheat by modulating the water relations, osmolytes accumulation and lipid peroxidation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Jiang, Wei; Wang, Ya-Li; Fang, Bai-Shan
2018-05-09
As phenylalanine dehydrogenase (PheDH) plays an important role in the synthesis of chiral drug intermediates and detection of phenylketonuria, it is significant to obtain a PheDH with specific and high activity. Here, a PheDH gene, pdh, encoding a novel BhPheDH with 61.0% similarity to the known PheDH from Microbacterium sp., was obtained. The BhPheDH showed optimal activity at 60 °C and pH 7.0, and it showed better stability in hot environment (40-70 °C) than the PheDH from Nocardia sp. And its activity and thermostability could be significantly increased by sodium salt. After incubation for 2 h in 3 M NaCl at 60 °C, the residual activity of the BhPheDH was found to be 1.8-fold higher than that of the control group (without NaCl). The BhPheDH could tolerate high concentration of ammonium chloride and its activity could be also enhanced by the high concentration of ammonium salts. These characteristics indicate that the BhPheDH possesses better thermostability, ammonium chloride tolerance, halophilic mechanism, and high salt activation. The mechanism of thermostability and high salt tolerance of the BhPheDH was analyzed by molecular dynamics simulation. These results provide useful information about the enzyme with high-temperature activity, thermostability, halophilic mechanism, tolerance to high concentration of ammonium chloride, higher salt activation and enantio-selectivity, and the application of molecular dynamics simulation in analyzing the mechanism of these distinctive characteristics.
Overexpression of AtSTO1 leads to improved salt tolerance in Populus tremula × P. alba
Shaneka S. Lawson; Charles H. Michler
2014-01-01
One of the major abiotic stress conditions limiting healthy growth of trees is salinity stress. The use of gene manipulation for increased tolerance to abiotic stress has been successful in many plant species. Overexpression of the Arabidopsis SALT TOLERANT1 (STO1) gene leads to increased concentrations of 9-cis-epoxycarotenoid dioxygenase3, a vital...
Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing
Jin, Hangxia; Dong, Dekun; Yang, Qinghua; Zhu, Danhua
2016-01-01
Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted. PMID:26930632
Helping crops stand up to salt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raeburn, P.
1985-05-01
A new approach to the problem of increasing soil salinity is to raise salt-tolerant plants. The search for such plants involves finding new applications for naturally occurring salt-resistant plants (halophytes), using conventional breeding techniques to identify and strengthen crop varieties known to have better-than-average salt tolerance, and applying recombinant DNA methods to introduce salt resistance into existing plants. One promising plant is salicornia, which produces oil high in polyunsaturates at a greater yield than soybeans. Two varieties of atriplex yield as much animal feed as alfalfa and can be harvested several times a year. Seed companies are supporting the research.
Rong, Liping; Li, Qianzhong; Li, Shushun; Tang, Ling; Wen, Jing
2016-04-01
Maple (Acer palmatum) is an important species for landscape planting worldwide. Salt stress affects the normal growth of the Maple leaf directly, leading to loss of esthetic value. However, the limited availability of Maple genomic information has hindered research on the mechanisms underlying this tolerance. In this study, we performed comprehensive analyses of the salt tolerance in two genotypes of Maple using RNA-seq. Approximately 146.4 million paired-end reads, representing 181,769 unigenes, were obtained. The N50 length of the unigenes was 738 bp, and their total length over 102.66 Mb. 14,090 simple sequence repeats and over 500,000 single nucleotide polymorphisms were identified, which represent useful resources for marker development. Importantly, 181,769 genes were detected in at least one library, and 303 differentially expressed genes (DEGs) were identified between salt-sensitive and salt-tolerant genotypes. Among these DEGs, 125 were upregulated and 178 were downregulated genes. Two MYB-related proteins and one LEA protein were detected among the first 10 most downregulated genes. Moreover, a methyltransferase-related gene was detected among the first 10 most upregulated genes. The three most significantly enriched pathways were plant hormone signal transduction, arginine and proline metabolism, and photosynthesis. The transcriptome analysis provided a rich genetic resource for gene discovery related to salt tolerance in Maple, and in closely related species. The data will serve as an important public information platform to further our understanding of the molecular mechanisms involved in salt tolerance in Maple.
Wu, Honghong; Shabala, Lana; Azzarello, Elisa; Huang, Yuqing; Pandolfi, Camilla; Su, Nana; Wu, Qi; Cai, Shengguan; Bazihizina, Nadia; Wang, Lu; Zhou, Meixue; Mancuso, Stefano; Chen, Zhonghua; Shabala, Sergey
2018-06-11
The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.
Salt tolerances of some mainland tree species select as through nursery screening.
Miah, Md Abdul Quddus
2013-09-15
A study of salt tolerance was carried out on germination, survival and height growth performance of important mesophytic species such as Acacia auriculiformis, Acacia hybrid, Artocarpus heterophyllus, Albizia procera, Albizia lebbeck, Acacia nilotica, Achras sapota, Casuarina equisetifolaia, Emblica officinalis, Leucaena leucocephala, Samania saman, Swetenia macrophylla, Terminalia arjuna, Tamarindus indica, Terminalia bellirica and Thespesia populnea in nursery stage using fresh water and salt (NaCl) solutions of 10, 15 and 20 ppm. Effect of salt on germination, survival performance and height growth performance were examined in this condition. Based on the observation, salt tolerance of these species has been determined Acacia auriculiformis, Acacia hybrid, Achras sapota, Casuarina equisetifolia, Leucaena leucocephala and Tamarindus indica has showed the best capacity to perform in different salinity conditions. Acacia nilotica, Emblica officinalis, Thespesia populnea has performed better. Albizia procera, Samania saman and Terminalia bellirica, germination and height performance showed good but when salinity increases survivability were decreases.
Almeida, Diego M.; Oliveira, M. Margarida; Saibo, Nelson J. M.
2017-01-01
Abstract Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress. PMID:28350038
Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity
NASA Astrophysics Data System (ADS)
Spanò, Carmelina; Bottega, Stefania
2016-02-01
Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.
Wu, Wenli; Zhang, Qiang; Ervin, Erik. H.; Yang, Zhiping; Zhang, Xunzhong
2017-01-01
Brassinosteroids (BR) regulate plant tolerance to salt stress but the mechanisms underlying are not fully understood. This study was to investigate physiological mechanisms of 24-epibrassinolide (EBR)'s impact on salt stress tolerance in perennial ryegrass (Lolium perenne L.) The grass seedlings were treated with EBR at 0, 10, and 100 nM, and subjected to salt stress (250 mM NaCl). The grass irrigated with regular water without EBR served as the control. Salt stress increased leaf electrolyte leakage (EL), malondialdehyde (MDA), and reduced photosynthetic rate (Pn). Exogenous EBR reduced EL and MDA, increased Pn, chlorophyll content, and stomatal conductance (gs). The EBR applications also alleviated decline of superoxide dismutase (SOD) and catalase (CAT) and ascorbate peroxidase (APX) activity when compared to salt treatment alone. Salt stress increased leaf abscisic acid (ABA) and gibberellin A4 (GA4) content but reduced indole-3-acetic acid (IAA), zeatin riboside (ZR), isopentenyl adenosine (iPA), and salicylic acid (SA). Exogenous EBR at 10 nm and 100 nM increased ABA, and iPA content under salt stress. The EBR treatment at 100 nM also increased leaf IAA, ZR, JA, and SA. In addition, EBR treatments increased leaf proline and ions (K+, Mg2+, and Ca2+) content, and reduced Na+/K+ in leaf tissues. The results of this study suggest that EBR treatment may improve salt stress tolerance by increasing the level of selected hormones and antioxidant enzyme (SOD and CAT) activity, promoting accumulation of proline and ions (K+, Ca2+, and Mg2+) in perennial ryegrass. PMID:28674542
On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments
Dvořák, Jan; Edge, Mark; Ross, Kathleen
1988-01-01
Most species of the genus Lophopyrum Löve (Agropyron Geartn.) grow in saline environments and are more tolerant of saline stress than the species of the related genus Triticum L. A 56-chromosome amphiploid from the cross Triticum aestivum cv. Chinese Spring × Lophopyrum elongatum exceeded Chinese Spring in salt tolerance, measured as plant dry-matter production and seed yield in solution cultures with 250 mM NaCl. Thus, the adaptation of Lophopyrum to saline environments is expressed in the wheat genetic background. None of the disomic additions or substitutions of L. elongatum chromosomes in Chinese Spring showed a similar level of saline stress tolerance, which indicates that the trait depends on the activity of genes on more than one chromosome. Comparisons of disomic additions, double monosomic additions from half-diallel crosses among disomic additions, and disomic substitutions of L. elongatum chromosomes in Chinese Spring with Chinese Spring indicated that the enhanced salt tolerance of the amphiploid is primarily controlled by genes with minor effects on three of the seven chromosomes, 3E, 4E, and 7E, interacting in a largely additive manner. The salt tolerance of L. elongatum additionally depends on several minor nonadditive gene interactions. It is concluded that the adaptation of L. elongatum to growth in saline environments evolved by accumulation of new alleles in a number of loci, each with a relatively small effect on salt tolerance. It is further inferred that most of these new alleles were codominant to the original alleles and were able to act independently in enhancing salt tolerance. PMID:16593932
Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9.
Chen, Lin; Liu, Yunpeng; Wu, Gengwei; Veronican Njeri, Kimani; Shen, Qirong; Zhang, Nan; Zhang, Ruifu
2016-09-01
Salt stress reduces plant growth and is now becoming one of the most important factors restricting agricultural productivity. Inoculation of plant growth-promoting rhizobacteria (PGPR) has been shown to confer plant tolerance against abiotic stress, but the detailed mechanisms of how this occurs remain unclear. In this study, hydroponic experiments indicated that the PGPR strain Bacillus amyloliquefaciens SQR9 could help maize plants tolerate salt stress. After exposure to salt stress for 20 days, SQR9 significantly promoted the growth of maize seedlings and enhanced the chlorophyll content compared with the control. Additional analysis showed that the involved mechanisms could be the enhanced total soluble sugar content for decreasing cell destruction, improved peroxidase/catalase activity and glutathione content for scavenging reactive oxygen species, and reduced Na(+) levels in the plant to decrease Na(+) toxicity. These physiological appearances were further confirmed by the upregulation of RBCS, RBCL, H(+) -PPase, HKT1, NHX1, NHX2 and NHX3, as well as downregulation of NCED expression, as determined by quantitative reverse transcription-polymerase chain reaction. However, SQR9 counteracted the increase of abscisic acid in response to salt stress. In summary, these results show that SQR9 confers plant salt tolerance by protecting the plant cells and managing Na(+) homeostasis. Hence, it can be used in salt stress prone areas, thereby promoting agricultural production. © 2016 Scandinavian Plant Physiology Society.
Wei, Yangyang; Xu, Yanchao; Lu, Pu; Wang, Xingxing; Li, Zhenqing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Yuhong; Zhang, Zhenmei; Lin, Zhongxu; Liu, Fang; Wang, Kunbo
2017-01-01
Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress.
Wang, Xingxing; Li, Zhenqing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Yuhong; Zhang, Zhenmei; Liu, Fang
2017-01-01
Cotton is a pioneer of saline land crop, while salt stress still causes its growth inhibition and fiber production decrease. Phenotype identification showed better salt tolerance of a wild diploid cotton species Gossypium klotzschianum. To elucidate the salt-tolerant mechanisms in G. klotzschianum, we firstly detected the changes in hormones, H2O2 and glutathione (GSSH and GSH), then investigated the gene expression pattern of roots and leaves treated with 300 mM NaCl for 0, 3, 12, 48 h, and each time control by RNA-seq on the Illumina-Solexa platform. Physiological determination proved that the significant increase in hormone ABA at 48 h, while that in H2O2 was at 12 h, likewise, the GSH content decrease at 48 h and the GSSH content increase at 48 h, under salt stress. In total, 37,278 unigenes were identified from the transcriptome data, 8,312 and 6,732 differentially expressed genes (DEGs) were discovered to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation and expression analysis elucidated hormone biosynthesis and signal transduction, reactive oxygen species (ROS), and salt overly sensitive (SOS) signal transduction related genes revealed the important roles of them in signal transmission, oxidation balance and ion homeostasis in response to salinity stress. This is a report which focuses on primary response to highly salty stress (upto 300 mM NaCl) in cotton using a wild diploid Gossypium species, broadening our understanding of the salt tolerance mechanism in cotton and laying a solid foundation of salt resistant for the genetic improvement of upland cotton with the resistance to salt stress. PMID:28552980
He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean
2015-11-01
In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A
2014-01-01
We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.
Navarro-Torre, S; Barcia-Piedras, J M; Mateos-Naranjo, E; Redondo-Gómez, S; Camacho, M; Caviedes, M A; Pajuelo, E; Rodríguez-Llorente, I D
2017-03-01
There is an increasing interest to use halophytes for revegetation of salt affected ecosystems, as well as in understanding their mechanisms of salt tolerance. We hypothesized that bacteria from the phyllosphere of these plants might play a key role in its high tolerance to excessive salinity. Eight endophytic bacteria belonging to Bacillus and closely related genera were isolated from phyllosphere of the halophyte Arthrocnemum macrostachyum growing in salty agricultural soils. The presence of plant-growth promoting (PGP) properties, enzymatic activities and tolerance towards NaCl was determined. Effects of inoculation on seeds germination and adult plant growth under experimental NaCl treatments (0, 510 and 1030 mM NaCl) were studied. Inoculation with a consortium including the best performing bacteria improved considerably the kinetics of germination and the final germination percentage of A. macrostachyum seeds. At high NaCl concentrations (1030 mM), inoculation of plants mitigated the effects of high salinity on plant growth and physiological performance and, in addition, this consortium appears to have increased the potential of A. macrostachyum to accumulate Na + in its shoots, thus improving sodium phytoextraction capacity. Bacteria isolated from A. macrostachyum phyllosphere seem to play an important role in plant salt tolerance under stressing salt concentrations. The combined use of A. macrostachyum and its microbiome can be an adequate tool to enhance plant adaptation and sodium phytoextraction during restoration of salt degraded soils. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.
Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Pirrello, Julien; Bernadac, Anne; Ghorbel, Abdelwahed; Bouzayen, Mondher
2015-01-01
Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties.
Chen, Jian; Chen, Xuehui; Zhang, Qingfeng; Zhang, Yidan; Ou, Xiangli; An, Lizhe; Feng, Huyuan; Zhao, Zhiguang
2018-03-01
Plant pectin methyl-esterase (PME) and PME inhibitor (PMEI) belong to large gene families whose members are proposed to be widely involved in growth, development, and stress responses; however, the biological functions of most PMEs and PMEIs have not been characterized. In this study, we studied the roles of CbPMEI1, a cold-induced pectin methyl-esterase inhibitor (PMEI) gene from Chorispora bungeana, under freezing and salt stress. The putative CbPMEI1 peptide shares highest similarity (83%) with AT5G62360 (PMEI13) of Arabidopsis. Overexpression of either CbPMEI1 or PMEI13 in Arabidopsis decreased tissue PME activity and enhanced the degree of methoxylation of cell wall pectins, indicating that both genes encode functional PMEIs. CbPMEI1 and PMEI13 were induced by cold but repressed by salt stress and abscisic acid, suggesting distinct roles of the genes in freezing and salt stress tolerance. Interestingly, transgenic Arabidopsis plants overexpressing CbPMEI1 or PMEI13 showed decreased freezing tolerance, as indicated by survival and electrolyte leakage assays. On the other hand, the salt tolerance of transgenic plants was increased, showing higher rates of germination, root growth, and survival under salinity conditions as compared with non-transgenic wild-type plants. Although the transgenic plants were freezing-sensitive, they showed longer roots than wild-type plants under cold conditions, suggesting a role of PMEs in balancing the trade-off between freezing tolerance and growth. Thus, our study indicates that CbPMEI1 and PMEI13 are involved in root growth regulation under cold and salt stresses, and suggests that PMEIs may be potential targets for genetic engineering aimed to improve fitness of plants under stress conditions. Copyright © 2018 Elsevier GmbH. All rights reserved.
Wu, Jinxia; Zhang, Zhiguo; Zhang, Qian; Liu, Yayun; Zhu, Butuo; Cao, Jian; Li, Zhanpeng; Han, Longzhi; Jia, Jizeng; Zhao, Guangyao; Sun, Xuehui
2015-01-01
Transcription factors (TFs) play important roles in plant growth, development, and responses to environmental stress. In this study, we collected 1,455 full-length (FL) cDNAs of TFs, representing 45 families, from wheat and its relatives Triticum urartu, Aegilops speltoides, Aegilops tauschii, Triticum carthlicum, and Triticum aestivum. More than 15,000 T0 TF FOX (Full-length cDNA Over-eXpressing) rice lines were generated; of these, 10,496 lines set seeds. About 14.88% of the T0 plants showed obvious phenotypic changes. T1 lines (5,232 lines) were screened for salt and osmotic stress tolerance using 150 mM NaCl and 20% (v/v) PEG-4000, respectively. Among them, five lines (591, 746, 1647, 1812, and J4065) showed enhanced salt stress tolerance, five lines (591, 746, 898, 1078, and 1647) showed enhanced osmotic stress tolerance, and three lines (591, 746, and 1647) showed both salt and osmotic stress tolerance. Further analysis of the T-DNA flanking sequences showed that line 746 over-expressed TaEREB1, line 898 over-expressed TabZIPD, and lines 1812 and J4065 over-expressed TaOBF1a and TaOBF1b, respectively. The enhanced salt and osmotic stress tolerance of lines 898 and 1812 was confirmed by retransformation of the respective genes. Our results demonstrate that a heterologous FOX system may be used as an alternative genetic resource for the systematic functional analysis of the wheat genome.
Yang, Lin; Han, Yujie; Wu, Di; Yong, Wang; Liu, Miaomiao; Wang, Sutong; Liu, Wenxin; Lu, Meiyi; Wei, Ying; Sun, Jinsheng
2017-11-01
Cadmium (Cd) pollution has aroused increasing attention due to its toxicity. It has been proved that Na + /H + Antiporter (NHX1) encodes a well-documented protein in Na + /H + trafficking, which leads to salt tolerance. This study showed that Glycine max Na + /H + Antiporter (GmNHX1) improved short-term cadmium and salt resistance in Lemna turionifera 5511. Expression of GmNHX1 prevented root from abscission and cell membrane damage, which also can enhance antioxidant system, inhibited of reactive oxygen species (ROS) accumulation and cause a less absorption of Cd under cadmium and salt stress. The cadmium tolerance suggested that NHX1 was involved under the cadmium stress. Copyright © 2017. Published by Elsevier B.V.
Hyperspectral imaging to identify salt-tolerant wheat lines
USDA-ARS?s Scientific Manuscript database
In order to address the worldwide growing demand for food, agriculture is facing certain challenges and limitations. One of the important threats limiting crop productivity is salinity. Identifying salt tolerate varieties is crucial to mitigate the negative effects of this abiotic stress in agricult...
Zhang, L Q; Niu, Y D; Huridu, H; Hao, J F; Qi, Z; Hasi, A
2014-07-24
In order to obtain a salt-tolerant perennial alfalfa (Medicago sativa L.), we transferred the halophyte Salicornia europaea L. Na(+)/H(+) antiporter gene, SeNHX1, to alfalfa by using the Agrobacterium-mediated transformation method. The transformants were confirmed by both PCR and RT-PCR analyses. Of 197 plants that were obtained after transformation, 36 were positive by PCR analysis using 2 primer pairs for the CaMV35S-SeNHX1 and SeNHX1-Nos fragments; 6 plants survived in a greenhouse. RT-PCR analysis revealed that SeNHX1 was expressed in 5 plants. The resultant transgenic alfalfa had better salt tolerance. After stress treatment for 21 days with 0.6% NaCl, the chlorophyll and MDA contents in transgenic plants were lower, but proline content and SOD, POD, and CAT activities were higher than those in wild-type plants. These results suggest that the salt tolerance of transgenic alfalfa was improved by the overexpression of the SeNHX1 gene.
Xiao, Zhenhai; Wang, Fuwei; Li, Shuchun; Zang, Lina; Zheng, Mi; Li, Ying; Qu, Guan-Zheng
2016-01-01
The aim of this study was to determine whether transgenic birch (Betula platyphylla) ectopic overexpressing a late embryogenesis abundant (LEA) gene and a basic leucine zipper (bZIP) gene from the salt-tolerant genus Tamarix (salt cedar) show increased tolerance to salt (NaCl) stress. Co-transfer of TaLEA and ThbZIP in birch under the control of two independent CaMV 35S promoters significantly enhanced salt stress. PCR and northern blot analyses indicated that the two genes were ectopically overexpressed in several dual-gene transgenic birch lines. We compared the effects of salt stress among three transgenic birch lines (L-4, L-5, and L-8) and wild type (WT). In all lines, the net photosynthesis values were higher before salt stress treatment than afterwards. After the salt stress treatment, the transgenic lines L-4 and L-8 showed higher values for photosynthetic traits, chlorophyll fluorescence, peroxidase and superoxide dismutase activities, and lower malondialdehyde and Na+ contents, compared with those in WT and L-5. These different responses to salt stress suggested that the transcriptional level of the TaLEA and ThbZIP genes differed among the transgenic lines, resulting in a variety of genetic and phenotypic effects. The results of this research can provide a theoretical basis for the genetic engineering of salt-tolerant trees. PMID:27802286
Expression pattern of salt tolerance-related genes in Aegilops cylindrica.
Arabbeigi, Mahbube; Arzani, Ahmad; Majidi, Mohammad Mahdi; Sayed-Tabatabaei, Badraldin Ebrahim; Saha, Prasenjit
2018-02-01
Aegilops cylindrica , a salt-tolerant gene pool of wheat, is a useful plant model for understanding mechanism of salt tolerance. A salt-tolerant USL26 and a salt-sensitive K44 genotypes of A. cylindrica , originating from Uremia Salt Lake shores in Northwest Iran and a non-saline Kurdestan province in West Iran, respectively, were identified based on screening evaluation and used for this work. The objective of the current study was to investigate the expression patterns of four genes related to ion homeostasis in this species. Under treatment of 400 mM NaCl, USL26 showed significantly higher root and shoot dry matter levels and K + concentrations, together with lower Na + concentrations than K44 genotype. A. cylindrica HKT1;5 ( AecHKT1;5 ), SOS1 ( AecSOS1 ), NHX1 ( AecNHX1 ) and VP1 ( AecVP1 ) were partially sequenced to design each gene specific primer. Quantitative real-time PCR showed a differential expression pattern of these genes between the two genotypes and between the root and shoot tissues. Expressions of AecHKT1;5 and AecSOS1 was greater in the roots than in the shoots of USL26 while AecNHX1 and AecVP1 were equally expressed in both tissues of USL26 and K44. The higher transcripts of AecHKT1;5 in the roots versus the shoots could explain both the lower Na + in the shoots and the much lower Na + and higher K + concentrations in the roots/shoots of USL26 compared to K44. Therefore, the involvement of AecHKT1;5 in shoot-to-root handover of Na + in possible combination with the exclusion of excessive Na + from the root in the salt-tolerant genotype are suggested.
The ecological genomic basis of salinity adaptation in Tunisian Medicago truncatula.
Friesen, Maren L; von Wettberg, Eric J B; Badri, Mounawer; Moriuchi, Ken S; Barhoumi, Fathi; Chang, Peter L; Cuellar-Ortiz, Sonia; Cordeiro, Matilde A; Vu, Wendy T; Arraouadi, Soumaya; Djébali, Naceur; Zribi, Kais; Badri, Yazid; Porter, Stephanie S; Aouani, Mohammed Elarbi; Cook, Douglas R; Strauss, Sharon Y; Nuzhdin, Sergey V
2014-12-22
As our world becomes warmer, agriculture is increasingly impacted by rising soil salinity and understanding plant adaptation to salt stress can help enable effective crop breeding. Salt tolerance is a complex plant phenotype and we know little about the pathways utilized by naturally tolerant plants. Legumes are important species in agricultural and natural ecosystems, since they engage in symbiotic nitrogen-fixation, but are especially vulnerable to salinity stress. Our studies of the model legume Medicago truncatula in field and greenhouse settings demonstrate that Tunisian populations are locally adapted to saline soils at the metapopulation level and that saline origin genotypes are less impacted by salt than non-saline origin genotypes; these populations thus likely contain adaptively diverged alleles. Whole genome resequencing of 39 wild accessions reveals ongoing migration and candidate genomic regions that assort non-randomly with soil salinity. Consistent with natural selection acting at these sites, saline alleles are typically rare in the range-wide species' gene pool and are also typically derived relative to the sister species M. littoralis. Candidate regions for adaptation contain genes that regulate physiological acclimation to salt stress, such as abscisic acid and jasmonic acid signaling, including a novel salt-tolerance candidate orthologous to the uncharacterized gene AtCIPK21. Unexpectedly, these regions also contain biotic stress genes and flowering time pathway genes. We show that flowering time is differentiated between saline and non-saline populations and may allow salt stress escape. This work nominates multiple potential pathways of adaptation to naturally stressful environments in a model legume. These candidates point to the importance of both tolerance and avoidance in natural legume populations. We have uncovered several promising targets that could be used to breed for enhanced salt tolerance in crop legumes to enhance food security in an era of increasing soil salinization.
OsPEX11, a Peroxisomal Biogenesis Factor 11, Contributes to Salt Stress Tolerance in Oryza sativa.
Cui, Peng; Liu, Hongbo; Islam, Faisal; Li, Lan; Farooq, Muhammad A; Ruan, Songlin; Zhou, Weijun
2016-01-01
Peroxisomes are single membrane-bound organelles, whose basic enzymatic constituents are catalase and H 2 O 2 -producing flavin oxidases. Previous reports showed that peroxisome is involved in numerous processes including primary and secondary metabolism, plant development and abiotic stress responses. However, knowledge on the function of different peroxisome genes from rice and its regulatory roles in salt and other abiotic stresses is limited. Here, a novel prey protein, OsPEX11 (Os03g0302000), was screened and identified by yeast two-hybrid and GST pull-down assays. Phenotypic analysis of OsPEX11 overexpression seedlings demonstrated that they had better tolerance to salt stress than wild type (WT) and OsPEX11-RNAi seedlings. Compared with WT and OsPEX11-RNAi seedlings, overexpression of OsPEX11 had lower level of lipid peroxidation, Na + /K + ratio, higher activities of antioxidant enzymes (SOD, POD, and CAT) and proline accumulation. Furthermore, qPCR data suggested that OsPEX11 acted as a positive regulator of salt tolerance by reinforcing the expression of several well-known rice transporters ( OsHKT2;1, OsHKT1;5, OsLti6a, OsLti6b, OsSOS1, OsNHX1 , and OsAKT1 ) involved in Na + /K + homeostasis in transgenic plants under salinity. Ultrastructural observations of OsPEX11-RNAi seedlings showed that they were less sensitive to salt stress than WT and overexpression lines. These results provide experimental evidence that OsPEX11 is an important gene implicated in Na + and K + regulation, and plays a critical role in salt stress tolerance by modulating the expression of cation transporters and antioxidant defense. Thus, OsPEX11 could be considered in transgenic breeding for improvement of salt stress tolerance in rice crop.
Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea.
Pawłowicz, Izabela; Waśkiewicz, Agnieszka; Perlikowski, Dawid; Rapacz, Marcin; Ratajczak, Dominika; Kosmala, Arkadiusz
2018-06-07
Acclimation of photosynthetic apparatus to variable environmental conditions is an important component of tolerance to dehydration stresses, including salinity. The present study deals with the research on alterations in chloroplast proteome of the forage grasses. Based on chlorophyll fluorescence parameters, two genotypes of a model grass species-Festuca arundinacea with distinct levels of salinity tolerance: low salt tolerant (LST) and high salt tolerant (HST), were selected. Next, two-dimensional electrophoresis and mass spectrometry were applied under both control and salt stress conditions to identify proteins accumulated differentially between these two genotypes. The physiological analysis revealed that under NaCl treatment the studied plants differed in photosystem II activity, water content, and ion accumulation. The differentially accumulated proteins included ATPase B, ATP synthase, ribulose-1,5-bisphosphate carboxylase large and small subunits, cytochrome b6-f complex iron-sulfur subunit, oxygen-evolving enhancer proteins (OEE), OEE1 and OEE2, plastidic fructose-bisphosphate aldolase (pFBA), and lipocalin. A higher level of lipocalin, potentially involved in prevention of lipid peroxidation under stress, was also observed in the HST genotype. Our physiological and proteomic results performed for the first time on the species of forage grasses clearly showed that chloroplast metabolism adjustment could be a crucial factor in developing salinity tolerance.
Protein Contribution to Plant Salinity Response and Tolerance Acquisition
Kosová, Klára; Prášil, Ilja T.; Vítámvás, Pavel
2013-01-01
The review is focused on plant proteome response to salinity with respect to physiological aspects of plant salt stress response. The attention is paid to both osmotic and ionic effects of salinity stress on plants with respect to several protein functional groups. Therefore, the role of individual proteins involved in signalling, changes in gene expression, protein biosynthesis and degradation and the resulting changes in protein relative abundance in proteins involved in energy metabolism, redox metabolism, stressand defence-related proteins, osmolyte metabolism, phytohormone, lipid and secondary metabolism, mechanical stress-related proteins as well as protein posttranslational modifications are discussed. Differences between salt-sensitive (glycophytes) and salt-tolerant (halophytes) plants are analysed with respect to differential salinity tolerance. In conclusion, contribution of proteomic studies to understanding plant salinity tolerance is summarised and discussed. PMID:23531537
Shen, Zhi-Jun; Chen, Juan; Ghoto, Kabir; Hu, Wen-Jun; Gao, Gui-Feng; Luo, Mei-Rong; Li, Zan; Simon, Martin; Zhu, Xue-Yi; Zheng, Hai-Lei
2018-06-15
Avicennia marina (Forsk.) Vierh is one of the most salt-tolerant mangrove species. Our previous study revealed that nitric oxide (NO) enhanced the salt tolerance of A. marina by promoting salt secretion and Na+ sequestration under salt stress. However, little is known about the regulation of NO on proteomic profiling for this mangrove species. In this study, we used sodium nitroprusside (SNP), an NO donor, to investigate the regulatory mechanism of NO on salt tolerance of A. marina according to physiological and proteomic aspects. Photosynthesis data showed that the reduction in photosynthesis caused by high salinity treatment (400 mM NaCl) could be partially recovered by addition of SNP (100 μM). Further analysis revealed that the high salinity treatment could induce not only the stomatal limitation but also non-stomatal limitation on photosynthetic reduction, while SNP addition could restore the non-stomatal limitation, implying that the application of SNP was beneficial to the metabolic process in leaves. Proteomic analysis identified 49 differentially expressed proteins involved in various biological processes such as photosynthesis, energy metabolism, primary metabolism, RNA transcription, protein translation and stress response proteins. Under high salinity treatment, the abundances of proteins related to photosynthesis, such as ribulose-phosphate 3-epimerase (RPE, spot 3), RuBisCO large subunit (RBCL, spot 4, 5, 24), RuBisCO activase A (RCA, spot 17, 18) and quinine oxidoreductase-like protein isoform 1 (QOR1, spot 23), were significantly decreased. However, the abundance of proteins such as RBCL (spot 5, 9) and QOR1 (spot 23) were increased by SNP addition. In addition, exogenous NO supply alleviated salt tolerance by increasing the accumulation of some proteins involved in energy metabolism (spot 15), primary metabolism (spot 25, 45, 46), RNA transcription (spot 36) and stress response proteins (spot 12, 21, 26, 37, 43). The transcriptional levels of nine selected proteins were mostly consistent with their protein abundance except spot 46. Overall, the presented data demonstrated that NO has a positive effect on improving salt tolerance in A. marina by regulating the protein abundance involved in photosynthesis, energy metabolism, primary metabolism and stress response.
Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D
2015-10-15
Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Yaish, Mahmoud W; Kumar, Prakash P
2015-01-01
The date palm can adapt to extreme drought, to heat, and to relatively high levels of soil salinity. However, excessive amounts of salt due to irrigation with brackish water lead to a significant reduction in the productivity of the fruits as well as marked decrease in the viable numbers of the date palm trees. It is imperative that the nature of the existing salt-adaptation mechanism be understood in order to develop future date palm varieties that can tolerate excessive soil salinity. In this perspective article, several research strategies, obstacles, and precautions are discussed in light of recent advancements accomplished in this field and the properties of this species. In addition to a physiological characterization, we propose the use of a full range of OMICS technologies, coupled with reverse genetics approaches, aimed toward understanding the salt-adaption mechanism in the date palm. Information generated by these analyses should highlight transcriptional and posttranscriptional modifications controlling the salt-adaptation mechanisms. As an extremophile with a natural tolerance for a wide range of abiotic stresses, the date palm may represent a treasure trove of novel genetic resources for salinity tolerance.
Kazachkova, Yana; Khan, Asif; Acuña, Tania; López-Díaz, Isabel; Carrera, Esther; Khozin-Goldberg, Inna; Fait, Aaron; Barak, Simon
2016-01-01
The salinization of land is a major factor limiting crop production worldwide. Halophytes adapted to high levels of salinity are likely to possess useful genes for improving crop tolerance to salt stress. In addition, halophytes could provide a food source on marginal lands. However, despite halophytes being salt-tolerant plants, the seeds of several halophytic species will not germinate on saline soils. Yet, little is understood regarding biochemical and gene expression changes underlying salt-mediated inhibition of halophyte seed germination. We have used the halophytic Arabidopsis relative model system, Eutrema (Thellungiella) salsugineum to explore salt-mediated inhibition of germination. We show that E. salsugineum seed germination is inhibited by salt to a far greater extent than in Arabidopsis, and that this inhibition is in response to the osmotic component of salt exposure. E. salsugineum seeds remain viable even when germination is completely inhibited, and germination resumes once seeds are transferred to non-saline conditions. Moreover, removal of the seed coat from salt-treated seeds allows embryos to germinate on salt-containing medium. Mobilization of seed storage reserves is restricted in salt-treated seeds, while many germination-associated metabolic changes are arrested or progress to a lower extent. Salt-exposed seeds are further characterized by a reduced GA/ABA ratio and increased expression of the germination repressor genes, RGL2, ABI5, and DOG1. Furthermore, a salt-mediated increase in expression of a LATE EMBRYOGENESIS ABUNDANT gene and accretion of metabolites involved in osmoprotection indicates induction of processes associated with stress tolerance, and accumulation of easily mobilized carbon reserves. Overall, our results suggest that salt inhibits E. salsugineum seed germination by inducing a seed state with molecular features of dormancy while a physical constraint to radicle emergence is provided by the seed coat layers. This seed state could facilitate survival on saline soils until a rain event(s) increases soil water potential indicating favorable conditions for seed germination and establishment of salt-tolerant E. salsugineum seedlings. PMID:27536302
Tolerance to road salt deicers in chronically exposed urban pond communities
Freshwater salinization is a concern in urban aquatic ecosystems that receive road salt runoff from vast expanses of impervious surface cover. Our study was designed to evaluate the effects of chloride contamination on urban stormwater pond food webs and to assess the tolerance o...
Identification of a haloalkaliphilic and thermostable cellulase with improved ionic liquid tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tao; Datta, Supratim; Eichler, Jerry
2011-02-17
Some ionic liquids (ILs) have been shown to be very effective solvents for biomass pretreatment. It is known that some ILs can have a strong inhibitory effect on fungal cellulases, making the digestion of cellulose inefficient in the presence of ILs. The identification of IL-tolerant enzymes that could be produced as a cellulase cocktail would reduce the costs and water use requirements of the IL pretreatment process. Due to their adaptation to high salinity environments, halophilic enzymes are hypothesized to be good candidates for screening and identifying IL-resistant cellulases. Using a genome-based approach, we have identified and characterized a halophilicmore » cellulase (Hu-CBH1) from the halophilic archaeon, Halorhabdus utahensis. Hu-CBH1 is present in a gene cluster containing multiple putative cellulolytic enzymes. Sequence and theoretical structure analysis indicate that Hu-CBH1 is highly enriched with negatively charged acidic amino acids on the surface, which may form a solvation shell that may stabilize the enzyme, through interaction with salt ions and/or water molecules. Hu-CBH1 is a heat tolerant haloalkaliphilic cellulase and is active in salt concentrations up to 5 M NaCl. In high salt buffer, Hu-CBH1 can tolerate alkali (pH 11.5) conditions and, more importantly, is tolerant to high levels (20percent w/w) of ILs, including 1-allyl-3-methylimidazolium chloride ([Amim]Cl). Interestingly, the tolerances to heat, alkali and ILs are found to be salt-dependent, suggesting that the enzyme is stabilized by the presence of salt. Our results indicate that halophilic enzymes are good candidates for the screening of IL-tolerant cellulolytic enzymes.« less
Sharma, Amit K; Gohel, Sangeeta; Singh, Satya P
2012-01-01
Actinobase is a relational database of molecular diversity, phylogeny and biocatalytic potential of haloalkaliphilic actinomycetes. The main objective of this data base is to provide easy access to range of information, data storage, comparison and analysis apart from reduced data redundancy, data entry, storage, retrieval costs and improve data security. Information related to habitat, cell morphology, Gram reaction, biochemical characterization and molecular features would allow researchers in understanding identification and stress adaptation of the existing and new candidates belonging to salt tolerant alkaliphilic actinomycetes. The PHP front end helps to add nucleotides and protein sequence of reported entries which directly help researchers to obtain the required details. Analysis of the genus wise status of the salt tolerant alkaliphilic actinomycetes indicated 6 different genera among the 40 classified entries of the salt tolerant alkaliphilic actinomycetes. The results represented wide spread occurrence of salt tolerant alkaliphilic actinomycetes belonging to diverse taxonomic positions. Entries and information related to actinomycetes in the database are publicly accessible at http://www.actinobase.in. On clustalW/X multiple sequence alignment of the alkaline protease gene sequences, different clusters emerged among the groups. The narrow search and limit options of the constructed database provided comparable information. The user friendly access to PHP front end facilitates would facilitate addition of sequences of reported entries. The database is available for free at http://www.actinobase.in.
Linh, Le Hung; Linh, Ta Hong; Xuan, Tran Dang; Ham, Le Huy; Ismail, Abdelbagi M.; Khanh, Tran Dang
2012-01-01
Rice is a stable food in Vietnam and plays a key role in the economy of the country. However, the production and the cultivating areas are adversely affected from the threats of devastation caused by the rise of sea level. Using marker-assisted backcrossing (MABC) to develop a new salt tolerance rice cultivar is one of the feasible methods to cope with these devastating changes. To improve rice salt tolerance in BT7 cultivar, FL478 was used as a donor parent to introgress the Saltol QTL conferring salt tolerance into BT7. Three backcrosses were conducted and successfully transferred positive alleles of Saltol from FL478 into BT7. The plants numbers IL-30 and IL-32 in BC3F1 population expected recurrent genome recovery of up to 99.2% and 100%, respectively. These selected lines that carried the Saltol alleles were screened in field for their agronomic traits. All improved lines had Saltol allele similar to the donor parent FL478, whereas their agronomic performances were the same as the original BT7. We show here the success of improving rice salt tolerance by MABC and the high efficiency of selection in early generations. In the present study, MABC has accelerated the development of superior qualities in the genetic background of BT7. PMID:23326259
Patil, Gunvant; Do, Tuyen; Vuong, Tri D.; Valliyodan, Babu; Lee, Jeong-Dong; Chaudhary, Juhi; Shannon, J. Grover; Nguyen, Henry T.
2016-01-01
Soil salinity is a limiting factor of crop yield. The soybean is sensitive to soil salinity, and a dominant gene, Glyma03g32900 is primarily responsible for salt-tolerance. The identification of high throughput and robust markers as well as the deployment of salt-tolerant cultivars are effective approaches to minimize yield loss under saline conditions. We utilized high quality (15x) whole-genome resequencing (WGRS) on 106 diverse soybean lines and identified three major structural variants and allelic variation in the promoter and genic regions of the GmCHX1 gene. The discovery of single nucleotide polymorphisms (SNPs) associated with structural variants facilitated the design of six KASPar assays. Additionally, haplotype analysis and pedigree tracking of 93 U.S. ancestral lines were performed using publically available WGRS datasets. Identified SNP markers were validated, and a strong correlation was observed between the genotype and salt treatment phenotype (leaf scorch, chlorophyll content and Na+ accumulation) using a panel of 104 soybean lines and, an interspecific bi-parental population (F8) from PI483463 x Hutcheson. These markers precisely identified salt-tolerant/sensitive genotypes (>91%), and different structural-variants (>98%). These SNP assays, supported by accurate phenotyping, haplotype analyses and pedigree tracking information, will accelerate marker-assisted selection programs to enhance the development of salt-tolerant soybean cultivars. PMID:26781337
Gao, Jianwei
2017-01-01
Salt stress is one of the major abiotic stresses that severely impact plant growth and development. In this study, we investigated the physiological and transcriptomic responses of Chinese cabbage “Qingmaye” to salt stress, a main variety in North China. Our results showed that the growth and photosynthesis of Chinese cabbage were significantly inhibited by salt treatment. However, as a glycophyte, Chinese cabbage could cope with high salinity; it could complete an entire life cycle at 100 mM NaCl. The high salt tolerance of Chinese cabbage was achieved by accumulating osmoprotectants and by maintaining higher activity of antioxidant enzymes. Transcriptomic responses were analyzed using the digital gene expression profiling (DGE) technique after 12 h of treatment by 200 mM NaCl. A total of 1235 differentially expressed genes (DEGs) including 740 up- and 495 down-regulated genes were identified. Functional annotation analyses showed that the DEGs were related to signal transduction, osmolyte synthesis, transcription factors, and antioxidant proteins. Taken together, this study contributes to our understanding of the mechanism of salt tolerance in Chinese cabbage and provides valuable information for further improvement of salt tolerance in Chinese cabbage breeding programs. PMID:28895882
Pectin methylesterase31 positively regulates salt stress tolerance in Arabidopsis.
Yan, Jingwei; He, Huan; Fang, Lin; Zhang, Aying
2018-02-05
The alteration of cell wall component and structure is an important adaption to saline environment. Pectins, a major cell wall component, are often present in a highly methylesterified form. The level of methyl esterification determined by pectin methylesterases (PMEs) influences many important wall properties that are believed to relate to the adaption to saline stress. However, little is known about the function of PMEs in response to salt stress. Here, we established a link between pectin methylesterase31 (PME31) and salt stress tolerance. Salt stress significantly increases PME31 expression. PME31 is located in the plasma membrane and the expression level of PME31 was high in dry seeds. Knock-down mutants in PME31 conferred hypersensitive phenotypes to salt stress in seed germination and post-germination growth. Real-time PCR analysis revealed that the transcript levels of several stress genes (DREB2A, RD29A and RD29B) are lower in pme31-2 mutant than that in the wild type in response to salt stress. These results suggested that PME31 could positively modulate salt stress tolerance. Copyright © 2018 Elsevier Inc. All rights reserved.
Nahar, Kamrun; Hasanuzzaman, Mirza; Rahman, Anisur; Alam, Md. Mahabub; Mahmud, Jubayer-Al; Suzuki, Toshisada; Fujita, Masayuki
2016-01-01
The physiological roles of PAs (putrescine, spermidine, and spermine) were investigated for their ability to confer salt tolerance (200 mM NaCl, 48 h) in mung bean seedlings (Vigna radiata L. cv. BARI Mung-2). Salt stress resulted in Na toxicity, decreased K, Ca, Mg, and Zn contents in roots and shoots, and disrupted antioxidant defense system which caused oxidative damage as indicated by increased lipid peroxidation, H2O2 content, O2•- generation rate, and lipoxygenase activity. Salinity-induced methylglyoxal (MG) toxicity was also clearly evident. Salinity decreased leaf chlorophyll (chl) and relative water content (RWC). Supplementation of salt affected seedlings with exogenous PAs enhanced the contents of glutathione and ascorbate, increased activities of antioxidant enzymes (dehydroascorbate reductase, glutathione reductase, catalase, and glutathione peroxidase) and glyoxalase enzyme (glyoxalase II), which reduced salt-induced oxidative stress and MG toxicity, respectively. Exogenous PAs reduced cellular Na content and maintained nutrient homeostasis and modulated endogenous PAs levels in salt affected mung bean seedlings. The overall salt tolerance was reflected through improved tissue water and chl content, and better seedling growth. PMID:27516763
Yang, Yanjuan; Lu, Xiaomin; Yan, Bei; Li, Bin; Sun, Jin; Guo, Shirong; Tezuka, Takafumi
2013-05-01
The plant growth, nitrogen absorption, and assimilation in watermelon (Citrullus lanatus [Thunb.] Mansf.) were investigated in self-grafted and grafted seedlings using the salt-tolerant bottle gourd rootstock Chaofeng Kangshengwang (Lagenaria siceraria Standl.) exposed to 100mM NaCl for 3d. The biomass and NO3(-) uptake rate were significantly increased by rootstock while these values were remarkably decreased by salt stress. However, compared with self-grafted plants, rootstock-grafted plants showed higher salt tolerance with higher biomass and NO3(-) uptake rate under salt stress. Salinity induced strong accumulation of nitrate, ammonium and protein contents and a significant decrease of nitrogen content and the activities of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in leaves of self-grafted seedlings. In contrast, salt stress caused a remarkable decrease in nitrate content and the activities of GS and GOGAT, and a significant increase of ammonium, protein, and nitrogen contents and NR activity, in leaves of rootstock-grafted seedlings. Compared with that of self-grafted seedlings, the ammonium content in leaves of rootstock-grafted seedlings was much lower under salt stress. Glutamate dehydrogenase (GDH) activity was notably enhanced in leaves of rootstock-grafted seedlings, whereas it was significantly inhibited in leaves of self-grafted seedlings, under salinity stress. Three GDH isozymes were isolated by native gel electrophoresis and their expressions were greatly enhanced in leaves of rootstock-grafted seedlings than those of self-grafted seedlings under both normal and salt-stress conditions. These results indicated that the salt tolerance of rootstock-grafted seedlings might (be enhanced) owing to the higher nitrogen absorption and the higher activities of enzymes for nitrogen assimilation induced by the rootstock. Furthermore, the detoxification of ammonium by GDH when the GS/GOGAT pathway was inhibited under salt stress might play an important role in the release of salt stress in rootstock-grafted seedlings. Copyright © 2013 Elsevier GmbH. All rights reserved.
Ashraf, Muhammad; Akram, Nudrat Aisha
2009-01-01
The last century has witnessed a substantial improvement in yield potential, quality and disease resistance in crops. This was indeed the outcome of conventional breeding, which was achieved with little or no knowledge of underlying physiological and biochemical phenomena related to a trait. Also the resources utilized on programs involving conventional breeding were not of great magnitude. Plant breeders have also been successful during the last century in producing a few salt-tolerant cultivars/lines of some potential crops through conventional breeding, but this again has utilized modest resources. However, this approach seems now inefficient due to a number of reasons, and alternatively, genetic engineering for improving crop salt tolerance is being actively followed these days by the plant scientists, world-over. A large number of transgenic lines with enhanced salt tolerance of different crops can be deciphered from the literature but up to now only a very few field-tested cultivars/lines are known despite the fact that considerable resources have been expended on the sophisticated protocols employed for generating such transgenics. This review analytically compares the achievements made so far in terms of producing salt-tolerant lines/cultivars through conventional breeding or genetic engineering.
Yang, Yanjuan; Wang, Liping; Tian, Jing; Li, Jing; Sun, Jin; He, Lizhong; Guo, Shirong; Tezuka, Takafumi
2012-09-01
An insertion grafting technique to do research on salt tolerance was applied using watermelon (Citrullus lanatus [Thunb.] Mansf. cv. Xiuli) as a scion and bottle gourd (Lagenaria siceraria Standl. cv. Chaofeng Kangshengwang) as a rootstock. Rootstock-grafting significantly relieved the inhibition of growth and photosynthesis induced by salt stress in watermelon plants. Proteomic analysis revealed 40 different expressed proteins in response to rootstock-grafting and/or salt stress. These proteins were involved in Calvin cycle, amino acids biosynthesis, carbohydrate and energy metabolism, ROS defense, hormonal biosynthesis and signal transduction. Most of these proteins were up-regulated by rootstock-grafting and/or susceptible to salt stress. The enhancement of the metabolic activities of Calvin cycle, biosynthesis of amino acids, carotenoids and peroxisomes, glycolytic pathway and tricarboxylic acid cycle will probably contribute to intensify the biomass and photosynthetic capacity in rootstock-grafted seedlings under condition without salt. The accumulation of key enzymes included in these biological processes described above seems to play an important role in the enhancement of salt tolerance of rootstock-grafted seedlings. Furthermore, leucine-rich repeat transmembrane protein kinase and phospholipase may be involved in transmitting the internal and external stimuli induced by grafting and/or salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Creating Drought- and Salt-Tolerant Crops by Overexpressing a Vacuolar Pyrophosphatase Gene
USDA-ARS?s Scientific Manuscript database
Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proto...
Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A; Cullmann, Andreas D; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea
2010-12-01
To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.
Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A.; Cullmann, Andreas D.; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea
2010-01-01
To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified. PMID:20959419
Gleadow, Ros; Pegg, Amelia; Blomstedt, Cecilia K.
2016-01-01
Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants. PMID:27506218
Zhou, Zhengfu; Yan, Yongliang; Zhang, Wei; Lu, Wei; Ping, Shuzhen; Dai, Qilin; Yuan, Menglong; Feng, Bin; Hou, Xiaoguang; Zhang, Ying; Ruiqiang; Liu, Tingting; Feng, Lu; Wang, Lei; Chen, Ming; Lin, Min
2009-01-01
Background Globally, about 20% of cultivated land is now affected by salinity. Salt tolerance is a trait of importance to all crops in saline soils. Previous efforts to improve salt tolerance in crop plants have met with only limited success. Bacteria of the genus Deinococcus are known for their ability to survive highly stressful conditions, and therefore possess a unique pool of genes conferring extreme resistance. In Deinococcus radiodurans, the irrE gene encodes a global regulator responsible for extreme radioresistance. Methodology/Principal Findings Using plate assays, we showed that IrrE protected E. coli cells against salt shock and other abiotic stresses such as oxidative, osmotic and thermal shocks. Comparative proteomic analysis revealed that IrrE functions as a switch to regulate different sets of proteins such as stress responsive proteins, protein kinases, glycerol-degrading enzymes, detoxification proteins, and growth-related proteins in E. coli. We also used quantitative RT-PCR to investigate expression of nine selected stress-responsive genes in transgenic and wild-type Brassica napus plants. Transgenic B. napus plants expressing the IrrE protein can tolerate 350 mM NaCl, a concentration that inhibits the growth of almost all crop plants. Conclusions Expression of IrrE, a global regulator for extreme radiation resistance in D. radiodurans, confers significantly enhanced salt tolerance in both E. coli and B. napus. We thus propose that the irrE gene might be used as a potentially promising transgene to improve abiotic stress tolerances in crop plants. PMID:19204796
Potassium and zinc increase tolerance to salt stress in wheat (Triticum aestivum L.).
Jan, Amin Ullah; Hadi, Fazal; Midrarullah; Nawaz, Muhammad Asif; Rahman, Khaista
2017-07-01
Potassium and zinc are essential elements in plant growth and metabolism and plays a vital role in salt stress tolerance. To investigate the physiological mechanism of salt stress tolerance, a pot experiment was conducted. Potassium and zinc significantly minimize the oxidative stress and increase root, shoot and spike length in wheat varieties. Fresh and dry biomass were significantly increased by potassium followed by zinc as compared to control C. The photosynthetic pigment and osmolyte regulator (proline, total phenolic, and total carbohydrate) were significantly enhanced by potassium and zinc. Salt stress increases MDA content in wheat varieties while potassium and zinc counteract the adverse effect of salinity and significantly increased membrane stability index. Salt stress decreases the activities of antioxidant enzymes (superoxide dismutase, catalase and ascorbate peroxidase) while the exogenous application of potassium and zinc significantly enhanced the activities of these enzymes. A significant positive correlation was found of spike length with proline (R 2 = 0.966 ∗∗∗ ), phenolic (R 2 = 0.741 ∗ ) and chlorophyll (R 2 = 0.853 ∗∗ ). The MDA content showed significant negative correlation (R 2 = 0.983 ∗∗∗ ) with MSI. It is concluded that potassium and zinc reduced toxic effect of salinity while its combine application showed synergetic effect and significantly enhanced salt tolerance. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Alavilli, Hemasundar; Lee, Hyoungseok; Park, Mira; Lee, Byeong-ha
2017-01-01
Polytrichastrum alpinum is one of the moss species that survives extreme conditions in the Antarctic. In order to explore the functional benefits of moss genetic resources, P. alpinum multiprotein-bridging factor 1c gene (PaMBF1c) was isolated and characterized. The deduced amino acid sequence of PaMBF1c comprises of a multiprotein-bridging factor (MBF1) domain and a helix-turn-helix (HTH) domain. PaMBF1c expression was induced by different abiotic stresses in P. alpinum, implying its roles in stress responses. We overexpressed PaMBF1c in Arabidopsis and analyzed the resulting phenotypes in comparison with wild type and/or Arabidopsis MBF1c (AtMBF1c) overexpressors. Overexpression of PaMBF1c in Arabidopsis resulted in enhanced tolerance to salt and osmotic stress, as well as to cold and heat stress. More specifically, enhanced salt tolerance was observed in PaMBF1c overexpressors in comparison to wild type but not clearly observable in AtMBF1c overexpressing lines. Thus, these results implicate the evolution of PaMBF1c under salt-enriched Antarctic soil. RNA-Seq profiling of NaCl-treated plants revealed that 10 salt-stress inducible genes were already up-regulated in PaMBF1c overexpressing plants even before NaCl treatment. Gene ontology enrichment analysis with salt up-regulated genes in each line uncovered that the terms lipid metabolic process, ion transport, and cellular amino acid biosynthetic process were significantly enriched in PaMBF1c overexpressors. Additionally, gene enrichment analysis with salt down-regulated genes in each line revealed that the enriched categories in wild type were not significantly overrepresented in PaMBF1c overexpressing lines. The up-regulation of several genes only in PaMBF1c overexpressing lines suggest that enhanced salt tolerance in PaMBF1c-OE might involve reactive oxygen species detoxification, maintenance of ATP homeostasis, and facilitation of Ca2+ signaling. Interestingly, many salt down-regulated ribosome- and translation-related genes were not down-regulated in PaMBF1c overexpressing lines under salt stress. These differentially regulated genes by PaMBF1c overexpression could contribute to the enhanced tolerance in PaMBF1c overexpressing lines under salt stress. PMID:28744295
Kumar, Pankaj; Sharma, Vasundhara; Atmaram, Chobhe Kapil; Singh, Bhupinder
2017-03-01
Soil salinity is a major constraint that limits legume productivity. Pigeonpea is a salt sensitive crop. Seed gamma irradiation at a very low dose (2.5 Gy) is known to enhance seedling establishment, plant growth and yield of cereals and other crops. The present study conducted using two genetically diverse varieties of pigeonpea viz., Pusa-991 and Pusa-992 aimed at establishing the role of pre-sowing seed gamma irradiation at 0, 0.0025, 0.005, 0.01, 0.02, 0.05 and 0.1 kGy on plant growth, seed yield and seed quality under salt stress at 0, 80 and 100 mM NaCl (soil solution EC equivalent 1.92, 5.86 and 8.02 dS/m, respectively) imposed right from the beginning of the experiment. Changes in carbon flow dynamics between shoot and root and concentration of osmolyte, glycine betaine, plant uptake and shoot and root partitioning of Na + and K + and activity of protein degrading enzyme protease were measured under the combined effect of gamma irradiation and salt stress. Positive affect of pre-sowing exposure of seed to low dose of gamma irradiation (<0.01 kGy) under salt stress was evident in pigeonpea. Pigeonpea variety, Pusa-992 showed a better salt tolerance response than Pusa-991 and that the radiated plants performed better than the unirradiated plants even at increasing salinity level. Seed yield and seed protein and iron content were also positively affected by the low dose gamma irradiation under NaCl stress. Multiple factors interacted to determine physiological salt tolerance response of pigeonpea varieties. Gamma irradiation caused a favourable alteration in the source-sink (shoot-root) partitioning of recently fixed carbon ( 14 C) under salt stress in pigeonpea. Gamma irradiation of seeds prior to sowing enhanced glycine betaine content and reduced protease activity at 60-day stage under various salt stress regimes. Lower partitioning of Na + and relatively higher accumulation of K + under irradiation treatment was the other important determinants that differentiated between salt-tolerant and salt-susceptible variety of pigeonpea. The study provides evidence and physiological basis for exploring exploitation of pre-sowing exposure of seeds with low-dose gamma ray for enhancing the salt tolerance response of crop plants.
Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey
2016-10-01
Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Kevin; Buell, Robin; Zhao, Bingyu
Switchgrass (Panicum virgatum) is a warm-season C4 grass that is a target lignocellulosic biofuel species for use in the United States due to its local adaption capabilities and high biomass accumulation. Two ecotypes of switchgrass have been described. Members of the lowland ecotype are taller, have narrower leaf blades and generate more biomass compared to individuals from the upland ecotype. Additionally, lowland plants are generally found in the southern United States while upland switchgrass is more typically present in the northern United States. These differences are important as it is envisioned that switchgrass for biofuel production will typically be grownmore » on marginal lands in the northern United States to supplement and diversify farmers' traditional crop incomes. While lowland switchgrass is more productive, it has poor winter survivability in northern latitudes where upland switchgrass is expected to be grown for biofuel use. Abiotic stresses likely to be encountered by switchgrass include drought and salinity. Despite initially being described as preferring wetter environments, members of the lowland ecotype have been characterized as being more drought tolerant than plants of the upland ecotype. Nonetheless, direct trials have indicated that variation for drought tolerance exists in both ecotypes, but prior to this project, only a relatively small number of switchgrass lines had been tested for drought responses. Similarly, switchgrass cultivars have not been widely tested for salt tolerance, but a few studies have shown that even mild salt stress can inhibit growth. The effects of drought and salt stress on plant growth are complex. Both drought and salinity affect the osmotic potential of plant cells and negatively affect plant growth due to reduced water potential and reduced photosynthesis that results from lower stomatal conductance of CO 2. Plants respond to drought and salt stress by activating genes that directly attempt to reduce the stress (e.g., transmembrane pumps that partition Na +) and mitigate the effects of the stress (e.g., synthesis of osmoprotectant metabolites and stress-related signaling compounds). Prior to the start of this project, no gene expression analysis had been performed on switchgrass under conditions of drought or salt stress, and therefore, relevant gene networks responding to drought and salt stress were unknown in switchgrass. In this project, we performed drought, salt and alkali-salt screens on 49 switchgrass cultivars (Liu et al 2014; Liu et al 2015; Hu et al 2015; Kim et al 2016). These experiments demonstrated that a wide range of variation exists within switchgrass for drought, salt and alkali-salt tolerance and that, while the lowland ecotype of switchgrass is often considered more tolerant of abiotic stresses, there are some upland switchgrass lines that are also very tolerant of drought, salt and alkali-salt stress. We also conducted drought and salt time course experiments with Alamo and Dacotah. We have identified modules of coexpressed genes that differentiate Alamo and Dacotah drought responses. We are continuing to analyze these results and plan to submit manuscripts describing this work in early 2017. In an effort to show how drought- and salt-related gene modules could be dissected, we generated transgenic switchgrass overexpressing either PvGTγ-1 or ZmDREB2. Increased expression of PvGTγ-1 does confer increased salt tolerance, and we were able to identify genes that are induced and suppressed by PvGTγ-1. Overexpression of ZmDREB2 increases drought tolerance in switchgrass. Analysis of the PvGTγ-1 and ZmDREB2 overexpression work is ongoing, and we plan to prepare manuscripts about these experiments for submission in early 2017.« less
Genetic transformation of Populus tomentosa to improve salt tolerance
Ningxia Du; Xin Liu; Yun Li; Shouyi Chen; Jinsong Zhang; Da Ha; Wenguang Deng; Chunkui Sun; Yingzhi Zhang; Paula M Pijut
2012-01-01
Soil salinity can be a limiting factor for productivity in agriculture and forestry. In order to fully utilize saline lands productively in plantation forestry for pulp production, the genetic modification of tree species for salt tolerance may be required. The AhDREB1 gene, a DREB-like transcription factor gene, was transferred into ...
Physiological and ionic changes in dwarf coconut seedlings irrigated with saline water
USDA-ARS?s Scientific Manuscript database
The use of salt-tolerant plants is an important alternative to cope with the problem of salinity in semi-arid regions. The dwarf coconut palm (Cocos nucifera L.) has emerged as a salt-tolerant crop once established. However, little is known about the physiological mechanisms that may contribute to t...
USDA-ARS?s Scientific Manuscript database
Salinity is a major environmental stress that affects agricultural productivity worldwide. One approach to improving salt tolerance in crops is through high expression of the Arabidopsis gene AtNHX1, which encodes a vacuolar sodium/proton antiporter that sequesters excess sodium ion into the large i...
Jia, Ya-xiong; Sun, Lei; He, Feng; Wan, Li-qiang; Yuan, Qing-hua; Li, Xiang-lin
2008-12-01
Salinization contributes significantly to soil degradation and the growth and survival of plants. A high level of salts imposes both ionic and osmotic stresses on plants, resulting in an excessive accumulation of sodium (Na) in plant tissues. Na toxicity disrupts the uptake of soil nutrients. Plant uptake and absorption of macro-elements under salt stress have been studied in plants, but there is little literature addressing the effect of salt stress on plant accumulation and absorption of micro-elements. Species in Elymus genus are among the most important forage plants on high-salinity soils in China An experiment was conducted to study the effect of salt stress on accumulation and absorption of both macro- and micro-elements by wild plants of Elymus genus. Plant samples taken from two populations with different salt tolerance were tested and the level of 4 macro-elements, namely Na, K, Ca and Mg, and 4 micro-elements, namely Cu, Fe, Mn, Zn was determined using atomic absorption spectrophotometer. The relationship between the selection of elements in the process of absorption and accumulation and salt tolerance was also analyzed. The results showed that the level of Na in root and leaf tissues increased with increasing salt stress. The level of Na in leaf tissue of plants with high salt tolerance (HS) was significantly higher than that in plants with low salt tolerance (P<0.05). The level of K and Ca decreased in response to increasing salt stress, while that in HS was higher than in LS. The level of Fe and Zn in the tissues of both roots and leaves increased. No significant difference was detected between HS and LS samples in the level of Cu in root tissues, while that of Cu in leaf tissue of both samples increased. The level of Mn decreased with increasing salt stress, but was higher in HS than in LS. Fe and Zn in roots and leaves of HS were lower than in those of LS.
Genomic insights into salt adaptation in a desert poplar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Tao; Wang, Junyi; Zhou, Gongke
2013-01-01
Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to sa lt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories relatedmore » to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.« less
Zhao, Jian; Barkla, Bronwyn J; Marshall, Joy; Pittman, Jon K; Hirschi, Kendal D
2008-02-01
Perturbing CAX1, an Arabidopsis vacuolar H+/Ca2+ antiporter, and the related vacuolar transporter CAX3, has been previously shown to cause severe growth defects; however, the specific function of CAX3 has remained elusive. Here, we describe plant phenotypes that are shared among cax1 and cax3 including an increased sensitivity to both abscisic acid (ABA) and sugar during germination, and an increased tolerance to ethylene during early seedling development. We have also identified phenotypes unique to cax3, namely salt, lithium and low pH sensitivity. We used biochemical measurements to ascribe these cax3 sensitivities to a reduction in vacuolar H+/Ca2+ transport during salt stress and decreased plasma membrane H+-ATPase activity. These findings catalog an array of CAX phenotypes and assign a specific role for CAX3 in response to salt tolerance.
Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review.
Numan, Muhammad; Bashir, Samina; Khan, Yasmin; Mumtaz, Roqayya; Shinwari, Zabta Khan; Khan, Abdul Latif; Khan, Ajmal; Al-Harrasi, Ahmed
2018-04-01
Approximately 5.2 billion hectare agriculture land are affected by erosion, salinity and soil degradation. Salinity stress has significantly affecting the fertile lands, and therefore possesses a huge impact on the agriculture and economy of a country. Salt stress has severe effects on the growth and development of plants as well as reducing its yield. Plants are inherently equipped with stress tolerance ability to responds the specific type of stress. Plants retained specific mechanisms for salt stress mitigation, such as hormonal stimulation, ion exchange, antioxidant enzymes and activation of signaling cascades on their metabolic and genetic frontiers that sooth the stressed condition. Additional to the plant inherent mechanisms, certain plant growth promoting bacteria (PGPB) also have specialized mechanism that play key role for salt stress tolerance and plant growth promotion. These bacteria triggers plants to produce different plant growth hormones like auxin, cytokinine and gibberellin as well as volatile organic compounds. These bacteria also produces growth regulators like siderophore, which fix nitrogen, solubilize organic and inorganic phosphate. Considering the importance of PGPB in compensation of salt tolerance in plants, the present study has reviewed the different aspect and mechanism of bacteria that play key role in promoting plants growth and yield. It can be concluded that PGPB can be used as a cost effective and economical tool for salinity tolerance and growth promotion in plants. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Banavath, Jayanna N.; Chakradhar, Thammineni; Pandit, Varakumar; Konduru, Sravani; Guduru, Krishna K.; Akila, Chandra S.; Podha, Sudhakar; Puli, Chandra O. R.
2018-03-01
Peanut is an important oilseed and food legume cultivated as a rain-fed crop in semi-arid tropics. Drought and high salinity are the major abiotic stresses limiting the peanut productivity in this region. Development of drought and salt tolerant peanut varieties with improved yield potential using biotechnological approach is highly desirable to improve the peanut productivity in marginal geographies. As abiotic stress tolerance and yield represent complex traits, engineering of regulatory genes to produce abiotic stress-resilient transgenic crops appears to be a viable approach. In the present study, we developed transgenic peanut plants expressing an Arabidopsis homeodomain-leucine zipper transcription factor (AtHDG11) under stress inducible rd29Apromoter. A stress-inducible expression of AtHDG11 in three independent homozygous transgenic peanut lines resulted in improved drought and salt tolerance through up-regulation of known stress responsive genes(LEA, HSP70, Cu/Zn SOD, APX, P5CS, NCED1, RRS5, ERF1, NAC4, MIPS, Aquaporin, TIP, ELIP ) in the stress gene network , antioxidative enzymes, free proline along with improved water use efficiency traits such as longer root system, reduced stomatal density, higher chlorophyll content, increased specific leaf area, improved photosynthetic rates and increased intrinsic instantaneous WUE. Transgenic peanut plants displayed high yield compared to non-transgenic plants under both drought and salt stress conditions. Holistically, our study demonstrates the potentiality of stress-induced expression of AtHDG11 to improve the drought, salt tolerance in peanut.
Qin, Yuxiang; Tian, Yanchen; Liu, Xiuzhi
2015-08-21
Wheat is an important crop in the world. But most of the cultivars are salt sensitive, and often adversely affected by salt stress. WRKY transcription factors play a major role in plant responses to salt stress, but the effective salinity regulatory WRKYs identified in bread wheat are limited and the mechanism of salt stress tolerance is also not well explored. Here, we identified a salt (NaCl) induced class II WRKY transcription factor TaWRKY93. Its transcript level was strongly induced by salt (NaCl) and exogenous abscisic acid (ABA). Over-expression of TaWRKY93 in Arabidopsis thaliana enhanced salt (NaCl), drought, low temperature and osmotic (mannitol) stress tolerance, mainly demonstrated by transgenic plants forming longer primary roots or more lateral roots on MS plates supplemented with NaCl and mannitol individually, higher survival rate under drought and low temperature stress. Further, transgenic plants maintained a more proline content, higher relative water content and less electrolyte leakage than the wild type plants. The transcript abundance of a series of abiotic stress-related genes was up-regulated in the TaWRKY93 transgenic plants. In summary, TaWRKY93 is a new positive regulator of abiotic stress, it may increase salinity, drought and low temperature stress tolerance through enhancing osmotic adjustment, maintaining membrane stability and increasing transcription of stress related genes, and contribute to the superior agricultural traits of SR3 through promoting root development. It can be used as a candidate gene for wheat transgenic engineering breeding against abiotic stress. Copyright © 2015 Elsevier Inc. All rights reserved.
Li, Min; Li, Yujuan; Wang, Ying; Ma, Xiangjian; Zhang, Yuan; Tan, Feng; Wu, Rongling
2016-01-01
As a salt-tolerant arbor tree species, Salix matsudana plays an important role in afforestation and greening in the coastal areas of China. To select superior Salix varieties that adapt to wide saline areas, it is of paramount importance to understand and identify the mechanisms of salt-tolerance at the level of the whole genome. Here, we describe a high-density genetic linkage map of S. matsudana that represents a good coverage of the Salix genome. An intraspecific F1 hybrid population was established by crossing the salt-sensitive “Yanjiang” variety as the female parent with the salt-tolerant “9901” variety as the male parent. This population, along with its parents, was genotyped by specific length amplified fragment sequencing (SLAF-seq), leading to 277,333 high-quality SLAF markers. By marker analysis, we found that both the parents and offspring were tetraploid. The mean sequencing depth was 53.20-fold for “Yanjiang”, 47.41-fold for “9901”, and 11.02-fold for the offspring. Of the SLAF markers detected, 42,321 are polymorphic with sufficient quality for map construction. The final genetic map was constructed using 6,737 SLAF markers, covering 38 linkage groups (LGs). The genetic map spanned 5,497.45 cM in length, with an average distance of 0.82 cM. As a first high-density genetic map of S. matsudana constructed from salt tolerance-varying varieties, this study will provide a foundation for mapping quantitative trait loci that modulate salt tolerance and resistance in Salix and provide important references for molecular breeding of this important forest tree. PMID:27327501
Niu, Mengliang; Huang, Yuan; Sun, Shitao; Sun, Jingyu; Cao, Haishun; Shabala, Sergey
2018-01-01
Abstract Plant salt tolerance can be improved by grafting onto salt-tolerant rootstocks. However, the underlying signaling mechanisms behind this phenomenon remain largely unknown. To address this issue, we used a range of physiological and molecular techniques to study responses of self-grafted and pumpkin-grafted cucumber plants exposed to 75 mM NaCl stress. Pumpkin grafting significantly increased the salt tolerance of cucumber plants, as revealed by higher plant dry weight, chlorophyll content and photochemical efficiency (Fv/Fm), and lower leaf Na+ content. Salinity stress resulted in a sharp increase in H2O2 production, reaching a peak 3 h after salt treatment in the pumpkin-grafted cucumber. This enhancement was accompanied by elevated relative expression of respiratory burst oxidase homologue (RBOH) genes RbohD and RbohF and a higher NADPH oxidase activity. However, this increase was much delayed in the self-grafted plants, and the difference between the two grafting combinations disappeared after 24 h. The decreased leaf Na+ content of pumpkin-grafted plants was achieved by higher Na+ exclusion in roots, which was driven by the Na+/H+ antiporter energized by the plasma membrane H+-ATPase, as evidenced by the higher plasma membrane H+-ATPase activity and higher transcript levels for PMA and SOS1. In addition, early stomatal closure was also observed in the pumpkin-grafted cucumber plants, reducing water loss and maintaining the plant’s hydration status. When pumpkin-grafted plants were pretreated with an NADPH oxidase inhibitor, diphenylene iodonium (DPI), the H2O2 level decreased significantly, to the level found in self-grafted plants, resulting in the loss of the salt tolerance. Inhibition of the NADPH oxidase-mediated H2O2 signaling in the root also abolished a rapid stomatal closure in the pumpkin-grafted plants. We concluded that the pumpkin-grafted cucumber plants increase their salt tolerance via a mechanism involving the root-sourced respiratory burst oxidase homologue-dependent H2O2 production, which enhances Na+ exclusion from the root and promotes an early stomatal closure. PMID:29145593
Brischoux, François; Kornilev, Yurii V
2014-01-01
The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol x l(-1)) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands.
Brischoux, François; Kornilev, Yurii V.
2014-01-01
The widespread relationship between salt excreting structures (e.g., salt glands) and marine life strongly suggests that the ability to regulate salt balance has been crucial during the transition to marine life in tetrapods. Elevated natremia (plasma sodium) recorded in several marine snakes species suggests that the development of a tolerance toward hypernatremia, in addition to salt gland development, has been a critical feature in the evolution of marine snakes. However, data from intermediate stage (species lacking salt glands but occasionally using salty environments) are lacking to draw a comprehensive picture of the evolution of an euryhaline physiology in these organisms. In this study, we assessed natremia of free-ranging Dice snakes (Natrix tessellata, a predominantly fresh water natricine lacking salt glands) from a coastal population in Bulgaria. Our results show that coastal N. tessellata can display hypernatremia (up to 195.5 mmol.l−1) without any apparent effect on several physiological and behavioural traits (e.g., hematocrit, body condition, foraging). More generally, a review of natremia in species situated along a continuum of habitat use between fresh- and seawater shows that snake species display a concomitant tolerance toward hypernatremia, even in species lacking salt glands. Collectively, these data suggest that a physiological tolerance toward hypernatremia has been critical during the evolution of an euryhaline physiology, and may well have preceded the evolution of salt glands. PMID:24658047
Liu, Bing-Xiang; Wang, Zhi-Gang; Liang, Hai-Yong; Yang, Min-Sheng
2012-06-01
Taking the Ulmus pumila seedlings from three different habitats (medium-, mild-, and non-saline soils) as test materials, an experiment was conducted to study their salt-tolerance thresholds and physiological characteristic under different levels (0, 2, 4, 6, 8, and 10 g X kg(-1)) of salt stress. With increasing level of the salt stress, the seedlings taken from medium- and mild- saline habitats had a lower increment of leaf membrane permeability, Na+ content, and Na+/K+ but a higher increment of leaf proline, soluble sugar, and K+ contents, and a lower decrement of leaf starch content, net photosynthetic rate, transpiration rate, intercellular CO2 concentration, and stomatic conductance, as compared with the seedlings taken from non-saline habitat. The salt-tolerance thresholds of the seedlings taken from different habitats were in the order of medium- saline habitat (7.76 g X kg(-1)) > mild- saline habitat (7.37 g X kg(-1)) > non-saline habitat (6.95 g X kg(-1)). It was suggested that the U. pumila seedlings in medium- and mild-saline habitats had a stronger adaptability to saline soil environment than the U. pumila seedlings in non-saline soil environment.
NADP-Malate Dehydrogenase of Sweet Sorghum Improves Salt Tolerance of Arabidopsis thaliana.
Guo, Yuanyuan; Song, Yushuang; Zheng, Hongxiang; Zhang, Yi; Guo, Jianrong; Sui, Na
2018-06-08
Sweet sorghum is a C 4 crop that shows high salt tolerance and high yield. NADP-malate dehydrogenase ( NADP-ME) is a crucial enzyme of the C 4 pathway. The regulatory mechanism of NADP-ME remains unclear. In this study, we isolated SbNADP-ME from sweet sorghum. The open reading frame of SbNADP-ME is 1911 bp and 637 amino acid residues. Quantitative real-time PCR analysis showed that SbNADP-ME transcription in sweet sorghum was enhanced by salt stress. The SbNADP-ME transcript level was highest under exposure to 150 mM NaCl. Arabidopsis overexpressing SbNADP-ME showed increased germination rate and root length under NaCl treatments. At the seedling stage, physiological photosynthesis parameters, chlorophyll content, PSII photochemical efficiency, and PSI oxidoreductive activity in the wild type decreased more severely than in the overexpression lines but less than in T-DNA insertion mutants under salt stress. Overexpression of SbNADP-ME in Arabidopsis may also increase osmotic adjustment and scavenging activity on DPPH and decrease membrane peroxidation. These results suggest that SbNADP-ME overexpression in Arabidopsis increases salt tolerance and alleviates PSII and PSI photoinhibition under salt stress by improving photosynthetic capacity.
Xu, Chongzhi; Tang, Xiaoli; Shao, Hongbo; Wang, Hongyan
2016-01-01
Soil salinity is becoming the key constraints factor to agricultural production. Therefore, the plant especially the crops possessing capacities of salt tolerance will be of great economic significance. The adaptation or tolerance of plant to salinity stress involves a series of physiological, metabolic and molecular mechanisms. Halophytes are the kind of organisms which acquire special salt tolerance mechanisms to respond to the salt tress and ensure normal growth and development under saline conditions in their lengthy evolutionary adaptation, so understanding how halophytes respond to salinity stress will provide us with methods and tactics to foster and develop salt resistant varieties of crops. The strategies in physiological and molecular level adopted by halophytes are various including the changes in photosynthetic and transpiration rate, the sequestration of Na+ to extracellular or vacuole, the regulation of stomata aperture and stomatal density, the accumulation and synthesis of the phytohormones as well as the relevant gene expression underlying these physiological traits, such as the stress signal transduction, the regulation of the transcription factors, the activation and expression of the transporter genes, the activation or inhibition of the synthetases and so on. This review focuses on the research advances of the regulating mechanisms in halophytes from physiological to molecular, which render the halophytes tolerance and adaption to salinity stress. PMID:27252587
Gleadow, Ros; Pegg, Amelia; Blomstedt, Cecilia K
2016-10-01
Rising sea levels are threatening agricultural production in coastal regions due to inundation and contamination of groundwater. The development of more salt-tolerant crops is essential. Cassava is an important staple, particularly among poor subsistence farmers. Its tolerance to drought and elevated temperatures make it highly suitable for meeting global food demands in the face of climate change, but its ability to tolerate salt is unknown. Cassava stores nitrogen in the form of cyanogenic glucosides and can cause cyanide poisoning unless correctly processed. Previous research demonstrated that cyanide levels are higher in droughted plants, possibly as a mechanism for increasing resilience to oxidative stress. We determined the tolerance of cassava to salt at two different stages of development, and tested the hypothesis that cyanide toxicity would be higher in salt-stressed plants. Cassava was grown at a range of concentrations of sodium chloride (NaCl) at two growth stages: tuber initiation and tuber expansion. Established plants were able to tolerate 100mM NaCl but in younger plants 40mM was sufficient to retard plant growth severely. Nutrient analysis showed that plants were only able to exclude sodium at low concentrations. The foliar cyanogenic glucoside concentration in young plants increased under moderate salinity stress but was lower in plants grown at high salt. Importantly, there was no significant change in the cyanogenic glucoside concentration in the tubers. We propose that the mechanisms for salinity tolerance are age dependent, and that this can be traced to the relative cost of leaves in young and old plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
2018-01-01
ABSTRACT The complete genome sequence of Bacillus cereus strain TG1-6, which is a highly salt-tolerant rhizobacterium that enhances plant tolerance to drought stress, is reported here. The sequencing process was performed based on a combination of pyrosequencing and single-molecule sequencing. The complete genome is estimated to be approximately 5.42 Mb, containing a total of 5,610 predicted protein-coding DNA sequences (CDSs). PMID:29748401
A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses
2014-01-01
Background Aquaporin (AQP) proteins function in transporting water and other small molecules through the biological membranes, which is crucial for plants to survive in drought or salt stress conditions. However, the precise role of AQPs in drought and salt stresses is not completely understood in plants. Results In this study, we have identified a PIP1 subfamily AQP (MaPIP1;1) gene from banana and characterized it by overexpression in transgenic Arabidopsis plants. Transient expression of MaPIP1;1-GFP fusion protein indicated its localization at plasma membrane. The expression of MaPIP1;1 was induced by NaCl and water deficient treatment. Overexpression of MaPIP1;1 in Arabidopsis resulted in an increased primary root elongation, root hair numbers and survival rates compared to WT under salt or drought conditions. Physiological indices demonstrated that the increased salt tolerance conferred by MaPIP1;1 is related to reduced membrane injury and high cytosolic K+/Na+ ratio. Additionally, the improved drought tolerance conferred by MaPIP1;1 is associated with decreased membrane injury and improved osmotic adjustment. Finally, reduced expression of ABA-responsive genes in MaPIP1;1-overexpressing plants reflects their improved physiological status. Conclusions Our results demonstrated that heterologous expression of banana MaPIP1;1 in Arabidopsis confers salt and drought stress tolerances by reducing membrane injury, improving ion distribution and maintaining osmotic balance. PMID:24606771
Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin
2015-01-01
Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.
USDA-ARS?s Scientific Manuscript database
The concept of reusing salt-laden drainage water in agricultural systems was developed as part of the integrated on-farm drainage management system. The successful adoption of a practical water reuse strategy in Central California requires the selection of salt and boron tolerant crops for use with ...
Pan, Yanglu; Hu, Xin; Li, Chunyan; Xu, Xing; Su, Chenggang; Li, Jinhua; Song, Hongyuan; Zhang, Xingguo; Pan, Yu
2017-01-01
The basic leucine zipper (bZIP) transcription factors have crucial roles in plant stress responses. In this study, the bZIP family gene SlbZIP38 (GenBank accession No: XM004239373) was isolated from a tomato (Solanum lycopersicum cv. Ailsa Craig) mature leaf cDNA library. The DNA sequence of SlbZIP38 encodes a protein of 484 amino acids, including a highly conserved bZIP DNA-binding domain in the C-terminal region. We found that SlbZIP38 was differentially expressed in various organs of the tomato plant and was downregulated by drought, salt stress, and abscisic acid (ABA). However, overexpression of SlbZIP38 significantly decreased drought and salt stress tolerance in tomatoes (Ailsa Craig). The findings that SlbZIP38 overexpression reduced the chlorophyll and free proline content in leaves but increased the malondialdehyde content may explain the reduced drought and salt tolerance observed in these lines. These results suggest that SlbZIP38 is a negative regulator of drought and salt resistance that acts by modulating ABA signaling. PMID:29261143
Lakra, Nita; Kaur, Charanpreet; Anwar, Khalid; Singla-Pareek, Sneh Lata; Pareek, Ashwani
2018-05-01
High salinity is one of the major problems in crop productivity, affecting seed germination as well as yield. In order to enhance tolerance of crops towards salinity, it is essential to understand the underlying physiological and molecular mechanisms. In this endeavor, study of contrasting genotypes of the same species differing in their response towards salinity stress can be very useful. In the present study, we have investigated temporal differences in morphological, physiological and proteome profiles of two contrasting genotypes of rice to understand the basis of salt tolerance. When compared to IR64 rice, Pokkali, the salt-tolerant wild genotype, has enhanced capacity to cope with stress, better growth rate and possesses efficient antioxidant system, as well as better photosynthetic machinery. Our proteome studies revealed a higher and an early abundance of proteins involved in stress tolerance and photosynthesis in Pokkali in comparison with IR64, which, in contrast, showed greater changes in metabolic machinery even during early duration of stress. Our findings suggest important differences in physicochemical and proteome profiles of the two genotypes, which may be the basis of observed stress tolerance in the salt-tolerant Pokkali. © 2017 John Wiley & Sons Ltd.
Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula
Moriuchi, Ken S.; Friesen, Maren L.; Cordeiro, Matilde A.; Badri, Mounawer; Vu, Wendy T.; Main, Bradley J.; Aouani, Mohamed Elarbi; Nuzhdin, Sergey V.; Strauss, Sharon Y.; von Wettberg, Eric J. B.
2016-01-01
High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within-generation phenotypic plasticity, which are likely to vary in populations from contrasting environments. PMID:26943813
Misra, Sankalp; Dixit, Vijay Kant; Khan, Mohammad Haneef; Kumar Mishra, Shashank; Dviwedi, Gyanendra; Yadav, Sumit; Lehri, Alok; Singh Chauhan, Puneet
2017-12-01
A comprehensive survey for 09 agro-climatic zones of Uttar Pradesh, India was conducted to isolate and characterize salt tolerant 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase possessing plant growth promoting (PGP) rhizobacteria for salt stress amelioration in rice. Here, we have isolated 1125 bacteria having the ability to tolerate 1M NaCl and out of those, 560 were screened for utilizing ACC as sole nitrogen source. 560 isolates were subjected for bacteria coated seed germination assay under 100mM salt (NaCl) stress resulting to 77 isolates which were further evaluated for seed germination assay, PGP and abiotic stress tolerance ability in vitro. This evaluation revealed 15 potent rhizobacteria representing each agro-climatic zone and salt stress mitigation in vitro. In particular, the biomass obtained for bacteria coated rice seedlings were corroborated with the performance of isolates exhibiting maximum average indole acetic acid (IAA) production respective to the agro-climatic zone. Surprisingly based on 16S rRNA, much of the propitious isolates belonged to same specific epithet exhibited variedly in their characteristics. Overall, Bacillus spp. was explored as dominant genera in toto with highest distribution in Western Plain zone followed by Central zone. Therefore, this study provides a counter-intuitive perspective of selection of native microflora for their multifarious PGP and abiotic stress tolerance abilities based on the agro-climatic zones to empower the establishment and development of more suitable inoculants for their application in agriculture under local stress environments. Copyright © 2017 Elsevier GmbH. All rights reserved.
Mapping QTL for Sex and Growth Traits in Salt-Tolerant Tilapia (Oreochromis spp. X O. mossambicus).
Lin, Grace; Chua, Elaine; Orban, Laszlo; Yue, Gen Hua
2016-01-01
In aquaculture, growth and sex are economically important traits. To accelerate genetic improvement in increasing growth in salt-tolerant tilapia, we conducted QTL mapping for growth traits and sex with an F2 family, including 522 offspring and two parents. We used 144 polymorphic microsatellites evenly covering the genome of tilapia to genotype the family. QTL analyses were carried out using interval mapping for all individuals, males and females in the family, respectively. Using all individuals, three suggestive QTL for body weight, body length and body thickness respectively were detected in LG20, LG22 and LG12 and explained 2.4% to 3.1% of phenotypic variance (PV). When considering only males, five QTL for body weight were detected on five LGs, and explained 4.1 to 6.3% of PV. Using only females from the F2 family, three QTL for body weight were detected on LG1, LG6 and LG8, and explained 7.9-14.3% of PV. The QTL for body weight in males and females were located in different LGs, suggesting that in salt-tolerant tilapia, different set of genes 'switches' control the growth in males and females. QTL for sex were mapped on LG1 and LG22, indicating multigene sex determination in the salt-tolerant tilapia. This study provides new insights on the locations and effects of QTL for growth traits and sex, and sets the foundation for fine mapping for future marker-assisted selection for growth and sex in salt-tolerant tilapia aquaculture.
Mapping QTL for Sex and Growth Traits in Salt-Tolerant Tilapia (Oreochromis spp. X O. mossambicus)
Lin, Grace; Chua, Elaine; Orban, Laszlo; Yue, Gen Hua
2016-01-01
In aquaculture, growth and sex are economically important traits. To accelerate genetic improvement in increasing growth in salt-tolerant tilapia, we conducted QTL mapping for growth traits and sex with an F2 family, including 522 offspring and two parents. We used 144 polymorphic microsatellites evenly covering the genome of tilapia to genotype the family. QTL analyses were carried out using interval mapping for all individuals, males and females in the family, respectively. Using all individuals, three suggestive QTL for body weight, body length and body thickness respectively were detected in LG20, LG22 and LG12 and explained 2.4% to 3.1% of phenotypic variance (PV). When considering only males, five QTL for body weight were detected on five LGs, and explained 4.1 to 6.3% of PV. Using only females from the F2 family, three QTL for body weight were detected on LG1, LG6 and LG8, and explained 7.9–14.3% of PV. The QTL for body weight in males and females were located in different LGs, suggesting that in salt-tolerant tilapia, different set of genes ‘switches’ control the growth in males and females. QTL for sex were mapped on LG1 and LG22, indicating multigene sex determination in the salt-tolerant tilapia. This study provides new insights on the locations and effects of QTL for growth traits and sex, and sets the foundation for fine mapping for future marker-assisted selection for growth and sex in salt-tolerant tilapia aquaculture. PMID:27870905
Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome
Culligan, Eamonn P; Sleator, Roy D; Marchesi, Julian R; Hill, Colin
2012-01-01
Metagenomics is a powerful tool that allows for the culture-independent analysis of complex microbial communities. One of the most complex and dense microbial ecosystems known is that of the human distal colon, with cell densities reaching up to 1012 per gram of faeces. With the majority of species as yet uncultured, there are an enormous number of novel genes awaiting discovery. In the current study, we conducted a functional screen of a metagenomic library of the human gut microbiota for potential salt-tolerant clones. Using transposon mutagenesis, three genes were identified from a single clone exhibiting high levels of identity to a species from the genus Collinsella (closest relative being Collinsella aerofaciens) (COLAER_01955, COLAER_01957 and COLAER_01981), a high G+C, Gram-positive member of the Actinobacteria commonly found in the human gut. The encoded proteins exhibit a strong similarity to GalE, MurB and MazG. Furthermore, pyrosequencing and bioinformatic analysis of two additional fosmid clones revealed the presence of an additional galE and mazG gene, with the highest level of genetic identity to Akkermansia muciniphila and Eggerthella sp. YY7918, respectively. Cloning and heterologous expression of the genes in the osmosensitive strain, Escherichia coli MKH13, resulted in increased salt tolerance of the transformed cells. It is hoped that the identification of atypical salt tolerance genes will help to further elucidate novel salt tolerance mechanisms, and will assist our increased understanding how resident bacteria cope with the osmolarity of the gastrointestinal tract. PMID:22534607
Research on screening of suitable forage grasses in coastal saline - alkaline soil
NASA Astrophysics Data System (ADS)
Yue, Xiaoyu; Han, Xin; Song, Qianhong; Yang, Xu; Zhou, Qingyun
2017-11-01
The screening of salt-tolerant plants can provide suitable tree species for the afforestation of coastal salinity and maintain biodiversity and ecological stability. The research was based on the study of seven grasses, such as high fescue, the bermuda grass, the thyme, the rye grass, the precocious grass, the third leaf, and the red three leaves. Each pasture was planted in three different kinds of soil, such as salt alkali soil, salt alkali soil + ecological bag and non-saline alkali soil. The effect of salt alkali soil on germinating time, germination rate and grass growth was analyzed. The effects of ecological bag on soil salt and the growth and germination of grass was also analyzed in order to provide the reference basis for the widespread and systematic selection of salt-tolerant plants, with the grass being selected for the suitable ecological bag.
Making Plants Break a Sweat: the Structure, Function, and Evolution of Plant Salt Glands
Dassanayake, Maheshi; Larkin, John C.
2017-01-01
Salt stress is a complex trait that poses a grand challenge in developing new crops better adapted to saline environments. Some plants, called recretohalophytes, that have naturally evolved to secrete excess salts through salt glands, offer an underexplored genetic resource for examining how plant development, anatomy, and physiology integrate to prevent excess salt from building up to toxic levels in plant tissue. In this review we examine the structure and evolution of salt glands, salt gland-specific gene expression, and the possibility that all salt glands have originated via evolutionary modifications of trichomes. Salt secretion via salt glands is found in more than 50 species in 14 angiosperm families distributed in caryophyllales, asterids, rosids, and grasses. The salt glands of these distantly related clades can be grouped into four structural classes. Although salt glands appear to have originated independently at least 12 times, they share convergently evolved features that facilitate salt compartmentalization and excretion. We review the structural diversity and evolution of salt glands, major transporters and proteins associated with salt transport and secretion in halophytes, salt gland relevant gene expression regulation, and the prospect for using new genomic and transcriptomic tools in combination with information from model organisms to better understand how salt glands contribute to salt tolerance. Finally, we consider the prospects for using this knowledge to engineer salt glands to increase salt tolerance in model species, and ultimately in crops. PMID:28400779
Cheng, Rui; Xu, Linxiang; Wang, Shiming; Wang, Yang; Zhang, Jianfa
2014-04-01
A new β-1,3-1,4-glucanase gene (PlicA) was cloned from Paenibacillus sp. S09. The ORF contained 717 bp coding for a 238 amino acid protein. PlicA, expressed in Escherichia coli and purified by Ni(2+)-affinity chromatography, had optimum activity at 55 °C and pH 6.2. The specific activity toward barley β-glucan reached 7,055 U/mg. K m and V max values with barley β-glucan were 3.7 mg/ml and 3.3 × 10(3) μmol/min mg, respectively. The enzyme exhibited acid- and alkali-tolerance with more than 80 % activity remaining after incubation for 4 h at pH 3.5-12. PlicA was salt-tolerant (>90 % activity retained in 4 M NaCl at 25 °C for 24 h) and salt-activated: activity rising 1.5-fold in 0.5 M NaCl. The thermostability was improved by NaCl and CaCl2. This is the first report of an acid-, alkali- and salt-tolerant bacterial β-1,3-1,4-glucanase with high catalytic efficiency.
Válega, M; Lima, A I G; Figueira, E M A P; Pereira, E; Pardal, M A; Duarte, A C
2009-01-01
In the presence of metal stress, plants can resort to a series of tolerance mechanisms. Therefore field studies should be undertaken in order to evaluate the real role of these mechanisms in stress coping. The aim of this paper was to clarify the biochemical processes behind mercury tolerance in Halimione portulacoides (L.) Aellen (Caryophyllales: Chenopodiaceae) collected in a mercury contaminated salt marsh. Different fractions of mercury were separated: buffer-soluble (mainly cytosolic) and insoluble mercury (mainly associated with membranes and cell walls). The amounts in each fraction of metal were compared and related to metal distribution within plant organs. Protein-mercury complexes were isolated and analysed for their thiol content in order to assess wether the tolerance of this salt marsh plant was associated with the induction of metal chelation by phytochelatins. Overall, the mercury tolerance strategies of the plant are likely to involve root cell wall immobilization as a major mechanism of metal resistance, rather than metal chelation in the cytosolic fraction. Nevertheless, phytochelatins were demonstrated to chelate mercury under environmental exposure.
Zhu, Mingku; Meng, Xiaoqing; Cai, Jing; Li, Ge; Dong, Tingting; Li, Zongyun
2018-05-08
Basic region/leucine zipper (bZIP) transcription factors perform as crucial regulators in ABA-mediated stress response in plants. Nevertheless, the functions for most bZIP family members in tomato remain to be deciphered. Here we examined the functional characterization of SlbZIP1 under salt and drought stresses in tomato. Silencing of SlbZIP1 in tomato resulted in reduced expression of multiple ABA biosynthesis- and signal transduction-related genes in transgenic plants. In stress assays, SlbZIP1-RNAi transgenic plants exhibited reduced tolerance to salt and drought stresses compared with WT plants, as are evaluated by multiple physiological parameters associated with stress responses, such as decreased ABA, chlorophyll contents and CAT activity, and increased MDA content. In addition, RNA-seq analysis of transgenic plants revealed that the transcription levels of multiple genes encoding defense proteins related to responses to abiotic stress (e.g. endochitinase, peroxidases, and lipid transfer proteins) and biotic stress (e.g. pathogenesis-related proteins) were downregulated in SlbZIP1-RNAi plants, suggesting that SlbZIP1 plays a role in regulating the genes related to biotic and abiotic stress response. Collectively, the data suggest that SlbZIP1 exerts an essential role in salt and drought stress tolerance through modulating an ABA-mediated pathway, and SlbZIP1 may hold potential applications in the engineering of salt- and drought-tolerant tomato cultivars.
Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice.
Saini, Shivani; Kaur, Navdeep; Pati, Pratap Kumar
2018-06-01
Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H 2 O 2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS. Copyright © 2018. Published by Elsevier Inc.
Boukhris, Ines; Farhat-Khemakhem, Ameny; Blibech, Monia; Bouchaala, Kameleddine; Chouayekh, Hichem
2015-09-01
The extracellular phytase produced by the Bacillus amyloliquefaciens US573 strain, isolated from geothermal soil located in Southern Tunisia was purified and characterized. This calcium-dependent and bile-stable enzyme (PHY US573) was optimally active at pH 7.5 and 70 °C. It showed a good stability at pH ranging from 4 to 10, and especially, an exceptional thermostability as it recovered 50 and 62% of activity after heating for 10 min at 100 and 90 °C, respectively. In addition, PHY US573 was found to be extremely salt-tolerant since it preserved 80 and 95% of activity in the presence of 20 g/l of NaCl and LiCl, respectively. The gene corresponding to PHY US573 was cloned. It encodes a 383 amino acids polypeptide exhibiting 99% identity with the highly thermostable phytases from Bacillus sp. MD2 and B. amyloliquefaciens DS11 (3 and 5 residues difference, respectively), suggesting the existence of common molecular determinants responsible for their remarkable heat stability. Overall, our findings illustrated that in addition to its high potential for application in feed industry, the salt tolerance of the PHY US573 phytase, may represent an exciting new avenue for improvement of phosphorus-use efficiency of salt-tolerant plants in soils with high salt and phytate content. Copyright © 2015 Elsevier B.V. All rights reserved.
Gonzalez, Ernesto E; Olson, Douglas; Aryana, Kayanush
2017-06-01
Lactococcus lactis is a culture widely used in salt-containing dairy products. Salt hinders bacterial growth, but exposure to environmental stress may protect cells against subsequent stress, including salt. The objective of this study was to evaluate the salt tolerance of L. lactis R-604 after exposure to various stresses. The culture was subjected to 10% (vol/vol) ethanol for 30 min, mild heat at 52°C for 30 min, 15 mM hydrogen peroxide for 30 min, or UV light (254 nm) for 5 min and compared with a control. Starting with 5 log cfu/mL for all treatments, growth was determined in M17 broth with 5 NaCl concentrations (0, 1, 3, 5, and 7% wt/vol). Plating was conducted daily for 5 d. Salt tolerance was enhanced with mild heat exposure before growth in M17 broth with 5% (wt/vol) NaCl on d 3, 4, and 5, and with exposure to hydrogen peroxide and ethanol stresses before growth in M17 broth with 5% (wt/vol) NaCl on d 4 and 5. Exposure of this culture to mild heat, hydrogen peroxide, or ethanol before growth in M17 broth containing 5% (wt/vol) salt can enhance its survival, which could be beneficial when using it in salt-containing dairy products. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Win, Khin Thuzar; Oo, Aung Zaw; Ookawa, Taiichiro; Kanekatsu, Motoki; Hirasawa, Tadashii
2016-04-01
Black gram (Vigna mungo) is an important crop in Asia, However, most black gram varieties are salt-sensitive. The causes of varietal differences in salt-induced growth reduction between two black gram varieties, 'U-Taung-2' (salt-tolerant; BT) and 'Mut Pe Khaing To' (salt-sensitive; BS), were examined the potential for the first step toward the genetic improvement of salt tolerance. Seedlings grown in vermiculite irrigated with full-strength Hoagland solution were treated with 0mM NaCl (control) or 225 mM NaCl for up to 10 days. In the 225 mM NaCl treatment, plant growth rate, net assimilation rate, mean leaf area, leaf water potential, and leaf photosynthesis were reduced more in BS than in BT plants. Leaf water potential was closely related to leaf photosynthesis, net assimilation rate, and increase in leaf area. In response to salinity stress, hydraulic conductance of the root, stem, and petiole decreased more strongly in BS than in BT plants. The reduction in stem and petiole hydraulic conductance was caused by cavitation, whereas the reduction in root hydraulic conductance in BS plants was caused by a reduction in root surface area and hydraulic conductivity. We conclude that the different reduction in hydraulic conductance is a cause of the differences in the growth response between the two black gram varieties under short-term salt stress. Copyright © 2016 Elsevier GmbH. All rights reserved.
40 CFR 180.580 - Iodosulfuron-Methyl-Sodium; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
...,3,5 triazin-2-yl)ureidosulfonyl]benzoate, sodium salt) in or on the following commodities: Commodity... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Iodosulfuron-Methyl-Sodium; tolerances... Tolerances § 180.580 Iodosulfuron-Methyl-Sodium; tolerances for residues. (a) General. Tolerances are...
40 CFR 180.580 - Iodosulfuron-Methyl-Sodium; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
...,3,5 triazin-2-yl)ureidosulfonyl]benzoate, sodium salt) in or on the following commodities: Commodity... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Iodosulfuron-Methyl-Sodium; tolerances... Tolerances § 180.580 Iodosulfuron-Methyl-Sodium; tolerances for residues. (a) General. Tolerances are...
40 CFR 180.580 - Iodosulfuron-Methyl-Sodium; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
...,3,5 triazin-2-yl)ureidosulfonyl]benzoate, sodium salt) in or on the following commodities: Commodity... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Iodosulfuron-Methyl-Sodium; tolerances... Tolerances § 180.580 Iodosulfuron-Methyl-Sodium; tolerances for residues. (a) General. Tolerances are...
40 CFR 180.580 - Iodosulfuron-Methyl-Sodium; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
...,3,5 triazin-2-yl)ureidosulfonyl]benzoate, sodium salt) in or on the following commodities: Commodity... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Iodosulfuron-Methyl-Sodium; tolerances... Tolerances § 180.580 Iodosulfuron-Methyl-Sodium; tolerances for residues. (a) General. Tolerances are...
Qi, Shilian; Lin, Qingfang; Zhu, Huishan; Gao, Fenghua; Zhang, Wenhao; Hua, Xuejun
2016-03-01
Protein ubiquitination in plants plays critical roles in many biological processes, including adaptation to abiotic stresses. Previously, RING finger E3 ligase has been characterized during salt stress response in several plant species, but little is known about its function in tomato. Here, we report that SpRing, a stress-inducible gene, is involved in salt stress signaling in wild tomato species Solanum pimpinellifolium 'PI365967'. In vitro ubiquitination assay revealed that SpRing is an E3 ubiquitin ligase and the RING finger conserved region is required for its activity. SpRing is expressed in all tissues of wild tomato and up-regulated by salt, drought and osmotic stresses, but repressed by low temperature. Green fluorescent protein (GFP) fusion analysis showed that SpRing is localized at the endoplasmic reticulum. Silencing of SpRing through a virus-induced gene silencing approach led to increased sensitivity to salt stress in wild tomato. Overexpression of SpRing in Arabidopsis thaliana resulted in enhanced salt tolerance during seed germination and early seedling development. The expression levels of certain key stress-related genes are altered both in SpRing-overexpressing Arabidopsis plants and virus-induced gene silenced tomato seedlings. Taken together, our results indicate that SpRing is involved in salt stress and functions as a positive regulator of salt tolerance. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Tetraploidy enhances the ability to exclude chloride from leaves in carrizo citrange seedlings.
Ruiz, M; Quiñones, A; Martínez-Cuenca, M R; Aleza, P; Morillon, R; Navarro, L; Primo-Millo, E; Martínez-Alcántara, B
2016-10-20
Tetraploid citrus seedlings are more tolerant to salt stress than diploid genotypes. To provide insight into the causes of differences in salt tolerance due to ploidy and thus to better understand Cl - exclusion mechanisms in citrus, diploid and tetraploid seedlings of Carrizo citrange (CC) were grown at 0 (control) and 40mM NaCl (salt-treated) medium for 20 days. Chloride uptake and root-to-shoot translocation rates were on average 1.4-fold higher in diploid than in tetraploid salt-treated plants, which resulted in a greater (1.6-fold) Cl - build up in the leaves of the former. Root hydraulic conductance and leaf transpiration rate were 58% and 17% lower, respectively, in tetraploid than in diploid control plants. Differences remained after salt treatment which reduced these parameters by 30-40% in both genotypes. Morphology of the root system was significantly influenced by ploidy. Tetraploid roots were less branched and with lower number of root tips than those of diploid plants. The cross-section diameter and area were lower in the diploid, and consequently specific root length was higher (1.7-fold) than in tetraploid plants. The exodermis in sections close to the root apex was broader and with higher deposition of suberin in cell walls in the tetraploid than in the diploid genotype. Net CO 2 assimilation rate in tetraploid salt-treated seedlings was 1.5-fold higher than in diploid salt-treated plants, likely due to the loss of photosynthetic capacity of diploid plants induced by Cl - toxicity. Leaf damage was much higher, in terms of burnt area and defoliation, in diploid than in tetraploid salt-treated plants (8- and 6-fold, respectively). Salt treatment significantly reduced (37%) the dry weight of the diploid plants, but did not affect the tetraploids. In conclusion, tetraploid CC plants appear more tolerant to salinization and this effect seems mainly due to differences in morphological and histological traits of roots affecting hydraulic conductance and transpiration rate. These results may suggest that tetraploid CC used as rootstock could improve salt tolerance in citrus trees. Copyright © 2016 Elsevier GmbH. All rights reserved.
Ma, Yazhen; Xu, Ting; Wan, Dongshi; Ma, Tao; Shi, Sheng; Liu, Jianquan; Hu, Quanjun
2015-03-17
Soil salinity is a significant factor that impairs plant growth and agricultural productivity, and numerous efforts are underway to enhance salt tolerance of economically important plants. Populus species are widely cultivated for diverse uses. Especially, they grow in different habitats, from salty soil to mesophytic environment, and are therefore used as a model genus for elucidating physiological and molecular mechanisms of stress tolerance in woody plants. The Salinity Tolerant Poplar Database (STPD) is an integrative database for salt-tolerant poplar genome biology. Currently the STPD contains Populus euphratica genome and its related genetic resources. P. euphratica, with a preference of the salty habitats, has become a valuable genetic resource for the exploitation of tolerance characteristics in trees. This database contains curated data including genomic sequence, genes and gene functional information, non-coding RNA sequences, transposable elements, simple sequence repeats and single nucleotide polymorphisms information of P. euphratica, gene expression data between P. euphratica and Populus tomentosa, and whole-genome alignments between Populus trichocarpa, P. euphratica and Salix suchowensis. The STPD provides useful searching and data mining tools, including GBrowse genome browser, BLAST servers and genome alignments viewer, which can be used to browse genome regions, identify similar sequences and visualize genome alignments. Datasets within the STPD can also be downloaded to perform local searches. A new Salinity Tolerant Poplar Database has been developed to assist studies of salt tolerance in trees and poplar genomics. The database will be continuously updated to incorporate new genome-wide data of related poplar species. This database will serve as an infrastructure for researches on the molecular function of genes, comparative genomics, and evolution in closely related species as well as promote advances in molecular breeding within Populus. The STPD can be accessed at http://me.lzu.edu.cn/stpd/ .
Huang, Xiao; Bai, Jie; Li, Kui-Ran; Zhao, Yang-Guo; Tian, Wei-Jun; Dang, Jia-Jia
2017-01-15
To achieve a better contaminant removal efficiency in a low-temperature and high-salt environment, two novel strains of cold- and salt-tolerant ammonia-oxidizing bacteria (AOB), i.e., Ochrobactrum sp. (HXN-1) and Aquamicrobium sp. (HXN-2), were isolated from the surface sediment of Liaohe Estuarine Wetland (LEW), China. The optimization of initial ammonia nitrogen concentration, pH, carbon-nitrogen ratio, and petroleum hydrocarbons (PHCs) to improve the ammonia-oxidation capacity of the two bacterial strains was studied. Both bacterial strains showed a high ammonia nitrogen removal rate of over 80% under a high salinity of 10‰. Even at a temperature as low as 15°C, HXN-1 and HXN-2 could achieve an ammonia nitrogen removal rate of 53% and 62%, respectively. The cold- and salt-tolerant AOB in this study demonstrated a high potential for ammonia nitrogen removal from LEW. Copyright © 2016 Elsevier Ltd. All rights reserved.
Burkhardt, Juergen; Pariyar, Shyam
2014-01-01
Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax 'degradation' or 'erosion', which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both 'wax degradation' and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially 'degrades' waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Copyright © 2013 Elsevier Ltd. All rights reserved.
Global Metabolic Responses to Salt Stress in Fifteen Species
Pollak, Georg R.; Kuehne, Andreas; Sauer, Uwe
2016-01-01
Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species’ taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance. PMID:26848578
Siddiqi, Ejaz Hussain; Ashraf, Muhammad; Al-Qurainy, Fahad; Akram, Nudrat Aisha
2011-12-01
Safflower (Carthamus tinctorius L.) has gained considerable ground as a potential oil-seed crop. However, its yield and oil production are adversely affected under saline conditions. The present study was conducted to appraise the influence of salt (NaCl) stress on yield, accumulation of different inorganic elements, free proline and activities of some key antioxidant enzymes in plant tissues as well as seed oil components in safflower. Two safflower accessions differing in salt tolerance (Safflower-33 (salt sensitive) and Safflower-39 (salt tolerant)) were grown under saline (150 mmol L(-1) ) conditions and salt-induced changes in the earlier-mentioned physiological attributes were determined. Salt stress enhanced leaf and root Na(+) , Cl(-) and proline accumulation and activities of leaf superoxide dismutase, catalase and peroxidase, while it decreased K(+) , Ca(2+) and K(+) /Ca(2+) and Ca(2+) /Na(+) ratios and seed yield, 100-seed weight, number of seeds, as well as capitula, seed oil contents and oil palmitic acid. No significant effect of salt stress was observed on seed oil α-tocopherols, stearic acid, oleic acid or linoleic acid contents. Of the two safflower lines, salt-sensitive Safflower-33 was higher in leaf and root Na(+) and Cl(-) , while Safflower-39 was higher in leaf and root K(+) , K(+) /Ca(2+) and Ca(2+) /Na(+) and seed yield, 100-seed weight, catalase activity, seed oil contents, seed oil α-tocopherol and palmitic acid. Other attributes remained almost unaffected in both accessions. Overall, high salt tolerance of Safflower-39 could be attributed to Na(+) and Cl(-) exclusion, high accumulation of K(+) and free proline, enhanced CAT activity, seed oil α-tocopherols and palmitic acid contents. Copyright © 2011 Society of Chemical Industry.
Ebrahimi, Shelir; Nguyen, Thi Hau; Roberts, Deborah J
2015-10-15
The sustainability of nitrate-contaminated water treatment using ion-exchange processes can be achieved by regenerating the exhausted resin several times. Our previous study shows that the use of multi-cycle bioregeneration of resin enclosed in membrane is an effective and innovative regeneration method. In this research, the effects of two independent factors (temperature and salt concentration) on the biological denitrification rate were studied. The results of this research along with the experimental results of the previous study on the effect of the same factors on nitrate desorption rate from the resin allow the optimization of the bioregeneration process. The results of nitrate denitrification rate study show that the biodegradation rate at different temperature and salt concentration is independent of the initial nitrate concentration. At each specific salt concentration, the nitrate removal rate increased with increasing temperature with the average value of 0.001110 ± 0.0000647 mg-nitrate/mg-VSS.h.°C. However, the effect of different salt concentrations was dependent on the temperature; there is a significant interaction between salt concentration and temperature; within each group of temperatures, the nitrate degradation rate decreased with increasing the salt concentration. The temperature affected the tolerance to salinity and culture was less tolerant to high concentration of salt at low temperature. Evidenced by the difference between the minimum and maximum nitrate degradation rate being greater at lower temperature. At 35 °C, a 32% reduction in the nitrate degradation rate was observed while at 12 °C this reduction was 69%. This is the first published study to examine the interaction of salt concentration and temperature during biological denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bao, Wenqi; Wang, Xiaowei; Chen, Mo; Chai, Tuanyao; Wang, Hong
2018-07-01
PcWRKY33 is a transcription factor which can reduce salt tolerance by decreasing the expression of stress-related genes and increasing the cellular levels of reactive oxygen species (ROS). WRKY transcription factors play important roles in the regulation of biotic and abiotic stresses. Here, we report a group I WRKY gene from Polygonum cuspidatum, PcWRKY33, that encodes a nucleoprotein, which specifically binds to the W-box in the promoter of target genes to regulate their expression. The results from qPCR and promoter analysis show that expression of PcWRKY33 can be induced by various abiotic stresses, including NaCl and plant hormones. Overexpression of PcWRKY33 in Arabidopsis thaliana reduced tolerance to salt stress. More specifically, several physiological parameters (such as root length, seed germination rate, seedling survival rate, and chlorophyll concentration) of the transgenic lines were significantly lower than those of the wild type under salt stress. In addition, following exposure to salt stress, transgenic plants showed decreased expression of stress-related genes, a weakened ability to maintain Na + /K + homeostasis, decreased activities of reactive oxygen species- (ROS-) scavenging enzymes, and increased accumulation of ROS. Taken together, these results suggest that PcWRKY33 negatively regulates the salt tolerance in at least two ways: by down-regulating the induction of stress-related genes and by increasing the level of cellular ROS. In sum, our results indicate that PcWRKY33 is a group I WRKY transcription factor involved in abiotic stress regulation.
Chan, Zhulong; Grumet, Rebecca; Loescher, Wayne
2011-01-01
Mannitol is a putative osmoprotectant contributing to salt tolerance in several species. Arabidopsis plants transformed with the mannose-6-phosphate reductase (M6PR) gene from celery were dramatically more salt tolerant (at 100 mM NaCl) as exhibited by reduced salt injury, less inhibition of vegetative growth, and increased seed production relative to the wild type (WT). When treated with 200 mM NaCl, transformants produced no seeds, but did bolt, and exhibited less chlorosis/necrosis and greater survival and dry weights than the WT. Without salt there were no M6PR effects on growth or phenotype, but expression levels of 2272 genes were altered. Many fewer differences (1039) were observed between M6PR and WT plants in the presence of salt, suggesting that M6PR pre-conditioned the plants to stress. Previous work suggested that mannitol is an osmoprotectant, but mannitol levels are invariably quite low, perhaps inadequate for osmoprotectant effects. In this study, transcriptome analysis reveals that the M6PR transgene activated the downstream abscisic acid (ABA) pathway by up-regulation of ABA receptor genes (PYL4, PYL5, and PYL6) and down-regulation of protein phosphatase 2C genes (ABI1 and ABI2). In the M6PR transgenic lines there were also increases in transcripts related to redox and cell wall-strengthening pathways. These data indicate that mannitol-enhanced stress tolerance is due at least in part to increased expression of a variety of stress-inducible genes. PMID:21821598
Overexpression of GmFDL19 enhances tolerance to drought and salt stresses in soybean
Li, Xiaoming; Lu, Sijia; Zhao, Xiaohui; Liu, Baohui; Guo, Changhong; Kong, Fanjiang
2017-01-01
The basic leucine zipper (bZIP) family of transcription factors plays an important role in the growth and developmental process as well as responds to various abiotic stresses, such as drought and high salinity. Our previous work identified GmFDL19, a bZIP transcription factor, as a flowering promoter in soybean, and the overexpression of GmFDL19 caused early flowering in transgenic soybean plants. Here, we report that GmFDL19 also enhances tolerance to drought and salt stress in soybean. GmFDL19 was determined to be a group A member, and its transcription expression was highly induced by abscisic acid (ABA), polyethylene glycol (PEG 6000) and high salt stresses. Overexpression of GmFDL19 in soybean enhanced drought and salt tolerance at the seedling stage. The relative plant height (RPH) and relative shoot dry weight (RSDW) of transgenic plants were significantly higher than those of the WT after PEG and salt treatments. In addition, the germination rate and plant height of the transgenic soybean were also significantly higher than that of WT plants after various salt treatments. Furthermore, we also found that GmFDL19 could reduce the accumulation of Na+ ion content and up-regulate the expression of several ABA/stress-responsive genes in transgenic soybean. We also found that GmFDL19 overexpression increased the activities of several antioxidative enzyme and chlorophyll content but reduced malondialdehyde content. These results suggested that GmFDL19 is involved in soybean abiotic stress responses and has potential utilization to improve multiple stress tolerance in transgenic soybean. PMID:28640834
Song, Jie; Wang, Baoshan
2015-01-01
Background As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Scope Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. PMID:25288631
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xin, E-mail: fangfei6073@126.com; Zhu, Yanming, E-mail: ymzhu2001@neau.edu.cn; Zhai, Hong, E-mail: Zhai.h@neigaehrb.ac.cn
2012-06-15
Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, andmore » abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.« less
Genetic variation in Southern USA rice genotypes for seedling salinity tolerance
De Leon, Teresa B.; Linscombe, Steven; Gregorio, Glenn; Subudhi, Prasanta K.
2015-01-01
The success of a rice breeding program in developing salt tolerant varieties depends on genetic variation and the salt stress response of adapted and donor rice germplasm. In this study, we used a combination of morphological and physiological traits in multivariate analyses to elucidate the phenotypic and genetic variation in salinity tolerance of 30 Southern USA rice genotypes, along with 19 donor genotypes with varying degree of tolerance. Significant genotypic variation and correlations were found among the salt injury score (SIS), ion leakage, chlorophyll reduction, shoot length reduction, shoot K+ concentration, and shoot Na+/K+ ratio. Using these parameters, the combined methods of cluster analysis and discriminant analysis validated the salinity response of known genotypes and classified most of the USA varieties into sensitive groups, except for three and seven varieties placed in the tolerant and moderately tolerant groups, respectively. Discriminant function and MANOVA delineated the differences in tolerance and suggested no differences between sensitive and highly sensitive (HS) groups. DNA profiling using simple sequence repeat markers showed narrow genetic diversity among USA genotypes. However, the overall genetic clustering was mostly due to subspecies and grain type differentiation and not by varietal grouping based on salinity tolerance. Among the donor genotypes, Nona Bokra, Pokkali, and its derived breeding lines remained the donors of choice for improving salinity tolerance during the seedling stage. However, due to undesirable agronomic attributes and photosensitivity of these donors, alternative genotypes such as TCCP266, Geumgangbyeo, and R609 are recommended as useful and novel sources of salinity tolerance for USA rice breeding programs. PMID:26074937
Kothari, V V; Kothari, R K; Kothari, C R; Bhatt, V D; Nathani, N M; Koringa, P G; Joshi, C G; Vyas, B R M
2013-09-05
Bacillus safensis strain VK was isolated from the rhizosphere of a cumin plant growing in the saline desert of Radhanpar, Gujarat, India. Here, we provide the 3.68-Mb draft genome sequence of B. safensis VK, which might provide information about the salt tolerance and genes encoding enzymes for the strain's plant growth-promoting potential.
Zhu, Jian-Kang [Riverside, CA; Quintero-Toscano, Francisco Javier [Sevilla, ES; Pardo-Prieto, Jose Manuel [Sevilla, ES; Qiu, Quansheng [Urbana, IL; Schumaker, Karen Sue [Tucson, AZ; Ohta, Masaru [Tsukuba, JP; Zhang, Changqing [Tucson, AZ; Guo, Yan [Beijing, CN
2007-09-04
The present invention provides a method of increasing salt tolerance in a plant by overexpressing a gene encoding a mutant SOS2 protein in at least one cell type in the plant. The present invention also provides for transgenic plants expressing the mutant SOS2 proteins.
ERIC Educational Resources Information Center
McGough, James J.; Biederman, Joseph; Wigal, Sharon B.; Lopez, Frank A.; McCracken, James T.; Spencer, Thomas; Zhang, Yuxin; Tulloch, Simon J.
2005-01-01
Objective: To evaluate the long-term tolerability and effectiveness of extended-release mixed amphetamine salts (MAS XR; Adderall XR[R]) in children with attention-deficit/hyperactivity disorder (ADHD). Method: This was a 24-month, multicenter, open-label extension of TWO placebo-controlled studies of MAS XR in children with ADHD aged 6 to 12…
Sreedharan, Shareena; Shekhawat, Upendra K Singh; Ganapathi, Thumballi R
2015-05-01
High soil salinity constitutes a major abiotic stress and an important limiting factor in cultivation of crop plants worldwide. Here, we report the identification and characterization of a aquaporin gene, MusaPIP2;6 which is involved in salt stress signaling in banana. MusaPIP2;6 was firstly identified based on comparative analysis of stressed and non-stressed banana tissue derived EST data sets and later overexpression in transgenic banana plants was performed to study its tangible functions in banana plants. The overexpression of MusaPIP2;6 in transgenic banana plants using constitutive or inducible promoter led to higher salt tolerance as compared to equivalent untransformed control plants. Cellular localization assay performed using transiently transformed onion peel cells indicated that MusaPIP2;6 protein tagged with green fluorescent protein was translocated to the plasma membrane. MusaPIP2;6-overexpressing banana plants displayed better photosynthetic efficiency and lower membrane damage under salt stress conditions. Our results suggest that MusaPIP2;6 is involved in salt stress signaling and tolerance in banana.
OsDREB2A, a Rice Transcription Factor, Significantly Affects Salt Tolerance in Transgenic Soybean
Ma, Qi-bin; Yang, Cun-yi; Mu, Ying-hui; Suo, Hai-cui; Luo, Lai-hui; Nian, Hai
2013-01-01
The dehydration responsive element binding (DREB) transcription factors play an important role in regulating stress-related genes. OsDREB2A, a member of the DREBP subfamily of AP2/ERF transcription factors in rice (Oryza sativa), is involved in the abiotic stress response. OsDREB2A expression is induced by drought, low-temperature and salt stresses. Here, we report the ability of OsDREB2A to regulate high-salt response in transgenic soybean. Overexpressing OsDREB2A in soybeans enhanced salt tolerance by accumulating osmolytes, such as soluble sugars and free proline, and improving the expression levels of some stress-responsive transcription factors and key genes. The phenotypic characterization of transgenic soybean were significantly better than those of wild-type (WT). Electrophoresis mobility shift assay (EMSA) revealed that the OsDREB2A can bind to the DRE core element in vitro. These results indicate that OsDREB2A may participate in abiotic stress by directly binding with DRE element to regulate the expression of downstream genes. Overexpression of OsDREB2A in soybean might be used to improve tolerance to salt stress. PMID:24376625
Vishnevskaia, M S; Pavlov, A V; Dziubenko, E A; Dziubenko, N I; Potokina, E K
2014-04-01
Based on legume genome syntheny, the nucleotide sequence of Srlk gene, key role of which in response to salt stress was demonstrated for the model species Medicago truncatula, was identified in the major forage and siderate crop alfalfa (Medicago sativa). In twelve alfalfa samples originating from regions with contrasting growing conditions, 19 SNPs were revealed in the Srlk gene. For two nonsynonymous SNPs, molecular markers were designed that could be further used to analyze the association between Srlk gene nucleotide polymorphism and the variability in salt stress tolerance among alfalfa cultivars.
Li, Chen-Hui; Wang, Geng; Zhao, Ji-Long; Zhang, Li-Qing; Ai, Lian-Feng; Han, Yong-Feng; Sun, Da-Ye; Zhang, Sheng-Wei; Sun, Ying
2014-01-01
High salinity causes growth inhibition and shoot bleaching in plants that do not tolerate high salt (glycophytes), including most crops. The molecules affected directly by salt and linking the extracellular stimulus to intracellular responses remain largely unknown. Here, we demonstrate that rice (Oryza sativa) Salt Intolerance 1 (SIT1), a lectin receptor-like kinase expressed mainly in root epidermal cells, mediates salt sensitivity. NaCl rapidly activates SIT1, and in the presence of salt, as SIT1 kinase activity increased, plant survival decreased. Rice MPK3 and MPK6 function as the downstream effectors of SIT1. SIT1 phosphorylates MPK3 and 6, and their activation by salt requires SIT1. SIT1 mediates ethylene production and salt-induced ethylene signaling. SIT1 promotes accumulation of reactive oxygen species (ROS), leading to growth inhibition and plant death under salt stress, which occurred in an MPK3/6- and ethylene signaling-dependent manner in Arabidopsis thaliana. Our findings demonstrate the existence of a SIT1-MPK3/6 cascade that mediates salt sensitivity by affecting ROS and ethylene homeostasis and signaling. These results provide important information for engineering salt-tolerant crops. PMID:24907341
Yamamoto, Naoki; Takano, Tomoyuki; Tanaka, Keisuke; Ishige, Taichiro; Terashima, Shin; Endo, Chisato; Kurusu, Takamitsu; Yajima, Shunsuke; Yano, Kentaro; Tada, Yuichi
2015-01-01
The turf grass Sporobolus virginicus is halophyte and has high salinity tolerance. To investigate the molecular basis of its remarkable tolerance, we performed Illumina high-throughput RNA sequencing on roots and shoots of a S. virginicus genotype under normal and saline conditions. The 130 million short reads were assembled into 444,242 unigenes. A comparative analysis of the transcriptome with rice and Arabidopsis transcriptome revealed six turf grass-specific unigenes encoding transcription factors. Interestingly, all of them showed root specific expression and five of them encode bZIP type transcription factors. Another remarkable transcriptional feature of S. virginicus was activation of specific pathways under salinity stress. Pathway enrichment analysis suggested transcriptional activation of amino acid, pyruvate, and phospholipid metabolism. Up-regulation of several unigenes, previously shown to respond to salt stress in other halophytes was also observed. Gene Ontology enrichment analysis revealed that unigenes assigned as proteins in response to water stress, such as dehydrin and aquaporin, and transporters such as cation, amino acid, and citrate transporters, and H+-ATPase, were up-regulated in both shoots and roots under salinity. A correspondence analysis of the enriched pathways in turf grass cells, but not in rice cells, revealed two groups of unigenes similarly up-regulated in the turf grass in response to salt stress; one of the groups, showing excessive up-regulation under salinity, included unigenes homologos to salinity responsive genes in other halophytes. Thus, the present study identified candidate genes involved in salt tolerance of S. virginicus. This genetic resource should be valuable for understanding the mechanisms underlying high salt tolerance in S. virginicus. This information can also provide insight into salt tolerance in other halophytes. PMID:25954282
Review on sugar beet salt stress studies in Iran
NASA Astrophysics Data System (ADS)
Khayamim, S.; Noshad, H.; Jahadakbar, M. R.; Fotuhi, K.
2017-07-01
Increase of saline lands in most regions of the world and Iran, limit of production increase based on land enhancement and also threat of saline water and soils for crop production make related researches and production of salt tolerant variety to be more serious. There have been many researches about salt stress in Sugar Beet Seed Institute of Iran (SBSI) during several years. Accordingly, the new screening methods for stress tolerance to be continued based on these researches. Previous researches in SBSI were reviewed and results concluded to this study which is presented in this article in three categories including: Agronomy, Breeding and Biotechnology. In agronomy researches, suitable planting medium, EC, growth stage and traits for salinity tolerance screening were determined and agronomic technique such as planting date, planting method and suitable nutrition for sugar beet under salt stress were introduced. Sand was salinizied by saline treatments two times more than Perlit so large sized Perlit is suitable medium for saline studies. Sugar beet genotypes screening for salt tolerance and should be conducted at EC=20 in laboratory and EC= 16 dS/M in greenhouse. Although sugar beet seed germination has been known as more susceptible stage to salinity, it seems establishment is more susceptible than germination in which salinity will cause 70-80% decrease in plant establishment. Measurements of leaves Na, K and total carbohydrate at establishment stage would be useful for faster screening of genotypes, based on high and significant correlation of these traits at establishment with yield at harvest time. In breeding section, SBSI genotypes with drought tolerance background would be useful for salinity stress studies and finally there is a need for more research in the field of biotechnology in Iran.
El-Hendawy, Salah E.; Hassan, Wael M.; Al-Suhaibani, Nasser A.; Refay, Yahya; Abdella, Kamel A.
2017-01-01
Field-based trials are crucial for successfully achieving the goals of plant breeding programs aiming to screen and improve the salt tolerance of crop genotypes. In this study, simulated saline field growing conditions were designed using the subsurface water retention technique (SWRT) and three saline irrigation levels (control, 60, and 120 mM NaCl) to accurately appraise the suitability of a set of agro-physiological parameters including shoot biomass, grain yield, leaf water relations, gas exchange, chlorophyll fluorescence, and ion accumulation as screening criteria to establish the salt tolerance of the salt-tolerant (Sakha 93) and salt-sensitive (Sakha 61) wheat cultivars. Shoot dry weight and grain yield per hectare were substantially reduced by salinity, but the reduction was more pronounced in Sakha 61 than in Sakha 93. Increasing salinity stress caused a significant decrease in the net photosynthesis rate and stomatal conductance of both cultivars, although their leaf turgor pressure increased. The accumulation of toxic ions (Na+ and Cl-) was higher in Sakha 61, but the accumulation of essential cations (K+ and Ca2+) was higher in Sakha 93, which could be the reason for the observed maintenance of the higher leaf turgor of both cultivars in the salt treatments. The maximum quantum PSII photochemical efficiency (Fv/Fm) and the PSII quantum yield (ΦPSII) decreased with increasing salinity levels in Sakha 61, but they only started to decline at the moderate salinity condition in Sakha 93. The principle component analysis successfully identified the interrelationships between all parameters. The parameters of leaf water relations and toxic ion concentrations were significantly related to each other and could identify Sakha 61 at mild and moderate salinity levels, and, to a lesser extent, Sakha 93 at the moderate salinity level. Both cultivars under the control treatment and Sakha 93 at the mild salinity level were identified by most of the other parameters. The variability in the angle between the vectors of parameters explained which parameters could be used as individual, interchangeable, or supplementary screening criteria for evaluating wheat salt tolerance under simulated field conditions. PMID:28424718
Potential Use of Halophytes to Remediate Saline Soils
Hasanuzzaman, Mirza; Nahar, Kamrun; Alam, Md. Mahabub; Bhowmik, Prasanta C.; Hossain, Md. Amzad; Rahman, Motior M.; Prasad, Majeti Narasimha Vara; Ozturk, Munir; Fujita, Masayuki
2014-01-01
Salinity is one of the rising problems causing tremendous yield losses in many regions of the world especially in arid and semiarid regions. To maximize crop productivity, these areas should be brought under utilization where there are options for removing salinity or using the salt-tolerant crops. Use of salt-tolerant crops does not remove the salt and hence halophytes that have capacity to accumulate and exclude the salt can be an effective way. Methods for salt removal include agronomic practices or phytoremediation. The first is cost- and labor-intensive and needs some developmental strategies for implication; on the contrary, the phytoremediation by halophyte is more suitable as it can be executed very easily without those problems. Several halophyte species including grasses, shrubs, and trees can remove the salt from different kinds of salt-affected problematic soils through salt excluding, excreting, or accumulating by their morphological, anatomical, physiological adaptation in their organelle level and cellular level. Exploiting halophytes for reducing salinity can be good sources for meeting the basic needs of people in salt-affected areas as well. This review focuses on the special adaptive features of halophytic plants under saline condition and the possible ways to utilize these plants to remediate salinity. PMID:25110683
Competitive ability, stress tolerance and plant interactions along stress gradients.
Qi, Man; Sun, Tao; Xue, SuFeng; Yang, Wei; Shao, DongDong; Martínez-López, Javier
2018-04-01
Exceptions to the generality of the stress-gradient hypothesis (SGH) may be reconciled by considering species-specific traits and stress tolerance strategies. Studies have tested stress tolerance and competitive ability in mediating interaction outcomes, but few have incorporated this to predict how species interactions shift between competition and facilitation along stress gradients. We used field surveys, salt tolerance and competition experiments to develop a predictive model interspecific interaction shifts across salinity stress gradients. Field survey and greenhouse tolerance tests revealed tradeoffs between stress tolerance and competitive ability. Modeling showed that along salinity gradients, (1) plant interactions shifted from competition to facilitation at high salinities within the physiological limits of salt-intolerant plants, (2) facilitation collapsed when salinity stress exceeded the physiological tolerance of salt-intolerant plants, and (3) neighbor removal experiments overestimate interspecific facilitation by including intraspecific effects. A community-level field experiment, suggested that (1) species interactions are competitive in benign and, facilitative in harsh condition, but fuzzy under medium environmental stress due to niche differences of species and weak stress amelioration, and (2) the SGH works on strong but not weak stress gradients, so SGH confusion arises when it is applied across questionable stress gradients. Our study clarifies how species interactions vary along stress gradients. Moving forward, focusing on SGH applications rather than exceptions on weak or nonexistent gradients would be most productive. © 2018 by the Ecological Society of America.
Suckling, Rebecca J; He, Feng J; Markandu, Nirmala D; MacGregor, Graham A
2016-06-01
The role of salt restriction in patients with impaired glucose tolerance and diabetes mellitus is controversial, with a lack of well controlled, longer term, modest salt reduction trials in this group of patients, in spite of the marked increase in cardiovascular risk. We carried out a 12-week randomized double-blind, crossover trial of salt restriction with salt or placebo tablets, each for 6 weeks, in 46 individuals with diet-controlled type 2 diabetes mellitus or impaired glucose tolerance and untreated normal or high normal blood pressure (BP). From salt to placebo, 24-hour urinary sodium was reduced by 49±9 mmol (2.9 g salt). This reduction in salt intake led to fall in clinic BP from 136/81±2/1 mm Hg to 131/80±2/1 mm Hg, (systolic BP; P<0.01). Mean ambulatory 24-hour BP was reduced by 3/2±1/1 mm Hg (systolic BP, P<0.01 and diastolic BP, P<0.05), and albumin/creatinine ratio was reduced from 0.73 mg/mmol (0.5-1.5) to 0.64 mg/mmol (0.3-1.1; P<0.05). There was no significant change in fasting glucose, hemoglobin A1c, or insulin sensitivity. These results demonstrate that a modest reduction in salt intake, to approximately the amount recommended in public health guidelines, leads to significant and clinically relevant falls in BP in individuals who are early on in the progression of diabetes mellitus with normal or mildly raised BP. The reduction in urinary albumin excretion may carry additional benefits in reducing cardiovascular disease above the effects on BP. © 2016 American Heart Association, Inc.
Mostofa, Mohammad G.; Saegusa, Daisuke; Fujita, Masayuki; Tran, Lam-Son Phan
2015-01-01
Being a salt sensitive crop, rice growth and development are frequently affected by soil salinity. Hydrogen sulfide (H2S) has been recently explored as an important priming agent regulating diverse physiological processes of plant growth and development. Despite its enormous prospects in plant systems, the role of H2S in plant stress tolerance is still elusive. Here, a combined pharmacological, physiological and biochemical approach was executed aiming to examine the possible mechanism of H2S in enhancement of rice salt stress tolerance. We showed that pretreating rice plants with H2S donor sodium bisulfide (NaHS) clearly improved, but application of H2S scavenger hypotaurine with NaHS decreased growth and biomass-related parameters under salt stress. NaHS-pretreated salt-stressed plants exhibited increased chlorophyll, carotenoid and soluble protein contents, as well as suppressed accumulation of reactive oxygen species (ROS), contributing to oxidative damage protection. The protective mechanism of H2S against oxidative stress was correlated with the elevated levels of ascorbic acid, glutathione, redox states, and the enhanced activities of ROS- and methylglyoxal-detoxifying enzymes. Notably, the ability to decrease the uptake of Na+ and the Na+/K+ ratio, as well as to balance mineral contents indicated a role of H2S in ion homeostasis under salt stress. Altogether, our results highlight that modulation of the level of endogenous H2S genetically or exogenously could be employed to attain better growth and development of rice, and perhaps other crops, under salt stress. Furthermore, our study reveals the importance of the implication of gasotransmitters like H2S for the management of salt stress, thus assisting rice plants to adapt to adverse environmental changes. PMID:26734015
Wang, Guozeng; Wang, Qiaohuang; Lin, Xianju; Bun Ng, Tzi; Yan, Renxiang; Lin, Juan; Ye, Xiuyun
2016-01-01
A novel esterase gene (estSL3) was cloned from the Alkalibacterium sp. SL3, which was isolated from the sediment of soda lake Dabusu. The 636-bp full-length gene encodes a polypeptide of 211 amino acid residues that is closely related with putative GDSL family lipases from Alkalibacterium and Enterococcus. The gene was successfully expressed in E. coli, and the recombinant protein (rEstSL3) was purified to electrophoretic homogeneity and characterized. rEstSL3 exhibited the highest activity towards pNP-acetate and had no activity towards pNP-esters with acyl chains longer than C8. The enzyme was highly cold-adapted, showing an apparent temperature optimum of 30 °C and remaining approximately 70% of the activity at 0 °C. It was active and stable over the pH range from 7 to 10, and highly salt-tolerant up to 5 M NaCl. Moreover, rEstSL3 was strongly resistant to most tested metal ions, chemical reagents, detergents and organic solvents. Amino acid composition analysis indicated that EstSL3 had fewer proline residues, hydrogen bonds and salt bridges than mesophilic and thermophilic counterparts, but more acidic amino acids and less hydrophobic amino acids when compared with other salt-tolerant esterases. The cold active, salt-tolerant and chemical-resistant properties make it a promising enzyme for basic research and industrial applications. PMID:26915906
USDA-ARS?s Scientific Manuscript database
The physiological role of a vacuolar ATPase subunit c1 (SaVHAc1) from a halophyte grass Spartina alterniflora was studied through its expression in rice. The SaVHAc1– expressing plants showed enhanced tolerance to salt stress than the wild-type plants, mainly through adjustments in early stage and p...
Han, Yang yang; Li, Ai xiu; Li, Feng; Zhao, Mei rong; Wang, Wei
2012-05-01
Expansins are proteins that are generally accepted to be key regulators of cell wall extension and plant growth. We examined the expression pattern of TaEXPB23, a wheat (Triticum aestivum L.) expansin gene, under exogenous phytohormone and abiotic stress treatments. In addition, we evaluated its function in the tolerance to salt stress and high temperature (HT) by overexpressing it in transgenic tobacco plants. In subcellular localization assays, TaEXPB23 localized to the cell wall. Expression analysis demonstrated that the transcription pattern of TaEXPB23 corresponded to wheat coleoptile growth. Real-time RT-PCR analysis revealed that TaEXPB23 transcript expression was upregulated by exogenous methyl jasmonate (MeJA) and salt stress, but downregulated by exogenous gibberellins (GA₃), ethylene (ET), indole-3-acetic acid (IAA) and α-naphthlcetic acid (NAA). Overexpression of TaEXPB23 in tobacco (tabacum) conferred tolerance to salt stress by enhancing water retention ability (WRA) and decreasing osmotic potential (OP). However, transgenic plants overexpressing TaEXPB23 did not show any improvement in the tolerance to HT stress. These results suggested that TaEXPB23 is regulated by phytohormones and is involved in the regulation of salt stress tolerance. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Yue, Jing; Li, Cong; Liu, Yuwei; Yu, Jingjuan
2014-01-01
Remorin proteins (REMs) form a plant-specific protein family, with some REMs being responsive to abiotic stress. However, the precise functions of REMs in abiotic stress tolerance are not clear. In this study, we identified 11 remorin genes from foxtail millet (Setaria italica) and cloned a remorin gene, SiREM6, for further investigation. The transcript level of SiREM6 was increased by high salt stress, low temperature stress and abscisic acid (ABA) treatment, but not by drought stress. The potential oligomerization of SiREM6 was examined by negative staining electron microscopy. The overexpression of SiREM6 improved high salt stress tolerance in transgenic Arabidopsis at the germination and seedling stages as revealed by germination rate, survival rate, relative electrolyte leakage and proline content. The SiREM6 promoter contains two dehydration responsive elements (DRE) and one ABA responsive element (ABRE). An ABA responsive DRE-binding transcription factor, SiARDP, and an ABRE-binding transcription factor, SiAREB1, were cloned from foxtail millet. SiARDP could physically bind to the DREs, but SiAREB1 could not. These results revealed that SiREM6 is a target gene of SiARDP and plays a critical role in high salt stress tolerance.
Kawano-Kawada, Miyuki; Takahashi, Hiroko; Igarashi, Kazuei; Murata, Takeshi; Yamato, Ichiro; Homma, Michio; Kakinuma, Yoshimi
2011-07-01
A Glu139Asp mutant of the NtpK subunit (kE139D) of Enterococcus hirae vacuolar-type ATPase (V-ATPase) lost tolerance to sodium but not to lithium at pH 10. Purified kE139D V-ATPase retained relatively high specific activity and affinity for the lithium ion compared to the sodium ion. The kE139 residue of V-ATPase is indispensable for its enzymatic activity that is linked with the salt tolerance of enterococci.
Identification of Two Loci in Tomato Reveals Distinct Mechanisms for Salt Tolerance
Borsani, Omar; Cuartero, Jesus; Fernández, José A.; Valpuesta, Victoriano; Botella, Miguel A.
2001-01-01
Salt stress is one of the most serious environmental factors limiting the productivity of crop plants. To understand the molecular basis for salt responses, we used mutagenesis to identify plant genes required for salt tolerance in tomato. As a result, three tomato salt-hypersensitive (tss) mutants were isolated. These mutants defined two loci and were caused by single recessive nuclear mutations. The tss1 mutant is specifically hypersensitive to growth inhibition by Na+ or Li+ and is not hypersensitive to general osmotic stress. The tss2 mutant is hypersensitive to growth inhibition by Na+ or Li+ but, in contrast to tss1, is also hypersensitive to general osmotic stress. The TSS1 locus is necessary for K+ nutrition because tss1 mutants are unable to grow on a culture medium containing low concentrations of K+. Increased Ca2+ in the culture medium suppresses the growth defect of tss1 on low K+. Measurements of membrane potential in apical root cells were made with an intracellular microelectrode to assess the permeability of the membrane to K+ and Na+. K+-dependent membrane potential measurements indicate impaired K+ uptake in tss1 but not tss2, whereas no differences in Na+ uptake were found. The TSS2 locus may be a negative regulator of abscisic acid signaling, because tss2 is hypersensitive to growth inhibition by abscisic acid. Our results demonstrate that the TSS1 locus is essential for K+ nutrition and NaCl tolerance in tomato. Significantly, the isolation of the tss2 mutant demonstrates that abscisic acid signaling is also important for salt and osmotic tolerance in glycophytic plants. PMID:11283342
Henderson, Sam W.; Wege, Stefanie; Qiu, Jiaen; Blackmore, Deidre H.; Walker, Amanda R.; Tyerman, Stephen D.; Walker, Rob R.; Gilliham, Matthew
2015-01-01
Plant cation-chloride cotransporters (CCCs) have been implicated in conferring salt tolerance. They are predicted to improve shoot salt exclusion by directly catalyzing the retrieval of sodium (Na+) and chloride (Cl−) ions from the root xylem. We investigated whether grapevine (Vitis vinifera [Vvi]) CCC has a role in salt tolerance by cloning and functionally characterizing the gene from the cultivar Cabernet Sauvignon. Amino acid sequence analysis revealed that VviCCC shares a high degree of similarity with other plant CCCs. A VviCCC-yellow fluorescent protein translational fusion protein localized to the Golgi and the trans-Golgi network and not the plasma membrane when expressed transiently in tobacco (Nicotiana benthamiana) leaves and Arabidopsis (Arabidopsis thaliana) mesophyll protoplasts. AtCCC-green fluorescent protein from Arabidopsis also localized to the Golgi and the trans-Golgi network. In Xenopus laevis oocytes, VviCCC targeted to the plasma membrane, where it catalyzed bumetanide-sensitive 36Cl–, 22Na+, and 86Rb+ uptake, suggesting that VviCCC (like AtCCC) belongs to the Na+-K+-2Cl– cotransporter class of CCCs. Expression of VviCCC in an Arabidopsis ccc knockout mutant abolished the mutant’s stunted growth phenotypes and reduced shoot Cl– and Na+ content to wild-type levels after growing plants in 50 mm NaCl. In grapevine roots, VviCCC transcript abundance was not regulated by Cl– treatment and was present at similar levels in both the root stele and cortex of three Vitis spp. genotypes that exhibit differential shoot salt exclusion. Our findings indicate that CCC function is conserved between grapevine and Arabidopsis, but neither protein is likely to directly mediate ion transfer with the xylem or have a direct role in salt tolerance. PMID:26378102
Alikhani, Mehdi; Khatabi, Behnam; Sepehri, Mozhgan; Nekouei, Mojtaba Khayam; Mardi, Mohsen; Salekdeh, Ghasem Hosseini
2013-06-01
Piriformospora indica is a root-interacting mutualistic fungus capable of enhancing plant growth, increasing plant resistance to a wide variety of pathogens, and improving plant stress tolerance under extreme environmental conditions. Understanding the molecular mechanisms by which P. indica can improve plant tolerance to stresses will pave the way to identifying the major mechanisms underlying plant adaptability to environmental stresses. We conducted greenhouse experiments at three different salt levels (0, 100 and 300 mM NaCl) on barley (Hordeum vulgare L.) cultivar "Pallas" inoculated with P. indica. Based on the analysis of variance, P. indica had a significant impact on the barley growth and shoot biomass under normal and salt stress conditions. P. indica modulated ion accumulation in colonized plants by increasing the foliar potassium (K(+))/sodium (Na(+)) ratio, as it is considered a reliable indicator of salt stress tolerance. P. indica induced calcium (Ca(2+)) accumulation and likely influenced the stress signal transduction. Subsequently, proteomic analysis of the barley leaf sheath using two-dimensional electrophoresis resulted in detection of 968 protein spots. Of these detected spots, the abundance of 72 protein spots changed significantly in response to salt treatment and P. indica-root colonization. Mass spectrometry analysis of responsive proteins led to the identification of 51 proteins. These proteins belonged to different functional categories including photosynthesis, cell antioxidant defense, protein translation and degradation, energy production, signal transduction and cell wall arrangement. Our results showed that P. indica induced a systemic response to salt stress by altering the physiological and proteome responses of the plant host.
Saibi, Walid; Feki, Kaouthar; Ben Mahmoud, Rihem; Brini, Faiçal
2015-11-01
The wheat dehydrin (DHN-5) gives birth to salinity tolerance to transgenic Arabidopsis plants by the regulation of proline metabolism and the ROS scavenging system. Dehydrins (DHNs) are involved in plant abiotic stress tolerance. In this study, we reported that salt tolerance of transgenic Arabidopsis plants overexpressing durum wheat dehydrin (DHN-5) was closely related to the activation of the proline metabolism enzyme (P5CS) and some antioxidant biocatalysts. Indeed, DHN-5 improved P5CS activity in the transgenic plants generating a significant proline accumulation. Moreover, salt tolerance of Arabidopsis transgenic plants was accompanied by an excellent activation of antioxidant enzymes like catalase (CAT), superoxide dismutase (SOD) and peroxide dismutase (POD) and generation of a lower level of hydrogen peroxide (H2O2) in leaves compared to the wild-type plants. The enzyme activities were enhanced in these transgenic plants in the presence of exogenous proline. Nevertheless, proline accumulation was slightly reduced in transgenic plants promoting chlorophyll levels. All these results suggest the crucial role of DHN-5 in response to salt stress through the activation of enzymes implicated in proline metabolism and in ROS scavenging enzymes.
Impact of exogenous ascorbic acid on biochemical activities of rice callus treated with salt stress
NASA Astrophysics Data System (ADS)
Alhasnawi, Arshad Naji; Zain, Che Radziah Che Mohd; Kadhimi, Ahsan A.; Isahak, Anizan; Mohamad, Azhar; Ashraf, Mehdi Farshad; Doni, Febri; Yusoff, Wan Mohtar Wan
2016-11-01
The application of in vitro systems can lead to new methods of crop amelioration. This method has been widely utilized for breeding tenacities, particularly for stress tolerance selection. Salinity causes oxidative stress in callus by enhancing the production of Reactive Oxygen Species (ROS), resulting in an efficient antioxidant system. The exogenous application of ascorbic acid (AsA) is an important requirement for tolerance. The present study aimed to examine in vitro selection strategy for callus induction in rice mature embryo culture on MS culture medium and to produce salt-tolerant callus under sodium chloride (NaCl) and AsA conditions in callus rice variety, MR269. This study also highlights changes in the activities of proline and antioxidants peroxidase (POD), catalase (CAT) and superoxide dismutase (SOD) of callus under NaCl stress to understand their possible role in salt tolerance. However, various levels of exogenously applied AsA under saline conditions improved callus, and the antioxidant enzyme activities of AsA are related to resistance to oxidative stress. Our results provide strong support for the hypothesis that AsA-dependent antioxidant enzymes play a significant role in the salinity tolerance of callus rice.
Kordrostami, Mojtaba; Rabiei, Babak; Hassani Kumleh, Hassan
2017-07-01
Changes in the antioxidant enzymes, lipid peroxidation, sodium and potassium, chlorophyll, H 2 O 2 and proline content were monitored in the leaves of 42 rice varieties which were not yet well-documented for the salinity tolerance under different salinity levels. The tolerant varieties (FL478, Hassani, Shahpasand, Gharib and Nemat) showed signs of tolerance (lower Na + /K + ratio, high proline accumulation, less membrane damage, lower H 2 O 2 production, and higher superoxide dismutase and catalase activity) very well. The positive relationship between the level of salt tolerance and the amount of proline accumulation in the rice varieties support the important role of proline under the salt stress. The varieties were genotyped for 12 microsatellite markers that were closely linked to SalTol QTL. The results of association analysis indicated that RM1287, RM8094, RM3412 and AP3206 markers had the high value of R 2 for the regression models of the studied traits. It shows the important role of SalTol in controlling physio-biochemical traits. The results can be used in the future marker assisted selection (MAS) directly, if the results are confirmed.
Ahmad, Aftab; Niwa, Yasuo; Goto, Shingo; Ogawa, Takeshi; Shimizu, Masanori; Suzuki, Akane; Kobayashi, Kyoko; Kobayashi, Hirokazu
2015-01-01
An activation-tagging methodology was applied to dedifferentiated calli of Arabidopsis to identify new genes involved in salt tolerance. This identified salt tolerant callus 8 (stc8) as a gene encoding the basic helix-loop-helix transcription factor bHLH106. bHLH106-knockout (KO) lines were more sensitive to NaCl, KCl, LiCl, ABA, and low temperatures than the wild-type. Back-transformation of the KO line rescued its phenotype, and over-expression (OX) of bHLH106 in differentiated plants exhibited tolerance to NaCl. Green fluorescent protein (GFP) fused with bHLH106 revealed that it was localized to the nucleus. Prepared bHLH106 protein was subjected to electrophoresis mobility shift assays against E-box sequences (5'-CANNTG-3'). The G-box sequence 5'-CACGTG-3' had the strongest interaction with bHLH106. bHLH106-OX lines were transcriptomically analyzed, and resultant up- and down-regulated genes selected on the criterion of presence of a G-box sequence. There were 198 genes positively regulated by bHLH106 and 36 genes negatively regulated; these genes possessed one or more G-box sequences in their promoter regions. Many of these genes are known to be involved in abiotic stress response. It is concluded that bHLH106 locates at a branching point in the abiotic stress response network by interacting directly to the G-box in genes conferring salt tolerance on plants.
Microbially Mediated Plant Salt Tolerance and Microbiome-based Solutions for Saline Agriculture.
Qin, Yuan; Druzhinina, Irina S; Pan, Xueyu; Yuan, Zhilin
2016-11-15
Soil salinization adversely affects plant growth and has become one of the major limiting factors for crop productivity worldwide. The conventional approach, breeding salt-tolerant plant cultivars, has often failed to efficiently alleviate the situation. In contrast, the use of a diverse array of microorganisms harbored by plants has attracted increasing attention because of the remarkable beneficial effects of microorganisms on plants. Multiple advanced '-omics' technologies have enabled us to gain insights into the structure and function of plant-associated microbes. In this review, we first focus on microbe-mediated plant salt tolerance, in particular on the physiological and molecular mechanisms underlying root-microbe symbiosis. Unfortunately, when introducing such microbes as single strains to soils, they are often ineffective in improving plant growth and stress tolerance, largely due to competition with native soil microbial communities and limited colonization efficiency. Rapid progress in rhizosphere microbiome research has revived the belief that plants may benefit more from association with interacting, diverse microbial communities (microbiome) than from individual members in a community. Understanding how a microbiome assembles in the continuous compartments (endosphere, rhizoplane, and rhizosphere) will assist in predicting a subset of core or minimal microbiome and thus facilitate synthetic re-construction of microbial communities and their functional complementarity and synergistic effects. These developments will open a new avenue for capitalizing on the cultivable microbiome to strengthen plant salt tolerance and thus to refine agricultural practices and production under saline conditions. Copyright © 2016 Elsevier Inc. All rights reserved.
Bhattarai, Surya P; Midmore, David J
2009-07-01
Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.
Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis.
Khaleda, Laila; Park, Hee Jin; Yun, Dae-Jin; Jeon, Jong-Rok; Kim, Min Gab; Cha, Joon-Yung; Kim, Woe-Yeon
2017-12-31
Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY K+ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of Na+ in roots up to the elongation zone and caused the reabsorption of Na+ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.
Gogile, A; Andargie, M; Muthuswamy, M
2013-07-15
The environmental stress such as, salinity (soil or water) are serious obstacles for field crops especially in the arid and semi-arid parts of the world. This study was conducted to assess the potential for salt tolerance of cowpea genotypes during the seedling stage. The experimental treatments were 9 cowpea genotypes and 4 NaCl concentrations (0, 50, 100 and 200 mM) and they were tested in greenhouse. The experimental design was completely randomized design in factorial combination with three replications. Data analysis was carried out using SAS (version 9.1) statistical software. Seedling shoots and root traits, seedling shoots and root weight, number of leaves and total biological yield were evaluated. The analyzed data revealed highly significant (p < 0.001) variation among cowpea genotypes, treatments and their interactions. It is found that salt stress significantly decreased root length, shoot length, seedling shoot and root weight of cowpea genotypes. The extent of decrease varied with genotypes and salt concentrations. Most genotypes were highly susceptible to 200 mM NaCl concentration. The correlation analysis revealed positive and significant association among most of the parameters. Genotypes 210856, 211557 and Asebot were better salt tolerant. The study revealed the presence of broad intra specific genetic variation in cowpea varieties for salt stress with respect to their early biomass production.
Halophytes--an emerging trend in phytoremediation.
Manousaki, Eleni; Kalogerakis, Nicolas
2011-01-01
Halophytic plants are of special interest because these plants are naturally present in environments characterized by an excess of toxic ions, mainly sodium and chloride. Several studies have revealed that these plants may also tolerate other stresses including heavy metals based on the findings that tolerance to salt and to heavy metals may, at least partly, rely on common physiological mechanisms. In addition, it has been shown that salt-tolerant plants may also be able to accumulate metals. Therefore, halophytes have been suggested to be naturally better adapted to cope with environmental stresses, including heavy metals compared to salt-sensitive crop plants commonly chosen for phytoextraction purposes. Thus, potentially halophytes are ideal candidates for phytoextraction orphytostabilization of heavy metal polluted soils and moreover of heavy metal polluted soils affected by salinity. Some halophytes use excretion processes in order to remove the excess of salt ions from their sensitive tissues and in some cases these glandular structures are not always specific to Na+ and Cl- and other toxic elements such as cadmium, zinc, lead, or copper are accumulated and excreted by salt glands or trichomes on the surface of the leaves--a novel phytoremediation process called "phytoexcretion". Finally, the use of halophytes has also been proposed for soil desalination through salt accumulation in the plant tissue or dissolution of soil calcite in the rhizosphere to provide Ca2+ that can be exchanged with Na+ at cation exchange sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongchang; Zhang, Xinyu; Zhu, Shouhong
Ubiquitination plays a very important role in the response to abiotic stresses of plant. To identify key regulators of salt stress, a gene GhSARP1(Salt-Associated Ring finger Protein)encoding C3H2C3-type E3 ligase, was cloned from cotton. Transcription level of GhSARP1 was high in leaf, flower and fiber of 24,27 and 27DPA (Days Post-Anthesis), but low in root and stem. Except PEG6000 treatment, the expression of GhSARP1 was down-regulated by NaCl, cold and ABA after being treated for 1 h. GhSARP1-GFP fusion protein located on the plasma membrane, which was dependent on trans-membrane motif. In vitro ubiquitination assay showed that GhSARP1 had E3 ligase activity.more » Heterogeneous overexpression of GhSARP1reduced salt tolerance of transgenic Arabidopsis in germination and post-germination stage. Our results suggested that the GhSARP1 might negatively regulate the response to salt stress mediated by the ubiquitination in cotton. - Highlights: • GhSARP1 expression was regulated by various abiotic stresses. • GhSARP1 have E3 ligase activity in vitro and locate on the plasma membrane. • Overexpression of GhSARP1 in Arabidopsis reduced the salt tolerance.« less
Yadav, Narendra Singh; Rashmi, Deo; Singh, Dinkar; Agarwal, Pradeep K; Jha, Bhavanath
2012-02-01
Salicornia brachiata is one of the extreme salt tolerant plants and grows luxuriantly in coastal areas. Previously we have reported isolation and characterization of ESTs from S. brachiata with large number of unknown gene sequences. Reverse Northern analysis showed upregulation and downregulation of few unknown genes in response to salinity. Some of these unknown genes were made full length and their functional analysis is being tested. In this study, we have selected a novel unknown salt inducible gene SbSI-1 (Salicornia brachiata salt inducible-1) for the functional validation. The SbSI-1 (Gen-Bank accession number JF 965339) was made full length and characterized in detail for its functional validation under desiccation and salinity. The SbSI-1 gene is 917 bp long, and contained 437 bp 3' UTR, and 480 bp ORF region encoding 159 amino acids protein with estimated molecular mass of 18.39 kDa and pI 8.58. The real time PCR analysis revealed high transcript expression in salt, desiccation, cold and heat stresses. However, the maximum expression was obtained by desiccation. The ORF region of SbSI-1 was cloned in pET28a vector and transformed in BL21 (DE3) E. coli cells. The SbSI-1 recombinant E. coli cells showed tolerance to desiccation and salinity stress compared to only vector in the presence of stress.
Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed
2017-04-01
Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Kurt-Kızıldoğan, Aslıhan; Abanoz, Büşra; Okay, Sezer
2017-02-15
Extremely halophilic archaea survive in the hypersaline environments such as salt lakes or salt mines. Therefore, these microorganisms are good sources to investigate the molecular mechanisms underlying the tolerance to high salt concentrations. In this study, a global transcriptome analysis was conducted in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated from a salt mine in Turkey. A comparative RNA-seq analysis was performed using YKT1 isolate grown either at 2.7M NaCl or 5.5M NaCl concentrations. A total of 2149 genes were predicted to be up-regulated and 1638 genes were down-regulated in the presence of 5.5M NaCl. The salt tolerance of Halolamina sp. YKT1 involves the up-regulation of genes related with membrane transporters, CRISPR-Cas systems, osmoprotectant solutes, oxidative stress proteins, and iron metabolism. On the other hand, the genes encoding the proteins involved in DNA replication, transcription, translation, mismatch and nucleotide excision repair were down-regulated. The RNA-seq data were verified for seven up-regulated genes as well as six down-regulated genes via qRT-PCR analysis. This comprehensive transcriptome analysis showed that the halophilic archaeon canalizes its energy towards keeping the intracellular osmotic balance minimizing the production of nucleic acids and peptides. Copyright © 2016 Elsevier B.V. All rights reserved.
Obata, Toshihiro; Kitamoto, Hiroko K.; Nakamura, Atsuko; Fukuda, Atsunori; Tanaka, Yoshiyuki
2007-01-01
We screened a rice (Oryza sativa L. ‘Nipponbare’) full-length cDNA expression library through functional complementation in yeast (Saccharomyces cerevisiae) to find novel cation transporters involved in salt tolerance. We found that expression of a cDNA clone, encoding the rice homolog of Shaker family K+ channel KAT1 (OsKAT1), suppressed the salt-sensitive phenotype of yeast strain G19 (Δena1–4), which lacks a major component of Na+ efflux. It also suppressed a K+-transport-defective phenotype of yeast strain CY162 (Δtrk1Δtrk2), suggesting the enhancement of K+ uptake by OsKAT1. By the expression of OsKAT1, the K+ contents of salt-stressed G19 cells increased during the exponential growth phase. At the linear phase, however, OsKAT1-expressing G19 cells accumulated less Na+ than nonexpressing cells, but almost the same K+. The cellular Na+ to K+ ratio of OsKAT1-expressing G19 cells remained lower than nonexpressing cells under saline conditions. Rice cells overexpressing OsKAT1 also showed enhanced salt tolerance and increased cellular K+ content. These functions of OsKAT1 are likely to be common among Shaker K+ channels because OsAKT1 and Arabidopsis (Arabidopsis thaliana) KAT1 were able to complement the salt-sensitive phenotype of G19 as well as OsKAT1. The expression of OsKAT1 was restricted to internodes and rachides of wild-type rice, whereas other Shaker family genes were expressed in various organs. These results suggest that OsKAT1 is involved in salt tolerance of rice in cooperation with other K+ channels by participating in maintenance of cytosolic cation homeostasis during salt stress and thus protects cells from Na+. PMID:17586689
RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton.
Zhao, Yanpeng; Huang, Yi; Wang, Yumei; Cui, Yupeng; Liu, Zhengjie; Hua, Jinping
2018-06-01
Phosphoenolpyruvate carboxylase (PEPCase) mainly produces oxaloacetic acid for tricarboxylic acid (TCA) cycle. Here we reported that GhPEPC2 silencing with PEPC2-RNAi vector could regulate oil and protein accumulation in cottonseeds. In GhPEPC2 transgenic plants, PEPCase activities in immature embryos were significantly reduced, and the oil content in seed kernel was increased 7.3 percentages, whereas total proteins decreased 5.65 percentages. Compared to wild type, agronomical traits of transgenic plant were obviously unaffected. Furthermore, gene expression profile of GhPEPC2 transgenic seeds were investigated using RNA-seq, most lipid synthesis related genes were up-regulated, but amino acid metabolic related genes were down-regulated. In addition, the GhPEPC2 transgenic cotton seedlings were stressed using sodium salts at seedling stage, and the salt tolerance was significantly enhanced. Our observations of GhPEPC2 in cotton would shade light on understanding the regulation of oil content, protein accumulation and salt tolerance enhancement in other plants. Copyright © 2018 Elsevier B.V. All rights reserved.
FTIR Spectroscopy of Protein Isolates of Salt-Tolerant Soybean Mutants
NASA Astrophysics Data System (ADS)
Akyuz, S.; Akyuz, T.; Celik, O.; Atak, C.
2018-01-01
The effect of salinity on the conformation of proteins of four salt-tolerant M2 generation mutants of soybean plants (S04-05/150-2, S04-05/150-8, S04-05/150-106, and S04-05/150-114) was investigated using Fourier transform infrared (FTIR) spectroscopy. Salinity is one of the important abiotic stress factors that limits growth and productivity of plants. The mutants belonging to the M2 generation were determined as tolerant to 90 mM NaCl. The relative contents of α-helix, β-sheet, turn, and irregular conformations for the soybean protein isolates were determined depending on the analysis of the amide I region. The comparison of the secondary structures of soybean proteins of the mutants with those of the control group indicated that the α-helix structure percentage was diminished while β-turn and disordered structures were increased as a result of the salt stress.
Zhang, H X; Hodson, J N; Williams, J P; Blumwald, E
2001-10-23
Transgenic Brassica napus plants overexpressing AtNHX1, a vacuolar Na(+)/H(+) antiport from Arabidopsis thaliana, were able to grow, flower, and produce seeds in the presence of 200 mM sodium chloride. Although the transgenic plants grown in high salinity accumulated sodium up to 6% of their dry weight, growth of the these plants was only marginally affected by the high salt concentration. Moreover, seed yields and the seed oil quality were not affected by the high salinity of the soil. Our results demonstrate the potential use of these transgenic plants for agricultural use in saline soils. Our findings, showing that the modification of a single trait significantly improved the salinity tolerance of this crop plant, suggest that with a combination of breeding and transgenic plants it could be possible to produce salt-tolerant crops with far fewer target traits than had been anticipated.
Natural variability in Drosophila larval and pupal NaCl tolerance.
Riedl, Craig A L; Oster, Sara; Busto, Macarena; Mackay, Trudy F C; Sokolowski, Marla B
2016-05-01
The regulation of NaCl is essential for the maintenance of cellular tonicity and functionality, and excessive salt exposure has many adverse effects. The fruit fly, Drosophila melanogaster, is a good osmoregulator and some strains can survive on media with very low or high NaCl content. Previous analyses of mutant alleles have implicated various stress signaling cascades in NaCl sensitivity or tolerance; however, the genes influencing natural variability of NaCl tolerance remain for the most part unknown. Here, we use two approaches to investigate natural variation in D. melanogaster NaCl tolerance. We describe four D. melanogaster lines that were selected for different degrees of NaCl tolerance, and present data on their survival, development, and pupation position when raised on varying NaCl concentrations. After finding evidence for natural variation in salt tolerance, we present the results of Quantitative Trait Loci (QTL) mapping of natural variation in larval and pupal NaCl tolerance, and identify different genomic regions associated with NaCl tolerance during larval and pupal development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-27
... Guar Gum Sodium Salt and Carboxymethyl- Hydroxypropyl Guar; Exemption From the Requirement of a... establishes an exemption from the requirement of a tolerance for residues of carboxymethyl guar gum sodium... carboxymethyl guar gum sodium salt and carboxymethyl- hydroxypropyl guar. DATES: This regulation is effective...
Zhang, Yan-Min; Zhang, Hong-Mei; Liu, Zi-Hui; Li, Hui-Cong; Guo, Xiu-Lin; Li, Guo-Liang
2015-02-01
Previous studies have shown that TaNHX2 transgenic alfalfa (Medicago sativa L.) accumulated more K(+) and less Na(+) in leaves than did the wild-type plants. To investigate whether the increased K(+) accumulation in transgenic plants is attributed to TaNHX2 gene expression and whether the compartmentalization of Na(+) into vacuoles or the intracellular compartmentalization of potassium is the critical mechanism for TaNHX2-dependent salt tolerance in transgenic alfalfa, aerated hydroponic culture was performed under three different stress conditions: control condition (0.1 mM Na(+) and 6 mM K(+) inside culture solution), K(+)-sufficient salt stress (100 mM NaCl and 6 mM K(+)) and K(+)-insufficient salt stress (100 mM NaCl and 0.1 mM K(+)). The transgenic alfalfa plants had lower K(+) efflux through specific K(+) channels and higher K(+) absorption through high-affinity K(+) transporters than did the wild-type plants. Therefore, the transgenic plants had greater K(+) contents and [K(+)]/[Na(+)] ratios in leaf tissue and cell sap. The intracellular compartmentalization of potassium is critical for TaNHX2-induced salt tolerance in transgenic alfalfa.
Alharby, Hesham F; Metwali, Ehab M R; Fuller, Michael P; Aldhebiani, Amal Y
2016-11-01
Five cultivars of tomato having different levels of salt stress tolerance were exposed to different treatments of NaCl (0, 3 and 6 g L -1 ) and ZnO-NPs (0, 15 and 30 mg L -1 ). Treatments with NaCl at both 3 and 6 g L -1 suppressed the mRNA levels of superoxide dismutase (SOD) and glutathione peroxidase (GPX) genes in all cultivars while plants treated with ZnO-NPs in the presence of NaCl, showed increments in the mRNA expression levels. This indicated that ZnO-NPs had a positive response on plant metabolism under salt stress. Superior expression levels of mRNA were observed in the salt tolerant cultivars, Sandpoint and Edkawy while the lowest level was detected in the salt sensitive cultivar, Anna Aasa. SDS-PAGE showed clear differences in patterns of protein expression among the cultivars. A negative protein marker for salt sensitivity and ZnO-NPs was detected in cv. Anna Aasa at a molecular weight of 19.162 kDa, while the tolerant cultivar Edkawy had two positive markers at molecular weights of 74.991 and 79.735 kDa.
Sowmya, M; Rejula, M P; Rejith, P G; Mohan, Mahesh; Karuppiah, Makesh; Hatha, A A Mohamed
2014-07-01
Microorganisms which can resist high concentration of toxic heavy metals are often considered as effective tools of bioremediation from such pollutants. In the present study, sediment samples from Vembanad Lake were screened for the presence of halophilic bacteria that are tolerant to heavy metals. A total of 35 bacterial strains belonging to different genera such as Alcaligenes, Vibrio, Kurthia, Staphylococcus and members of the family Enterobacteriaceae were isolated from 21 sediment samples during February to April, 2008. The salt tolerance and optimum salt concentrations of the isolates revealed that most of them were moderate halophiles followed by halotolerant and extremely halotolerant groups. The minimum inhibitory concentrations (MICs) against cadmium and lead for each isolate revealed that the isolates showed higher MIC against lead than cadmium. Based on the resistance limit concentration, most of them were more tolerant to lead than cadmium at all the three salt concentrations tested. Heavy metal removal efficiency of selected isolates showed a maximum reduction of 37 and 99% against cadmium and lead respectively. The study reveals the future prospects of halophilic microorganisms in the field of bioremediation.
Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long
2015-07-07
It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.
Zhou, Aifen; Hillesland, Kristina L.; He, Zhili; ...
2015-04-07
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. In conclusion, our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Aifen; Hillesland, Kristina L.; He, Zhili
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. In conclusion, our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Aifen; Hillesland, Kristina L.; He, Zhili
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping datamore » demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.« less
Zhou, Aifen; Hillesland, Kristina L; He, Zhili; Schackwitz, Wendy; Tu, Qichao; Zane, Grant M; Ma, Qiao; Qu, Yuanyuan; Stahl, David A; Wall, Judy D; Hazen, Terry C; Fields, Matthew W; Arkin, Adam P; Zhou, Jizhong
2015-11-01
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance.
Zhou, Aifen; Hillesland, Kristina L; He, Zhili; Schackwitz, Wendy; Tu, Qichao; Zane, Grant M; Ma, Qiao; Qu, Yuanyuan; Stahl, David A; Wall, Judy D; Hazen, Terry C; Fields, Matthew W; Arkin, Adam P; Zhou, Jizhong
2015-01-01
To investigate the genetic basis of microbial evolutionary adaptation to salt (NaCl) stress, populations of Desulfovibrio vulgaris Hildenborough (DvH), a sulfate-reducing bacterium important for the biogeochemical cycling of sulfur, carbon and nitrogen, and potentially the bioremediation of toxic heavy metals and radionuclides, were propagated under salt stress or non-stress conditions for 1200 generations. Whole-genome sequencing revealed 11 mutations in salt stress-evolved clone ES9-11 and 14 mutations in non-stress-evolved clone EC3-10. Whole-population sequencing data suggested the rapid selective sweep of the pre-existing polymorphisms under salt stress within the first 100 generations and the slow fixation of new mutations. Population genotyping data demonstrated that the rapid selective sweep of pre-existing polymorphisms was common in salt stress-evolved populations. In contrast, the selection of pre-existing polymorphisms was largely random in EC populations. Consistently, at 100 generations, stress-evolved population ES9 showed improved salt tolerance, namely increased growth rate (2.0-fold), higher biomass yield (1.8-fold) and shorter lag phase (0.7-fold) under higher salinity conditions. The beneficial nature of several mutations was confirmed by site-directed mutagenesis. All four tested mutations contributed to the shortened lag phases under higher salinity condition. In particular, compared with the salt tolerance improvement in ES9-11, a mutation in a histidine kinase protein gene lytS contributed 27% of the growth rate increase and 23% of the biomass yield increase while a mutation in hypothetical gene DVU2472 contributed 24% of the biomass yield increase. Our results suggested that a few beneficial mutations could lead to dramatic improvements in salt tolerance. PMID:25848870
Upadhyay, Anuradha; Gaonkar, Tulsi; Upadhyay, Ajay Kumar; Jogaiah, Satisha; Shinde, Manisha P; Kadoo, Narendra Y; Gupta, Vidya S
2018-05-31
Among the different abiotic stresses, salt stress has a significant effect on the growth and yield of grapevine (Vitis vinifera L.). In this study, we employed RNA sequence based transcriptome analysis to study salinity stress response in grape variety Thompson Seedless. Salt stress adversely affected the growth related and physiological parameters and the effect on physiological parameters was significant within 10 days of stress imposition. A total of 343 genes were differentially expressed in response to salt stress. Among the differentially expressed genes (DEGs) only 42 genes were common at early and late stages of stress. The gene enrichment analysis revealed that GO terms related to transcription factors were over-represented. Among the DEGs, 52 were transcription factors belonging to WRKY, EREB, MYB, NAC and bHLH families. Salt stress significantly affected several pathways like metabolic pathways, biosynthesis of secondary metabolites, membrane transport development related pathways etc. 343 DEGs were distributed on all the 19 chromosomes, however clustered regions of DEGs were present on chromosomes 2, 5, 6 and 12 suggesting probable QTLs for imparting tolerance to salt and other abiotic stresses. Real-time PCR of selected genes in control and treated samples of grafted and own root vines demonstrated that rootstock influenced expression of salt stress responsive genes. Microsatellite regions were identified in ten selected salt responsive genes and highly polymorphic markers were identified using fifteen grape genotypes. This information will be useful for the identification of key genes involved in salt stress tolerance in grape. The identified DEGs could also be useful for genome wide analysis for the identification of polymorphic markers for their subsequent use in molecular breeding for developing salt tolerant grape genotypes. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Pandey, Garima; Yadav, Chandra Bhan; Sahu, Pranav Pankaj; Muthamilarasan, Mehanathan; Prasad, Manoj
2017-05-01
Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.
Song, Jie; Wang, Baoshan
2015-02-01
As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tang, Lili; Cai, Hua; Ji, Wei; Luo, Xiao; Wang, Zhenyu; Wu, Jing; Wang, Xuedong; Cui, Lin; Wang, Yang; Zhu, Yanming; Bai, Xi
2013-10-01
GsZFP1 encodes a Cys2/His2-type zinc-finger protein. In our previous study, when GsZFP1 was heterologously expressed in Arabidopsis, the transgenic Arabidopsis plants exhibited enhanced drought and cold tolerance. However, it is still unknown whether GsZFP1 is also involved in salt stress. GsZFP1 is from the wild legume Glycine soja. Therefore, the aims of this study were to further elucidate the functions of the GsZFP1 gene under salt and drought stress in the forage legume alfalfa and to investigate its biochemical and physiological functions under these stress conditions. Our data showed that overexpression of GsZFP1 in alfalfa resulted in enhanced salt tolerance. Under high salinity stress, greater relative membrane permeability and malondialdehyde (MDA) content were observed and more free proline and soluble sugars accumulated in transgenic alfalfa than in the wild-type (WT) plants; in addition, the transgenic lines accumulated less Na(+) and more K(+) in both the shoots and roots. Overexpression of GsZFP1 also enhanced the drought tolerance of alfalfa. The fold-inductions of stress-responsive marker gene expression, including MtCOR47, MtRAB18, MtP5CS, and MtRD2, were greater in transgenic alfalfa than those of WT under drought stress conditions. In conclusion, the transgenic alfalfa plants generated in this study could be used for farming in salt-affected as well as arid and semi-arid areas. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Li, Xiaoning; Han, Shijuan; Wang, Guangyang; Liu, Xiaoying; Amombo, Erick; Xie, Yan; Fu, Jinmin
2017-01-01
Perennial ryegrass (Lolium perenne) is an important forage grass with high yield and superior quality in temperate regions which is widely used in parks, sport field, and other places. However, perennial ryegrass is moderately tolerant to salinity stress compared to other commercial cultivars and salt stress reduces their growth and productivity. Aspergillus aculeatus has been documented to participate in alleviating damage induced by salinity. Therefore, the objective of this study was to investigate the mechanisms underlying A. aculeatus-mediated salt tolerance, and forage quality of perennial ryegrass exposed to 0, 200, and 400 mM NaCl concentrations. Physiological markers and forage quality of perennial ryegrass to salt stress were evaluated based on the growth rate, photosynthesis, antioxidant enzymes activity, lipid peroxidation, ionic homeostasis, the nutritional value of forage, and metabolites. Plants inoculated with A. aculeatus exhibited higher relative growth rate (RGR), turf and forage quality under salt stress than un-inoculated plants. Moreover, in inoculated plants, the fungus remarkably improved plant photosynthetic efficiency, reduced the antioxidant enzymes activity (POD and CAT), and attenuated lipid peroxidation (decreased H2O2 and MDA accumulation) induced by salinity, compared to un-inoculated plants. Furthermore, the fungus also acts as an important role in maintaining the lower Na/K ratio and metabolites and lower the amino acids (Alanine, Proline, GABA, and Asparagine), and soluble sugars (Glucose and Fructose) for inoculated plants than un-inoculated ones. Our results suggest that A. aculeatus may be involved in modulating perennial ryegrass tolerance to salinity in various ways. PMID:28936200
Wu, Dandan; Sun, Yinghao; Wang, Hongfei; Shi, He; Su, Mingxing; Shan, Hongyan; Li, Tongtong; Li, Qiuli
2018-07-01
NAC (NAM, ATAF1/2 and CUC) transcription factors play an important role in resisting abiotic stress in plants. In this study, a novel NAC gene, designated SlNAC8 from Suaeda liaotungensis K. was characterized. SlNAC8 protein is localized in the nucleus, and the yeast one-hybrid screening showed that it contains an activation domain in its C-terminus and functions as a transcriptional activator. Gene expression analysis revealed that it is induced by drought and salt stress. Arabidopsis plants overexpressing SlNAC8 demonstrated enhanced tolerance to drought and salt stress, showing significant advantages in seed germination, root growth, shoot growth, and survival rate compared with controls. Moreover, transgenic plants had a significantly higher proline concentration, antioxidant enzyme activity (superoxide dismutase, peroxidase, and catalase), and level of chlorophyll fluorescence than wild-type, and a significantly lower malondialdehyde concentration and electrolyte leakage under drought and salt stress. The overexpression of SlNAC8 in transgenic plants also enhanced the expression of stress-responsive genes such as RD20, GSTF6, COR47, RD29A, RD29B, and NYC1. In summary, SlNAC8, as a transcription factor, may change the physiological-biochemical characteristic of plants by regulating the expression of stress-responsive genes and enhance the drought and salt stress tolerance of plants. SlNAC8 can be utilized for developing drought and salinity tolerance in crop plants through genetic engineering. Copyright © 2018 Elsevier B.V. All rights reserved.
Transcriptome Analysis of Salt Tolerant Common Bean (Phaseolus vulgaris L.) under Saline Conditions
Hiz, Mahmut Can; Canher, Balkan; Niron, Harun; Turet, Muge
2014-01-01
Salinity is one of the important abiotic stress factors that limit crop production. Common bean, Phaseolus vulgaris L., a major protein source in developing countries, is highly affected by soil salinity and the information on genes that play a role in salt tolerance is scarce. We aimed to identify differentially expressed genes (DEGs) and related pathways by comprehensive analysis of transcriptomes of both root and leaf tissues of the tolerant genotype grown under saline and control conditions in hydroponic system. We have generated a total of 158 million high-quality reads which were assembled into 83,774 all-unigenes with a mean length of 813 bp and N50 of 1,449 bp. Among the all-unigenes, 58,171 were assigned with Nr annotations after homology analyses. It was revealed that 6,422 and 4,555 all-unigenes were differentially expressed upon salt stress in leaf and root tissues respectively. Validation of the RNA-seq quantifications (RPKM values) was performed by qRT-PCR (Quantitative Reverse Transcription PCR) analyses. Enrichment analyses of DEGs based on GO and KEGG databases have shown that both leaf and root tissues regulate energy metabolism, transmembrane transport activity, and secondary metabolites to cope with salinity. A total of 2,678 putative common bean transcription factors were identified and classified under 59 transcription factor families; among them 441 were salt responsive. The data generated in this study will help in understanding the fundamentals of salt tolerance in common bean and will provide resources for functional genomic studies. PMID:24651267
Hashem, Abeer; Abd_Allah, Elsayed F.; Alqarawi, Abdulaziz A.; Al-Huqail, Asma A.; Wirth, Stephan; Egamberdieva, Dilfuza
2016-01-01
Microbes living symbiotically in plant tissues mutually cooperate with each other by providing nutrients for proliferation of the partner organism and have a beneficial effect on plant growth. However, few studies thus far have examined the interactive effect of endophytic bacteria and arbuscular mycorrhizal fungi (AMF) in hostile conditions and their potential to improve plant stress tolerance. In this study, we investigated how the synergistic interactions of endophytic bacteria and AMF affect plant growth, nodulation, nutrient acquisition and stress tolerance of Acacia gerrardii under salt stress. Plant growth varied between the treatments with both single inoculants and was higher in plants inoculated with the endophytic B. subtilis strain than with AMF. Co-inoculated A. gerrardii had a significantly greater shoot and root dry weight, nodule number, and leghemoglobin content than those inoculated with AMF or B. subtilis alone under salt stress. The endophytic B. subtilis could alleviate the adverse effect of salt on AMF colonization. The differences in nitrate and nitrite reductase and nitrogenase activities between uninoculated plants and those inoculated with AMF and B. subtilis together under stress were significant. Both inoculation treatments, either B. subtilis alone or combined with AMF, enhanced the N, P, K, Mg, and Ca contents and phosphatase activities in salt-stressed A. gerrardii tissues and reduced Na and Cl concentration, thereby protecting salt-stressed plants from ionic and osmotic stress-induced changes. In conclusion, our results indicate that endophytic bacteria and AMF contribute to a tripartite mutualistic symbiosis in A. gerrardii and are coordinately involved in the plant adaptation to salt stress tolerance. PMID:27486442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Aifen; Lau, Rebecca; Baran, Richard
ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies.Desulfovibrio vulgarisHildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation ofD. vulgarisHildenborough with experimental evolution. Here in this paper, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution.« less
Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M; Wu, Liyou; Bowen, Benjamin P; Northen, Trent R; Hillesland, Kristina L; Stahl, David A; Wall, Judy D; Arkin, Adam P; Zhou, Jizhong
2017-11-14
Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies. Desulfovibrio vulgaris Hildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation of D. vulgaris Hildenborough with experimental evolution. Here, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution. Copyright © 2017 Zhou et al.
Zhou, Aifen; Lau, Rebecca; Baran, Richard; ...
2017-11-14
ABSTRACT. Rapid genetic and phenotypic adaptation of the sulfate-reducing bacteriumDesulfovibrio vulgarisHildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, inmore » addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance inD. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. IMPORTANCE. High salinity (e.g., elevated NaCl) is a stressor that affects many organisms. Salt tolerance, a complex trait involving multiple cellular pathways, is attractive for experimental evolutionary studies.Desulfovibrio vulgarisHildenborough is a model sulfate-reducing bacterium (SRB) that is important in biogeochemical cycling of sulfur, carbon, and nitrogen, potentially for bio-corrosion, and for bioremediation of toxic heavy metals and radionuclides. The coexistence of SRB and high salinity in natural habitats and heavy metal-contaminated field sites laid the foundation for the study of salt adaptation ofD. vulgarisHildenborough with experimental evolution. Here in this paper, we analyzed a clone that evolved under salt stress for 5,000 generations and compared it to a clone evolved under the same condition for 1,200 generations. The results indicated the key roles of glutamate for osmoprotection and of i17:1ω9c for increasing membrane fluidity during salt adaptation. The findings provide valuable insights about the salt adaptation mechanism changes during long-term experimental evolution.« less
Schmidt, Romy; Mieulet, Delphine; Hubberten, Hans-Michael; Obata, Toshihiro; Hoefgen, Rainer; Fernie, Alisdair R.; Fisahn, Joachim; San Segundo, Blanca; Guiderdoni, Emmanuel; Schippers, Jos H.M.; Mueller-Roeber, Bernd
2013-01-01
Early detection of salt stress is vital for plant survival and growth. Still, the molecular processes controlling early salt stress perception and signaling are not fully understood. Here, we identified SALT-RESPONSIVE ERF1 (SERF1), a rice (Oryza sativa) transcription factor (TF) gene that shows a root-specific induction upon salt and hydrogen peroxide (H2O2) treatment. Loss of SERF1 impairs the salt-inducible expression of genes encoding members of a mitogen-activated protein kinase (MAPK) cascade and salt tolerance–mediating TFs. Furthermore, we show that SERF1-dependent genes are H2O2 responsive and demonstrate that SERF1 binds to the promoters of MAPK KINASE KINASE6 (MAP3K6), MAPK5, DEHYDRATION-RESPONSIVE ELEMENT BINDING2A (DREB2A), and ZINC FINGER PROTEIN179 (ZFP179) in vitro and in vivo. SERF1 also directly induces its own gene expression. In addition, SERF1 is a phosphorylation target of MAPK5, resulting in enhanced transcriptional activity of SERF1 toward its direct target genes. In agreement, plants deficient for SERF1 are more sensitive to salt stress compared with the wild type, while constitutive overexpression of SERF1 improves salinity tolerance. We propose that SERF1 amplifies the reactive oxygen species–activated MAPK cascade signal during the initial phase of salt stress and translates the salt-induced signal into an appropriate expressional response resulting in salt tolerance. PMID:23800963
Guan, Cong; Huang, Yan-Hua; Cui, Xin; Liu, Si-Jia; Zhou, Yun-Zhuan; Zhang, Yun-Wei
2018-05-25
Genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant salt stress tolerance. Switchgrass (Panicum virgatum L.) has developed into a dedicated bioenergy crop. To improve the biomass production of switchgrass grown on different types of soil, abiotic stress tolerance traits are considered for its genetic improvement. Proline accumulation is a widespread response when plants are subjected to abiotic stresses such as drought, cold and salinity. In plants, P5CS gene encodes the key regulatory enzyme that plays a crucial role in proline biosynthesis. Here, we introduced the PuP5CS gene (from Puccinellia chinampoensis) into switchgrass by Agrobacterium-mediated transformation. Transgenic lines overexpressing the PuP5CS gene showed phenotypic advantages, in leaf width, internode diameter, internode length, tiller numbers and precocious flowering under normal conditions, and the transgenic lines displayed better regenerative capacity in forming more tillers after harvest. Moreover, the PuP5CS gene enhanced the salt tolerance of transgenic switchgrass by altering a wide range of physiological responses. In accordance with the physiological results, histological analysis of cross sections through the leaf blade showed that the areas of bulliform cells and bundle sheath cells were significantly increased in PuP5CS-overexpressing leaves. The expression levels of ROS scavenging-associated genes in transgenic plants were higher than in control plants under salt stress. The results show that genetic improvement through overexpressing PuP5CS in switchgrass is feasible for enhancing plant stress tolerance.
NASA Astrophysics Data System (ADS)
Elmer, W. H.; LaMondia, J. A.
2014-08-01
Successful plant pathogens co-evolve and adapt to the environmental constraints placed on host plants. We compared the salt tolerance of two salt marsh pathogens, Fusarium palustre and Meloidogyne spartinae, to genetically related terrestrial species, F. sporotrichioides and Meloidogyne hapla, to assess whether the salt marsh species had acquired selective traits for persisting in saline environments or if salt tolerance was comparable among Fusarium and Meloidogyne species. Comparisons of both species were made in vitro in vessels containing increasing concentration of NaCl. We observed that F. palustre was more tolerant to NaCl than F. sporotrichioides. The radial expansion of F. palustre on NaCl-amended agar plates was unaffected by increasing concentrations up to 0.3 M. F. sporotrichioides showed large reductions in growth at the same concentrations. Survival of M. hapla was greatest at 0 M, and reduced by half in a 0.3 M solution for 4 days. No juveniles survived exposure to 0.3 M NaCl for 12 days. M. spartinae survived at all NaCl concentrations tested, including 1.0 M for at least 12 days. These findings are consistent with the hypothesis that marine organisms in the upper tidal zone must osmoregulate to withstand a wide range of salinity and provide evidence that these pathogens evolved in saline conditions and are not recent introductions from terrestrial niches.
Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun
2017-09-01
Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xiang, Dian-Jun; Man, Li-Li; Zhang, Chun-Lan; Peng-Liu; Li, Zhi-Gang; Zheng, Gen-Chang
2018-02-07
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.
Huang, Quanjun; Wang, Yan; Li, Bin; Chang, Junli; Chen, Mingjie; Li, Kexiu; Yang, Guangxiao; He, Guangyuan
2015-11-04
NAC (NAM, ATAF, and CUC) transcription factors play important roles in plant biological processes, including phytohormone homeostasis, plant development, and in responses to various environmental stresses. TaNAC29 was introduced into Arabidopsis using the Agrobacterium tumefaciens-mediated floral dipping method. TaNAC29-overexpression plants were subjected to salt and drought stresses for examining gene functions. To investigate tolerant mechanisms involved in the salt and drought responses, expression of related marker genes analyses were conducted, and related physiological indices were also measured. Expressions of genes were analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). A novel NAC transcription factor gene, designated TaNAC29, was isolated from bread wheat (Triticum aestivum). Sequence alignment suggested that TaNAC29 might be located on chromosome 2BS. TaNAC29 was localized to the nucleus in wheat protoplasts, and proved to have transcriptional activation activities in yeast. TaNAC29 was expressed at a higher level in the leaves, and expression levels were much higher in senescent leaves, indicating that TaNAC29 might be involved in the senescence process. TaNAC29 transcripts were increased following treatments with salt, PEG6000, H2O2, and abscisic acid (ABA). To examine TaNAC29 function, transgenic Arabidopsis plants overexpressing TaNAC29 were generated. Germination and root length assays of transgenic plants demonstrated that TaNAC29 overexpression plants had enhanced tolerances to high salinity and dehydration, and exhibited an ABA-hypersensitive response. When grown in the greenhouse, TaNAC29-overexpression plants showed the same tolerance response to salt and drought stresses at both the vegetative and reproductive period, and had delayed bolting and flowering in the reproductive period. Moreover, TaNAC29 overexpression plants accumulated lesser malondialdehyde (MDA), H2O2, while had higher superoxide dismutase (SOD) and catalase (CAT) activities under high salinity and/or dehydration stress. Our results demonstrate that TaNAC29 plays important roles in the senescence process and response to salt and drought stresses. ABA signal pathway and antioxidant enzyme systems are involved in TaNAC29-mediated stress tolerance mechanisms.
Shamseldin, Abdelaal; Nyalwidhe, Julius; Werner, Dietrich
2006-05-01
Soluble proteins from the salt-tolerant Rhizobium etli strain EBRI 26 were separated by two-dimensional (2D) gel electrophoresis and visualised by Commassie staining. Six proteins are highly expressed after induction by 4% NaCl compared to the non-salt-stressed cells. These proteins have pI between 5 and 5.5 and masses of approximately 22, 25, 40, 65, 70, and 95 kDa. These proteins were analysed by Matrix-assisted laser adsorption ionization time of flight (MALDI-TOF) after digestion with trypsin. Despite having very good peptide mass fingerprint data, these proteins could not be identified, because the genome sequence of R. etli is not yet published. In a second approach, soluble proteins from salt-induced or non-salt-induced cultures from R. etli strain EBRI 26 were separately labelled with different fluorescent cyano-dyes prior to 2D difference in gel electrophoresis. Results revealed that 49 proteins are differentially expressed after the addition of sodium chloride. Fourteen proteins are overexpressed and 35 were downregulated. The genome of Sinorhizobium meliloti, a closely related species to R. etli, has been published. Similar experiments using Sinorhizobium meliloti strain 2011 identified four overexpressed and six downregulated proteins. Among the overexpressed protein is a carboxynospermidin decarboxylase, which plays an important role in the biosynthesis of spermidin (polyamine). The enzyme catalase is among the downregulated proteins. These proteins may play a role in salt tolerance.
Chen, Huatao; He, Hui; Yu, Deyue
2011-01-01
Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38-49% identity with other plant HKT-like sequences. RT-PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non-transgenic plants. To investigate the role of GmHKT1 in K(+) and Na(+) transport, we compared K(+) and Na(+) accumulation in roots and shoots of wild-type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K(+) and Na(+) transport in roots and shoots, and regulated Na(+) /K(+) homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress. Copyright © Physiologia Plantarum 2010.
Alvarez-Gerding, Ximena; Cortés-Bullemore, Rowena; Medina, Consuelo; Romero-Romero, Jesús L.; Inostroza-Blancheteau, Claudio; Aquea, Felipe; Arce-Johnson, Patricio
2015-01-01
Citrus plants are widely cultivated around the world and, however, are one of the most salt stress sensitive crops. To improve salinity tolerance, transgenic Carrizo citrange rootstocks that overexpress glyoxalase I and glyoxalase II genes were obtained and their salt stress tolerance was evaluated. Molecular analysis showed high expression for both glyoxalase genes (BjGlyI and PgGlyII) in 5H03 and 5H04 lines. Under control conditions, transgenic and wild type plants presented normal morphology. In salinity treatments, the transgenic plants showed less yellowing, marginal burn in lower leaves and showed less than 40% of leaf damage compared with wild type plants. The transgenic plants showed a significant increase in the dry weight of shoot but there are no differences in the root and complete plant dry weight. In addition, a higher accumulation of chlorine is observed in the roots in transgenic line 5H03 but in shoot it was lower. Also, the wild type plant accumulated around 20% more chlorine in the shoot compared to roots. These results suggest that heterologous expression of glyoxalase system genes could enhance salt stress tolerance in Carrizo citrange rootstock and could be a good biotechnological approach to improve the abiotic stress tolerance in woody plant species. PMID:26236739
Kim, Jihye; Lee, Won Je; Vu, Tien Thanh; Jeong, Chan Young; Hong, Suk-Whan; Lee, Hojoung
2017-08-01
The ectopic expression of AtDFR results in increased accumulation of anthocyanins leading to enhanced salinity and drought stress tolerance in B. napus plants. Flavonoids with antioxidant effects confer many additional benefits to plants. Evidence indicates that flavonoids, including anthocyanins, protect tissues against oxidative stress from various abiotic stressors. We determined whether increases in anthocyanins increased abiotic stress tolerance in Brassica napus, because the values of B. napus L. and its cultivation area are increasing worldwide. We overexpressed Arabidopsis dihydroflavonol-4-reductase (DFR) in B. napus. Increased DFR transcript levels for AtDFR-OX B. shoots correlated with higher anthocyanin accumulation. AtDFR-OX Brassica shoots exhibited lower reactive oxygen species (ROS) accumulation than wild-type (WT) shoots under high NaCl and mannitol concentrations. This was corroborated by 3,3-diaminobenzidine staining for ROS scavenging activity in 1,1-diphenyl-2-picryl-hydrazyl assays. Shoots of the AtDFR-OX B. napus lines grown in a high salt medium exhibited enhanced salt tolerance and higher chlorophyll content than similarly grown WT plants. Our observations suggested that the AtDFR gene can be effectively manipulated to modulate salinity and drought stress tolerance by directing to high accumulation of anthocyanins in oilseed plants.
Rahman, Md. M.; Rahman, Md. A.; Miah, Md. G.; Saha, Satya R.; Karim, M. A.; Mostofa, Mohammad G.
2017-01-01
Salinity, one of the major environmental constraints, threatens soil health and consequently agricultural productivity worldwide. Acacia auriculiformis, being a halophyte, offers diverse benefits against soil salinity; however, the defense mechanisms underlying salt-tolerant capacity in A. auriculiformis are still elusive. In this study, we aimed to elucidate mechanisms regulating the adaptability of the multi-purpose perennial species A. auriculiformis to salt stress. The growth, ion homeostasis, osmoprotection, tissue tolerance and Na+ exclusion, and anatomical adjustments of A. auriculiformis grown in varied doses of seawater for 90 and 150 days were assessed. Results showed that diluted seawater caused notable reductions in the level of growth-related parameters, relative water content, stomatal conductance, photosynthetic pigments, proteins, and carbohydrates in dose- and time-dependent manners. However, the percent reduction of these parameters did not exceed 50% of those of control plants. Na+ contents in phyllodes and roots increased with increasing levels of salinity, whereas K+ contents and K+/Na+ ratio decreased significantly in comparison with control plants. A. auriculiformis retained more Na+ in the roots and maintained higher levels of K+, Ca2+ and Mg2+, and K+/Na+ ratio in phyllodes than roots through ion selective capacity. The contents of proline, total free amino acids, total sugars and reducing sugars significantly accumulated together with the levels of malondialdehyde and electrolyte leakage in the phyllodes, particularly at day 150th of salt treatment. Anatomical investigations revealed various anatomical changes in the tissues of phyllodes, stems and roots by salt stress, such as increase in the size of spongy parenchyma of phyllodes, endodermal thickness of stems and roots, and the diameter of root vascular bundle, relative to control counterparts. Furthermore, the estimated values for Na+ exclusion and tissue tolerance index suggested that A. auriculiformis efficiently adopted these two mechanisms to address higher salinity levels. Our results conclude that the adaptability of A. auriculiformis to salinity is closely associated with ion selectivity, increased accumulation of osmoprotectants, efficient Na+ retention in roots, anatomical adjustments, Na+ exclusion and tissue tolerance mechanisms. PMID:28421081
Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun
2015-01-01
The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525
Salt Tolerance and Polyphyly in the Cyanobacterium Chroococcidiopsis (Pleurocapsales)1
NASA Technical Reports Server (NTRS)
Cumbers, John Robert; Rothschild, Lynn J.
2014-01-01
Chroococcidiopsis Geitler (Geitler 1933) is a genus of cyanobacteria containing desiccation and radiation resistant species. Members of the genus live in habitats ranging from hot and cold deserts to fresh and saltwater environments. Morphology and cell division pattern have historically been used to define the genus. To better understand the genetic and phenotypic diversity of the genus, 15 species were selected that had been previously isolated from different locations, including salt and freshwater environments. Four markers were sequenced from these 15 species, the 16S rRNA, rbcL, desC1 and gltX genes. Phylogenetic trees were generated which identified two distinct clades, a salt-tolerant clade and a freshwater clade. This study demonstrates that the genus is polyphyletic based on saltwater and freshwater phenotypes. To understand the resistance to salt in more details, species were grown on a range of sea salt concentrations which demonstrated that the freshwater species were salt-intolerant whilst the saltwater species required salt for growth. This study shows an increased resolution of the phylogeny of Chroococcidiopsis and provides further evidence that the genus is polyphyletic and should be reclassified to improve clarity in the literature.
Kim, Yu Kyong; Choi, Mun Ju; Oh, Tae Young; Yu, Kyung-Sang; Lee, SeungHwan
2017-01-01
A novel orotic acid salt form of tenofovir disoproxil (DA-2802) was developed and is expected to replace the fumaric acid salt form. The pharmacokinetic (PK) characteristics and tolerability profiles of DA-2802 were compared to those of tenofovir disoproxil fumarate (TDF, Viread®) in healthy subjects. A randomized, open-label, single-dose study was conducted in 36 healthy subjects using a two-treatment, two-period, and two-sequence crossover design. Subjects received a single oral dose of 319 mg DA-2802 or 300 mg TDF, during each period, with a 7-day washout. Serial blood samples were collected pre-dosing and up to 72 hours post-dosing in each period, for determination of serum tenofovir concentration, which was measured by ultra-performance liquid chromatography-tandem mass spectrometry. A non-compartmental method was used to obtain PK parameters of tenofovir. For comparison between the two tenofovir disoproxil salts, the 90% confidence intervals (90% CIs) of geometric mean ratios of DA-2802 to TDF for the maximum concentration (Cmax) and the area under the concentration–time curve to the last quantifiable concentration (AUC0–t) were determined. The tolerability profiles of tenofovir were assessed by evaluation of adverse events and vital signs, physical examination, ECG, and clinical laboratory tests. The serum tenofovir concentration–time profiles of DA-2802 or TDF were comparable in 32 subjects who completed the study. In both profiles, a two-compartmental elimination with first-order elimination kinetics in the terminal phase was reported in a few subjects, showing a secondary peak in the initial phase of elimination. The geometric mean ratio (90% CI) of DA-2802 to TDF was 0.898 (0.815–0.990) for Cmax and 0.904 (0.836–0.978) for AUC0–t. There were no clinically significant findings in the tolerability assessments. DA-2802 showed comparable PK characteristics and tolerability profiles to TDF. PMID:29158663
Udawat, Pushpika; Jha, Rajesh K.; Mishra, Avinash; Jha, Bhavanath
2017-01-01
An obligate halophyte, Salicornia brachiata grows in salt marshes and is considered to be a potential resource of salt- and drought-responsive genes. It is important to develop an understanding of the mechanisms behind enhanced salt tolerance. To increase this understanding, a novel SbSRP gene was cloned, characterized, over-expressed, and functionally validated in the model plant Nicotiana tabacum. The genome of the halophyte S. brachiata contains two homologs of an intronless SbSRP gene of 1,262 bp in length that encodes for a stress-related protein. An in vivo localization study confirmed that SbSRP is localized on the plasma membrane. Transgenic tobacco plants (T1) that constitutively over-express the SbSRP gene showed improved salinity and osmotic stress tolerance. In comparison to Wild Type (WT) and Vector Control (VC) plants, transgenic lines showed elevated relative water and chlorophyll content, lower malondialdehyde content, lower electrolyte leakage and higher accumulation of proline, free amino acids, sugars, polyphenols, and starch under abiotic stress treatments. Furthermore, a lower build-up of H2O2 content and superoxide-radicals was found in transgenic lines compared to WT and VC plants under stress conditions. Transcript expression of Nt-APX (ascorbate peroxidase), Nt-CAT (catalase), Nt-SOD (superoxide dismutase), Nt-DREB (dehydration responsive element binding factor), and Nt-AP2 (apetala2) genes was higher in transgenic lines under stress compared to WT and VC plants. The results suggested that overexpression of membrane-localized SbSRP mitigates salt and osmotic stress in the transgenic tobacco plant. It was hypothesized that SbSRP can be a transporter protein to transmit the environmental stimuli downward through the plasma membrane. However, a detailed study is required to ascertain its exact role in the abiotic stress tolerance mechanism. Overall, SbSRP is a potential candidate to be used for engineering salt and osmotic tolerance in crops. PMID:28473839
Yaish, Mahmoud W; Sunkar, Ramanjulu; Zheng, Yun; Ji, Bo; Al-Yahyai, Rashid; Farooq, Sardar A
2015-01-01
Although date palm is relatively salt-tolerant, little is known about the underlying molecular mechanisms that contribute to its salt tolerance. Only recently, investigators have uncovered microRNA-mediated post-transcriptional gene regulation, which is critical for typical plant development and adaptation to stress conditions such as salinity. To identify conserved and novel miRNAs in date palm and to characterize miRNAs that could play a role in salt tolerance, we have generated sRNA libraries from the leaves and roots of NaCl-treated and untreated seedlings of date palm. Deep sequencing of these four sRNA libraries yielded approximately 251 million reads. The bioinformatics analysis has identified 153 homologs of conserved miRNAs, 89 miRNA variants, and 180 putative novel miRNAs in date palm. Expression profiles under salinity revealed differential regulation of some miRNAs in date palm. In leaves, 54 of the identified miRNAs were significantly affected and the majority (70%) of them were upregulated, whereas in roots, 25 of the identified miRNAs were significantly affected and 76% of them were upregulated by the salinity stress. The salt-responsiveness of some of these miRNAs was further validated using semi-quantitative PCR (qPCR). Some of the predicted targets for the identified miRNA include genes with known functions in plant salt tolerance, such as potassium channel AKT2-like proteins, vacuolar protein sorting-associated protein, calcium-dependent and mitogen-activated proteins. As one of the first cultivated trees in the world that can tolerate a wide range of abiotic stresses, date palm contains a large population of conserved and non-conserved miRNAs that function at the post-transcriptional level. This study provided insights into miRNA-mediated gene expression that are important for adaptation to salinity in date palms.
2013-01-01
Background Cultivated rice species (Oryza sativa L. and O. glaberrima Steud.) are generally considered among the crop species most sensitive to salt stress. A handful of lines are known to be tolerant, and a small number of these have been used extensively as donors in breeding programs. However, these donors use many of the same genes and physiological mechanisms to confer tolerance. Little information is available on the diversity of mechanisms used by these species to cope with salt stress, and there is a strong need to identify varieties displaying additional physiological and/or genetic mechanisms to confer higher tolerance. Results Here we present data on 103 accessions from O. sativa and 12 accessions from O. glaberrima, many of which are identified as salt tolerant for the first time, showing moderate to high tolerance of high salinity. The correlation of salinity-induced senescence (as judged by the Standard Evaluation System for Rice, or SES, score) with whole-plant and leaf blade Na+ concentrations was high across nearly all accessions, and was almost identical in both O. sativa and O. glaberrima. The association of leaf Na+ concentrations with cultivar-groups was very weak, but association with the OsHKT1;5 allele was generally strong. Seven major and three minor alleles of OsHKT1;5 were identified, and their comparisons with the leaf Na+ concentration showed that the Aromatic allele conferred the highest exclusion and the Japonica allele the least. A number of exceptions to this association with the Oryza HKT1;5 allele were identified; these probably indicate the existence of additional highly effective exclusion mechanisms. In addition, two landraces were identified, one from Thailand and the other from Senegal, that show high tissue tolerance. Conclusions Significant variation in salinity tolerance exists within both cultivated Oryza species, and this is the first report of significant tolerance in O. glaberrima. The majority of accessions display a strong quantitative relationship between tolerance and leaf blade Na+ concentration, and thus the major tolerance mechanisms found in these species are those contributing to limiting sodium uptake and accumulation in active leaves. However, there appears to be genetic variation for several mechanisms that affect leaf Na+ concentration, and rare cases of accessions displaying different mechanisms also occur. These mechanisms show great promise for improving salt tolerance in rice over that available from current donors. PMID:23445750
2011-01-01
Background High Salinity is a major environmental stress influencing growth and development of rice. Comparative proteomic analysis of hybrid rice shoot proteins from Shanyou 10 seedlings, a salt-tolerant hybrid variety, and Liangyoupeijiu seedlings, a salt-sensitive hybrid variety, was performed to identify new components involved in salt-stress signaling. Results Phenotypic analysis of one protein that was upregulated during salt-induced stress, cyclophilin 2 (OsCYP2), indicated that OsCYP2 transgenic rice seedlings had better tolerance to salt stress than did wild-type seedlings. Interestingly, wild-type seedlings exhibited a marked reduction in maximal photochemical efficiency under salt stress, whereas no such change was observed for OsCYP2-transgenic seedlings. OsCYP2-transgenic seedlings had lower levels of lipid peroxidation products and higher activities of antioxidant enzymes than wild-type seedlings. Spatiotemporal expression analysis of OsCYP2 showed that it could be induced by salt stress in both Shanyou 10 and Liangyoupeijiu seedlings, but Shanyou 10 seedlings showed higher OsCYP2 expression levels. Moreover, circadian rhythm expression of OsCYP2 in Shanyou 10 seedlings occurred earlier than in Liangyoupeijiu seedlings. Treatment with PEG, heat, or ABA induced OsCYP2 expression in Shanyou 10 seedlings but inhibited its expression in Liangyoupeijiu seedlings. Cold stress inhibited OsCYP2 expression in Shanyou 10 and Liangyoupeijiu seedlings. In addition, OsCYP2 was strongly expressed in shoots but rarely in roots in two rice hybrid varieties. Conclusions Together, these data suggest that OsCYP2 may act as a key regulator that controls ROS level by modulating activities of antioxidant enzymes at translation level. OsCYP2 expression is not only induced by salt stress, but also regulated by circadian rhythm. Moreover, OsCYP2 is also likely to act as a key component that is involved in signal pathways of other types of stresses-PEG, heat, cold, or ABA. PMID:21324151
Sharma, Parbodh C.; Singh, Dhananjay; Sehgal, Deepmala; Singh, Gurbachan; Hash, C.T.; Yadav, Rattan S.
2014-01-01
Earlier, we established that a major drought tolerance QTL on linkage group 2 of pearl millet is also associated with reduced salt uptake and enhanced growth under salt stress. Present study was undertaken to re-assess the performance of drought tolerant (PRLT 2/89-33) and drought sensitive (H 77/833-2) parents along with two QTL-NILs (ICMR 01029 and ICMR 01040), under salinity stress specifically imposed during post-flowering growth stages when plants had developed their ion sinks in full. Time course changes in ionic accumulation and their compartmentalization in different plant parts was studied, specifically to monitor and capture changes conferred by the two alleles at this QTL, at small intervals. Amongst different plant parts, higher accumulation of toxic ion Na+ was recorded in roots. Further, the Na+ concentration in roots of the testcross hybrid of the drought-sensitive parent (H 77/833-2) reached its maximum at ECiw 15 dS m−1 within 24 h after salinity imposition, whereas it continued to increase with time in the testcross hybrids of the drought tolerant parent PRLT 2/89-33 as well as those of its QTL-NILs (ICMR 01029 and ICMR 01004) and reached at its maximum at 120 h stage. Comparison of differential distribution of toxic ions in individual leaves revealed that Na+ ions were not uniformly distributed in the leaves of the drought-tolerant parent and drought-tolerant QTL-NILs; but accumulated preferentially in the older leaves, whereas the hybrid of the drought-sensitive parent showed significantly higher Na+ concentration in all main stem leaves irrespective of their age. Dynamics of chlorophyll and proline concentration variation studied under salt stress at late flowering stages revealed a greater reduction, almost twice, in both leaf chlorophyll and proline concentrations in younger leaves in the hybrids of the sensitive parent as compared to the tolerant parent and QTL NILs. Imposition of salinity stress even at flowering stage affected the yield performance in pearl millet, wherein higher yield was recorded in drought tolerant parent and the two QTL-NILs compared to drought sensitive parent. PMID:24895469
Sivaprakasam, Senthilkumar; Dhandapani, Balaji; Mahadevan, Surianarayanan
2011-01-01
Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1–6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value. PMID:24031785
Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance.
Wang, Yuguang; Zhan, Yanan; Wu, Chuan; Gong, Shilong; Zhu, Ning; Chen, Sixue; Li, Haiying
2012-08-01
An open reading frame encoding a cysteine protease inhibitor, cystatin was isolated from the buds of sugar beet monosomic addition line M14 (BvM14) using 5'-/3'-RACE method. It encoded a polypeptide of 104 amino acids with conserved G and PW motifs, the consensus phytocystatin sequence LARFAV and the active site QVVAG. The protein showed significant homology to other plant cystatins. BvM14-cystatin was expressed ubiquitously in roots, stems, leaves and flower tissues with relatively high abundance in developing stems and roots. It was found to be localized in the nucleus, cytoplasm and plasma membrane. Recombinant BvM14-cystatin expressed in Escherichia coli was purified and it exhibited cysteine protease inhibitor activity. Salt-stress treatment induced BvM14-cystatin transcript levels in the M14 seedlings. Homozygous Arabidopsis plants over-expressing BvM14-cystatin showed enhanced salt tolerance. Taken together, these data improved understanding of the functions of BvM14-cystatin and highlighted the possibility of employing the cystatin in engineering plants for enhanced salt tolerance. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Genome-wide association studies to identify rice salt-tolerance markers.
Patishtan, Juan; Hartley, Tom N; Fonseca de Carvalho, Raquel; Maathuis, Frans J M
2018-05-01
Salinity is an ever increasing menace that affects agriculture worldwide. Crops such as rice are salt sensitive, but its degree of susceptibility varies widely between cultivars pointing to extensive genetic diversity that can be exploited to identify genes and proteins that are relevant in the response of rice to salt stress. We used a diversity panel of 306 rice accessions and collected phenotypic data after short (6 h), medium (7 d) and long (30 d) salinity treatment (50 mm NaCl). A genome-wide association study (GWAS) was subsequently performed, which identified around 1200 candidate genes from many functional categories, but this was treatment period dependent. Further analysis showed the presence of cation transporters and transcription factors with a known role in salinity tolerance and those that hitherto were not known to be involved in salt stress. Localization analysis of single nucleotide polymorphisms (SNPs) showed the presence of several hundred non-synonymous SNPs (nsSNPs) in coding regions and earmarked specific genomic regions with increased numbers of nsSNPs. It points to components of the ubiquitination pathway as important sources of genetic diversity that could underpin phenotypic variation in stress tolerance. © 2017 John Wiley & Sons Ltd.
Singh, Meenakshi; Sharma, Naveen K; Prasad, Shyam Babu; Yadav, Suresh Singh; Narayan, Gopeshwar; Rai, Ashwani K
2013-03-01
Glycine betaine (GB) is an important osmolyte synthesized in response to different abiotic stresses, including salinity. The two known pathways of GB synthesis involve: 1) two step oxidation of choline (choline → betaine aldehyde → GB), generally found in plants, microbes and animals; and 2) three step methylation of glycine (glycine → sarcosine → dimethylglycine → GB), mainly found in halophilic archaea, sulphur bacteria and the cyanobacterium Aphanothece (Ap.) halophytica. Here, we transformed a salt-sensitive freshwater diazotrophic filamentous cyanobacterium Anabaena (An.) doliolum with N-methyltransferase genes (ApGSMT-DMT) from Ap. halophytica using the triparental conjugation method. The transformed An. doliolum synthesized and accumulated GB in cells, and showed increased salt tolerance and protection to nitrogenase activity. The salt responsiveness of the transformant was also apparent as GB synthesis increased with increasing concentrations of NaCl in the nutrient solution, and maximal [12.92 µmol (g dry weight)(-1)] in cells growing at 0.5 M NaCl. Therefore, the transformed cyanobacterium has changed its behaviour from preferring freshwater to halophily. This study may have important biotechnological implications for the development of stress tolerant nitrogen-fixing cyanobacteria as biofertilizers for sustainable agriculture.
Salt-driven interactions between Pistacia lentiscus and Salsola inermis.
Barazani, Oz; Golan-Goldhirsh, Avi
2009-11-01
It can be learned from the Pistacia spp. germplasm collection (http://www.bgu.ac.il/pistacia) that the growth of Salsola inermis is inhibited in the vicinity of the evergreen Pistacia lentiscus, but not in the surroundings of the deciduous Pistacia atlantica and Pistacia chinensis. Irrigation of trees during the summer months increases soil salinity around the trees. It was therefore hypothesized that inhibition of S. inermis around P. lentiscus is related to depletion of salt in the vicinity of the latter species. A multi-approach experimental scheme was carried out which included soil edaphic characterization and germination tests. To test salt tolerance of P. lentiscus, plants were grown in a hydroponic system for a month in medium containing NaCl, while physiological and growth parameters were measured. Conductivity measurements in summer, during the growth season of S. inermis, indicated that soil salinity beneath deciduous Pistacia trees was significantly higher than that below P. lentiscus. Germination of S. inermis seeds on filter paper moistened with P. lentiscus low-conductivity soil filtrate was twice as high as that of the deciduous trees high-conductivity soil filtrates. Nevertheless, fresh and dry weights of mature S. inermis growing next to P. atlantica and P. chinensis were 2.9 to 4.8 times higher than those of plants growing in the vicinity of P. lentiscus. In a hydroponic system, no significant differences were found in growth parameters and stomatal conductance between P. lentiscus growing in control and salt treatments. It was therefore proposed that salt depletion in the vicinity of P. lentiscus inhibits the growth, but not germination, of S. inermis thus confirming the halophylic characteristics of this plant. The nature of Salsola-Pistacia interactions cannot be explained by allelopathic effects; hence, plausible salt-driven interactions were considered. Our data showed that S. inermis accumulated salt and has halophytic characteristics. Interestingly, germination of S. inermis was inhibited in medium containing salt, but the salt was obligatory for further growth, development, and fast biomass production. These results explained the observation of large biomass accumulation in the more saline soil around the deciduous P. atlantica and P. chinensis and the lack of development in the salt-depleted soil around the salt-tolerant accumulator P. lentiscus. Soil salinity around Pistacia trees critically affects the growth of S. inermis. Inhibition of S. inermis growth, but not germination, around the evergreen P. lentiscus, stems from the latter's ability to deplete salt from its surroundings. The results indicated that P. lentiscus is able to tolerate and accumulate salt, which we assume contributes to its wide distribution along the Mediterranean coast in Israel. Recommendations and perspectives While the phytoremediation potential of Salsola spp. has been explored to some extent, this of P. lentiscus has not been tested and proven before. The results suggest that the evergreen perennial salt-tolerant P. lentiscus can be recommended for horticulture purposes and soil stabilization in relatively saline environments.
Inert Reassessment Document for Alkyl (C8-C24)
Inert Ingredient Tolerance Reassessments: Two Exemptions from theRequirement of a Tolerance for Alkyl (C8-C24) Benzenesulfonic Acid and its Ammonium, Calcium, Magnesium, Potassium, Sodium, and Zinc Salts
Mahajan, Monika; Yadav, Sudesh Kumar
2014-08-01
Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea. Expression analysis revealed the upregulation in transcript levels of C. sinensis flavanone 3-hydroxylase (CsF3H) encoding gene under salt stress. In this study, the biotechnological potential of CsF3H was evaluated by gene overexpression in tobacco (Nicotiana tabacum cv. Xanthi). Overexpression of CsF3H cDNA increased the content of flavan-3-ols in tobacco and conferred tolerance to salt stress and fungus Alternaria solani infection. Transgenic tobaccos were observed for increase in primary root length, number of lateral roots, chlorophyll content, antioxidant enzyme expression and their activities. Also, they showed lesser malondialdehyde content and electrolyte leakage compared to control tobacco plants. Further, transgenic plants produced higher degree of pectin methyl esterification via decreasing pectin methyl esterase (PME) activity in roots and leaves under unstressed and salt stressed conditions. The effect of flavan-3-ols on pectin methyl esterification under salt stressed conditions was further validated through in vitro experiments in which non-transgenic (wild) tobacco seedlings were exposed to salt stress in presence of flavan-3-ols, epicatechin and epigallocatechin. The in vitro exposed seedlings showed similar trend of increase in pectin methyl esterification through decreasing PME activity as observed in CsF3H transgenic lines. Taken together, overexpression of CsF3H provided tolerance to salt stress and fungus A. solani infection to transgenic tobacco through improved antioxidant system and enhanced pectin methyl esterification.
Li, Shucheng; Jin, Han; Zhang, Qiang
2016-01-01
Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd.
Li, Shucheng; Jin, Han; Zhang, Qiang
2016-01-01
Salt stress, particularly short-term salt stress, is among the most serious abiotic factors limiting plant survival and growth in China. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to salt stress. The present study utilized two zoysiagrass cultivars commonly grown in China that exhibit either sensitive (cv. Z081) or tolerant (cv. Z057) adaptation capacity to salt stress. The two cultivars were subjected to 200 mM salt stress and treated with different exogenous Spd concentrations for 8 days. Polyamine [diamine putrescine (Put), tetraamine spermine (Spm), and Spd], H2O2 and malondialdehyde (MDA) contents and polyamine metabolic (ADC, ODC, SAMDC, PAO, and DAO) and antioxidant (superoxide dismutase, catalase, and peroxidase) enzyme activities were measured. The results showed that salt stress induced increases in Spd and Spm contents and ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), and diamine oxidase (DAO) activities in both cultivars. Exogenous Spd application did not alter polyamine contents via regulation of polyamine-degrading enzymes, and an increase in polyamine biosynthetic enzyme levels was observed during the experiment. Increasing the concentration of exogenous Spd resulted in a tendency of the Spd and Spm contents and ODC, SAMDC, DAO, and antioxidant enzyme activities to first increase and then decrease in both cultivars. H2O2 and MDA levels significantly decreased in both cultivars treated with Spd. Additionally, in both cultivars, positive correlations between polyamine biosynthetic enzymes (ADC, SAMDC), DAO, and antioxidant enzymes (SOD, POD, CAT), but negative correlations with H2O2 and MDA levels, and the Spd + Spm content were observed with an increase in the concentration of exogenous Spd. PMID:27582752
Yaish, Mahmoud W; Patankar, Himanshu V; Assaha, Dekoum V M; Zheng, Yun; Al-Yahyai, Rashid; Sunkar, Ramanjulu
2017-03-22
Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.
Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress
Wang, Yanping; Yang, Li; Zheng, Zhimin; Grumet, Rebecca; Loescher, Wayne; Zhu, Jian-Kang; Yang, Pingfang; Hu, Yuanlei; Chan, Zhulong
2013-01-01
Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms. PMID:23894403
Yang, Tongren; Yao, Sufei; Hao, Lin; Zhao, Yuanyuan; Lu, Wenjing; Xiao, Kai
2016-11-01
Wheat bHLH family gene TabHLH1 is responsive to drought and salt stresses, and it acts as one crucial regulator in mediating tolerance to aforementioned stresses largely through an ABA-associated pathway. Osmotic stresses are adverse factors for plant growth and crop productivity. In this study, we characterized TabHLH1, a gene encoding wheat bHLH-type transcription factor (TF) protein, in mediating plant adaptation to osmotic stresses. TabHLH1 protein contains a conserved basic-helix-loop-helix (bHLH) domain shared by its plant counterparts. Upon PEG-simulated drought stress, salt stress, and exogenous abscisic acid (ABA), the TabHLH1 transcripts in roots and leaves were induced. Under PEG-simulated drought stress and salt stress treatments, the tobacco seedlings with TabHLH1 overexpression exhibited improved growth and osmotic stress-associated traits, showing increased biomass and reduced leaf water loss rate (WLR) relative to wild type (WT). The transgenic lines also possessed promoted stomata closure under drought stress, salt stress, and exogenous ABA and increased proline and soluble sugar contents and reduced hydrogen peroxide (H 2 O 2 ) amount under osmotic stress conditions, indicating that TabHLH1-mediated osmolyte accumulation and cellular ROS homeostasis contributed to the drought stress and salt stress tolerance. NtPYL12 and NtSAPK2;1, the genes encoding ABA receptor and SnRK2 family kinase, respectively, showed up-regulated expression in lines overexpressing TabHLH1 under osmotic stress and exogenous ABA conditions; overexpression of them conferred plants modified stomata movement, leaf WLR, and growth feature under drought and high salinity, suggesting that these ABA-signaling genes are mediated by wheat TabHLH1 gene and involved in regulating plant responses to simulated drought and salt stresses. Our investigation indicates that the TabHLH1 gene plays critical roles in plant tolerance to osmotic stresses largely through an ABA-dependent pathway.
Zhou, Aifen; Lau, Rebecca; Baran, Richard; Ma, Jincai; von Netzer, Frederick; Shi, Weiling; Gorman-Lewis, Drew; Kempher, Megan L.; He, Zhili; Qin, Yujia; Shi, Zhou; Zane, Grant M.; Wu, Liyou; Bowen, Benjamin P.; Northen, Trent R.; Hillesland, Kristina L.; Stahl, David A.; Wall, Judy D.; Arkin, Adam P.
2017-01-01
ABSTRACT Rapid genetic and phenotypic adaptation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough to salt stress was observed during experimental evolution. In order to identify key metabolites important for salt tolerance, a clone, ES10-5, which was isolated from population ES10 and allowed to experimentally evolve under salt stress for 5,000 generations, was analyzed and compared to clone ES9-11, which was isolated from population ES9 and had evolved under the same conditions for 1,200 generations. These two clones were chosen because they represented the best-adapted clones among six independently evolved populations. ES10-5 acquired new mutations in genes potentially involved in salt tolerance, in addition to the preexisting mutations and different mutations in the same genes as in ES9-11. Most basal abundance changes of metabolites and phospholipid fatty acids (PLFAs) were lower in ES10-5 than ES9-11, but an increase of glutamate and branched PLFA i17:1ω9c under high-salinity conditions was persistent. ES9-11 had decreased cell motility compared to the ancestor; in contrast, ES10-5 showed higher cell motility under both nonstress and high-salinity conditions. Both genotypes displayed better growth energy efficiencies than the ancestor under nonstress or high-salinity conditions. Consistently, ES10-5 did not display most of the basal transcriptional changes observed in ES9-11, but it showed increased expression of genes involved in glutamate biosynthesis, cation efflux, and energy metabolism under high salinity. These results demonstrated the role of glutamate as a key osmolyte and i17:1ω9c as the major PLFA for salt tolerance in D. vulgaris. The mechanistic changes in evolved genotypes suggested that growth energy efficiency might be a key factor for selection. PMID:29138306
Alzbutas, Gediminas; Kaniusaite, Milda; Lagunavicius, Arunas
2016-01-01
In our previous work we showed that DNaseI-like protein from an extremely halotolerant bacterium Thioalkalivibrio sp. K90mix retained its activity at salt concentrations as high as 4 M NaCl and the key factor allowing this was the C-terminal DNA-binding domain, which comprised two HhH (helix-hairpin-helix) motifs. The further investigations revealed that this domain originated from proteins related to bacterial competence ComEA/ComE proteins. It is likely that in the course of evolution the DNA-binding domain from these proteins was fused to a metallo-β-lactamase superfamily domain. Very likely such domain organization having proteins subsequently “donated” the DNA-binding domain to bacterial DNases. In this study we have mimicked this evolutionary step by fusing bovine DNaseI and DNA-binding domains. We have created two fusions: one harboring the DNA-binding domain of DNaseI-like protein from Thioalkalivibrio sp. K90mix and the second one harboring the DNA-binding domain of bacterial competence protein ComEA from Bacillus subtilis. Both domains enhanced salt tolerance of DNaseI, albeit to different extent. Molecular modeling revealed the essential differences between their interaction with DNA shedding some light on the differences in salt tolerance. In this study we have enhanced salt tolerance of bovine DNaseI; thus, we successfully mimicked the Nature’s evolutionary engineering that created the extremely halotolerant bacterial DNase. We have demonstrated that the newly engineered DNaseI variants can be successfully used in applications where activity of the wild type bovine DNaseI is impeded by buffers used. PMID:26939122
Tsukagoshi, Hironaka; Suzuki, Takamasa; Nishikawa, Kouki; Agarie, Sakae; Ishiguro, Sumie; Higashiyama, Tetsuya
2015-01-01
Understanding the molecular mechanisms that convey salt tolerance in plants is a crucial issue for increasing crop yield. The ice plant (Mesembryanthemum crystallinum) is a halophyte that is capable of growing under high salt conditions. For example, the roots of ice plant seedlings continue to grow in 140 mM NaCl, a salt concentration that completely inhibits Arabidopsis thaliana root growth. Identifying the molecular mechanisms responsible for this high level of salt tolerance in a halophyte has the potential of revealing tolerance mechanisms that have been evolutionarily successful. In the present study, deep sequencing (RNAseq) was used to examine gene expression in ice plant roots treated with various concentrations of NaCl. Sequencing resulted in the identification of 53,516 contigs, 10,818 of which were orthologs of Arabidopsis genes. In addition to the expression analysis, a web-based ice plant database was constructed that allows broad public access to the data. The results obtained from an analysis of the RNAseq data were confirmed by RT-qPCR. Novel patterns of gene expression in response to high salinity within 24 hours were identified in the ice plant when the RNAseq data from the ice plant was compared to gene expression data obtained from Arabidopsis plants exposed to high salt. Although ABA responsive genes and a sodium transporter protein (HKT1), are up-regulated and down-regulated respectively in both Arabidopsis and the ice plant; peroxidase genes exhibit opposite responses. The results of this study provide an important first step towards analyzing environmental tolerance mechanisms in a non-model organism and provide a useful dataset for predicting novel gene functions. PMID:25706745
Heydarian, Zohreh; Yu, Min; Gruber, Margaret; Glick, Bernard R.; Zhou, Rong; Hegedus, Dwayne D.
2016-01-01
Camelina sativa (camelina) is an oilseed crop touted for use on marginal lands; however, it is no more tolerant of soil salinity than traditional crops, such as canola. Plant growth-promoting bacteria (PGPB) that produce 1-aminocyclopropane-1-carboxylate deaminase (ACC deaminase) facilitate plant growth in the presence of abiotic stresses by reducing stress ethylene. Rhizospheric and endophytic PGPB and the corresponding acdS- mutants of the latter were examined for their ability to enhance tolerance to salt in camelina. Stimulation of growth and tolerance to salt was correlated with ACC deaminase production. Inoculation of soil with wild-type PGPB led to increased shoot length in the absence of salt, and increased seed production by approximately 30–50% under moderately saline conditions. The effect of ACC deaminase was further examined in transgenic camelina expressing a bacterial gene encoding ACC deaminase (acdS) under the regulation of the CaMV 35S promoter or the root-specific rolD promoter. Lines expressing acdS, in particular those using the rolD promoter, showed less decline in root length and weight, increased seed production, better seed quality and higher levels of seed oil production under salt stress. This study clearly demonstrates the potential benefit of using either PGPB that produce ACC deaminase or transgenic plants expressing the acdS gene under the control of a root-specific promoter to facilitate plant growth, seed production and seed quality on land that is not normally suitable for the majority of crops due to high salt content. PMID:28018305
Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon
2013-07-01
Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.
40 CFR 180.129 - o-Phenylphenol and its sodium salt; tolerances for residues.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) PESTICIDE PROGRAMS TOLERANCES AND EXEMPTIONS FOR PESTICIDE CHEMICAL RESIDUES IN FOOD Specific... established for combined residues of the fungicide o-phenylphenol and sodium o-phenylphenate, each expressed...
Sun, Yanling; Kong, Xiangpei; Li, Cuiling; Liu, Yongxiu; Ding, Zhaojun
2015-01-01
Plants are exposed to various environmental stresses during their life cycle such as salt, drought and cold. Natural variation mediated plant growth adaptation has been employed as an effective approach in response to the diverse environmental cues such as salt stress. However, the molecular mechanism underlying this process is not well understood. In the present study, a collection of 82 Arabidopsis thaliana accessions (ecotypes) was screened with a view to identify variation for salinity tolerance. Seven accessions showed a higher level of tolerance than Col-0. The young seedlings of the tolerant accessions demonstrated a higher K+ content and a lower Na+/K+ ratio when exposed to salinity stress, but its Na+ content was the same as that of Col-0. The K+ transporter genes AtHAK5, AtCHX17 and AtKUP1 were up-regulated significantly in almost all the tolerant accessions, even in the absence of salinity stress. There was little genetic variation or positive transcriptional variation between the selections and Col-0 with respect to Na+-related transporter genes, as AtSOS genes, AtNHX1 and AtHKT1;1. In addition, under salinity stress, these selections accumulated higher compatible solutes and lower reactive oxygen species than did Col-0. Taken together, our results showed that natural variation in salinity tolerance of Arabidopsis seems to have been achieved by the strong capacity of K+ retention. PMID:25993093
Visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO.
Pramanik, Mukund M D; Rastogi, Namrata
2016-06-30
The visible light catalyzed methylsulfoxidation of (het)aryl diazonium salts using DMSO is illustrated. This is the first example of DMSO being used as the source of the methylsulfinyl group. The procedure tolerates a wide range of functional groups on (het)aryl diazonium salts and provides aryl methyl sulfoxides in excellent yields under mild reaction conditions.
Salinity Tolerance Turfgrass: History and Prospects
Uddin, Md. Kamal; Juraimi, Abdul Shukor
2013-01-01
Land and water resources are becoming scarce and are insufficient to sustain the burgeoning population. Salinity is one of the most important abiotic stresses affecting agricultural productions across the world. Cultivation of salt-tolerant turfgrass species may be promising option under such conditions where poor quality water can also be used for these crops. Coastal lands in developing countries can be used to grow such crops, and seawater can be used for irrigation of purposes. These plants can be grown using land and water unsuitable for conventional crops and can provide food, fuel, fodder, fibber, resin, essential oils, and pharmaceutical products and can be used for landscape reintegration. There are a number of potential turfgrass species that may be appropriate at various salinity levels of seawater. The goal of this review is to create greater awareness of salt-tolerant turfgrasses, their current and potential uses, and their potential use in developing countries. The future for irrigating turf may rely on the use of moderate- to high-salinity water and, in order to ensure that the turf system is sustainable, will rely on the use of salt-tolerant grasses and an improved knowledge of the effects of salinity on turfgrasses. PMID:24222734
Sang, Ting; Shan, Xi; Li, Bin; Shu, Sheng; Sun, Jin; Guo, Shirong
2016-08-01
Our results based on proteomics data and physiological alterations proposed the putative mechanism of exogenous Spd enhanced salinity tolerance in cucumber seedlings. Current studies showed that exogenous spermidine (Spd) could alleviate harmful effects of salinity. It is important to increase our understanding of the beneficial physiological responses of exogenous Spd treatment, and to determine the molecular responses underlying these responses. Here, we combined a physiological analysis with iTRAQ-based comparative proteomics of cucumber (Cucumis sativus L.) leaves, treated with 0.1 mM exogenous Spd, 75 mM NaCl and/or exogenous Spd. A total of 221 differentially expressed proteins were found and involved in 30 metabolic pathways, such as photosynthesis, carbohydrate metabolism, amino acid metabolism, stress response, signal transduction and antioxidant. Based on functional classification of the differentially expressed proteins and the physiological responses, we found cucumber seedlings treated with Spd under salt stress had higher photosynthesis efficiency, upregulated tetrapyrrole synthesis, stronger ROS scavenging ability and more protein biosynthesis activity than NaCl treatment, suggesting that these pathways may promote salt tolerance under high salinity. This study provided insights into how exogenous Spd protects photosynthesis and enhances salt tolerance in cucumber seedlings.
Zhang, Hairong; Tang, Jingchun; Wang, Lin; Liu, Juncheng; Gurav, Ranjit Gajanan; Sun, Kejing
2016-09-01
The present work aimed to develop a novel strategy to bioremediate the petroleum hydrocarbon contaminants in the environment. Salt tolerant bacterium was isolated from Dagang oilfield, China and identified as Corynebacterium variabile HRJ4 based on 16S rRNA gene sequence analysis. The bacterium had a high salt tolerant capability and biochar was developed as carrier for the bacterium. The bacteria with biochar were most effective in degradation of n-alkanes (C16, C18, C19, C26, C28) and polycyclic aromatic hydrocarbons (NAP, PYR) mixture. The result demonstrated that immobilization of C. variabile HRJ4 with biochar showed higher degradation of total petroleum hydrocarbons (THPs) up to 78.9% after 7-day of incubation as compared to the free leaving bacteria. The approach of this study will be helpful in clean-up of petroleum-contamination in the environments through bioremediation process using eco-friendly and cost effective materials like biochar. Copyright © 2016. Published by Elsevier B.V.
Ma, Lichao; Wang, Yanrong; Liu, Wenxian; Liu, Zhipeng
2014-11-01
GDP-mannose 3', 5'-epimerase (GME) catalyses the conversion of GDP-D-mannose to GDP-L-galactose, an important step in the ascorbic acid (ascorbic acid) biosynthetic pathway in higher plants. In this study, a novel cDNA fragment (MsGME) encoding a GME protein was isolated and characterised from alfalfa (Medicago sativa). An expression analysis confirmed that MsGME expression was induced by salinity, PEG and acidity stresses. MsGME overexpression in Arabidopsis enhanced tolerance of the transgenic plants to salt, drought and acid. Real-time PCR analysis revealed that the transcript levels of GDP-D-mannose pyrophosphorylase (GMP), L-galactose-phosphate 1-P phosphatase (GP) and GDP-L-galactose phosphorylase (GGP) were increased in transgenic Arabidopsis (T3 generation). Moreover, the ascorbate content was increased in transgenic Arabidopsis. Our results suggest that MsGME can effectively enhance tolerance of transgenic Arabidopsis to acid, drought and salt by increasing ascorbate accumulation.
Singh, Dinkar; Yadav, Narendra Singh; Tiwari, Vivekanand; Agarwal, Pradeep K.; Jha, Bhavanath
2016-01-01
About 1000 salt-responsive ESTs were identified from an extreme halophyte Salicornia brachiata. Among these, a novel salt-inducible gene SbSLSP (Salicornia brachiata SNARE-like superfamily protein), showed up-regulation upon salinity and dehydration stress. The presence of cis-regulatory motifs related to abiotic stress in the putative promoter region supports our finding that SbSLSP gene is inducible by abiotic stress. The SbSLSP protein showed a high sequence identity to hypothetical/uncharacterized proteins from Beta vulgaris, Spinacia oleracea, Eucalyptus grandis, and Prunus persica and with SNARE-like superfamily proteins from Zostera marina and Arabidopsis thaliana. Bioinformatics analysis predicted a clathrin adaptor complex small-chain domain and N-myristoylation site in the SbSLSP protein. Subcellular localization studies indicated that the SbSLSP protein is mainly localized in the plasma membrane. Using transgenic tobacco lines, we establish that overexpression of SbSLSP resulted in elevated tolerance to salt and drought stress. The improved tolerance was confirmed by alterations in a range of physiological parameters, including high germination and survival rate, higher leaf chlorophyll contents, and reduced accumulation of Na+ ion and reactive oxygen species (ROS). Furthermore, overexpressing lines also showed lower water loss, higher cell membrane stability, and increased accumulation of proline and ROS-scavenging enzymes. Overexpression of SbSLSP also enhanced the transcript levels of ROS-scavenging and signaling enzyme genes. This study is the first investigation of the function of the SbSLSP gene as a novel determinant of salinity/drought tolerance. The results suggest that SbSLSP could be a potential candidate to increase salinity and drought tolerance in crop plants for sustainable agriculture in semi-arid saline soil. PMID:27313584
Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey
2016-01-01
Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea. At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na+ extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na+/H+ exchangers; (ii) better root K+ retention ability resulting from stress-inducible activation of H+-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K+-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. PMID:27340231
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ammonium salts of higher fatty acids... Ammonium salts of higher fatty acids (C8-C18 saturated; C8-C12 unsaturated); exemption from the requirement of a tolerance. Ammonium salts of C8-C18 saturated and C8-C12 unsaturated higher fatty acids are...
Almeida, Diego M; Gregorio, Glenn B; Oliveira, M Margarida; Saibo, Nelson J M
2017-01-01
This manuscript reports the identification and characterization of five transcription factors binding to the promoter of OsNHX1 in a salt stress tolerant rice genotype (Hasawi). Although NHX1 encoding genes are known to be highly regulated at the transcription level by different abiotic stresses, namely salt and drought stress, until now only one transcription factor (TF) binding to its promoter has been reported. In order to unveil the TFs regulating NHX1 gene expression, which is known to be highly induced under salt stress, we have used a Y1H system to screen a salt induced rice cDNA expression library from Hasawi. This approach allowed us to identify five TFs belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) binding to the OsNHX1 gene promoter. We have also shown that these TFs act either as transcriptional activators (OsPCF2, OsNIN-like4) or repressors (OsCPP5, OsNIN-like2) and their encoding genes are differentially regulated by salt and PEG-induced drought stress in two rice genotypes, Nipponbare (salt-sensitive) and Hasawi (salt-tolerant). The transactivation activity of OsNIN-like3 was not possible to determine. Increased soil salinity has a direct impact on the reduction of plant growth and crop yield and it is therefore fundamental to understand the molecular mechanisms underlying gene expression regulation under adverse environmental conditions. OsNHX1 is the most abundant K + -Na + /H + antiporter localized in the tonoplast and its gene expression is induced by salt, drought and ABA. To investigate how OsNHX1 is transcriptionally regulated in response to salt stress in a salt-tolerant rice genotype (Hasawi), a salt-stress-induced cDNA expression library was constructed and subsequently screened using the yeast one-hybrid system and the OsNHX1 promoter as bait. Five transcription factors (TFs) belonging to three distinct TF families: one TCP (OsPCF2), one CPP (OsCPP5) and three NIN-like (OsNIN-like2, OsNIN-like3 and OsNIN-like4) were identified as binding to OsNHX1 promoter. Transactivation activity assays performed in Arabidopsis and rice protoplasts showed that OsPCF2 and OsNIN-like4 are activators of the OsNHX1 gene expression, while OsCPP5 and OsNIN-like2 act as repressors. The transactivation activity of OsNIN-like3 needs to be further investigated. Gene expression studies showed that OsNHX1 transcript level is highly induced by salt and PEG-induced drought stress in both shoots and roots in both Nipponbare and Hasawi rice genotypes. Nevertheless, OsNHX1 seems to play a particular role in shoots in response to drought. Most of the TFs binding to OsNHX1 promoter showed a modest transcriptional regulation under stress conditions, however, in response to most of the conditions studied, the OsPCF2 was induced earlier than OsNHX1, indicating that OsPCF2 may activate OsNHX1 gene expression. In addition, although the OsNHX1 response to salt and PEG-induced drought stress in either shoots or roots was quite similar in both rice genotypes, the expression of OsPCF2 in roots under salt stress and the OsNIN-like4 in roots subjected to PEG was mainly up-regulated in Hasawi, indicating that these TFs may be associated with the salt and drought stress tolerance observed for this genotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhenyu, E-mail: wzy72609@163.com; Zhao, Xiuyang, E-mail: xiuzh@psb.vib-ugent.be; Wang, Bing, E-mail: wangbing@ibcas.ac.cn
Heterogeneous nuclear ribonucleoproteins (hnRNPs) participate in diverse regulations of plant growth and environmental stress responses. In this work, an Arabidopsis hnRNP of unknown function, AtRNP1, was investigated. We found that AtRNP1 gene is highly expressed in rosette and cauline leaves, and slightly induced under drought, salt, osmotic and ABA stresses. AtRNP1 protein is localized to both the nucleus and cytoplasm. We performed homologous overexpression of AtRNP1 and found that the transgenic plants showed shortened root length and plant height, and accelerated flowering. In addition, the transgenic plants also showed reduced tolerance to drought, salt, osmotic and ABA stresses. Further studiesmore » revealed that under both normal and stress conditions, the proline contents in the transgenic plants are markedly decreased, associated with reduced expression levels of a proline synthase gene and several stress-responsive genes. These results suggested that the overexpression of AtRNP1 negatively affects plant growth and abiotic stress tolerance. - Highlights: • AtRNP1 is a widely expressed gene and its expression is slightly induced under abiotic stresses. • AtRNP1 protein is localized to both the nucleus and cytoplasm. • Overexpression of AtRNP1 affects plant growth. • Overexpression of AtRNP1 reduces plant tolerance to drought and salt stresses. • AtRNP1 overexpression plants show decreased proline accumulation and stress-responsive gene expressions.« less
Liska, Adam J; Shevchenko, Andrej; Pick, Uri; Katz, Adriana
2004-09-01
Salinity is a major limiting factor for the proliferation of plants and inhibits central metabolic activities such as photosynthesis. The halotolerant green alga Dunaliella can adapt to hypersaline environments and is considered a model photosynthetic organism for salinity tolerance. To clarify the molecular basis for salinity tolerance, a proteomic approach has been applied for identification of salt-induced proteins in Dunaliella. Seventy-six salt-induced proteins were selected from two-dimensional gel separations of different subcellular fractions and analyzed by mass spectrometry (MS). Application of nanoelectrospray mass spectrometry, combined with sequence-similarity database-searching algorithms, MS BLAST and MultiTag, enabled identification of 80% of the salt-induced proteins. Salinity stress up-regulated key enzymes in the Calvin cycle, starch mobilization, and redox energy production; regulatory factors in protein biosynthesis and degradation; and a homolog of a bacterial Na(+)-redox transporters. The results indicate that Dunaliella responds to high salinity by enhancement of photosynthetic CO(2) assimilation and by diversion of carbon and energy resources for synthesis of glycerol, the osmotic element in Dunaliella. The ability of Dunaliella to enhance photosynthetic activity at high salinity is remarkable because, in most plants and cyanobacteria, salt stress inhibits photosynthesis. The results demonstrated the power of MS BLAST searches for the identification of proteins in organisms whose genomes are not known and paved the way for dissecting molecular mechanisms of salinity tolerance in algae and higher plants.
HKT transporters mediate salt stress resistance in plants: from structure and function to the field
Hamamoto, Shin; Horie, Tomoaki; Hauser, Felix; ...
2014-12-18
Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. The research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. Our review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts towardmore » improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks.« less
Wang, Xi; Cai, Hua; Li, Yong; Zhu, Yanming; Ji, Wei; Bai, Xi; Zhu, Dan; Sun, Xiaoli
2015-01-01
Plasma membrane intrinsic proteins (PIPs) belong to the aquaporin family and facilitate water movement across plasma membranes. Existing data indicate that PIP genes are associated with the abilities of plants to tolerate certain stress conditions. A review of our Glycine soja expressed sequence tag (EST) dataset revealed that abiotic stress stimulated expression of a PIP, herein designated as GsPIP2;1 (GenBank_Accn: FJ825766). To understand the roles of this PIP in stress tolerance, we generated a coding sequence for GsPIP2;1 by in silico elongation and cloned the cDNA by 5'-RACE. Semiquantitative RT-PCR showed that GsPIP2;1 expression was stimulated in G. soja leaves by cold, salt, or dehydration stress, whereas the same stresses suppressed GsPIP2;1 expression in the roots. Transgenic Arabidopsis thaliana plants overexpressing GsPIP2;1 grew normally under unstressed and cold conditions, but exhibited depressed tolerance to salt and dehydration stresses. Moreover, greater changes in water potential were detected in the transgenic A. thaliana shoots, implying that GsPIP2;1 may negatively impact stress tolerance by regulating water potential. These results, deviating from those obtained in previous reports, provide new insights into the relationship between PIPs and abiotic stress tolerance in plants.
Desalination of sea water with aquatic lily (Eichhornia crassipes).
Arámburo-Miranda, Isela Victoria; Ruelas-Ramírez, Emmanuel Hammurabi
2017-11-01
During the last decades, methods of halo conditioning have been developed to increase the tolerance to salinity in glucophyta crops. Some experiments have carried out the application of hydrogen peroxide (H 2 O 2 ), in support to the modification of cell tolerance in saline medium. The first objective of this study was to evaluate the effects of the incorporation of H 2 O 2 in salinity tolerance development of the aquatic lily (Eichhornia crassipes). Results showed that the incorporation of 0.03 % H 2 O 2 salinity tolerance developed in salt concentrations similar to seawater. Saline stress tolerance in aquatic lily was shown by the excretion of salts in its leaves; this process helped also in removing salt from seawater. At the same time, the reproduction of the lily is intimately linked to the content of nitrogen (N) and phosphorus (P) (nutrients) in water. This reason is important to control the concentrations of these elements in the water. This will allow maintaining a control in the dissemination of the lily. Considering the mentioned above, the second objective was to continue development of the adaptation of the aquatic lily in seawater, using H 2 O 2 and the required amount of nutrients. This paper points out the importance of considering a biological process for the treatments in the desalination of seawater, making the process more sustainable.
Chiang, Ming-Lun; Chen, Hsi-Chia; Wu, Chieh; Chen, Ming-Ju
2014-04-01
Three strains of Vibrio parahaemolyticus (690, BCRC 13023, and BCRC 13025), involved in foodborne outbreaks in Taiwan, were subjected to acid adaptation at pH 5.5 for 90 min. The effects of acid adaptation on the tolerance of V. parahaemolyticus to various environmental stresses, including heat (47°C), cold (4°C and -20°C), ethanol (8%), high salt (20% NaCl), and hydrogen peroxide (20 ppm) were examined. Results showed that acid adaptation increased the thermal tolerance of the three test strains of V. parahaemolyticus, while it did not affect their cold tolerance. Acid adaptation also increased the ethanol tolerance in V. parahaemolyticus 690 and BCRC 13025, but not in BCRC 13023. Differences in the tolerance to high salts were noted among the three strains after prior acid adaptation. However, these acid-adapted V. parahaemolyticus strains were more susceptible to hydrogen peroxide than their nonadapted controls. These findings demonstrated that acid adaption responses of V. parahaemolyticus varied among strains and types of stress challenge.
2011-01-01
Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548
Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang
2018-01-01
Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K + , Ca 2+ , and Mg 2+ , but also maintained higher K + :Na + ratios in the leaves and lower Ca 2+ :Mg 2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China.
Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress
Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming
2017-01-01
The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance. PMID:28417911
Genome-Wide Analyses of the Soybean F-Box Gene Family in Response to Salt Stress.
Jia, Qi; Xiao, Zhi-Xia; Wong, Fuk-Ling; Sun, Song; Liang, Kang-Jing; Lam, Hon-Ming
2017-04-12
The F-box family is one of the largest gene families in plants that regulate diverse life processes, including salt responses. However, the knowledge of the soybean F-box genes and their roles in salt tolerance remains limited. Here, we conducted a genome-wide survey of the soybean F-box family, and their expression analysis in response to salinity via in silico analysis of online RNA-sequencing (RNA-seq) data and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) to predict their potential functions. A total of 725 potential F-box proteins encoded by 509 genes were identified and classified into 9 subfamilies. The gene structures, conserved domains and chromosomal distributions were characterized. There are 76 pairs of duplicate genes identified, including genome-wide segmental and tandem duplication events, which lead to the expansion of the number of F-box genes. The in silico expression analysis showed that these genes would be involved in diverse developmental functions and play an important role in salt response. Our qRT-PCR analysis confirmed 12 salt-responding F-box genes. Overall, our results provide useful information on soybean F-box genes, especially their potential roles in salt tolerance.
Chang, Wei; Sui, Xin; Fan, Xiao-Xu; Jia, Ting-Ting; Song, Fu-Qiang
2018-01-01
Elaeagnus angustifolia L. is a drought-resistant species. Arbuscular mycorrhizal symbiosis is considered to be a bio-ameliorator of saline soils that can improve salinity tolerance in plants. The present study investigated the effects of inoculation with the arbuscular mycorrhizal fungus Rhizophagus irregularis on the biomass, antioxidant enzyme activities, and root, stem, and leaf ion accumulation of E. angustifolia seedlings grown during salt stress conditions. Salt-stressed mycorrhizal seedlings produced greater root, stem, and leaf biomass than the uninoculated stressed seedlings. In addition, the seedlings colonized by R. irregularis showed notably higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the leaves of the mycorrhizal seedlings in response to salinity compared to those of the non-mycorrhizal seedlings. Mycorrhizal seedlings not only significantly increased their ability to acquire K+, Ca2+, and Mg2+, but also maintained higher K+:Na+ ratios in the leaves and lower Ca2+:Mg2+ ratios than non-mycorrhizal seedlings during salt stress. These results suggest that the salt tolerance of E. angustifolia seedlings could be enhanced by R. irregularis. The arbuscular mycorrhizal symbiosis could be a promising method to restore and utilize salt-alkaline land in northern China. PMID:29675008
Ma, Qi-Jun; Sun, Mei-Hong; Kang, Hui; Lu, Jing; You, Chun-Xiang; Hao, Yu-Jin
2018-05-23
Soil salinity is one of the major abiotic stressors that negatively affect crop growth and yield. Salt stress can regulate antioxidants and the accumulation of osmoprotectants. In the study, a sucrose transporter MdSUT2.2 was identified in apple. Overexpression of MdSUT2.2 gene increased salt tolerance in the transgenic apple, compared with the WT control 'Gala'. In addition, it was found that protein MdSUT2.2 was phosphorylated at Ser 254 site in response to salt. A DUAL membrane yeast hybridization system through an apple cDNA library demonstrated that a protein kinase MdCIPK13 interacted with MdSUT2.2. A series of transgenic analysis in apple calli showed that MdCIPK13 was required for the salt-induced phosphorylation of MdSUT2.2 protein and enhanced its stability and transport activity. Finally, it was found that MdCIPK13 improved salt resistance in an MdSUT2.2-dependent manner. These findings had enriched our understanding of the molecular mechanisms underlying abiotic stress. This article is protected by copyright. All rights reserved.
Per, Tasir S; Khan, Nafees A; Reddy, Palakolanu Sudhakar; Masood, Asim; Hasanuzzaman, Mirza; Khan, M Iqbal R; Anjum, Naser A
2017-06-01
Major abiotic stress factors such as salt and drought adversely affect important physiological processes and biochemical mechanisms and cause severe loss in crop productivity worldwide. Plants develop various strategies to stand healthy against these stress factors. The accumulation of proline (Pro) is one of the striking metabolic responses of plants to salt and drought stress. Pro biosynthesis and signalling contribute to the redox balance of cell under normal and stressful conditions. However, literature is meager on the sustainable strategies potentially fit for modulating Pro biosynthesis and production in stressed plants. Considering the recent literature, this paper in its first part overviews Pro biosynthesis and transport in plants and also briefly highlights the significance of Pro in plant responses to salt and drought stress. Secondly, this paper discusses mechanisms underlying the regulation of Pro metabolism in salt and drought-exposed plant via phytohormones, mineral nutrients and transgenic approaches. The outcome of the studies may give new opportunities in modulating Pro metabolism for improving plant tolerance to salt and drought stress and benefit sustainable agriculture. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Wang, Chunling; Lu, Guoqing; Hao, Yuqiong; Guo, Huiming; Guo, Yan; Zhao, Jun; Cheng, Hongmei
2017-09-01
ABP9 , encoding a bZIP transcription factor from maize, enhances tolerance to multiple stresses and may participate in the ABA signaling pathway in transgenic cotton by altering physiological and biochemical processes and stress-related gene expression. Abiotic stresses, such as soil salinity and drought, negatively affect growth, development, and yield in cotton. Gene ABP9, which encodes a bZIP transcription factor, binds to the abscisic acid (ABA)-responsive-element (ABRE2) motif of the maize catalase1 gene. Its expression significantly improves tolerance in Arabidopsis to multiple abiotic stresses, but little is known about its role in cotton. In the present study, the ABP9 gene was introduced into upland cotton (Gossypium hirsutum L.) cultivar R15 by Agrobacterium tumefaciens-mediated transformation, and 12 independent transgenic cotton lines were obtained. Cotton plants over-expressing ABP9 have enhanced tolerance to salt and osmotic stress. Under stress, they developed better root systems in a greenhouse and higher germination, reduced stomatal aperture, and stomatal density in a growth chamber. Under drought conditions, survival rate and relative water content (RWC) of transgenic cotton were higher than those of R15 plants. Under salt and osmotic stresses, chlorophyll, proline, and soluble sugar contents significantly increased in transgenic cotton leaves and the malondialdehyde (MDA) content was lower than in R15. Overexpression of ABP9 also enhanced oxidative stress tolerance, reduced cellular levels of reactive oxygen species (ROS) through increased activities of antioxidative enzymes, and alleviated oxidative damage to cell. Interestingly, ABP9 over-expressing cotton was more sensitive to exogenous ABA than R15 at seed germination, root growth, stomatal aperture, and stomatal density. Moreover, ABP9 overexpression upregulated significantly the transcription levels of stress-related genes such as GhDBP2, GhNCED2, GhZFP1, GhERF1, GhHB1, and GhSAP1 under salt treatment. Conjointly, these results showed that overexpression of ABP9 conferred enhanced tolerance to multiple abiotic stresses in cotton. The stress-tolerant transgenic lines provide valuable resources for cotton breeding.
Salinized rivers: degraded systems or new habitats for salt-tolerant faunas?
Buchwalter, David; Davis, Jenny
2016-01-01
Anthropogenic salinization of rivers is an emerging issue of global concern, with significant adverse effects on biodiversity and ecosystem functioning. Impacts of freshwater salinization on biota are strongly mediated by evolutionary history, as this is a major factor determining species physiological salinity tolerance. Freshwater insects dominate most flowing waters, and the common lotic insect orders Ephemeroptera (mayflies), Plecoptera (stoneflies) and Trichoptera (caddisflies) are particularly salt-sensitive. Tolerances of existing taxa, rapid adaption, colonization by novel taxa (from naturally saline environments) and interactions between species will be key drivers of assemblages in saline lotic systems. Here we outline a conceptual framework predicting how communities may change in salinizing rivers. We envision that a relatively small number of taxa will be saline-tolerant and able to colonize salinized rivers (e.g. most naturally saline habitats are lentic; thus potential colonizers would need to adapt to lotic environments), leading to depauperate communities in these environments. PMID:26932680
Interpopulation differences in the salt tolerance of two Cladophora species
NASA Astrophysics Data System (ADS)
Thomas, D. N.; Collins, J. C.; Russell, G.
1990-02-01
The effects of changes in external salinity upon Baltic and U.K. populations of Cladophora rupestris (L) Kütz and C. glomerata (L) Kütz have been studied. Rates of net photosynthesis after salinity treatment (0-102‰) were used as a measure of salinity tolerance. There were very pronounced differences in the salt tolerance of the two C. glomerata populations, whereas Baltic and U.K. C. rupestris differed significantly only in responses to extreme hyposaline treatment. The effect of salinity on the thallus content of K + and Na + was measured. There were significant differences in the ratios of these ions in populations of both species. The populations also differed significantly in the dimensions of their cells and cellular volume.
Moazzzam Jazi, Maryam; Seyedi, Seyed Mahdi; Ebrahimie, Esmaeil; Ebrahimi, Mansour; De Moro, Gianluca; Botanga, Christopher
2017-08-17
Pistachio (Pistacia vera L.) is one of the most important commercial nut crops worldwide. It is a salt-tolerant and long-lived tree, with the largest cultivation area in Iran. Climate change and subsequent increased soil salt content have adversely affected the pistachio yield in recent years. However, the lack of genomic/global transcriptomic sequences on P. vera impedes comprehensive researches at the molecular level. Hence, whole transcriptome sequencing is required to gain insight into functional genes and pathways in response to salt stress. RNA sequencing of a pooled sample representing 24 different tissues of two pistachio cultivars with contrasting salinity tolerance under control and salt treatment by Illumina Hiseq 2000 platform resulted in 368,953,262 clean 100 bp paired-ends reads (90 Gb). Following creating several assemblies and assessing their quality from multiple perspectives, we found that using the annotation-based metrics together with the length-based parameters allows an improved assessment of the transcriptome assembly quality, compared to the solely use of the length-based parameters. The generated assembly by Trinity was adopted for functional annotation and subsequent analyses. In total, 29,119 contigs annotated against all of five public databases, including NR, UniProt, TAIR10, KOG and InterProScan. Among 279 KEGG pathways supported by our assembly, we further examined the pathways involved in the plant hormone biosynthesis and signaling as well as those to be contributed to secondary metabolite biosynthesis due to their importance under salinity stress. In total, 11,337 SSRs were also identified, which the most abundant being dinucleotide repeats. Besides, 13,097 transcripts as candidate stress-responsive genes were identified. Expression of some of these genes experimentally validated through quantitative real-time PCR (qRT-PCR) that further confirmed the accuracy of the assembly. From this analysis, the contrasting expression pattern of NCED3 and SOS1 genes were observed between salt-sensitive and salt-tolerant cultivars. This study, as the first report on the whole transcriptome survey of P. vera, provides important resources and paves the way for functional and comparative genomic studies on this major tree to discover the salinity tolerance-related markers and stress response mechanisms for breeding of new pistachio cultivars with more salinity tolerance.
Sarabi, Behrooz; Bolandnazar, Sahebali; Ghaderi, Nasser; Ghashghaie, Jaleh
2017-10-01
Melon (Cucumis melo L.) is one of the most important horticultural crops in Iran often cultivated in arid and semiarid regions of the country with salinity problems. The objective of this work was to better understand the mechanisms of physiological and biochemical responses to salinity stress of five Iranian melon landraces "Samsuri", "Kashan", "Khatouni", "Suski-e-Sabz", and "Ghobadlu" from different geographical origins, and "Galia" F1 cultivar. Plants were grown under greenhouse conditions and irrigated with half-strength Hoagland solution containing 0, 30, 60, or 90 mM NaCl for 60 days. Increase in the external salt concentration was accompanied by an obvious depression in leaf relative water content, membrane stability index, chlorophyll a and b and carotenoid contents, stomata and trichome density, leaf area, specific leaf area, biomass, leaf and stem K + concentrations as well as leaf and stem K + /Na + ratios in all landraces studied. In contrast, hydrogen peroxide, lipid peroxidation, proline and soluble carbohydrate contents, activity of antioxidant enzymes as well as leaf and stem Na + and Cl - concentrations, all increased significantly with increasing stress over all plants. Moreover, carbon isotope discrimination (Δ 13 C), determined on leaf organic matter, was found to be associated with evaluated traits. For example, a highly positive correlation between Δ 13 C and both biomass production and salt tolerance index was notable when all saline treatments were averaged (r = 0.998 and 0.998, respectively). Also, scatter plot and clustering analysis showed that "Suski-e-Sabz" and "Ghobadlu" were placed close to "Galia" F1, a salt tolerant cultivar, indicating that their similar behavior under salinity. Overall, the present results indicated a significant genetic variability for most of the traits studied, suggesting that "Suski-e-Sabz" and "Ghobadlu" could be introduced as the superior landraces and the most promising tolerant parents in the future melon breeding programs due to their suitable performance, in terms of responses to salt stress as compared with other landraces. Also, Δ 13 C can be used as a powerful criterion in melon breeding programs aimed at selection of salt tolerant landraces. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Effect of salt stress on morpho-physiology, vegetative growth and yield of rice.
Hakim, M A; Juraimi, Abdul Shukor; Hanafi, M M; Ali, E; Ismail, Mohd Razi; Selamat, Ahmed; Karim, S M Rezaul
2014-03-01
Selection of salt tolerant rice varieties has a huge impact on global food supply chain. Five Malaysian rice (Oryza sativa L.) varieties, MR33, MR52, MR211, MR219 and MR232 were tested in pot experiment under different salinity levels for their response in term of vegetative growth, physiological activities, development of yield components and grain yield. Rice varieties, BRRI dhan29 and IR20 were used as a salt-sensitive control and Pokkali was used as a salt-tolerant control. Three different salinity levels viz. 4, 8, and 12 dS m(-1) were used in a randomized complete block design with four replications under glass house conditions. Two Malaysia varieties, MR211 and MR232 performed better in terms of vegetative growth (plant height, leaf area plant(-1), number of tillers plant(-1), dry matter accumulation plant(-1)), photosynthetic rate, transpiration rate, yield components, grain yield and injury symptoms. While, MR33, MR52 and MR219 verities were able to withstand salinity stress over salt-sensitive control, BRRI dhan29 and IR20.
Ma, Jianchao; Lu, Jing; Xu, Jianmei; Duan, Bingbing; He, Xiaodong; Liu, Jianquan
2015-01-01
WRKY transcription factors play important roles in plant development and responses to various stresses in plants. However, little is known about the evolution of the WRKY genes in the desert poplar species Populus euphratica, which is highly tolerant of salt stress. In this study, we identified 107 PeWRKY genes from the P. euphratica genome and examined their evolutionary relationships with the WRKY genes of the salt-sensitive congener Populus trichocarpa. Ten PeWRKY genes are specific to P. euphratica, and five of these showed altered expression under salt stress. Furthermore, we found that two pairs of orthologs between the two species showed evidence of positive evolution, with dN/dS ratios>1 (nonsynonymous/synonymous substitutions), and both of them altered their expression in response to salinity stress. These findings suggested that both the development of new genes and positive evolution in some orthologs of the WRKY gene family may have played an important role in the acquisition of high salt tolerance by P. euphratica.
Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots
Reis, Ricardo S.; Heringer, Angelo S.; Rangel, Patricia L.; Santa-Catarina, Claudete; Grativol, Clícia; Veiga, Carlos F. M.; Souza-Filho, Gonçalo A.
2017-01-01
Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress. PMID:28419154
Ma, Xiaohua; Zheng, Jian; Zhang, Xule; Hu, Qingdi; Qian, Renjuan
2017-01-01
Salt stress critically affects the physiological processes and morphological structure of plants, resulting in reduced plant growth. Salicylic acid (SA) is an important signal molecule that mitigates the adverse effects of salt stress on plants. Large pink Dianthus superbus L. (Caryophyllaceae) usually exhibit salt-tolerant traits under natural conditions. To further clarify the salt-tolerance level of D. superbus and the regulating mechanism of exogenous SA on the growth of D. superbus under different salt stresses, we conducted a pot experiment to examine the biomass, photosynthetic parameters, stomatal structure, chloroplast ultrastructure, reactive oxygen species (ROS) concentrations, and antioxidant activities of D. superbus young shoots under 0.3, 0.6, and 0.9% NaCl conditions, with and without 0.5 mM SA. D. superbus exhibited reduced growth rate, decreased net photosynthetic rate (Pn), increased relative electric conductivity (REC) and malondialdehyde (MDA) contents, and poorly developed stomata and chloroplasts under 0.6 and 0.9% salt stress. However, exogenously SA effectively improved the growth, photosynthesis, antioxidant enzyme activity, and stoma and chloroplast development of D. superbus. However, when the plants were grown under severe salt stress (0.9% NaCl condition), there was no significant difference in the plant growth and physiological responses between SA-treated and non-SA-treated plants. Therefore, our research suggests that exogenous SA can effectively counteract the adverse effect of moderate salt stress on D. superbus growth and development. PMID:28484476
Wakai, Nobuhiko; Takemura, Kazuhiro; Morita, Takami; Kitao, Akio
2014-01-01
The pressure tolerance of monomeric α-actin proteins from the deep-sea fish Coryphaenoides armatus and C. yaquinae was compared to that of non-deep-sea fish C. acrolepis, carp, and rabbit/human/chicken actins using molecular dynamics simulations at 0.1 and 60 MPa. The amino acid sequences of actins are highly conserved across a variety of species. The actins from C. armatus and C. yaquinae have the specific substitutions Q137K/V54A and Q137K/L67P, respectively, relative to C. acrolepis, and are pressure tolerant to depths of at least 6000 m. At high pressure, we observed significant changes in the salt bridge patterns in deep-sea fish actins, and these changes are expected to stabilize ATP binding and subdomain arrangement. Salt bridges between ATP and K137, formed in deep-sea fish actins, are expected to stabilize ATP binding even at high pressure. At high pressure, deep-sea fish actins also formed a greater total number of salt bridges than non-deep-sea fish actins owing to the formation of inter-helix/strand and inter-subdomain salt bridges. Free energy analysis suggests that deep-sea fish actins are stabilized to a greater degree by the conformational energy decrease associated with pressure effect.
Mechanism of Deep-Sea Fish α-Actin Pressure Tolerance Investigated by Molecular Dynamics Simulations
Wakai, Nobuhiko; Takemura, Kazuhiro; Morita, Takami; Kitao, Akio
2014-01-01
The pressure tolerance of monomeric α-actin proteins from the deep-sea fish Coryphaenoides armatus and C. yaquinae was compared to that of non-deep-sea fish C. acrolepis, carp, and rabbit/human/chicken actins using molecular dynamics simulations at 0.1 and 60 MPa. The amino acid sequences of actins are highly conserved across a variety of species. The actins from C. armatus and C. yaquinae have the specific substitutions Q137K/V54A and Q137K/L67P, respectively, relative to C. acrolepis, and are pressure tolerant to depths of at least 6000 m. At high pressure, we observed significant changes in the salt bridge patterns in deep-sea fish actins, and these changes are expected to stabilize ATP binding and subdomain arrangement. Salt bridges between ATP and K137, formed in deep-sea fish actins, are expected to stabilize ATP binding even at high pressure. At high pressure, deep-sea fish actins also formed a greater total number of salt bridges than non-deep-sea fish actins owing to the formation of inter-helix/strand and inter-subdomain salt bridges. Free energy analysis suggests that deep-sea fish actins are stabilized to a greater degree by the conformational energy decrease associated with pressure effect. PMID:24465747
Egamberdieva, Dilfuza; Wirth, Stephan; Alqarawi, Abdulaziz A.; Abd_Allah, E.F.
2015-01-01
The source of infection has always been considered as an important factor in epidemiology and mostly linked to environmental source such as surface water, soil, plants and also animals. The activity of the opportunistic pathogens associated with plant root, their adaptation and survival under hostile environmental condition is poorly understood. In this study the salt tolerance ability of Methylobacterium mesophilicum and its colonization in the root and shoot of plants under severe drought and salt stress conditions were investigated. The colonization of plant by M. mesophilicum was investigated in a gnotobiotic sand system, and their survival in pots with saline soil. Bacterial strain was found to colonize rhizosphere of cucumber, tomato and paprika grown under normal and salt stress condition and reached up to 6.4 × 104 and 2.6 × 104 CFU/g root. The strain was resistant to Gentamicin, Ampicillin, Amoxicillin plus Clavulanic acid, Cefotaxime, neomycin, penicillin and was also tolerant to salinity stress (up to 6% NaCl). These abilities play important roles in enabling persistent colonization of the plant surface by M. mesophilicum strains. In conclusion, this study provides background information on the behaviour of opportunistic pathogen M. mesophilicum on plants and their survival in harsh environmental conditions. PMID:26288563
Isolation and identification of halotolerant soil bacteria from coastal Patenga area.
Rahman, Shafkat Shamim; Siddique, Romana; Tabassum, Nafisa
2017-10-30
Halotolerant bacteria have multiple uses viz. fermentation with lesser sterility control and industrial production of bioplastics. Moreover, it may increase the crop productivity of coastal saline lands in Bangladesh by transferring the salt tolerant genes into the plants. The study focused on the isolation and identification of the halotolerant bacteria from three soil samples, collected from coastal Patenga area. The samples were inoculated in nutrient media containing a wide range of salt concentrations. All the samples showed 2, 4 and 6% (w/v) salt tolerance. The isolates from Patenga soil (4, 6%) and beach soil (2%) showed catalase activity and all the isolates showed negative results for oxidase activity, indole production, lactose and motility. All the samples provided positive results for dextrose fermentation. Other tests provided mixed results. Based on the morphological characteristics, biochemical tests and ABIS software analysis the isolates fall within the Enterobacteriaceae, Clostridium and Corynebacterium, with a predominance of Vibrios. Overall the isolates can be considered as mild halotolerant, with the best growth observed at lower salinities and no halophilism detected. Among many possibilities, the genes responsible for the salt tolerant trait in these species can be identified, extracted and inserted into the crop plants to form a transgenic plant to result in higher yield for the rest of the year.
Zhang, Jiyu; Duan, Zhen; Zhang, Daiyu; Zhang, Jianquan; Di, Hongyan; Wu, Fan; Wang, Yanrong
2016-03-25
Drought and high salinity are two major abiotic factors that restrict alfalfa productivity. A dehydrin protein, CsLEA, from the desert grass Cleistogenes songorica was transformed into alfalfa (Medicago sativa L.) via Agrobacterium-mediated transformation using the bar gene as a selectable marker, and the drought and salt stress tolerances of the transgenic plants were assessed. Thirty-nine of 119 transformants were positive, as screened by Basta, and further molecularly authenticated using PCR and RT-PCR. Phenotype observations revealed that the transgenic plants grew better than the wild-type (WT) plants after 15d of drought stress and 10d of salt stress: the leaves of WT alfalfa turned yellow, whereas the transgenic alfalfa leaves only wilted; after rewatering, the transgenic plants returned to a normal state, though the WT plants could not be restored. Evaluation of physiologic and biochemical indices during drought and salt stresses showed a relatively lower Na(+) content in the leaves of the transgenic plants, which would reduce toxic ion effects. In addition, the transgenic plants were able to maintain a higher relative water content (RWC), higher shoot biomass, fewer photosystem changes, decreased membrane injury, and a lower level of osmotic stress injury. These results demonstrate that overexpression of the CsLEA gene can enhance the drought and salt tolerance of transgenic alfalfa; in addition, carrying the bar gene in the genome may increase herbicide resistance. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhou, Yanli; Sun, Xudong; Yang, Yunqiang; Li, Xiong; Cheng, Ying; Yang, Yongping
2016-01-01
Stipa purpurea (S. purpurea) is the dominant plant species in the alpine steppe of the Qinghai-Tibet Plateau, China. It is highly resistant to cold and drought conditions. However, the underlying mechanisms regulating the stress tolerance are unknown. In this study, a CIPK gene from S. purpurea (SpCIPK26) was isolated. The SpCIPK26 coding region consisted of 1392 bp that encoded 464 amino acids. The protein has a highly conserved catalytic structure and regulatory domain. The expression of SpCIPK26 was induced by drought and salt stress. SpCIPK26 overexpression in Arabidopsis thaliana (A. thaliana) plants provided increased tolerance to drought and salt stress in an abscisic acid (ABA)-dependent manner. Compared with wild-type A. thaliana plants, SpCIPK26-overexpressing plants had higher survival rates, water potentials, and photosynthetic efficiency (Fv/Fm), as well as lower levels of reactive oxygen species (ROS) following exposure to drought and salt stress. Gene expression analyses indicated stress-inducible genes (RD29A, RD29B, and ABF2) and a ROS-scavenger gene (CAT1) were upregulated in SpCIPK26-overexpressing plants after stress treatments. All of these marker genes are associated with ABA-responsive cis-acting elements. Additionally, the similarities in the gene expression patterns following ABA, mannitol, and NaCl treatments suggest SpCIPK26 has an important role during plant responses to drought and salt stress and in regulating ABA signaling. PMID:27338368
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
... alcohols and hydrocarbons; surfactants such as polyoxyethylene polymers and fatty acids; carriers such as... NAPAAS primary amines and primary amine acetate salt may also be conjugated, whether by glucuronidation...
HKT transporters mediate salt stress resistance in plants: from structure and function to the field.
Hamamoto, Shin; Horie, Tomoaki; Hauser, Felix; Deinlein, Ulrich; Schroeder, Julian I; Uozumi, Nobuyuki
2015-04-01
Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. Research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. This review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts toward improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cai, Ronghao; Dai, Wei; Zhang, Congsheng; Wang, Yan; Wu, Min; Zhao, Yang; Ma, Qing; Xiang, Yan; Cheng, Beijiu
2017-12-01
We cloned and characterized the ZmWRKY17 gene from maize. Overexpression of ZmWRKY17 in Arabidopsis led to increased sensitivity to salt stress and decreased ABA sensitivity through regulating the expression of some ABA- and stress-responsive genes. The WRKY transcription factors have been reported to function as positive or negative regulators in many different biological processes including plant development, defense regulation and stress response. This study isolated a maize WRKY gene, ZmWRKY17, and characterized its role in tolerance to salt stress by generating transgenic Arabidopsis plants. Expression of the ZmWRKY17 was up-regulated by drought, salt and abscisic acid (ABA) treatments. ZmWRKY17 was localized in the nucleus with no transcriptional activation in yeast. Yeast one-hybrid assay showed that ZmWRKY17 can specifically bind to W-box, and it can activate W-box-dependent transcription in planta. Heterologous overexpression of ZmWRKY17 in Arabidopsis remarkably reduced plant tolerance to salt stress, as determined through physiological analyses of the cotyledons greening rate, root growth, relative electrical leakage and malondialdehyde content. Additionally, ZmWRKY17 transgenic plants showed decreased sensitivity to ABA during seed germination and early seedling growth. Transgenic plants accumulated higher content of ABA than wild-type (WT) plants under NaCl condition. Transcriptome and quantitative real-time PCR analyses revealed that some stress-related genes in transgenic seedlings showed lower expression level than that in the WT when treated with NaCl. Taken together, these results suggest that ZmWRKY17 may act as a negative regulator involved in the salt stress responses through ABA signalling.
Li, JianJian; Ma, Jingjing; Guo, Hailin; Zong, Junqin; Chen, Jingbo; Wang, Yi; Li, Dandan; Li, Ling; Wang, Jingjing; Liu, Jianxiu
2018-05-01
Salinity is one of the major abiotic environmental stress factors affecting plant growth and development. Centipedegrass (Eremochloa ophiuroides [Munro)] Hack.) is an important warm-season turfgrass species with low turf maintenance requirements, but is sensitive to salinity stress. To explore salt tolerant germplasms in centipedegrass and better understand the growth and physiological responses of centipedegrass to salinity, we conducted anatomic observation and phytochemical quantification, examined growth parameters, and investigated photosynthetic machinery and antioxidant system in two phenotypically distinct centipedegrass accessions under NaCl salt stress. The morphophenotypical difference of the stems in the two accessions mainly depends on whether or not a thickened epidermal horny layer with purple colour was formed, which was caused by anthocyanin accumulation in the tissue. Successive salinity treatment was found to result in an inhibition of leaf growth, a marked decrease in photosynthesis, chlorophyll contents, and the maximal photochemical efficiency of PSII (Fv/Fm). Under the same treatment, purple-stem accession (E092) showed a lower degree of inhibition or decrease than green-stem one (E092-1). With the exception of malondialdehyde level, both proline content and antioxidant enzymes were upregulated to a greater extent in E092 following exposure to salinity condition. Meanwhile, significant enhancements of anthocyanin accumulation and total protein synthesis were detected in E092 after salt treatment, but not in E092-1. These results demonstrated that E092 favor better accumulation of anthocyanins under salinity condition, which contribute to salt tolerance by adjusting physiological functions and osmotic balance, and better maintenance of high turf quality. Hence, genetic phenotype can be utilized as a key indicator in E. ophiuroides breeding for salt-tolerance. Copyright © 2018. Published by Elsevier Masson SAS.
Rossi, Lorenzo; Borghi, Monica; Francini, Alessandra; Lin, Xiuli; Xie, De-Yu; Sebastiani, Luca
2016-10-01
Olive tree (Olea europaea L.) is an important crop in the Mediterranean Basin where drought and salinity are two of the main factors affecting plant productivity. Despite several studies have reported different responses of various olive tree cultivars to salt stress, the mechanisms that convey tolerance and sensitivity remain largely unknown. To investigate this issue, potted olive plants of Leccino (salt-sensitive) and Frantoio (salt-tolerant) cultivars were grown in a phytotron chamber and treated with 0, 60 and 120mM NaCl. After forty days of treatment, growth analysis was performed and the concentration of sodium in root, stem and leaves was measured by atomic absorption spectroscopy. Phenolic compounds were extracted using methanol, hydrolyzed with butanol-HCl, and quercetin and kaempferol quantified via high performance liquid-chromatography-electrospray-mass spectrometry (HPLC-ESI-MS) and HPLC-q-Time of Flight-MS analyses. In addition, the transcripts levels of five key genes of the phenylpropanoid pathway were measured by quantitative Real-Time PCR. The results of this study corroborate the previous observations, which showed that Frantoio and Leccino differ in allocating sodium in root and leaves. This study also revealed that phenolic compounds remain stable or are strongly depleted under long-time treatment with sodium in Leccino, despite a strong up-regulation of key genes of the phenylpropanoid pathway was observed. Frantoio instead, showed a less intense up-regulation of the phenylpropanoid genes but overall higher content of phenolic compounds. These data suggest that Frantoio copes with the toxicity imposed by elevated sodium not only with mechanisms of Na + exclusion, but also promptly allocating effective and adequate antioxidant compounds to more sensitive organs. Copyright © 2016 Elsevier GmbH. All rights reserved.
SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato
Wang, Kun; Hersh, Hope Lynn; Benning, Christoph
2016-09-06
SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance ofmore » wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg 2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops.« less
SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kun; Hersh, Hope Lynn; Benning, Christoph
SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance ofmore » wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg 2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops.« less
SENSITIVE TO FREEZING2 Aids in Resilience to Salt and Drought in Freezing-Sensitive Tomato1[OPEN
Hersh, Hope Lynn
2016-01-01
SENSITIVE TO FREEZING2 (SFR2) is crucial for protecting chloroplast membranes following freezing in Arabidopsis (Arabidopsis thaliana). It has been shown that SFR2 homologs are present in all land plants, including freezing-sensitive species, raising the question of SFR2 function beyond freezing tolerance. Similar to freezing, salt and drought can cause dehydration. Thus, it is hypothesized that in freezing-sensitive plants SFR2 may play roles in their resilience to salt or drought. To test this hypothesis, SlSFR2 RNAi lines were generated in the cold/freezing-sensitive species tomato (Solanum lycopersicum [M82 cv]). Hypersensitivity to salt and drought of SlSFR2-RNAi lines was observed. Higher tolerance of wild-type tomatoes was correlated with the production of trigalactosyldiacylglycerol, a product of SFR2 activity. Tomato SFR2 in vitro activity is Mg2+-dependent and its optimal pH is 7.5, similar to that of Arabidopsis SFR2, but the specific activity of tomato SFR2 in vitro is almost double that of Arabidopsis SFR2. When salt and drought stress were applied to Arabidopsis, no conditions could be identified at which SFR2 was induced prior to irreversibly impacting plant growth, suggesting that SFR2 protects Arabidopsis primarily against freezing. Discovery of tomato SFR2 function in drought and salt resilience provides further insights into general membrane lipid remodeling-based stress tolerance mechanisms and together with protection against freezing in freezing-resistant plants such as Arabidopsis, it adds lipid remodeling as a possible target for the engineering of abiotic stress-resilient crops. PMID:27600812
Saha, Jayita; Giri, Kalyan
2017-04-20
Compelling evidences anticipated the well acclamation of involvement of exogenous and endogenous polyamines (PAs) in conferring salt tolerance in plants. Intracellular PA's anabolism and catabolism should have contributed to maintain endogenous PAs homeostasis to induce stress signal networks. In this report, the evolutionary study has been conducted to reveal the phylogenetic relationship of genes encoding enzymes of the anabolic and catabolic pathway of PAs among the five plant lineages including green algae, moss, lycophyte, dicot and monocot along with their respective exon-intron structural patterns. Our results indicated that natural selection pressure had considerable influence on the ancestral PA metabolic pathway coding genes of land plants. PA metabolic genes have undergone gradual evolution by duplication and diversification process leading to subsequent structural modification through exon-intron gain and loss events to acquire specific function under environmental stress conditions. We have illuminated on the potential regulation of both the pathways by investigating the real-time expression analyses of PA metabolic pathway related enzyme coding genes at the transcriptional level in root and shoot tissues of two indica rice varieties, namely IR 36 (salt sensitive) and Nonabokra (salt-tolerant) in response to salinity in presence or absence of exogenous spermidine (Spd) treatment. Additionally, we have performed tissue specific quantification of the intracellular PAs and tried to draw probable connection between the PA metabolic pathway activation and endogenous PAs accumulation. Our results successfully enlighten the fact that how exogenous Spd in presence or absence of salt stress adjust the intracellular PA pathways to equilibrate the cellular PAs that would have been attributed to plant salt tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.
Luo, Di; Niu, Xiangli; Yu, Jinde; Yan, Jun; Gou, Xiaojun; Lu, Bao-Rong; Liu, Yongsheng
2012-09-01
Glycine betaine (GB) is a compatible quaternary amine that enables plants to tolerate abiotic stresses, including salt, drought and cold. In plants, GB is synthesized through two-step of successive oxidations from choline, catalyzed by choline monooxygenase (CMO) and betaine aldehyde dehydrogenase (BADH), respectively. Rice is considered as a typical non-GB accumulating species, although the entire genome sequencing revealed rice contains orthologs of both CMO and BADH. Several studies unraveled that rice has a functional BADH gene, but whether rice CMO gene (OsCMO) is functional or a pseudogene remains to be elucidated. In the present study, we report the functional characterization of rice CMO gene. The OsCMO gene was isolated from rice cv. Nipponbare (Oryza sativa L. ssp. japonica) using RT-PCR. Northern blot demonstrated the transcription of OsCMO is enhanced by salt stress. Transgenic tobacco plants overexpressing OsCMO results in increased GB content and elevated tolerance to salt stress. Immunoblotting analysis demonstrates that a functional OsCMO protein with correct size was present in transgenic tobacco but rarely accumulated in wild-type rice plants. Surprisingly, a large amount of truncated proteins derived from OsCMO was induced in the rice seedlings in response to salt stresses. This suggests that it is the lack of a functional OsCMO protein that presumably results in non-GB accumulation in the tested rice plant. Expression and transgenic studies demonstrate OsCMO is transcriptionally induced in response to salt stress and functions in increasing glycinebetaine accumulation and enhancing tolerance to salt stress. Immunoblotting analysis suggests that no accumulation of glycinebetaine in the Japonica rice plant presumably results from lack of a functional OsCMO protein.
Guan, Zhiyong; Feng, Yitong; Song, Aiping; Shi, Xiaomeng; Mao, Yachao; Chen, Sumei; Jiang, Jiafu; Ding, Lian; Chen, Fadi
2017-01-01
Chrysanthemum crassum is a decaploid species of Chrysanthemum with high stress tolerance that allows survival under salinity stress while maintaining a relatively ideal growth rate. We previously recorded morphological changes after salt treatment, such as the expansion of leaf cells. To explore the underlying salinity tolerance mechanisms, we used an Illumina platform and obtained three sequencing libraries from samples collected after 0 h, 12 h and 24 h of salt treatment. Following de novo assembly, 154,944 transcripts were generated, and 97,833 (63.14%) transcripts were annotated, including 55 Gene Ontology (GO) terms and 128 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The expression profile of C. crassum was globally altered after salt treatment. We selected functional genes and pathways that may contribute to salinity tolerance and identified some factors involved in the salinity tolerance strategies of C. crassum, such as signal transduction, transcription factors and plant hormone regulation, enhancement of energy metabolism, functional proteins and osmolyte synthesis, reactive oxygen species (ROS) scavenging, photosystem protection and recovery, and cell wall protein modifications. Forty-six genes were selected for quantitative real-time polymerase chain reaction detection, and their expression patterns were shown to be consistent with the changes in their transcript abundance determined by RNA sequencing. PMID:28437448
Wang, Guohong; Li, Dan; Ma, Xiayin; An, Haoran; Zhai, Zhengyuan; Ren, Fazheng; Hao, Yanling
2015-08-01
Lactobacillus salivarius is a member of the indigenous microbiota of the human gastrointestinal tract (GIT), and some L. salivarius strains are considered as probiotics. Bile tolerance is a crucial property for probiotic bacteria to survive the transit through the GIT and exert their beneficial effects. In this work, the functional role of oppA encoding an oligopeptide transporter substrate-binding protein from L. salivarius Ren in bile salt tolerance was investigated. In silico analysis revealed that the oppA gene encodes a 61.7-kDa cell surface-anchored hydrophilic protein with a canonical lipoprotein signal peptide. Homologous overexpression of OppA was shown to confer 20-fold higher tolerance to 0.5 % oxgall in L. salivarius Ren. Furthermore, the recombinant strain exhibited 1.8-fold and 3.6-fold higher survival when exposed to the sublethal concentration of sodium taurocholate and sodium taurodeoxycholate, respectively, while no significant change was observed when exposed to sodium glycocholate and sodium glycodeoxycholate (GDCA). Our results indicate that OppA confers specific resistance to taurine-conjugated bile salts in L. salivarius Ren. In addition, the OppA overexpression strain also showed significant increased resistance to heat and salt stresses, suggesting the protective role of OppA against multiple stresses in L. salivarius Ren.
Li, Jia; Cai, Weiming
2015-05-01
Water movement across cellular membranes is mostly regulated by aquaporins. A tonoplast intrinsic protein PgTIP1 from Panax ginseng has been found to play an important role in plant growth and development, and also in the response of plants to abiotic stress. However, the regulation of its function and activity remains unknown. To answer this question, mutated forms of PgTIP1 were made by replacing Ser(128) with Ala (named S128A) or Asp (named S128D), and also by replacing Thr(54) with Ala (named T54A) or Asp (named T54D). Then, wild type or mutated PgTIP1 was expressed in yeast and water transport was monitored in protoplasts. The substitution of Ser(128) abolished the water channel activity of PgTIP1, while the substitution of Thr(54) did not inhibit its activity. Moreover, the overexpression of PgTIP1 but not S128A or S128D in Arabidopsis significantly increased plant growth as determined by biomass production, it also had a beneficial effect on salt stress tolerance. Importantly, the overexpression of PgTIP1 led to the altered expression of stress-related genes, which made the plants more tolerant to salt stress. Our results demonstrated that PgTIP1 conferred faster growth and enhanced tolerance to salt in Arabidopsis, and that its biological activity related to Ser(128) residue. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Diouf, Fatou; Diouf, Diegane; Klonowska, Agnieszka; Le Queré, Antoine; Bakhoum, Niokhor; Fall, Dioumacor; Neyra, Marc; Parrinello, Hugues; Diouf, Mayecor; Ndoye, Ibrahima; Moulin, Lionel
2015-01-01
Acacia senegal (L) Willd. and Acacia seyal Del. are highly nitrogen-fixing and moderately salt tolerant species. In this study we focused on the genetic and genomic diversity of Acacia mesorhizobia symbionts from diverse origins in Senegal and investigated possible correlations between the genetic diversity of the strains, their soil of origin, and their tolerance to salinity. We first performed a multi-locus sequence analysis on five markers gene fragments on a collection of 47 mesorhizobia strains of A. senegal and A. seyal from 8 localities. Most of the strains (60%) clustered with the M. plurifarium type strain ORS 1032T, while the others form four new clades (MSP1 to MSP4). We sequenced and assembled seven draft genomes: four in the M. plurifarium clade (ORS3356, ORS3365, STM8773 and ORS1032T), one in MSP1 (STM8789), MSP2 (ORS3359) and MSP3 (ORS3324). The average nucleotide identities between these genomes together with the MLSA analysis reveal three new species of Mesorhizobium. A great variability of salt tolerance was found among the strains with a lack of correlation between the genetic diversity of mesorhizobia, their salt tolerance and the soils samples characteristics. A putative geographical pattern of A. senegal symbionts between the dryland north part and the center of Senegal was found, reflecting adaptations to specific local conditions such as the water regime. However, the presence of salt does not seem to be an important structuring factor of Mesorhizobium species. PMID:25658650
Yi, Changyu; Yao, Kaiqian; Cai, Shuyu; Li, Huizi; Zhou, Jie; Xia, Xiaojian; Shi, Kai; Yu, Jingquan; Foyer, Christine Helen; Zhou, Yanhong
2015-12-01
Plants acclimate rapidly to stressful environmental conditions. Increasing atmospheric CO2 levels are predicted to influence tolerance to stresses such as soil salinity but the mechanisms are poorly understood. To resolve this issue, tomato (Solanum lycopersicum) plants were grown under ambient (380 μmol mol(-1)) or high (760 μmol mol(-1)) CO2 in the absence or presence of sodium chloride (100mM). The higher atmospheric CO2 level induced the expression of RESPIRATORY BURST OXIDASE 1 (SlRBOH1) and enhanced H2O2 accumulation in the vascular cells of roots, stems, leaf petioles, and the leaf apoplast. Plants grown with higher CO2 levels showed improved salt tolerance, together with decreased leaf transpiration rates and lower sodium concentrations in the xylem sap, vascular tissues, and leaves. Silencing SlRBOH1 abolished high CO2 -induced salt tolerance and increased leaf transpiration rates, as well as enhancing Na(+) accumulation in the plants. The higher atmospheric CO2 level increased the abundance of a subset of transcripts involved in Na(+) homeostasis in the controls but not in the SlRBOH1-silenced plants. It is concluded that high atmospheric CO2 concentrations increase salt stress tolerance in an apoplastic H2O2 dependent manner, by suppressing transpiration and hence Na(+) delivery from the roots to the shoots, leading to decreased leaf Na(+) accumulation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Hichri, Imène; Muhovski, Yordan; Žižková, Eva; Dobrev, Petre I.; Franco-Zorrilla, Jose Manuel; Solano, Roberto; Lopez-Vidriero, Irene; Motyka, Vaclav; Lutts, Stanley
2014-01-01
The zinc finger superfamily includes transcription factors that regulate multiple aspects of plant development and were recently shown to regulate abiotic stress tolerance. Cultivated tomato (Solanum lycopersicum Zinc Finger2 [SIZF2]) is a cysteine-2/histidine-2-type zinc finger transcription factor bearing an ERF-associated amphiphilic repression domain and binding to the ACGTCAGTG sequence containing two AGT core motifs. SlZF2 is ubiquitously expressed during plant development, and is rapidly induced by sodium chloride, drought, and potassium chloride treatments. Its ectopic expression in Arabidopsis (Arabidopsis thaliana) and tomato impaired development and influenced leaf and flower shape, while causing a general stress visible by anthocyanin and malonyldialdehyde accumulation. SlZF2 enhanced salt sensitivity in Arabidopsis, whereas SlZF2 delayed senescence and improved tomato salt tolerance, particularly by maintaining photosynthesis and increasing polyamine biosynthesis, in salt-treated hydroponic cultures (125 mm sodium chloride, 20 d). SlZF2 may be involved in abscisic acid (ABA) biosynthesis/signaling, because SlZF2 is rapidly induced by ABA treatment and 35S::SlZF2 tomatoes accumulate more ABA than wild-type plants. Transcriptome analysis of 35S::SlZF2 revealed that SlZF2 both increased and reduced expression of a comparable number of genes involved in various physiological processes such as photosynthesis, polyamine biosynthesis, and hormone (notably ABA) biosynthesis/signaling. Involvement of these different metabolic pathways in salt stress tolerance is discussed. PMID:24567191
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hypochlorous acid, lithium salt 13840-33-0 When ready for use, the end-use concentration of all hypochlorous... ppm lithium Hypochlorous acid, potassium salt 7778-66-7 When ready for use, the end-use concentration...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hypochlorous acid, lithium salt 13840-33-0 When ready for use, the end-use concentration of all hypochlorous... ppm lithium Hypochlorous acid, potassium salt 7778-66-7 When ready for use, the end-use concentration...
Abraham, Gerard; Dhar, Dolly Wattal
2010-09-01
Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.
Vasquez, Edward A.; Glenn, Edward P.; Brown, J. Jed; Guntenspergen, Glenn R.; Nelson, Stephen G.
2005-01-01
A distinct, non-native haplotype of the common reed Phragmites australis has become invasive in Atlantic coastal Spartina marshes. We compared the salt tolerance and other growth characteristics of the invasive M haplotype with 2 native haplotypes (F and AC) in greenhouse experiments. The M haplotype retained 50% of its growth potential up to 0.4 M NaCl, whereas the F and AC haplotypes did not grow above 0.1 M NaCl. The M haplotype produced more shoots per gram of rhizome tissue and had higher relative growth rates than the native haplotypes on both freshwater and saline water treatments. The M haplotype also differed from the native haplotypes in shoot water content and the biometrics of shoots and rhizomes. The results offer an explanation for how the M haplotype is able to spread in coastal salt marshes and support the conclusion of DNA analyses that the M haplotype is a distinct ecotype of P. australis.
Diouf, Latyr; Pan, Zhaoe; He, Shou-Pu; Gong, Wen-Fang; Jia, Yin Hua; Magwanga, Richard Odongo; Romy, Kimbembe Romesh Eric; Or Rashid, Harun; Kirungu, Joy Nyangasi; Du, Xiongming
2017-12-05
Over 6% of agricultural land is affected by salinity. It is becoming obligatory to use saline soils, so growing salt-tolerant plants is a priority. To gain an understanding of the genetic basis of upland cotton tolerance to salinity at seedling stage, an intra-specific cross was developed from CCRI35, tolerant to salinity, as female with Nan Dan (NH), sensitive to salinity, as the male. A genetic map of 5178 SNP markers was developed from 277 F 2:3 populations. The map spanned 4768.098 cM, with an average distance of 0.92 cM. A total of 66 QTLs for 10 traits related to salinity were detected in three environments (0, 110, and 150 mM salt treatment). Only 14 QTLs were consistent, accounting for 2.72% to 9.87% of phenotypic variation. Parental contributions were found to be in the ratio of 3:1, 10 QTLs from the sensitive and four QTLs from the resistant parent. Five QTLs were located in A t and nine QTLs in the D t sub-genome. Moreover, eight clusters were identified, in which 12 putative key genes were found to be related to salinity. The GBS-SNPs-based genetic map developed is the first high-density genetic map that has the potential to provide deeper insights into upland cotton salinity tolerance. The 12 key genes found in this study could be used for QTL fine mapping and cloning for further studies.
Iqbal, Noushina; Umar, Shahid; Khan, Nafees A
2015-04-15
Proline content and ethylene production have been shown to be involved in salt tolerance mechanisms in plants. To assess the role of nitrogen (N) in the protection of photosynthesis under salt stress, the effect of N (0, 5, 10, 20 mM) on proline and ethylene was studied in mustard (Brassica juncea). Sufficient N (10 mM) optimized proline production under non-saline conditions through an increase in proline-metabolizing enzymes, leading to osmotic balance and protection of photosynthesis through optimal ethylene production. Excess N (20 mM), in the absence of salt stress, inhibited photosynthesis and caused higher ethylene evolution but lower proline production compared to sufficient N. In contrast, under salt stress with an increased demand for N, excess N optimized ethylene production, which regulates the proline content resulting in recovered photosynthesis. The effect of excess N on photosynthesis under salt stress was further substantiated by the application of the ethylene biosynthesis inhibitor, 1-aminoethoxy vinylglycine (AVG), which inhibited proline production and photosynthesis. Without salt stress, AVG promoted photosynthesis in plants receiving excess N by inhibiting stress ethylene production. The results suggest that a regulatory interaction exists between ethylene, proline and N for salt tolerance. Nitrogen differentially regulates proline production and ethylene formation to alleviate the adverse effect of salinity on photosynthesis in mustard. Copyright © 2015 Elsevier GmbH. All rights reserved.
Meng, Fanjuan; Luo, Qiuxiang; Wang, Qiuyu; Zhang, Xiuli; Qi, Zhenhua; Xu, Fuling; Lei, Xue; Cao, Yuan; Chow, Wah Soon; Sun, Guangyu
2016-01-01
Salinity is an important abiotic stressor that negatively affects plant growth. In this study, we investigated the physiological and molecular mechanisms underlying moderate and high salt tolerance in diploid (2×) and tetraploid (4×) Robinia pseudoacacia L. Our results showed greater H2O2 accumulation and higher levels of important antioxidative enzymes and non-enzymatic antioxidants in 4× plants compared with 2× plants under salt stress. In addition, 4× leaves maintained a relatively intact structure compared to 2× leaves under a corresponding condition. NaCl treatment didn’t significantly affect the photosynthetic rate, stomatal conductance or leaf intercellular CO2 concentrations in 4× leaves. Moreover, proteins from control and salt treated 2× and 4× leaf chloroplast samples were extracted and separated by two-dimensional gel electrophoresis. A total of 61 spots in 2× (24) and 4× (27) leaves exhibited reproducible and significant changes under salt stress. In addition, 10 proteins overlapped between 2× and 4× plants under salt stress. These identified proteins were grouped into the following 7 functional categories: photosynthetic Calvin-Benson Cycle (26), photosynthetic electron transfer (7), regulation/defense (5), chaperone (3), energy and metabolism (12), redox homeostasis (1) and unknown function (8). This study provides important information of use in the improvement of salt tolerance in plants. PMID:26975701
Paul, Amit; Dasgupta, Pratiti; Roy, Dipan; Chaudhuri, Shubho
2017-09-01
Rice being an important cereal crop is highly sensitive to salinity stress causing growth retardation and loss in productivity. However, certain rice genotypes like Nonabokra and Pokkali show a high level of tolerance towards salinity stress compared to IR64 variety. This differential response of tolerant varieties towards salinity stress may be a cumulative effect of genetic and epigenetic factors. In this study, we have compared the salinity-induced changes in chromatin modifications at the OsBZ8 locus in salt-tolerant Nonabokra and salt-sensitive IR64 rice varieties. Expression analysis indicates that the OsBZ8 gene is highly induced in Nonabokra plants even in the absence of salt stress, whereas in IR64, the expression significantly increases only during salt stress. Sequence analysis and nucleosomal arrangement within the region -2000 to +1000 of OsBZ8 gene show no difference between the two rice varieties. However, there was a considerable difference in histone modifications and DNA methylation at the locus between these varieties. In Nonabokra, the upstream region was hyperacetylated at H3K9 and H3K27, and this acetylation did not change during salt stress. However, in IR64, histone acetylation was observed only during salt stress. Moreover, the upstream region of OsBZ8 gene has highly dynamic nucleosome arrangement in Nonabokra, compared to IR64. Furthermore, loss of DNA methylation was observed at OsBZ8 locus in Nonabokra control plants along with low H3K27me3 and high H3K4me3. Control IR64 plants show high DNA methylation and enriched H3K27me3. Collectively these results indicate a significant difference in chromatin modifications between the rice varieties that regulates differential expression of OsBZ8 gene during salt stress.
Tian, Miaomiao; Lou, Lijuan; Liu, Lijing; Yu, Feifei; Zhao, Qingzhen; Zhang, Huawei; Wu, Yaorong; Tang, Sanyuan; Xia, Ran; Zhu, Baoge; Serino, Giovanna; Xie, Qi
2015-04-01
Salt stress is a detrimental factor for plant growth and development. The response to salt stress has been shown to involve components in the intracellular trafficking system, as well as components of the ubiquitin-proteasome system (UPS). In this article, we have identified in Arabidopsis thaliana a little reported ubiquitin ligase involved in salt-stress response, which we named STRF1 (Salt Tolerance RING Finger 1). STRF1 is a member of RING-H2 finger proteins and we demonstrate that it has ubiquitin ligase activity in vitro. We also show that STRF1 localizes mainly at the plasma membrane and at the intracellular endosomes. strf1-1 loss-of-function mutant seedlings exhibit accelerated endocytosis in roots, and have altered expression of several genes involved in the membrane trafficking system. Moreover, protein trafficking inhibitor, brefeldin A (BFA), treatment has increased BFA bodies in strf1-1 mutant. This mutant also showed increased tolerance to salt, ionic and osmotic stresses, reduced accumulation of reactive oxygen species during salt stress, and increased expression of AtRbohD, which encodes a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase involved in H2 O2 production. We conclude that STRF1 is a membrane trafficking-related ubiquitin ligase, which helps the plant to respond to salt stress by monitoring intracellular membrane trafficking and reactive oxygen species (ROS) production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Differences in salinity tolerance of genetically distinct Phragmites australis clones
Achenbach, Luciana; Eller, Franziska; Nguyen, Loc Xuan; Brix, Hans
2013-01-01
Different clones of the wetland grass Phragmites australis differ in their morphology and physiology, and hence in their ability to cope with environmental stress. We analysed the responses of 15 P. australis clones with distinct ploidy levels (PLs) (4n, 6n, 8n, 10n, 12n) and geographic origins (Romania, Russia, Japan, Czech Republic, Australia) to step-wise increased salinity (8, 16, 24, 32, 40, 56 and 72 ppt). Shoot elongation rate, photosynthesis and plant part-specific ion accumulation were studied in order to assess if traits associated with salinity tolerance can be related to the genetic background and the geographic origin of the clones. Salt stress affected all clones, but at different rates. The maximum height was reduced from 1860 mm in control plants to 660 mm at 40 ppt salinity. The shoot elongation rate of salt-exposed plants varied significantly between clones until 40 ppt salinity. The light-saturated photosynthesis rate (Pmax) was stimulated by a salinity of 8 ppt, but decreased significantly at higher salinities. The stomatal conductance (gs) and the transpiration rate (E) decreased with increasing salinity. Only three clones survived at 72 ppt salinity, although their rates of photosynthesis were strongly inhibited. The roots and basal leaves of the salt-exposed plants accumulated high concentrations of water-extractable Na+ (1646 and 1004 µmol g−1 dry mass (DM), respectively) and Cl− (1876 and 1400 µmol g−1 DM, respectively). The concentrations of water-extractable Mg2+ and Ca2+ were reduced in salt-exposed plants compared with controls. The variation of all the measured parameters was higher among clones than among PLs. We conclude that the salinity tolerance of distinct P. australis clones varies widely and can be partially attributed to their longitudinal geographic origin, but not to PL. Further investigation will help in improving the understanding of this species' salt tolerance mechanisms and their connection to genetic factors.
Yu, Ying; Huang, Wengong; Chen, Hongyu; Wu, Guangwen; Yuan, Hongmei; Song, Xixia; Kang, Qinghua; Zhao, Dongsheng; Jiang, Weidong; Liu, Yan; Wu, Jianzhong; Cheng, Lili; Yao, Yubo; Guan, Fengzhi
2014-10-01
The salinization and alkalization of soil are widespread environmental problems, and alkaline salt stress is more destructive than neutral salt stress. Therefore, understanding the mechanism of plant tolerance to saline-alkaline stress has become a major challenge. However, little attention has been paid to the mechanism of plant alkaline salt tolerance. In this study, gene expression profiling of flax was analyzed under alkaline-salt stress (AS2), neutral salt stress (NSS) and alkaline stress (AS) by digital gene expression. Three-week-old flax seedlings were placed in 25 mM Na2CO3 (pH11.6) (AS2), 50mM NaCl (NSS) and NaOH (pH11.6) (AS) for 18 h. There were 7736, 1566 and 454 differentially expressed genes in AS2, NSS and AS compared to CK, respectively. The GO category gene enrichment analysis revealed that photosynthesis was particularly affected in AS2, carbohydrate metabolism was particularly affected in NSS, and the response to biotic stimulus was particularly affected in AS. We also analyzed the expression pattern of five categories of genes including transcription factors, signaling transduction proteins, phytohormones, reactive oxygen species proteins and transporters under these three stresses. Some key regulatory gene families involved in abiotic stress, such as WRKY, MAPKKK, ABA, PrxR and ion channels, were differentially expressed. Compared with NSS and AS, AS2 triggered more differentially expressed genes and special pathways, indicating that the mechanism of AS2 was more complex than NSS and AS. To the best of our knowledge, this was the first transcriptome analysis of flax in response to saline-alkaline stress. These data indicate that common and diverse features of saline-alkaline stress provide novel insights into the molecular mechanisms of plant saline-alkaline tolerance and offer a number of candidate genes as potential markers of tolerance to saline-alkaline stress. Copyright © 2014 Elsevier B.V. All rights reserved.
Barkla, Bronwyn J.; Vera-Estrella, Rosario; Hernández-Coronado, Marcela; Pantoja, Omar
2009-01-01
To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na+ sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H+-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H+-pump activity. PMID:20028841
Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance.
Barkla, Bronwyn J; Vera-Estrella, Rosario; Hernández-Coronado, Marcela; Pantoja, Omar
2009-12-01
To examine the role of the tonoplast in plant salt tolerance and identify proteins involved in the regulation of transporters for vacuolar Na(+) sequestration, we exploited a targeted quantitative proteomics approach. Two-dimensional differential in-gel electrophoresis analysis of free flow zonal electrophoresis separated tonoplast fractions from control, and salt-treated Mesembryanthemum crystallinum plants revealed the membrane association of glycolytic enzymes aldolase and enolase, along with subunits of the vacuolar H(+)-ATPase V-ATPase. Protein blot analysis confirmed coordinated salt regulation of these proteins, and chaotrope treatment indicated a strong tonoplast association. Reciprocal coimmunoprecipitation studies revealed that the glycolytic enzymes interacted with the V-ATPase subunit B VHA-B, and aldolase was shown to stimulate V-ATPase activity in vitro by increasing the affinity for ATP. To investigate a physiological role for this association, the Arabidopsis thaliana cytoplasmic enolase mutant, los2, was characterized. These plants were salt sensitive, and there was a specific reduction in enolase abundance in the tonoplast from salt-treated plants. Moreover, tonoplast isolated from mutant plants showed an impaired ability for aldolase stimulation of V-ATPase hydrolytic activity. The association of glycolytic proteins with the tonoplast may not only channel ATP to the V-ATPase, but also directly upregulate H(+)-pump activity.
Del-Saz, Néstor Fernández; Florez-Sarasa, Igor; Clemente-Moreno, María José; Mhadhbi, Haytem; Flexas, Jaume; Fernie, Alisdair R; Ribas-Carbó, Miquel
2016-11-01
Salt respiration is defined as the increase of respiration under early salt stress. However, the response of respiration varies depending on the degree of salt tolerance and salt stress. It has been hypothesized that the activity of the alternative pathway may increase preventing over-reduction of the ubiquinone pool in response to salinity, which in turn can increase respiration. Three genotypes of Medicago truncatula are reputed as differently responsive to salinity: TN1.11, A17 and TN6.18. We used the oxygen-isotope fractionation technique to study the in vivo respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) in leaves and roots of these genotypes treated with severe salt stress (300 mM) during 1 and 3 days. In parallel, AOX capacity, gas exchange measurements, relative water content and metabolomics were determined in control and treated plants. Our study shows for first time that salt respiration is induced by the triggered AOP in response to salinity. Moreover, this phenomenon coincides with increased levels of metabolites such as amino and organic acids, and is shown to be related with higher photosynthetic rate and water content in TN6.18. © 2016 John Wiley & Sons Ltd.
Vasquez, Edward A.; Glenn, Edward P.; Guntenspergen, Glenn R.; Brown, J. Jed; Nelson, Stephen G.
2006-01-01
An invasive variety of Phragmites australis (Poaceae, common reed), the M haplotype, has been implicated in the spread of this species into North American salt marshes that are normally dominated by the salt marsh grass Spartina alterniflora (Poaceae, smooth cordgrass). In some European marshes, on the other hand, Spartina spp. derived from S. alterniflora have spread into brackish P. australis marshes. In both cases, the non-native grass is thought to degrade the habitat value of the marsh for wildlife, and it is important to understand the physiological processes that lead to these species replacements. We compared the growth, salt tolerance, and osmotic adjustment of M haplotype P. australis and S. alterniflora along a salinity gradient in greenhouse experiments. Spartina alterniflora produced new biomass up to 0.6 M NaCl, whereas P. australis did not grow well above 0.2 M NaCl. The greater salt tolerance of S. alterniflora compared with P. australis was due to its ability to use Na+ for osmotic adjustment in the shoots. On the other hand, at low salinities P. australis produced more shoots per gram of rhizome tissue than did S. alterniflora. This study illustrates how ecophysiological differences can shift the competitive advantage from one species to another along a stress gradient. Phragmites australis is spreading into North American coastal marshes that are experiencing reduced salinities, while Spartina spp. are spreading into northern European brackish marshes that are experiencing increased salinities as land use patterns change on the two continents.
Ahmad, Husain; Hayat, Sikandar; Ali, Muhammad; Liu, Tao; Cheng, Zhihui
2018-06-01
Salinity is one of the major obstacles in the agriculture industry causing huge losses in productivity. Several strategies such as plant growth regulators with arbuscular mycorrhizal fungi (AMF) have been used to decrease the negative effects of salt stress. In our experiment, 28-homobrassinolide (HBL) with spraying intervals was combined with AMF ( Glomus versiforme ) in cucumber cultivars Jinyou 1 # (salt sensitive) and (Changchun mici, in short, CCMC, salt tolerant) under NaCl (100 mmol/L). Studies have documented that the foliar application of HBL and AMF colonization can enhance tolerance to plants under stress conditions. However, the mechanism of the HBL spraying intervals after 15 and 30 days in combination with AMF in cucumber under salt stress is still unknown. Our results revealed that the HBL spraying interval after 15 days in combination with AMF resulted in improved growth, photosynthesis, and decreased sodium toxicity under NaCl. Moreover, the antioxidant enzymes SOD (superoxide dismutase; EC 1.15.1.1) and POD activity (peroxidase; EC 1.11.1.7) showed a gradual increase after every 10 days, while the CAT (catalase; EC 1.11.1.6) increased after 30 days of salt treatments in both cultivars. This research suggests that the enhanced tolerance to salinity was mainly related to elevated levels of antioxidant enzymes and lower uptake of Na + , which lowers the risk of ion toxicity and decreases cell membrane damage.
Nishimura, Ikuko; Shinohara, Yasutomo; Oguma, Tetsuya; Koyama, Yasuji
2018-04-08
In soy sauce brewing, the results of the fermentation of lactic acid greatly affect the quality of soy sauce. The soy sauce moromi produced with Aspergillus oryzae RIB40 allows the growth of Tetragenococcus halophilus NBRC 12172 but not T. halophilus D10. We isolated and identified heptelidic acid (HA), an inhibitor of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), produced by A. oryzae RIB40 as the growth inhibitor of the salt-tolerant lactic acid bacteria. The growth inhibition of T. halophilus D10 by HA was suggested to be associated with the direct inhibition of GAPDH activity under high salt environment. The difference in the susceptibility to HA among various strains of T. halophilus was caused by the mutations in the gene encoding GAPDH.
Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey
2016-08-01
Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Shi, Haitao; Ye, Tiantian; Chan, Zhulong
2013-10-01
As a gaseous molecule, hydrogen sulfide (H2S) has been recently found to be involved in plant responses to multiple abiotic stress. In this study, salt (150 and 300 mM NaCl), osmotic (15% and 30% PEG6000) and cold (4 °C) stress treatments induced accumulation of endogenous H2S level, indicating that H2S might play a role in bermudagrass responses to salt, osmotic and cold stresses. Exogenous application of H2S donor (sodium hydrosulfide, NaHS) conferred improved salt, osmotic and freezing stress tolerances in bermudagrass, which were evidenced by decreased electrolyte leakage and increased survival rate under stress conditions. Additionally, NaHS treatment alleviated the reactive oxygen species (ROS) burst and cell damage induced by abiotic stress, via modulating metabolisms of several antioxidant enzymes [catalase (CAT), peroxidase (POD) and GR (glutathione reductase)] and non-enzymatic glutathione antioxidant pool and redox state. Moreover, exogenous NaHS treatment led to accumulation of osmolytes (proline, sucrose and soluble total sugars) in stressed bermudagrass plants. Taken together, all these data indicated the protective roles of H2S in bermudagrass responses to salt, osmotic and freezing stresses, via activation of the antioxidant response and osmolyte accumulation. These findings might be applicable to grass and crop engineering to improve abiotic stress tolerance. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Proteome Analysis of Date Palm (Phoenix dactylifera L.) under Severe Drought and Salt Stress.
El Rabey, Haddad A; Al-Malki, Abdulrahman L; Abulnaja, Khalid O
2016-01-01
Date palm cultivars differently tolerate salinity and drought stress. This study was carried out to study the response of date palm to severe salinity and drought based on leaf proteome analysis. Eighteen-month-old date palm plants were subjected to severe salt (48 g/L NaCl) and drought (82.5 g/L PEG or no irrigation) conditions for one month. Using a protein 2D electrophoresis method, 55 protein spots were analyzed using mass spectrometry. ATP synthase CF1 alpha chains were significantly upregulated under all three stress conditions. Changes in the abundance of RubisCO activase and one of the RubisCO fragments were significant in the same spots only for salt stress and drought stress with no irrigation, and oxygen-evolving enhancer protein 2 was changed in different spots. Transketolase was significantly changed only in drought stress with PEG. The expression of salt and drought stress genes of the chosen protein spots was either overexpressed or downexpressed as revealed by the high or low protein abundance, respectively. In addition, all drought tolerance genes due to no irrigation were downregulated. In conclusion, the proteome analysis of date palm under salinity and drought conditions indicated that both salinity and drought tolerance genes were differentially expressed resulting in high or low protein abundance of the chosen protein spots as a result of exposure to drought and salinity stress condition.
Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections
Che Lah, Wan Afifudeen; Abd. Kadir, Nisrin; Mustaqim, Mohamad; Rahmat, Zaidah; Ahmad, Aziz; Ismail, Mohd Razi
2018-01-01
Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops. PMID:29489838
Tropical vegetation evidence for rapid sea level changes associated with Heinrich Events
NASA Astrophysics Data System (ADS)
González, Catalina; Dupont, Lydie M.
2010-03-01
A Cariaco Basin pollen record shows the development of tropical salt marshes during marine isotope stage 3. Rapid and abrupt expansions of salt marsh vegetation in tropical South America are associated with north Atlantic Heinrich Events stadials (HE-stadials). Intervals of salt marsh expansion have an internal structure, which consists of a recurrent alternation of species that starts with pollen increments of Chenopodiaceae, that are followed by increments of grasses, and subsequently by increments of Cyperaceae. This pattern suggests a successional process that is determined by the close relationship between sea-level and plant community dynamics. The salt tolerant Chenopodiaceae, indicate hypersaline intertidal environments, which were most likely promoted by extremely dry atmospheric conditions. Rapid sea-level rise characterizes the onset of HE-stadials, causing the continued recruitment of pioneer species, which are the only ones tolerating rapid rates of disturbance. Once sea-level rise decelerates, marsh plants are able to trap and stabilize sediments, favouring the establishment of more competitive species. These results add to the scarce knowledge on the dynamics of tropical salt marsh ecosystems, and provide independent paleoclimatic evidence on sea-level changes following Antarctic climate variability.
El Rabey, Haddad A; Al-Malki, Abdulrahman L; Abulnaja, Khalid O; Rohde, Wolfgang
2015-01-01
This study was carried out to study the proteome of date palm under salinity and drought stress conditions to possibly identify proteins involved in stress tolerance. For this purpose, three-month-old seedlings of date palm cultivar "Sagie" were subjected to drought (27.5 g/L polyethylene glycol 6000) and salinity stress conditions (16 g/L NaCl) for one month. DIGE analysis of protein extracts identified 47 differentially expressed proteins in leaves of salt- and drought-treated palm seedlings. Mass spectrometric analysis identified 12 proteins; three out of them were significantly changed under both salt and drought stress, while the other nine were significantly changed only in salt-stressed plants. The levels of ATP synthase alpha and beta subunits, an unknown protein and some of RubisCO fragments were significantly changed under both salt and drought stress conditions. Changes in abundance of superoxide dismutase, chlorophyll A-B binding protein, light-harvesting complex1 protein Lhca1, RubisCO activase, phosphoglycerate kinase, chloroplast light-harvesting chlorophyll a/b-binding protein, phosphoribulokinase, transketolase, RubisCO, and some of RubisCO fragments were significant only for salt stress.
USDA-ARS?s Scientific Manuscript database
Strawberry is listed as the most salt sensitive fruit crop in comprehensive salt tolerance data bases. Recently, concerns have arisen regarding declining quality of irrigation waters available to coastal strawberry growers in southern and central California. Over time, the waters have become more ...
Understanding genetic and physiological bases of salt tolerance in almond rootstocks
USDA-ARS?s Scientific Manuscript database
One of the biggest challenges California almond growers are facing is the irrigation water quality. Due to the reduced availability of good quality water, the use of alternative/ degraded waters is inevitable. The most important consideration for the use of degraded waters is the water salt concentr...
Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions
NASA Astrophysics Data System (ADS)
Perri, S.; Entekhabi, D.; Molini, A.
2017-12-01
Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation emerges as a water-saving behavior similar to the strategies that xerophytes use to cope with aridity. Possible anatomical and morphological adaptations to long-term salinity exposure are addressed through an analysis of transpiration patterns for different values of root and leaf density and for diverse levels of salt-tolerance.
Sun, Mingzhe; Qian, Xue; Chen, Chao; Cheng, Shufei; Jia, Bowei; Zhu, Yanming; Sun, Xiaoli
2018-01-01
Receptor-like kinases (RLK) play fundamental roles in plant growth and stress responses. Compared with other RLKs, little information is provided concerning the S-locus LecRLK subfamily, which is characterized by an extracellular G-type lectin domain and an S-locus-glycop domain. Until now, the function of the G-type lectin domain is still unknown. In a previous research, we identified a Glycine soja S-locus LecRLK gene GsSRK , which conferred increased salt stress tolerance in transgenic Arabidopsis . In this study, to investigate the role of the G-type lectin domain and to breed transgenic alfalfa with superior salt stress tolerance, we transformed the full-length GsSRK ( GsSRK-f ) and a truncated version of GsSRK ( GsSRK-t ) deleting the G-type lectin domain into alfalfa. Our results showed that overexpression of GsSRK-t , but not GsSRK-f , resulted in changes of plant architecture, as evidenced by more branches but shorter shoots of GsSRK-t transgenic alfalfa, indicating a potential role of the extracellular G-type lectin domain in regulating plant architecture. Furthermore, we also found that transgenic alfalfa overexpressing either GsSRK-f or GsSRK-t showed increased salt stress tolerance, and GsSRK-t transgenic alfalfa displayed better growth (more branches and higher fresh weight) than GsSRK-f lines under salt stress. In addition, our results suggested that both GsSRK-f and GsSRK-t were involved in ion homeostasis, ROS scavenging, and osmotic regulation. Under salt stress, the Na + content in the transgenic lines was significantly lower, while the K + content was slightly higher than that in WT. Moreover, the transgenic lines displayed reduced ion leakage and MDA content, but increased SOD activity and proline content than WT. Notably, no obvious difference in these physiological indices was observed between GsSRK-f and GsSRK-t transgenic lines, implying that deletion of the GsSRK G-type lectin domain does not affect its physiological function in salt stress responses. In conclusion, results in this research reveal the dual role of GsSRK in regulating both plant architecture and salt stress responses.
Zhai, Yiqian; Zhang, Lichao; Xia, Chuan; Fu, Silu; Zhao, Guangyao; Jia, Jizeng; Kong, Xiuying
2016-05-13
Although bHLH transcription factors play important roles regulating plant development and abiotic stress response and tolerance, few functional studies have been performed in wheat. In this study, we isolated and characterized a bHLH gene, TabHLH39, from wheat. The TabHLH39 gene is located on wheat chromosome 5DL, and the protein localized to the nucleus and activated transcription. TabHLH39 showed variable expression in roots, stems, leaves, glumes, pistils and stamens and was induced by polyethylene glycol, salt and cold treatments. Further analysis revealed that TabHLH39 overexpression in Arabidopsis significantly enhanced tolerance to drought, salt and freezing stress during the seedling stage, which was also demonstrated by enhanced abiotic stress-response gene expression and changes to several physiological indices. Therefore, TabHLH39 has potential in transgenic breeding applications to improve abiotic stress tolerance in crops. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhang, Zhiqiang; Wang, Yafang; Chang, Leqin; Zhang, Tong; An, Jie; Liu, Yushi; Cao, Yuman; Zhao, Xia; Sha, Xuyang; Hu, Tianming; Yang, Peizhi
2016-02-01
The zeaxanthin epoxidase gene ( MsZEP ) was cloned and characterized from alfalfa and validated for its function of tolerance toward drought and salt stresses by heterologous expression in Nicotiana tabacum. Zeaxanthin epoxidase (ZEP) plays important roles in plant response to various environment stresses due to its functions in ABA biosynthetic and the xanthophyll cycle. To understand the expression characteristics and the biological functions of ZEP in alfalfa (Medicago sativa), a novel gene, designated as MsZEP (KM044311), was cloned, characterized and overexpressed in Nicotiana tabacum. The open reading frame of MsZEP contains 1992 bp nucleotides and encodes a 663-amino acid polypeptide. Amino acid sequence alignment indicated that deduced MsZEP protein was highly homologous to other plant ZEP sequences. Phylogenetic analysis showed that MsZEP was grouped into a branch with other legume plants. Real-time quantitative PCR revealed that MsZEP gene expression was clearly tissue-specific, and the expression levels were higher in green tissues (leaves and stems) than in roots. MsZEP expression decreased in shoots under drought, cold, heat and ABA treatment, while the expression levels in roots showed different trends. Besides, the results showed that nodules could up-regulate the MsZEP expression under non-stressful conditions and in the earlier stage of different abiotic stress. Heterologous expression of the MsZEP gene in N. tabacum could confer tolerance to drought and salt stress by affecting various physiological pathways, ABA levels and stress-responsive genes expression. Taken together, these results suggested that the MsZEP gene may be involved in alfalfa responses to different abiotic stresses and nodules, and could enhance drought and salt tolerance of transgenic tobacco by heterologous expression.
Salt tolerant green crop species for sodium management in space agriculture
NASA Astrophysics Data System (ADS)
Yamashita, Masamichi; Hashimoto, Hirofumi; Tomita-Yokotani, Kaori; Shimoda, Toshifumi; Nose, Akihiro; Space Agriculture Task Force, J.
Ecological system and materials recycling loop of space agriculture are quite tight compared to natural ecological system on Earth. Sodium management will be a keen issue for space agricul-ture. Human nutritional requirements include sodium salt. Since sodium at high concentration is toxic for most of plant growth, excreted sodium of human waste should be removed from compost fertilizer. Use of marine algae is promising for harvesting potassium and other min-erals required for plant growth and returning remained sodium to satisfy human need of its intake. Farming salt tolerant green crop species is another approach to manage sodium problem in both space and terrestrial agriculture. We chose ice plant and New Zealand spinach. These two plant species are widely accepted green vegetable with many recipe. Ice plant can grow at the salinity level of sea water, and contain sodium salt up to 30% of its dry mass. Sodium distributes mainly in its bladder cells. New Zealand spinach is a plant species found in the front zone of sea shore, and tolerant against high salinity as well. Plant body size of both species at harvest is quite large, and easy to farm. Capability of bio-remediation of high saline soil is examined with ice plant and New Zealand spinach. Incubation medium was chosen to contain high concentration of sodium and potassium at the Na/K ratio of human excreta. In case Na/K ratio of plant body grown by this medium is greatly higher than that of incubation medium or soil, these halophytes are effective to remediate soil for farming less tolerant plant crop. Experimental results was less positive in this context.
Pons, Raül; Cornejo, María Jesús; Sanz, Amparo
2013-01-01
The ability of plant cells to maintain cytoplasm ion homeostasis under saline stress is among the main mechanisms involved in salt tolerance. To cope with excess Na(+), cells extrude it from the cytoplasm, which requires expenditure of metabolic energy, provided by H(+) gradients generated by membrane-bound H(+)-pumps. ABA is well-known to be involved in physiological processes elicited or enhanced by stresses causing cell dehydration. In this work we studied the possible implication of this plant hormone in the control of salt-induced cellular mechanisms conducting to Na(+) extrusion from the cytoplasm. We used rice (Oryza sativa L.) cell lines selected for their different tolerance to salinity to measure the response to ABA of H(+)-pumps and Na(+)/H(+)-antiporters associated to the plasma membrane and the tonoplast. Our results show that ABA generally enhances H(+)-pumping under salt stress but not under control conditions. This effect occurs to a higher extent across the tonoplast in the more tolerant lines (L-T). Na(+)/H(+) antiport activity is practically undetectable in calli under control conditions, pre-treated or not with ABA, but shows a strong activation under salinity across the tonoplast, particularly in L-T lines (cv Bahia) and also across de plasma membrane in cv Bomba. In these lines, prior treatments with ABA tend to reduce the NaCl enhanced activity of both antiporters. Overall, under saline conditions ABA seems to affect synergistically H(+) pumping and antagonistically Na(+) extrusion. A complex network of positive and negative regulatory signals seems involved in restoring ion cell homeostasis under salt stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Sudhakar, Chinta; Veeranagamallaiah, Gounipalli; Nareshkumar, Ambekar; Sudhakarbabu, Owku; Sivakumar, M; Pandurangaiah, Merum; Kiranmai, K; Lokesh, U
2015-01-01
Polyamines can regulate the expression of antioxidant enzymes and impart plants tolerance to abiotic stresses. A comparative analysis of polyamines, their biosynthetic enzymes at kinetic and at transcriptional level, and their role in regulating the induction of antioxidant defense enzymes under salt stress condition in two foxtail millet (Setaria italica L.) cultivars, namely Prasad, a salt-tolerant, and Lepakshi, a salt-sensitive cultivar was conducted. Salt stress resulted in elevation of free polyamines due to increase in the activity of spermidine synthase and S-adenosyl methionine decarboxylase enzymes in cultivar Prasad compared to cultivar Lepakshi under different levels of NaCl stress. These enzyme activities were further confirmed at the transcript level via qRT-PCR analysis. The cultivar Prasad showed a greater decrease in diamine oxidase and polyamine oxidase activity, which results in the accumulation of polyamine pools over cultivar Lepakshi. Generation of free radicals, such as O 2 (·-) and H2O2, was also analyzed quantitatively. A significant increase in O 2 (·-) and H2O2 in the cultivar Lepakshi compared with cultivar Prasad was recorded in overall pool sizes. Further, histochemical staining showed lesser accumulation of O 2 (·-) and of H2O2 in the leaves of cultivar Prasad than cultivar Lepakshi. Our results also suggest the ability of polyamine oxidation in regulating the induction of antioxidative defense enzymes, which involve in the elimination of toxic levels of O 2 (·-) and H2O2, such as Mn-superoxide dismutase, catalase and ascorbate peroxidase. The contribution of polyamines in modulating antioxidative defense mechanism in NaCl stress tolerance is discussed.
Mzid, Rim; Zorrig, Walid; Ben Ayed, Rayda; Ben Hamed, Karim; Ayadi, Mariem; Damak, Yosra; Lauvergeat, Virginie; Hanana, Mohsen
2018-06-01
Our study aims to assess the implication of WRKY transcription factor in the molecular mechanisms of grapevine adaptation to salt and water stresses. In this respect, a full-length VvWRKY2 cDNA, isolated from a Vitis vinifera grape berry cDNA library, was constitutively over-expressed in Nicotiana tabacum seedlings. Our results showed that transgenic tobacco plants exhibited higher seed germination rates and better growth, under both salt and osmotic stress treatments, when compared to wild type plants. Furthermore, our analyses demonstrated that, under stress conditions, transgenic plants accumulated more osmolytes, such as soluble sugars and free proline, while no changes were observed regarding electrolyte leakage, H 2 O 2 , and malondialdehyde contents. The improvement of osmotic adjustment may be an important mechanism underlying the role of VvWRKY 2 in promoting tolerance and adaptation to abiotic stresses. Principal component analysis of our results highlighted a clear partition of plant response to stress. On the other hand, we observed a significant adaptation behaviour response for transgenic lines under stress. Taken together, all our findings suggest that over-expression of VvWRKY2 gene has a compelling role in abiotic stress tolerance and, therefore, would provide a useful strategy to promote abiotic stress tolerance in grape via molecular-assisted breeding and/or new biotechnology tools.
Mao, Xinguo; Chen, Shuangshuang; Li, Ang; Zhai, Chaochao; Jing, Ruilian
2014-01-01
Abiotic stresses are major environmental factors that affect agricultural productivity worldwide. NAC transcription factors play pivotal roles in abiotic stress signaling in plants. As a staple crop, wheat production is severely constrained by abiotic stresses whereas only a few NAC transcription factors have been characterized functionally. To promote the application of NAC genes in wheat improvement by biotechnology, a novel NAC gene designated TaNAC67 was characterized in common wheat. To determine its role, transgenic Arabidopsis overexpressing TaNAC67-GFP controlled by the CaMV-35S promoter was generated and subjected to various abiotic stresses for morphological and physiological assays. Gene expression showed that TaNAC67 was involved in response to drought, salt, cold and ABA treatments. Localization assays revealed that TaNAC67 localized in the nucleus. Morphological analysis indicated the transgenics had enhanced tolerances to drought, salt and freezing stresses, simultaneously supported by enhanced expression of multiple abiotic stress responsive genes and improved physiological traits, including strengthened cell membrane stability, retention of higher chlorophyll contents and Na+ efflux rates, improved photosynthetic potential, and enhanced water retention capability. Overexpression of TaNAC67 resulted in pronounced enhanced tolerances to drought, salt and freezing stresses, therefore it has potential for utilization in transgenic breeding to improve abiotic stress tolerance in crops. PMID:24427285
Fang, Zhen; Zhang, Juan; Du, Guocheng; Chen, Jian
2016-01-01
The keratinase from Stenotrophomonas maltophilia (KerSMD) is known for its high activity and pH stability in keratin degradation. However, catalytic efficiency and detergent tolerability need to be improved in order to be used for industrial application. In this work, we obtained several keratinase variants with enhanced catalytic efficiency, thermophilicity, and anti-salt and detergent tolerability by partially truncating the PPC domain of KerSMD. The variants all showed improved catalytic efficiency to synthetic substrate AAPF, with the V355 variant having the highest kcat /Km value of 143.6 s−1 mM−1. The truncation of keratinase had little effect on alkaline stability but obviously decreased collagenase activity, developing its potential application in leather treatment. The variants V380, V370, and V355 were thermophilic, with a 1.7-fold enhancement of keratinlytic activity at 60 °C when compared to the wild type. The entire truncation of PPC domain obtained the variant V355 with improved tolerance to alkalinity, salt, chaotropic agents, and detergents. The V355 variant showed more than a 40% improvement in activity under 15% (w/v) NaCl or 4% (w/v) SDS solution, showing excellent stability under harsh washing and unhairing conditions. Our work investigated how protein engineering affects the function of PPC domain of KerSMD. PMID:27298079
Fang, Zhen; Zhang, Juan; Du, Guocheng; Chen, Jian
2016-06-14
The keratinase from Stenotrophomonas maltophilia (KerSMD) is known for its high activity and pH stability in keratin degradation. However, catalytic efficiency and detergent tolerability need to be improved in order to be used for industrial application. In this work, we obtained several keratinase variants with enhanced catalytic efficiency, thermophilicity, and anti-salt and detergent tolerability by partially truncating the PPC domain of KerSMD. The variants all showed improved catalytic efficiency to synthetic substrate AAPF, with the V355 variant having the highest kcat /Km value of 143.6 s(-1) mM(-1). The truncation of keratinase had little effect on alkaline stability but obviously decreased collagenase activity, developing its potential application in leather treatment. The variants V380, V370, and V355 were thermophilic, with a 1.7-fold enhancement of keratinlytic activity at 60 °C when compared to the wild type. The entire truncation of PPC domain obtained the variant V355 with improved tolerance to alkalinity, salt, chaotropic agents, and detergents. The V355 variant showed more than a 40% improvement in activity under 15% (w/v) NaCl or 4% (w/v) SDS solution, showing excellent stability under harsh washing and unhairing conditions. Our work investigated how protein engineering affects the function of PPC domain of KerSMD.
Differentially delayed root proteome responses to salt stress in sugar cane varieties.
Pacheco, Cinthya Mirella; Pestana-Calsa, Maria Clara; Gozzo, Fabio Cesar; Mansur Custodio Nogueira, Rejane Jurema; Menossi, Marcelo; Calsa, Tercilio
2013-12-06
Soil salinity is a limiting factor to sugar cane crop development, although in general plants present variable mechanisms of tolerance to salinity stress. The molecular basis underlying these mechanisms can be inferred by using proteomic analysis. Thus, the objective of this work was to identify differentially expressed proteins in sugar cane plants submitted to salinity stress. For that, a greenhouse experiment was established with four sugar cane varieties and two salt conditions, 0 mM (control) and 200 mM NaCl. Physiological and proteomics analyses were performed after 2 and 72 h of stress induction by salt. Distinct physiological responses to salinity stress were observed in the varieties and linked to tolerance mechanisms. In proteomic analysis, the roots soluble protein fraction was extracted, quantified, and analyzed through bidimensional electrophoresis. Gel images analyses were done computationally, where in each contrast only one variable was considered (salinity condition or variety). Differential spots were excised, digested by trypsin, and identified via mass spectrometry. The tolerant variety RB867515 showed the highest accumulation of proteins involved in growth, development, carbohydrate and energy metabolism, reactive oxygen species metabolization, protein protection, and membrane stabilization after 2 h of stress. On the other hand, the presence of these proteins in the sensitive variety was verified only in stress treatment after 72 h. These data indicate that these stress responses pathways play a role in the tolerance to salinity in sugar cane, and their effectiveness for phenotypical tolerance depends on early stress detection and activation of the coding genes expression.
Hussain, Muhammad Iftikhar; Al-Dakheel, Abdullah J
2018-06-05
Salinity is one of the major factors contributing in land degradation, disturbance of soil biology, a structure that leads to unproductive land with low crop yield potential especially in arid and semiarid regions of the world. Appropriate crops with sufficient stress tolerance capacity and non-conventional water resources should have to be managed in a sustainable way to bring these marginal lands under cultivation for future food security. The goal of the present study was to evaluate salinity tolerant potential (0, 7, and 14 dS m -1 ) of six safflower genotypes that can be adapted to the hyper arid climate of UAE and its marginal soil. Several agro-morphological and physiological traits such as plant dry biomass (PDM), number of branches (BN), number of capitula (CN), seed yield (SY), stable isotope composition of nitrogen (δ 15 N) and carbon (δ 13 C), intercellular CO 2 concentration from inside to ambient air (Ci/Ca), intrinsic water use efficiency (iWUE), carbon (C%) and nitrogen (N %), and harvest index (HI) were evaluated as indicative of the functional performance of safflower genotypes under salt stress. Results indicated that salinity significantly affected the seed yield at all levels and varied significantly among genotypes. The BN, PDM, CN, and δ 13 C attributes showed clear differentiation between tolerant and susceptible genotypes. The δ 13 C results indicate that the tolerant genotypes suffer less from stress, may be due to better rooting. Tolerant genotypes showed lower iWUE values but possess higher yield. Safflower genotypes (PI248836 and PI167390) proved to be salt tolerant, stable, and higher seed and biomass yielder. There was no G × E interaction but the genotypes that produce higher yield under control were still best even under salt stress conditions. Although salinity reduced crop yield, some tolerant genotypes demonstrate adaptation and good yield potential under saline marginal environment.
Salt excretion in Suaeda fruticosa.
Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C
2010-09-01
Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.
NASA Astrophysics Data System (ADS)
Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.
2018-05-01
The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.
2018-03-01
The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts (< n >) bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in < n > of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.
High V-PPase activity is beneficial under high salt loads, but detrimental without salinity.
Graus, Dorothea; Konrad, Kai R; Bemm, Felix; Patir Nebioglu, Meliha Görkem; Lorey, Christian; Duscha, Kerstin; Güthoff, Tilman; Herrmann, Johannes; Ferjani, Ali; Cuin, Tracey Ann; Roelfsema, M Rob G; Schumacher, Karin; Neuhaus, H Ekkehard; Marten, Irene; Hedrich, Rainer
2018-06-25
The membrane-bound proton-pumping pyrophosphatase (V-PPase), together with the V-type H + -ATPase, generates the proton motive force that drives vacuolar membrane solute transport. Transgenic plants constitutively overexpressing V-PPases were shown to have improved salinity tolerance, but the relative impact of increasing PP i hydrolysis and proton-pumping functions has yet to be dissected. For a better understanding of the molecular processes underlying V-PPase-dependent salt tolerance, we transiently overexpressed the pyrophosphate-driven proton pump (NbVHP) in Nicotiana benthamiana leaves and studied its functional properties in relation to salt treatment by primarily using patch-clamp, impalement electrodes and pH imaging. NbVHP overexpression led to higher vacuolar proton currents and vacuolar acidification. After 3 d in salt-untreated conditions, V-PPase-overexpressing leaves showed a drop in photosynthetic capacity, plasma membrane depolarization and eventual leaf necrosis. Salt, however, rescued NbVHP-hyperactive cells from cell death. Furthermore, a salt-induced rise in V-PPase but not of V-ATPase pump currents was detected in nontransformed plants. The results indicate that under normal growth conditions, plants need to regulate the V-PPase pump activity to avoid hyperactivity and its negative feedback on cell viability. Nonetheless, V-PPase proton pump function becomes increasingly important under salt stress for generating the pH gradient necessary for vacuolar proton-coupled Na + sequestration. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.
Salt Acclimation of Cyanobacteria and Their Application in Biotechnology
Pade, Nadin; Hagemann, Martin
2014-01-01
The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682
Proteome analysis of an ectomycorrhizal fungus Boletus edulis under salt shock.
Liang, Yu; Chen, Hui; Tang, Mingjuan; Shen, Shihua
2007-08-01
Soil salinization has become a severe global problem and salinity is one of the most severe abiotic stresses inhibiting growth and survival of mycorrhizal fungi and their host plants. Salinity tolerance of ectomycorrhizal fungi and survival of ectomycorrhizal inocula is essential to reforestation and ecosystem restoration in saline areas. Proteomic changes of an ectomycorrhizal fungus, Boletus edulis, when exposed to salt stress conditions (4% NaCl, w/v) were determined using two-dimensional electrophoresis (2DE) and mass spectrometry (MS) techniques. Twenty-two protein spots, 14 upregulated and 8 downregulated, were found changed under salt stress conditions. Sixteen changed protein spots were identified by nanospray ESI Q-TOF MS/MS and liquid chromatography MS/MS. These proteins were involved in biosynthesis of methionine and S-adenosylmethionine, glycolysis, DNA repair, cell cycle control, and general stress tolerance, and their possible functions in salinity adaptation of Boletus edulis were discussed.
NASA Astrophysics Data System (ADS)
Tong, Kefeng; Song, Xingfu; Sun, Shuying; Xu, Yanxia; Yu, Jianguo
2014-08-01
All-atom molecular dynamics simulations were employed to provide microscopic mechanism for the salt tolerance of polyelectrolytes dispersants. The conformational variation of polyelectrolytes and interactions between COO- groups and counterions/water molecules were also studied via radius of gyration and pair correlations functions. Sodium polyacrylate (NaPA) and sodium salts of poly(acrylic acid)-poly(ethylene oxide) (NaPA-PEO) were selected as the representative linear and comb-like polyelectrolyte, respectively. The results show that Ca2+ ions interact with COO- groups much stronger than Na+ ions and can bring ion-bridging interaction between intermolecular COO- groups in the NaPA systems. While in the NaPA-PEO systems, the introduced PEO side chains can prevent backbone chains from ion-bridging interactions and weaken the conformational changes. The present results can help in selecting and designing new-type efficient polyelectrolyte dispersants with good salt tolerance.
Arabidopsis RabF1 (ARA6) Is Involved in Salt Stress and Dark-Induced Senescence (DIS)
Yin, Congfei; Karim, Sazzad; Zhang, Hongsheng; Aronsson, Henrik
2017-01-01
Arabidopsis small GTPase RabF1 (ARA6) functions in endosomal vesicle transport and may play a crucial role in recycling and degradation of molecules, thus involved in stress responses. Here we have reported that complementary overexpression lines RabF1OE (overexpression), GTPase mutants RabF1Q93L (constitutively active) and RabF1S47N (dominant negative) lines show longer root growth than wild-type, rabF1 knockout and N-myristoylation deletion (Δ1−29, N-terminus) complementary overexpression mutant plants under salt induced stress, which indicates that N-myristoylation of RabF1 is indispensable for salt tolerance. Moreover, RabF1 is highly expressed during senescence and RabF1OE lines were more tolerant of dark-induced senescence (DIS) than wild-type and rabF1. PMID:28157156
Christov, Nikolai Kirilov; Christova, Petya Koeva; Kato, Hideki; Liu, Yuelin; Sasaki, Kentaro; Imai, Ryozo
2014-11-01
A novel cold-inducible GSK3/shaggy-like kinase, TaSK5, was isolated from winter wheat using a macroarray-based differential screening approach. TaSK5 showed high similarity to Arabidopsis subgroup I GSK3/shaggy-like kinases ASK-alpha, AtSK-gamma and ASK-epsilon. RNA gel blot analyses revealed TaSK5 induction by cold and NaCl treatments and to a lesser extent by drought treatment. TaSK5 functionally complemented the cold- and salt-sensitive phenotypes of a yeast GSK3/shaggy-like kinase mutant, △mck1. Transgenic Arabidopsis plants overexpressing TaSK5 cDNA showed enhanced tolerance to salt and drought stresses. By contrast, the tolerance of the transgenic plants to freezing stress was not altered. Microarray analysis revealed that a number of abiotic stress-inducible genes were constitutively induced in the transgenic Arabidopsis plants, suggesting that TaSK5 may function in a novel signal transduction pathway that appears to be unrelated to DREB1/CBF regulon and may involve crosstalk between abiotic and hormonal signals. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato.
Van Oosten, Michael J; Silletti, Silvia; Guida, Gianpiero; Cirillo, Valerio; Di Stasio, Emilio; Carillo, Petronia; Woodrow, Pasqualina; Maggio, Albino; Raimondi, Giampaolo
2017-01-01
Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP), a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl), respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching), protection of the photosynthetic system (improving quantum yield of photosystem II) and regulation of ion homeostasis (improving the K + :Na + ratio in leaves and roots). To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions. Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport.
NASA Astrophysics Data System (ADS)
Li, Yuqi; Zhang, Hui; Fan, Mizi; Zheng, Peitao; Zhuang, Jiandong; Chen, Lihui
2017-04-01
Marine pollution caused by frequent oil spill accidents has brought about tremendous damages to marine ecological environment. Therefore, the facile large-scale preparation of three-dimensional (3D) porous functional materials with special wettability is in urgent demand. In this study, we report a low-cost and salt-tolerant superoleophobic aerogel for efficient oil/seawater separation. The aerogel is prepared through incorporating graphene oxide (GO) into alginate (ALG) matrix by using a facile combined freeze-drying and ionic cross-linking method. The 3D structure interconnected by ALG and GO ensures the high mechanical strength and good flexibility of the developed aerogel. The rough microstructure combined with the hydrophilicity of the aerogel ensures its excellent underwater superoleophobic and antifouling properties. High-content polysaccharides contained in the aerogel guarantees its excellent salt-tolerant property. More impressively, the developed aerogel can retain its underwater superoleophobicity even after 30 days of immersion in seawater, indicating its good stability in marine environments. Furthermore, the aerogel could separate various oil/water mixtures with high separation efficiency (>99%) and good reusability (at least 40 cycles). The facile fabrication process combined with the excellent separation performance makes it promising for practical applications in marine environments.
A Benzimidazole Proton Pump Inhibitor Increases Growth and Tolerance to Salt Stress in Tomato
Van Oosten, Michael J.; Silletti, Silvia; Guida, Gianpiero; Cirillo, Valerio; Di Stasio, Emilio; Carillo, Petronia; Woodrow, Pasqualina; Maggio, Albino; Raimondi, Giampaolo
2017-01-01
Pre-treatment of tomato plants with micromolar concentrations of omeprazole (OP), a benzimidazole proton pump inhibitor in mammalian systems, improves plant growth in terms of fresh weight of shoot and roots by 49 and 55% and dry weight by 54 and 105% under salt stress conditions (200 mM NaCl), respectively. Assessment of gas exchange, ion distribution, and gene expression profile in different organs strongly indicates that OP interferes with key components of the stress adaptation machinery, including hormonal control of root development (improving length and branching), protection of the photosynthetic system (improving quantum yield of photosystem II) and regulation of ion homeostasis (improving the K+:Na+ ratio in leaves and roots). To our knowledge OP is one of the few known molecules that at micromolar concentrations manifests a dual function as growth enhancer and salt stress protectant. Therefore, OP can be used as new inducer of stress tolerance to better understand molecular and physiological stress adaptation paths in plants and to design new products to improve crop performance under suboptimal growth conditions. Highlight: Omeprazole enhances growth of tomato and increases tolerance to salinity stress through alterations of gene expression and ion uptake and transport. PMID:28769943
Site Suitability Analysis for Dissemination of Salt-tolerant Rice Varieties in Southern Bangladesh
NASA Astrophysics Data System (ADS)
Sinha, D. D.; Singh, A. N.; Singh, U. S.
2014-11-01
Bangladesh is a country of 14.4 million ha geographical area and has a population density of more than 1100 persons per sq. km. Rice is the staple food crop, growing on about 72 % of the total cultivated land and continues to be the most important crop for food security of the country. A project "Sustainable Rice Seed Production and Delivery Systems for Southern Bangladesh" has been executed by the International Rice Research Institute (IRRI) in twenty southern districts of Bangladesh. These districts grow rice in about 2.9 million ha out of the country's total rice area of 11.3 million ha. The project aims at contributing to the Government of Bangladesh's efforts in improving national and household food security through enhanced and sustained productivity by using salinity-, submergence- and drought- tolerant and high yielding rice varieties. Out of the 20 project districts, 12 coastal districts are affected by the problem of soil salinity. The salt-affected area in Bangladesh has increased from about 0.83 million ha in 1973 to 1.02 million ha in 2000, and 1.05 million ha in 2009 due to the influence of cyclonic storms like "Sidr", "Laila" and others, leading to salt water intrusion in croplands. Three salinity-tolerant rice varieties have recently been bred by IRRI and field tested and released by the Bangladesh Rice Research Institute (BRRI) and Bangladesh Institute of Nuclear Agriculture (BINA). These varieties are BRRI dhan- 47 and Bina dhan-8 and - 10. However, they can tolerate soil salinity level up to EC 8-10 dSm-1, whereas the EC of soils in several areas are much higher. Therefore, a large scale dissemination of these varieties can be done only when a site suitability analysis of the area is carried out. The present study was taken up with the objective of preparing the site suitability of the salt-tolerant varieties for the salinity-affected districts of southern Bangladesh. Soil salinity map prepared by Soil Resources Development Institute of Bangladesh shows five classes of salinity. viz., non-saline with some very slight saline soil, very slightly saline with some slight saline soil, slightly saline with some moderately saline soil, strongly saline with some moderately saline soil, and very strongly saline with some strongly saline soil. The soil EC level of different classes range from 2 dSm-1 to >16 dSm-1. The soil map was geo-referenced and digitized using Arc GIS. Salinity tolerance characteristics of the rice varieties were matched with the soil characteristics shown on the map. Three suitability classes were made; soils suitable for salt-tolerant varieties, not suitable for salt-tolerant varieties due to high soil salinity, and suitable for other high yielding varieties due to slight salinity. The mauza (smallest revenue unit) boundary provided by the Bangladesh Agriculture Research Council was also geo-referenced and digitized in the same projection. Overlaying and intersecting the mauza boundary on the soil suitability map provided the suitable and not suitable mauza. A total of 4070 mauzas in the 12 salinity-affected districts were listed and maps showing suitability of mauza prepared. About 0.6 million ha out of total 0.87 million ha salinity affected area were found suitable for growing the salinity-tolerant BRRI dhan-47, Bina dhan-8 and -10 in these districts. The maps and other generated information have helped the Dept. of Agriculture Extension (DAE) of Bangladesh in large scale dissemination of seeds of the salinity-tolerant rice varieties in different districts during the past two years.
USDA-ARS?s Scientific Manuscript database
Twelve alfalfa genotypes that were selected for biomass under salinity, differences in Na and Cl concentrations in shoots and K/Na ratio were evaluated in this long-term salinity experiment. The selected plants were cloned to reduce genetic variability within each genotype. Salt tolerance (ST) index...
USDA-ARS?s Scientific Manuscript database
Soil salinity is a major environmental factor limiting plant growth and productivity. Restrictions on water-use due to water shortages have resulted in the use of secondary water sources, which are often higher in salt, to irrigate turf. Furthermore, the increasing use of irrigation, which is highly...
Evaluation of alfalfa (Medicago sativa L.) populations' response to salinity stress
USDA-ARS?s Scientific Manuscript database
Alfalfa is a moderately salt tolerant crop with high economic return, therefore more suitable for production with lower quality water than most high value crops. This study was conducted to examine the effects of the irrigation water salt type (ST=Cl- or SO4 2-) and five salinity levels (ECiw= 0.85,...
Chitin receptor CERK1 links salt stress and chitin-triggered innate immunity in Arabidopsis.
Espinoza, Catherine; Liang, Yan; Stacey, Gary
2017-03-01
In nature, plants need to respond to multiple environmental stresses that require the involvement and fine-tuning of different stress signaling pathways. Cross-tolerance, in which plants pre-treated with chitin (a fungal microbe-associated molecular pattern) have improved salt tolerance, was observed in Arabidopsis, but is not well understood. Here, we show a unique link between chitin and salt signaling mediated by the chitin receptor CHITIN ELICITOR RECEPTOR KINASE 1 (CERK1). Transcriptome analysis revealed that salt stress-induced genes are highly correlated with chitin-induced genes, although this was not observed with other microbe-associated molecular patterns (MAMPs) or with other abiotic stresses. The cerk1 mutant was more susceptible to NaCl than was the wild type. cerk1 plants had an irregular increase of cytosolic calcium ([Ca 2+ ] cyt ) after NaCl treatment. Bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation experiments indicated that CERK1 physically interacts with ANNEXIN 1 (ANN1), which was reported to form a calcium-permeable channel that contributes to the NaCl-induced [Ca 2+ ] cyt signal. In turn, ann1 mutants showed elevated chitin-induced rapid responses. In short, molecular components previously shown to function in chitin or salt signaling physically interact and intimately link the downstream responses to fungal attack and salt stress. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
40 CFR 180.293 - Endothall; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 0.2 parts per million is established for residues of the herbicide endothall (7 - oxabicyclo[2.2.1...-dimethylalkylamine, and mono-N-N,-dimethylalkylamine salts as algicides or herbicides to control aquatic plants in.... Tolerances are established for the indirect or inadvertent combined residues of the herbicide, endothall (7...
40 CFR 180.293 - Endothall; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 0.2 parts per million is established for residues of the herbicide endothall (7 - oxabicyclo[2.2.1...-dimethylalkylamine, and mono-N-N,-dimethylalkylamine salts as algicides or herbicides to control aquatic plants in.... Tolerances are established for the indirect or inadvertent combined residues of the herbicide, endothall (7...
Identification of Juglans wild relatives resistant to crown gall caused by Agrobacterium tumefaciens
USDA-ARS?s Scientific Manuscript database
Wild species are a source of useful agronomic traits for crop plants including but not limited to pathogen resistance, drought tolerance, and salt tolerance (Aradhya and Kluepfel 2012). To exploit this natural diversity of disease resistance, we are conducting the first systematic exploration of th...
Soda, Neelam; Sharan, Ashutosh; Gupta, Brijesh K.; Singla-Pareek, Sneh L.; Pareek, Ashwani
2016-01-01
Soil salinity is being perceived as a major threat to agriculture. Plant breeders and molecular biologist are putting their best efforts to raise salt-tolerant crops. The discovery of the Saltol QTL, a major QTL localized on chromosome I, responsible for salt tolerance at seedling stage in rice has given new hopes for raising salinity tolerant rice genotypes. In the present study, we have functionally characterized a Saltol QTL localized cytoskeletal protein, intermediate filament like protein (OsIFL), of rice. Studies related to intermediate filaments are emerging in plants, especially with respect to their involvement in abiotic stress response. Our investigations clearly establish that the heterologous expression of OsIFL in three diverse organisms (bacteria, yeast and tobacco) provides survival advantage towards diverse abiotic stresses. Screening of rice cDNA library revealed OsIFL to be strongly interacting with metallothionein protein. Bimolecular fluorescence complementation assay further confirmed this interaction to be occurring inside the nucleus. Overexpression of OsIFL in transgenic tobacco plants conferred salinity stress tolerance by maintaining favourable K+/Na+ ratio and thus showed protection from salinity stress induced ion toxicity. This study provides the first evidence for the involvement of a cytoskeletal protein in salinity stress tolerance in diverse organisms. PMID:27708383
Rossi, Lorenzo; Zhang, Weilan; Ma, Xingmao
2017-10-01
Rapidly growing global population adds significant strains on the fresh water resources. Consequently, saline water is increasingly tapped for crop irrigation. Meanwhile, rapid advancement of nanotechnology is introducing more and more engineered nanoparticles into the environment and in agricultural soils. While some negative effects of ENPs on plant health at very high concentrations have been reported, more beneficial effects of ENPs at relatively low concentrations are increasingly noticed, opening doors for potential applications of nanotechnology in agriculture. In particular, we found that cerium oxide nanoparticles (CeO 2 NPs) improved plant photosynthesis in salt stressed plants. Due to the close connections between salt stress tolerance and the root anatomical structures, we postulated that CeO 2 NPs could modify plant root anatomy and improve plant salt stress tolerance. This study aimed at testing the hypothesis with Brassica napus in the presence of CeO 2 NPs (0, 500 mg kg -1 dry sand) and/or NaCl (0, 50 mM) in a growth chamber. Free hand sections of fresh roots were taken every seven days for three weeks and the suberin lamellae development was examined under a fluorescence microscope. The results confirmed the hypothesis that CeO 2 NPs modified the formation of the apoplastic barriers in Brassica roots. In salt stressed plants, CeO 2 NPs shortened the root apoplastic barriers which allowed more Na + transport to shoots and less accumulation of Na + in plant roots. The altered Na + fluxes and transport led to better physiological performance of Brassica and may lead to new applications of nanotechnology in agriculture. Copyright © 2017 Elsevier Ltd. All rights reserved.
The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat.
Rong, Wei; Qi, Lin; Wang, Aiyun; Ye, Xingguo; Du, Lipu; Liang, Hongxia; Xin, Zhiyong; Zhang, Zengyan
2014-05-01
Salinity and drought are major limiting factors of wheat (Triticum aestivum) productivity worldwide. Here, we report the function of a wheat ERF transcription factor TaERF3 in salt and drought responses and the underlying mechanism of TaERF3 function. Upon treatment with 250 mM NaCl or 20% polyethylene glycol (PEG), transcript levels of TaERF3 were rapidly induced in wheat. Using wheat cultivar Yangmai 12 as the transformation recipient, four TaERF3-overexpressing transgenic lines were generated and functionally characterized. The seedlings of the TaERF3-overexpressing transgenic lines exhibited significantly enhanced tolerance to both salt and drought stresses as compared to untransformed wheat. In the leaves of TaERF3-overexpressing lines, accumulation levels of both proline and chlorophyll were significantly increased, whereas H₂O₂ content and stomatal conductance were significantly reduced. Conversely, TaERF3-silencing wheat plants that were generated through virus-induced gene silencing method displayed more sensitivity to salt and drought stresses compared with the control plants. Real-time quantitative RT-PCR analyses showed that transcript levels of ten stress-related genes were increased in TaERF3-overexpressing lines, but compromised in TaERF3-silencing wheat plants. Electrophoretic mobility shift assays showed that the TaERF3 protein could interact with the GCC-box cis-element present in the promoters of seven TaERF3-activated stress-related genes. These results indicate that TaERF3 positively regulates wheat adaptation responses to salt and drought stresses through the activation of stress-related genes and that TaERF3 is an attractive engineering target in applied efforts to improve abiotic stress tolerances in wheat and other cereals. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Moghadam, Ali Asghar; Ebrahimie, Eemaeil; Taghavi, Seyed Mohsen; Niazi, Ali; Babgohari, Mahbobeh Zamani; Deihimi, Tahereh; Djavaheri, Mohammad; Ramezani, Amin
2013-07-01
A small number of stress-responsive genes, such as those of the mitochondrial F1F0-ATP synthase complex, are encoded by both the nucleus and mitochondria. The regulatory mechanism of these joint products is mysterious. The expression of 6-kDa subunit (MtATP6), a relatively uncharacterized nucleus-encoded subunit of F0 part, was measured during salinity stress in salt-tolerant and salt-sensitive cultivated wheat genotypes, as well as in the wild wheat genotypes, Triticum and Aegilops using qRT-PCR. The MtATP6 expression was suddenly induced 3 h after NaCl treatment in all genotypes, indicating an early inducible stress-responsive behavior. Promoter analysis showed that the MtATP6 promoter includes cis-acting elements such as ABRE, MYC, MYB, GTLs, and W-boxes, suggesting a role for this gene in abscisic acid-mediated signaling, energy metabolism, and stress response. It seems that 6-kDa subunit, as an early response gene and nuclear regulatory factor, translocates to mitochondria and completes the F1F0-ATP synthase complex to enhance ATP production and maintain ion homeostasis under stress conditions. These communications between nucleus and mitochondria are required for inducing mitochondrial responses to stress pathways. Dual targeting of 6-kDa subunit may comprise as a mean of inter-organelle communication and save energy for the cell. Interestingly, MtATP6 showed higher and longer expression in the salt-tolerant wheat and the wild genotypes compared to the salt-sensitive genotype. Apparently, salt-sensitive genotypes have lower ATP production efficiency and weaker energy management than wild genotypes; a stress tolerance mechanism that has not been transferred to cultivated genotypes.
Wu, Dan; Peng, Xuan; Liu, Xu; Zhang, Jiaojiao; Zhao, Junfeng; Chen, Kunming; Zhao, Liqun
2016-01-01
Salt is a major threat to plant growth and crop productivity. Calmodulin (CaM), the most important multifunctional Ca2+ sensor protein in plants, mediates reactions against environmental stresses through target proteins; however, direct proof of the participation of CaM in salt tolerance and its corresponding signaling pathway in vivo is lacking. In this study, we found that AtCaM1 and AtCaM4 produced salt-responsive CaM isoforms according to real-time reverse transcription-polymerase chain reaction analyses; this result was verified based on a phenotypic analysis of salt-treated loss-of-function mutant and transgenic plants. We also found that the level of nitric oxide (NO), an important salt-responsive signaling molecule, varied in response to salt treatment depending on AtCaM1 and AtCaM4 expression. GSNOR is considered as an important and widely utilized regulatory component of NO homeostasis in plant resistance protein signaling networks. In vivo and in vitro protein-protein interaction assays revealed direct binding between AtCaM4 and S-nitrosoglutathione reductase (GSNOR), leading to reduced GSNOR activity and an increased NO level. Overexpression of GSNOR intensified the salt sensitivity of cam4 mutant plants accompanied by a reduced internal NO level, whereas a gsnor deficiency increased the salt tolerance of cam4 plants accompanied by an increased internal NO level. Physiological experiments showed that CaM4-GSNOR, acting through NO, reestablished the ion balance to increase plant resistance to salt stress. Together, these data suggest that AtCaM1 and AtCaM4 serve as signals in plant salt resistance by promoting NO accumulation through the binding and inhibition of GSNOR. This could be a conserved defensive signaling pathway in plants and animals. PMID:27684709
Siddikee, Md Ashaduzzaman; Glick, Bernard R; Chauhan, Puneet S; Yim, Woo jong; Sa, Tongmin
2011-04-01
Three 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria were isolated from West Coast soil of Yellow Sea, Incheon, South Korea and evaluated for their efficiency in improving red pepper plant growth under salt stress. The strains RS16, RS656 and RS111 were identified by 16S rRNA gene sequencing as Brevibacterium iodinum, Bacillus licheniformis and Zhihengliuela alba, respectively. Two hour exposure of 100, 150 and 200 mM NaCl stress on 8 day old red pepper seedlings caused 44, 64 and 74% increase ethylene production, while at 150 mM NaCl stress, inoculation of B. licheniformis RS656, Z. alba RS111, and Br. iodinum RS16 reduces ethylene production by 44, 53 and 57%, respectively. Similarly, 3 week old red pepper plants were subjected to salt stress for two weeks and approximately ∼50% reduction in growth recorded at 150 mM NaCl stress compared to negative control whereas bacteria inoculation significantly increase the growth compared to positive control. Salt stress also caused 1.3-fold reduction in the root/shoot dry weight ratio compared to the absence of salt while bacteria inoculation retained the biomass allocation similar to control plants. The salt tolerance index (ratio of biomass of salt stressed to non-stressed plant) was also significantly increased in inoculated plants compared to non-inoculated. Increase nutrient uptakes under salt stress by red pepper further evident that bacteria inoculation ameliorates salt stress effect. In summary, this study indicates that the use of ACC deaminase-producing halotolerant bacteria mitigates the salt stress by reducing salt stress-induced ethylene production on growth of red pepper plants. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Yan, Huiru; Jia, Haihong; Chen, Xiaobo; Hao, Lili; An, Hailong; Guo, Xingqi
2014-12-01
Drought and high salinity are two major environmental factors that significantly limit the productivity of agricultural crops worldwide. WRKY transcription factors play essential roles in the adaptation of plants to abiotic stresses. However, WRKY genes involved in drought and salt tolerance in cotton (Gossypium hirsutum) are largely unknown. Here, a group IId WRKY gene, GhWRKY17, was isolated and characterized. GhWRKY17 was found to be induced after exposure to drought, salt, H2O2 and ABA. The constitutive expression of GhWRKY17 in Nicotiana benthamiana remarkably reduced plant tolerance to drought and salt stress, as determined through physiological analyses of the germination rate, root growth, survival rate, leaf water loss and Chl content. GhWRKY17 transgenic plants were observed to be more sensitive to ABA-mediated seed germination and root growth. However, overexpressing GhWRKY17 in N. benthamiana impaired ABA-induced stomatal closure. Furthermore, we found that GhWRKY17 modulated the increased sensitivity of plants to drought by reducing the level of ABA, and transcript levels of ABA-inducible genes, including AREB, DREB, NCED, ERD and LEA, were clearly repressed under drought and salt stress conditions. Consistent with the accumulation of reactive oxygen species (ROS), reduced proline contents and enzyme activities, elevated electrolyte leakage and malondialdehyde, and lower expression of ROS-scavenging genes, including APX, CAT and SOD, the GhWRKY17 transgenic plants exhibited reduced tolerance to oxidative stress compared with wild-type plants. These results therefore indicate that GhWRKY17 responds to drought and salt stress through ABA signaling and the regulation of cellular ROS production in plants. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Agarie, Sakae; Shimoda, Toshifumi; Shimizu, Yumi; Baumann, Kathleen; Sunagawa, Haruki; Kondo, Ayumu; Ueno, Osamu; Nakahara, Teruhisa; Nose, Akihiro; Cushman, John C
2007-01-01
The aerial surfaces of the common or crystalline ice plant Mesembryanthemum crystallinum L., a halophytic, facultative crassulacean acid metabolism species, are covered with specialized trichome cells called epidermal bladder cells (EBCs). EBCs are thought to serve as a peripheral salinity and/or water storage organ to improve survival under high salinity or water deficit stress conditions. However, the exact contribution of EBCs to salt tolerance in the ice plant remains poorly understood. An M. crystallinum mutant lacking EBCs was isolated from plant collections mutagenized by fast neutron irradiation. Light and electron microscopy revealed that mutant plants lacked EBCs on all surfaces of leaves and stems. Dry weight gain of aerial parts of the mutant was almost half that of wild-type plants after 3 weeks of growth at 400 mM NaCl. The EBC mutant also showed reduced leaf succulence and leaf and stem water contents compared with wild-type plants. Aerial tissues of wild-type plants had approximately 1.5-fold higher Na(+) and Cl(-) content than the mutant grown under 400 mM NaCl for 2 weeks. Na(+) and Cl(-) partitioning into EBCs of wild-type plants resulted in lower concentrations of these ions in photosynthetically active leaf tissues than in leaves of the EBC-less mutant, particularly under conditions of high salt stress. Potassium, nitrate, and phosphate ion content decreased with incorporation of NaCl into tissues in both the wild type and the mutant, but the ratios of Na(+)/K(+) and Cl(-)/NO(3)(-)content were maintained only in the leaf and stem tissues of wild-type plants. The EBC mutant showed significant impairment in plant productivity under salt stress as evaluated by seed pod and seed number and average seed weight. These results clearly show that EBCs contribute to succulence by serving as a water storage reservoir and to salt tolerance by maintaining ion sequestration and homeostasis within photosynthetically active tissues of M. crystallinum.
Huang, Xianzhong; Yang, Lifei; Jin, Yuhuan; Lin, Jun; Liu, Fang
2017-01-01
Arabidopsis pumila is an ephemeral plant, and a close relative of the model plant Arabidopsis thaliana , but it possesses higher photosynthetic efficiency, higher propagation rate, and higher salinity tolerance compared to those A. thaliana , thus providing a candidate plant system for gene mining for environmental adaption and salt tolerance. However, A. pumila is an under-explored resource for understanding the genetic mechanisms underlying abiotic stress adaptation. To improve our understanding of the molecular and genetic mechanisms of salt stress adaptation, more than 19,900 clones randomly selected from a cDNA library constructed previously from leaf tissue exposed to high-salinity shock were sequenced. A total of 16,014 high-quality expressed sequence tags (ESTs) were generated, which have been deposited in the dbEST GenBank under accession numbers JZ932319 to JZ948332. Clustering and assembly of these ESTs resulted in the identification of 8,835 unique sequences, consisting of 2,469 contigs and 6,366 singletons. The blastx results revealed 8,011 unigenes with significant similarity to known genes, while only 425 unigenes remained uncharacterized. Functional classification demonstrated an abundance of unigenes involved in binding, catalytic, structural or transporter activities, and in pathways of energy, carbohydrate, amino acid, or lipid metabolism. At least seven main classes of genes were related to salt-tolerance among the 8,835 unigenes. Many previously reported salt tolerance genes were also manifested in this library, for example VP1, H + -ATPase, NHX1, SOS2, SOS3, NAC, MYB, ERF, LEA, P5CS1 . In addition, 251 transcription factors were identified from the library, classified into 42 families. Lastly, changes in expression of the 12 most abundant unigenes, 12 transcription factor genes, and 19 stress-related genes in the first 24 h of exposure to high-salinity stress conditions were monitored by qRT-PCR. The large-scale EST library obtained in this study provides first-hand information on gene sequences expressed in young leaves of A. pumila exposed to salt shock. The rapid discovery of known or unknown genes related to salinity stress response in A. pumila will facilitate the understanding of complex adaptive mechanisms for ephemerals.
Xian, Mingjie; Zhai, Lei; Zhong, Naiqin; Ma, Yiwei; Xue, Yanfen; Ma, Yanhe
2013-08-04
Acetyl-CoA carboxylase (ACC) catalyzes the first step of fatty acid synthesis. In most bacteria, ACC is composed of four subunits encoded by accA, accB, accC, and accD. Of them, accA encodes acetyl-CoA carboxyltransferase alpha-subunit. Our prior work on proteomics of Alkalimonas amylolytica N10 showed that the expression of the Aa-accA has a remarkable response to salt and alkali stress. This research aimed to find out the Aa-accA gene contributing to salt and alkali tolerance. The Aa-accA was amplified by PCR from A. amylolytica N10 and expressed in E. coli K12 host. The effects of Aa-accA expression on the growth of transgenic strains were examined under different NaCl concentration and pH conditions. Transgenic tobacco BY-2 cells harboring Aa-accA were also generated via Agrobacterium-mediated transformation. The viability of BY-2 cells was determined with FDA staining method after salt and alkali shock. The Aa-accA gene product has 318 amino acids and is homologous to the carboxyl transferase domain of acyl-CoA carboxylases. It showed 76% identity with AccA (acetyl-CoA carboxylase carboxyltransferase subunit alpha) from E. coli. Compared to the wild-type strains, transgenic E. coli K12 strain containing Aa-accA showed remarkable growth superiority when grown in increased NaCl concentrations and pH levels. The final cell density of the transgenic strains was 2.6 and 3.5 times higher than that of the control type when they were cultivated in LB medium containing 6% (W/V) NaCl and at pH 9, respectively. Complementary expression of Aa-accA in an accA-depletion E. coli can recover the tolerance of K12 delta accA to salt and alkali stresses to some extent. Similar to the transgenic E. coli, transgenic tobacco BY-2 cells showed higher percentages of viability compared to the wild BY-2 cells under the salt or alkali stress condition. We found that Aa-accA from A. amylolytica N10 overexpression enhances the tolerance of both transgenic E. coli and tobacco BY-2 cells to NaCl and alkali stresses.
Benidire, Loubna; Lahrouni, Majida; Daoui, Khalid; Fatemi, Zain El Abidine; Gomez Carmona, Ricardo; Göttfert, Michael; Oufdou, Khalid
2018-01-01
Rhizobia are symbiotic nitrogen-fixing bacteria in root nodules of legumes. In Morocco, faba bean (Vicia faba L.), which is the main legume crop cultivated in the country, is often grown in marginal soils of arid and semi-arid regions. This study examines the phenotypic diversity of rhizobia nodulating V. faba isolated from different regions in Morocco for tolerance to some abiotic stresses. A total of 106 rhizobia strains isolated from nodules were identified at the species level by analysing 16S rDNA. Additionally, for selected strains recA, otsA, kup and nodA fragments were sequenced. 102 isolates are likely to belong to Rhizobium leguminosarum or R. laguerreae and 4 isolates to Ensifer meliloti. All strains tolerating salt concentrations of 428 or 342mM NaCl as well as 127 or 99mM Na2SO4 were highly resistant to alkaline conditions (pH 10) and high temperature (44°C). Three strains: RhOF4 and RhOF53 (both are salt-tolerant) and RhOF6 (salt-sensitive) were selected to compare the influence of different levels of salt stress induced by NaCl on growth and on trehalose and potassium accumulation. We find a direct correlation between the trehalose contents of the rhizobial strains and their osmotolerance. Copyright © 2017 Elsevier GmbH. All rights reserved.
Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa).
Mondal, Tapan Kumar; Ganie, Showkat Ahmad
2014-02-10
Salinity is an important abiotic stress that affects agricultural production and productivity. It is a complex trait that is regulated by different molecular mechanisms. miRNAs are non-coding RNAs which are highly conserved and regulate gene expression. Simple sequence repeats (SSRs) are robust molecular markers for studying genetic diversity. Although several SSR markers are available now, challenge remains to identify the trait-specific SSRs which can be used for marker assisted breeding. In order to understand the genetic diversity of salt responsive-miRNA genes in rice, SSR markers were mined from 130 members of salt-responsive miRNA genes of rice and validated among the contrasting panels of tolerant as well as susceptible rice genotypes, each with 12 genotypes. Although 12 miR-SSRs were found to be polymorphic, only miR172b-SSR was able to differentiate the tolerant and susceptible genotypes in 2 different groups. It had also been found that miRNA genes were more diverse in susceptible genotypes than the tolerant one (as indicated by polymorphic index content) which might interfere to form the stem-loop structure of premature miRNA and their subsequent synthesis in susceptible genotypes. Thus, we concluded that length variations of the repeats in salt responsive miRNA genes may be responsible for a possible sensitivity to salinity adaptation. This is the first report of characterization of trait specific miRNA derived SSRs in plants. Copyright © 2013 Elsevier B.V. All rights reserved.
The plasma membrane transport systems and adaptation to salinity.
Mansour, Mohamed Magdy F
2014-11-15
Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.
Roy, Swarnendu; Chakraborty, Usha
2018-01-01
Comparative analyses of the responses to NaCl in Cynodon dactylon and a sensitive crop species like rice could effectively unravel the salt tolerance mechanism in the former. C. dactylon, a wild perennial chloridoid grass having a wide range of ecological distribution is generally adaptable to varying degrees of salinity stress. The role of salt exclusion mechanism present exclusively in the wild grass was one of the major factors contributing to its tolerance. Salt exclusion was found to be induced at 4 days when the plants were treated with a minimum conc. of 200 mM NaCl. The structural peculiarities of the salt exuding glands were elucidated by the SEM and TEM studies, which clearly revealed the presence of a bicellular salt gland actively functioning under NaCl stress to remove the excess amount of Na + ion from the mesophyll tissues. Moreover, the intracellular effect of NaCl on the photosynthetic apparatus was found to be lower in C. dactylon in comparison to rice; at the same time, the vacuolization process increased in the former. Accumulation of osmolytes like proline and glycine betaine also increased significantly in C. dactylon with a concurrent check on the H 2 O 2 levels, electrolyte leakage and membrane lipid peroxidation. This accounted for the proper functioning of the Na + ion transporters in the salt glands and also in the vacuoles for the exudation and loading of excess salts, respectively, to maintain the osmotic balance of the protoplasm. In real-time PCR analyses, CdSOS1 expression was found to increase by 2.5- and 5-fold, respectively, and CdNHX expression increased by 1.5- and 2-fold, respectively, in plants subjected to 100 and 200 mM NaCl treatment for 72 h. Thus, the comparative analyses of the expression pattern of the plasma membrane and tonoplast Na + ion transporters, SOS1 and NHX in both the plants revealed the significant role of these two ion transporters in conferring salinity tolerance in Cynodon.
Lu, Qi-Huan; Wang, Ya-Qi; Song, Jin-Nan; Yang, Hong-Bing
2018-06-01
Common buckwheat (F. esculentum), annually herbaceous crop, is prevalent in people's daily life with the increasing development of economics. Compared with wheat, it is highly praised with high content of rutin and flavonoid. Common buckwheat is recognized as healthy food with good taste, and the product price of which such as noodles, flour, bread and so on are higher than wheat, and the seeds of which are bigger than that of tartary buckwheat, so if common buckwheat are planted more widely, people will spend less money on this healthy and delicious food. However, soil salinity has been a giant problem for agriculture production. The cultivation of salt tolerant crop varieties is an effective way to make full use of saline alkali land, and the highest salinity that the common buckwheat can sow is at 6.0%, so we chose 100 mM as the concentration of NaCl for treatment. Then we conducted transcriptome comparison between control and treatment groups. Potential regulatory genes related salt stress in common buckwheat were identified. A total of 29.36 million clean reads were produced via an illumina sequencing approach. We de novo assembled these reads into a transcriptome dataset containing 43,772 unigenes with N50 length of 1778 bp. A total of 26,672 unigenes could be found matches in public databases. GO, KEGG and Swiss-Prot classification suggested the enrichment of these unigenes in 47 sub-categories, 25 KOG and 129 pathways, respectively. We got 385 differentially expressed genes (DEGs) after comparing the transcriptome data between salt treatment and control groups. There are some genes encoded for responsing to stimulus, cell killing, metabolic process, signaling, multi-organism process, growth and cellular process might be relevant to salt stress in common buckwheat, which will provide a valuable references for the study on mechanism of salt tolerance and will be used as a genetic information for cultivating strong salt tolerant common buckwheat varieties in the future. Copyright © 2018. Published by Elsevier Masson SAS.
Geddes, Ryan D.; Wang, Xuan; Yomano, Lorraine P.; Miller, Elliot N.; Zheng, Huabao; Shanmugam, Keelnatham T.
2014-01-01
Expression of genes encoding polyamine transporters from plasmids and polyamine supplements increased furfural tolerance (growth and ethanol production) in ethanologenic Escherichia coli LY180 (in AM1 mineral salts medium containing xylose). This represents a new approach to increase furfural tolerance and may be useful for other organisms. Microarray comparisons of two furfural-resistant mutants (EMFR9 and EMFR35) provided initial evidence for the importance of polyamine transporters. Each mutant contained a single polyamine transporter gene that was upregulated over 100-fold (microarrays) compared to that in the parent LY180, as well as a mutation that silenced the expression of yqhD. Based on these genetic changes, furfural tolerance was substantially reconstructed in the parent, LY180. Deletion of potE in EMFR9 lowered furfural tolerance to that of the parent. Deletion of potE and puuP in LY180 also decreased furfural tolerance, indicating functional importance of the native genes. Of the 8 polyamine transporters (18 genes) cloned and tested, half were beneficial for furfural tolerance (PotE, PuuP, PlaP, and PotABCD). Supplementing AM1 mineral salts medium with individual polyamines (agmatine, putrescine, and cadaverine) also increased furfural tolerance but to a smaller extent. In pH-controlled fermentations, polyamine transporter plasmids were shown to promote the metabolism of furfural and substantially reduce the time required to complete xylose fermentation. This increase in furfural tolerance is proposed to result from polyamine binding to negatively charged cellular constituents such as nucleic acids and phospholipids, providing protection from damage by furfural. PMID:25063650
Lu, Pu; Magwanga, Richard Odongo; Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang
2018-04-12
Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 ( TOM1 ), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum , 9 in Gossypium arboreum , and 11 in Gossypium raimondii . The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H₂O₂. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton cultivars.
Lu, Hejun; Kirungu, Joy Nyangasi; Wei, Yangyang; Dong, Qi; Wang, Xingxing; Cai, Xiaoyan; Zhou, Zhongli; Wang, Kunbo; Liu, Fang
2018-01-01
Plants have developed a number of survival strategies which are significant for enhancing their adaptation to various biotic and abiotic stress factors. At the transcriptome level, G-protein-coupled receptors (GPCRs) are of great significance, enabling the plants to detect a wide range of endogenous and exogenous signals which are employed by the plants in regulating various responses in development and adaptation. In this research work, we carried out genome-wide analysis of target of Myb1 (TOM1), a member of the GPCR gene family. The functional role of TOM1 in salt stress tolerance was studied using a transgenic Arabidopsis plants over-expressing the gene. By the use of the functional domain PF06454, we obtained 16 TOM genes members in Gossypium hirsutum, 9 in Gossypium arboreum, and 11 in Gossypium raimondii. The genes had varying physiochemical properties, and it is significant to note that all the grand average of hydropathy (GRAVY) values were less than one, indicating that all are hydrophobic in nature. In all the genes analysed here, both the exonic and intronic regions were found. The expression level of Gh_A07G0747 (GhTOM) was significantly high in the transgenic lines as compared to the wild type; a similar trend in expression was observed in all the salt-related genes tested in this study. The study in epidermal cells confirmed the localization of the protein coded by the gene TOM1 in the plasma membrane. Analysis of anti-oxidant enzymes showed higher concentrations of antioxidants in transgenic lines and relatively lower levels of oxidant substances such as H2O2. The low malondialdehyde (MDA) level in transgenic lines indicated that the transgenic lines had relatively low level of oxidative damage compared to the wild types. The results obtained indicate that Gh_A07G0747 (GhTOM) can be a putative target gene for enhancing salt stress tolerance in plants and could be exploited in the future for the development of salt stress-tolerant cotton cultivars. PMID:29649144
USDA-ARS?s Scientific Manuscript database
Almond trees are very sensitive to salinity, and saline water is the only alternative for irrigation in many semiarid regions. Thus, the use of salt-tolerant rootstocks may allow an economically-feasible yield under saline irrigation. In this study, we evaluated the effects of chloride salts on plan...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride), sodium borate and sodium metaborate; exemptions from the requirement of a tolerance. 180.1121 Section 180.1121 Protection of Environment ENVIRONMENTAL PROTECTION...
USDA-ARS?s Scientific Manuscript database
Salinity tolerance is highly desirable to sustain alfalfa production in marginal lands that have been rendered saline. In this study, we used a diverse panel of alfalfa accessions for mapping loci associated with plant growth and forage production under salt stress using genome-wide association stud...
USDA-ARS?s Scientific Manuscript database
The effect of naturally-occurring salts, boron (B), and selenium (Se) on soil microbial community composition associated with plants during different growing seasons used in bioremediation strategies is not known. This information is needed for developing sustainable remediation practices as soil mi...
Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra
2015-01-01
Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.
Genotypic Variation for Salinity Tolerance in Cenchrus ciliaris L.
Al-Dakheel, Abdullah J.; Hussain, M. Iftikhar
2016-01-01
Scarcity of irrigation water and increasing soil salinization has threatened the sustainability of forage production in arid and semi-arid region around the globe. Introduction of salt-tolerant perennial species is a promising alternative to overcome forage deficit to meet future livestock needs in salt-affected areas. This study presents the results of a salinity tolerance screening trial which was carried out in plastic pots buried in the open field for 160 buffelgrass (Cenchrus ciliaris L.) accessions for three consecutive years (2003–2005). The plastic pots were filled with sand, organic, and peat moss mix and were irrigated with four different quality water (EC 0, 10, 15, and 20 dS m−1). The results indicate that the average annual dry weights (DW) were in the range from 122.5 to 148.9 g/pot in control; 96.4–133.8 g/pot at 10 dS m−1; 65.6–80.4 g/pot at 15 dS m−1, and 55.4–65.6 g/pot at 20 dS m−1. The highest DW (148.9 g/pot) was found with accession 49 and the lowest with accession 23. Principle component analysis shows that PC-1 contributed 81.8% of the total variability, while PC-2 depicted 11.7% of the total variation among C. ciliaris accessions for DW. Hierarchical cluster analysis revealed that a number of accessions collected from diverse regions could be grouped into a single cluster. Accessions 3, 133, 159, 30, 23, 142, 141, 95, 49, 129, 124, and 127 were stable, salt tolerant, and produced good dry biomass yield. These accessions demonstrate sufficient salinity tolerance potential for promotion in marginal lands to enhance farm productivity and reduce rural poverty. PMID:27516762