Sample records for salt transport model

  1. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  2. Salt tectonics and shallow subseafloor fluid convection: Models of coupled fluid-heat-salt transport

    USGS Publications Warehouse

    Wilson, A.; Ruppel, C.

    2007-01-01

    Thermohaline convection associated with salt domes has the potential to drive significant fluid flow and mass and heat transport in continental margins, but previous studies of fluid flow associated with salt structures have focused on continental settings or deep flow systems of importance to petroleum exploration. Motivated by recent geophysical and geochemical observations that suggest a convective pattern to near-seafloor pore fluid flow in the northern Gulf of Mexico (GoMex), we devise numerical models that fully couple thermal and chemical processes to quantify the effects of salt geometry and seafloor relief on fluid flow beneath the seafloor. Steady-state models that ignore halite dissolution demonstrate that seafloor relief plays an important role in the evolution of shallow geothermal convection cells and that salt at depth can contribute a thermal component to this convection. The inclusion of faults causes significant, but highly localized, increases in flow rates at seafloor discharge zones. Transient models that include halite dissolution show the evolution of flow during brine formation from early salt-driven convection to later geothermal convection, characteristics of which are controlled by the interplay of seafloor relief and salt geometry. Predicted flow rates are on the order of a few millimeters per year or less for homogeneous sediments with a permeability of 10−15 m2, comparable to compaction-driven flow rates. Sediment permeabilities likely fall below 10−15 m2 at depth in the GoMex basin, but such thermohaline convection can drive pervasive mass transport across the seafloor, affecting sediment diagenesis in shallow sediments. In more permeable settings, such flow could affect methane hydrate stability, seafloor chemosynthetic communities, and the longevity of fluid seeps.

  3. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.

    PubMed

    Sackin, H; Boulpaep, E L

    1975-12-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport.

  4. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney

    PubMed Central

    Sackin, H; Boulpaep, EL

    1975-01-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport. PMID:1104761

  5. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  6. Simulating Salt Movement and Transformation using a Coupled Reactive Transport Model in Variably-Saturated Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T.

    2016-12-01

    Salinization is one of the major concerns in irrigated agricultural landscapes. Increasing salinity concentrations are due principally to evaporative concentration; dissolution of salts from weathered minerals and bedrock; and a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems; leading to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. In this study, a solute transport model coupled with equilibrium chemistry reactions has been developed to simulate transport of individual salt ions in regional-scale aquifer systems and thereby investigate strategies for salinity remediation. The physically-based numerical model is based on the UZF-RT3D variably-saturated, multi-species groundwater reactive transport modeling code, and accounts for advection, dispersion, carbon and nitrogen cycling, oxidation-reduction reactions, and salt ion equilibrium chemistry reactions such as complexation, ion exchange, and precipitation/dissolution. Each major salt ion (sulfate, chloride, bicarbonate, calcium, sodium, magnesium, potassium) is included. The model has been tested against measured soil salinity at a small scale (soil profile) and against soil salinity, groundwater salinity, and groundwater salinity loading to surface water at the regional scale (500 km2) in the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization for many decades and greatly influenced by gypsum deposits. Preliminary results of using the model in scenario analysis suggest that increasing irrigation efficiency, sealing earthen canals, and rotational fallowing of land can decrease the groundwater salt load to the Arkansas River by 50 to 70% and substantially lower soil salinity in the root zone.

  7. Validation and application of a two-dimensional model to simulate soil salt transport under mulched drip irrigation

    NASA Astrophysics Data System (ADS)

    Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo

    2017-04-01

    Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where

  8. Mathematical modelling of the uptake and transport of salt in plant roots.

    PubMed

    Foster, Kylie J; Miklavcic, Stanley J

    2013-11-07

    In this paper, we present and discuss a mathematical model of ion uptake and transport in roots of plants. The underlying physical model of transport is based on the mechanisms of forced diffusion and convection. The model can take account of local variations in effective ion and water permeabilities across the major tissue regions of plant roots, represented through a discretized coupled system of governing equations including mass balance, forced diffusion, convection and electric potential. We present simulation results of an exploration of the consequent enormous parameter space. Among our findings we identify the electric potential as a major factor affecting ion transport across, and accumulation in, root tissues. We also find that under conditions of a constant but realistic level of bulk soil salt concentration and plant-soil hydraulic pressure, diffusion plays a significant role even when convection by the water transpiration stream is operating. Crown Copyright © 2013 Published by Elsevier Ltd. All rights reserved.

  9. Seasonal Variability of Salt Transport During the Indian Ocean Monsoons

    DTIC Science & Technology

    2011-08-27

    Wunsch, J. Marotzkc, and J. Toolc (2000). Meridional overturning and large-scale circulation of the Indian Ocean, J. Geophvs Res., W5(C\\ 1), 26,117...and II. Hasumi (2006), Effects of model resolution on salt transport through northern high-latitude passages and Atlantic meridional overturning ...affects meridional circulation and aids the transport of salt [Sevellec et ai, 2008; Czaja, 2009]. Deep convection could be inhibited by the freshening

  10. Renal sodium transport in renin-deficient Dahl salt-sensitive rats

    PubMed Central

    Pavlov, Tengis S; Levchenko, Vladislav; Ilatovskaya, Daria V; Moreno, Carol; Staruschenko, Alexander

    2016-01-01

    Objective: The Dahl salt-sensitive rat is a well-established model of salt-sensitive hypertension. The goal of this study was to assess the expression and activity of renal sodium channels and transporters in the renin-deficient salt-sensitive rat. Methods: Renin knockout (Ren−/−) rats created on the salt-sensitive rat background were used to investigate the role of renin in the regulation of ion transport in salt-sensitive hypertension. Western blotting and patch-clamp analyses were utilized to assess the expression level and activity of Na+ transporters. Results: It has been described previously that Ren−/− rats exhibit severe kidney underdevelopment, polyuria, and lower body weight and blood pressure compared to their wild-type littermates. Here we found that renin deficiency led to decreased expression of sodium-hydrogen antiporter (NHE3), the Na+/H+ exchanger involved in Na+ absorption in the proximal tubules, but did not affect the expression of Na-K-Cl cotransporter (NKCC2), the main transporter in the loop of Henle. In the distal nephron, the expression of sodium chloride cotransporter (NCC) was lower in Ren−/− rats. Single-channel patch clamp analysis detected decreased ENaC activity in Ren−/− rats which was mediated via changes in the channel open probability. Conclusion: These data illustrate that renin deficiency leads to significant dysregulation of ion transporters. PMID:27443990

  11. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  12. Sodium-dependent bile salt transporters of the SCL10A Transporter Family: More than solute transporters

    PubMed Central

    Anwer, M. Sawkat; Stieger, Bruno

    2013-01-01

    Summary The SLC10A transporter gene family consists of seven members and substrates transported by three members (SLC10A1, SLC10A2 and SLC10A6) are Na+-dependent. SLC10A1 (sodium taurocholate cotransporting polypeptide or NTCP) and SLC10A2 (apical sodium-dependent bile salt transporter or ASBT) transport bile salts and play an important role in maintaining enterohepatic circulation of bile salts. Solutes other than bile salts are also transported by NTCP. However, ASBT has not been shown to be a transporter for non-bile salt substrates. While the transport function of NTCP can potentially be used as liver function test, interpretation of such a test may be complicated by altered expression of NTCP in diseases and presence of drugs that may inhibit NTCP function. Transport of bile salts by NTCP and ASBT is inhibited by a number of drugs and it appears that ASBT is more permissive to drug inhibition than NTCP. The clinical significance of this inhibition in drug disposition and drug-drug interaction remains to be determined. Both NCTP and ASBT undergo post-translational regulations that involve phosphorylation/dephosphorylation, translocation to and retrieval from the plasma membrane and degradation by the ubiquitin-proteasome system. These posttranslational regulations are mediated via signaling pathways involving cAMP, calcium, nitric oxide, phosphoinositide-3-kinase (PI3K), protein kinase C (PKC) and protein phosphatases. There appears to be species difference in the substrate specificity and the regulation of plasma membrane localization of human and rodent NTCP. These differences should be taken into account when extrapolating rodent data for human clinical relevance and developing novel therapies. NTCP has recently been shown to play an important role in HBV and HDV infection by serving as a receptor for entry of these viruses into hepatocytes. PMID:24196564

  13. Development of High-Temperature Transport Technologies of Molten Salt Slurry in Pyrometallurgical Reprocessing

    NASA Astrophysics Data System (ADS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    Pyrometallurgical-reprocessing is one of the most promising technologies for advanced fuel cycle with favorable economic potential and intrinsic proliferation resistance. The development of transport technology for molten salt is a key issue in the industrialization of pyro-reprocessing. As for pure molten LiCl-KCl eutectic salt at approximately 773 K, we have already reported the successful results of transport using gravity and a centrifugal pump. However, molten salt in an electrorefiner mixes with insoluble fines when spent fuel is dissolved in porous anode basket. The insoluble consists of noble metal fission products, such as Pd, Ru, Mo, and Zr. There have been very few transport studies of a molten salt slurry (metal fines-molten salt mixture). Hence, transport experiments on a molten salt slurry were carried out to investigate the behavior of the slurry in a tube. The apparatus used in the transport experiments on the molten salt slurry consisted of a supply tank, a 10° inclined transport tube (10 mm inner diameter), a valve, a filter, and a recovery tank. Stainless steel (SS) fines with diameters from 53 to 415 μm were used. To disperse these fines homogenously, the molten salt and fines were stirred in the supply tank by an impeller at speeds from 1200 to 2100 rpm. The molten salt slurry containing 0.04 to 0.4 vol.% SS fines was transported from the supply tank to the recovery tank through the transportation tube. In the recovery tank, the fines were separated from the molten salt by the filter to measure the transport behavior of molten salt and SS fines. When the velocity of the slurry was 0.02 m/s, only 1% of the fines were transported to the recovery tank. On the other hand, most of the fines were transported when the velocity of the slurry was more than 0.8 m/s. Consequently, the molten salt slurry can be transported when the velocity is more than 0.8 m/s.

  14. Development of high temperature transport technology for LiCl-KCl eutectic salt in pyroprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sung Ho; Lee, Hansoo; Kim, In Tae

    The development of high-temperature transport technologies for molten salt is a prerequisite and a key issue in the industrialization of pyro-reprocessing for advanced fuel cycle scenarios. The solution of a molten salt centrifugal pump was discarded because of the high corrosion power of a high temperature molten salt, so the suction pump solution was selected. An apparatus for salt transport experiments by suction was designed and tested using LiC-KCl eutectic salt. The experimental results of lab-scale molten salt transport by suction showed a 99.5% transport rate (ratio of transported salt to total salt) under a vacuum range of 100 mtorrmore » - 10 torr at 500 Celsius degrees. The suction system has been integrated to the PRIDE (pyroprocessing integrated inactive demonstration) facility that is a demonstrator using non-irradiated materials (natural uranium and surrogate materials). The performance of the suction pump for the transport of molten salts has been confirmed.« less

  15. Seasonal Variability of Salt Transports in the Northern Indian Ocean

    NASA Astrophysics Data System (ADS)

    D'Addezio, J. M.; Bulusu, S.

    2016-02-01

    Due to limited observational data in the Indian Ocean compared to other regions of the global ocean, past work on the Northern Indian Ocean (NIO) has relied heavily upon model analysis to study the variability of regional salinity advection caused by the monsoon seasons. With the launch of the Soil Moisture and Ocean Salinity (SMOS) satellite in 2009 and the Aquarius SAC-D mission in 2011 (ended on June 7, 2011), remotely sensed, synoptic scale sea surface salinity (SSS) data is now readily available to study this dynamic region. The new observational data has allowed us to revisit the region to analyze seasonal variability of salinity advection in the NIO using several modeled products, the Aquarius and SMOS satellites, and Argo floats data. The model simulations include the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO2), European Centre for Medium-Range Weather Forecasts - Ocean Reanalysis System 4 (ECMWF-ORSA4), Simple Ocean Data Assimilation (SODA) Reanalysis, and HYbrid Coordinate Ocean Model (HYCOM). Our analyses of salinity at the surface and at depths up to 200 m, surface salt transport in the top 5 m layer, and depth-integrated salt transports revealed different salinity processes in the NIO that are dominantly related to the semi-annual monsoons. Aquarius and SMOS prove useful tools for observing this dynamic region, and reveal some aspects of SSS that Argo cannot resolve. Meridional depth-integrated salt transports using the modeled products along 6°N revealed dominant advective processes from the surface towards near-bottom depths. Finally, a difference in subsurface salinity stratification causes many of the modeled products to incorrectly estimate the magnitude and seasonality of NIO barrier layer thickness (BLT) when compared to the Argo solution. This problem is also evident in model output from the Seychelles-Chagos Thermocline Ridge (SCTR), a region with strong air-sea teleconnections with the Arabian Sea.

  16. Salt transport extraction of transuranium elements from LWR fuel

    DOEpatents

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  17. Salt transport extraction of transuranium elements from lwr fuel

    DOEpatents

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  18. Vectorial transport of bile salts across MDCK cells expressing both rat Na+-taurocholate cotransporting polypeptide and rat bile salt export pump.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Stieger, Bruno; Meier, Peter J; Hofmann, Alan F; Sugiyama, Yuichi

    2005-01-01

    Bile salts are predominantly taken up by hepatocytes via the basolateral Na(+)-taurocholate cotransporting polypeptide (NTCP/SLC10A1) and secreted into the bile by the bile salt export pump (BSEP/ABCB11). In the present study, we transfected rat Ntcp and rat Bsep into polarized Madin-Darby canine kidney cells and characterized the transport properties of these cells for eight bile salts. Immunohistochemical staining demonstrated that Ntcp was expressed at the basolateral domains, whereas Bsep was expressed at the apical domains. Basal-to-apical transport of taurocholate across the monolayer expressing only Ntcp and that coexpressing Ntcp/Bsep was observed, whereas the flux across the monolayer of control and Bsep-expressing cells was symmetrical. Basal-to-apical transport of taurocholate across Ntcp/Bsep-coexpressing monolayers was significantly higher than that across monolayers expressing only Ntcp. Kinetic analysis of this vectorial transport of taurocholate gave an apparent K(m) value of 13.9 +/- 4.7 microM for cells expressing Ntcp alone, which is comparable with 22.2 +/- 4.5 microM for cells expressing both Ntcp and Bsep and V(max) values of 15.8 +/- 4.2 and 60.8 +/- 9.0 pmol.min(-1).mg protein(-1) for Ntcp alone and Ntcp and Bsep-coexpressing cells, respectively. Transcellular transport of cholate, glycocholate, taurochenodeoxycholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, ursodeoxycholate, and glycoursodeoxycholate, but not that of lithocholate was also observed across the double transfectant. This double-expressing system can be used as a model to clarify vectorial transport of bile salts across hepatocytes under physiological conditions.

  19. Study of salt transport processes in Delaware Bay

    USGS Publications Warehouse

    Walters, Roy

    1992-01-01

    The study described here is a subset of a broader climate-related study, and is focused primarily on salinity intrusion into Delaware Bay and River. Given changes in freshwater discharge into the Delaware River as determined from the larger study, and given probable sea level rise estimates, the purpose here is to calculate the distribution of salinity within Delaware Bay and River. The approach adopted for this study is composed of two parts: an analysis of existing physical data in order to derive a basic understanding of the salt dynamics, and numerical simulation of future conditions based on this analysis. There are two important constraints in the model used: it must resolve the spatial scales important to the salt dynamics, and it must be sufficiently efficient to allow extensive sensitivity studies. This has led to the development of a 3D model that uses harmonic decomposition in time and irregular finite elements in space. All nonlinear terms are retained in the governing equations, including quadratic bottom stress, advection, and wave transport (continuity nonlinearity). These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. Although this study is still in progress, the model has reproduced sea level variations and the 3D structure of tidal and residual currents very well. In addition, the study has addressed the effects of a 1-meter rise in mean sea level on hydrodynamics of the study area. Current work is focused on salt dynamics.

  20. Three dimensional model evaluation of physical alterations of the Caloosahatchee River and Estuary: Impact on salt transport

    NASA Astrophysics Data System (ADS)

    Sun, Detong; Wan, Yongshan; Qiu, Chelsea

    2016-05-01

    Numerical hydrodynamic modeling provides quantitative understanding of how physical alterations of an estuary may alter the waterbody hydrodynamics and the rate of mixing with the ocean. In this study, a three dimensional hydrodynamic model (CH3D) was used to compare simulated salinities between the existing condition and five historical cases representing varying physical alterations of the Caloosahatchee Estuary involving (1) removal of the headwater structure (S-79); (2) removal of the downstream causeway to Sanibel Island; (3) backfilling an oyster bar near the estuary month; (4) refilling the navigation channel; and (5) the pre-development bathymetric condition. The results suggested that some alterations including the Sanibel Causeway, backfilling the oyster bar and the S-79 structure may have some local effects but did not change estuarine salinity structure significantly. Refilling the navigation channel had a more profound effect, resulting in a dry season salinity reduction of about 5 when compared with the existing condition. The reduced salt transport was more pronounced with the pre-development bathymetry because the estuary as a whole was much shallower than today. The significant system-wide increase in salt transport caused by the historic dredging of the navigation channel in the Caloosahatchee Estuary has significant implications in the development of attainable environmental flow targets for protecting the estuarine ecosystem.

  1. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    NASA Astrophysics Data System (ADS)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  2. Subgrid Modeling Geomorphological and Ecological Processes in Salt Marsh Evolution

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T., Jr.; Wu, G.; Abdolali, A.; Deb, M.

    2016-12-01

    Numerical modeling a long-term evolution of salt marshes is challenging because it requires an extensive use of computational resources. Due to the presence of narrow tidal creeks, variations of salt marsh topography can be significant over spatial length scales on the order of a meter. With growing availability of high-resolution bathymetry measurements, like LiDAR-derived DEM data, it is increasingly desirable to run a high-resolution model in a large domain and for a long period of time to get trends of sedimentation patterns, morphological change and marsh evolution. However, high spatial-resolution poses a big challenge in both computational time and memory storage, when simulating a salt marsh with dimensions of up to O(100 km^2) with a small time step. In this study, we have developed a so-called Pre-storage, Sub-grid Model (PSM, Wu et al., 2015) for simulating flooding and draining processes in salt marshes. The simulation of Brokenbridge salt marsh, Delaware, shows that, with the combination of the sub-grid model and the pre-storage method, over 2 orders of magnitude computational speed-up can be achieved with minimal loss of model accuracy. We recently extended PSM to include a sediment transport component and models for biomass growth and sedimentation in the sub-grid model framework. The sediment transport model is formulated based on a newly derived sub-grid sediment concentration equation following Defina's (2000) area-averaging procedure. Suspended sediment transport is modeled by the advection-diffusion equation in the coarse grid level, but the local erosion and sedimentation rates are integrated over the sub-grid level. The morphological model is based on the existing morphological model in NearCoM (Shi et al., 2013), extended to include organic production from the biomass model. The vegetation biomass is predicted by a simple logistic equation model proposed by Marani et al. (2010). The biomass component is loosely coupled with hydrodynamic and

  3. Altered regulation of renal sodium transporters in salt-sensitive hypertensive rats induced by uninephrectomy.

    PubMed

    Jung, Ji Yong; Lee, Jay Wook; Kim, Sejoong; Jung, Eun Sook; Jang, Hye Ryoun; Han, Jin Suk; Joo, Kwon Wook

    2009-12-01

    Uninephrectomy (uNx) in young rats causes salt-sensitive hypertension (SSH). Alterations of sodium handling in residual nephrons may play a role in the pathogenesis. Therefore, we evaluated the adaptive alterations of renal sodium transporters according to salt intake in uNx-SSH rats. uNx or sham operations were performed in male Sprague-Dawley rats, and normal-salt diet was fed for 4 weeks. Four experimental groups were used: sham-operated rats raised on a high-salt diet for 2 weeks (CHH) or on a low-salt diet for 1 week after 1 week's high-salt diet (CHL) and uNx rats fed on the same diet (NHH, NHL) as the sham-operated rats were fed. Expression of major renal sodium transporters were determined by semiquantitative immunoblotting. Systolic blood pressure was increased in NHH and NHL groups, compared with CHH and CHL, respectively. Protein abundances of Na(+)/K(+)/2Cl(-) cotransporter (NKCC2) and Na(+)/Cl(-) cotransporter (NCC) in the CHH group were lower than the CHL group. Expression of epithelial sodium channel (ENaC)-γ increased in the CHH group. In contrast, expressions of NKCC2 and NCC in the NHH group didn't show any significant alterations, compared to the NHL group. Expressions of ENaC-α and ENaC-β in the NHH group were higher than the CHH group. Adaptive alterations of NKCC2 and NCC to changes of salt intake were different in the uNx group, and changes in ENaC-α and ENaC-β were also different. These altered regulations of sodium transporters may be involved in the pathogenesis of SSH in the uNx rat model.

  4. Numerical modeling of salt marsh morphological change induced by Hurricane Sandy

    USGS Publications Warehouse

    Hu, Kelin; Chen, Qin; Wang, Hongqing; Hartig, Ellen K.; Orton, Philip M.

    2018-01-01

    The salt marshes of Jamaica Bay serve as a recreational outlet for New York City residents, mitigate wave impacts during coastal storms, and provide habitat for critical wildlife species. Hurricanes have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. In this study, the Delft3D modeling suite was utilized to examine the effects of Hurricane Sandy (2012) on salt marsh morphology in Jamaica Bay. Observed marsh elevation change and accretion from rod Surface Elevation Tables and feldspar Marker Horizons (SET-MH) and hydrodynamic measurements during Hurricane Sandy were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model. The model results agreed well with in situ field measurements. The validated model was then used to detect salt marsh morphological change due to Sandy across Jamaica Bay. Model results indicate that the island-wide morphological changes in the bay's salt marshes due to Sandy were in the range of −30 mm (erosion) to +15 mm (deposition), and spatially complex and heterogeneous. The storm generated paired deposition and erosion patches at local scales. Salt marshes inside the west section of the bay showed erosion overall while marshes inside the east section showed deposition from Sandy. The net sediment amount that Sandy brought into the bay is only about 1% of the total amount of reworked sediment within the bay during the storm. Numerical experiments show that waves and vegetation played a critical role in sediment transport and associated wetland morphological change in Jamaica Bay. Furthermore, without the protection of vegetation, the marsh islands of Jamaica Bay would experience both more erosion and less accretion in coastal storms.

  5. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    PubMed

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  6. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  7. A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. I. Clarifying the Roles of Endodermal Barriers in the Salt Stress Response

    PubMed Central

    Foster, Kylie J.; Miklavcic, Stanley J.

    2017-01-01

    In this paper, we present a detailed and comprehensive mathematical model of active and passive ion and water transport in plant roots. Two key features are the explicit consideration of the separate, but interconnected, apoplastic, and symplastic transport pathways for ions and water, and the inclusion of both active and passive ion transport mechanisms. The model is used to investigate the respective roles of the endodermal Casparian strip and suberin lamellae in the salt stress response of plant roots. While it is thought that these barriers influence different transport pathways, it has proven difficult to distinguish their separate functions experimentally. In particular, the specific role of the suberin lamellae has been unclear. A key finding based on our simulations was that the Casparian strip is essential in preventing excessive uptake of Na+ into the plant via apoplastic bypass, with a barrier efficiency that is reflected by a sharp gradient in the steady-state radial distribution of apoplastic Na+ across the barrier. Even more significantly, this function cannot be replaced by the action of membrane transporters. The simulations also demonstrated that the positive effect of the Casparian strip of controlling Na+ uptake, was somewhat offset by its contribution to the osmotic stress component: a more effective barrier increased the detrimental osmotic stress effect. In contrast, the suberin lamellae were found to play a relatively minor, even non-essential, role in the overall response to salt stress, with the presence of the suberin lamellae resulting in only a slight reduction in Na+ uptake. However, perhaps more significantly, the simulations identified a possible role of suberin lamellae in reducing plant energy requirements by acting as a physical barrier to preventing the passive leakage of Na+ into endodermal cells. The model results suggest that more and particular experimental attention should be paid to the properties of the Casparian strip when

  8. Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, Sergio; Kirwan, Matthew L.; Mudd, Simon M.; Guntenspergen, Glenn R.; Temmerman, Stijn; D'Alpaos, Andrea; van de Koppel, Johan; Rybczyk, John; Reyes, Enrique; Craft, Chris; Clough, Jonathan

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise.

  9. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors

    USGS Publications Warehouse

    Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D'Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; Clough, J.

    2012-01-01

    Salt marshes are delicate landforms at the boundary between the sea and land. These ecosystems support a diverse biota that modifies the erosive characteristics of the substrate and mediates sediment transport processes. Here we present a broad overview of recent numerical models that quantify the formation and evolution of salt marshes under different physical and ecological drivers. In particular, we focus on the coupling between geomorphological and ecological processes and on how these feedbacks are included in predictive models of landform evolution. We describe in detail models that simulate fluxes of water, organic matter, and sediments in salt marshes. The interplay between biological and morphological processes often produces a distinct scarp between salt marshes and tidal flats. Numerical models can capture the dynamics of this boundary and the progradation or regression of the marsh in time. Tidal channels are also key features of the marsh landscape, flooding and draining the marsh platform and providing a source of sediments and nutrients to the marsh ecosystem. In recent years, several numerical models have been developed to describe the morphogenesis and long-term dynamics of salt marsh channels. Finally, salt marshes are highly sensitive to the effects of long-term climatic change. We therefore discuss in detail how numerical models have been used to determine salt marsh survival under different scenarios of sea level rise. Copyright 2012 by the American Geophysical Union.

  10. Modelling of the reactive transport for rock salt-brine in geological repository systems based on improved thermodynamic database (Invited)

    NASA Astrophysics Data System (ADS)

    Müller, W.; Alkan, H.; Xie, M.; Moog, H.; Sonnenthal, E. L.

    2009-12-01

    The release and migration of toxic contaminants from the disposed wastes is one of the main issues in long-term safety assessment of geological repositories. In the engineered and geological barriers around the nuclear waste emplacements chemical interactions between the components of the system may affect the isolation properties considerably. As the chemical issues change the transport properties in the near and far field of a nuclear repository, modelling of the transport should also take the chemistry into account. The reactive transport modelling consists of two main components: a code that combines the possible chemical reactions with thermo-hydrogeological processes interactively and a thermodynamic databank supporting the required parameters for the calculation of the chemical reactions. In the last decade many thermo-hydrogeological codes were upgraded to include the modelling of the chemical processes. TOUGHREACT is one of these codes. This is an extension of the well known simulator TOUGH2 for modelling geoprocesses. The code is developed by LBNL (Lawrence Berkeley National Laboratory, Univ. of California) for the simulation of the multi-phase transport of gas and liquid in porous media including heat transfer. After the release of its first version in 1998, this code has been applied and improved many times in conjunction with considerations for nuclear waste emplacement. A recent version has been extended to calculate ion activities in concentrated salt solutions applying the Pitzer model. In TOUGHREACT, the incorporated equation of state module ECO2N is applied as the EOS module for non-isothermal multiphase flow in a fluid system of H2O-NaCl-CO2. The partitioning of H2O and CO2 between liquid and gas phases is modelled as a function of temperature, pressure, and salinity. This module is applicable for waste repositories being expected to generate or having originally CO2 in the fluid system. The enhanced TOUGHREACT uses an EQ3/6-formatted database

  11. Salt-front movement in the Hudson River estuary, New York—Simulations by one-dimensional flow and solute-transport models

    USGS Publications Warehouse

    de Vries, M. Peter; Weiss, Lawrence A.

    2001-01-01

    The Hudson River is being considered for use as a supplemental source of water supply for New York City during droughts. One proposal entails withdrawal of Hudson River water from locations near Newburgh, Chelsea, or Kingston, but the extent to which this could cause the salt front to advance upstream to points where it could adversely affect community water supplies is unknown. The U.S. Geological Survey (USGS) one-dimensional Branch-Network Dynamic Flow model (BRANCH) was used in conjunction with the USGS one-dimensional Branched Lagrangian Solute-Transport Model (BLTM) to simulate the effect of five water-withdrawal scenarios on the salt-front location.The modeled reach contains 132 miles of the lower Hudson River between the Federal Dam at Troy and Hastings-on-Hudson (near New York City). The BRANCH model was calibrated and verified to 19 tidal-cycle discharge measurements made at 11 locations by conventional and acoustic Doppler current-profiler methods. Maximum measured instantaneous tidal flow ranged from 20,000 ft3/s (cubic feet per second) at Albany to 368,000 ft3/s at Tellers Point; daily-mean flow at Green Island near Troy ranged from 3,030 ft3/s to 45,000 ft3/s during the flow measurements. Successive ebb- and flood-flow volumes were measured and compared with computed volumes; daily-mean bias was -1.6 percent (range from -21.0 to +23.7 percent; 13.5 percent mean absolute error). Daily-mean deviation between simulated and measured stage at eight locations (from Bowline Point to Albany) over the 19 tidal-cycle measurements averaged +0.06 ft (range from -0.31 to +0.40 ft; 0.21 ft root mean square error, RMSE). These results indicate that the model can accurately simulate flow in the Hudson River under a wide range of flow, tide, and meteorological conditions.The BLTM was used to simulate chloride transport in the 61-mi reach from Turkey Point to Bowline Point under two seasonal conditions in 1990.one representing spring conditions of high inflow and low

  12. Evolution of substrate specificity for the bile salt transporter ASBT (SLC10A2)[S

    PubMed Central

    Lionarons, Daniël A.; Boyer, James L.; Cai, Shi-Ying

    2012-01-01

    The apical Na+-dependent bile salt transporter (ASBT/SLC10A2) is essential for maintaining the enterohepatic circulation of bile salts. It is not known when Slc10a2 evolved as a bile salt transporter or how it adapted to substantial changes in bile salt structure during evolution. We characterized ASBT orthologs from two primitive vertebrates, the lamprey that utilizes early 5α-bile alcohols and the skate that utilizes structurally different 5β-bile alcohols, and compared substrate specificity with ASBT from humans who utilize modern 5β-bile acids. Everted gut sacs of skate but not the more primitive lamprey transported 3H-taurocholic acid (TCA), a modern 5β-bile acid. However, molecular cloning identified ASBT orthologs from both species. Cell-based assays using recombinant ASBT/Asbt's indicate that lamprey Asbt has high affinity for 5α-bile alcohols, low affinity for 5β-bile alcohols, and lacks affinity for TCA, whereas skate Asbt showed high affinity for 5α- and 5β-bile alcohols but low affinity for TCA. In contrast, human ASBT demonstrated high affinity for all three bile salt types. These findings suggest that ASBT evolved from the earliest vertebrates by gaining affinity for modern bile salts while retaining affinity for older bile salts. Also, our results indicate that the bile salt enterohepatic circulation is conserved throughout vertebrate evolution. PMID:22669917

  13. Wind effect on salt transport variability in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Sandeep, K. K.; Pant, V.

    2017-12-01

    The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.

  14. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  15. Pore-scale dynamics of salt transport in drying porous media

    NASA Astrophysics Data System (ADS)

    Shokri, N.

    2013-12-01

    Understanding the physics of water evaporation from saline porous media is important in many hydrological processes such as land-atmosphere interactions, water management, vegetation, soil salinity, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 microns and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron X-rays energies immediately above (33.2690 keV) and below (33.0690 keV) the K-edge value of Iodine (33.1694 keV). Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. The experiment was continued for 12 hours. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. The Peclet number (describing the competition between convection and diffusion) was greater than one in our experiment resulting in higher salt concentrations closer to the evaporation surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and

  16. Effects of Monovalent and Divalent Salt Solutions on the Transport of Toxoplasma gondii in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Darnault, C. J. G.; Pullano, C. P.; Mutty, T.; L'Ollivier, C.; Dubey, J. P.; Dumetre, A.

    2017-12-01

    The pathogenic microorganism Toxoplasma gondii is a current public health threat. Knowledge of the fate and transport of T. gondii in the environment, especially the subsurface, is critical to evaluate the risk of soil and groundwater contaminations. The physico-chemcial properties of groundwater systems, i.e. solution chemistry and aquifer materials, play a key role in the interaction of biocolloids with surfaces and therefore their mobility. This research examines how different salt solutions alter the mobility of T. gondii through saturated porous media. Salt solutions containing varying ionic strengths and concentrations of sodium chloride, calcium chloride, and magnesium chloride were used to test the transport of the T. gondii oocysts. These tests were performed using quartz silica sand columns fed by a peristaltic pump in order to generate flow and transport of the biocolloids. The salt solution was pumped though the column followed by a pulse of the T. gondii oocysts, then a pulse of salt solution without oocysts, and then lastly a pulse of distilled water. Sampling of the solution exiting the columns was tested for T. gondii oocysts using qPCR in order to quantify the oocysts present. The breakthough curve results were then compared to a conservative bromide tracer test in order to determine the factors associated with the movement of these biocolloids through the sand columns. A model of the flow of the toxoplasma colloids through the sand matrix was made in order to characterize the parameters affecting the transport and retention of T. gondii occysts though saturated porous media.

  17. Ion transport mechanisms in lamellar phases of salt-doped PS-PEO block copolymer electrolytes.

    PubMed

    Sethuraman, Vaidyanathan; Mogurampelly, Santosh; Ganesan, Venkat

    2017-11-01

    We use a multiscale simulation strategy to elucidate, at an atomistic level, the mechanisms underlying ion transport in the lamellar phase of polystyrene-polyethylene oxide (PS-PEO) block copolymer (BCP) electrolytes doped with LiPF 6 salts. Explicitly, we compare the results obtained for ion transport in the microphase separated block copolymer melts to those for salt-doped PEO homopolymer melts. In addition, we also present results for dynamics of the ions individually in the PEO and PS domains of the BCP melt, and locally as a function of the distance from the lamellar interfaces. When compared to the PEO homopolymer melt, ions were found to exhibit slower dynamics in both the block copolymer (overall) and in the PEO phase of the BCP melt. Such results are shown to arise from the effects of slower polymer segmental dynamics in the BCP melt and the coordination characteristics of the ions. Polymer backbone-ion residence times analyzed as a function of distance from the interface indicate that ions have a larger residence time near the interface compared to that near the bulk of lamella, and demonstrates the influence of the glassy PS blocks and microphase segregation on the ion transport properties. Ion transport mechanisms in BCP melts reveal that there exist five distinct mechanisms for ion transport along the backbone of the chain and exhibit qualitative differences from the behavior in homopolymer melts. We also present results as a function of salt concentration which show that the mean-squared displacements of the ions decrease with increasing salt concentration, and that the ion residence times near the polymer backbone increase with increasing salt concentration.

  18. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance.

    PubMed

    Vera-Estrella, Rosario; Barkla, Bronwyn J; García-Ramírez, Liliana; Pantoja, Omar

    2005-11-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H(+)-ATPases from leaves and roots. TP Na(+)/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H(+)-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na(+)/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H(+)-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM.

  19. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse

    PubMed Central

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F.; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2018-01-01

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time– and bile-acid-concentration–dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  20. Inhibition of bile salt transport by drugs associated with liver injury in primary hepatocytes from human, monkey, dog, rat, and mouse.

    PubMed

    Zhang, Jie; He, Kan; Cai, Lining; Chen, Yu-Chuan; Yang, Yifan; Shi, Qin; Woolf, Thomas F; Ge, Weigong; Guo, Lei; Borlak, Jürgen; Tong, Weida

    2016-08-05

    Interference of bile salt transport is one of the underlying mechanisms for drug-induced liver injury (DILI). We developed a novel bile salt transport activity assay involving in situ biosynthesis of bile salts from their precursors in primary human, monkey, dog, rat, and mouse hepatocytes in suspension as well as LC-MS/MS determination of extracellular bile salts transported out of hepatocytes. Glycine- and taurine-conjugated bile acids were rapidly formed in hepatocytes and effectively transported into the extracellular medium. The bile salt formation and transport activities were time‒ and bile-acid-concentration‒dependent in primary human hepatocytes. The transport activity was inhibited by the bile salt export pump (BSEP) inhibitors ketoconazole, saquinavir, cyclosporine, and troglitazone. The assay was used to test 86 drugs for their potential to inhibit bile salt transport activity in human hepatocytes, which included 35 drugs associated with severe DILI (sDILI) and 51 with non-severe DILI (non-sDILI). Approximately 60% of the sDILI drugs showed potent inhibition (with IC50 values <50 μM), but only about 20% of the non-sDILI drugs showed this strength of inhibition in primary human hepatocytes and these drugs are associated only with cholestatic and mixed hepatocellular cholestatic (mixed) injuries. The sDILI drugs, which did not show substantial inhibition of bile salt transport activity, are likely to be associated with immune-mediated liver injury. Twenty-four drugs were also tested in monkey, dog, rat and mouse hepatocytes. Species differences in potency were observed with mouse being less sensitive than other species to inhibition of bile salt transport. In summary, a novel assay has been developed using hepatocytes in suspension from human and animal species that can be used to assess the potential for drugs and/or drug-derived metabolites to inhibit bile salt transport and/or formation activity. Drugs causing sDILI, except those by immune

  1. Finds in Belize document Late Classic Maya salt making and canoe transport

    PubMed Central

    McKillop, Heather

    2005-01-01

    How did people in preIndustrial ancient civilizations produce and distribute bulk items, such as salt, needed for everyday use by their large urban populations? This report focuses on the ancient Maya who obtained quantities of salt at cities in the interior of the Yucatan peninsula of Mexico, Belize, and Guatemala in an area where salt is scarce. I report the discovery of 41 Late Classic Maya saltworks (anno Domini 600–900) in Punta Ycacos Lagoon on the south coast of Belize, including one with the first-known ancient Maya canoe paddle. The discoveries add important empirical information for evaluating the extent of surplus salt production and river transport during the height of Late Classic civilization in the southern Maya lowlands. The discovery of the saltworks indicates that there was extensive production and distribution of goods and resources outside the cities in the interior of the Yucatan. The discovery of a wooden canoe paddle from one of the Punta Ycacos saltworks, Ka'k' Naab', ties the production of salt to its inland transport by rivers and documents the importance of canoe trade between the coast and the interior during the Late Classic. Archaeological discovery of multiple saltworks on the Belizean coast represents surplus production of salt destined largely for the inland Peten Maya during their Late Classic peak, underscoring the importance of non-state-controlled workshop production in preIndustrial societies. PMID:15809426

  2. Recycling of salt-contaminated stormwater runoff for brine production at Virginia Department of Transportation road-salt storage facilities.

    DOT National Transportation Integrated Search

    2008-01-01

    A large part of the Virginia Department of Transportation's (VDOT's) maintenance effort comprises the implementation of its snow removal and ice control program. Earlier research confirmed that VDOT captures significant volumes of salt-laden stormwat...

  3. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  4. Multi-Physics Modeling of Molten Salt Transport in Solid Oxide Membrane (SOM) Electrolysis and Recycling of Magnesium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Adam; Pati, Soobhankar

    2012-03-11

    Solid Oxide Membrane (SOM) Electrolysis is a new energy-efficient zero-emissions process for producing high-purity magnesium and high-purity oxygen directly from industrial-grade MgO. SOM Recycling combines SOM electrolysis with electrorefining, continuously and efficiently producing high-purity magnesium from low-purity partially oxidized scrap. In both processes, electrolysis and/or electrorefining take place in the crucible, where raw material is continuously fed into the molten salt electrolyte, producing magnesium vapor at the cathode and oxygen at the inert anode inside the SOM. This paper describes a three-dimensional multi-physics finite-element model of ionic current, fluid flow driven by argon bubbling and thermal buoyancy, and heat andmore » mass transport in the crucible. The model predicts the effects of stirring on the anode boundary layer and its time scale of formation, and the effect of natural convection at the outer wall. MOxST has developed this model as a tool for scale-up design of these closely-related processes.« less

  5. Effect of Vegetation on Sediment Transport across Salt Marshes

    NASA Astrophysics Data System (ADS)

    Coleman, D. J.; Kirwan, M. L.; Guntenspergen, G. R.; Ganju, N. K.

    2016-12-01

    Salt marshes are a classic example of ecogeomorphology where interactions between plants and sediment transport govern the stability of a rapidly evolving ecosystem. In particular, plants slow water velocities which facilitates deposition of mineral sediment, and the resulting change in soil elevation influences the growth and species distribution of plants. The ability of a salt marsh to withstand sea level rise (SLR) is therefore dependent, among other factors, on the availability of mineral sediment. Here we measure suspended sediment concentrations (SSC) along a transect from tidal channel to marsh interior, exploring the role biomass plays in regulating the magnitude and spatial variability in vertical accretion. Our study was conducted in Spartina alterniflora dominated salt marshes along the Atlantic Coast from Massachusetts to Georgia. At each site, we deployed and calibrated optical back scatter turbidity probes to measure SSC in 15 minute intervals in a tidal channel, on the marsh edge, and in the marsh interior. We visited each site monthly to measure plant biomass via clip plots and vertical accretion via two types of sediment tiles. Preliminary results confirm classic observations that biomass is highest at the marsh edge, and that SSC and vertical accretion decrease across the marsh platform with distance from the channel. We expect that when biomass is higher, such as in southern sites like Georgia and months late in the growing season, SSC will decay more rapidly with distance into the marsh. Higher biomass will likely also correspond to increased vertical accretion, with the greatest effect at marsh edge locations. Our study will likely demonstrate how salt marsh plants interact with sediment transport dynamics to control marsh morphology and thus contribute to marsh resilience to SLR.

  6. Salt Stress in Thellungiella halophila Activates Na+ Transport Mechanisms Required for Salinity Tolerance1

    PubMed Central

    Vera-Estrella, Rosario; Barkla, Bronwyn J.; García-Ramírez, Liliana; Pantoja, Omar

    2005-01-01

    Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. We are using salt cress (Thellungiella halophila) to identify biochemical mechanisms that enable plants to grow in saline conditions. Under salt stress, the major site of Na+ accumulation occurred in old leaves, followed by young leaves and taproots, with the least accumulation occurring in lateral roots. Salt treatment increased both the H+ transport and hydrolytic activity of salt cress tonoplast (TP) and plasma membrane (PM) H+-ATPases from leaves and roots. TP Na+/H+ exchange was greatly stimulated by growth of the plants in NaCl, both in leaves and roots. Expression of the PM H+-ATPase isoform AHA3, the Na+ transporter HKT1, and the Na+/H+ exchanger SOS1 were examined in PMs isolated from control and salt-treated salt cress roots and leaves. An increased expression of SOS1, but no changes in levels of AHA3 and HKT1, was observed. NHX1 was only detected in PM fractions of roots, and a salt-induced increase in protein expression was observed. Analysis of the levels of expression of vacuolar H+-translocating ATPase subunits showed no major changes in protein expression of subunits VHA-A or VHA-B with salt treatment; however, VHA-E showed an increased expression in leaf tissue, but not in roots, when the plants were treated with NaCl. Salt cress plants were able to distribute and store Na+ by a very strict control of ion movement across both the TP and PM. PMID:16244148

  7. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  8. Pore-scale dynamics of salt transport and distribution in drying porous media

    NASA Astrophysics Data System (ADS)

    Shokri, Nima

    2014-01-01

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI2 solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sand column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI2 concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and temporal resolution.

  9. Pore-network model of evaporation-induced salt precipitation in porous media: The effect of correlations and heterogeneity

    NASA Astrophysics Data System (ADS)

    Dashtian, Hassan; Shokri, Nima; Sahimi, Muhammad

    2018-02-01

    Salt transport and precipitation in porous media constitute a set of complex and fascinating phenomena that are of considerable interest to several important problems, ranging from storage of CO2 in geological formations, to soil fertility, and protection of pavements and roads, as well as historical monuments. The phenomena occur at the pore scale and are greatly influenced by the heterogeneity of the pore space morphology. We present a pore-network (PN) model to study the phenomena. Vapor diffusion, capillary effect at the brine-vapor interface, flow of brine, and transport of salt and its precipitation in the pores that plug the pores partially or completely are all accounted for. The drying process is modeled by the invasion percolation, while transport of salt in brine is accounted for by the convective-diffusion equation. We demonstrate that the drying patterns, the clustering and connectivity of the pore throats in which salt precipitation occurs, the saturation distribution, and the drying rate are all strongly dependent upon the pore-size distribution, the correlations among the pore sizes, and the anisotropy of the pore space caused by stratification that most natural porous media contain. In particular, if the strata are more or less parallel to the direction of injection of the gas that dries out the pore space (air, for example) and/or causes salt precipitation (CO2, for example), the drying rate increases significantly. Moreover, salt tends to precipitate in clusters of neighboring pores that are parallel to the open surface of the porous medium.

  10. Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1.

    PubMed

    Zhang, Huiming; Kim, Mi-Seong; Sun, Yan; Dowd, Scot E; Shi, Huazhong; Paré, Paul W

    2008-06-01

    Elevated sodium (Na(+)) decreases plant growth and, thereby, agricultural productivity. The ion transporter high-affinity K(+) transporter (HKT)1 controls Na(+) import in roots, yet dysfunction or overexpression of HKT1 fails to increase salt tolerance, raising questions as to HKT1's role in regulating Na(+) homeostasis. Here, we report that tissue-specific regulation of HKT1 by the soil bacterium Bacillus subtilis GB03 confers salt tolerance in Arabidopsis thaliana. Under salt stress (100 mM NaCl), GB03 concurrently down- and upregulates HKT1 expression in roots and shoots, respectively, resulting in lower Na(+) accumulation throughout the plant compared with controls. Consistent with HKT1 participation in GB03-induced salt tolerance, GB03 fails to rescue salt-stressed athkt1 mutants from stunted foliar growth and elevated total Na(+) whereas salt-stressed Na(+) export mutants sos3 show GB03-induced salt tolerance with enhanced shoot and root growth as well as reduced total Na(+). These results demonstrate that tissue-specific regulation of HKT1 is critical for managing Na(+) homeostasis in salt-stressed plants, as well as underscore the breadth and sophistication of plant-microbe interactions.

  11. HKT transporters mediate salt stress resistance in plants: from structure and function to the field

    DOE PAGES

    Hamamoto, Shin; Horie, Tomoaki; Hauser, Felix; ...

    2014-12-18

    Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. The research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. Our review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts towardmore » improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks.« less

  12. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  13. Thermo-mechanical modelling of salt caverns due to fluctuating loading conditions.

    NASA Astrophysics Data System (ADS)

    Böttcher, N.

    2015-12-01

    This work summarizes the development and application of a numerical model for the thermo-mechanical behaviour of salt caverns during cyclic gas storage. Artificial salt caverns are used for short term energy storage, such as power-to-gas or compressed air energy storage. Those applications are characterized by highly fluctuating operation pressures due to the unsteady power levels of power plants based on renewable energy. Compression and expansion of the storage gases during loading and unloading stages lead to rapidly changing temperatures in the host rock of the caverns. This affects the material behaviour of the host rock within a zone that extends several meters into the rock mass adjacent to the cavern wall, and induces thermo-mechanical stresses and alters the creep response.The proposed model features the thermodynamic behaviour of the storage medium, conductive heat transport in the host rock, as well as temperature dependent material properties of rock salt using different thermo-viscoplastic material models. The utilized constitutive models are well known and state-of-the-art in various salt mechanics applications. The model has been implemented into the open-source software platform OpenGeoSys. Thermal and mechanical processes are solved using a finite element approach, coupled via a staggered coupling scheme. The simulation results allow the conclusion, that the cavern convergence rate (and thus the efficiency of the cavern) is highly influenced by the loading cycle frequency and the resulting gas temperatures. The model therefore allows to analyse the influence of operation modes on the cavern host rock or on neighbouring facilities.

  14. HKT transporters mediate salt stress resistance in plants: from structure and function to the field.

    PubMed

    Hamamoto, Shin; Horie, Tomoaki; Hauser, Felix; Deinlein, Ulrich; Schroeder, Julian I; Uozumi, Nobuyuki

    2015-04-01

    Plant cells are sensitive to salinity stress and do not require sodium as an essential element for their growth and development. Saline soils reduce crop yields and limit available land. Research shows that HKT transporters provide a potent mechanism for mediating salt tolerance in plants. Knowledge of the molecular ion transport and regulation mechanisms and the control of HKT gene expression are crucial for understanding the mechanisms by which HKT transporters enhance crop performance under salinity stress. This review focuses on HKT transporters in monocot plants and in Arabidopsis as a dicot plant, as a guide to efforts toward improving salt tolerance of plants for increasing the production of crops and bioenergy feedstocks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-09-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the

  16. Increasing transports of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-06-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intensive of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21 century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport series has made it difficult to identify trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv =106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW =1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall trend over the two decades of observation was 9 ± 8% for volume transport and 18 ± 9% for heat transport (95% confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the Atlantic inflow

  17. Pore-scale dynamics of salt transport and distribution in drying porous media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shokri, Nima, E-mail: nima.shokri@manchester.ac.uk

    2014-01-15

    Understanding the physics of water evaporation from saline porous media is important in many natural and engineering applications such as durability of building materials and preservation of monuments, water quality, and mineral-fluid interactions. We applied synchrotron x-ray micro-tomography to investigate the pore-scale dynamics of dissolved salt distribution in a three dimensional drying saline porous media using a cylindrical plastic column (15 mm in height and 8 mm in diameter) packed with sand particles saturated with CaI{sub 2} solution (5% concentration by mass) with a spatial and temporal resolution of 12 μm and 30 min, respectively. Every time the drying sandmore » column was set to be imaged, two different images were recorded using distinct synchrotron x-rays energies immediately above and below the K-edge value of Iodine. Taking the difference between pixel gray values enabled us to delineate the spatial and temporal distribution of CaI{sub 2} concentration at pore scale. Results indicate that during early stages of evaporation, air preferentially invades large pores at the surface while finer pores remain saturated and connected to the wet zone at bottom via capillary-induced liquid flow acting as evaporating spots. Consequently, the salt concentration increases preferentially in finer pores where evaporation occurs. Higher salt concentration was observed close to the evaporating surface indicating a convection-driven process. The obtained salt profiles were used to evaluate the numerical solution of the convection-diffusion equation (CDE). Results show that the macro-scale CDE could capture the overall trend of the measured salt profiles but fail to produce the exact slope of the profiles. Our results shed new insight on the physics of salt transport and its complex dynamics in drying porous media and establish synchrotron x-ray tomography as an effective tool to investigate the dynamics of salt transport in porous media at high spatial and

  18. Role of solute-transport models in the analysis of groundwater salinity problems in agricultural areas

    USGS Publications Warehouse

    Konikow, Leonard F.

    1981-01-01

    Undesirable salinity increases occur in both groundwater and surface water and are commonly related to agricultural practices. Groundwater recharge from precipitation or irrigation will transport and disperse residual salts concentrated by evapotranspiration, salts leached from soil and aquifer materials, as well as some dissolved fertilizers and pesticides. Where stream salinity is affected by agricultural practices, the increases in salt load usually are attributable mostly to a groundwater component of flow. Thus, efforts to predict, manage, or control stream salinity increases should consider the role of groundwater in salt transport. Two examples of groundwater salinity problems in Colorado, U.S.A., illustrate that a model which simulates accurately the transport and dispersion of solutes in flowing groundwater can be (1) a valuable investigative tool to help understand the processes and parameters controlling the movement and fate of the salt, and (2) a valuable management tool for predicting responses and optimizing the development and use of the total water resource. ?? 1981.

  19. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  20. The significance of salt reconstruction for basin modeling results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, H.; Blomvik, V.; Bonnell, L.

    1996-12-31

    Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT{trademark} basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment {open_quotes}pods{close_quotes}. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less

  1. The significance of salt reconstruction for basin modeling results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, H.; Blomvik, V.; Bonnell, L.

    1996-01-01

    Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT[trademark] basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment [open quotes]pods[close quotes]. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less

  2. SOS2 Promotes Salt Tolerance in Part by Interacting with the Vacuolar H+-ATPase and Upregulating Its Transport Activity▿

    PubMed Central

    Batelli, Giorgia; Verslues, Paul E.; Agius, Fernanda; Qiu, Quansheng; Fujii, Hiroaki; Pan, Songqin; Schumaker, Karen S.; Grillo, Stefania; Zhu, Jian-Kang

    2007-01-01

    The salt overly sensitive (SOS) pathway is critical for plant salt stress tolerance and has a key role in regulating ion transport under salt stress. To further investigate salt tolerance factors regulated by the SOS pathway, we expressed an N-terminal fusion of the improved tandem affinity purification tag to SOS2 (NTAP-SOS2) in sos2-2 mutant plants. Expression of NTAP-SOS2 rescued the salt tolerance defect of sos2-2 plants, indicating that the fusion protein was functional in vivo. Tandem affinity purification of NTAP-SOS2-containing protein complexes and subsequent liquid chromatography-tandem mass spectrometry analysis indicated that subunits A, B, C, E, and G of the peripheral cytoplasmic domain of the vacuolar H+-ATPase (V-ATPase) were present in a SOS2-containing protein complex. Parallel purification of samples from control and salt-stressed NTAP-SOS2/sos2-2 plants demonstrated that each of these V-ATPase subunits was more abundant in NTAP-SOS2 complexes isolated from salt-stressed plants, suggesting that the interaction may be enhanced by salt stress. Yeast two-hybrid analysis showed that SOS2 interacted directly with V-ATPase regulatory subunits B1 and B2. The importance of the SOS2 interaction with the V-ATPase was shown at the cellular level by reduced H+ transport activity of tonoplast vesicles isolated from sos2-2 cells relative to vesicles from wild-type cells. In addition, seedlings of the det3 mutant, which has reduced V-ATPase activity, were found to be severely salt sensitive. Our results suggest that regulation of V-ATPase activity is an additional key function of SOS2 in coordinating changes in ion transport during salt stress and in promoting salt tolerance. PMID:17875927

  3. Tidally averaged water and salt transport velocities and their distributions in the Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Zhu, Shouxian; Sheng, Jinyu; Ji, Xiaomei

    2016-09-01

    Tidally averaged transports of water and substance are important physical quantities over estuarine, coastal, and shelf waters, but they have been indistinguishably expressed in terms of the Eulerian residual current (ERC) or Lagrangian residual current (LRC) in many previous studies. In this study, the tidally averaged transport velocities for water (TA-WTV) and substance (TA-STV) are considered based on residual fluxes. The main advantage of these newly defined transport velocities is that they can be used to quantify differences in amplitude and direction between the tidally averaged water and substance transports. The two-dimensional TA-STV is interpreted as the transport due to the residual flow of water, tidal pumping, and vertical shear. The three-dimensional TA-STV includes transports from the residual flow of water and tidal pumping. Numerical results of sea surface elevations, currents, and salinity produced by a triply nested coastal ocean model for the Pearl River Estuary (PRE) are used to calculate the TA-WTV and TA-STV for salt (TA-STVsa). The general features of the TA-WTV and TA-STVsa are similar over the most part of the PRE but differ significantly in amplitude and direction over the salinity frontal zone. The ERC and LRC calculated from model results are also significantly different from the TA-STVsa over the salinity frontal zone.

  4. Modelling Watershed and Estuarine Controls on Salt Marsh Distributions

    NASA Astrophysics Data System (ADS)

    Yousefi Lalimi, F.; Marani, M.; Murray, A. B.; D'Alpaos, A.

    2017-12-01

    The formation and evolution of tidal platforms have been extensively studied through observations and models, describing landform dynamics as a result of the local interactions and feedbacks among hydrodynamics, vegetation, and sediment transport. However, existing work mainly focuses on individual marsh platforms and, possibly, their immediate surrounding, such that the influence and controls on marsh dynamics of inland areas (through fluvial inputs) and of exchanges with the ocean have not been comprehensively and simultaneously accounted for. Here, we develop and use a process-based model to evaluate the relative role of watershed, estuarine, and ocean controls on salt marsh accretionary and depositional/erosional dynamics and define how these factors interact to determine salt marsh resilience to environmental change at the whole-estuary scale. Our results, in line with previous work, show that no stable equilibrium exists for the erosional dynamics of the marsh/tidal flat boundary. In addition, we find that under some circumstances, vertical accretion/erosion dynamics can lead to transitions between salt marsh and tidal flat equilibrium states that occur much more rapidly than marsh/tidal flat boundary erosion or accretion could. We further define, in the multidimensional space of estuarine-scale morphodynamic forcings, the basins of attractions leading to marsh-dominated and tidal-flat-dominated estuaries. The relatively slow dynamics asymptotically leading to marsh- or tidal-flat- dominance in many cases suggest that estuaries are likely to be found, at any given time, in a transition state dictated by temporal variations in environmental forcings.

  5. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants.

    PubMed

    Chen, Huatao; He, Hui; Yu, Deyue

    2011-01-01

    Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38-49% identity with other plant HKT-like sequences. RT-PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non-transgenic plants. To investigate the role of GmHKT1 in K(+) and Na(+) transport, we compared K(+) and Na(+) accumulation in roots and shoots of wild-type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K(+) and Na(+) transport in roots and shoots, and regulated Na(+) /K(+) homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress. Copyright © Physiologia Plantarum 2010.

  6. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  7. Salt movements and faulting of the overburden - can numerical modeling predict the fault patterns above salt structures?

    NASA Astrophysics Data System (ADS)

    Clausen, O. R.; Egholm, D. L.; Wesenberg, R.

    2012-04-01

    Salt deformation has been the topic of numerous studies through the 20th century and up until present because of the close relation between commercial hydrocarbons and salt structure provinces of the world (Hudec & Jackson, 2007). The fault distribution in sediments above salt structures influences among other things the productivity due to the segmentation of the reservoir (Stewart 2006). 3D seismic data above salt structures can map such fault patterns in great detail and studies have shown that a variety of fault patterns exists. Yet, most patterns fall between two end members: concentric and radiating fault patterns. Here we use a modified version of the numerical spring-slider model introduced by Malthe-Sørenssen et al.(1998a) for simulating the emergence of small scale faults and fractures above a rising salt structure. The three-dimensional spring-slider model enables us to control the rheology of the deforming overburden, the mechanical coupling between the overburden and the underlying salt, as well as the kinematics of the moving salt structure. In this presentation, we demonstrate how the horizontal component on the salt motion influences the fracture patterns within the overburden. The modeling shows that purely vertical movement of the salt introduces a mesh of concentric normal faults in the overburden, and that the frequency of radiating faults increases with the amount of lateral movements across the salt-overburden interface. The two end-member fault patterns (concentric vs. radiating) can thus be linked to two different styles of salt movement: i) the vertical rising of a salt indenter and ii) the inflation of a 'salt-balloon' beneath the deformed strata. The results are in accordance with published analogue and theoretical models, as well as natural systems, and the model may - when used appropriately - provide new insight into how the internal dynamics of the salt in a structure controls the generation of fault patterns above the structure. The

  8. Kinetic characterization of bile salt transport by human NTCP (SLC10A1).

    PubMed

    Jani, Márton; Beéry, Erzsébet; Heslop, Teresa; Tóth, Beáta; Jagota, Bhavana; Kis, Emese; Kevin Park, B; Krajcsi, Peter; Weaver, Richard J

    2018-02-01

    The transport of bile acids facilitated by NTCP is an important factor in establishing bile flow. In this study, we examine the kinetics associated with human NTCP-dependent transport of two quantitatively important bile acids comprising the human bile acid pool, chenodeoxycholic acid and glycine-chenodeoxycholate, and secondary bile salt, 3-sulfo-glycolithocholate of potential toxicological significance. The study employed human NTCP overexpressing Chinese Hamster Ovary cells and results compared with taurocholate, a prototypical bile salt commonly used in transporter studies. GCDC and 3S-GLC but not CDCA were transported by NTCP. The efficient uptake of GCDC, TCA and 3S-GLC by NTCP enabled the determination of kinetics. GCDC displayed a lower K M (0.569±0.318μM) than TCA (6.44±3.83μM) and 3S-GLC (3.78±1.17μM). The apparent CL int value for GCDC was 20-fold greater (153±53μl/mg protein/min) than the apparent CL int for TCA (6.92±4.72μl/mg protein/min) and apparent CL int for 3S-GLC (8.05±1.33μl/mg protein/min). These kinetic results provide important complementary data on the substrate selectivity and specificity of NTCP to transport bile acids. NTCP transports GCDC with greater efficiency than TCA and has the same efficacy for 3S-GLC and TCA. Copyright © 2017. Published by Elsevier Ltd.

  9. Mathematical model of salt cavern leaching for gas storage in high-insoluble salt formations.

    PubMed

    Li, Jinlong; Shi, Xilin; Yang, Chunhe; Li, Yinping; Wang, Tongtao; Ma, Hongling

    2018-01-10

    A mathematical model is established to predict the salt cavern development during leaching in high-insoluble salt formations. The salt-brine mass transfer rate is introduced, and the effects of the insoluble sediments on the development of the cavern are included. Considering the salt mass conservation in the cavern, the couple equations of the cavern shape, brine concentration and brine velocity are derived. According to the falling and accumulating rules of the insoluble particles, the governing equations of the insoluble sediments are deduced. A computer program using VC++ language is developed to obtain the numerical solution of these equations. To verify the proposed model, the leaching processes of two salt caverns of Jintan underground gas storage are simulated by the program, using the actual geological and technological parameters. The same simulation is performed by the current mainstream leaching software in China. The simulation results of the two programs are compared with the available field data. It shows that the proposed software is more accurate on the shape prediction of the cavern bottom and roof, which demonstrates the reliability and applicability of the model.

  10. Salt tectonics in an experimental turbiditic tank

    NASA Astrophysics Data System (ADS)

    Sellier, Nicolas; Vendeville, Bruno

    2010-05-01

    We modelled the effect of the deposition of clastic sediments wedges along passive margin by combining two different experimental approaches. The first approach, which uses flume experiments in order to model turbiditic transport and deposition, had focused, so far mainly on the stratigraphic architecture and flow properties. But most experiments have not accounted for the impact of syndepositional deformation. The second approach is the classic tectonic modelling (sand-box experiments) is aimed essentially at understanding deformation, for example the deformation of a sediment wedge deposited onto a mobile salt layer. However, with this approach, the sediment transport processes are crudely modelled by adding each sediment layer uniformly, regardless of the potential influence of the sea-floor bathymetry on the depositional pattern. We designed a new tectono-stratigraphic modelling tank, which combines modelling of the turbiditic transport and deposition, and salt-related deformation driven by sediment loading. The set-up comprises a channel connected to a main water tank. A deformation box is placed at the mouth of the channel, on the base of the tank. The base of the box can be filled with various kinds of substrates either rigid (sand) or viscous (silicone polymer, simulating mobile salt layer having varying length and thickness). A mixture of fine-grained powder and water is maintained in suspension in a container, and then released and channelled toward the basin, generating an analogue of basin-floor fans or lobes. We investigated the effect of depositing several consecutive turbiditic lobes on the deformation of the salt body and its overburden. The dynamics of experimental turbidity currents lead to deposits whose thickness varied gradually laterally: the lobe is thick in the proximal region and thins progressively distally, thus creating a very gentle regional surface slope. As the fan grows by episodic deposition of successive turbiditic lobes, the model

  11. Progress in modeling solidification in molten salt coolants

    NASA Astrophysics Data System (ADS)

    Tano, Mauricio; Rubiolo, Pablo; Doche, Olivier

    2017-10-01

    Molten salts have been proposed as heat carrier media in the nuclear and concentrating solar power plants. Due to their high melting temperature, solidification of the salts is expected to occur during routine and accidental scenarios. Furthermore, passive safety systems based on the solidification of these salts are being studied. The following article presents new developments in the modeling of eutectic molten salts by means of a multiphase, multicomponent, phase-field model. Besides, an application of this methodology for the eutectic solidification process of the ternary system LiF-KF-NaF is presented. The model predictions are compared with a newly developed semi-analytical solution for directional eutectic solidification at stable growth rate. A good qualitative agreement is obtained between the two approaches. The results obtained with the phase-field model are then used for calculating the homogenized properties of the solid phase distribution. These properties can then be included in a mixture macroscale model, more suitable for industrial applications.

  12. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974

  13. A salt oscillator in the glacial northern Atlantic? part II: A 'scale analysis' model

    NASA Astrophysics Data System (ADS)

    Birchfield, G. Edward; Broecker, Wallace S.

    1990-12-01

    A proposal has been made by Broecker et al. (1990) that rapid changes on a time scale of a thousand years or so, seen over much of the last major glacial in the Greenland ice core record, represent significant climate changes and are caused by a salt oscillator in the glacial Atlantic. This proposal is examined in terms of a rudimentary quantitative model. Scale analysis asserts that heat transported to the high-latitude atmosphere when the thermohaline circulation is turned on, is large enough to produce the melting rates found by Fairbanks (1989) for the time interval around that of the Younger Dryas event and that these melting rates are of the same order of magnitude as the mass flux associated with water vapor flux to the Pacific Ocean estimated by Broecker (1989). Scale analysis also suggests that the salinity fluxes associated with 1) the water vapor flux mechanism, 2) the rapid melting episodes of Fairbanks, 3) possibly ice sheet growth events, 4) net transport by the thermohaline circulation and 5) net transport by turbulent eddy mixing are roughly of the same order of magnitude and therefore may be important mechanisms for producing salinity oscillations on a time scale of a few thousands of years, (see Broecker, 1990). By integration of simple salt conservation equations, it is found that model oscillations with a period of a few thousand years occur over a significant range of salinity fluxes; estimated fluxes fall well within the range for which oscillations exist. The model also suggests that there may exist close coupling between the European-Scandinavian ice sheets and the bimodal response of the oscillator; that is, significant increases or decreases in continental ice volume may accompany each complete cycle of the oscillator. In addition, it appears that continental ice may be required for the salt oscillator to function. A crucial element, which cannot adequately be investigated with the present model, concerns the local effect of salinity

  14. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.

  15. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  16. Intelligent transportation systems at the 2002 Salt Lake City Olympic Games : traffic management and traveler information case study

    DOT National Transportation Integrated Search

    2003-04-01

    Utah Department of Transportation (UDOT) contracted for a series of evaluation efforts associated with the development, deployment, and operation of their Intelligent Transportation Systems (ITS) in the Salt Lake City Region, which are known as the C...

  17. The effect of vapor transport of acidic aerosols on salt speciation in Antarctic soils collected near the polar plateau

    NASA Astrophysics Data System (ADS)

    Graly, J. A.; Licht, K.; Kaplan, M. R.; Druschel, G.

    2017-12-01

    Vapor is the primary phase in which water is transported through soils where temperatures rarely, if ever, reach the melting point. In terrestrial settings, such as Antarctica, these cold, dry soils accumulate appreciable quantities of salts, primarily derived from atmospheric aerosols. Past studies have often analyzed the transport of salts to depth using solubility parameters, which assumes liquid water can percolate through porous media. We analyzed the distribution of salts in an Antarctic blue ice moraine, located near the polar plateau (84˚S, 163˚E). Here moraine soils are progressively older with distance from active ice, the oldest soils dating to several hundred ka. Changes in salt content were analyzed both with depth and with soil age. Of atmospheric salts analyzed, chloride and fluoride salts are fluxed to greatest depth, followed by nitrate salts. Sulfate and borate salts are both relatively immobile in the soil and are not detected below the top several cm. This distribution runs counter to the solubility of the salt species, with borate having high solubility and fluoride and nitrate both being relatively insoluble. Instead, the vapor pressures of the acids from which the salts form correspond very strongly with the relative abundance of the salts at depth. This suggests that percolation of liquid water plays a minimal role in moving salts to depth. Instead salts move to depth as vapors of acidic aerosols. With soil age, surface concentrations of the more mobile salts (nitrate, chloride, and fluoride) show logarithmic or power-law increases in concentrations, whereas boron and sulfate increase linearly. This is consistent with the former's progressive flux to depth. An exception to this pattern occurs in a few of the oldest soils, where substantially higher concentrations of the mobile salts are found in the top soils. This suggests that the direction of net vapor flux may reverse once sufficient salt concentration is developed at depth, though

  18. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats

    PubMed Central

    Cil, Onur; Esteva-Font, Cristina; Tas, Sadik Taskin; Su, Tao; Lee, Sujin; Anderson, Marc O.; Ertunc, Mert; Verkman, A. S.

    2015-01-01

    Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics (‘urearetics’) with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10–20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2–3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 hours, and a urine concentration of 20–40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of Syndrome of Inappropriate Antidiuretic Hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition. PMID:25993324

  19. Salt-sparing diuretic action of a water-soluble urea analog inhibitor of urea transporters UT-A and UT-B in rats.

    PubMed

    Cil, Onur; Esteva-Font, Cristina; Tas, Sadik Taskin; Su, Tao; Lee, Sujin; Anderson, Marc O; Ertunc, Mert; Verkman, Alan S

    2015-08-01

    Inhibitors of kidney urea transporter (UT) proteins have potential use as salt-sparing diuretics ('urearetics') with a different mechanism of action than diuretics that target salt transporters. To study UT inhibition in rats, we screened about 10,000 drugs, natural products and urea analogs for inhibition of rat UT-A1. Drug and natural product screening found nicotine, sanguinarine and an indolcarbonylchromenone with IC50 of 10-20 μM. Urea analog screening found methylacetamide and dimethylthiourea (DMTU). DMTU fully and reversibly inhibited rat UT-A1 and UT-B by a noncompetitive mechanism with IC50 of 2-3 mM. Homology modeling and docking computations suggested DMTU binding sites on rat UT-A1. Following a single intraperitoneal injection of 500 mg/kg DMTU, peak plasma concentration was 9 mM with t1/2 of about 10 h, and a urine concentration of 20-40 mM. Rats chronically treated with DMTU had a sustained, reversible reduction in urine osmolality from 1800 to 600 mOsm, a 3-fold increase in urine output, and mild hypokalemia. DMTU did not impair urinary concentrating function in rats on a low protein diet. Compared to furosemide-treated rats, the DMTU-treated rats had greater diuresis and reduced urinary salt loss. In a model of syndrome of inappropriate antidiuretic hormone secretion, DMTU treatment prevented hyponatremia and water retention produced by water-loading in dDAVP-treated rats. Thus, our results establish a rat model of UT inhibition and demonstrate the diuretic efficacy of UT inhibition.

  20. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter

    PubMed Central

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A.; Boyer, James L.

    2017-01-01

    The Na+-dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na+-dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea. The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [3H]TCA uptake assay revealed that skSlc10a1 functioned as a Na+-dependent transporter, but with low affinity for TCA (Km = 92.4 µM) and scymnol sulfate (Ki = 31 µM), compared with hNTCP (TCA, Km = 5.4 µM; Scymnol sulfate, Ki = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na+-dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. PMID:28077388

  1. Na+-taurocholate cotransporting polypeptide (NTCP/SLC10A1) ortholog in the marine skate Leucoraja erinacea is not a physiological bile salt transporter.

    PubMed

    Yu, Dongke; Zhang, Han; Lionarons, Daniel A; Boyer, James L; Cai, Shi-Ying

    2017-04-01

    The Na + -dependent taurocholate cotransporting polypeptide (NTCP/SLC10A1) is a hepatocyte-specific solute carrier, which plays an important role in maintaining bile salt homeostasis in mammals. The absence of a hepatic Na + -dependent bile salt transport system in marine skate and rainbow trout raises a question regarding the function of the Slc10a1 gene in these species. Here, we have characterized the Slc10a1 gene in the marine skate, Leucoraja erinacea The transcript of skate Slc10a1 (skSlc10a1) encodes 319 amino acids and shares 46% identity to human NTCP (hNTCP) with similar topology to mammalian NTCP. SkSlc10a1 mRNA was mostly confined to the brain and testes with minimal expression in the liver. An FXR-bile salt reporter assay indicated that skSlc10a1 transported taurocholic acid (TCA) and scymnol sulfate, but not as effectively as hNTCP. An [ 3 H]TCA uptake assay revealed that skSlc10a1 functioned as a Na + -dependent transporter, but with low affinity for TCA ( K m = 92.4 µM) and scymnol sulfate ( K i = 31 µM), compared with hNTCP (TCA, K m = 5.4 µM; Scymnol sulfate, K i = 3.5 µM). In contrast, the bile salt concentration in skate plasma was 2 µM, similar to levels seen in mammals. Interestingly, skSlc10a1 demonstrated transport activity for the neurosteroids dehydroepiandrosterone sulfate and estrone-3-sulfate at physiological concentration, similar to hNTCP. Together, our findings indicate that skSlc10a1 is not a physiological bile salt transporter, providing a molecular explanation for the absence of a hepatic Na + -dependent bile salt uptake system in skate. We speculate that Slc10a1 is a neurosteroid transporter in skate that gained its substrate specificity for bile salts later in vertebrate evolution. Copyright © 2017 the American Physiological Society.

  2. A CIPK protein kinase targets sucrose transporter MdSUT2.2 at Ser254 for phosphorylation to enhance salt tolerance.

    PubMed

    Ma, Qi-Jun; Sun, Mei-Hong; Kang, Hui; Lu, Jing; You, Chun-Xiang; Hao, Yu-Jin

    2018-05-23

    Soil salinity is one of the major abiotic stressors that negatively affect crop growth and yield. Salt stress can regulate antioxidants and the accumulation of osmoprotectants. In the study, a sucrose transporter MdSUT2.2 was identified in apple. Overexpression of MdSUT2.2 gene increased salt tolerance in the transgenic apple, compared with the WT control 'Gala'. In addition, it was found that protein MdSUT2.2 was phosphorylated at Ser 254 site in response to salt. A DUAL membrane yeast hybridization system through an apple cDNA library demonstrated that a protein kinase MdCIPK13 interacted with MdSUT2.2. A series of transgenic analysis in apple calli showed that MdCIPK13 was required for the salt-induced phosphorylation of MdSUT2.2 protein and enhanced its stability and transport activity. Finally, it was found that MdCIPK13 improved salt resistance in an MdSUT2.2-dependent manner. These findings had enriched our understanding of the molecular mechanisms underlying abiotic stress. This article is protected by copyright. All rights reserved.

  3. A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance.

    PubMed

    Ali, Akhtar; Raddatz, Natalia; Aman, Rashid; Kim, Songmi; Park, Hyeong Cheol; Jan, Masood; Baek, Dongwon; Khan, Irfan Ullah; Oh, Dong-Ha; Lee, Sang Yeol; Bressan, Ray A; Lee, Keun Woo; Maggio, Albino; Pardo, Jose M; Bohnert, Hans J; Yun, Dae-Jin

    2016-07-01

    A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Vectorial transport of unconjugated and conjugated bile salts by monolayers of LLC-PK1 cells doubly transfected with human NTCP and BSEP or with rat Ntcp and Bsep.

    PubMed

    Mita, Sachiko; Suzuki, Hiroshi; Akita, Hidetaka; Hayashi, Hisamitsu; Onuki, Reiko; Hofmann, Alan F; Sugiyama, Yuichi

    2006-03-01

    Na(+)-taurocholate-cotransporting peptide (NTCP)/SLC10A1 and bile salt export pump (BSEP)/ABCB11 synergistically play an important role in the transport of bile salts by the hepatocyte. In this study, we transfected human NTCP and BSEP or rat Ntcp and Bsep into LLC-PK1 cells, a cell line devoid of bile salts transporters. Transport by these cells was characterized with a focus on substrate specificity between rats and humans. The basal to apical flux of taurocholate across NTCP- and BSEP-expressing LLC-PK1 monolayers was 10 times higher than that in the opposite direction, whereas the flux across the monolayer of control and NTCP or BSEP single-expressing cells did not show any vectorial transport. The basal to apical flux of taurocholate was saturated with a K(m) value of 20 microM. Vectorial transcellular transport was also observed for cholate, chenodeoxycholate, ursodeoxycholate, their taurine and glycine conjugates, and taurodeoxycholate and glycodeoxycholate, whereas no transport of lithocholate was detected. To evaluate the respective functions of NTCP and BSEP and to compare them with those of rat Ntcp and Bsep, we calculated the clearance by each transporter in this system. A good correlation in the clearance of the examined bile salts (cholate, chenodeoxycholate, ursodeoxycholate, and their taurine or glycine conjugates) was observed between transport by human and that of rat transporters in terms of their rank order: for NTCP, taurine conjugates > glycine conjugates > unconjugated bile salts, and for BSEP, unconjugated bile salts and glycine conjugates > taurine conjugates. In conclusion, the substrate specificity of human and rat NTCP and BSEP appear to be very similar at least for monovalent bile salts under physiological conditions.

  5. The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes

    PubMed Central

    Assaha, Dekoum V. M.; Ueda, Akihiro; Saneoka, Hirofumi; Al-Yahyai, Rashid; Yaish, Mahmoud W.

    2017-01-01

    Ionic stress is one of the most important components of salinity and is brought about by excess Na+ accumulation, especially in the aerial parts of plants. Since Na+ interferes with K+ homeostasis, and especially given its involvement in numerous metabolic processes, maintaining a balanced cytosolic Na+/K+ ratio has become a key salinity tolerance mechanism. Achieving this homeostatic balance requires the activity of Na+ and K+ transporters and/or channels. The mechanism of Na+ and K+ uptake and translocation in glycophytes and halophytes is essentially the same, but glycophytes are more susceptible to ionic stress than halophytes. The transport mechanisms involve Na+ and/or K+ transporters and channels as well as non-selective cation channels. Thus, the question arises of whether the difference in salt tolerance between glycophytes and halophytes could be the result of differences in the proteins or in the expression of genes coding the transporters. The aim of this review is to seek answers to this question by examining the role of major Na+ and K+ transporters and channels in Na+ and K+ uptake, translocation and intracellular homeostasis in glycophytes. It turns out that these transporters and channels are equally important for the adaptation of glycophytes as they are for halophytes, but differential gene expression, structural differences in the proteins (single nucleotide substitutions, impacting affinity) and post-translational modifications (phosphorylation) account for the differences in their activity and hence the differences in tolerance between the two groups. Furthermore, lack of the ability to maintain stable plasma membrane (PM) potentials following Na+-induced depolarization is also crucial for salt stress tolerance. This stable membrane potential is sustained by the activity of Na+/H+ antiporters such as SOS1 at the PM. Moreover, novel regulators of Na+ and K+ transport pathways including the Nax1 and Nax2 loci regulation of SOS1 expression and

  6. The Receptacle Model of Salting-In by Tetramethylammonium Ions

    PubMed Central

    Hribar–Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2010-01-01

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the MB + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series’ as atomic ions do. PMID:21028768

  7. Modeling salt movement and halophytic crop growth on marginal lands with the APEX model

    NASA Astrophysics Data System (ADS)

    Goehring, N.; Saito, L.; Verburg, P.; Jeong, J.; Garrett, A.

    2016-12-01

    Saline soils negatively impact crop productivity in nearly 20% of irrigated agricultural lands worldwide. At these saline sites, cultivation of highly salt-tolerant plants, known as halophytes, may increase productivity compared to conventional salt-sensitive crops (i.e., glycophytes), thereby increasing the economic potential of marginal lands. Through a variety of mechanisms, halophytes are more effective than glycophytes at excluding, accumulating, and secreting salts from their tissues. Each mechanism can have a different impact on the salt balance in the plant-soil-water system. To date, little information is available to understand the long-term impacts of halophyte cultivation on environmental quality. This project utilizes the Agricultural Policy/Environmental Extender (APEX) model, developed by the US Department of Agriculture, to model the growth and production of two halophytic crops. The crops being modeled include quinoa (Chenopodium quinoa), which has utilities for human consumption and forage, and AC Saltlander green wheatgrass (Elymus hoffmannii), which has forage utility. APEX simulates salt movement between soil layers and accounts for the salt balance in the plant-soil-water system, including salinity in irrigation water and crop-specific salt uptake. Key crop growth parameters in APEX are derived from experimental growth data obtained under non-stressed conditions. Data from greenhouse and field experiments in which quinoa and AC Saltlander were grown under various soil salinity and irrigation salinity treatments are being used to parameterize, calibrate, and test the model. This presentation will discuss progress on crop parameterization and completed model runs under different salt-affected soil and irrigation conditions.

  8. Making Plants Break a Sweat: the Structure, Function, and Evolution of Plant Salt Glands

    PubMed Central

    Dassanayake, Maheshi; Larkin, John C.

    2017-01-01

    Salt stress is a complex trait that poses a grand challenge in developing new crops better adapted to saline environments. Some plants, called recretohalophytes, that have naturally evolved to secrete excess salts through salt glands, offer an underexplored genetic resource for examining how plant development, anatomy, and physiology integrate to prevent excess salt from building up to toxic levels in plant tissue. In this review we examine the structure and evolution of salt glands, salt gland-specific gene expression, and the possibility that all salt glands have originated via evolutionary modifications of trichomes. Salt secretion via salt glands is found in more than 50 species in 14 angiosperm families distributed in caryophyllales, asterids, rosids, and grasses. The salt glands of these distantly related clades can be grouped into four structural classes. Although salt glands appear to have originated independently at least 12 times, they share convergently evolved features that facilitate salt compartmentalization and excretion. We review the structural diversity and evolution of salt glands, major transporters and proteins associated with salt transport and secretion in halophytes, salt gland relevant gene expression regulation, and the prospect for using new genomic and transcriptomic tools in combination with information from model organisms to better understand how salt glands contribute to salt tolerance. Finally, we consider the prospects for using this knowledge to engineer salt glands to increase salt tolerance in model species, and ultimately in crops. PMID:28400779

  9. Finite Element Modeling of In-Situ Stresses near Salt Bodies

    NASA Astrophysics Data System (ADS)

    Sanz, P.; Gray, G.; Albertz, M.

    2011-12-01

    The in-situ stress field is modified around salt bodies because salt rock has no ability to sustain shear stresses. A reliable prediction of stresses near salt is important for planning safe and economic drilling programs. A better understanding of in-situ stresses before drilling can be achieved using finite element models that account for the creeping salt behavior and the elastoplastic response of the surrounding sediments. Two different geomechanical modeling techniques can be distinguished: "dynamic" modeling and "static" modeling. "Dynamic" models, also known as forward models, simulate the development of structural processes in geologic time. This technique provides the evolution of stresses and so it is used to simulate the initiation and development of structural features, such as, faults, folds, fractures, and salt diapers. The original or initial configuration and the unknown final configuration of forward models are usually significantly different therefore geometric non-linearities need to be considered. These models may be difficult to constrain when different tectonic, deposition, and erosion events, and the timing among them, needs to be accounted for. While dynamic models provide insight into the stress evolution, in many cases is very challenging, if not impossible, to forward model a configuration to its known present-day geometry; particularly in the case of salt layers that evolve into highly irregular and complex geometries. Alternatively, "static" models use the present-day geometry and present-day far-field stresses to estimate the present-day in-situ stress field inside a domain. In this case, it is appropriate to use a small deformation approach because initial and final configurations should be very similar, and more important, because the equilibrium of stresses should be stated in the present-day initial configuration. The initial stresses and the applied boundary conditions are constrained by the geologic setting and available data

  10. Charging and Transport Dynamics of a Flow-Through Electrode Capacitive Deionization System.

    PubMed

    Qu, Yatian; Campbell, Patrick G; Hemmatifar, Ali; Knipe, Jennifer M; Loeb, Colin K; Reidy, John J; Hubert, Mckenzie A; Stadermann, Michael; Santiago, Juan G

    2018-01-11

    We present a study of the interplay among electric charging rate, capacitance, salt removal, and mass transport in "flow-through electrode" capacitive deionization (CDI) systems. We develop two models describing coupled transport and electro-adsorption/desorption which capture salt removal dynamics. The first model is a simplified, unsteady zero-dimensional volume-averaged model which identifies dimensionless parameters and figures of merits associated with cell performance. The second model is a higher fidelity area-averaged model which captures both spatial and temporal responses of charging. We further conducted an experimental study of these dynamics and considered two salt transport regimes: (1) advection-limited regime and (2) dispersion-limited regime. We use these data to validate models. The study shows that, in the advection-limited regime, differential charge efficiency determines the salt adsorption at the early stage of the deionization process. Subsequently, charging transitions to a quasi-steady state where salt removal rate is proportional to applied current scaled by the inlet flow rate. In the dispersion-dominated regime, differential charge efficiency, cell volume, and diffusion rates govern adsorption dynamics and flow rate has little effect. In both regimes, the interplay among mass transport rate, differential charge efficiency, cell capacitance, and (electric) charging current governs salt removal in flow-through electrode CDI.

  11. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  12. Effect of winds and waves on salt intrusion in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  13. A Role for Cytoplasmic Structural Proteins in the Transport of Water and Salts in the Intestine

    DTIC Science & Technology

    1981-12-08

    inic Structural Proteins in the Transport ot Water and Salts in the Intestine by Paula T. Beall., Ph.D. D)epartment of Physiol.ogy Baylor CotleP,(e of...Med(icine 1200 Moursund Houston, ’T’exas 77030 December 8, 1981 Reproduction in whole or in part is permitted for any purpose of the United States...Research N00014-81-K-0167 A Role for Cytoplasmic Structural Proteins in the .. :..... . .-. ..... TiTans~por’t of Wa• and Salts in ’tIeIntestine

  14. Mechanical stratification of autochthonous salt: Implications from basin-scale numerical models of rifted margin salt tectonics

    NASA Astrophysics Data System (ADS)

    Ings, Steven; Albertz, Markus

    2014-05-01

    Deformation of salt and sediments owing to the flow of weak evaporites is a common phenomenon in sedimentary basins worldwide, and the resulting structures and thermal regimes have a significant impact on hydrocarbon exploration. Evaporite sequences ('salt') of significant thickness (e.g., >1km) are typically deposited in many cycles of seawater inundation and evaporation in restricted basins resulting in layered autochthonous evaporite packages. However, analogue and numerical models of salt tectonics typically treat salt as a homogeneous viscous material, often with properties of halite, the weakest evaporite. In this study, we present results of two-dimensional plane-strain numerical experiments designed to illustrate the effects of variable evaporite viscosity and embedded frictional-plastic ('brittle') sediment layers on the style of salt flow and associated deformation of the sedimentary overburden. Evaporite viscosity is a first-order control on salt flow rate and the style of overburden deformation. Near-complete evacuation of low-viscosity salt occurs beneath expulsion basins, whereas significant salt is trapped when viscosity is high. Embedded frictional-plastic sediment layers (with finite yield strength) partition salt flow and develop transient contractional structures (folds, thrust faults, and folded faults) in a seaward salt-squeeze flow regime. Multiple internal sediment layers reduce the overall seaward salt flow during sediment aggradation, leaving more salt behind to be re-mobilized during subsequent progradation. This produces more seaward extensive allochthonous salt sheets. If there is a density difference between the embedded layers and the surrounding salt, then the embedded layers 'fractionate' during deformation and either float to the surface or sink to the bottom (depending on density), creating a thick zone of pure halite. Such a process of 'buoyancy fractionation' may partially explain the apparent paradox of layered salt in

  15. A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects E scherichia coli from bile salt stress

    PubMed Central

    Paul, Stephanie; Alegre, Kamela O; Holdsworth, Scarlett R; Rice, Matthew; Brown, James A; McVeigh, Paul; Kelly, Sharon M; Law, Christopher J

    2014-01-01

    Resistance to high concentrations of bile salts in the human intestinal tract is vital for the survival of enteric bacteria such as E scherichia coli. Although the tripartite AcrAB–TolC efflux system plays a significant role in this resistance, it is purported that other efflux pumps must also be involved. We provide evidence from a comprehensive suite of experiments performed at two different pH values (7.2 and 6.0) that reflect pH conditions that E . coli may encounter in human gut that MdtM, a single-component multidrug resistance transporter of the major facilitator superfamily, functions in bile salt resistance in E . coli by catalysing secondary active transport of bile salts out of the cell cytoplasm. Furthermore, assays performed on a chromosomal ΔacrB mutant transformed with multicopy plasmid encoding MdtM suggested a functional synergism between the single-component MdtM transporter and the tripartite AcrAB–TolC system that results in a multiplicative effect on resistance. Substrate binding experiments performed on purified MdtM demonstrated that the transporter binds to cholate and deoxycholate with micromolar affinity, and transport assays performed on inverted vesicles confirmed the capacity of MdtM to catalyse electrogenic bile salt/H+ antiport. PMID:24684269

  16. Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.

    PubMed

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G

    2012-10-25

    Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.

  17. Creatine salts provide neuroprotection even after partial impairment of the creatine transporter.

    PubMed

    Adriano, E; Garbati, P; Salis, A; Damonte, G; Millo, E; Balestrino, M

    2017-01-06

    Creatine, a compound that is critical for energy metabolism of nervous cells, crosses the blood-brain barrier (BBB) and the neuronal plasma membrane with difficulty, and only using its specific transporter. In the hereditary condition where the creatine transporter is defective (creatine transporter deficiency) there is no creatine in the brain, and administration of creatine is useless lacking the transporter. The disease is severe and incurable. Creatine-derived molecules that could cross BBB and plasma membrane independently of the transporter might be useful to cure this condition. Moreover, such molecules could be useful also in stroke and other brain ischemic conditions. In this paper, we investigated three creatine salts, creatine ascorbate, creatine gluconate and creatine glucose. Of these, creatine glucose was ineffective after transporter block with guanidine acetic acid (GPA) administration. Creatine ascorbate was not superior to creatine in increasing tissue creatine and phosphocreatine content after transporter impairment, however even after such impairment it delayed synaptic failure during anoxia. Finally, creatine gluconate was superior to creatine in increasing tissue content of creatine after transporter block and slowed down PS disappearance during anoxia, an effect that creatine did not have. These findings suggest that coupling creatine to molecules having a specific transporter may be a useful strategy in creatine transporter deficiency. In particular, creatine ascorbate has effects comparable to those of creatine in normal conditions, while being superior to it under conditions of missing or impaired creatine transporter. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Identification of differences in health impact modelling of salt reduction

    PubMed Central

    Geleijnse, Johanna M.; van Raaij, Joop M. A.; Cappuccio, Francesco P.; Cobiac, Linda C.; Scarborough, Peter; Nusselder, Wilma J.; Jaccard, Abbygail; Boshuizen, Hendriek C.

    2017-01-01

    We examined whether specific input data and assumptions explain outcome differences in otherwise comparable health impact assessment models. Seven population health models estimating the impact of salt reduction on morbidity and mortality in western populations were compared on four sets of key features, their underlying assumptions and input data. Next, assumptions and input data were varied one by one in a default approach (the DYNAMO-HIA model) to examine how it influences the estimated health impact. Major differences in outcome were related to the size and shape of the dose-response relation between salt and blood pressure and blood pressure and disease. Modifying the effect sizes in the salt to health association resulted in the largest change in health impact estimates (33% lower), whereas other changes had less influence. Differences in health impact assessment model structure and input data may affect the health impact estimate. Therefore, clearly defined assumptions and transparent reporting for different models is crucial. However, the estimated impact of salt reduction was substantial in all of the models used, emphasizing the need for public health actions. PMID:29182636

  19. Transport and distribution of bacteria and diatoms in the aqueous surface micro-layer of a salt marsh

    USGS Publications Warehouse

    Harvey, Ronald W.; Lion, Leonard W.; Young, Lily Y.

    1983-01-01

    The effects of tide and wind upon the distribution and transport of bacteria and diatoms in the aqueous surface microlayers of a Massachusetts and San Francisco Bay salt marsh were examined. The compression of the surface films by both tide and wind resulted in significant enrichments of bacterioneuston. At the San Francisco Bay site, significant numbers of diatoms were transported within the microlayer over a tidal cycle.

  20. Cation exchange in a glacial till drumlin at a road salt storage facility

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Xing, Baoshan; Kallergis, Niki

    2009-05-01

    We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g) 1/2 for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g) 1/2: the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.

  1. Cation exchange in a glacial till drumlin at a road salt storage facility.

    PubMed

    Ostendorf, David W; Xing, Baoshan; Kallergis, Niki

    2009-05-12

    We use laboratory and field data to calibrate existing geochemical and transport models of cation exchange induced by contamination of an unconfined aquifer at a road salt storage facility built upon a glacial till drumlin in eastern Massachusetts. A Gaines and Thomas selectivity coefficient K models the equilibrium sodium and divalent cation distribution in the groundwater and solid matrix, while an existing method of characteristics model describes the advective transport of total dissolved cations and sorbed sodium. Laboratory isotherms of split spoon soil samples from the drumlin calibrate K with an average value of 0.0048 (L/g)(1/2) for a measured cation exchange capacity of 0.057 meq/g dry soil. Ten years of monitoring well data document groundwater flow and the advection of conservative chloride due to outdoor storage and handling of road salt at the site. The monitoring well cation data and retarded transport model offer an independent K calibration of 0.0040 to 0.0047 (L/g)(1/2): the consistency of the field and laboratory selectivity coefficient calibrations endorse this application of the Gaines and Thomas and method of characteristics models. The advancing deicing agent plume releases divalent cations from the till into the groundwater, so that monitoring well samples do not reflect the chemical composition of the road salt. In this regard, dissolved divalent cation milliequivalent concentrations are as high as 80% of the total dissolved cationic concentrations in the salt contaminated monitoring well samples, far greater than their 2.5% level in the road salt stored at the site. Cation exchange can thus obscure attempts to hindcast stored road salt sodium water table concentration from monitoring well sample stoichiometry, or to predict sodium impacts on groundwater or receiving stream quality downgradient of the well.

  2. Preliminary Evaluation of the DUSTRAN Modeling Suite for Modeling Atmospheric Chloride Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Philip; Tran, Tracy; Fritz, Bradley

    2016-05-03

    This study investigates the potential of DUSTRAN, a dust dispersion modeling system developed by Pacific Northwest National Laboratory, to model the transport of sea salt aerosols (SSA). Results from DUSTRAN simulations run with historical meteorological data were compared against privately-measured chloride data at the near coastal Maine Yankee Nuclear Power Plant (NPP) and the Environmental Protection Agency-measured CASTNET data from Acadia National Park (NP). The comparisons have provided both encouragement as to the practical value of DUSTRAN’s CALPUFF model and suggestions for further software development opportunities. All modeled concentrations were within one order of magnitude of those measured and amore » few test cases showed excellent agreement between modeled and measured concentrations. However, there is a lack of consistency in discrepancy which may be due to inaccurate extrapolation of meteorological data, underlying model physics, and the source term. Future research will refine the software to better capture physical phenomena. Overall, results indicate that with parameter refinement, DUSTRAN has the potential to simulate atmospheric chloride transport from known sources to inland sites for the purpose of determining the corrosion susceptibility of various structures, systems, and components at the site.« less

  3. The Transport of Salt and Water across Isolated Rat Ileum

    PubMed Central

    Clarkson, T. W.

    1967-01-01

    The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854

  4. Parenteral nutrition dysregulates bile salt homeostasis in a rat model of parenteral nutrition-associated liver disease.

    PubMed

    Koelfat, Kiran V K; Schaap, Frank G; Hodin, Caroline M J M; Visschers, Ruben G J; Svavarsson, Björn I; Lenicek, Martin; Shiri-Sverdlov, Ronit; Lenaerts, Kaatje; Olde Damink, Steven W M

    2017-10-01

    Parenteral nutrition (PN), a lifesaving therapy in patients with intestinal failure, has been associated with hepatobiliary complications including steatosis, cholestasis and fibrosis, collectively known as parenteral nutrition-associated liver disease (PNALD). To date, the pathogenesis of PNALD is poorly understood and therapeutic options are limited. Impaired bile salt homeostasis has been proposed to contribute PNALD. The objective of this study was to establish a PNALD model in rats and to evaluate the effects of continuous parenteral nutrition (PN) on bile salt homeostasis. Rats received either PN via the jugular vein or received normal diet for 3, 7 or 14 days. Serum biochemistry, hepatic triglycerides, circulating bile salts and C4, IL-6 and TNF-alpha, and lipogenic and bile salt homeostatic gene expression in liver and ileum were assessed. PN increased hepatic triglycerides already after 3 days of administration, and resulted in conjugated bilirubin elevation after 7 or more days. This indicates PN-induced steatosis and impaired canalicular secretion of bilirubin, the latter which is in line with reduced hepatic expression of Mrp2 mRNA. There was no histological evidence for liver inflammation after PN administration, and circulating levels of pro-inflammatory cytokines IL-6 and TNF-α, were comparable in all groups. Hepatic expression of Fxr mRNA was decreased after 7 days of PN, without apparent effect on expression of Fxr targets Bsep and Shp. Nonetheless, Cyp7a1 expression was reduced after 7 days of PN, indicative for lowered bile salt synthesis. Circulating levels of C4 (marker of bile salt synthesis) were also decreased after 3, 7 and 14 days of PN. Levels of circulating bile salts were not affected by PN. This study showed that PN in rats caused early mild steatosis and cholestasis, while hepatic and systemic inflammation were not present. The onset of these abnormalities was associated with alterations in bile salt synthesis and transport. This

  5. Influence of pre-salt topographic features on supra-salt deformation in Mediterranean basins: Geology vs. physical models

    NASA Astrophysics Data System (ADS)

    Ferrer, Oriol; Vidal-Royo, Oskar; Gratacós, Oscar; Roca, Eduard; Muñoz, Josep Anton; Esestime, Paolo; Rodriguez, Karyna; Yazmin Piragauta, Mary; Feliu, Nil

    2017-04-01

    The presence of a thick Messinian evaporite unit is a well known feature of the Mediterranean basins. This salt unit is composed of three sub-units (Lower, Mobile and Upper Units) in the Northwest Mediterranean. In contrast, in the Eastern Mediterranean it is characterized by a multilayered evaporite sequence. In both regions the salt acted as a detachment favoring the downslope gravitational failure of the overlying sediments in a thin-skinned deformation regime (e.g. Liguro-Provençal or Levant basins). As a result, these salt-bearing passive margins exhibit the classical three-domain structural zonation characterized by upslope extension, intermediate translation and downslope contraction. Nevertheless, the presence of pre-salt reliefs (e.g. irregularly eroded palaeotopography or volcanic edifices) is rather common in the translational domain of the Northwestern Mediterranean (e.g. Liguro-Provençal and West Corsica margins). In this scenario, pre-salt reliefs act as flow barriers and hinder salt drainage. When their summit lies close or above the top salt, these structures may partially or fully block salt flow. They also disrupt locally the structural zonation of the passive margin and constrain cover deformation. In contrast, in the Eastern Mediterranean the Eratosthenes seamount is characterized by a large scale submerged massif (ca. 120 km in size) that significantly influenced the structural evolution of the surrounding areas. This inherited relief acted as a buttress and deflected the Messinian salt flow constraining supra-salt deformation (e.g. Levant Basin and Nile margin). In addition, the geometry of the Eratosthenes seamount also restrained the structural style of the allochthonous salt that was expulsed during the development of the Cyprus subduction zone to the north. Using an experimental approach (sandbox models) and new analysis techniques, we investigate salt and supra-salt deformation in response to two different types of pre-salt relief: 1

  6. Effects of Polymer Length and Salt Concentration on the Transport of ssDNA in Nanofluidic Channels.

    PubMed

    Qian, Weixin; Doi, Kentaro; Kawano, Satoyuki

    2017-03-14

    Electrokinetic phenomena in micro/nanofluidic channels have attracted considerable attention because precise control of molecular transport in liquids is required to optically and electrically capture the behavior of single molecules. However, the detailed mechanisms of polymer transport influenced by electroosmotic flows and electric fields in micro/nanofluidic channels have not yet been elucidated. In this study, a Langevin dynamics simulation was used to investigate the electrokinetic transport of single-stranded DNA (ssDNA) in a cylindrical nanochannel, employing a coarse-grained bead-spring model that quantitatively reproduced the radius of gyration, diffusion coefficient, and electrophoretic mobility of the polymer. Using this practical scale model, transport regimes of ssDNA with respect to the ζ-potential of the channel wall, the ion concentration, and the polymer length were successfully characterized. It was found that the relationship between the radius of gyration of ssDNA and the channel radius is critical to the formation of deformation regimes in a narrow channel. We conclude that a combination of electroosmotic flow velocity gradients and electric fields due to electrically polarized channel surfaces affects the alignment of molecular conformations, such that the ssDNA is stretched/compressed at negative/positive ζ-potentials in comparatively low-concentration solutions. Furthermore, this work suggests the possibility of controlling the center-of-mass position by tuning the salt concentration. These results should be applicable to the design of molecular manipulation techniques based on liquid flows in micro/nanofluidic devices. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Free energy landscape of a minimalist salt bridge model.

    PubMed

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  8. Proteomic and phosphoproteomic analysis of renal cortex in a salt-load rat model of advanced kidney damage

    PubMed Central

    Jiang, Shaoling; He, Hanchang; Tan, Lishan; Wang, Liangliang; Su, Zhengxiu; Liu, Yufeng; Zhu, Hongguo; Zhang, Menghuan; Hou, Fan Fan; Li, Aiqing

    2016-01-01

    Salt plays an essential role in the progression of chronic kidney disease and hypertension. However, the mechanisms underlying pathogenesis of salt-induced kidney damage remain largely unknown. Here, Sprague-Dawley rats, that underwent 5/6 nephrectomy (5/6Nx, a model of advanced kidney damage) or sham operation, were treated for 2 weeks with a normal or high-salt diet. We employed aTiO2 enrichment, iTRAQ labeling and liquid-chromatography tandem mass spectrometry strategy for proteomic and phosphoproteomic profiling of the renal cortex. We found 318 proteins differentially expressed in 5/6Nx group relative to sham group, and 310 proteins significantly changed in response to salt load in 5/6Nx animals. Totally, 1810 unique phosphopeptides corresponding to 550 phosphoproteins were identified. We identified 113 upregulated and 84 downregulated phosphopeptides in 5/6Nx animals relative to sham animals. Salt load induced 78 upregulated and 91 downregulated phosphopeptides in 5/6Nx rats. The differentially expressed phospholproteins are important transporters, structural molecules, and receptors. Protein-protein interaction analysis revealed that the differentially phosphorylated proteins in 5/6Nx group, Polr2a, Srrm1, Gsta2 and Pxn were the most linked. Salt-induced differential phosphoproteins, Myh6, Lmna and Des were the most linked. Altered phosphorylation levels of lamin A and phospholamban were validated. This study will provide new insight into pathogenetic mechanisms of chronic kidney disease and salt sensitivity. PMID:27775022

  9. Experiments and Modeling in Support of Generic Salt Repository Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret, Suzanne Michelle; Stauffer, Philip H.; Weaver, Douglas James

    Salt is an attractive material for the disposition of heat generating nuclear waste (HGNW) because of its self-sealing, viscoplastic, and reconsolidation properties (Hansen and Leigh, 2012). The rate at which salt consolidates and the properties of the consolidated salt depend on the composition of the salt, including its content in accessory minerals and moisture, and the temperature under which consolidation occurs. Physicochemical processes, such as mineral hydration/dehydration salt dissolution and precipitation play a significant role in defining the rate of salt structure changes. Understanding the behavior of these complex processes is paramount when considering safe design for disposal of heat-generatingmore » nuclear waste (HGNW) in salt formations, so experimentation and modeling is underway to characterize these processes. This report presents experiments and simulations in support of the DOE-NE Used Fuel Disposition Campaign (UFDC) for development of drift-scale, in-situ field testing of HGNW in salt formations.« less

  10. Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.

    PubMed

    Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D

    2017-02-01

    This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.

  11. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactormore » that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as

  12. Salt bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT

    PubMed Central

    Law, Christopher J.; Almqvist, Jonas; Bernstein, Adam; Goetz, Regina M.; Huang, Yafei; Soudant, Celine; Laaksonen, Aatto; Hovmöller, Sven; Wang, Da-Neng

    2008-01-01

    Summary Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate/phosphate antiporters. PMID:18395745

  13. A simple, dynamic, hydrological model of a mesotidal salt marsh

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...

  14. High Salt Intake Promotes Urinary Loss of Vitamin D Metabolites by Dahl Salt-Sensitive Rats in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, M.; Cephas, S.; Sayavongsa, P.; Clark, T.; Arnaud, S. B.

    2004-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have demonstrated that female S rats are more vulnerable than female R rats to decreases in plasma 25-hydroxyvitamin D (25-OHD) and 1,25-dihydroxyvitamin D (1,25-(OH)2D) concentrations during hind limb unloading (a space flight model). We report here on the response of the vitamin D endocrine system of S and R rats to hind limb unloading during high salt intake. Dahl female rats (9.7-week-old) were tail-suspended (hind limb unloaded) for 28 days, while fed a diet containing twice the salt in standard rat chow (2 % sodium chloride). Control rats were fed the same diet, but were not hind limb unloaded. Vitamin D metabolites were analyzed by HPLC and radioimmunoassay kits from Diasorin.

  15. Induction of salt tolerance in Azolla microphylla Kaulf through modulation of antioxidant enzymes and ion transport.

    PubMed

    Abraham, Gerard; Dhar, Dolly Wattal

    2010-09-01

    Azolla microphylla plants exposed directly to NaCl (13 dsm(-1)) did not survive the salinity treatment beyond a period of one day, whereas plants exposed directly to 4 and 9 dsm(-1) NaCl were able to grow and produce biomass. However, plants pre-exposed to NaCl (2 dsm(-1)) for 7 days on subsequent exposure to 13 dsm(-1) NaCl were able to grow and produce biomass although at a slow rate and are hereinafter designated as pre-exposed plants. The pre-exposed and directly exposed plants distinctly differed in their response to salt in terms of lipid peroxidation, proline accumulation, activity of antioxidant enzymes, such as SOD, APX, and CAT, and Na(+)/K(+) ratio. Efficient modulation of antioxidant enzymes coupled with regulation of ion transport play an important role in the induction of salt tolerance. Results show that it is possible to induce salt adaptation in A. microphylla by pre-exposing them to low concentrations of NaCl.

  16. Modelling the optical properties of aerosols in a chemical transport model

    NASA Astrophysics Data System (ADS)

    Andersson, E.; Kahnert, M.

    2015-12-01

    According to the IPCC fifth assessment report (2013), clouds and aerosols still contribute to the largest uncertainty when estimating and interpreting changes to the Earth's energy budget. Therefore, understanding the interaction between radiation and aerosols is both crucial for remote sensing observations and modelling the climate forcing arising from aerosols. Carbon particles are the largest contributor to the aerosol absorption of solar radiation, thereby enhancing the warming of the planet. Modelling the radiative properties of carbon particles is a hard task and involves many uncertainties arising from the difficulties of accounting for the morphologies and heterogeneous chemical composition of the particles. This study aims to compare two ways of modelling the optical properties of aerosols simulated by a chemical transport model. The first method models particle optical properties as homogeneous spheres and are externally mixed. This is a simple model that is particularly easy to use in data assimilation methods, since the optics model is linear. The second method involves a core-shell internal mixture of soot, where sulphate, nitrate, ammonia, organic carbon, sea salt, and water are contained in the shell. However, by contrast to previously used core-shell models, only part of the carbon is concentrated in the core, while the remaining part is homogeneously mixed with the shell. The chemical transport model (CTM) simulations are done regionally over Europe with the Multiple-scale Atmospheric Transport and CHemistry (MATCH) model, developed by the Swedish Meteorological and Hydrological Institute (SMHI). The MATCH model was run with both an aerosol dynamics module, called SALSA, and with a regular "bulk" approach, i.e., a mass transport model without aerosol dynamics. Two events from 2007 are used in the analysis, one with high (22/12-2007) and one with low (22/6-2007) levels of elemental carbon (EC) over Europe. The results of the study help to assess the

  17. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The referencemore » plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.« less

  18. Numerical study on tilting salt finger in a laminar shear flow

    NASA Astrophysics Data System (ADS)

    Zhang, Xianfei; Wang, Ling-ling; Lin, Cheng; Zhu, Hai; Zeng, Cheng

    2018-02-01

    Salt fingers as a mixing mechanism in the ocean have been investigated for several decades, together with a key issue being focused on their convective evolution and flux ratio variation. However, related studies on tilting fingers in the ocean produced by shear flow have been ignored by previous researchers. In this paper, a 2-D numerical model is presented to study the evolution of the double-diffusion salt finger in a two-layer thermohaline system with laminar shear flow. The model is divided into a steady-state solver and double-diffusion convection system, aimed to reveal the effect of shear flow on salt fingers and analyze the mechanism behind the shear and fingers. Several cases are conducted for Re = 0 ˜ 900 to study the evolution of salt fingers in a laminar shear flow and the variation of salt flux with Re. The results show that salt fingers exist and tilt in the presence of laminar shear flow. The mass transport in the vertical direction is weakened as the Reynolds number increases. An asymmetric structure of the salt finger is discovered and accounts for the morphological tilt and salt flux reduction.

  19. Micro-Macro Analysis and Phenomenological Modelling of Salt Viscous Damage and Application to Salt Caverns

    NASA Astrophysics Data System (ADS)

    Zhu, Cheng; Pouya, Ahmad; Arson, Chloé

    2015-11-01

    This paper aims to gain fundamental understanding of the microscopic mechanisms that control the transition between secondary and tertiary creep around salt caverns in typical geological storage conditions. We use a self-consistent inclusion-matrix model to homogenize the viscoplastic deformation of halite polycrystals and predict the number of broken grains in a Representative Elementary Volume of salt. We use this micro-macro modeling framework to simulate creep tests under various axial stresses, which gives us the critical viscoplastic strain at which grain breakage (i.e., tertiary creep) is expected to occur. The comparison of simulation results for short-term and long-term creep indicates that the initiation of tertiary creep depends on the stress and the viscoplastic strain. We use the critical viscoplastic deformation as a yield criterion to control the transition between secondary and tertiary creep in a phenomenological viscoplastic model, which we implement into the Finite Element Method program POROFIS. We model a 850-m-deep salt cavern of irregular shape, in axis-symmetric conditions. Simulations of cavern depressurization indicate that a strain-dependent damage evolution law is more suitable than a stress-dependent damage evolution law, because it avoids high damage concentrations and allows capturing the formation of a damaged zone around the cavity. The modeling framework explained in this paper is expected to provide new insights to link grain breakage to phenomenological damage variables used in Continuum Damage Mechanics.

  20. [Simulation of effect of irrigation with reclaimed water on soil water-salt movement by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    As the conflict between water supply and demand, wastewater reuse has become an important measure, which can relieve the water shortage in Beijing. In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing, a city of water shortage, under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this research. The accumulation trends of soil salinity were predicted. Simultaneously, it investigated the effects of different irrigation practices on soil water-salt movement and salt accumulation. Results indicated that annual averages of soil salinity (EC(e)) increased 29.5%, 97.2%, 197.8% respectively, with the higher irrigation, normal irrigation, and low irrigation under equilibrium conditions. Irrigation frequency had little effect on soil salt-water movement, and soil salt accumulation was in a downward trend with low frequency of irrigation. Under equilibrium conditions, annual averages of EC(e) increased 23.7%, 97.2%, 208.5% respectively, with irrigation water salinity (EC(w)) 0.6, 1.2, 2.4 dS x m(-1). Soil salinity increased slightly with EC(w) = 0.6 dS x m(-1), while soil salinization did not appear. Totally, the growth of Blue grass was not influenced by soil salinity under equilibrium conditions with the regular irrigation in Beijing, but mild soil salinization appeared.

  1. Regional-Scale Salt Tectonics Modelling: Bench-Scale Validation and Extension to Field-Scale

    NASA Astrophysics Data System (ADS)

    Crook, A. J. L.; Yu, J. G.; Thornton, D. A.

    2010-05-01

    The role of salt in the evolution of the West African continental margin, and in particular its impact on hydrocarbon migration and trap formation, is an important research topic. It has attracted many researchers who have based their research on bench-scale experiments, numerical models and seismic observations. This research has shown that the evolution is very complex. For example, regional analogue bench-scale models of the Angolan margin (Fort et al., 2004) indicate a complex system with an upslope extensional domain with sealed tilted blocks, growth fault and rollover systems and extensional diapers, and a downslope contractional domain with squeezed diapirs, polyharmonic folds and thrust faults, and late-stage folding and thrusting. Numerical models have the potential to provide additional insight into the evolution of these salt driven passive margins. The longer-term aim is to calibrate regional-scale evolution models, and then to evaluate the effect of the depositional history on the current day geomechanical and hydrogeologic state in potential target hydrocarbon reservoir formations adjacent to individual salt bodies. To achieve this goal the burial and deformational history of the sediment must be modelled from initial deposition to the current-day state, while also accounting for the reaction and transport processes occurring in the margin. Accurate forward modeling is, however complex, and necessitates advanced procedures for the prediction of fault formation and evolution, representation of the extreme deformations in the salt, and for coupling the geomechanical, fluid flow and temperature fields. The evolution of the sediment due to a combination of mechanical compaction, chemical compaction and creep relaxation must also be represented. In this paper ongoing research on a computational approach for forward modelling complex structural evolution, with particular reference to passive margins driven by salt tectonics is presented. The approach is an

  2. Gate modulation of proton transport in a nanopore.

    PubMed

    Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi

    2016-03-14

    Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.

  3. A dynamic nitrogen budget model of a Pacific Northwest salt ...

    EPA Pesticide Factsheets

    The role of salt marshes as either nitrogen sinks or sources in relation to their adjacent estuaries has been a focus of ecosystem service research for many decades. The complex hydrology of these systems is driven by tides, upland surface runoff, precipitation, evapotranspiration, and groundwater inputs, all of which can vary significantly on timescales ranging from sub-daily to seasonal. Additionally, many of these hydrologic drivers may vary with a changing climate. Due to this temporal variation in hydrology, it is difficult to represent salt marsh nitrogen budgets as steady-state models. A dynamic nitrogen budget model that varies based on hydrologic conditions may more accurately describe the role of salt marshes in nitrogen cycling. In this study we aim to develop a hydrologic model that is coupled with a process-based nitrogen model to simulate nitrogen dynamics at multiple temporal scales. To construct and validate our model we will use hydrologic and nitrogen species data collected from 2010 to present, from a 1.8 hectare salt marsh in the Yaquina Estuary, OR, USA. Hydrologic data include water table levels at two transects, upland tributary flow, tidal channel stage and flow, and vertical hydraulic head gradients. Nitrogen pool data include concentrations of nitrate and ammonium in porewater, tidal channel water, and extracted from soil cores. Nitrogen flux data include denitrification rates, nitrogen concentrations in upland runoff, and tida

  4. The response of Dahl salt-sensitive and salt-resistant female rats to a space flight model

    NASA Technical Reports Server (NTRS)

    Thierry-Palmer, Myrtle; Cephas, Stacy; Cleek, Tammy; Sayavongsa, Phouyong; Arnaud, Sara B.

    2003-01-01

    Vitamin D metabolism in the Dahl salt-sensitive (S) rat, a model of salt-induced hypertension, differs from that in the Dahl salt-resistant (R) rat. We have tested the hypothesis that differences in vitamin D metabolism would render the Dahl S rat more susceptible than the Dahl R rat to the effects of a space flight model. Dahl female rats were tail suspended (hind limb unloaded) for 28 days, while fed a low salt (3 g/kg sodium chloride) diet. Plasma 25-OHD concentrations of S rats were significantly lower than that of R rats. Plasma 1,25-(OH)2D concentration was 50% lower in unloaded than in loaded S rats, but was unaffected in unloaded R rats. The left soleus muscle weight and breaking strength of the left femur (torsion test) were 50% and 25% lower in unloaded than in loaded S and R rats. The mineral content of the left femur, however, was significantly lower (by 11%) only in unloaded S rats. We conclude that female S rats are more vulnerable than female R rats to decreases in plasma 1,25-(OH)2D concentration and femur mineral content during hind limb unloading, but equally vulnerable to muscle atrophy and reduced breaking strength of the femur.

  5. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension.

    PubMed

    Liu, Yunmeng; Rafferty, Tonya M; Rhee, Sung W; Webber, Jessica S; Song, Li; Ko, Benjamin; Hoover, Robert S; He, Beixiang; Mu, Shengyu

    2017-01-09

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8 + T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8 + T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8 + T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K + channel Kir4.1, and stimulation of the Cl - channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension.

  6. CD8+ T cells stimulate Na-Cl co-transporter NCC in distal convoluted tubules leading to salt-sensitive hypertension

    PubMed Central

    Liu, Yunmeng; Rafferty, Tonya M.; Rhee, Sung W.; Webber, Jessica S.; Song, Li; Ko, Benjamin; Hoover, Robert S.; He, Beixiang; Mu, Shengyu

    2017-01-01

    Recent studies suggest a role for T lymphocytes in hypertension. However, whether T cells contribute to renal sodium retention and salt-sensitive hypertension is unknown. Here we demonstrate that T cells infiltrate into the kidney of salt-sensitive hypertensive animals. In particular, CD8+ T cells directly contact the distal convoluted tubule (DCT) in the kidneys of DOCA-salt mice and CD8+ T cell-injected mice, leading to up-regulation of the Na-Cl co-transporter NCC, p-NCC and the development of salt-sensitive hypertension. Co-culture with CD8+ T cells upregulates NCC in mouse DCT cells via ROS-induced activation of Src kinase, up-regulation of the K+ channel Kir4.1, and stimulation of the Cl− channel ClC-K. The last event increases chloride efflux, leading to compensatory chloride influx via NCC activation at the cost of increasing sodium retention. Collectively, these findings provide a mechanism for adaptive immunity involvement in the kidney defect in sodium handling and the pathogenesis of salt-sensitive hypertension. PMID:28067240

  7. Modeling of salt and pH gradient elution in ion-exchange chromatography.

    PubMed

    Schmidt, Michael; Hafner, Mathias; Frech, Christian

    2014-01-01

    The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Geohydrology of the Keechi, Mount Sylvan, Oakwood, and Palestine salt domes in the northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Peters, Henry B.

    1980-01-01

    Additional problems concerning the hydrologic stability of Oakwood and Palestine Salt Domes have resulted from the disposal of oil-field salinewater in the cap rock at the Oakwood Dome and previous solution mining of salt at the Palestine Dome Additional investigations are needed to determine if a selected dome is hydrologically stable. Needed investigations include: (1) A more complete comparative analysis of the regional and local geohydrologic system; (2) a site-specific drilling and sampling program to analyze the cap rock-aquifer boundary, sediment distribution, hydraulic-parameter variations, hydraulic-head relationships, and hydrochemical patterns; and (3) mass-transport computer modeling of ground-water flow at the domes.

  9. Plant salt-tolerance mechanisms

    DOE PAGES

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; ...

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  10. Numerical investigation of road salt impact on an urban wellfield.

    PubMed

    Bester, M L; Frind, E O; Molson, J W; Rudolph, D L

    2006-01-01

    The impact of road salt on a wellfield in a complex glacial moraine aquifer system is studied by numerical simulation. The moraine underlies an extensive urban and industrial landscape, which draws its water supply from >20 wellfields, several of which are approaching or have exceeded the drinking water limit for chloride. The study investigates the mechanisms of road salt infiltration, storage, and transport in the subsurface and assesses the effectiveness of mitigation measures designed to reduce the impact. The three-dimensional transport model accounts for increases in salt loading, as well as growth of the urbanized area and road network over the past 50 years. The simulations, which focus on one impacted wellfield, show chloride plumes originating mainly at arterial roads and migrating through aquitard windows into the water supply aquifers. The results suggest that the aquifer system contains a large and heterogeneously distributed mass of chloride and that concentrations in the aquifer can be substantially higher than the concentrations in the well water. Future impact scenarios indicate that although the system responds rapidly to reductions in salt loading, the residual chloride mass may take decades to flush out, even if road salting were discontinued. The implications with respect to urban wellfields in typical snow-belt areas are discussed.

  11. Optical Modeling of Sea Salt Aerosols: The Effects of Nonsphericity and Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Bi, Lei; Lin, Wushao; Wang, Zheng; Tang, Xiaoyun; Zhang, Xiaoyu; Yi, Bingqi

    2018-01-01

    The nonsphericity and inhomogeneity of marine aerosols (sea salts) have not been addressed in pertinent radiative transfer calculations and remote sensing studies. This study investigates the optical properties of nonspherical and inhomogeneous sea salts using invariant imbedding T-matrix simulations. Dry sea salt aerosols are modeled based on superellipsoidal geometries with a prescribed aspect ratio and roundness parameter. Wet sea salt particles are modeled as coated superellipsoids, as spherical particles with a superellipsoidal core, and as homogeneous spheres depending on the level of relative humidity. Aspect ratio and roundness parameters are found to be critical to interpreting the linear depolarization ratios (LDRs) of NaCl crystals from laboratory measurements. The optimal morphology parameters of NaCl necessary to reproduce the measurements are found to be consistent with data gleaned from an electron micrograph. The LDRs of wet sea salts are computed based on inhomogeneous models and compared with the measured data from ground-based LiDAR. The dependence of the LDR on relative humidity is explicitly considered. The increase in the LDR with relative humidity at the initial phase of deliquescence is attributed to both the size increase and the inhomogeneity effect. For large humidity values, the LDR substantially decreases because the overall particle shape becomes more spherical and the inhomogeneity effect in a particle on the LDR is suppressed for submicron sea salts. However, the effect of inhomogeneity on optical properties is pronounced for coarse-mode sea salts. These findings have important implications for atmospheric radiative transfer and remote sensing involving sea salt aerosols.

  12. Mediterranean salt giants beyond the evaporite model: The Sicily perspective

    NASA Astrophysics Data System (ADS)

    Carmelo Manuella, Fabio; Scribano, Vittorio; Carbone, Serafina; Hovland, Martin; Johnsen, Hans-Konrad; Rueslåtten, Håkon

    2017-04-01

    Mediterranean salt giants, occurring both in sub-seafloor and in onshore settings (the "Gessoso Solfifera Group"), are traditionally explained by repeated cycles of desiccation and replenishment of the entire basin. However, such hypotheses are strongly biased by mass balance calculations and geodynamic considerations. In addition, any hypothesis without full desiccation, still based on the evaporite model, should consider that seawater brines start to precipitate halite when 2/3 of the seawater has evaporated, and hence the level of the basin cannot be the same as the adjacent ocean. On the other hand, hydrothermal venting of hot saline brines onto the seafloor can precipitate salt in a deep marine basin if a layer of heavy brine exists along the seafloor. This process, likely related to sub-surface boiling or supercritical out-salting (Hovland et al., 2006), is consistent with geological evidence in the Red Sea "Deeps" (Hovland et al., 2015). Although supercritical out-salting and phase separation can sufficiently explain the formation of several marine salt deposits, even in deep marine settings, the Mediterranean salt giant formations can also be explained by the serpentinization model (Scribano et al., 2016). Serpentinization of abyssal peridotites does not involve seawater salts, and large quantities of saline brines accumulate in pores and fractures of the sub-seafloor serpentinites. If these rocks undergo thermal dehydration, for example, due to igneous intrusions, brines and salt slurries can migrate upwards as hydrothermal plumes, eventually venting at the seafloor, giving rise to giant salt deposits over time. These hydrothermal processes can take place in a temporal sequence, as it occurred in the "Caltanissetta Basin" (Sicily). There, salt accumulation associated with serpentinization started during Triassic times (and even earlier), and venting of heavy brines onto the seafloor eventually occurred in the Messinian via the hydrothermal plume mechanism

  13. A new multicomponent salt of imidazole and tetrabromoterepthalic acid: structural, optical, thermal, electrical transport properties and antibacterial activity along with Hirshfeld surface analysis.

    PubMed

    Dey, Sanjoy Kumar; Saha, Rajat; Singha, Soumen; Biswas, Susobhan; Layek, Animesh; Middya, Somnath; Ray, Partha Pratim; Bandhyopadhyay, Debasis; Kumar, Sanjay

    2015-06-05

    Herein, we report the structural, optical, thermal and electrical transport properties of a new multicomponent salt (TBTA(2-))·2(IM(+))·(water) [TBTA-IM] of tetrabromoterepthalic acid (TBTA) with imidazole (IM). The crystal structure of TBTA-IM is determined by both the single crystal and powder X-ray diffraction techniques. The structural analysis has revealed that the supramolecular charge assisted O(-)⋯HN(+) hydrogen bonding and Br⋯π interactions play the most vital role in formation of this multicomponent supramolecular assembly. The Hirshfeld surface analysis has been carried out to investigate supramolecular interactions and associated 2D fingerprint plots reveal the relative contribution of these interactions in the crystal structure quantitatively. According to theoretical analysis the HOMO-LUMO energy gap of the salt is 2.92 eV. The salt has been characterized by IR, UV-vis and photoluminescence spectroscopic studies. It shows direct optical transition with band gaps of 4.1 eV, which indicates that the salt is insulating in nature. The photoluminescence spectrum of the salt is significantly different from that of TBTA. Further, a comparative study on the antibacterial activity of the salt with respect to imidazole, Gatifloxacin and Ciprofloxacin has been performed. Moreover, the current-voltage (I-V) characteristic of ITO/TBTA-IM/Al sandwich structure exhibits good rectifying property and the electron tunneling process governs the electrical transport mechanism of the device. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A Preliminary Performance Assessment for Salt Disposal of High-Level Nuclear Waste - 12173

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Joon H.; Clayton, Daniel; Jove-Colon, Carlos

    2012-07-01

    A salt repository is one of the four geologic media currently under study by the U.S. DOE Office of Nuclear Energy to support the development of a long-term strategy for geologic disposal of commercial used nuclear fuel (UNF) and high-level radioactive waste (HLW). The immediate goal of the generic salt repository study is to develop the necessary modeling tools to evaluate and improve the understanding of the repository system response and processes relevant to long-term disposal of UNF and HLW in a salt formation. The current phase of this study considers representative geologic settings and features adopted from previous studiesmore » for salt repository sites. For the reference scenario, the brine flow rates in the repository and underlying interbeds are very low, and transport of radionuclides in the transport pathways is dominated by diffusion and greatly retarded by sorption on the interbed filling materials. I-129 is the dominant annual dose contributor at the hypothetical accessible environment, but the calculated mean annual dose is negligibly small. For the human intrusion (or disturbed) scenario, the mean mass release rate and mean annual dose histories are very different from those for the reference scenario. Actinides including Pu-239, Pu-242 and Np-237 are major annual dose contributors, and the calculated peak mean annual dose is acceptably low. A performance assessment model for a generic salt repository has been developed incorporating, where applicable, representative geologic settings and features adopted from literature data for salt repository sites. The conceptual model and scenario for radionuclide release and transport from a salt repository were developed utilizing literature data. The salt GDS model was developed in a probabilistic analysis framework. The preliminary performance analysis for demonstration of model capability is for an isothermal condition at the ambient temperature for the near field. The capability demonstration

  15. Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses.

    PubMed

    Conde, Artur; Silva, Paulo; Agasse, Alice; Conde, Carlos; Gerós, Hernâni

    2011-10-01

    The intracellular accumulation of organic compatible solutes functioning as osmoprotectants, such as polyols, is an important response mechanism of several plants to drought and salinity. In Olea europaea a mannitol transport system (OeMaT1) was previously characterized as a key player in plant response to salinity. In the present study, heterotrophic sink models, such as olive cell suspensions and fruit tissues, and source leaves were used for analytical, biochemical and molecular studies. The kinetic parameters of mannitol dehydrogenase (MTD) determined in cells growing in mannitol, at 25°C and pH 9.0, were as follows: K(m), 54.5 mM mannitol; and V(max), 0.47 μmol h⁻¹ mg⁻¹ protein. The corresponding cDNA was cloned and named OeMTD1. OeMTD1 expression was correlated with MTD activity, OeMaT1 expression and carrier-mediated mannitol transport in mannitol- and sucrose-grown cells. Furthermore, sucrose-grown cells displayed only residual OeMTD activity, even though high levels of OeMTD1 transcription were observed. There is evidence that OeMTD is regulated at both transcriptional and post-transcriptional levels. MTD activity and OeMTD1 expression were repressed after Na+, K+ and polyethylene glycol (PEG) treatments, in both mannitol- and sucrose-grown cells. In contrast, salt and drought significantly increased mannitol transport activity and OeMaT1 expression. Taken together, these studies support that olive trees cope with salinity and drought by coordinating mannitol transport with intracellular metabolism.

  16. Salt Transport in the Near-Surface Layer in the Monsoon-Influenced Indian Ocean Using HYCOM

    DTIC Science & Technology

    2010-08-04

    A copy is filed in this office. Office of Counsel,Code 1008.3 ADOR/Director NCST E. R. Franchi , 7000 .^SLjdM/fc^- */?//<» Public Affairs...mechanisms for the transport of salt in the Indian Ocean are not fully understood. Global HYCOM simulated SSS data, validated with in situ observations...included in the HYCOM SSS simulations. 2. Data and Methods [6] This study uses the 4 year period (2003-2006) monthly SSS from the global HYbrid

  17. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  18. Non-monotonic course of protein solubility in aqueous polymer-salt solutions can be modeled using the sol-mxDLVO model.

    PubMed

    Herhut, Marcel; Brandenbusch, Christoph; Sadowski, Gabriele

    2016-02-01

    Protein purification is often performed using cost-intensive chromatographic steps. To discover economic alternatives (e.g., crystallization), knowledge on protein solubility as a function of temperature, pH, and additives in solution as well as their concentration is required. State-of-the-art models for predicting protein solubility almost exclusively consider aqueous salt systems, whereas "salting-in" and "salting-out" effects induced by the presence of an additional polymer are not considered. Thus, we developed the sol-mxDLVO model. Using this newly developed model, protein solubility in the presence of one salt and one polymer, especially the non-monotonic course of protein solubility, could be predicted. Systems considered included salts (NaCl, Na-p-Ts, (NH(4))(2) SO(4)) and the polymer polyethylene glycol (MW: 2000 g/mol, 12000 g/mol) and proteins lysozyme from chicken egg white (pH 4 to 5.5) and D-xylose ketol-isomerase (pH 7) at 298.15 K. The results show that by using the sol-mxDLVO model, protein solubility in polymer-salt solutions can be modeled in good agreement with the experimental data for both proteins considered. The sol-mxDLVO model can describe the non-monotonic course of protein solubility as a function of polymer concentration and salt concentration, previously not covered by state-of-the-art models. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Identification of Genes Encoding Conjugated Bile Salt Hydrolase and Transport in Lactobacillus johnsonii 100-100

    PubMed Central

    Elkins, Christopher A.; Savage, Dwayne C.

    1998-01-01

    Cytosolic extracts of Lactobacillus johnsonii 100-100 (previously reported as Lactobacillus sp. strain 100-100) contain four heterotrimeric isozymes composed of two peptides, α and β, with conjugated bile salt hydrolase (BSH) activity. We now report cloning, from the genome of strain 100-100, a 2,977-bp DNA segment that expresses BSH activity in Escherichia coli. The sequencing of this segment showed that it contained one complete and two partial open reading frames (ORFs). The 3′ partial ORF (927 nucleotides) was predicted by BLAST and confirmed with 5′ and 3′ deletions to be a BSH gene. Thermal asymmetric interlaced PCR was used to extend and complete the 948-nucleotide sequence of the BSH gene 3′ of the cloned segment. The predicted amino acid sequence of the 5′ partial ORF (651 nucleotides) was about 80% similar to the C-terminal half of the largest, complete ORF (1,353 nucleotides), and these two putative proteins were similar to several amine, multidrug resistance, and sugar transport proteins of the major facilitator superfamily. E. coli DH5α cells transformed with a construct containing these ORFs, in concert with an extracellular factor produced by strain 100-100, demonstrated levels of uptake of [14C]taurocholic acid that were increased as much as threefold over control levels. [14C]Cholic acid was taken up in similar amounts by strain DH5α pSportI (control) and DH5α p2000 (transport clones). These findings support a hypothesis that the ORFs are conjugated bile salt transport genes which may be arranged in an operon with BSH genes. PMID:9721268

  20. Hydrologic modeling as a predictive basis for ecological restoration of salt marshes

    USGS Publications Warehouse

    Roman, C.T.; Garvine, R.W.; Portnoy, J.W.

    1995-01-01

    Roads, bridges, causeways, impoundments, and dikes in the coastal zone often restrict tidal flow to salt marsh ecosystems. A dike with tide control structures, located at the mouth of the Herring River salt marsh estuarine system (Wellfleet, Massachusetts) since 1908, has effectively restricted tidal exchange, causing changes in marsh vegetation composition, degraded water quality, and reduced abundance of fish and macroinvertebrate communities. Restoration of this estuary by reintroduction of tidal exchange is a feasible management alternative. However, restoration efforts must proceed with caution as residential dwellings and a golf course are located immediately adjacent to and in places within the tidal wetland. A numerical model was developed to predict tide height levels for numerous alternative openings through the Herring River dike. Given these model predictions and knowledge of elevations of flood-prone areas, it becomes possible to make responsible decisions regarding restoration. Moreover, tidal flooding elevations relative to the wetland surface must be known to predict optimum conditions for ecological recovery. The tide height model has a universal role, as demonstrated by successful application at a nearby salt marsh restoration site in Provincetown, Massachusetts. Salt marsh restoration is a valuable management tool toward maintaining and enhancing coastal zone habitat diversity. The tide height model presented in this paper will enable both scientists and resource professionals to assign a degree of predictability when designing salt marsh restoration programs.

  1. Numerical modeling of the effects of Hurricane Sandy and potential future hurricanes on spatial patterns of salt marsh morphology in Jamaica Bay, New York City

    USGS Publications Warehouse

    Wang, Hongqing; Chen, Qin; Hu, Kelin; Snedden, Gregg A.; Hartig, Ellen K.; Couvillion, Brady R.; Johnson, Cody L.; Orton, Philip M.

    2017-03-29

    The salt marshes of Jamaica Bay, managed by the New York City Department of Parks & Recreation and the Gateway National Recreation Area of the National Park Service, serve as a recreational outlet for New York City residents, mitigate flooding, and provide habitat for critical wildlife species. Hurricanes and extra-tropical storms have been recognized as one of the critical drivers of coastal wetland morphology due to their effects on hydrodynamics and sediment transport, deposition, and erosion processes. However, the magnitude and mechanisms of hurricane effects on sediment dynamics and associated coastal wetland morphology in the northeastern United States are poorly understood. In this study, the depth-averaged version of the Delft3D modeling suite, integrated with field measurements, was utilized to examine the effects of Hurricane Sandy and future potential hurricanes on salt marsh morphology in Jamaica Bay, New York City. Hurricane Sandy-induced wind, waves, storm surge, water circulation, sediment transport, deposition, and erosion were simulated by using the modeling system in which vegetation effects on flow resistance, surge reduction, wave attenuation, and sedimentation were also incorporated. Observed marsh elevation change and accretion from a rod surface elevation table and feldspar marker horizons and cesium-137- and lead-210-derived long-term accretion rates were used to calibrate and validate the wind-waves-surge-sediment transport-morphology coupled model.The model results (storm surge, waves, and marsh deposition and erosion) agreed well with field measurements. The validated modeling system was then used to detect salt marsh morphological change due to Hurricane Sandy across the entire Jamaica Bay over the short-term (for example, 4 days and 1 year) and long-term (for example, 5 and 10 years). Because Hurricanes Sandy (2012) and Irene (2011) were two large and destructive tropical cyclones which hit the northeast coast, the validated coupled

  2. Health Gain by Salt Reduction in Europe: A Modelling Study

    PubMed Central

    Hendriksen, Marieke A. H.; van Raaij, Joop M. A.; Geleijnse, Johanna M.; Breda, Joao; Boshuizen, Hendriek C.

    2015-01-01

    Excessive salt intake is associated with hypertension and cardiovascular diseases. Salt intake exceeds the World Health Organization population nutrition goal of 5 grams per day in the European region. We assessed the health impact of salt reduction in nine European countries (Finland, France, Ireland, Italy, Netherlands, Poland, Spain, Sweden and United Kingdom). Through literature research we obtained current salt intake and systolic blood pressure levels of the nine countries. The population health modeling tool DYNAMO-HIA including country-specific disease data was used to predict the changes in prevalence of ischemic heart disease and stroke for each country estimating the effect of salt reduction through its effect on blood pressure levels. A 30% salt reduction would reduce the prevalence of stroke by 6.4% in Finland to 13.5% in Poland. Ischemic heart disease would be decreased by 4.1% in Finland to 8.9% in Poland. When salt intake is reduced to the WHO population nutrient goal, it would reduce the prevalence of stroke from 10.1% in Finland to 23.1% in Poland. Ischemic heart disease would decrease by 6.6% in Finland to 15.5% in Poland. The number of postponed deaths would be 102,100 (0.9%) in France, and 191,300 (2.3%) in Poland. A reduction of salt intake to 5 grams per day is expected to substantially reduce the burden of cardiovascular disease and mortality in several European countries. PMID:25826317

  3. Physical chemistry and evolution of salt tolerance in halobacteria

    NASA Technical Reports Server (NTRS)

    Lanyi, J. K.

    1980-01-01

    The cellular constituents of extremely halophilic bacteria not only tolerate high salt concentration, but in many cases require it for optical functioning. The characteristics affected by salt include enzyme activity, stability, allosteric regulation, conformation and subunit association. The salt effects are of two major kinds: electrostatic shielding of negative charges by cations at low salt concentration, and hydrophobic stabilization by salting-out type salts at high salt concentration. The composition of halobacterial proteins shows an excess of acidic amino acids and a deficiency of nonpolar amino acids, which accounts for these effects. Since the cohesive forces are weaker and the repulsing forces are stronger in these proteins, preventing aggregation in salt, these structures are no longer suited for functioning in the absence of high salt concentrations. Unlike these nonspecific effects, ribosomes in halobacteria show marked preference for potassium over sodium ions. To ensure the proper intracellular ionic composition, powerful ion transport systems have evolved in the halobacteria, resulting in the extrusion of sodium ions and their replacement by potassium. It is likely that such membrane transport system for ionic movements is a necessary requisite for salt tolerance.

  4. Impacts of using salt and salt brine for roadway deicing.

    DOT National Transportation Integrated Search

    2014-06-01

    Idaho Transportation Department (ITD) uses a variety of methods to help ensure safe travel on the state highway system : following winter storm events. These methods include plowing, use of sand to improve traction, and use of salt and chemical : com...

  5. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study.

    PubMed

    Manga, Venkateswara Rao; Swinteck, Nichlas; Bringuier, Stefan; Lucas, Pierre; Deymier, Pierre; Muralidharan, Krishna

    2016-03-07

    Molten mixtures of network-forming covalently bonded ZnCl2 and network-modifying ionically bonded NaCl and KCl salts are investigated as high-temperature heat transfer fluids for concentrating solar power plants. Specifically, using molecular dynamics simulations, the interplay between the extent of the network structure, composition, and the transport properties (viscosity, thermal conductivity, and diffusion) of ZnCl2-NaCl-KCl molten salts is characterized. The Stokes-Einstein/Eyring relationship is found to break down in these network-forming liquids at high concentrations of ZnCl2 (>63 mol. %), while the Eyring relationship is seen with increasing KCl concentration. Further, the network modification due to the addition of K ions leads to formation of non-bridging terminal Cl ions, which in turn lead to a positive temperature dependence of thermal conductivity in these melts. This new understanding of transport in these ternary liquids enables the identification of appropriate concentrations of the network formers and network modifiers to design heat transfer fluids with desired transport properties for concentrating solar power plants.

  6. Saturated and unsaturated salt transport in peat from a constructed fen

    NASA Astrophysics Data System (ADS)

    Simhayov, Reuven B.; Weber, Tobias K. D.; Price, Jonathan S.

    2018-02-01

    The underlying processes governing solute transport in peat from an experimentally constructed fen peatland were analyzed by performing saturated and unsaturated solute breakthrough experiments using Na+ and Cl- as reactive and non-reactive solutes, respectively. We tested the performance of three solute transport models, including the classical equilibrium convection-dispersion equation (CDE), a chemical non-equilibrium one-site adsorption model (OSA) and a model to account for physical non-equilibrium, the mobile-immobile (MIM) phases. The selection was motivated by the fact that the applicability of the MIM in peat soils finds a wide consensus. However, results from inverse modeling and a robust statistical evaluation of this peat provide evidence that the measured breakthrough of the conservative tracer, Cl-, could be simulated well using the CDE. Furthermore, the very high Damköhler number (which approaches infinity) suggests instantaneous equilibration between the mobile and immobile phases underscoring the redundancy of the MIM approach for this particular peat. Scanning electron microscope images of the peat show the typical multi-pore size distribution structures have been homogenized sufficiently by decomposition, such that physical non-equilibrium solute transport no longer governs the transport process. This result is corroborated by the fact the soil hydraulic properties were adequately described using a unimodal van Genuchten-Mualem model between saturation and a pressure head of ˜ -1000 cm of water. Hence, MIM was not the most suitable choice, and the long tailing of the Na+ breakthrough curve was caused by chemical non-equilibrium. Successful description was possible using the OSA model. To test our results for the unsaturated case, we conducted an unsaturated steady-state evaporation experiment to drive Na+ and Cl- transport. Using the parameterized transport models from the saturated experiments, we could numerically simulate the unsaturated

  7. Overview of Models Used in Land Treatment of Wastewater

    DTIC Science & Technology

    1982-03-01

    The limitation of the ratio of fecal califorms to total coliphage as a water pollution index. Water Resources, vol. 10, p. 745-748. Bouma, J. (1981...predicting.Ar water and salt transport in soils, 2)-nitrogen transport and transformations, 3) phosphorus transport and transformations, 4r-virus...1 Models for planning, site selection and cost analysis .......... 2 Models for predicting water and salt transport in soils

  8. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal.more » These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.« less

  9. Regulation of cation transport in Saccharomyces cerevisiae by the salt tolerance gene HAL3.

    PubMed Central

    Ferrando, A; Kron, S J; Rios, G; Fink, G R; Serrano, R

    1995-01-01

    Dynamic regulation of ion transport is essential for homeostasis as cells confront changes in their environment. The gene HAL3 encodes a novel component of this regulatory circuit in the yeast Saccharomyces cerevisiae. Overexpression of HAL3 improves growth of wild-type cells exposed to toxic concentrations of sodium and lithium and suppresses the salt sensitivity conferred by mutation of the calcium-dependent protein phosphatase calcineurin. Null mutants of HAL3 display salt sensitivity. The sequence of HAL3 gives little clue to its function. However, alterations in intracellular cation concentrations associated with changes in HAL3 expression suggest that HAL3 activity may directly increase cytoplasmic K+ and decrease Na+ and Li+. Cation efflux in S. cerevisiae is mediated by the P-type ATPase encoded by the ENA1/PMR24 gene, a putative plasma membrane Na+ pump whose expression is salt induced. Acting in concert with calcineurin, HAL3 is necessary for full activation of ENA1 expression. This functional complementarity is also reflected in the participation of both proteins in recovery from alpha-factor-induced growth arrest. Recently, HAL3 was isolated as a gene (named SIS2) which when overexpressed partially relieves loss of transcription of G1 cyclins in mutants lacking the protein phosphatase Sit4p. Therefore, HAL3 influences cell cycle control and ion homeostasis, acting in parallel to the protein phosphatases Sit4p and calcineurin. PMID:7565698

  10. Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): assessing the influence of chloride application rates

    NASA Astrophysics Data System (ADS)

    Ludwikowski, Jessica J.; Peterson, Eric W.

    2018-01-01

    In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123-1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  11. Transport and fate of chloride from road salt within a mixed urban and agricultural watershed in Illinois (USA): assessing the influence of chloride application rates

    NASA Astrophysics Data System (ADS)

    Ludwikowski, Jessica J.; Peterson, Eric W.

    2018-06-01

    In a typical winter season, approximately 471,000 tons of road salt are deposited along roadways in Illinois, USA. An estimated 45% of the deposited road salt will infiltrate through the soils and into shallow aquifers. Transported through shallow aquifers, chloride associated with the road salts has the potential to reside within groundwater for years based on the pathway, the geologic material, and the recharge rate of the aquifer system. Utilizing MODFLOW and MT3D, simulations employing various road-salt application rates were conducted to assess the net accumulation of chloride and the residence times of chloride in an agriculture-dominated watershed that originates in an urban area. A positive-linear relationship was observed between the application rate of chloride and both the maximum chloride concentration and total mass accumulated within the watershed. Simulated annual recharge rates along impacted surfaces ranged from 1,000 to 10,000 mg/L. After 60 years of application, simulated chloride concentrations in groundwater ranged from 197 to 1,900 mg/L. For all application rates, chloride concentrations within the groundwater rose at an annual rate of >3 mg/L. While concentrations increase throughout the system, the majority of chloride accumulation occurs near the roads and the urban areas. Model simulations reveal a positive relationship between application rate and residence time of chloride (1,123-1,288 days based on application rate). The models indicate that continued accumulation of chloride in shallow aquifers can be expected, and methods that apply less chloride effectively need to be examined.

  12. Multiphase, multicomponent flow and transport models for Nuclear Test-Ban Treaty monitoring and nuclear waste disposal applications

    NASA Astrophysics Data System (ADS)

    Jordan, Amy

    Open challenges remain in using numerical models of subsurface flow and transport systems to make useful predictions related to nuclear waste storage and nonproliferation. The work presented here addresses the sensitivity of model results to unknown parameters, states, and processes, particularly uncertainties related to incorporating previously unrepresented processes (e.g., explosion-induced fracturing, hydrous mineral dehydration) into a subsurface flow and transport numerical simulator. The Finite Element Heat and Mass (FEHM) transfer code is used for all numerical models in this research. An experimental campaign intended to validate the predictive capability of numerical models that include the strongly coupled thermal, hydrological, and chemical processes in bedded salt is also presented. Underground nuclear explosions (UNEs) produce radionuclide gases that may seep to the surface over weeks to months. The estimated timing of gas arrival at the surface may be used to deploy personnel and equipment to the site of a suspected UNE, if allowed under the terms of the Comprehensive Nuclear Test-Ban Treaty. A model was developed using FEHM that considers barometrically pumped gas transport through a simplified fractured medium and was used to quantify the impact of uncertainties in hydrologic parameters (fracture aperture, matrix permeability, porosity, and saturation) and season of detonation on the timing of gas breakthrough. Numerical sensitivity analyses were performed for the case of a 1 kt UNE at a 400 m burial depth. Gas arrival time was found to be most affected by matrix permeability and fracture aperture. Gases having higher diffusivity were more sensitive to uncertainty in the rock properties. The effect of seasonality in the barometric pressure forcing was found to be important, with detonations in March the least likely to be detectable based on barometric data for Rainier Mesa, Nevada. Monte Carlo modeling was also used to predict the window of

  13. Viral Entry of Hepatitis B and D Viruses and Bile Salts Transportation Share Common Molecular Determinants on Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Yan, Huan; Peng, Bo; Liu, Yang; Xu, Guangwei; He, Wenhui; Ren, Bijie; Jing, Zhiyi; Sui, Jianhua

    2014-01-01

    ABSTRACT The liver bile acids transporter sodium taurocholate cotransporting polypeptide (NTCP) is responsible for the majority of sodium-dependent bile salts uptake by hepatocytes. NTCP also functions as a cellular receptor for viral entry of hepatitis B virus (HBV) and hepatitis D virus (HDV) through a specific interaction between NTCP and the pre-S1 domain of HBV large envelope protein. However, it remains unknown if these two functions of NTCP are independent or if they interfere with each other. Here we show that binding of the pre-S1 domain to human NTCP blocks taurocholate uptake by the receptor; conversely, some bile acid substrates of NTCP inhibit HBV and HDV entry. Mutations of NTCP residues critical for bile salts binding severely impair viral infection by HDV and HBV; to a lesser extent, the residues important for sodium binding also inhibit viral infection. The mutation S267F, corresponding to a single nucleotide polymorphism (SNP) found in about 9% of the East Asian population, renders NTCP without either taurocholate transporting activity or the ability to support HBV or HDV infection in cell culture. These results demonstrate that molecular determinants critical for HBV and HDV entry overlap with that for bile salts uptake by NTCP, indicating that viral infection may interfere with the normal function of NTCP, and bile acids and their derivatives hold the potential for further development into antiviral drugs. IMPORTANCE Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), are important human pathogens. Available therapeutics against HBV are limited, and there is no drug that is clinically available for HDV infection. A liver bile acids transporter (sodium taurocholate cotransporting polypeptide [NTCP]) critical for maintaining homeostasis of bile acids serves as a functional receptor for HBV and HDV. We report here that the NTCP-binding lipopeptide that originates from the first 47 amino acids of the pre-S1 domain of the

  14. Age-dependent salt hypertension in Dahl rats: fifty years of research.

    PubMed

    Zicha, J; Dobešová, Z; Vokurková, M; Rauchová, H; Hojná, S; Kadlecová, M; Behuliak, M; Vaněčková, I; Kuneš, J

    2012-01-01

    Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is

  15. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  16. Thermal modelling and control of 130kw direct contact (salt/air) heat exchanger

    NASA Astrophysics Data System (ADS)

    Qureshi, Omer A.; Calvet, Nicolas; Armstrong, Peter R.

    2017-06-01

    This work investigates the transient response of a certain type of direct contact heat exchanger (DCHX) that consists of packing (Raschig Rings) to increase the surface area for effective heat transfer between molten salt and air. Molten salt from the hot tank enters the heat exchanger (HX) and exit after heating the air still in the molten form. Thermal capacitance of the HX, mainly due to packing and resident salt inside the HX, results in strong transient response. Pure delay from salt residence time may also impact transient response. Both phenomena have been modelled in this paper. A Proportional-Integral controller (PI control) performance has been evaluated to maintain the minimum salt temperature above avoid crystallization temperature of the salt.

  17. Assessing the Wildlife Habitat Value of New England Salt Marshes: I. Model and Application

    EPA Science Inventory

    We developed an assessment model to quantify the wildlife habitat value of New England salt marshes based on marsh characteristics and the presence of habitat types that influence habitat use by terrestrial wildlife. Applying the model to12 salt marshes located in Narragansett B...

  18. Assessing Wildlife Habitat Value of New England Salt Marshes: II. Model Testing and Validation

    EPA Science Inventory

    We test a previously described model to assess the wildlife habitat value of New England salt marshes by comparing modeled habitat values and scores with bird abundance and species richness at sixteen salt marshes in Narragansett Bay, Rhode Island USA. Assessment scores ranged f...

  19. Constitutive Modeling of the Thermomechanical Behavior of Rock Salt

    NASA Astrophysics Data System (ADS)

    Hampel, A.

    2016-12-01

    For the safe disposal of heat-generating high-level radioactive waste in rock salt formations, highly reliable numerical simulations of the thermomechanical and hydraulic behavior of the host rock have to be performed. Today, the huge progress in computer technology has enabled experts to calculate large and detailed computer models of underground repositories. However, the big ad­van­ces in computer technology are only beneficial when the applied material models and modeling procedures also meet very high demands. They result from the fact that the evaluation of the long-term integrity of the geological barrier requires an extra­polation of a highly nonlinear deforma­tion behavior to up to 1 million years, while the underlying experimental investigations in the laboratory or in situ have a duration of only days, weeks or at most some years. Several advanced constitutive models were developed and continuously improved to describe the dependences of various deformation phenomena in rock salt on in-situ relevant boundary conditions: transient and steady-state creep, evolution of damage and dilatancy in the DRZ, failure, post-failure behavior, residual strength, damage and dilatancy reduction, and healing. In a joint project series between 2004 and 2016, fundamental features of the advanced models were investigated and compared in detail with benchmark calculations. The study included procedures for the determination of characteristic salt-type-specific model parameter values and for the performance of numerical calculations of underground structures. Based on the results of this work and on specific laboratory investigations, the rock mechanical modeling is currently developed further in a common research project of experts from Germany and the United States. In this presentation, an overview about the work and results of the project series is given and the current joint research project WEIMOS is introduced.

  20. Experimental salt marsh islands: A model system for novel metacommunity experiments

    NASA Astrophysics Data System (ADS)

    Balke, Thorsten; Lõhmus, Kertu; Hillebrand, Helmut; Zielinski, Oliver; Haynert, Kristin; Meier, Daniela; Hodapp, Dorothee; Minden, Vanessa; Kleyer, Michael

    2017-11-01

    Shallow tidal coasts are characterised by shifting tidal flats and emerging or eroding islands above the high tide line. Salt marsh vegetation colonising new habitats distant from existing marshes are an ideal model to investigate metacommunity theory. We installed a set of 12 experimental salt marsh islands made from metal cages on a tidal flat in the German Wadden Sea to study the assembly of salt marsh communities in a metacommunity context. Experimental plots at the same elevation were established within the adjacent salt marsh on the island of Spiekeroog. For both, experimental islands and salt marsh enclosed plots, the same three elevational levels were realised while creating bare patches open for colonisation and vegetated patches with a defined transplanted community. One year into the experiment, the bare islands were colonised by plant species with high fecundity although with a lower frequency compared to the salt marsh enclosed bare plots. Initial plant community variations due to species sorting along the inundation gradient were evident in the transplanted vegetation. Competitive exclusion was not observed and is only expected to unfold in the coming years. Our study highlights that spatially and temporally explicit metacommunity dynamics should be considered in salt marsh plant community assembly and disassembly.

  1. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  2. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  3. Bone Density and High Salt Diets in a Space Flight Model

    NASA Technical Reports Server (NTRS)

    Arnaud, S. B.; Navidi, M.; Liang, M. T. C.; Wolinsky, I.

    1999-01-01

    High salt diets accelerate bone loss with aging in patients with postmenopausal osteoporosis except when calcium supplementation is provided. We have observed that the decrease in mineral content of growing femurs in juvenile rats, exposed to a space flight model which unloads the hind limbs , is substantially less in animals fed excess salt. To determine whether excess dietary salt has the same effect on the skeleton of the mature animal whose response to unloading is increased resorption and bone loss rather than impaired growth, we carried out a metabolic study in mature rats with hindlimbs unloaded by tailsuspension.

  4. Testing a 1-D Analytical Salt Intrusion Model and the Predictive Equation in Malaysian Estuaries

    NASA Astrophysics Data System (ADS)

    Gisen, Jacqueline Isabella; Savenije, Hubert H. G.

    2013-04-01

    Little is known about the salt intrusion behaviour in Malaysian estuaries. Study on this topic sometimes requires large amounts of data especially if a 2-D or 3-D numerical models are used for analysis. In poor data environments, 1-D analytical models are more appropriate. For this reason, a fully analytical 1-D salt intrusion model, based on the theory of Savenije in 2005, was tested in three Malaysian estuaries (Bernam, Selangor and Muar) because it is simple and requires minimal data. In order to achieve that, site surveys were conducted in these estuaries during the dry season (June-August) at spring tide by moving boat technique. Data of cross-sections, water levels and salinity were collected, and then analysed with the salt intrusion model. This paper demonstrates a good fit between the simulated and observed salinity distribution for all three estuaries. Additionally, the calibrated Van der Burgh's coefficient K, Dispersion coefficient D0, and salt intrusion length L, for the estuaries also displayed a reasonable correlations with those calculated from the predictive equations. This indicates that not only is the salt intrusion model valid for the case studies in Malaysia but also the predictive model. Furthermore, the results from this study describe the current state of the estuaries with which the Malaysian water authority in Malaysia can make decisions on limiting water abstraction or dredging. Keywords: salt intrusion, Malaysian estuaries, discharge, predictive model, dispersion

  5. Salt tolerance at single cell level in giant-celled Characeae

    PubMed Central

    Beilby, Mary J.

    2015-01-01

    Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/or osmotic stress. Both salt tolerant and salt sensitive Characeae show a rise in membrane conductance and simultaneous increase in Na+ influx upon exposure to saline medium. Salt tolerant Chara longifolia and Lamprothamnium sp. exhibit proton pump stimulation upon both turgor decrease and salinity increase, allowing the membrane PD to remain negative. The turgor is regulated through the inward K+ rectifier and 2H+/Cl- symporter. Lamprothamnium plants can survive in hypersaline media up to twice seawater strength and withstand large sudden changes in salinity. Salt sensitive C. australis succumbs to 50–100 mM NaCl in few days. Cells exhibit no pump stimulation upon turgor decrease and at best transient pump stimulation upon salinity increase. Turgor is not regulated. The membrane PD exhibits characteristic noise upon exposure to salinity. Depolarization of membrane PD to excitation threshold sets off trains of action potentials, leading to further loses of K+ and Cl-. In final stages of salt damage the H+/OH- channels are thought to become the dominant transporter, dissipating the proton gradient and bringing the cell PD close to 0. The differences in transporter electrophysiology and their synergy under osmotic and/or saline stress in salt sensitive and salt tolerant characean cells are discussed in

  6. Salt deposits in Arizona promise gas-storage opportunities

    USGS Publications Warehouse

    Rauzi, S.L.

    2002-01-01

    Massive salt formations and their proximity to pipeline systems and power plants make Arizona attractive for natural gas storage. Caverns dissolved in subsurface salt are used to store LPG at Ferrellgas Partners LP facility near Holbrook and the AmeriGas Partners LP facility near Glendale. Three other companies are investigating the feasibility of storing natural gas in Arizona salt: Copper Eagle Gas Storage LLC, Desert Crossing Gas Storage and Transportation System LLC, and Aquila Inc. The most extensive salt deposits are in the Colorado Plateau Province. Marine and nonmarine salt deposits are present in Arizona.

  7. On the evaluation of global sea-salt aerosol models at coastal/orographic sites

    NASA Astrophysics Data System (ADS)

    Spada, M.; Jorba, O.; Pérez García-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2015-01-01

    Sea-salt aerosol global models are typically evaluated against concentration observations at coastal stations that are unaffected by local surf conditions and thus considered representative of open ocean conditions. Despite recent improvements in sea-salt source functions, studies still show significant model errors in specific regions. Using a multiscale model, we investigated the effect of high model resolution (0.1° × 0.1° vs. 1° × 1.4°) upon sea-salt patterns in four stations from the University of Miami Network: Baring Head, Chatam Island, and Invercargill in New Zealand, and Marion Island in the sub-antarctic Indian Ocean. Normalized biases improved from +63.7% to +3.3% and correlation increased from 0.52 to 0.84. The representation of sea/land interfaces, mesoscale circulations, and precipitation with the higher resolution model played a major role in the simulation of annual concentration trends. Our results recommend caution when comparing or constraining global models using surface concentration observations from coastal stations.

  8. [Function of transport H+-ATPases in plant cell plasma and vacuolar membranes of maize under salt stress conditions and effect of adaptogenic preparations].

    PubMed

    Rybchenko, Zh I; Palladina, T O

    2011-01-01

    Participations of electrogenic H+-pumps of plasma and vacuolar membranes represented by E1-E2 and V-type H+-ATPases in plant cell adaptation to salt stress conditions has been studied by determination of their transport activities. Experiments were carried out on corn seedlings exposed during 1 or 10 days at 0.1 M NaCl. Preparations Methyure and Ivine were used by seed soaking at 10(-7) M. Plasma and vacuolar membrane fractions were isolated from corn seedling roots. In variants without NaCl a hydrolytical activity of plasma membrane H+-ATPase was increased with seedling age and its transport one was changed insignificantly, wherease the response of the weaker vacuolar H+-ATPase was opposite. NaCl exposition decreased hydrolytical activities of both H+-ATPases and increased their transport ones. These results demonstrated amplification of H+-pumps function especially represented by vacuolar H+-ATPase. Both preparations, Methyure mainly, caused a further increase of transport activity which was more expressed in NaCl variants. Obtained results showed the important role of these H+-pumps in plant adaptation under salt stress conditions realized by energetical maintenance of the secondary active Na+/H+ -antiporters which remove Na+ from cytoplasm.

  9. Mesoscale Eddies in the Northwestern Pacific Ocean: Three-Dimensional Eddy Structures and Heat/Salt Transports

    NASA Astrophysics Data System (ADS)

    Dong, Di; Brandt, Peter; Chang, Ping; Schütte, Florian; Yang, Xiaofeng; Yan, Jinhui; Zeng, Jisheng

    2017-12-01

    The region encompassing the Kuroshio Extension (KE) in the Northwestern Pacific Ocean (25°N-45°N and 130°E-180°E) is one of the most eddy-energetic regions of the global ocean. The three-dimensional structures and transports of mesoscale eddies in this region are comprehensively investigated by combined use of satellite data and Argo profiles. With the allocation of Argo profiles inside detected eddies, the spatial variations of structures of eddy temperature and salinity anomalies are analyzed. The results show that eddies predominantly have subsurface (near-surface) intensified temperature and salinity anomalies south (north) of the KE jet, which is related to different background stratifications between these regions. A new method based on eddy trajectories and the inferred three-dimensional eddy structures is proposed to estimate heat and salt transports by eddy movements in a Lagrangian framework. Spatial distributions of eddy transports are presented over the vicinity of the KE for the first time. The magnitude of eddy-induced meridional heat (freshwater volume) transport is on the order of 0.01 PW (103 m3/s). The eddy heat transport divergence results in an oceanic heat loss south and heat gain north of the KE, thereby reinforcing and counteracting the oceanic heat loss from air-sea fluxes south and north of the KE jet, respectively. It also suggests a poleward heat transport across the KE jet due to eddy propagation.

  10. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations

  11. Modeling anomalous radial transport in kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, K.; Krasheninnikov, S. I.; Cohen, R. H.; Rognlien, T. D.

    2009-11-01

    Anomalous transport is typically the dominant component of the radial transport in magnetically confined plasmas, where the physical origin of this transport is believed to be plasma turbulence. A model is presented for anomalous transport that can be used in continuum kinetic edge codes like TEMPEST, NEO and the next-generation code being developed by the Edge Simulation Laboratory. The model can also be adapted to particle-based codes. It is demonstrated that the model with a velocity-dependent diffusion and convection terms can match a diagonal gradient-driven transport matrix as found in contemporary fluid codes, but can also include off-diagonal effects. The anomalous transport model is also combined with particle drifts and a particle/energy-conserving Krook collision operator to study possible synergistic effects with neoclassical transport. For the latter study, a velocity-independent anomalous diffusion coefficient is used to mimic the effect of long-wavelength ExB turbulence.

  12. Comparison tests of liquid calcium and salt brine : a controlled experimental evaluation of rock salt pre-wetting liquids.

    DOT National Transportation Integrated Search

    2003-10-01

    The Maine Department of Transportation, like other state transportation agencies in the northern U.S., : utilizes solid salt to maintain bare pavement condition on its roads and bridges during winter. In recent : years more emphasis has been placed o...

  13. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    NASA Astrophysics Data System (ADS)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  14. A Process-Based Transport-Distance Model of Aeolian Transport

    NASA Astrophysics Data System (ADS)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  15. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model.

    PubMed

    Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and

  16. Ionic solubility and solutal advection governed augmented evaporation kinetics of salt solution pendant droplets

    NASA Astrophysics Data System (ADS)

    Jaiswal, Vivek; Harikrishnan, A. R.; Khurana, Gargi; Dhar, Purbarun

    2018-01-01

    The presence of dispersed inclusions is known to modify the interfacial characteristics in liquids by adsorption-desorption of the ions at interfaces. The present article reports the influencing role of dissolved ions in a polar fluid on its evaporation dynamics. The evaporation dynamics of pendant droplets of aqueous solutions of variant simple salts and concentrations have been experimentally studied. The presence of salts is observed to enhance the evaporation rate (obeying the classical D2 law), and the enhancement has been found to hold a direct proportionality to the concentration of the dissolved salt. Furthermore, it is observed that the degree of enhancement in the evaporation rate is also directly proportional to the solubility of the salt in question. The phenomenon is explained based on the chemical kinetics and thermodynamics of hydration of the ionic species in the polar fluid. The classical evaporation rate constant formulation is found to be inadequate in modeling the enhanced species transport. Additional probing via particle image velocimetry reveals augmented internal circulation within the evaporating salt based drops compared to pure water. Mapping the dynamic surface tension reveals that a salt concentration gradient is generated between the bulk and periphery of the droplet and it could be responsible for the internal advection cells visualized. A thermo-solutal Marangoni and Rayleigh convection based mathematical formulation has been put forward, and it is shown that the enhanced solute-thermal convection could play a major role in enhanced evaporation. The internal circulation mapped from experiments is found to be in good quantitative agreement with the model predictions. Scaling analysis further reveals that the stability of the solutal Marangoni convection surpasses the thermal counterpart with higher salt concentration and solubility. The present article sheds insight into the possible domineering role of conjugate thermohydraulic and

  17. 3D mapping, hydrodynamics and modelling of the freshwater-brine mixing zone in salt flats similar to the Salar de Atacama (Chile)

    NASA Astrophysics Data System (ADS)

    Marazuela, M. A.; Vázquez-Suñé, E.; Custodio, E.; Palma, T.; García-Gil, A.; Ayora, C.

    2018-06-01

    Salt flat brines are a major source of minerals and especially lithium. Moreover, valuable wetlands with delicate ecologies are also commonly present at the margins of salt flats. Therefore, the efficient and sustainable exploitation of the brines they contain requires detailed knowledge about the hydrogeology of the system. A critical issue is the freshwater-brine mixing zone, which develops as a result of the mass balance between the recharged freshwater and the evaporating brine. The complex processes occurring in salt flats require a three-dimensional (3D) approach to assess the mixing zone geometry. In this study, a 3D map of the mixing zone in a salt flat is presented, using the Salar de Atacama as an example. This mapping procedure is proposed as the basis of computationally efficient three-dimensional numerical models, provided that the hydraulic heads of freshwater and mixed waters are corrected based on their density variations to convert them into brine heads. After this correction, the locations of lagoons and wetlands that are characteristic of the marginal zones of the salt flats coincide with the regional minimum water (brine) heads. The different morphologies of the mixing zone resulting from this 3D mapping have been interpreted using a two-dimensional (2D) flow and transport numerical model of an idealized cross-section of the mixing zone. The result of the model shows a slope of the mixing zone that is similar to that obtained by 3D mapping and lower than in previous models. To explain this geometry, the 2D model was used to evaluate the effects of heterogeneity in the mixing zone geometry. The higher the permeability of the upper aquifer is, the lower the slope and the shallower the mixing zone become. This occurs because most of the freshwater lateral recharge flows through the upper aquifer due to its much higher transmissivity, thus reducing the freshwater head. The presence of a few meters of highly permeable materials in the upper part of

  18. Improving salt marsh digital elevation model accuracy with full-waveform lidar and nonparametric predictive modeling

    NASA Astrophysics Data System (ADS)

    Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.

    2018-03-01

    Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.

  19. A non-ideal model for predicting the effect of dissolved salt on the flash point of solvent mixtures.

    PubMed

    Liaw, Horng-Jang; Wang, Tzu-Ai

    2007-03-06

    Flash point is one of the major quantities used to characterize the fire and explosion hazard of liquids. Herein, a liquid with dissolved salt is presented in a salt-distillation process for separating close-boiling or azeotropic systems. The addition of salts to a liquid may reduce fire and explosion hazard. In this study, we have modified a previously proposed model for predicting the flash point of miscible mixtures to extend its application to solvent/salt mixtures. This modified model was verified by comparison with the experimental data for organic solvent/salt and aqueous-organic solvent/salt mixtures to confirm its efficacy in terms of prediction of the flash points of these mixtures. The experimental results confirm marked increases in liquid flash point increment with addition of inorganic salts relative to supplementation with equivalent quantities of water. Based on this evidence, it appears reasonable to suggest potential application for the model in assessment of the fire and explosion hazard for solvent/salt mixtures and, further, that addition of inorganic salts may prove useful for hazard reduction in flammable liquids.

  20. Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light

  1. Molten salt reactor neutronics and fuel cycle modeling and simulation with SCALE

    DOE PAGES

    Betzler, Benjamin R.; Powers, Jeffrey J.; Worrall, Andrew

    2017-03-01

    Current interest in advanced nuclear energy and molten salt reactor (MSR) concepts has enhanced interest in building the tools necessary to analyze these systems. A Python script known as ChemTriton has been developed to simulate equilibrium MSR fuel cycle performance by modeling the changing isotopic composition of an irradiated fuel salt using SCALE for neutron transport and depletion calculations. Some capabilities in ChemTriton that have improved, include a generic geometry capable of modeling multi-zone and multi-fluid systems, enhanced time-dependent feed and separations, and a critical concentration search. Although more generally applicable, the capabilities developed to date are illustrated in thismore » paper in three applied problems: (1) simulating the startup of a thorium-based MSR fuel cycle (a likely scenario requires the first of these MSRs to be started without available 233U); (2) determining the effect of the removal of different fission products on MSR operations; and (3) obtaining the equilibrium concentration of a mixed-oxide light-water reactor fuel in a two-stage fuel cycle with a sodium fast reactor. Moreover, the third problem is chosen to demonstrate versatility in an application to analyze the fuel cycle of a non-MSR system. During the first application, the initial fuel salt compositions fueled with different sources of fissile material are made feasible after (1) removing the associated nonfissile actinides after much of the initial fissile isotopes have burned and (2) optimizing the thorium concentration to maintain a critical configuration without significantly reducing breeding capability. In the second application, noble metal, volatile gas, and rare earth element fission products are shown to have a strong negative effect on criticality in a uranium-fueled thermal-spectrum MSR; their removal significantly increases core lifetime (by 30%) and fuel utilization. In the third application, the fuel of a mixed-oxide light

  2. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam < loam < clay loam. Salt accumulations in Japan euonymus and Chinese pine were less than that in Blue grass. The temporal and spatial distributions of soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  3. A model for the salt effect on adsorption equilibrium of basic protein to dye-ligand affinity adsorbent.

    PubMed

    Zhang, Songping; Sun, Yan

    2004-01-01

    A model describing the salt effect on adsorption equilibrium of a basic protein, lysozyme, to Cibacron Blue 3GA-modified Sepharose CL-6B (CB-Sepharose) has been developed. In this model, it is assumed that the presence of salt causes a fraction of dye-ligand molecules to lodge to the surface of the agarose gel, resulting from the induced strong hydrophobic interaction between dye ligand and agarose matrix. The salt effect on the lodging of dye-ligand is expressed by the equilibrium between salt and dye-ligand. For the interactions between protein and vacant binding sites, stoichiometric equations based either on cation exchanges or on hydrophobic interactions are proposed since the CB dye can be regarded as a cation exchanger contributed by the sulfonate groups on it. Combining with the basic concept of steric mass-action theory for ion exchange, which considers both the multipoint nature and the macromolecular steric shielding of protein adsorption, an explicit isotherm for protein adsorption equilibrium on the dye-ligand adsorbent is formulated, involving salt concentration as a variable. Analysis of the model parameters has yielded better understanding of the mechanism of salt effects on adsorption of the basic protein. Moreover, the model predictions are in good agreement with the experimental data over a wide range of salt and ligand concentrations, indicating the predictive nature of the model.

  4. Salt stress-induced proline transporters and salt stress-repressed broad specificity amino acid permeases identified by suppression of a yeast amino acid permease-targeting mutant.

    PubMed Central

    Rentsch, D; Hirner, B; Schmelzer, E; Frommer, W B

    1996-01-01

    A yeast mutant lacking SHR3, a protein specifically required for correct targeting of plasma membrane amino acid permeases, was used to study the targeting of plant transporters and as a tool to isolate new SHR3-independent amino acid transporters. For this purpose, an shr3 mutant was transformed with an Arabidopsis cDNA library. Thirty-four clones were capable of growth under selective conditions, but none showed homology with SHR3. However, genes encoding eight different amino acid transporters belonging to three different transporter families were isolated. Five of these are members of the general amino acid permease (AAP) gene family, one is a member of the NTR family, encoding an oligopeptide transporter, and two belong to a new class of transporter genes. A functional analysis of the latter two genes revealed that they encode specific proline transporters (ProT) that are distantly related to the AAP gene family. ProT1 was found to be expressed in all organs, but highest levels were found in roots, stems, and flowers. Expression in flowers was highest in the floral stalk phloem that enters the carpels and was downregulated after fertilization, indicating a specific role in supplying the ovules with proline. ProT2 transcripts were found ubiquitously throughout the plant, but expression was strongly induced under water or salt stress, implying that ProT2 plays an important role in nitrogen distribution during water stress, unlike members of the AAP gene family whose expression was repressed under the same conditions. These results corroborate the general finding that under water stress, amino acid export is impaired whereas proline export is increased. PMID:8776904

  5. Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model

    PubMed Central

    Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine

    2016-01-01

    Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40–50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na+ and H+ extrusion. PMID:26903967

  6. Forcing functions governing salt transport processes in coastal navigation canals and connectivity to surrounding marshes in South Louisiana using Houma Navigation Canal as a surrogate

    USGS Publications Warehouse

    Snedden, Gregg

    2014-01-01

    Understanding how circulation and mixing processes in coastal navigation canals influence the exchange of salt between marshes and coastal ocean, and how those processes are modulated by external physical processes, is critical to anticipating effects of future actions and circumstance. Examples of such circumstances include deepening the channel, placement of locks in the channel, changes in freshwater discharge down the channel, changes in outer continental shelf (OCS) vessel traffic volume, and sea level rise. The study builds on previous BOEM-funded studies by investigating salt flux variability through the Houma Navigation Canal (HNC). It examines how external physical factors, such as buoyancy forcing and mixing from tidal stirring and OCS vessel wakes, influence dispersive and advective fluxes through the HNC and the impact of this salt flux on salinity in nearby marshes. This study quantifies salt transport processes and salinity variability in the HNC and surrounding Terrebonne marshes. Data collected for this study include time-series data of salinity and velocity in the HNC, monthly salinity-depth profiles along the length of the channel, hourly vertical profiles of velocity and salinity over multiple tidal cycles, and salinity time series data at three locations in the surrounding marshes along a transect of increasing distance from the HNC. Two modes of vertical current structure were identified. The first mode, making up 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the longitudinal salinity gradients along the channel’s length. Diffusive process were dominant drivers of upestuary salt transport, except during periods of minimal tidal stirring when gravitational circulation became more important. Salinity in the

  7. Improvement of lipophilicity and membrane transport of cefuroxime using in vitro models.

    PubMed

    Mrestani, Yahya; Mrestani-Klaus, Carmen; Bretschneider, Beate; Neubert, Reinhard H H

    2004-11-01

    Most beta-lactam antibiotics cannot be absorbed orally and, therefore, must be administered intravenously (i.v.) or intramuscularly (i.m.). Because of the obvious drawbacks of drug delivery by injection, the development of alternatives with enhanced oral bioavailability is receiving much attention in pharmaceutical research. Cefuroxime exhibiting significant advantages in the parental treatment of common infections, was used as model drug in the present study. The effect of the cationic absorption enhancers (four quaternary ammonium salts) on the lipophilicity of cefuroxime was investigated by means of the n-octanol/water system. The results on partitioning coefficients in the n-octanol/buffer system were confirmed using an in vitro transport model with artificial (dodecanol collodium membrane) and biological membranes (Charles-River guinea pig).

  8. Modeling and Evaluation of the Global Sea-Salt Aerosol Distribution: Sensitivity to Emission Schemes and Resolution Effects at Coastal/Orographic Sites

    NASA Technical Reports Server (NTRS)

    Spada, M.; Jorba, O.; Perez Garcia-Pando, C.; Janjic, Z.; Baldasano, J. M.

    2013-01-01

    One of the major sources of uncertainty in model estimates of the global sea-salt aerosol distribution is the emission parameterization. We evaluate a new sea-salt aerosol life cycle module coupled to the online multi-scale chemical transport model NMMB/BSC-CTM. We compare 5 year global simulations using five state-of-the-art sea-salt open-ocean emission schemes with monthly averaged coarse aerosol optical depth (AOD) from selected AERONET sun photometers, surface concentration measurements from the University of Miami's Ocean Aerosol Network, and measurements from two NOAA/PMEL cruises (AEROINDOEX and ACE1). Model results are highly sensitive to the introduction of sea-surface-temperature (SST)-dependent emissions and to the accounting of spume particles production. Emission ranges from 3888 teragrams per year to 8114 teragrams per year, lifetime varies between 7.3 hours and 11.3 hours, and the average column mass load is between 5.0 teragrams and 7.2 teragrams. Coarse AOD is reproduced with an overall correlation of around 0.5 and with normalized biases ranging from +8.8 percent to +38.8 percent. Surface concentration is simulated with normalized biases ranging from minus 9.5 percent to plus 28 percent and the overall correlation is around 0.5. Our results indicate that SST-dependent emission schemes improve the overall model performance in reproducing surface concentrations. On the other hand, they lead to an overestimation of the coarse AOD at tropical latitudes, although it may be affected by uncertainties in the comparison due to the use of all-sky model AOD, the treatment of water uptake, deposition and optical properties in the model and/or an inaccurate size distribution at emission.

  9. Mechanism of ion transport by avian salt gland primary cell cultures.

    PubMed

    Lowy, R J; Dawson, D C; Ernst, S A

    1989-06-01

    Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.

  10. Ranking contributing areas of salt and selenium in the Lower Gunnison River Basin, Colorado, using multiple linear regression models

    USGS Publications Warehouse

    Linard, Joshua I.

    2013-01-01

    Mitigating the effects of salt and selenium on water quality in the Grand Valley and lower Gunnison River Basin in western Colorado is a major concern for land managers. Previous modeling indicated means to improve the models by including more detailed geospatial data and a more rigorous method for developing the models. After evaluating all possible combinations of geospatial variables, four multiple linear regression models resulted that could estimate irrigation-season salt yield, nonirrigation-season salt yield, irrigation-season selenium yield, and nonirrigation-season selenium yield. The adjusted r-squared and the residual standard error (in units of log-transformed yield) of the models were, respectively, 0.87 and 2.03 for the irrigation-season salt model, 0.90 and 1.25 for the nonirrigation-season salt model, 0.85 and 2.94 for the irrigation-season selenium model, and 0.93 and 1.75 for the nonirrigation-season selenium model. The four models were used to estimate yields and loads from contributing areas corresponding to 12-digit hydrologic unit codes in the lower Gunnison River Basin study area. Each of the 175 contributing areas was ranked according to its estimated mean seasonal yield of salt and selenium.

  11. Dimensioning Principles in Potash and Salt: Stability and Integrity

    NASA Astrophysics Data System (ADS)

    Minkley, W.; Mühlbauer, J.; Lüdeling, C.

    2016-11-01

    The paper describes the principal geomechanical approaches to mine dimensioning in salt and potash mining, focusing on stability of the mining system and integrity of the hydraulic barrier. Several common dimensioning are subjected to a comparative analysis. We identify geomechanical discontinuum models as essential physical ingredients for examining the collapse of working fields in potash mining. The basic mechanisms rely on the softening behaviour of salt rocks and the interfaces. A visco-elasto-plastic material model with strain softening, dilatancy and creep describes the time-dependent softening behaviour of the salt pillars, while a shear model with velocity-dependent adhesive friction with shear displacement-dependent softening is used for bedding planes and discontinuities. Pillar stability critically depends on the shear conditions of the bedding planes to the overlying and underlying beds, which provide the necessary confining pressure for the pillar core, but can fail dynamically, leading to large-scale field collapses. We further discuss the integrity conditions for the hydraulic barrier, most notably the minimal stress criterion, the violation of which leads to pressure-driven percolation as the mechanism of fluid transport and hence barrier failure. We present a number of examples where violation of the minimal stress criterion has led to mine floodings.

  12. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    PubMed

    Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  13. A simple reactive-transport model of calcite precipitation in soils and other porous media

    NASA Astrophysics Data System (ADS)

    Kirk, G. J. D.; Versteegen, A.; Ritz, K.; Milodowski, A. E.

    2015-09-01

    Calcite formation in soils and other porous media generally occurs around a localised source of reactants, such as a plant root or soil macro-pore, and the rate depends on the transport of reactants to and from the precipitation zone as well as the kinetics of the precipitation reaction itself. However most studies are made in well mixed systems, in which such transport limitations are largely removed. We developed a mathematical model of calcite precipitation near a source of base in soil, allowing for transport limitations and precipitation kinetics. We tested the model against experimentally-determined rates of calcite precipitation and reactant concentration-distance profiles in columns of soil in contact with a layer of HCO3--saturated exchange resin. The model parameter values were determined independently. The agreement between observed and predicted results was satisfactory given experimental limitations, indicating that the model correctly describes the important processes. A sensitivity analysis showed that all model parameters are important, indicating a simpler treatment would be inadequate. The sensitivity analysis showed that the amount of calcite precipitated and the spread of the precipitation zone were sensitive to parameters controlling rates of reactant transport (soil moisture content, salt content, pH, pH buffer power and CO2 pressure), as well as to the precipitation rate constant. We illustrate practical applications of the model with two examples: pH changes and CaCO3 precipitation in the soil around a plant root, and around a soil macro-pore containing a source of base such as urea.

  14. A contribution to the history of common salt.

    PubMed

    DeSanto, N G; Bisaccia, C; Cirillo, M; DeSanto, R M; DeSanto, L S; DeSanto, D; Papalia, T; Capasso, G; De Napoli, N

    1997-06-01

    Salt has influenced human nutrition, health, politics, taxation, economy, freight, transport, and commerce throughout the ages. All human activities have been influenced by salt including economy, religious beliefs and practices, art, literature, psychoanalysis, superstitions, and exorcism. Salt is recognized as a symbol for friendship, hospitality, chastity, alliance, table fellowship, fidelity, fertility, blessing, curse and endurance, etc. The Bible is the first book of salt and contains no fewer than 24 references to this substance. In the Gospels the parable of salt is a central one. Many many church fathers have written on salt a substance, which up to 1969 was a relevant element in the rite of Baptism. This paper reviews the importance of common salt for human life, and by drawing from various scientific and literary sources makes a special discussion of its various symbolisms.

  15. Physiological responses to salt stress of salt-adapted and directly salt (NaCl and NaCl+Na2SO4 mixture)-stressed cyanobacterium Anabaena fertilissima.

    PubMed

    Swapnil, Prashant; Rai, Ashwani K

    2018-05-01

    Soil salinity in nature is generally mixed type; however, most of the studies on salt toxicity are performed with NaCl and little is known about sulfur type of salinity (Na 2 SO 4 ). Present study discerns the physiologic mechanisms responsible for salt tolerance in salt-adapted Anabaena fertilissima, and responses of directly stressed parent cells to NaCl and NaCl+Na 2 SO 4 mixture. NaCl at 500 mM was lethal to the cyanobacterium, whereas salt-adapted cells grew luxuriantly. Salinity impaired gross photosynthesis, electron transport activities, and respiration in parent cells, but not in the salt-adapted cells, except a marginal increase in PSI activity. Despite higher Na + concentration in the salt mixture, equimolar NaCl appeared more inhibitive to growth. Sucrose and trehalose content and antioxidant activities were maximal in 250 mM NaCl-treated cells, followed by salt mixture and was almost identical in salt-adapted (exposed to 500 mm NaCl) and control cells, except a marginal increase in ascorbate peroxidase activity and an additional fourth superoxide dismutase isoform. Catalase isoform of 63 kDa was induced only in salt-stressed cells. Salinity increased the uptake of intracellular Na + and Ca 2+ and leakage of K + in parent cells, while cation level in salt-adapted cells was comparable to control. Though there was differential increase in intracellular Ca 2+ under different salt treatments, ratio of Ca 2+ /Na + remained the same. It is inferred that stepwise increment in the salt concentration enabled the cyanobacterium to undergo priming effect and acquire robust and efficient defense system involving the least energy.

  16. Building the 3D Geological Model of Wall Rock of Salt Caverns Based on Integration Method of Multi-source data

    NASA Astrophysics Data System (ADS)

    Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI

    2017-02-01

    In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.

  17. Characterization of Two HKT1;4 Transporters from Triticum monococcum to Elucidate the Determinants of the Wheat Salt Tolerance Nax1 QTL.

    PubMed

    Tounsi, Sana; Ben Amar, Siwar; Masmoudi, Khaled; Sentenac, Hervé; Brini, Faiçal; Véry, Anne-Aliénor

    2016-10-01

    TmHKT1;4-A1 and TmHKT1;4-A2 are two Na + transporter genes that have been identified as associated with the salt tolerance Nax1 locus found in a durum wheat (Triticum turgidum L. subsp. durum) line issued from a cross with T. monococcum. In the present study, we were interested in getting clues on the molecular mechanisms underpinning this salt tolerance quantitative trait locus (QTL). By analyzing the phylogenetic relationships between wheat and T. monococcum HKT1;4-type genes, we found that durum and bread wheat genomes possess a close homolog of TmHKT1;4-A1, but no functional close homolog of TmHKT1;4-A2. Furthermore, performing real-time reverse transcription-PCR experiments, we showed that TmHKT1;4-A1 and TmHKT1;4-A2 are similarly expressed in the leaves but that TmHKT1;4-A2 is more strongly expressed in the roots, which would enable it to contribute more to the prevention of Na + transfer to the shoots upon salt stress. We also functionally characterized the TmHKT1;4-A1 and TmHKT1;4-A2 transporters by expressing them in Xenopus oocytes. The two transporters displayed close functional properties (high Na + /K + selectivity, low affinity for Na + , stimulation by external K + of Na + transport), but differed in some quantitative parameters: Na + affinity was 3-fold lower and the maximal inward conductance was 3-fold higher in TmHKT1;4-A2 than in TmHKT1;4-A1. The conductance of TmHKT1;4-A2 at high Na + concentration (>10 mM) was also shown to be higher than that of the two durum wheat HKT1;4-type transporters so far characterized. Altogether, these data support the hypothesis that TmHKT1;4-A2 is responsible for the Nax1 trait and provide new insight into the understanding of this QTL. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. A Kronig-Penney Model of Salts of DNA

    PubMed Central

    Rosen, Philip

    1968-01-01

    A one dimensional Kronig-Penney model for a salt like Na DNA is given. The helical periodicity is treated in a manner suggested by Tinoco and Woody. Using data on the semiconductor band gap, we estimate the strength of the potential barrier. The energy limits of the ten bands filled by 20π electrons per unit cell are calculated and exhibited in Table I. PMID:5643271

  19. Artificial neural network modeling using clinical and knowledge independent variables predicts salt intake reduction behavior

    PubMed Central

    Isma’eel, Hussain A.; Sakr, George E.; Almedawar, Mohamad M.; Fathallah, Jihan; Garabedian, Torkom; Eddine, Savo Bou Zein

    2015-01-01

    Background High dietary salt intake is directly linked to hypertension and cardiovascular diseases (CVDs). Predicting behaviors regarding salt intake habits is vital to guide interventions and increase their effectiveness. We aim to compare the accuracy of an artificial neural network (ANN) based tool that predicts behavior from key knowledge questions along with clinical data in a high cardiovascular risk cohort relative to the least square models (LSM) method. Methods We collected knowledge, attitude and behavior data on 115 patients. A behavior score was calculated to classify patients’ behavior towards reducing salt intake. Accuracy comparison between ANN and regression analysis was calculated using the bootstrap technique with 200 iterations. Results Starting from a 69-item questionnaire, a reduced model was developed and included eight knowledge items found to result in the highest accuracy of 62% CI (58-67%). The best prediction accuracy in the full and reduced models was attained by ANN at 66% and 62%, respectively, compared to full and reduced LSM at 40% and 34%, respectively. The average relative increase in accuracy over all in the full and reduced models is 82% and 102%, respectively. Conclusions Using ANN modeling, we can predict salt reduction behaviors with 66% accuracy. The statistical model has been implemented in an online calculator and can be used in clinics to estimate the patient’s behavior. This will help implementation in future research to further prove clinical utility of this tool to guide therapeutic salt reduction interventions in high cardiovascular risk individuals. PMID:26090333

  20. Kinematics and dynamics of salt movement driven by sub-salt normal faulting and supra-salt sediment accumulation - combined analogue experiments and analytical calculations

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kukowski, Nina; Kley, Jonas

    2017-04-01

    In extensional sedimentary basins, the movement of ductile salt is mainly controlled by the vertical displacement of the salt layer, differential loading due to syn-kinematic deposition, and tectonic shearing at the top and the base of the salt layer. During basement normal faulting, salt either tends to flow downward to the basin centre driven by its own weight or it is squeezed upward due to differential loading. In analogue experiments and analytical models, we address the interplay between normal faulting of the sub-salt basement, compaction and density inversion of the supra-salt cover and the kinematic response of the ductile salt layer. The analogue experiments consist of a ductile substratum (silicone putty) beneath a denser cover layer (sand mixture). Both layers are displaced by normal faults mimicked through a downward moving block within the rigid base of the experimental apparatus and the resulting flow patterns in the ductile layer are monitored and analysed. In the computational models using an analytical approximative solution of the Navier-Stokes equation, the steady-state flow velocity in an idealized natural salt layer is calculated in order to evaluate how flow patterns observed in the analogue experiments can be translated to nature. The analytical calculations provide estimations of the prevailing direction and velocity of salt flow above a sub-salt normal fault. The results of both modelling approaches show that under most geological conditions salt moves downwards to the hanging wall side as long as vertical offset and compaction of the cover layer are small. As soon as an effective average density of the cover is exceeded, the direction of the flow velocity reverses and the viscous material is squeezed towards the elevated footwall side. The analytical models reveal that upward flow occurs even if the average density of the overburden does not exceed the density of salt. By testing various scenarios with different layer thicknesses

  1. Claudins and renal salt transport.

    PubMed

    Muto, Shigeaki; Furuse, Mikio; Kusano, Eiji

    2012-02-01

    Tight junctions (TJs) are the most apical component of junctional complexes and regulate the movement of electrolytes and solutes by the paracellular pathway across epithelia. The defining ultrastructural features of TJs are strands of transmembrane protein particles that adhere to similar strands on adjacent cells. These strands are mainly composed of linearly polymerized integral membrane proteins called claudins. Claudins comprise a multigene family consisting of more than 20 members in mammals. Recent work has shown that claudins form barriers, determined by the paracellular electrical resistance and charge selectivity, and pores in the TJ strands. The paracellular pathways in renal tubular epithelia such as the proximal tubule, which reabsorbs the largest fraction of filtered NaCl and water, are important routes for the transport of electrolytes and water. Their transport characteristics vary among different nephron segments. Multiple claudins are expressed at TJs of individual nephron segments in a nephron segment-specific manner. Among them, claudin-2 is highly expressed at TJs of proximal tubules, which are leaky epithelia. Overexpression and knockdown of claudin-2 in epithelial cell lines, and knockout of the claudin-2 gene in mice, have demonstrated that claudin-2 forms high-conductance cation-selective pores in the proximal tubule. Here, we review the renal physiology of paracellular transport and the physiological roles of claudins in kidney function, especially claudin-2 and proximal tubule paracellular NaCl transport.

  2. Application of a new dynamic transport model to predict the evolution of performances throughout the nanofiltration of single salt solutions in concentration and diafiltration modes.

    PubMed

    Déon, Sébastien; Lam, Boukary; Fievet, Patrick

    2018-06-01

    Although many knowledge models describing the rejection of ionic compounds by nanofiltration membranes are available in literature, they are all used in full recycling mode. Indeed, both permeate and retentate streams are recycled in order to maintain constant concentrations in the feed solution. However, nanofiltration of real effluents is implemented either in concentration or diafiltration modes, for which the permeate stream is collected. In these conditions, concentrations progressively evolve during filtration and classical models fail to predict performances. In this paper, an improvement of the so called "Donnan Steric Pore Model", which includes both volume and concentration variations over time is proposed. This dynamic model is used here to predict the evolution of volumes and concentrations in both permeate and retentate streams during the filtration of salt solutions. This model was found to predict accurately the filtration performances with various salts whether the filtration is performed in concentration or diafiltration modes. The parameters of the usual model can be easily assessed from full batch experiments before being used in the dynamic version. Nevertheless, it is also highlighted that the variation of the membrane charge due to the evolution of feed concentration over time has to be taken into account in the model through the use of adsorption isotherms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. 3 Lectures: "Lagrangian Models", "Numerical Transport Schemes", and "Chemical and Transport Models"

    NASA Technical Reports Server (NTRS)

    Douglass, A.

    2005-01-01

    The topics for the three lectures for the Canadian Summer School are Lagrangian Models, numerical transport schemes, and chemical and transport models. In the first lecture I will explain the basic components of the Lagrangian model (a trajectory code and a photochemical code), the difficulties in using such a model (initialization) and show some applications in interpretation of aircraft and satellite data. If time permits I will show some results concerning inverse modeling which is being used to evaluate sources of tropospheric pollutants. In the second lecture I will discuss one of the core components of any grid point model, the numerical transport scheme. I will explain the basics of shock capturing schemes, and performance criteria. I will include an example of the importance of horizontal resolution to polar processes. We have learned from NASA's global modeling initiative that horizontal resolution matters for predictions of the future evolution of the ozone hole. The numerical scheme will be evaluated using performance metrics based on satellite observations of long-lived tracers. The final lecture will discuss the evolution of chemical transport models over the last decade. Some of the problems with assimilated winds will be demonstrated, using satellite data to evaluate the simulations.

  4. Prostaglandin-E2 Mediated Increase in Calcium and Phosphate Excretion in a Mouse Model of Distal Nephron Salt Wasting

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Alshahrani, Saeed; Brooks, Marybeth; McCormack, Francis X.; Smith, Roger D.; Zahedi, Kamyar

    2016-01-01

    Contribution of salt wasting and volume depletion to the pathogenesis of hypercalciuria and hyperphosphaturia is poorly understood. Pendrin/NCC double KO (pendrin/NCC-dKO) mice display severe salt wasting under basal conditions and develop profound volume depletion, prerenal renal failure, and metabolic alkalosis and are growth retarded. Microscopic examination of the kidneys of pendrin/NCC-dKO mice revealed the presence of calcium phosphate deposits in the medullary collecting ducts, along with increased urinary calcium and phosphate excretion. Confirmatory studies revealed decreases in the expression levels of sodium phosphate transporter-2 isoforms a and c, increases in the expression of cytochrome p450 family 4a isotypes 12 a and b, as well as prostaglandin E synthase 1, and cyclooxygenases 1 and 2. Pendrin/NCC-dKO animals also had a significant increase in urinary prostaglandin E2 (PGE-2) and renal content of 20-hydroxyeicosatetraenoic acid (20-HETE) levels. Pendrin/NCC-dKO animals exhibit reduced expression levels of the sodium/potassium/2chloride co-transporter 2 (NKCC2) in their medullary thick ascending limb. Further assessment of the renal expression of NKCC2 isoforms by quantitative real time PCR (qRT-PCR) reveled that compared to WT mice, the expression of NKCC2 isotype F was significantly reduced in pendrin/NCC-dKO mice. Provision of a high salt diet to rectify volume depletion or inhibition of PGE-2 synthesis by indomethacin, but not inhibition of 20-HETE generation by HET0016, significantly improved hypercalciuria and salt wasting in pendrin/NCC dKO mice. Both high salt diet and indomethacin treatment also corrected the alterations in NKCC2 isotype expression in pendrin/NCC-dKO mice. We propose that severe salt wasting and volume depletion, irrespective of the primary originating nephron segment, can secondarily impair the reabsorption of salt and calcium in the thick ascending limb of Henle and/or proximal tubule, and reabsorption of sodium and

  5. Hurricane-induced Sediment Transport and Morphological Change in Jamaica Bay, New York

    NASA Astrophysics Data System (ADS)

    Hu, K.; Chen, Q. J.

    2016-02-01

    Jamaica Bay is located in Brooklyn and Queens, New York on the western end of the south shore of the Long Island land mass. It experienced a conversion of more than 60% of the vegetated salt-marsh islands to intertidal and subtidal mudflats. Hurricanes and nor'easters are among the important driving forces that reshape coastal landscape quickly and affect wetland sustainability. Wetland protection and restoration need a better understanding of hydrodynamics and sediment transport in this area, especially under extreme weather conditions. Hurricane Sandy, which made landfall along east coast on October 30, 2012, provides a critical opportunity for studying the impacts of hurricanes on sedimentation, erosion and morphological changes in Jamaica Bay and salt marsh islands. The Delft3D model suit was applied to model hydrodynamics and sediment transport in Jamaica Bay and salt marsh islands. Three domains were set up for nesting computation. The local domain covering the bay and salt marshes has a resolution of 10 m. The wave module was online coupled with the flow module. Vegetation effects were considered as a large number of rigid cylinders by a sub-module in Delft3D. Parameters in sediment transport and morphological change were carefully chosen and calibrated. Prior- and post-Sandy Surface Elevation Table (SET)/accretion data including mark horizon (short-term) and 137Cs and 210Pb (long-term) at salt marsh islands in Jamaica Bay were used for model validation. Model results indicate that waves played an important role in hurricane-induced morphological change in Jamaica Bay and wetlands. In addition, numerical experiments were carried out to investigate the impacts of hypothetic hurricanes. This study has been supported by the U.S. Geological Survey Hurricane Sandy Disaster Recovery Act Funds.

  6. OMI observations of bromine monoxide emissions from salt lakes

    NASA Astrophysics Data System (ADS)

    Suleiman, R. M.; Chance, K.; Liu, X.; Gonzalez Abad, G.; Kurosu, T. P.

    2015-12-01

    In this study, we analyze bromine monoxide (BrO) data from the Ozone Monitoring Instrument (OMI) over various salt lakes. We used OMI data from 2005 to 2014 to investigate BrO signatures from salt lakes. The salt lakes regions we cover include Dead Sea; Salt Lake City, US; Salar de Uyuni, Bolivia; and Namtso, Tibet. Elevated signatures of BrO was found in July and August BrO monthly averages over the Dead Sea. Similar results were found in the BrO monthly averages for August 2006 for the Bolivian Salt Flats. We present a detailed description of the retrieval algorithm for the OMI operational bromine monoxide (BrO) product. The algorithm is based on direct fitting of radiances from 319.0-347.5 nm, within the UV-2 channel of OMI. Radiances are modeled from the solar irradiance, attenuated by contributions from the target gas and interfering gases, rotational Raman scattering, additive and multiplicative closure polynomials and a common mode spectrum. The common mode spectra (one per cross-track position, computed on-line) are the average of several hundred fitting residuals. They include any instrument effects that are unrelated to molecular scattering and absorption cross sections. The BrO retrieval uses albedo- and wavelength-dependent air mass factors (AMFs), which have been pre-computed using climatological BrO profiles. The wavelength-dependent AMF is applied pre-fit to the BrO cross-sections so that vertical column densities are retrieved directly. We validate OMI BrO with ground-based measurements from three stations (Harestua, Lauder, and Barrow) and with chemical transport model simulations. We analyze the global distribution and seasonal variation of BrO and investigate BrO emissions from volcanoes and salt lakes.

  7. Charge ordered insulating phases of DODHT salts with octahedral anions and a new radical salt, β''-(DODHT)2TaF6

    NASA Astrophysics Data System (ADS)

    Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.

    2008-10-01

    Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.

  8. Recalibration and predictive reliability of a solute-transport model of an irrigated stream-aquifer system

    USGS Publications Warehouse

    Person, M.; Konikow, Leonard F.

    1986-01-01

    A solute-transport model of an irrigated stream-aquifer system was recalibrated because of discrepancies between prior predictions of ground-water salinity trends during 1971-1982 and the observed outcome in February 1982. The original model was calibrated with a 1-year record of data collected during 1971-1972 in an 18-km reach of the Arkansas River Valley in southeastern Colorado. The model is improved by incorporating additional hydrologic processes (salt transport through the unsaturated zone) and through reexamination of the reliability of some input data (regression relationship used to estimate salinity from specific conductance data). Extended simulations using the recalibrated model are made to investigate the usefulness of the model for predicting long-term trends of salinity and water levels within the study area. Predicted ground-water levels during 1971-1982 are in good agreement with the observed, indicating that the original 1971-1972 study period was sufficient to calibrate the flow model. However, long-term simulations using the recalibrated model based on recycling the 1971-1972 data alone yield an average ground-water salinity for 1982 that is too low by about 10%. Simulations that incorporate observed surface-water salinity variations yield better results, in that the calculated average ground-water salinity for 1982 is within 3% of the observed value. Statistical analysis of temporal salinity variations of the applied surface water indicates that at least a 4-year sampling period is needed to accurately calibrate the transport model. ?? 1986.

  9. Structure based classification for bile salt export pump (BSEP) inhibitors using comparative structural modeling of human BSEP

    NASA Astrophysics Data System (ADS)

    Jain, Sankalp; Grandits, Melanie; Richter, Lars; Ecker, Gerhard F.

    2017-06-01

    The bile salt export pump (BSEP) actively transports conjugated monovalent bile acids from the hepatocytes into the bile. This facilitates the formation of micelles and promotes digestion and absorption of dietary fat. Inhibition of BSEP leads to decreased bile flow and accumulation of cytotoxic bile salts in the liver. A number of compounds have been identified to interact with BSEP, which results in drug-induced cholestasis or liver injury. Therefore, in silico approaches for flagging compounds as potential BSEP inhibitors would be of high value in the early stage of the drug discovery pipeline. Up to now, due to the lack of a high-resolution X-ray structure of BSEP, in silico based identification of BSEP inhibitors focused on ligand-based approaches. In this study, we provide a homology model for BSEP, developed using the corrected mouse P-glycoprotein structure (PDB ID: 4M1M). Subsequently, the model was used for docking-based classification of a set of 1212 compounds (405 BSEP inhibitors, 807 non-inhibitors). Using the scoring function ChemScore, a prediction accuracy of 81% on the training set and 73% on two external test sets could be obtained. In addition, the applicability domain of the models was assessed based on Euclidean distance. Further, analysis of the protein-ligand interaction fingerprints revealed certain functional group-amino acid residue interactions that could play a key role for ligand binding. Though ligand-based models, due to their high speed and accuracy, remain the method of choice for classification of BSEP inhibitors, structure-assisted docking models demonstrate reasonably good prediction accuracies while additionally providing information about putative protein-ligand interactions.

  10. Analysis of electrolyte transport through charged nanopores.

    PubMed

    Peters, P B; van Roij, R; Bazant, M Z; Biesheuvel, P M

    2016-05-01

    We revisit the classical problem of flow of electrolyte solutions through charged capillary nanopores or nanotubes as described by the capillary pore model (also called "space charge" theory). This theory assumes very long and thin pores and uses a one-dimensional flux-force formalism which relates fluxes (electrical current, salt flux, and fluid velocity) and driving forces (difference in electric potential, salt concentration, and pressure). We analyze the general case with overlapping electric double layers in the pore and a nonzero axial salt concentration gradient. The 3×3 matrix relating these quantities exhibits Onsager symmetry and we report a significant new simplification for the diagonal element relating axial salt flux to the gradient in chemical potential. We prove that Onsager symmetry is preserved under changes of variables, which we illustrate by transformation to a different flux-force matrix given by Gross and Osterle [J. Chem. Phys. 49, 228 (1968)JCPSA60021-960610.1063/1.1669814]. The capillary pore model is well suited to describe the nonlinear response of charged membranes or nanofluidic devices for electrokinetic energy conversion and water desalination, as long as the transverse ion profiles remain in local quasiequilibrium. As an example, we evaluate electrical power production from a salt concentration difference by reverse electrodialysis, using an efficiency versus power diagram. We show that since the capillary pore model allows for axial gradients in salt concentration, partial loops in current, salt flux, or fluid flow can develop in the pore. Predictions for macroscopic transport properties using a reduced model, where the potential and concentration are assumed to be invariant with radial coordinate ("uniform potential" or "fine capillary pore" model), are close to results of the full model.

  11. Modeling the Transport Phenomena in the Solution Precursor Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Shan, Yanguang

    2008-10-01

    Solution precursor plasma spraying has been used to produce finely structured ceramic coatings with nano- and sub-micrometric features. This process involves the injection of a solution spray of ceramic salts into a DC plasma jet under atmospheric condition. During the process, the solvent vaporizes as the droplet travel downstream. Solid particles are finally formed due to the precipitation of the solute, and the particle are heated up and accelerated to the substrate to generate the coating. This work describes a 3D model to simulate the transport phenomena and the trajectory and heating of the solution spray in the process. The jet-spray two-way interactions are considered. A simplified model is employed to simulate the evolution process and the formation of the solid particle from the solution droplet in the plasma jet. O'Rourke's droplet collision model is used to take into account of the influence of droplet collision. The influence of droplet breakup is also considered by implementing TAB droplet breakup models into the plasma jet model. The temperature and velocity fields of the jet are obtained and validated. The particle size, velocity, temperature and position distribution on the substrate are predicted.

  12. Low molecular weight salts combined with fluorinated solvents for electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twicemore » less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.« less

  13. Activation energy-activation volume master plots for ion transport behavior in polymer electrolytes and supercooled molten salts.

    PubMed

    Ingram, Malcolm D; Imrie, Corrie T; Stoeva, Zlatka; Pas, Steven J; Funke, Klaus; Chandler, Howard W

    2005-09-08

    We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials.

  14. Local Osmosis and Isotonic Transport

    PubMed Central

    Mathias, R.T.; Wang, H.

    2006-01-01

    Osmotically driven water flow, u (cm/s), between two solutions of identical osmolarity, co (300 mM in mammals), has a theoretical isotonic maximum given by u = j/co, where j (moles/cm2/s) is the rate of salt transport. In many experimental studies, transport was found to be indistinguishable from isotonic. The purpose of this work is to investigate the conditions for u to approach isotonic. A necessary condition is that the membrane salt/ water permeability ratio, ε, must be small: typical physiological values are ε = 10−3 to 10−5, so ε is generally small but this is not sufficient to guarantee near-isotonic transport. If we consider the simplest model of two series membranes, which secrete a tear or drop of sweat (i.e., there are no externally-imposed boundary conditions on the secretion), diffusion is negligible and the predicted osmolarities are: basal = co, intracellular ≈ (1 + ε)co, secretion ≈ (1 + 2ε)co, and u ≈ (1 – 2ε)j/co. Note that this model is also appropriate when the transported solution is experimentally collected. Thus, in the absence of external boundary conditions, transport is experimentally indistinguishable from isotonic. However, if external boundary conditions set salt concentrations to co on both sides of the epithelium, then fluid transport depends on distributed osmotic gradients in lateral spaces. If lateral spaces are too short and wide, diffusion dominates convection, reduces osmotic gradients and fluid flow is significantly less than isotonic. Moreover, because apical and basolateral membrane water fluxes are linked by the intracellular osmolarity, water flow is maximum when the total water permeability of basolateral membranes equals that of apical membranes. In the context of the renal proximal tubule, data suggest it is transporting at near optimal conditions. Nevertheless, typical physiological values suggest the newly filtered fluid is reabsorbed at a rate u ≈ 0.86 j/co, so a hypertonic solution is being

  15. 75 FR 9476 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice of intent. SUMMARY... be prepared for a proposed transportation improvement project in Salt Lake County, Utah. FOR FURTHER... 9A, Salt Lake City, UT 84118, Telephone: (801) 963-0182, E-mail: [email protected] . The Utah...

  16. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    NASA Astrophysics Data System (ADS)

    Snodin, Benedict E. K.; Randisi, Ferdinando; Mosayebi, Majid; Šulc, Petr; Schreck, John S.; Romano, Flavio; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.; Doye, Jonathan P. K.

    2015-06-01

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na+] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  17. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snodin, Benedict E. K., E-mail: benedict.snodin@chem.ox.ac.uk; Mosayebi, Majid; Schreck, John S.

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including thosemore » corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.« less

  18. Apparatus and method for stripping tritium from molten salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holcomb, David E.; Wilson, Dane F.

    A method of stripping tritium from flowing stream of molten salt includes providing a tritium-separating membrane structure having a porous support, a nanoporous structural metal-ion diffusion barrier layer, and a gas-tight, nonporous palladium-bearing separative layer, directing the flowing stream of molten salt into contact with the palladium-bearing layer so that tritium contained within the molten salt is transported through the tritium-separating membrane structure, and contacting a sweep gas with the porous support for collecting the tritium.

  19. Modeling of dielectric properties of aqueous salt solutions with an equation of state.

    PubMed

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M; Thomsen, Kaj

    2013-09-12

    The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles in the electrical field surrounding ions. Kinetic depolarization may explain 25-75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich to associating mixtures. Wertheim's association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion-solvent association. Finally, we compare the Debye-Hückel Helmholtz energy obtained using an empirical model with the new physical model and show that the empirical models may introduce unphysical behavior in the equation of state.

  20. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    NASA Astrophysics Data System (ADS)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  1. 75 FR 22892 - Environmental Impact Statement: Salt Lake County, UT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... Lake County, UT AGENCY: Federal Highway Administration (FHWA), USDOT. ACTION: Notice of Intent. SUMMARY... be prepared for a proposed transportation improvement project in Salt Lake County, Utah. FOR FURTHER... 4700 South, Suite 9A, Salt Lake City, UT 84118, telephone (801) 963-0182, e-mail [email protected

  2. Molten Salt Promoting Effect in Double Salt CO2 Absorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Keling; Li, Xiaohong S.; Chen, Haobo

    2016-01-01

    The purpose of this paper is to elaborate on the concept of molten salts as catalysts for CO2 absorption by MgO, and extend these observations to the MgO-containing double salt oxides. We will show that the phenomena involved with CO2 absorption by MgO and MgO-based double salts are similar and general, but with some important differences. This paper focuses on the following key concepts: i) identification of conditions that favor or disfavor participation of isolated MgO during double salt absorption, and investigation of methods to increase the absorption capacity of double salt systems by including MgO participation; ii) examination ofmore » the relationship between CO2 uptake and melting point of the promoter salt, leading to the recognition of the role of pre-melting (surface melting) in these systems; and iii) extension of the reaction pathway model developed for the MgO-NaNO3 system to the double salt systems. This information advances our understanding of MgO-based CO2 absorption systems for application with pre-combustion gas streams.« less

  3. Effect of salt concentration and mediators in salt bridge microbial fuel cell for electricity generation from synthetic wastewater.

    PubMed

    Sevda, Surajbhan; Sreekrishnan, T R

    2012-01-01

    The aim of this study was to investigate the feasibility of using agar salt bridges for proton transport in Microbial Fuel Cells (MFC). It also tries to elucidate and effect of mediators on electricity production from wastewaters through experimentation using a simulated wastewater. In order to offset the very high cost of proton exchange membrane, salt bridges have been used in dual chamber MFCs. When the concentration of salt was varied in agar salt bridges from 1% to 10%, the volumetric power density changed from 1.71 to 84.99 mW/m(3) with a concomitant variation in power density from 0.32 to 16.02 mW/m(2). The maximum power density was observed at 5% salt concentration with 10% agar, which was accompanied by 88.41% COD reduction. In the case of methylene blue (0.01 mM) as the electron mediator, the voltage and current generation were 0.551 V and 0.47 mA, respectively. A maximum open circuit voltage of 0.718 V was seen at 0.08 mM methylene blue concentration, whereas maximum power densities of 17.59 mW/m(2) and 89.22 mW/m(3) were obtained. Different concentrations of neutral red were also tried out as mediators. A maximum open circuit voltage of 0.730 V was seen at 0.01 mM neutral red, corresponding to a power density of 12.02 mW/m(2) (volumetric power density of 60.97 mW/m(3)). Biofilm formation on the electrode surface was not observed in the presence of mediators, but was present in the absence of mediators. The results clearly demonstrated the feasibility to use agar salt bridge for proton transport and role of mediators in MFCs to generate electricity.

  4. Renal tubular angiotensin converting enzyme is responsible for nitro-L-arginine methyl ester (L-NAME)-induced salt sensitivity

    PubMed Central

    Giani, Jorge F.; Eriguchi, Masahiro; Bernstein, Ellen A.; Katsumata, Makoto; Shen, Xiao Z.; Li, Liang; McDonough, Alicia A.; Fuchs, Sebastien; Bernstein, Kenneth E.; Gonzalez-Villalobos, Romer A.

    2017-01-01

    Renal parenchymal injury predisposes to salt-sensitive hypertension, but how this occurs is not known. Here we tested whether renal tubular angiotensin converting enzyme (ACE), the main site of kidney ACE expression, is central to the development of salt sensitivity in this setting. Two mouse models were used: it-ACE mice in which ACE expression is selectively eliminated from renal tubular epithelial cells; and ACE 3/9 mice, a compound heterozygous mouse model that makes ACE only in renal tubular epithelium from the ACE 9 allele, and in liver hepatocytes from the ACE 3 allele. Salt sensitivity was induced using a post L-NAME salt challenge. While both wild-type and ACE 3/9 mice developed arterial hypertension following three weeks of high salt administration, it-ACE mice remained normotensive with low levels of renal angiotensin II. These mice displayed increased sodium excretion, lower sodium accumulation, and an exaggerated reduction in distal sodium transporters. Thus, in mice with renal injury induced by L-NAME pretreatment, renal tubular epithelial ACE, and not ACE expression by renal endothelium, lung, brain, or plasma, is essential for renal angiotensin II accumulation and salt-sensitive hypertension. PMID:27988209

  5. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  6. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusionmore » coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport

  7. Sea-Salt Aerosol Forecasts Compared with Wave and Sea-Salt Measurements in the Open Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Starobinets, B.; Bozzano, R.; Pensieri, S.; Canepa, E.; Nickovie, S.; di Sarra, A.; Udisti, R.; Becagli, S.; Alpert, P.

    2012-03-01

    Sea-salt aerosol (SSA) could influence the Earth's climate acting as cloud condensation nuclei. However, there were no regular measurements of SSA in the open sea. At Tel-Aviv University, the DREAM-Salt prediction system has been producing daily forecasts of 3-D distribution of sea-salt aerosol concentrations over the Mediterranean Sea (http://wind.tau.ac.il/saltina/ salt.html). In order to evaluate the model performance in the open sea, daily modeled concentrations were compared directly with SSA measurements taken at the tiny island of Lampedusa, in the Central Mediterranean. In order to further test the robustness of the model, the model performance over the open sea was indirectly verified by comparing modeled SSA concentrations with wave height measurements collected by the ODAS Italia 1 buoy and the Llobregat buoy. Model-vs.-measurement comparisons show that the model is capable of producing realistic SSA concentrations and their day-today variations over the open sea, in accordance with observed wave height and wind speed.

  8. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  9. Heat Transfer Salts for Nuclear Reactor Systems - Chemistry Control, Corrosion Mitigation, and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Mark; Sridharan, Kumar; Morgan, Dane

    2015-01-22

    The concept of a molten salt reactor has existed for nearly sixty years. Previously all work was done during a large collaborative effort at Oak Ridge National Laboratory, culminating in a research reactor which operated for 15,000 hours without major error. This technical success has garnished interest in modern, high temperature, reactor schemes. Research using molten fluoride salts for nuclear applications requires a steady supply of high grade molten salts. There is no bulk supplier of research grade fluoride salts in the world, so a facility which could provide all the salt needed for testing at the University of Wisconsinmore » had to be produced. Two salt purification devices were made for this purpose, a large scale purifier, and a small scale purifier, each designed to clean the salts from impurities and reduce their corrosion potential. As of now, the small scale has performed with flibe salt, hydrogen, and hydrogen fluoride, yielding clean salt. This salt is currently being used in corrosion testing facilities at the Massachusetts Institute of Technology and the University of Wisconsin. Working with the beryllium based salts requires extensive safety measures and health monitoring to prevent the development of acute or chronic beryllium disease, two pulmonary diseases created by an allergic reaction to beryllium in the lungs. Extensive health monitoring, engineering controls, and environment monitoring had to be set up with the University of Wisconsin department of Environment, Health and Safety. The hydrogen fluoride required for purification was also an extreme health hazard requiring thoughtful planning and execution. These dangers have made research a slow and tedious process. Simple processes, such as chemical handling and clean-up, can take large amounts of ingenuity and time. Other work has complemented the experimental research at Wisconsin to advance high temperature reactor goals. Modeling work has been performed in house to re

  10. Evaluation of 6 modified salt spreaders.

    DOT National Transportation Integrated Search

    2007-07-01

    In the Summer and Fall of 2006, the Maine Department of Transportation (MaineDOT) began a retrofitting : process on six of their conventional salt spreaders. MaineDOT contracted with H.P Fairfield of : Skowhegan, Maine to complete this work. : The in...

  11. Structure and dynamics of a salt-bridge model system in water and DMSO

    NASA Astrophysics Data System (ADS)

    Lotze, S.; Bakker, H. J.

    2015-06-01

    We study the interaction between the ions methylguanidinium and trifluoroacetate dissolved in D2O and dimethylsulfoxide with linear infrared spectroscopy and femtosecond two-dimensional infrared spectroscopy. These ions constitute model systems for the side chains of arginine and glutamic and aspartic acid that are known to form salt bridges in proteins. We find that the salt-bridge formation of methylguanidinium and trifluoroacetate leads to a significant acceleration of the vibrational relaxation dynamics of the antisymmetric COO stretching vibration of the carboxyl moiety of trifluoroacetate. Salt-bridge formation has little effect on the rate of the spectral fluctuations of the CN stretching vibrations of methylguanidinium. The anisotropy of the cross peaks between the antisymmetric COO stretching vibration of trifluoroacetate and the CN stretching vibrations of methylguanidinium reveals that the salt-bridge is preferentially formed in a bidentate end-on configuration in which the two C=O groups of the carboxylate moiety form strong hydrogen bonds with the two -NH2 groups of methylguanidinium.

  12. Examination of Liquid Fluoride Salt Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets,more » and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat

  13. Modelling the long-term vertical dynamics of salt marshes

    NASA Astrophysics Data System (ADS)

    Zoccarato, Claudia; Teatini, Pietro

    2017-04-01

    Salt marshes are vulnerable environments hosting complex interactions between physical and biological processes with a strong influence on the dynamics of the marsh evolution. The estimation and prediction of the elevation of a salt-marsh platform is crucial to forecast the marsh growth or regression under different scenarios considering, for example, the potential climate changes. The long-term vertical dynamics of a salt marsh is predicted with the aid of an original finite-element (FE) numerical model accounting for the marsh accretion and compaction and for the variation rates of the relative sea level rise, i.e., land subsidence of the marsh basement and eustatic rise of the sea level. The accretion term considers the vertical sedimentation of organic and inorganic material over the marsh surface, whereas the compaction reflects the progressive consolidation of the porous medium under the increasing load of the overlying younger deposits. The modelling approach is based on a 2D groundwater flow simulator, which provides the pressure evolution within a compacting/accreting vertical cross-section of the marsh assuming that the groundwater flow obeys the relative Darcy's law, coupled to a 1D vertical geomechanical module following Terzaghi's principle of effective intergranular stress. Soil porosity, permeability, and compressibility may vary with the effective intergranular stress according to empirically based relationships. The model also takes into account the geometric non-linearity arising from the consideration of large solid grain movements by using a Lagrangian approach with an adaptive FE mesh. The element geometry changes in time to follow the deposit consolidation and the element number increases in time to follow the sedimentation of new material. The numerical model is tested on different realistic configurations considering the influence of (i) the spatial distribution of the sedimentation rate in relation to the distance from the marsh margin, (ii

  14. Innovative methods to reduce salt water intrusion in harbours

    NASA Astrophysics Data System (ADS)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  15. Models of Fate and Transport of Pollutants in Surface Waters

    NASA Astrophysics Data System (ADS)

    Okome, Gloria Eloho

    There is the need to answer very crucial questions of "what happens to pollutants in surface waters?" This question must be answered to determine the factors controlling fate and transport of chemicals and their evolutionary state in surface waters. Monitoring and experimental methods are used in establishing the environmental states. These measurements are used with the known scientific principles to identify processes and to estimate the future environmental conditions. Conceptual and computational models are needed to analyze environmental processes by applying the knowledge gained from experimentation and theory. Usually, a computational framework includes the mathematics and the physics of the phenomenon, and the measured characteristics to model pollutants interactions and transport in surface water. However, under certain conditions, the complexity of the situation in the actual environment precludes the utilization of these techniques. Pollutants in several forms: Nitrogen (Nitrate, Nitrite, Kjeldhal Nitrogen and Ammonia), Phosphorus (orthophosphate and total phosphorus), bacteria (E-coli and Fecal coliform), Salts (Chloride and Sulfate) are chosen to follow for this research. The objective of this research is to model the fate and transport of these pollutants in non-ideal conditions of surface water measurements and to develop computational methods to forecast their fate and transport. In an environment of extreme drought such as in the Brazos River basin, where small streams flow intermittently, there is added complexity due to the absence of regularly sampled data. The usual modeling techniques are no longer applicable because of sparse measurements in space and time. Still, there is a need to estimate the conditions of the environment from the information that is present. Alternative methods for this estimation must be devised and applied to this situation, which is the task of this dissertation. This research devices a forecasting technique that is

  16. Salt tectonics and sequence-stratigraphic history of minibasins near the Sigsbee Escarpment, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Montoya, Patricia

    The focus of this research is to understand the stratigraphic and structural evolution of lower-slope minibasins in the Gulf of Mexico by examining the influence of salt tectonics on sediment transport systems and deep-water facies architecture. Results showed that gravitational subsidence and shortening can cause variations in the relief of salt massifs on opposing sides of a minibasin. These bathymetric variations, combined with changes in sedimentation rates through time, affected not only the distribution of deep-water facies inside the minibasins, but also influenced the evolution of sediment transport systems between minibasins. In order to understand the evolution of salt massifs, this dissertation presents a new approach to evaluate qualitatively the rate of relative massif uplift based on depoaxis shifts and channel geometries identified in minibasins surrounded by mobile salt. From these results it was established that compression was long-lived, and that extension only dominated during late intervals. Stratigraphic analyses showed that there is a strong cyclicity in deep-water facies stacking patterns within lower-slope minibasins, related primarily to cyclical changes in sedimentation rates. A typical sequence starts with a period of slow sedimentation associated with drape facies above each sequence boundary. Then, towards the middle and final stages of the sequence, sedimentation rates increase and turbidity flows fill the minibasin. Previous studies describe processes of fill-and-spill for two adjacent minibasins in the upper and middle slope. However, these models fail to adequately explain fill-and-spill processes in lower slope minibasins surrounded by mobile salt. In particular, they do not consider the effect of variations in bathymetric relief of the intervening massif, nor do they examine multidirectional connections between proximal and distal minibasins. A new dynamic-salt fill-and-spill model is proposed in this dissertation in order to

  17. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions

    PubMed Central

    Schmidt III, WF; McManus, TJ

    1977-01-01

    Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction. PMID:894251

  18. Regional modelling of groundwater flow and salt and environmental tracer transport in deep aquifers in the Paris Basin

    NASA Astrophysics Data System (ADS)

    Wei, Huai Fu; Ledoux, Emmanuel; De Marsily, Ghislain

    1990-12-01

    A hydrodynamic model which takes into account the aquitard storage effect was developed for the deep multilayered system including the Dogger aquifer and its surroundings in the Paris Basin. It provides a good explanation for a series of observations in the Dogger concerning, for instance, the hydraulic head, the salinity and the transmissivity. The calibration of the model also makes it possible to estimate some unmeasured parameters such as the aquifer and aquitard storage coefficients. Finally, the results of simulations of the transport of 4He and 14C strengthen the representativeness of the model. The Darcy average horizontal velocity in the Dogger, obtained with the model, is of the order of 0.33m year -1.

  19. Speciation of the major inorganic salts in atmospheric aerosols of Beijing, China: Measurements and comparison with model

    NASA Astrophysics Data System (ADS)

    Tang, Xiong; Zhang, Xiaoshan; Ci, Zhijia; Guo, Jia; Wang, Jiaqi

    2016-05-01

    In the winter and summer of 2013-2014, we used a sampling system, which consists of annular denuder, back-up filter and thermal desorption set-up, to measure the speciation of major inorganic salts in aerosols and the associated trace gases in Beijing. This sampling system can separate volatile ammonium salts (NH4NO3 and NH4Cl) from non-volatile ammonium salts ((NH4)2SO4), as well as the non-volatile nitrate and chloride. The measurement data was used as input of a thermodynamic equilibrium model (ISORROPIA II) to investigate the gas-aerosol equilibrium characteristics. Results show that (NH4)2SO4, NH4NO3 and NH4Cl were the major inorganic salts in aerosols and mainly existed in the fine particles. The sulfate, nitrate and chloride associated with crustal ions were also important in Beijing where mineral dust concentrations were high. About 19% of sulfate in winter and 11% of sulfate in summer were associated with crustal ions and originated from heterogeneous reactions or direct emissions. The non-volatile nitrate contributed about 33% and 15% of nitrate in winter and summer, respectively. Theoretical thermodynamic equilibrium calculations for NH4NO3 and NH4Cl suggest that the gaseous precursors were sufficient to form stable volatile ammonium salts in winter, whereas the internal mixing with sulfate and crustal species were important for the formation of volatile ammonium salts in summer. The results of the thermodynamic equilibrium model reasonably agreed with the measurements of aerosols and gases, but large discrepancy existed in predicting the speciation of inorganic ammonium salts. This indicates that the assumption on crustal species in the model was important for obtaining better understanding on gas-aerosol partitioning and improving the model prediction.

  20. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion

    NASA Astrophysics Data System (ADS)

    Métivier, L.; Brossier, R.; Mérigot, Q.; Oudet, E.; Virieux, J.

    2016-04-01

    Full waveform inversion using the conventional L2 distance to measure the misfit between seismograms is known to suffer from cycle skipping. An alternative strategy is proposed in this study, based on a measure of the misfit computed with an optimal transport distance. This measure allows to account for the lateral coherency of events within the seismograms, instead of considering each seismic trace independently, as is done generally in full waveform inversion. The computation of this optimal transport distance relies on a particular mathematical formulation allowing for the non-conservation of the total energy between seismograms. The numerical solution of the optimal transport problem is performed using proximal splitting techniques. Three synthetic case studies are investigated using this strategy: the Marmousi 2 model, the BP 2004 salt model, and the Chevron 2014 benchmark data. The results emphasize interesting properties of the optimal transport distance. The associated misfit function is less prone to cycle skipping. A workflow is designed to reconstruct accurately the salt structures in the BP 2004 model, starting from an initial model containing no information about these structures. A high-resolution P-wave velocity estimation is built from the Chevron 2014 benchmark data, following a frequency continuation strategy. This estimation explains accurately the data. Using the same workflow, full waveform inversion based on the L2 distance converges towards a local minimum. These results yield encouraging perspectives regarding the use of the optimal transport distance for full waveform inversion: the sensitivity to the accuracy of the initial model is reduced, the reconstruction of complex salt structure is made possible, the method is robust to noise, and the interpretation of seismic data dominated by reflections is enhanced.

  1. On purpose simulation model for molten salt CSP parabolic trough

    NASA Astrophysics Data System (ADS)

    Caranese, Carlo; Matino, Francesca; Maccari, Augusto

    2017-06-01

    The utilization of computer codes and simulation software is one of the fundamental aspects for the development of any kind of technology and, in particular, in CSP sector for researchers, energy institutions, EPC and others stakeholders. In that extent, several models for the simulation of CSP plant have been developed with different main objectives (dynamic simulation, productivity analysis, techno economic optimization, etc.), each of which has shown its own validity and suitability. Some of those models have been designed to study several plant configurations taking into account different CSP plant technologies (Parabolic trough, Linear Fresnel, Solar Tower or Dish) and different settings for the heat transfer fluid, the thermal storage systems and for the overall plant operating logic. Due to a lack of direct experience of Molten Salt Parabolic Trough (MSPT) commercial plant operation, most of the simulation tools do not foresee a suitable management of the thermal energy storage logic and of the solar field freeze protection system, but follow standard schemes. ASSALT, Ase Software for SALT csp plants, has been developed to improve MSPT plant's simulations, by exploiting the most correct operational strategies in order to provide more accurate technical and economical results. In particular, ASSALT applies MSPT specific control logics for the electric energy production and delivery strategy as well as the operation modes of the Solar Field in off-normal sunshine condition. With this approach, the estimated plant efficiency is increased and the electricity consumptions required for the plant operation and management is drastically reduced. Here we present a first comparative study on a real case 55 MWe Molten Salt Parabolic Trough CSP plant placed in the Tibetan highlands, using ASSALT and SAM (System Advisor Model), which is a commercially available simulation tool.

  2. Dietary Salt Exacerbates Experimental Colitis.

    PubMed

    Tubbs, Alan L; Liu, Bo; Rogers, Troy D; Sartor, R Balfour; Miao, Edward A

    2017-08-01

    The Western diet is characterized by high protein, sugar, fat, and low fiber intake, and is widely believed to contribute to the incidence and pathogenesis of inflammatory bowel disease (IBD). However, high sodium chloride salt content, a defining feature of processed foods, has not been considered as a possible environmental factor that might drive IBD. We set out to bridge this gap. We examined murine models of colitis on either a high salt diet (HSD) or a low salt diet. We demonstrate that an HSD exacerbates inflammatory pathology in the IL-10-deficient murine model of colitis relative to mice fed a low salt diet. This was correlated with enhanced expression of numerous proinflammatory cytokines. Surprisingly, sodium accumulated in the colons of mice on an HSD, suggesting a direct effect of salt within the colon. Similar to the IL-10-deficient model, an HSD also enhanced cytokine expression during infection by Salmonella typhimurium This occurred in the first 3 d of infection, suggesting that an HSD potentiates an innate immune response. Indeed, in cultured dendritic cells we found that high salt media potentiates cytokine expression downstream of TLR4 activation via p38 MAPK and SGK1. A third common colitis model, administration of dextran sodium sulfate, was hopelessly confounded by the high sodium content of the dextran sodium sulfate. Our results raise the possibility that high dietary salt is an environmental factor that drives increased inflammation in IBD. Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Spatiotemporal variation of Van der Burgh's coefficient in a salt plug estuary

    NASA Astrophysics Data System (ADS)

    Shaha, Dinesh Chandra; Cho, Yang-Ki; Kim, Bong Guk; Rafi Afruz Sony, M.; Rani Kundu, Sampa; Faruqul Islam, M.

    2017-09-01

    Salt water intrusion in estuaries is expected to become a serious global issue due to climate change. Van der Burgh's coefficient, K, is a good proxy for describing the relative contribution of tide-driven and gravitational (discharge-driven and density-driven) components of salt transport in estuaries. However, debate continues over the use of the K value for an estuary where K should be a constant, spatially varying, or time-independent factor for different river discharge conditions. In this study, we determined K during spring and neap tides in the dry (< 30 m-3 s-1) and wet (> 750 m-3 s-1) seasons in a salt plug estuary with an exponentially varying width and depth, to examine the relative contributions of tidal versus density-driven salt transport mechanisms. High-resolution salinity data were used to determine K. Discharge-driven gravitational circulation (K ˜ 0.8) was entirely dominant over tidal dispersion during spring and neap tides in the wet season, to the extent that salt transport upstream was effectively reduced, resulting in the estuary remaining in a relatively fresh state. In contrast, K increased gradually seaward (K ˜ 0.74) and landward (K ˜ 0.74) from the salt plug area (K ˜ 0.65) during the dry season, similar to an inverse and positive estuary, respectively. As a result, density-driven inverse gravitational circulation between the salt plug and the sea facilitates inverse estuarine circulation. On the other hand, positive estuarine circulation between the salt plug and the river arose due to density-driven positive gravitational circulation during the dry season, causing the upstream intrusion of high-salinity bottom water. Our results explicitly show that K varies spatially and depends on the river discharge. This result provides a better understanding of the distribution of hydrographic properties.

  4. Combined effect of salt and drought on boron toxicity in Puccinellia tenuiflora.

    PubMed

    Liu, Chunguang; Dai, Zheng; Xia, Jingye; Chang, Can; Sun, Hongwen

    2018-08-15

    Boron toxicity is a worldwide problem, usually accompanied by salt (NaCl) and drought. The combined stresses may induce complex toxicity to the plant. The aim of the present study was to investigate how the combined stresses of salt and drought affect B toxicity in plants. Puccinellia tenuiflora seedlings were planted in vermiculite. A three (B) × three (salt) × three (drought) factorial experiment (for a total of 27 treatments) was conducted. After a 30-day cultivation, plants were harvested to determine dry weight and the concentrations of B, Na + , K + , Ca 2+ , and Mg 2+ . Plant growth was inhibited by B toxicity, which was alleviated by salt and drought. B stress enhanced B uptake and transport of the plant, which was inhibited by salt and drought. B stress had a little effect on K + and Na + concentration and caused Ca 2+ and Mg 2+ accumulation in the plant. Salt addition increased Na + concentration and inhibited Ca 2+ and Mg 2+ accumulation. Drought addition inhibited Na + accumulation and enhanced Ca 2+ and Mg 2+ accumulation. The combined stresses of salt and drought had a greater alleviation on the inhibition of dry weight caused by B than individual salt and drought. Besides, the combined stresses of salt and drought also enhanced B uptake and inhibited B transport. The results indicate that salt, drought, and the combined stresses of salt and drought all can alleviate B toxicity in P. tenuiflora, the main mechanism of which is the restriction of B and Na + uptake caused by salt and drought. The combined stresses of salt and drought have a greater effect on B toxicity than individual salt and drought. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Induced seismicity in a salt mine environment evaluated by a coupled continuum-discrete modelling.

    NASA Astrophysics Data System (ADS)

    Mercerat, E.; Souley, M.; Driad, L.; Bernard, P.

    2005-12-01

    Within the framework of a research project launched to assess the feasibility of seismic monitoring of underground growing cavities, this specific work focus on two main complementary axis: the validation of seismic monitoring techniques in salt mine environments, and the numerical modelling of deformation and failure mechanisms with their associated acoustic emissions, the induced microseismicity. The underground cavity under monitoring is located at Cerville (Lorraine, France) within a salt layer 180 m deep and it presents a rather regular cylindrical shape of 100 m diameter. Typically, the overburden is characterized by the presence of two competent layers with elasto-brittle behaviour and located 50 m above the salt layer. When the salt exploitation restarts, the cavity will progressively grow causing irreversible damage of the upper layers until its final collapse at a time scale of the order of one year. Numerical modelling of such a complex process requires a large scale model which takes into account both the growing cavity within the salt layer and the mechanical behaviour of the overburden where high deformation and fracturing is expected. To keep the elasto-brittle behaviour of the competent layers where most seismic damage is expected, we use the PFC code (Itasca Cons). To approach the other layers (mainly composed of marls and salt) which present more ductile and/or viscoplastic behaviour, a continuum approach based on the FLAC code (Itasca Cons) is employed. Numerous calibration process were needed to estimate the microproperties used in PFC to reproduce the macroscopic behaviour from laboratory tests performed on samples extracted from the competent layers. As long as the size of the PFC inclusion representing the brittle material is much higher than the core sample sizes, the scale effect of microproperties is examined. The next stage is to perform calculations on the basis of previous macroscopic and microproperties calibration results, and compare

  6. Evaluation and Validation of a TCAT Model to Describe Non-Dilute Flow and Species Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Weigand, T. M.; Harrison, E.; Miller, C. T.

    2017-12-01

    A thermodynamically constrained averaging theory (TCAT) model has been developed to simulate non-dilute flow and species transport in porous media. This model has the advantages of a firm connection between the microscale, or pore scale, and the macroscale; a thermodynamically consistent basis; the explicit inclusion of dissipative terms that arise from spatial gradients in pressure and chemical activity; and the ability to describe both high and low concentration displacement. The TCAT model has previously been shown to provide excellent agreement for a set of laboratory data and outperformed existing macroscale models that have been used for non-dilute flow and transport. The examined experimental dataset consisted of stable brine displacements for a large range of fluid properties. This dataset however only examined one type of porous media and had a fixed flow rate for all experiments. In this work, the TCAT model is applied to a dataset that consists of two different porous media types, constant head and flow rate conditions, varying resident fluid concentrations, and internal probes that measured the pressure and salt mass fraction. Parameter estimation is performed on a subset of the experimental data for the TCAT model as well as other existing non-dilute flow and transport models. The optimized parameters are then used for forward simulations and the accuracy of the models is compared.

  7. The plasma membrane transport systems and adaptation to salinity.

    PubMed

    Mansour, Mohamed Magdy F

    2014-11-15

    Salt stress represents one of the environmental challenges that drastically affect plant growth and yield. Evidence suggests that glycophytes and halophytes have a salt tolerance mechanisms working at the cellular level, and the plasma membrane (PM) is believed to be one facet of the cellular mechanisms. The responses of the PM transport proteins to salinity in contrasting species/cultivars were discussed. The review provides a comprehensive overview of the recent advances describing the crucial roles that the PM transport systems have in plant adaptation to salt. Several lines of evidence were presented to demonstrate the correlation between the PM transport proteins and adaptation of plants to high salinity. How alterations in these transport systems of the PM allow plants to cope with the salt stress was also addressed. Although inconsistencies exist in some of the information related to the responses of the PM transport proteins to salinity in different species/cultivars, their key roles in adaptation of plants to high salinity is obvious and evident, and cannot be precluded. Despite the promising results, detailed investigations at the cellular/molecular level are needed in some issues of the PM transport systems in response to salinity to further evaluate their implication in salt tolerance. Copyright © 2014 Elsevier GmbH. All rights reserved.

  8. Faraday Discussion 160 Introductory Lecture: Interpreting and Predicting Hofmeister Salt Ion and Solute Effects on Biopolymer and Model Processes Using the Solute Partitioning Model

    PubMed Central

    Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients

  9. Effect of β-elemene on the kinetics of intracellular transport of d-luciferin potassium salt (ABC substrate) in doxorubicin-resistant breast cancer cells and the associated molecular mechanism.

    PubMed

    Tang, Chao-Yuan; Zhu, Li-Xin; Yu, Jian-Dong; Chen, Zhi; Gu, Man-Cang; Mu, Chao-Feng; Liu, Qi; Xiong, Yang

    2018-07-30

    In order to explore the mechanism of the reversing multidrug resistance (MDR) phenotypes by β-elemene (β-ELE) in doxorubicin (DOX)-resistant breast cancer cells (MCF-7/DOX), both the functionality and quantity of the ABC transporters in MCF-7/DOX were studied. Bioluminescence imaging (BLI) was used to study the efflux of d-luciferin potassium salt, the substrate of ATP-binding cassette transporters (ABC transporters), in MCF-7/DOX cells treated by β-ELE. At the same time three major ABC transport proteins and genes-related MDR, P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 1 (MRP, ABCC1) as well as breast cancer resistance protein (BCRP, ABCG2) were analyzed by q-PCR and Western blot. To investigate the efflux functionality of ABC transporters, MCF-7/DOX Fluc cell line with stably-overexpressed luciferase was established. BLI was then used to real-time monitor the efflux kinetics of d-luciferin potassium salt before and after MCF-7/DOX Fluc cells being treated with β-ELE or not. The results showed that the efflux of d-luciferin potassium salt from MCF-7/DOX Fluc was lessened when pretreated with β-ELE, which means that β-ELE may dampen the functionality of ABC transporters, thus decrease the efflux of d-fluorescein potassium or other chemotherapies which also serve as the substrates of ABC transporters. As the effect of β-ELE on the expression of ABC transporters, the results of q-PCR and Western blot showed that gene and protein expression of ABC transporters such as P-gp, MRP, and BCRP were down-regulated after the treatment of β-ELE. To verify the efficacy of β-ELE on reversing MDR, MCF-7/DOX cells were treated with the combination of DOX and β-ELE. MTT assay showed that β-ELE increased the inhibitory effect of DOX on the proliferation of MCF-7/DOX, and the IC 50 of the combination group was much lower than that of the single DOX or β-ELE treatment. In all, β-ELE may reverse MDR through the substrates of ABC transporters

  10. The mechanics of pressed-pellet separators in molten salt batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Kevin Nicholas; Roberts, Christine Cardinal; Roberts, Scott Alan

    2014-06-01

    We present a phenomenological constitutive model that describes the macroscopic behavior of pressed-pellet materials used in molten salt batteries. Such materials include separators, cathodes, and anodes. The purpose of this model is to describe the inelastic deformation associated with the melting of a key constituent, the electrolyte. At room temperature, all constituents of these materials are solid and do not transport cations so that the battery is inert. As the battery is heated, the electrolyte, a constituent typically present in the separator and cathode, melts and conducts charge by flowing through the solid skeletons of the anode, cathode, and separator.more » The electrochemical circuit is closed in this hot state of the battery. The focus of this report is on the thermal-mechanical behavior of the separator, which typically exhibits the most deformation of the three pellets during the process of activating a molten salt battery. Separator materials are composed of a compressed mixture of a powdered electrolyte, an inert binder phase, and void space. When the electrolyte melts, macroscopically one observes both a change in volume and shape of the separator that depends on the applied boundary conditions during the melt transition. Although porous flow plays a critical role in the battery mechanics and electrochemistry, the focus of this report is on separator behavior under flow-free conditions in which the total mass of electrolyte is static within the pellet. Specific poromechanics effects such as capillary pressure, pressure-saturation, and electrolyte transport between layers are not considered. Instead, a phenomenological model is presented to describe all such behaviors including the melting transition of the electrolyte, loss of void space, and isochoric plasticity associated with the binder phase rearrangement. The model is appropriate for use finite element analysis under finite deformation and finite temperature change conditions. The model

  11. Increased Renal Iron Accumulation in Hypertensive Nephropathy of Salt-Loaded Hypertensive Rats

    PubMed Central

    Naito, Yoshiro; Sawada, Hisashi; Oboshi, Makiko; Fujii, Aya; Hirotani, Shinichi; Iwasaku, Toshihiro; Okuhara, Yoshitaka; Eguchi, Akiyo; Morisawa, Daisuke; Ohyanagi, Mitsumasa; Tsujino, Takeshi; Masuyama, Tohru

    2013-01-01

    Although iron is reported to be associated with the pathogenesis of chronic kidney disease, it is unknown whether iron participates in the pathophysiology of nephrosclerosis. Here, we investigate whether iron is involved in the development of hypertensive nephropathy and the effects of iron restriction on nephrosclerosis in salt- loaded stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were given either a normal or high-salt diet for 8 weeks. Another subset of SHRSP were fed a high-salt with iron-restricted diet. SHRSP given a high-salt diet developed severe hypertension and nephrosclerosis. As a result, survival rate was decreased after 8 weeks diet. Importantly, massive iron accumulation and increased iron content were observed in the kidneys of salt-loaded SHRSP, along with increased superoxide production, urinary 8-Hydroxy-2′-deoxyguanosine excretion, and urinary iron excretion; however, these changes were markedly attenuated by iron restriction. Of interest, expression of cellular iron transport proteins, transferrin receptor 1 and divalent metal transporter 1, was increased in the tubules of salt-loaded SHRSP. Notably, iron restriction attenuated the development of severe hypertension and nephrosclerosis, thereby improving survival rate in salt-loaded SHRSP. Taken together, these results suggest a novel mechanism by which iron plays a role in the development of hypertensive nephropathy and establish the effects of iron restriction on salt-induced nephrosclerosis. PMID:24116080

  12. Regulation of K+ Transport in Tomato Roots by the TSS1 Locus. Implications in Salt Tolerance1

    PubMed Central

    Rubio, Lourdes; Rosado, Abel; Linares-Rueda, Adolfo; Borsani, Omar; García-Sánchez, María J.; Valpuesta, Victoriano; Fernández, José A.; Botella, Miguel A.

    2004-01-01

    The tss1 tomato (Lycopersicon esculentum) mutant exhibited reduced growth in low K+ and hypersensitivity to Na+ and Li+. Increased Ca2+ in the culture medium suppressed the Na+ hypersensitivity and the growth defect on low K+ medium of tss1 seedlings. Interestingly, removing NH4+ from the growth medium suppressed all growth defects of tss1, suggesting a defective NH4+-insensitive component of K+ transport. We performed electrophysiological studies to understand the contribution of the NH4+-sensitive and -insensitive components of K+ transport in wild-type and tss1 roots. Although at 1 mm Ca2+ we found no differences in affinity for K+ uptake between wild type and tss1 in the absence of NH4+, the maximum depolarization value was about one-half in tss1, suggesting that a set of K+ transporters is inactive in the mutant. However, these transporters became active by raising the external Ca2+ concentration. In the presence of NH4+, a reduced affinity for K+ was observed in both types of seedlings, but tss1 at 1 mm Ca2+ exhibited a 2-fold higher Km than wild type did. This defect was again corrected by raising the external concentration of Ca2+. Therefore, membrane potential measurements in root cells indicated that tss1 is affected in both NH4+-sensitive and -insensitive components of K+ transport at low Ca2+ concentrations and that this defective transport is rescued by increasing the concentration of Ca2+. Our results suggest that the TSS1 gene product is part of a crucial pathway mediating the beneficial effects of Ca2+ involved in K+ nutrition and salt tolerance. PMID:14684839

  13. Groundwater flow and transport modeling

    USGS Publications Warehouse

    Konikow, Leonard F.; Mercer, J.W.

    1988-01-01

    Deterministic, distributed-parameter, numerical simulation models for analyzing groundwater flow and transport problems have come to be used almost routinely during the past decade. A review of the theoretical basis and practical use of groundwater flow and solute transport models is used to illustrate the state-of-the-art. Because of errors and uncertainty in defining model parameters, models must be calibrated to obtain a best estimate of the parameters. For flow modeling, data generally are sufficient to allow calibration. For solute-transport modeling, lack of data not only limits calibration, but also causes uncertainty in process description. Where data are available, model reliability should be assessed on the basis of sensitivity tests and measures of goodness-of-fit. Some of these concepts are demonstrated by using two case histories. ?? 1988.

  14. Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0: Climate variability of sea salt aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Pierce, David W.; Russell, Lynn M.

    This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less

  15. Antitumor activity of 7-O-succinyl macrolactin A tromethamine salt in the mouse glioma model.

    PubMed

    Jin, Jun; Choi, Suh Hee; Lee, Jung Eun; Joo, Jin-Deok; Han, Jung Ho; Park, Su-Young; Kim, Chae-Yong

    2017-05-01

    Chemoradiotherapy with temozolomide is the current standard treatment option for patients with glioblastoma. However, the majority of patients with glioblastoma survive for <2 years. Therefore, it is necessary to develop more effective therapeutic strategies for the treatment of glioblastoma. 7-O-succinyl macrolactin A tromethamine salt (SMA salt), a macrolactin compound, is known to possess an antiangiogenic activity. The present study investigated the antitumor effects of SMA salt in the treatment of glioblastoma by evaluating in vitro and in vivo antitumor effects of SMA salt in an experimental glioblastoma model. The antitumor effects of the drug on human glioblastoma U87MG, U251MG and LN229 cell lines were assessed using in vitro cell viability, migration and invasion assays. Nude mice with established U87MG glioblastoma were assigned to either the control or SMA salt treatment group. The volume of tumors and the duration of survival were also measured. SMA salt affected cell viability and caused a concentration-dependent inhibition effect on the migration and invasion of glioblastoma cell lines. Animals in the SMA salt treatment group demonstrated a significant reduction in tumor volume and an increase in survival (P<0.05). Treatment with SMA salt presented more cytotoxic effects as well as anti-migration and anti-invasion activity compared with the control group in vitro and in vivo . These results suggest that SMA salt has significant antitumor effects on glioblastoma.

  16. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice

    PubMed Central

    Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel

    2016-01-01

    Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt

  17. Electronic transport in VO 2 —Experimentally calibrated Boltzmann transport modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinaci, Alper; Kado, Motohisa; Rosenmann, Daniel

    2015-12-28

    Materials that undergo metal-insulator transitions (MITs) are under intense study because the transition is scientifically fascinating and technologically promising for various applications. Among these materials, VO2 has served as a prototype due to its favorable transition temperature. While the physical underpinnings of the transition have been heavily investigated experimentally and computationally, quantitative modeling of electronic transport in the two phases has yet to be undertaken. In this work, we establish a density-functional-theory (DFT)-based approach to model electronic transport properties in VO2 in the semiconducting and metallic regimes, focusing on band transport using the Boltzmann transport equations. We synthesized high qualitymore » VO2 films and measured the transport quantities across the transition, in order to calibrate the free parameters in the model. We find that the experimental calibration of the Hubbard correction term can efficiently and adequately model the metallic and semiconducting phases, allowing for further computational design of MIT materials for desirable transport properties.« less

  18. Damage development, phase changes, transport properties, and freeze-thaw performance of cementitious materials exposed to chloride based salts

    NASA Astrophysics Data System (ADS)

    Farnam, Yaghoob

    Recently, there has been a dramatic increase in premature deterioration in concrete pavements and flat works that are exposed to chloride based salts. Chloride based salts can cause damage and deterioration in concrete due to the combination of factors which include: increased saturation, ice formation, salt crystallization, osmotic pressure, corrosion in steel reinforcement, and/or deleterious chemical reactions. This thesis discusses how chloride based salts interact with cementitious materials to (1) develop damage in concrete, (2) create new chemical phases in concrete, (3) alter transport properties of concrete, and (4) change the concrete freeze-thaw performance. A longitudinal guarded comparative calorimeter (LGCC) was developed to simultaneously measure heat flow, damage development, and phase changes in mortar samples exposed to sodium chloride (NaCl), calcium chloride (CaCl 2), and magnesium chloride (MgCl2) under thermal cycling. Acoustic emission and electrical resistivity measurements were used in conjunction with the LGCC to assess damage development and electrical response of mortar samples during cooling and heating. A low-temperature differential scanning calorimetry (LT-DSC) was used to evaluate the chemical interaction that occurs between the constituents of cementitious materials (i.e., pore solution, calcium hydroxide, and hydrated cement paste) and salts. Salts were observed to alter the classical phase diagram for a salt-water system which has been conventionally used to interpret the freeze-thaw behavior in concrete. An additional chemical phase change was observed for a concrete-salt-water system resulting in severe damage in cementitious materials. In a cementitious system exposed to NaCl, the chemical phase change occurs at a temperature range between -6 °C and 8 °C due to the presence of calcium sulfoaluminate phases in concrete. As a result, concrete exposed to NaCl can experience additional freeze-thaw cycles due to the chemical

  19. Volatile selenium flux from the great Salt Lake, Utah

    USGS Publications Warehouse

    Diaz, X.; Johnson, W.P.; Oliver, W.A.; Naftz, D.L.

    2009-01-01

    The removal mechanisms that govern Se concentrations in the Great Salt Lake are unknown despite this terminal lake being an avian habitat of hemispheric importance. However, the volatilization flux of Se from the Great Salt Lake has not been previously measured due to challenges of analysis in this hypersaline environment This paper presents results from recent field studies examining the spatial distribution of dissolved volatile Se (areally and with depth) in the south arm (main body) of the Great Salt Lake. The analyses involved collection of dissolved volatile Se in a cryofocusing trap system via sparging with helium. The cryotrapped volatile Se was digested with nitric acid and analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Results show concentrations of dissolved volatile Se that increase with depth in the shallow brine, suggesting that phytoplankton in the open waters and bioherms in shallow sites (<4 m in depth) may be responsible for volatile Se production. Volatile Se flux to the atmosphere was determined using mass transport models corrected to simulate the highly saline environment of the south arm of the Great Salt Lake. The estimated annual flux of volatile Se was 1455 kg/year within a range from 560 to 3780 kg Se/year for the 95% confidence interval and from 970 to 2180 kg Se/year within the 68% confidence interval. ?? 2009 American Chemical Society.

  20. Salt attack in parking garage in block of flats

    NASA Astrophysics Data System (ADS)

    Beran, Pavel; Frankeová, Dita; Pavlík, Zbyšek

    2017-07-01

    In recent years many new block of flats with parking garages placed inside the buildings were constructed. This tendency brings beyond question benefits for residents and also for city planning, but it requires new design and structural approaches and advanced material and construction solutions. The analysis of plaster damage on partition wall in parking garage in one of these buildings is presented in the paper. The damage of studied plaster is caused by the salts which are transported together with snow on cars undercarriage into garage area during winter. The snow melts and water with dissolved salts is transported by the capillary suction from concrete floor into the rendered partition wall. Based on the interior temperature, adsorbed water with dissolved chlorides evaporates and from the over saturated pore solution are formed salt crystals that damages the surface plaster layers. This damage would not occur if the partition wall was correctly isolated from the floor finish layer in the parking garage.

  1. Salt Stability - The Effect of pHmax on Salt to Free Base Conversion.

    PubMed

    Hsieh, Yi-Ling; Merritt, Jeremy M; Yu, Weili; Taylor, Lynne S

    2015-09-01

    The aim of this study was to investigate how the disproportionation process can be impacted by the properties of the salt, specifically pHmax. Five miconazole salts and four sertraline salts were selected for this study. The extent of conversion was quantified using Raman spectroscopy. A mathematical model was utilized to estimate the theoretical amount of conversion. A trend was observed that for a given series of salts of a particular basic compound (both sertraline and miconazole are bases), the extent of disproportionation increases as pHmax decreases. Miconazole phosphate monohydrate and sertraline mesylate, although exhibiting significantly different pHmax values (more than 2 units apart), underwent a similar extent of disproportionation, which may be attributed to the lower buffering capacity of sertraline salts. This work shows that the disproportionation tendency can be influenced by pHmax and buffering capacity and thus highlights the importance of selecting the appropriate salt form during the screening process in order to avoid salt-to-free form conversion.

  2. A Possible Regenerative, Molten-Salt, Thermoelectric Fuel Cell

    NASA Technical Reports Server (NTRS)

    Greenberg, Jacob; Thaller, Lawrence H.; Weber, Donald E.

    1964-01-01

    Molten or fused salts have been evaluated as possible thermoelectric materials because of the relatively good values of their figures of merit, their chemical stability, their long liquid range, and their ability to operate in conjunction with a nuclear reactor to produce heat. In general, molten salts are electrolytic conductors; therefore, there will be a transport of materials and subsequent decomposition with the passage of an electric current. It is possible nonetheless to overcome this disadvantage by using the decomposition products of the molten-salt electrolyte in a fuel cell. The combination of a thermoelectric converter and a fuel cell would lead to a regenerative system that may be useful.

  3. Diuretics and salt transport along the nephron.

    PubMed

    Bernstein, Paul L; Ellison, David H

    2011-11-01

    The clinical use of diuretics almost uniformly predated the localization of their site of action. The consequence of diuretic specificity predicts clinical application and side effect, and the proximity of the sodium transporters, one to the next, often dictates potency or diuretic efficiency. All diuretics function by inhibiting the normal transport of sodium from the filtrate into the renal tubular cells. This movement of sodium into the renal epithelial cells on the apical side is facilitated by a series of transporters whose function is, in turn, dependent on the adenosine triphosphate (ATP)-dependent Na-K cotransporter on the basolateral side of the cell. Our growing understanding of the physiology of sodium transport has spawned new possibilities for diuretic development. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Korean Solar Salt Ameliorates Colon Carcinogenesis in an AOM/DSS-Induced C57BL/6 Mouse Model.

    PubMed

    Ju, Jaehyun; Kim, Yeung-Ju; Park, Eui Seong; Park, Kun-Young

    2017-06-01

    The effects of Korean solar salt on an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer C57BL/6 mouse model were studied. Korean solar salt samples (SS-S, solar salt from S salt field; SS-Yb, solar salt from Yb salt field), nine-time-baked bamboo salt (BS-9x, made from SS-Yb), purified salt (PS), and SS-G (solar salt from Guérande, France) were orally administered at a concentration of 1% during AOM/DSS colon cancer induction, and compared for their protective effects during colon carcinogenesis in C57BL/6 mice. SS-S and SS-Yb suppressed colon length shortening and tumor counts in mouse colons. Histological evaluation by hematoxylin and eosin staining also revealed suppression of tumorigenesis by SS-S. Conversely, PS and SS-G did not show a similar suppressive efficacy as Korean solar salt. SS-S and SS-Yb promoted colon mRNA expression of an apoptosis-related factor and cell-cycle-related gene and suppressed pro-inflammatory factor. SS-Yb baked into BS-9x further promoted these anti-carcinogenic efficacies. Taken together, the results indicate that Korean solar salt, especially SS-S and SS-Yb, exhibited anti-cancer activity by modulating apoptosis- and inflammation-related gene expression during colon carcinogenesis in mice, and bamboo salt baked from SS-Yb showed enhanced anti-cancer functionality.

  5. SDMProjectBuilder: SWAT Setup for Nutrient Fate and Transport

    EPA Science Inventory

    This tutorial reviews some of the screens, icons, and basic functions of the SDMProjectBuilder (SDMPB) and explains how one uses SDMPB output to populate the Soil and Water Assessment Tool (SWAT) input files for nutrient fate and transport modeling in the Salt River Basin. It dem...

  6. Model Comparison for Electron Thermal Transport

    NASA Astrophysics Data System (ADS)

    Moses, Gregory; Chenhall, Jeffrey; Cao, Duc; Delettrez, Jacques

    2015-11-01

    Four electron thermal transport models are compared for their ability to accurately and efficiently model non-local behavior in ICF simulations. Goncharov's transport model has accurately predicted shock timing in implosion simulations but is computationally slow and limited to 1D. The iSNB (implicit Schurtz Nicolai Busquet electron thermal transport method of Cao et al. uses multigroup diffusion to speed up the calculation. Chenhall has expanded upon the iSNB diffusion model to a higher order simplified P3 approximation and a Monte Carlo transport model, to bridge the gap between the iSNB and Goncharov models while maintaining computational efficiency. Comparisons of the above models for several test problems will be presented. This work was supported by Sandia National Laboratory - Albuquerque and the University of Rochester Laboratory for Laser Energetics.

  7. Balancing sub- and supra-salt strain in salt-influenced rifts: Implications for extension estimates

    NASA Astrophysics Data System (ADS)

    Coleman, Alexander J.; Jackson, Christopher A.-L.; Duffy, Oliver B.

    2017-09-01

    The structural style of salt-influenced rifts may differ from those formed in predominantly brittle crust. Salt can decouple sub- and supra-salt strain, causing sub-salt faults to be geometrically decoupled from, but kinematically coupled to and responsible for, supra-salt forced folding. Salt-influenced rifts thus contain more folds than their brittle counterparts, an observation often ignored in extension estimates. Fundamental to determining whether sub- and supra-salt structures are kinematically coherent, and the relative contributions of thin- (i.e. gravity-driven) and thick-skinned (i.e. whole-plate stretching) deformation to accommodating rift-related strain, is our ability to measure extension at both structural levels. We here use published physical models of salt-influenced extension to show that line-length estimates yield more accurate values of sub- and supra-salt extension compared to fault-heave, before applying these methods to seismic data from the Halten Terrace, offshore Norway. We show that, given the abundance of ductile deformation in salt-influenced rifts, significant amounts of extension may be ignored, leading to the erroneous interpretations of thin-skinned, gravity-gliding. If a system is kinematically coherent, supra-salt structures can help predict the occurrence and kinematics of sub-salt faults that may be poorly imaged and otherwise poorly constrained.

  8. Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus.

    PubMed

    Sanchez, Diego H; Lippold, Felix; Redestig, Henning; Hannah, Matthew A; Erban, Alexander; Krämer, Ute; Kopka, Joachim; Udvardi, Michael K

    2008-03-01

    The model legume Lotus japonicus was subjected to non-lethal long-term salinity and profiled at the ionomic, transcriptomic and metabolomic levels. Two experimental designs with various stress doses were tested: a gradual step acclimatization and an initial acclimatization approach. Ionomic profiling by inductively coupled plasma/atomic emission spectrometry (ICP-AES) revealed salt stress-induced reductions in potassium, phosphorus, sulphur, zinc and molybdenum. Microarray profiling using the Lotus Genechip allowed the identification of 912 probesets that were differentially expressed under the acclimatization regimes. Gas chromatography/mass spectrometry-based metabolite profiling identified 147 differentially accumulated soluble metabolites, indicating a change in metabolic phenotype upon salt acclimatization. Metabolic changes were characterized by a general increase in the steady-state levels of many amino acids, sugars and polyols, with a concurrent decrease in most organic acids. Transcript and metabolite changes exhibited a stress dose-dependent response within the range of NaCl concentrations used, although threshold and plateau behaviours were also observed. The combined observations suggest a successive and increasingly global requirement for the reprogramming of gene expression and metabolic pathways to maintain ionic and osmotic homeostasis. A simple qualitative model is proposed to explain the systems behaviour of plants during salt acclimatization.

  9. Projected Impact of Salt Restriction on Prevention of Cardiovascular Disease in China: A Modeling Study

    PubMed Central

    Liu, Jing; Coxson, Pamela G.; Penko, Joanne; Goldman, Lee; Bibbins-Domingo, Kirsten; Zhao, Dong

    2016-01-01

    Objectives To estimate the effects of achieving China’s national goals for dietary salt (NaCl) reduction or implementing culturally-tailored dietary salt restriction strategies on cardiovascular disease (CVD) prevention. Methods The CVD Policy Model was used to project blood pressure lowering and subsequent downstream prevented CVD that could be achieved by population-wide salt restriction in China. Outcomes were annual CVD events prevented, relative reductions in rates of CVD incidence and mortality, quality-adjusted life-years (QALYs) gained, and CVD treatment costs saved. Results Reducing mean dietary salt intake to 9.0 g/day gradually over 10 years could prevent approximately 197 000 incident annual CVD events [95% uncertainty interval (UI): 173 000–219 000], reduce annual CVD mortality by approximately 2.5% (2.2–2.8%), gain 303 000 annual QALYs (278 000–329 000), and save approximately 1.4 billion international dollars (Int$) in annual CVD costs (Int$; 1.2–1.6 billion). Reducing mean salt intake to 6.0 g/day could approximately double these benefits. Implementing cooking salt-restriction spoons could prevent 183 000 fewer incident CVD cases (153 000–215 000) and avoid Int$1.4 billion in CVD treatment costs annually (1.2–1.7 billion). Implementing a cooking salt substitute strategy could lead to approximately three times the health benefits of the salt-restriction spoon program. More than three-quarters of benefits from any dietary salt reduction strategy would be realized in hypertensive adults. Conclusion China could derive substantial health gains from implementation of population-wide dietary salt reduction policies. Most health benefits from any dietary salt reduction program would be realized in adults with hypertension. PMID:26840409

  10. Fusible pellet transport and storage of heat

    NASA Technical Reports Server (NTRS)

    Bahrami, P. A.

    1982-01-01

    A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.

  11. Fusible pellet transport and storage of heat

    NASA Astrophysics Data System (ADS)

    Bahrami, P. A.

    1982-06-01

    A new concept for both transport and storage of heat at high temperatures and heat fluxes is introduced and the first steps in analysis of its feasibility is taken. The concept utilizes the high energy storage capability of materials undergoing change of phase. The phase change material, for example a salt, is encapsulated in corrosion resistant sealed pellets and transported in a carrier fluid to heat source and storage. Calculations for heat transport from a typical solar collector indicate that the pellet mass flow rates are relatively small and that the required pumping power is only a small fraction of the energy transport capability of the system. Salts and eutectic salt mixtures as candidate phase change materials are examined and discussed. Finally, the time periods for melting or solidification of sodium chloride pellets is investigated and reported.

  12. Analog modeling and kinematic restoration of inverted hangingwall synclinal basins developed above syn-kinematic salt: Application to the Lusitanian and Parentis basins

    NASA Astrophysics Data System (ADS)

    Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton

    2017-04-01

    The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may

  13. The principal factors contributing to the flux of salt in a narrow, partially stratified estuary

    NASA Astrophysics Data System (ADS)

    Lewis, R. E.; Lewis, J. O.

    1983-06-01

    Observations of the velocity and salinity structure of the Tees estuary were made at eight stations along the estuary axis between Victoria Bridge and the sea during the summer of 1975. The measurements were made on ten separate tidal periods covering neap and spring tides. The data were collected over a period of relatively low freshwater flows and the residual current was found to have a strong dependence on the Stokes drift. At the upstream stations, the residuals were more than an order of magnitude greater than the currents anticipated from the freshwater discharge. Although the mean stratification decreased as the tidal range increased, the vertical circulation was stronger on spring tides than on neaps. Vertical variations in the amplitude and phase of the tidal current results in a current which strengthens the vertical circulation. However, this effect only made a relatively small contribution to the observed vertical circulation. The relative contribution of the individual salt flux terms to the net upstream transport of salt varies along the estuary. As the estuary narrows, the contribution by the oscillatory terms dominates that from the shear in the steady state flow. Of these oscillatory terms, the correlation of velocity and salinity fluctuations plays a key rôle in the salt transport. The depth mean values make a greater contribution than deviations from the depth mean and the flux due to phase variations over depth is smaller than either of these. Since the Stokes drift is compensated by a down-stream steady state flow, it does not contribute to the tidal mean transport of salt. At the seaward end of the estuary, the salt fluxes due to the steady state vertical shear and the convariance of the tidal fluctuations act in a complementary way to counter the seaward transport of salt by the freshwater flow. With the possible exceptions of the wide or narrow reaches of the Tees, the longitudinal fluxes of salt due to transverse variations in velocity

  14. A Transportation Modeling Primer

    DOT National Transportation Integrated Search

    2006-06-01

    This primer is intended to explain the urban transportation modeling process works, the assumptions made and the steps used to forecast travel demand for urban transportation planning. This is done in order to help to understand the process and its i...

  15. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.; Zhou, A.; Baidoo, E.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed.more » Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.« less

  16. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    NASA Astrophysics Data System (ADS)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  17. Dietary salt restriction improves cardiac and adipose tissue pathology independently of obesity in a rat model of metabolic syndrome.

    PubMed

    Hattori, Takuya; Murase, Tamayo; Takatsu, Miwa; Nagasawa, Kai; Matsuura, Natsumi; Watanabe, Shogo; Murohara, Toyoaki; Nagata, Kohzo

    2014-12-02

    Metabolic syndrome (MetS) enhances salt sensitivity of blood pressure and is an important risk factor for cardiovascular disease. The effects of dietary salt restriction on cardiac pathology associated with metabolic syndrome remain unclear. We investigated whether dietary salt restriction might ameliorate cardiac injury in DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats and represent a model of metabolic syndrome. DS/obese rats were fed a normal-salt (0.36% NaCl in chow) or low-salt (0.0466% NaCl in chow) diet from 9 weeks of age and were compared with similarly treated homozygous lean littermates (DahlS.Z-Lepr(+)/Lepr(+), or DS/lean rats). DS/obese rats fed the normal-salt diet progressively developed hypertension and showed left ventricular hypertrophy, fibrosis, and diastolic dysfunction at 15 weeks. Dietary salt restriction attenuated all of these changes in DS/obese rats. The levels of cardiac oxidative stress and inflammation and the expression of cardiac renin-angiotensin-aldosterone system genes were increased in DS/obese rats fed the normal-salt diet, and dietary salt restriction downregulated these parameters in both DS/obese and DS/lean rats. In addition, dietary salt restriction attenuated the increase in visceral adipose tissue inflammation and the decrease in insulin signaling apparent in DS/obese rats without reducing body weight or visceral adipocyte size. Dietary salt restriction did not alter fasting serum glucose levels but it markedly decreased the fasting serum insulin concentration in DS/obese rats. Dietary salt restriction not only prevents hypertension and cardiac injury but also ameliorates insulin resistance, without reducing obesity, in this model of metabolic syndrome. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  18. Density-dependent groundwater flow and dissolution potential along a salt diapir in the Transylvanian Basin, Romania

    NASA Astrophysics Data System (ADS)

    Zechner, Eric; Danchiv, Alex; Dresmann, Horst; Mocuţa, Marius; Huggenberger, Peter; Scheidler, Stefan; Wiesmeier, Stefan; Popa, Iulian; Zlibut, Alexandru; Zamfirescu, Florian

    2016-04-01

    Salt diapirs and the surrounding sediments are often involved in a variety of human activities, such as salt mining, exploration and storage of hydrocarbons, and also storage of radioactive waste material. The presence of highly soluble evaporitic rocks, a complex tectonic setting related to salt diapirsm, and human activities can lead to significant environmental problems, e.g. land subsidence, sinkhole development, salt cavern collapse, and contamination of water resources with brines. In the Transylvanian town of Ocna Mures. rock salt of a near-surface diapir has been explored since the Roman ages in open excavations, and up to the 20th century in galleries and with solution mining. Most recently, in 2010 a sudden collapse in the adjacent Quaternary unconsolidated sediments led to the formation of a 70-90m wide salt lake with a max. depth of 23m. Over the last 3 years a Romanian-Swiss research project has led to the development of 3D geological and hydrogeological information systems in order to improve knowledge on possible hazards related to uncontrolled salt dissolution. One aspect which has been investigated is the possibility of density-driven flow along permeable subvertical zones next to the salt dome, and the potential for subsaturated groundwater to dissolve the upper sides of the diapir. Structural 3D models of the salt diapir, the adjacent basin sediments, and the mining galleries, led to the development of 2D numerical vertical density-dependent models of flow and transport along the diapir. Results show that (1) increased rock permeability due to diapirsm, regional tectonic thrusting and previous dissolution, and (2) more permeable sandstone layers within the adjacent basin sediments may lead to freshwater intrusion towards the top of the diapir, and, therefore, to increased potential for salt dissolution.

  19. Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species.

    PubMed

    Liu, Changhai; Li, Chao; Liang, Dong; Wei, Zhiwei; Zhou, Shasha; Wang, Rongchao; Ma, Fengwang

    2012-09-01

    Maintaining ion and water homeostasis in plants is an important defense strategy against salinity stress. Divergence in ion homeostasis between the salt-tolerant Malus hupehensis Rehd. and salt-sensitive Malus prunifolia 'yingyehaitang' was studied to understand their mechanisms for tolerance. Compared with the control on Day 15, plants of those two genotypes under high-salinity treatment had less K(+) in the leaves, stems, and roots. Contents were higher in the roots but lower in the leaves of M. hupehensis while levels in the stems were similar to those from M. prunifolia. For both genotypes, the sodium content increased after salinity treatment in all tissue types. However, the leaves from M. hupehensis had less Na(+) and maintained a lower Na(+)/K(+) ratio. To understand the basis for these differences, we studied the ion transporters and regulation of aquaporin transcripts in the leaves. Transcript levels for both MdHKT1 and MdSOS1 were higher in M. hupehensis, implying that this species had better capacity to exclude sodium so that less Na(+) occurred in the leaves but more in the stems. M. hupehensis also had a greater amount of MdNHX1 transcripts, which could have assisted in sequestering excess Na(+) into the vacuoles and sustaining a better cellular environment. A relatively higher level of aquaporin transcript was also found in M. hupehensis, suggesting that those plants were more capable of maintaining a better leaf water status and diluting excess ions effectively under high-salinity conditions. Therefore, these tested transporters may play important roles in determining how salinity tolerance is conferred in Malus species. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants

    PubMed Central

    Almeida, Diego M.; Oliveira, M. Margarida; Saibo, Nelson J. M.

    2017-01-01

    Abstract Soil salinity is a major abiotic stress that results in considerable crop yield losses worldwide. However, some plant genotypes show a high tolerance to soil salinity, as they manage to maintain a high K+/Na+ ratio in the cytosol, in contrast to salt stress susceptible genotypes. Although, different plant genotypes show different salt tolerance mechanisms, they all rely on the regulation and function of K+ and Na+ transporters and H+ pumps, which generate the driving force for K+ and Na+ transport. In this review we will introduce salt stress responses in plants and summarize the current knowledge about the most important ion transporters that facilitate intra- and intercellular K+ and Na+ homeostasis in these organisms. We will describe and discuss the regulation and function of the H+-ATPases, H+-PPases, SOS1, HKTs, and NHXs, including the specific tissues where they work and their response to salt stress. PMID:28350038

  1. Human NKCC2 cation–Cl– co-transporter complements lack of Vhc1 transporter in yeast vacuolar membranes.

    PubMed

    Petrezselyova, Silvia; Dominguez, Angel; Herynkova, Pavla; Macias, Juan F; Sychrova, Hana

    2013-10-01

    Cation–chloride co-transporters serve to transport Cl– and alkali metal cations. Whereas a large family of these exists in higher eukaryotes, yeasts only possess one cation–chloride co-transporter, Vhc1, localized to the vacuolar membrane. In this study, the human cation–chloride co-transporter NKCC2 complemented the phenotype of VHC1 deletion in Saccharomyces cerevisiae and its activity controlled the growth of salt-sensitive yeast cells in the presence of high KCl, NaCl and LiCl. A S. cerevisiae mutant lacking plasma-membrane alkali–metal cation exporters Nha1 and Ena1-5 and the vacuolar cation–chloride co-transporter Vhc1 is highly sensitive to increased concentrations of alkali–metal cations, and it proved to be a suitable model for characterizing the substrate specificity and transport activity of human wild-type and mutated cation–chloride co-transporters. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Assessment of applications of transport models on regional scale solute transport

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Fogg, G. E.; Henri, C.; Pauloo, R.

    2017-12-01

    Regional scale transport models are needed to support the long-term evaluation of groundwater quality and to develop management strategies aiming to prevent serious groundwater degradation. The purpose of this study is to evaluate the capacity of previously-developed upscaling approaches to accurately describe main solute transport processes including the capture of late-time tails under changing boundary conditions. Advective-dispersive contaminant transport in a 3D heterogeneous domain was simulated and used as a reference solution. Equivalent transport under homogeneous flow conditions were then evaluated applying the Multi-Rate Mass Transfer (MRMT) model. The random walk particle tracking method was used for both heterogeneous and homogeneous-MRMT scenarios under steady state and transient conditions. The results indicate that the MRMT model can capture the tails satisfactorily for plume transported with ambient steady-state flow field. However, when boundary conditions change, the mass transfer model calibrated for transport under steady-state conditions cannot accurately reproduce the tailing effect observed for the heterogeneous scenario. The deteriorating impact of transient boundary conditions on the upscaled model is more significant for regions where flow fields are dramatically affected, highlighting the poor applicability of the MRMT approach for complex field settings. Accurately simulating mass in both mobile and immobile zones is critical to represent the transport process under transient flow conditions and will be the future focus of our study.

  3. Whitecaps, sea-salt aerosols, and climate

    NASA Astrophysics Data System (ADS)

    Anguelova, Magdalena Dimitrova

    Oceanic whitecaps are the major source of sea-salt aerosols. Because these aerosols are dominant in remote marine air, they control the radiative properties of the clean background atmosphere by scattering sunlight, changing cloud properties and lifetime, and providing media for chemical reactions. Including sea-salt effects in climate models improves predictions, but simulating their generation is first necessary. To make the sea-salt generation function currently used in climate models more relevant for aerosol investigations, this study proposes two modifications. First, the conventional relation between whitecap coverage, W, and the 10-meter wind speed, U10, used in typical generation functions is expanded to include additional factors that affect whitecaps and sea-salt aerosol formation. Second, the sea-salt generation function is extended to smaller sizes; sea-salt aerosol with initial radii from 0.4 to 20 mum can now be modeled. To achieve these goals, this thesis develops a new method for estimating whitecap coverage on a global scale using satellite measurements of the brightness temperature of the ocean surface. Whitecap coverage evaluated with this method incorporates the effects of atmospheric stability, sea-surface temperature, salinity, wind fetch, wind duration, and the amount of surface-active material. Assimilating satellite-derived values for whitecap coverage in the sea-salt generation function incorporates the effects of all environmental factors on sea-salt production and predicts realistic sea-salt aerosol loadings into the atmosphere. An extensive database of whitecap coverage and sea-salt aerosol fluxes has been compiled with the new method and is used to investigate their spatial and temporal characteristics. The composite effect of all environmental factors suggests a more uniform latitudinal distribution of whitecaps and sea-salt aerosols than that predicted from wind speed alone. The effect of sea-surface temperature, TS, is

  4. Studies of metals electroprocessing in molten salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1982-01-01

    Fluid flow patterns in molten salt electrolytes were observed in order to determine how mass transport affects the morphology of the metal deposit. Studies conducted on the same metal, both in aqueous electrolytes in which coherent solid electrodeposits are produced, as well as in transparent molten salt electrolytes are described. Process variables such as current density and composition of the electrolyte are adjusted to change the morphology of the electrodeposit and, thus, to permit the study of the nature of electrolyte flow in relation to the quality of the electrodeposit.

  5. An electrochemical model for hot-salt stress-corrosion of titanium alloys

    NASA Technical Reports Server (NTRS)

    Garfinkle, M.

    1972-01-01

    An electrochemical model of hot-salt stress-corrosion cracking of titanium alloys is proposed based on an oxygen-concentration cell. Hydrogen embrittlement is proposed as the direct cause of cracking, the hydrogen being generated as the results of the hydrolysis of complex halides formed at the shielded anode of the electrochemical cell. The model found to be consistent with the diverse observations made both in this study and by many investigators in this field.

  6. Cadmium hampers salt tolerance of Sesuvium portulacastrum.

    PubMed

    Wali, Mariem; Martos, Soledad; Pérez-Martín, Laura; Abdelly, Chedly; Ghnaya, Tahar; Poschenrieder, Charlotte; Gunsé, Benet

    2017-06-01

    It is well known that salinity reduces cadmium toxicity in halophytes. However, the possible interference of Cd with the mechanisms of salt tolerance is poorly explored. The aim of this study was to see whether Cd affects salt tolerance mechanisms in the halophyte Sesuvium portulacastrum. S. portulacastrum plants obtained from cuttings were grown in hydroponics for 3 weeks and then exposed to low (0.09 mM) or moderate (200 mM) NaCl concentrations, alone or in combination with 25 μM CdCl 2 . Microscopy observation revealed two strategies of salt tolerance: euhalophytism and secretion of salt by bladder cells. Cadmium exposure hardly influenced the total leaf Na + concentrations. However, Cd supply delayed the salt-induced upregulation of AHA1 (plasma membrane H + -ATPase 1) and SOS1 (plasma membrane Na + transporter "Salt Overly Sensitive 1"), genes that are essential for salt tolerance. Moreover, Cd induced the activation of BADH, coding for betaine aldehyde dehydrogenase, indicating enhanced osmotic stress due to Cd. Sodium-green fluorescence in protoplasts from plants grown with low or high NaCl, alone or in combination with Cd, revealed higher Na + concentrations in the cytoplasm of Cd-exposed plants. Taken together the results indicate interference of Cd with salt tolerance mechanisms in S. portulacastrum. This may have consequences for the efficient use of halophytes in phytoremediation of Cd-contaminated saline soils. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    NASA Astrophysics Data System (ADS)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  8. Long term cavity closure in salt using a Carreau viscosity model.

    NASA Astrophysics Data System (ADS)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2017-04-01

    The problem of a pressurized hole in an infinite homogenous body is one of the most classical problems in geoscience. The solution is well-known when the rheology is linear but becomes much more complicated when applied to formations such as salt that can behave nonlinearly. Defining a constitutive law for the steady state deformation of salt is already a challenge and we rely on two deformation mechanisms - dislocation creep and pressure solution - to do that. More precisely, we use a Carreau model for viscosity to take into account in a single and smooth manner a linear and a nonlinear process. We use this rheology to revisit the classical two-dimensional problem of a pressurized cylindrical hole in an infinite and homogeneous body under general far field loads. We are interested in characterizing the maximum closure velocity at the rim. We provide analytical solutions for pressure and far field pure shear loads and we give a proxy for the general case based on the two end members. Using this general approach, we show that adding pressure solution to the constitutive law is especially important when studying long term hole closure under low pressure loads or when the grain size is in the order of 0.1 mm. Only considering dislocation creep can lead to underestimating the closure velocity by several orders of magnitude. Adding far field shear stress also dramatically enhances hole closure. The stress situation in salt bodies is often considered as isotropic but some shear exists at the interface between moving salt bodies and cap rock so pressurized holes in these regions experience increased closure. The analytical approach adopted in this study enables us to better understand the influence of all the input parameters on hole closure in salt.

  9. Ex-vivo absorption study of lysine R-lipoate salt, a new pharmaceutical form of R-ALA.

    PubMed

    Amenta, Francesco; Buccioni, Michela; Ben, Diego Dal; Lambertucci, Catia; Navia, Aleix Martí; Ngouadjeu Ngnintedem, Michael A; Ricciutelli, Massimo; Spinaci, Andrea; Volpini, Rosaria; Marucci, Gabriella

    2018-06-15

    Alpha-lipoic acid (ALA) oral supplements were used in many pathologies associated with increased oxidative stress. Although only R-ALA is considered the biologically active form, R,S-ALA is used in therapeutic applications even showing poor water solubility. The aim of this work was to study the absorption and transport mechanism across the intestinal barrier of new R-ALA stable and water soluble form, consisting in the lysine R-ALA salt, in presence and absence of specific inhibitors of Na + /multivitamin (SMVT) and monocarboxylic acids (MCT). The absorption of a new ALA form was investigated at rat everted sacs in comparison with R-ALA, S-ALA, and R,S-ALA. Results showed that duodenum is the best portion of intestine for ALA forms absorption. The absorption percentage of R-ALA, S-ALA, R,S-ALA, and lysine R-ALA salt was 66%, 43%, 55%, and 70%, respectively. The modest effect of the SMVT inhibitor biotin demonstrated that this transporter system is not principally involved in the absorption of lysine R-lipoate salt across the rat intestinal barrier. On the contrary, the MCT inhibitor octanoic acid significantly reduced the transport of this salt, whit an absorption decrease of R-ALA and lysine R-lipoate salt of 28% and 24%, respectively. Since the highest concentration of these inhibitors did not completely inhibit the absorption of lysine R-lipoate salt, other transport mechanisms probably operate for its intracellular delivery. The new form of ALA, lysine R-lipoate salt, was the most absorbed respect to the other ALA forms demonstrating that this compound is more suitable for oral administration. This new salt could represent a promising candidate for ALA oral supplementation. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Seismic anisotropy in deforming salt bodies

    NASA Astrophysics Data System (ADS)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  11. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  12. Sustainable intermodal freight transportation: Applying the geospatial intermodal freight transport model

    NASA Astrophysics Data System (ADS)

    Comer, Bryan

    To study the energy and environmental impacts of emissions associated with freight transportation, the Geospatial Intermodal Freight Transport (GIFT) model was created as a joint research collaborative between the Rochester Institute of Technology (RIT) and the University of Delaware (UD). The GIFT model is a Geographic Information Systems (GIS) based model that links the U.S. and Canadian water, rail, and road transportation networks through intermodal transfer facilities to create an intermodal network. The purpose of my thesis is to apply the GIFT model to examine potential public policies related to intermodal freight transportation in the Great Lakes region of the United States. My thesis will consist of two papers. The first paper will examine the environmental, economic, and time-of-delivery tradeoffs associated with freight transportation in the Great Lakes region and examine opportunities for marine vessels to replace a portion of heavy-duty trucks for containerized freight transport. The second paper will explore the potential benefits of using the Great Lakes as a corridor for short-sea shipping as part of a longer intermodal route. The intent of my thesis is to shed light on the current issues associated with freight transport in the Great Lakes region and present public policy alternatives to address said issues. Ideally, this thesis will better inform policymakers on the impacts and tradeoffs associated with freight transportation.

  13. Evaluation of Tropical Transport in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; DaSilva, A. M.; Lin, S.-J.; Pawson, S.; Rood, R. B.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Observations of constituents from satellite, aircraft and sondes can be utilized to develop diagnostics of various aspects of tropical transport. These include tropical mid-latitude isolation, the seasonal transport from the upper tropical troposphere to the mid-latitude lowermost stratosphere, the seasonal cycle of the tropical total ozone and its variability. These diagnostics will be applied to constituent fields from an off-line chemistry and transport model (CTM) driven by winds from two sources. These are the Finite Volume Community Climate Model (FV-CCM), a general circulation model that uses the NCAR CCM physics and the Lin and Rood dynamical core, and an assimilation system developed by the Data Assimilation Office at the Goddard Space Flight Center that uses the FV-CCM at its core. Signatures of the quasi-biennial oscillation present in the observations will be emphasized to understand differences between the two model transports and the transport inferred from the observations.

  14. Dispersion of Perfluorocarbon Tracers within the Salt Lake Valley during VTMX 2000

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Allwine, K. Jerry; Dietz, Russell N.; Clawson, Kirk L.; Torcolini, Joel C.

    2006-06-01

    Six perfluorocarbon tracer experiments were conducted in Salt Lake City, Utah, during October 2000 as part of the Vertical Transport and Mixing (VTMX) field campaign. Four tracers were released at different sites to obtain information on dispersion during stable conditions within down-valley flow, canyon outflow, and interacting circulations in the downtown area. Some of the extensive tracer data that were collected are presented in the context of the meteorological field campaign measurements. Tracer measurements at building-top sites in the downtown area and along the lower slopes of the Wasatch Front indicated that vertical mixing processes transported material up to at least 180 m above the valley floor, although model simulations suggest that tracers were transported upward to much higher elevations. Tracer data provided evidence of downward mixing of canyon outflow, upward mixing within down-valley flow, horizontal transport above the surface stable layer, and transport within horizontal eddies produced by the interaction of canyon and down-valley flows. Although point meteorological measurements are useful in evaluating the forecasts produced by mesoscale models, the tracer data provide valuable information on how the time-varying three-dimensional mean and turbulent motions over urban and valley spatial scales affect dispersion. Although the mean tracer transport predicted by the modeling system employed in this study was qualitatively similar to the measurements, improvements are needed in the treatment of turbulent vertical mixing.

  15. Reducing salt in food; setting product-specific criteria aiming at a salt intake of 5 g per day.

    PubMed

    Dötsch-Klerk, M; Goossens, W P M M; Meijer, G W; van het Hof, K H

    2015-07-01

    There is an increasing public health concern regarding high salt intake, which is generally between 9 and 12 g per day, and much higher than the 5 g recommended by World Health Organization. Several relevant sectors of the food industry are engaged in salt reduction, but it is a challenge to reduce salt in products without compromising on taste, shelf-life or expense for consumers. The objective was to develop globally applicable salt reduction criteria as guidance for product reformulation. Two sets of product group-specific sodium criteria were developed to reduce salt levels in foods to help consumers reduce their intake towards an interim intake goal of 6 g/day, and—on the longer term—5 g/day. Data modelling using survey data from the United States, United Kingdom and Netherlands was performed to assess the potential impact on population salt intake of cross-industry food product reformulation towards these criteria. Modelling with 6 and 5 g/day criteria resulted in estimated reductions in population salt intake of 25 and 30% for the three countries, respectively, the latter representing an absolute decrease in the median salt intake of 1.8-2.2 g/day. The sodium criteria described in this paper can serve as guidance for salt reduction in foods. However, to enable achieving an intake of 5 g/day, salt reduction should not be limited to product reformulation. A multi-stakeholder approach is needed to make consumers aware of the need to reduce their salt intake. Nevertheless, dietary impact modelling shows that product reformulation by food industry has the potential to contribute substantially to salt-intake reduction.

  16. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion.

    PubMed

    Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher

    2013-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.

  17. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  18. Uncertainty in tsunami sediment transport modeling

    USGS Publications Warehouse

    Jaffe, Bruce E.; Goto, Kazuhisa; Sugawara, Daisuke; Gelfenbaum, Guy R.; La Selle, SeanPaul M.

    2016-01-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. We explore sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami, study site, available input data, sediment grain size, and model. Although uncertainty has the potential to be large, published case studies indicate that both forward and inverse tsunami sediment transport models perform well enough to be useful for deciphering tsunami characteristics, including size, from deposits. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and development of hybrid modeling approaches to exploit the strengths of forward and inverse models.

  19. Salt geometry influence on present-day stress orientations in the Nile Delta: Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Eckert, Andreas; Zhang, Weicheng

    2016-02-01

    The offshore Nile Delta displays sharply contrasting orientations of the maximum horizontal stress, SH, in regions above Messinian evaporites (suprasalt) and regions below Messinian evaporites (subsalt). Published stress orientation data predominantly show margin-normal suprasalt SH orientations but a margin-parallel subsalt SH orientation. While these data sets provide the first major evidence that evaporite sequences can act as mechanical detachment horizons, the cause for the stress orientation contrast remains unclear. In this study, 3D finite element analysis is used to investigate the causes for stress re-orientation based on two different hypotheses. The modeling study evaluates the influence of different likely salt geometries and whether stress reorientations are the result of basal drag forces induced by gravitational gliding or whether they represent localized variations due to mechanical property contrasts. The modeling results show that when salt is present as a continuous layer, gravitational gliding occurs and basal drag forces induced in the suprasalt layers result in the margin-normal principal stress becoming the maximum horizontal stress. With the margin-normal stress increase being confined to the suprasalt layers, the salt acts as a mechanical detachment horizon, resulting in different SH orientations in the suprasalt compared to the subsalt layers. When salt is present as isolated bodies localized stress variations occur due to the mechanical property contrasts imposed by the salt, also resulting in different SH orientations in the suprasalt compared to the subsalt layers. The modeling results provide additional quantitative evidence to confirm the role of evaporite sequences as mechanical detachment horizons.

  20. Measuring and modeling the salting-out effect in ammonium sulfate solutions.

    PubMed

    Wang, Chen; Lei, Ying Duan; Endo, Satoshi; Wania, Frank

    2014-11-18

    The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected

  1. Inorganic salt mixtures as electrolyte media in fuel cells

    NASA Technical Reports Server (NTRS)

    Angell, Charles Austen (Inventor); Francis-Gervasio, Dominic (Inventor); Belieres, Jean-Philippe (Inventor)

    2012-01-01

    Fuel cell designs and techniques for converting chemical energy into electrical energy uses a fuel cell are disclosed. The designs and techniques include an anode to receive fuel, a cathode to receive oxygen, and an electrolyte chamber in the fuel cell, including an electrolyte medium, where the electrolyte medium includes an inorganic salt mixture in the fuel cell. The salt mixture includes pre-determined quantities of at least two salts chosen from a group consisting of ammonium trifluoromethanesulfonate, ammonium trifluoroacetate, and ammonium nitrate, to conduct charge from the anode to the cathode. The fuel cell includes an electrical circuit operatively coupled to the fuel cell to transport electrons from the cathode.

  2. Evaluating Conceptual Site Models with Multicomponent Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Heffner, D.; Price, V.; Temples, T. J.; Nicholson, T. J.

    2005-05-01

    Modeling ground-water flow and multicomponent reactive chemical transport is a useful approach for testing conceptual site models and assessing the design of monitoring networks. A graded approach with three conceptual site models is presented here with a field case of tetrachloroethene (PCE) transport and biodegradation near Charleston, SC. The first model assumed a one-layer homogeneous aquifer structure with semi-infinite boundary conditions, in which an analytical solution of the reactive solute transport can be obtained with BIOCHLOR (Aziz et al., 1999). Due to the over-simplification of the aquifer structure, this simulation cannot reproduce the monitoring data. In the second approach we used GMS to develop the conceptual site model, a layer-cake multi-aquifer system, and applied a numerical module (MODFLOW and RT3D within GMS) to solve the flow and reactive transport problem. The results were better than the first approach but still did not fit the plume well because the geological structures were still inadequately defined. In the third approach we developed a complex conceptual site model by interpreting log and seismic survey data with Petra and PetraSeis. We detected a major channel and a younger channel, through the PCE source area. These channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Results using the third conceptual site model agree well with the monitoring concentration data. This study confirms that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004). Numerical modeling in this case provides key insight into the hydrogeology and geochemistry of the field site for predicting contaminant transport in the future. Finally, critical monitoring points and performance indicator parameters are selected for future monitoring to confirm system

  3. Reducing salt in food; setting product-specific criteria aiming at a salt intake of 5 g per day

    PubMed Central

    Dötsch-Klerk, M; PMM Goossens, W; Meijer, G W; van het Hof, K H

    2015-01-01

    Background/Objectives: There is an increasing public health concern regarding high salt intake, which is generally between 9 and 12 g per day, and much higher than the 5 g recommended by World Health Organization. Several relevant sectors of the food industry are engaged in salt reduction, but it is a challenge to reduce salt in products without compromising on taste, shelf-life or expense for consumers. The objective was to develop globally applicable salt reduction criteria as guidance for product reformulation. Subjects/Methods: Two sets of product group-specific sodium criteria were developed to reduce salt levels in foods to help consumers reduce their intake towards an interim intake goal of 6 g/day, and—on the longer term—5 g/day. Data modelling using survey data from the United States, United Kingdom and Netherlands was performed to assess the potential impact on population salt intake of cross-industry food product reformulation towards these criteria. Results: Modelling with 6 and 5 g/day criteria resulted in estimated reductions in population salt intake of 25 and 30% for the three countries, respectively, the latter representing an absolute decrease in the median salt intake of 1.8–2.2 g/day. Conclusions: The sodium criteria described in this paper can serve as guidance for salt reduction in foods. However, to enable achieving an intake of 5 g/day, salt reduction should not be limited to product reformulation. A multi-stakeholder approach is needed to make consumers aware of the need to reduce their salt intake. Nevertheless, dietary impact modelling shows that product reformulation by food industry has the potential to contribute substantially to salt-intake reduction. PMID:25690867

  4. Modelling and Caracterisation of sea salt aerosols during ChArMEx-ADRIMED campaign in Ersa

    NASA Astrophysics Data System (ADS)

    Claeys, Marine; Roberts, Greg; Mallet, Marc; Sciare, Jean; Arndt, Jovanna; Mihalopoulos, Nikos

    2015-04-01

    During ChArMEx-ADRIMED campaign (June and July 2013), aerosol particles measurements were conducted in Ersa (600 m asl), Cap Corsica. The in-situ instrumentation allowed to characterize sea salt aerosols (SSA) by their physico-chemical and optical properties and their size distribution. This study concentrates particularly on a period of a few days where the concentration of sea salt aerosols was higher. The chemistry results indicate that the SSA measured during this period were mostly aged. The comparison of the number size distributions of air masses allow to determine the SSA size mode. These data are used to evaluate the sea salt aerosol emission scheme implemented in the regional scale Meso-Nh model. A new emission scheme based on available source fonctions is tested for different sea state conditions to evaluate the direct radiative impact of sea salt aerosols over the Mediterranean basin.

  5. AQUIFEM-SALT; a finite-element model for aquifers containing a seawater interface

    USGS Publications Warehouse

    Voss, C.I.

    1984-01-01

    Described are modifications to AQUIFEM, a finite element areal ground-water flow model for aquifer evaluation. The modified model, AQUIFEM-SALT, simulates an aquifer containing a freshwater body that freely floats on seawater. Parts of the freshwater lens may be confined above and below by less permeable units. Theory, code modifications, and model verification are discussed. A modified input data list is included. This report is intended as a companion to the original AQUIFEM documentation. (USGS)

  6. Involvement of a glucosinolate (sinigrin) in the regulation of water transport in Brassica oleracea grown under salt stress.

    PubMed

    Martínez-Ballesta, Maria del Carmen; Muries, Beatriz; Moreno, Diego Ángel; Dominguez-Perles, Raúl; García-Viguera, Cristina; Carvajal, Micaela

    2014-02-01

    Members of the Brassicaceae are known for their contents of nutrients and health-promoting phytochemicals, including glucosinolates. The concentrations of these chemopreventive compounds (glucosinolate-degradation products, the bioactive isothiocyanates) may be modified under salinity. In this work, the effect of the aliphatic glucosinolate sinigrin (2-propenyl-glucosinolate) on plant water balance, involving aquaporins, was explored under salt stress. For this purpose, water uptake and its transport through the plasma membrane were determined in plants after NaCl addition, when sinigrin was also supplied. We found higher hydraulic conductance (L0 ) and water permeability (Pf ) and increased abundance of PIP2 aquaporins after the direct administration of sinigrin, showing the ability of the roots to promote cellular water transport across the plasma membrane in spite of the stress conditions imposed. The higher content of the allyl-isothiocyanate and the absence of sinigrin in the plant tissues suggest that the isothiocyanate is related to water balance; in fact, a direct effect of this nitro-sulphate compound on water uptake is proposed. This work provides the first evidence that the addition of a glucosinolate can regulate aquaporins and water transport: this effect and the mechanism(s) involved merit further investigation. © 2013 Scandinavian Plant Physiology Society.

  7. Numerical modelling of the role of salt in continental collision: An application to the southeast Zagros fold-and-thrust belt

    NASA Astrophysics Data System (ADS)

    Ghazian, Reza Khabbaz; Buiter, Susanne J. H.

    2014-09-01

    The Zagros fold-and-thrust belt formed in the collision of Arabia with Central Iran. Its sedimentary sequence is characterised by the presence of several weak layers that may control the style of folding and thrusting. We use 2-D thermo-mechanical models to investigate the role of salt in the southeast Zagros fold-and-thrust belt. We constrain the crustal and lithospheric thickness, sedimentary stratification, convergence velocity, and thermal structure of the models from available geological and geophysical data. We find that the thick basal layer of Hormuz salt in models on the scale of the upper-mantle decouples the overlying sediments from the basement and localises deformation in the sediments by trench-verging shear bands. In the collision stage of the models, basement dips with + 1° towards the trench. Including the basal Hormuz salt improves the fit of predicted topography to observed topography. We use the kinematic results and thermal structure of this large-scale model as the initial conditions of a series of upper-crustal-scale models. These models aim to investigate the effects of basal and intervening weak layers, salt strength, basal dip, and lateral salt distribution on deformation style of the simply folded Zagros. Our results show that in addition to the Hormuz salt at the base of the sedimentary cover, at least one intervening weak layer is required to initiate fold-dominated deformation in the southeast Zagros. We find that an upper-crustal-scale model, with a basal and three internal weak layers with viscosities between 5 × 1018 and 1019 Pa s, and a basement that dips + 1° towards the trench, best reproduces present-day topography and the regular folding of the sedimentary layers of the simply folded Zagros.

  8. Lithium salt doped conjugated polymers as electron transporting materials for highly efficient blue polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Huang, Fei; Shih, Ping-I.; Liu, Michelle S.; Shu, Ching-Fong; Jen, Alex K.-Y.

    2008-12-01

    Highly efficient blue polymer light-emitting diodes (PLEDs) are fabricated using a conjugated polymer, poly[9,9-bis(2-(2-(2-diethanol-amino-ethoxy) ethoxy) ethyl) fluorene-alt-4, 4'-phenylether] as an electron transporting layer (ETL). It was found that the performance of these blue-emitting devices could be greatly improved if the ETL was doped with LiF or Li2CO3 salts. A bis[(4,6-di-fluorophenyl)-pyridinato-N, C2] (picolinate) Ir(III) (FIrpic) complex based blue phosphorescent PLED exhibited a maximum luminance efficiency of 20.3 cd/A with a luminance of 1600 cd/m2 at the current density of 7.9 mA/cm2 and drive voltage of 8.0 V.

  9. Salt stress reduces kernel number of corn by inhibiting plasma membrane H+-ATPase activity.

    PubMed

    Jung, Stephan; Hütsch, Birgit W; Schubert, Sven

    2017-04-01

    Salt stress affects yield formation of corn (Zea mays L.) at various physiological levels resulting in an overall grain yield decrease. In this study we investigated how salt stress affects kernel development of two corn cultivars (cvs. Pioneer 3906 and Fabregas) at and shortly after pollination. In an earlier study, we found an accumulation of hexoses in the kernel tissue. Therefore, it was hypothesized that hexose uptake into developing endosperm and embryo might be inhibited. Hexoses are transported into the developing endosperm by carriers localized in the plasma membrane (PM). The transport is driven by the pH gradient which is built up by the PM H + -ATPase. It was investigated whether the PM H + -ATPase activity in developing corn kernels was inhibited by salt stress, which would cause a lower pH gradient resulting in impaired hexose import and finally in kernel abortion. Corn grown under control and salt stress conditions was harvested 0 and 2 days after pollination (DAP). Under salt stress sucrose and hexose concentrations in kernel tissue were higher 0 and 2 DAP. Kernel PM H + -ATPase activity was not affected at 0 DAP, but it was reduced at 2 DAP. This is in agreement with the finding, that kernel growth and thus kernel setting was not affected in the salt stress treatment at pollination, but it was reduced 2 days later. It is concluded that inhibition of PM H + -ATPase under salt stress impaired the energization of hexose transporters into the cells, resulting in lower kernel growth and finally in kernel abortion. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. AP2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function.

    PubMed

    Hayashi, Hisamitsu; Inamura, Kaori; Aida, Kensuke; Naoi, Sotaro; Horikawa, Reiko; Nagasaka, Hironori; Takatani, Tomozumi; Fukushima, Tamio; Hattori, Asami; Yabuki, Takashi; Horii, Ikuo; Sugiyama, Yuichi

    2012-06-01

    The bile salt export pump (BSEP) mediates the biliary excretion of bile salts and its dysfunction induces intrahepatic cholestasis. Reduced canalicular expression of BSEP resulting from the promotion of its internalization is one of the causes of this disease state. However, the molecular mechanism underlying BSEP internalization from the canalicular membrane (CM) remains unknown. We have shown previously that 4-phenylbutyrate (4PBA), a drug used for ornithine transcarbamylase deficiency (OTCD), inhibited internalization and subsequent degradation of cell-surface-resident BSEP. The current study found that 4PBA treatment decreased significantly the expression of α- and μ2-adaptin, both of which are subunits of the AP2 adaptor complex (AP2) that mediates clathrin-dependent endocytosis, in liver specimens from rats and patients with OTCD, and that BSEP has potential AP2 recognition motifs in its cytosolic region. Based on this, the role of AP2 in BSEP internalization was explored further. In vitro analysis with 3×FLAG-human BSEP-expressing HeLa cells and human sandwich-culture hepatocytes indicates that the impairment of AP2 function by RNA interference targeting of α-adaptin inhibits BSEP internalization from the plasma membrane and increases its cell-surface expression and transport function. Studies using immunostaining, coimmunoprecipitation, glutathione S-transferase pulldown assay, and time-lapse imaging show that AP2 interacts with BSEP at the CM through a tyrosine motif at the carboxyl terminus of BSEP and mediates BSEP internalization from the CM of hepatocytes. AP2 mediates the internalization and subsequent degradation of CM-resident BSEP through direct interaction with BSEP and thereby modulates the canalicular expression and transport function of BSEP. This information should be useful for understanding the pathogenesis of severe liver diseases associated with intrahepatic cholestasis. Copyright © 2012 American Association for the Study of Liver

  11. Understanding Transportation Systems : An Integrated Approach to Modeling Complex Transportation Systems

    DOT National Transportation Integrated Search

    2013-01-01

    The ability to model and understand the complex dynamics of intelligent agents as they interact within a transportation system could lead to revolutionary advances in transportation engineering and intermodal surface transportation in the United Stat...

  12. Groundwater flow and its effect on salt dissolution in Gypsum Canyon watershed, Paradox Basin, southeast Utah, USA

    NASA Astrophysics Data System (ADS)

    Reitman, Nadine G.; Ge, Shemin; Mueller, Karl

    2014-09-01

    Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.

  13. Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions.

    PubMed

    Sutka, Moira; Li, Guowei; Boudet, Julie; Boursiac, Yann; Doumas, Patrick; Maurel, Christophe

    2011-03-01

    To gain insights into the natural variation of root hydraulics and its molecular components, genotypic differences related to root water transport and plasma membrane intrinsic protein (PIP) aquaporin expression were investigated in 13 natural accessions of Arabidopsis (Arabidopsis thaliana). The hydraulic conductivity of excised root systems (Lpr) showed a 2-fold variation among accessions. The contribution of aquaporins to water uptake was characterized using as inhibitors mercury, propionic acid, and azide. The aquaporin-dependent and -independent paths of water transport made variable contributions to the total hydraulic conductivity in the different accessions. The distinct suberization patterns observed among accessions were not correlated with their root hydraulic properties. Real-time reverse transcription-polymerase chain reaction revealed, by contrast, a positive overall correlation between Lpr and certain highly expressed PIP transcripts. Root hydraulic responses to salt stress were characterized in a subset of five accessions (Bulhary-1, Catania-1, Columbia-0, Dijon-M, and Monte-Tosso-0 [Mr-0]). Lpr was down-regulated in all accessions except Mr-0. In Mr-0 and Catania-1, cortical cell hydraulic conductivity was unresponsive to salt, whereas it was down-regulated in the three other accessions. By contrast, the five accessions showed qualitatively similar aquaporin transcriptional profiles in response to salt. The overall work provides clues on how hydraulic regulation allows plant adaptation to salt stress. It also shows that a wide range of root hydraulic profiles, as previously reported in various species, can be observed in a single model species. This work paves the way for a quantitative genetics analysis of root hydraulics.

  14. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    NASA Astrophysics Data System (ADS)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  15. How high do ion fluxes go? A re-evaluation of the two-mechanism model of K(+) transport in plant roots.

    PubMed

    Coskun, Devrim; Britto, Dev T; Kochian, Leon V; Kronzucker, Herbert J

    2016-02-01

    Potassium (K(+)) acquisition in roots is generally described by a two-mechanism model, consisting of a saturable, high-affinity transport system (HATS) operating via H(+)/K(+) symport at low (<1mM) external [K(+)] ([K(+)]ext), and a linear, low-affinity system (LATS) operating via ion channels at high (>1mM) [K(+)]ext. Radiotracer measurements in the LATS range indicate that the linear rise in influx continues well beyond nutritionally relevant concentrations (>10mM), suggesting K(+) transport may be pushed to extraordinary, and seemingly limitless, capacity. Here, we assess this rise, asking whether LATS measurements faithfully report transmembrane fluxes. Using (42)K(+)-isotope and electrophysiological methods in barley, we show that this flux is part of a K(+)-transport cycle through the apoplast, and masks a genuine plasma-membrane influx that displays Michaelis-Menten kinetics. Rapid apoplastic cycling of K(+) is corroborated by an absence of transmembrane (42)K(+) efflux above 1mM, and by the efflux kinetics of PTS, an apoplastic tracer. A linear apoplastic influx, masking a saturating transmembrane influx, was also found in Arabidopsis mutants lacking the K(+) transporters AtHAK5 and AtAKT1. Our work significantly revises the model of K(+) transport by demonstrating a surprisingly modest upper limit for plasma-membrane influx, and offers insight into sodium transport under salt stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Section 1. Simulation of surface-water integrated flow and transport in two-dimensions: SWIFT2D user's manual

    USGS Publications Warehouse

    Schaffranek, Raymond W.

    2004-01-01

    A numerical model for simulation of surface-water integrated flow and transport in two (horizontal-space) dimensions is documented. The model solves vertically integrated forms of the equations of mass and momentum conservation and solute transport equations for heat, salt, and constituent fluxes. An equation of state for salt balance directly couples solution of the hydrodynamic and transport equations to account for the horizontal density gradient effects of salt concentrations on flow. The model can be used to simulate the hydrodynamics, transport, and water quality of well-mixed bodies of water, such as estuaries, coastal seas, harbors, lakes, rivers, and inland waterways. The finite-difference model can be applied to geographical areas bounded by any combination of closed land or open water boundaries. The simulation program accounts for sources of internal discharges (such as tributary rivers or hydraulic outfalls), tidal flats, islands, dams, and movable flow barriers or sluices. Water-quality computations can treat reactive and (or) conservative constituents simultaneously. Input requirements include bathymetric and topographic data defining land-surface elevations, time-varying water level or flow conditions at open boundaries, and hydraulic coefficients. Optional input includes the geometry of hydraulic barriers and constituent concentrations at open boundaries. Time-dependent water level, flow, and constituent-concentration data are required for model calibration and verification. Model output consists of printed reports and digital files of numerical results in forms suitable for postprocessing by graphical software programs and (or) scientific visualization packages. The model is compatible with most mainframe, workstation, mini- and micro-computer operating systems and FORTRAN compilers. This report defines the mathematical formulation and computational features of the model, explains the solution technique and related model constraints, describes the

  17. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  18. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Chew, Boon Ning

    2010-04-01

    Biomass burning is one of many sources of particulate pollution in Southeast Asia, but its irregular spatial and temporal patterns mean that large episodes can cause acute air quality problems in urban areas. Fires in Sumatra and Borneo during September and October 2006 contributed to 24-h mean PM 10 concentrations above 150 μg m -3 at multiple locations in Singapore and Malaysia over several days. We use the FLAMBE model of biomass burning emissions and the NAAPS model of aerosol transport and evolution to simulate these events, and compare our simulation results to 24-h average PM 10 measurements from 54 stations in Singapore and Malaysia. The model simulation, including the FLAMBE smoke source as well as dust, sulfate, and sea salt aerosol species, was able to explain 50% or more of the variance in 24-h PM 10 observations at 29 of 54 sites. Simulation results indicated that biomass burning smoke contributed to nearly all of the extreme PM 10 observations during September-November 2006, but the exact contribution of smoke was unclear because the model severely underestimated total smoke emissions. Using regression analysis at each site, the bias in the smoke aerosol flux was determined to be a factor of between 2.5 and 10, and an overall factor of 3.5 was estimated. After application of this factor, the simulated smoke aerosol concentration averaged 20% of observed PM 10, and 40% of PM 10 for days with 24-h average concentrations above 150 μg m -3. These results suggest that aerosol transport models can aid analysis of severe pollution events in Southeast Asia, but that improvements are needed in models of biomass burning smoke emissions.

  19. [Modeling of experimental hypertension by chronic salt loading combined with a low-protein diet in Wistar rats].

    PubMed

    Strekalova, V V; Khachirov, D G; Dedenkov, A N; Suvorov, Iu I; Shvatsabaia, I K

    1989-01-01

    Combination of chronic salt loading with protein-poor diet produces experimental hypertension with natrium consumption near to physiological. The present model is characterized, compared to the existing one, by stage development, moderate arterial blood pressure elevation and absence of "salt toxicosis" and may be thus considered more adequate for experimental investigation of primary arterial hypertension pathophysiology.

  20. Pathophysiology of salt sensitivity hypertension.

    PubMed

    Ando, Katsuyuki; Fujita, Toshiro

    2012-06-01

    Dietary salt intake is the most important factor contributing to hypertension, but the salt susceptibility of blood pressure (BP) is different in individual subjects. Although the pathogenesis of salt-sensitive hypertension is heterogeneous, it is mainly attributable to an impaired renal capacity to excrete sodium (Na(+) ). We recently identified two novel mechanisms that impair renal Na(+) -excreting function and result in an increase in BP. First, mineralocorticoid receptor (MR) activation in the kidney, which facilitates distal Na(+) reabsorption through epithelial Na(+) channel activation, causes salt-sensitive hypertension. This mechanism exists not only in models of high-aldosterone hypertension as seen in conditions of obesity or metabolic syndrome, but also in normal- or low-aldosterone type of salt-sensitive hypertension. In the latter, Rac1 activation by salt excess causes MR stimulation. Second, renospecific sympathoactivation may cause an increase in BP under conditions of salt excess. Renal beta2 adrenoceptor stimulation in the kidney leads to decreased transcription of the gene encoding WNK4, a negative regulator of Na(+) reabsorption through Na(+) -Cl (-) cotransporter in the distal convoluted tubules, resulting in salt-dependent hypertension. Abnormalities identified in these two pathways of Na(+) reabsorption in the distal nephron may present therapeutic targets for the treatment of salt-sensitive hypertension.

  1. A bilayer model for bedload sediment transport as generalization of Exner models

    NASA Astrophysics Data System (ADS)

    Escalante, Cipriano; Fernandez-Nieto, Enrique; Morales de Luna, Tomas; Narbona Reina, Gladys

    2017-04-01

    Sediment can be transported in several ways by the action of a river. During low transport stages, particles move by sliding and rolling over the surface of the bed. This type of transport is usually called bedload transport. The usual approach to model these phenomena is to use the Saint-Venant-Exner model (SVE) which consists in a shallow water model coupled with a morphodynamical component for the bedload transport. The bedload transport depends on an empirical flux. Nevertheless, this approach presents some drawbacks, for instance, gravitational effects for bedload transport is neglected and the momentum equation for the sediment is missing. In this work we present a two-layer shallow water type model in order to better describe bedload transport. We consider an upper layer consisting in clear water and a lower layer which accounts for the sediment material. This allows to better describe the phenomena. The key point is the definition of the friction laws between the two layers. The model is a generalization of classic models as it allows to recover SVE system when the ratio between the hydrodynamic and morphodynamic time scales is small, as commonly done to derive SVE models.

  2. Capillary controls on brine percolation in rock salt

    NASA Astrophysics Data System (ADS)

    Hesse, M. A.; Prodanovic, M.; Ghanbarzadeh, S.

    2016-12-01

    The ability the microstructure in rock salt to evolve to minimize the surface energy of the pore-space exerts an important control on brine percolation. The behavior is especially interesting under conditions when brine is wetting the grain boundaries and the pore network percolates at very low porosities, below the transport threshold in typical porous media. We present pore-scale simulations of texturally equilibrated pore spaces in real polycrystalline materials. This allows us to probe the basic physical properties of these materials, such as percolation and trapping thresholds as well as permeability-porosity relationships. Laboratory experiments in NaCl-H2O system are consistent with the computed percolation thresholds. Field data from hydrocarbon exploration wells in rock salt show that fluid commonly invades the lower section of the salt domes. This is consistent with laboratory measurements that show that brine begins to wet the salt grain boundaries with increasing pressure and temperature and theoretical arguments suggesting this would lead to fluid invasion. In several salt domes, however, fluid have percolated to shallower depths, apparently overcoming a substantial percolation threshold. This is likely due to the shear deformation in salt domes, which is not accounted for in theory and experiments.

  3. Modeling an economic evaluation of a salt fluoridation program in Peru.

    PubMed

    Mariño, Rodrigo J; Fajardo, Jorge; Arana, Ana; Garcia, Carlos; Pachas, Flor

    2011-01-01

    This article models the cost-effectiveness, from a societal viewpoint, of a dental caries prevention program using salt fluoridation for children 12 years of age, compared with non-intervention (or status quo) in Arequipa, Peru. Standard cost-effectiveness analysis methods were used. The costs associated with implementing and operating the salt-fluoridation program were identified and measured using 2009 prices. Health outcomes were measured as dental caries averted over a 6-year period. Clinical effectiveness data was taken from published data. Costs were measured as direct treatment costs, programs costs and costs of productivity losses as a result of dental treatments. The incremental cost-effectiveness ratio was calculated. A hypothetical population of 25,000 12-year-olds living in Arequipa, Peru was used in this analysis. Two-way sensitivity analyses were conducted over a range of values for key parameters. Our primary analysis estimated that if a dental caries prevention program using salt-fluoridation was available for 25,000 6-year-old children for 6 years, the net saving from a societal perspective would total S/. 11.95 [1 US$ = S/. (2009) 3.01] per diseased tooth averted when compared with the status quo group. That is, after 6 years, an investment of S/.0.32 per annum per child would result in a net saving of S/.11.95 per decayed/missing/filled teeth prevented. While the analysis has inherent limitations as a result of its reliance on a range of assumptions, the findings indicate that for the situations prevailing in Peru, there are significant health and economic benefits to be gained from the use of salt fluoridation.

  4. Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Status, Challenges, and Path Forward

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less

  5. Tritium Control and Capture in Salt-Cooled Fission and Fusion Reactors: Status, Challenges, and Path Forward

    DOE PAGES

    Forsberg, Charles W.; Lam, Stephen; Carpenter, David M.; ...

    2017-02-26

    Three advanced nuclear power systems use liquid salt coolants that generate tritium and thus face the common challenges of containing and capturing tritium to prevent its release to the environment. The fluoride salt–cooled high-temperature reactor (FHR) uses clean fluoride salt coolants and the same graphite-matrix coated-particle fuel as high-temperature gas-cooled reactors. Molten salt reactors (MSRs) dissolve the fuel in a fluoride or chloride salt with release of fission product tritium into the salt. In most FHR and MSR systems, the baseline salts contain lithium where isotopically separated 7Li is proposed to minimize tritium production from neutron interactions with the salt.more » The Chinese Academy of Sciences plans to start operation of a 2-MW(thermal) molten salt test reactor by 2020. For high-magnetic-field fusion machines, the use of lithium enriched in 6Li is proposed to maximize tritium generation—the fuel for a fusion machine. Advances in superconductors that enable higher power densities may require the use of molten lithium salts for fusion blankets and as coolants. Recent technical advances in these three reactor classes have resulted in increased government and private interest and the beginning of a coordinated effort to address the tritium control challenges in 700°C liquid salt systems. In this paper, we describe characteristics of salt-cooled fission and fusion machines, the basis for growing interest in these technologies, tritium generation in molten salts, the environment for tritium capture, models for high-temperature tritium transport in salt systems, alternative strategies for tritium control, and ongoing experimental work. Several methods to control tritium appear viable. Finally, limited experimental data are the primary constraint for designing efficient cost-effective methods of tritium control.« less

  6. METEOROLOGICAL AND TRANSPORT MODELING

    EPA Science Inventory

    Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...

  7. Next Generation Transport Phenomenology Model

    NASA Technical Reports Server (NTRS)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  8. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly.

    PubMed

    Shalaeva, Daria N; Dibrova, Daria V; Galperin, Michael Y; Mulkidjanian, Armen Y

    2015-05-27

    Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of

  9. Making and Measuring a Model of a Salt Marsh

    ERIC Educational Resources Information Center

    Fogleman, Tara; Curran, Mary Carla

    2007-01-01

    Students are often confused by the difference between the terms "accuracy" and "precision." In the following activities, students explore the definitions of accuracy and precision while learning about salt march ecology and the methods used by scientists to assess salt marsh health. The activities also address the concept that the ocean supports a…

  10. Seasonal variation of fine- and coarse-mode nitrates and related aerosols over East Asia: synergetic observations and chemical transport model analysis

    NASA Astrophysics Data System (ADS)

    Uno, Itsushi; Osada, Kazuo; Yumimoto, Keiya; Wang, Zhe; Itahashi, Syuichi; Pan, Xiaole; Hara, Yukari; Kanaya, Yugo; Yamamoto, Shigekazu; Fairlie, Thomas Duncan

    2017-11-01

    We analyzed long-term fine- and coarse-mode synergetic observations of nitrate and related aerosols (SO42-, NO3-, NH4+, Na+, Ca2+) at Fukuoka (33.52° N, 130.47° E) from August 2014 to October 2015. A Goddard Earth Observing System chemical transport model (GEOS-Chem) including dust and sea salt acid uptake processes was used to assess the observed seasonal variation and the impact of long-range transport (LRT) from the Asian continent. For fine aerosols (fSO42-, fNO3-, and fNH4+), numerical results explained the seasonal changes, and a sensitivity analysis excluding Japanese domestic emissions clarified the LRT fraction at Fukuoka (85 % for fSO42-, 47 % for fNO3-, 73 % for fNH4+). Observational data confirmed that coarse NO3- (cNO3-) made up the largest proportion (i.e., 40-55 %) of the total nitrate (defined as the sum of fNO3-, cNO3-, and HNO3) during the winter, while HNO3 gas constituted approximately 40 % of the total nitrate in summer and fNO3- peaked during the winter. Large-scale dust-nitrate (mainly cNO3-) outflow from China to Fukuoka was confirmed during all dust events that occurred between January and June. The modeled cNO3- was in good agreement with observations between July and November (mainly coming from sea salt NO3-). During the winter, however, the model underestimated cNO3- levels compared to the observed levels. The reason for this underestimation was examined statistically using multiple regression analysis (MRA). We used cNa+, nss-cCa2+, and cNH4+ as independent variables to describe the observed cNO3- levels; these variables were considered representative of sea salt cNO3-, dust cNO3-, and cNO3- accompanied by cNH4+), respectively. The MRA results explained the observed seasonal changes in dust cNO3- and indicated that the dust-acid uptake scheme reproduced the observed dust-nitrate levels even in winter. The annual average contributions of each component were 43 % (sea salt cNO3-), 19 % (dust cNO3-), and 38 % (cNH4+ term). The MRA dust

  11. An economic evaluation of salt reduction policies to reduce coronary heart disease in England: a policy modeling study.

    PubMed

    Collins, Marissa; Mason, Helen; O'Flaherty, Martin; Guzman-Castillo, Maria; Critchley, Julia; Capewell, Simon

    2014-07-01

    Dietary salt intake has been causally linked to high blood pressure and increased risk of cardiovascular events. Cardiovascular disease causes approximately 35% of total UK deaths, at an estimated annual cost of £30 billion. The World Health Organization and the National Institute for Health and Care Excellence have recommended a reduction in the intake of salt in people's diets. This study evaluated the cost-effectiveness of four population health policies to reduce dietary salt intake on an English population to prevent coronary heart disease (CHD). The validated IMPACT CHD model was used to quantify and compare four policies: 1) Change4Life health promotion campaign, 2) front-of-pack traffic light labeling to display salt content, 3) Food Standards Agency working with the food industry to reduce salt (voluntary), and 4) mandatory reformulation to reduce salt in processed foods. The effectiveness of these policies in reducing salt intake, and hence blood pressure, was determined by systematic literature review. The model calculated the reduction in mortality associated with each policy, quantified as life-years gained over 10 years. Policy costs were calculated using evidence from published sources. Health care costs for specific CHD patient groups were estimated. Costs were compared against a "do nothing" baseline. All policies resulted in a life-year gain over the baseline. Change4life and labeling each gained approximately 1960 life-years, voluntary reformulation 14,560 life-years, and mandatory reformulation 19,320 life-years. Each policy appeared cost saving, with mandatory reformulation offering the largest cost saving, more than £660 million. All policies to reduce dietary salt intake could gain life-years and reduce health care expenditure on coronary heart disease. Copyright © 2014 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. Prolonged cholestasis triggered by hepatitis A virus infection and variants of the hepatocanalicular phospholipid and bile salt transporters.

    PubMed

    Krawczyk, Marcin; Grünhage, Frank; Langhirt, Miriam; Bohle, Raine M; Lammert, Frank

    2012-01-01

    Hepatitis A virus (HAV) infection resolves in most patients uneventfully within weeks from the onset of the disease. In rare cases, however, it may relapse or cause prolonged cholestasis. Here we present a case of a 36-year-old female patient who developed severe pruritus and jaundice three weeks after initially uncomplicated hepatitis A. A relapse of the infection was excluded. Since therapy with colestyramin, antihistaminics, naloxon and ursodeoxycholic acid (UDCA) did not improve symptoms, we decided to perform plasma absorption and to start rifampicin therapy. Under these measures, pruritus and jaundice, as well as serum bilirubin levels improved gradually and after four plasmapheresis sessions we were able to discharge the patient. Genetic testing showed the presence of two procholestatic polymorphisms, the c.3084 [GG] variant within the gene encoding the hepatocanalicular bile salt transporter ABCB11 and the c.711 [AT] variant of the phosphatidylcholine floppase ABCB4. We speculate that this compound ABCB4-ABCB11 genotype led to a severe intrahepatic cholestasis in the setting of HAV infection. In conclusion, our case suggests that polymorphisms within the hepatocanalicular transporters may contribute to a more pronounced course of HAV infection. Although dedicated studies in large cohorts of patients are needed to confirm this observation, we speculate that patients carrying procholestatic hepatobiliary transporter variants may benefit from vaccination against hepatitis A.

  13. A Mercury Model of Atmospheric Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Alex B.; Chodash, Perry A.; Procassini, R. J.

    Using the particle transport code Mercury, accurate models were built of the two sources used in Operation BREN, a series of radiation experiments performed by the United States during the 1960s. In the future, these models will be used to validate Mercury’s ability to simulate atmospheric transport.

  14. [How does salt intake influence blood pressure? Associated aetiopathogenic mechanisms].

    PubMed

    Fernández-Llama, P; Calero, F

    2017-12-15

    Abundant evidence from epidemiological and experimental studies has established a link between salt and blood pressure. However, there is heterogeneity in the blood pressure responses of humans to changes in sodium intake. Those individuals in whom a severe, abrupt change in salt intake causes the least change in arterial pressure and are termed salt-resistant, whereas in those in whom this leads to large changes in blood pressure, are called salt sensitive. Classically, Guyton's theory of the pressure-natriuresis phenomenon has been accepted to explain the pressor effect of salt, as well as the fundamental role played by the different protein sodium transporters of the renal tubules. In recent years, new theories have emerged pointing to the possible role of the immune system and the existence of a third sodium store in the body as aetiopathogenic factors. Copyright © 2017 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  16. Dynamic modelling and simulation of linear Fresnel solar field model based on molten salt heat transfer fluid

    NASA Astrophysics Data System (ADS)

    Hakkarainen, Elina; Tähtinen, Matti

    2016-05-01

    Demonstrations of direct steam generation (DSG) in linear Fresnel collectors (LFC) have given promising results related to higher steam parameters compared to the current state-of-the-art parabolic trough collector (PTC) technology using oil as heat transfer fluid (HTF). However, DSG technology lacks feasible solution for long-term thermal energy storage (TES) system. This option is important for CSP technology in order to offer dispatchable power. Recently, molten salts have been proposed to be used as HTF and directly as storage medium in both line-focusing solar fields, offering storage capacity of several hours. This direct molten salt (DMS) storage concept has already gained operational experience in solar tower power plant, and it is under demonstration phase both in the case of LFC and PTC systems. Dynamic simulation programs offer a valuable effort for design and optimization of solar power plants. In this work, APROS dynamic simulation program is used to model a DMS linear Fresnel solar field with two-tank TES system, and example simulation results are presented in order to verify the functionality of the model and capability of APROS for CSP modelling and simulation.

  17. Important observations and parameters for a salt water intrusion model

    USGS Publications Warehouse

    Shoemaker, W.B.

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  18. Important observations and parameters for a salt water intrusion model.

    PubMed

    Shoemaker, W Barclay

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  19. Imaging Shallow Salt With 3D Refraction Migration

    NASA Astrophysics Data System (ADS)

    Vanschuyver, C. J.; Hilterman, F. J.

    2005-05-01

    In offshore West Africa, numerous salt walls are within 200 m of sea level. Because of the shallowness of these salt walls, reflections from the salt top can be difficult to map, making it impossible to build an accurate velocity model for subsequent pre-stack depth migration. An accurate definition of salt boundaries is critical to any depth model where salt is present. Unfortunately, when a salt body is very shallow, the reflection from the upper interface can be obscured due to large offsets between the source and near receivers and also due to the interference from multiples and other near-surface noise events. A new method is described using 3D migration of the refraction waveforms which is simplified because of several constraints in the model definition. The azimuth and dip of the refractor is found by imaging with Kirchhoff theory. A Kirchhoff migration is performed where the traveltime values are adjusted to use the CMP refraction traveltime equation. I assume the sediment and salt velocities to be known such that once the image time is specified, then the dip and azimuth of the refraction path can be found. The resulting 3D refraction migrations are in excellent depth agreement with available well control. In addition, the refraction migration time picks of deeper salt events are in agreement with time picks of the same events on the reflection migration.

  20. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    USGS Publications Warehouse

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  1. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing

    PubMed Central

    Jin, Hangxia; Dong, Dekun; Yang, Qinghua; Zhu, Danhua

    2016-01-01

    Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted. PMID:26930632

  2. The effect of hydrocarbons on the microstructural evolution in rock salt: a case study on hydrocarbon bearing Ara salt from the South Oman Salt Basin

    NASA Astrophysics Data System (ADS)

    Schmatz, Joyce; Urai, Janos L.; Wübbeler, Franziska M. M.; Sadler, Marc

    2014-05-01

    , interpreted to be incorporated into the salt in a subsequent deformation phase. Type II inclusions usually form arrays of isolated inclusions (liquid hydrocarbons, vapor, and aqueous phases in minor proportions) along grain boundaries of the recrystallized grains, presumably formed in a surface-energy controlled shrinking process from thin fluid films. Here, the contact with mobile grain boundaries promoted necking down and decomposition of multiphase inclusions. We present a model, which describes the dynamic behavior of liquid hydrocarbons in mobile grain boundaries after their enclosure into the salt layers. The model is based on numerous microanalytical methods, such as optical microscopy, fluorescence microscopy, cryo-SEM, and EDX. Schoenherr, J., et al. (2007), Limits to the sealing capacity of rock salt: A case study of the infra-Cambrian Ara Salt from the South Oman salt basin, AAPG Bulletin, 91(11), 1541-1557

  3. Atmospheric salt deposition in a tropical mountain rainforest at the eastern Andean slopes of south Ecuador - Pacific or Atlantic origin?

    NASA Astrophysics Data System (ADS)

    Makowski Giannoni, Sandro; Trachte, Katja; Rollenbeck, Ruetger; Lehnert, Lukas; Fuchs, Julia; Bendix, Joerg

    2016-08-01

    Sea salt (NaCl) has recently been proven to be of the utmost importance for ecosystem functioning in Amazon lowland forests because of its impact on herbivory, litter decomposition and, thus, carbon cycling. Sea salt deposition should generally decline as distance from its marine source increases. For the Amazon, a negative east-west gradient of sea salt availability is assumed as a consequence of the barrier effect of the Andes Mountains for Pacific air masses. However, this generalized pattern may not hold for the tropical mountain rainforest in the Andes of southern Ecuador. To analyse sea salt availability, we investigated the deposition of sodium (Na+) and chloride (Cl-), which are good proxies of sea spray aerosol. Because of the complexity of the terrain and related cloud and rain formation processes, sea salt deposition was analysed from both, rain and occult precipitation (OP) along an altitudinal gradient over a period between 2004 and 2009. To assess the influence of easterly and westerly air masses on the deposition of sodium and chloride over southern Ecuador, sea salt aerosol concentration data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis data set and back-trajectory statistical methods were combined. Our results, based on deposition time series, show a clear difference in the temporal variation of sodium and chloride concentration and Na+ / Cl- ratio in relation to height and exposure to winds. At higher elevations, sodium and chloride present a higher seasonality and the Na+ / Cl- ratio is closer to that of sea salt. Medium- to long-range sea salt transport exhibited a similar seasonality, which shows the link between our measurements at high elevations and the sea salt synoptic transport. Although the influence of the easterlies was predominant regarding the atmospheric circulation, the statistical analysis of trajectories and hybrid receptor models revealed a stronger impact of the north equatorial Atlantic, Caribbean

  4. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  5. Permanent Disposal of Nuclear Waste in Salt

    NASA Astrophysics Data System (ADS)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  6. Community Sediment Transport Model

    DTIC Science & Technology

    2007-01-01

    Woods Hole, MA 02543-1598 Phone: (508) 457-2269 Fax: (508) 457-2310 email: csherwood@usgs.gov Timothy Keen Naval Research Laboratory, Code...intended to be used as both a research tool and for practical applications. An accurate and useful model will require coupling sediment-transport with...and time steps range from seconds to minutes. We include higher-resolution sediment- transport calculation modules for research problems but, for

  7. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  8. Freight Transportation Energy Use : Appendix. Transportation Network Model Output.

    DOT National Transportation Integrated Search

    1978-07-01

    The overall design of the TSC Freight Energy Model is presented. A hierarchical modeling strategy is used, in which detailed modal simulators estimate the performance characteristics of transportation network elements, and the estimates are input to ...

  9. Applying Simulation and Logistics Modeling to Transportation Issues

    DOT National Transportation Integrated Search

    1995-08-15

    This paper describes an application where transportation logistics and simulation tools are integrated to create a modeling environment for transportation planning. The Transportation Planning Model (TPM) is a tool developed for the Department of Ene...

  10. Prenatal programming of renal salt wasting resets postnatal salt appetite, which drives food intake in the rat.

    PubMed

    Alwasel, Saleh H; Barker, David J P; Ashton, Nick

    2012-03-01

    Sodium retention has been proposed as the cause of hypertension in the LP rat (offspring exposed to a maternal low-protein diet in utero) model of developmental programming because of increased renal NKCC2 (Na+/K+/2Cl- co-transporter 2) expression. However, we have shown that LP rats excrete more rather than less sodium than controls, leading us to hypothesize that LP rats ingest more salt in order to maintain sodium balance. Rats were fed on either a 9% (low) or 18% (control) protein diet during pregnancy; male and female offspring were studied at 4 weeks of age. LP rats of both sexes held in metabolism cages excreted more sodium and urine than controls. When given water to drink, LP rats drank more and ate more food than controls, hence sodium intake matched excretion. However, when given a choice between saline and water to drink, the total volume of fluid ingested by LP rats fell to control levels, but the volume of saline taken was significantly larger [3.8±0.1 compared with 8.8±1.3 ml/24 h per 100 g of body weight in control and LP rats respectively; P<0.001]. Interestingly food intake also fell to control levels. Total body sodium content and ECF (extracellular fluid) volumes were greater in LP rats. These results show that prenatal programming of renal sodium wasting leads to a compensatory increase in salt appetite in LP rats. We speculate that the need to maintain salt homoeostasis following malnutrition in utero stimulates greater food intake, leading to accelerated growth and raised BP (blood pressure).

  11. Liking, salt taste perception and use of table salt when consuming reduced-salt chicken stews in light of South Africa's new salt regulations.

    PubMed

    De Kock, H L; Zandstra, E H; Sayed, N; Wentzel-Viljoen, E

    2016-01-01

    This study investigated the impact of salt reduction on liking, salt taste perception, and use of table salt when consuming chicken stew in light of South Africa's new salt recommendations. In total, 432 South-African consumers (aged 35.2 ± 12.3 years) consumed a full portion of a chicken stew meal once at a central location. Four stock cube powders varying in salt content were used to prepare chicken stews: 1) no reduction - 2013 Na level; regular salt level as currently available on the South African market (24473 mg Na/100 g), 2) salt reduction smaller than 2016 level, i.e. 10%-reduced (22025 mg Na/100 g), 3) 2016 salt level, as per regulatory prescriptions (18000 mg Na/100 g), 4) 2019 salt level, as per regulatory prescriptions (13000 mg Na/100 g). Consumers were randomly allocated to consume one of the four meals. Liking, salt taste perception, and use of table salt and pepper were measured. Chicken stews prepared with reduced-salt stock powders were equally well-liked as chicken stews with the current salt level. Moreover, a gradual reduction of the salt in the chicken stews resulted in a reduced salt intake, up to an average of 19% for the total group compared to the benchmark 2013 Na level stew. However, 19% of consumers compensated by adding salt back to full compensation in some cases. More salt was added with increased reductions of salt in the meals, even to the point of full compensation. Further investigation into the impacts of nutrition communication and education about salt reduction on salt taste perception and use is needed. This research provides new consumer insights on salt use and emphasises the need for consumer-focused behaviour change approaches, in addition to reformulation of products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Sea Salt vs. Table Salt: What's the Difference?

    MedlinePlus

    ... Nutrition and healthy eating What's the difference between sea salt and table salt? Answers from Katherine Zeratsky, R.D., L.D. The main differences between sea salt and table salt are in their taste, ...

  13. WASP TRANSPORT MODELING AND WASP ECOLOGICAL MODELING

    EPA Science Inventory

    A combination of lectures, demonstrations, and hands-on excercises will be used to introduce pollutant transport modeling with the U.S. EPA's general water quality model, WASP (Water Quality Analysis Simulation Program). WASP features include a user-friendly Windows-based interfa...

  14. Uncertain Representations of Sub-Grid Pollutant Transport in Chemistry-Transport Models and Impacts on Long-Range Transport and Global Composition

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Zhu, Z.; Ott, L. E.; Molod, A.; Duncan, B. N.; Nielsen, J. E.

    2009-01-01

    Sub-grid transport, by convection and turbulence, is known to play an important role in lofting pollutants from their source regions. Consequently, the long-range transport and climatology of simulated atmospheric composition are impacted. This study uses the Goddard Earth Observing System, Version 5 (GEOS-5) atmospheric model to study pollutant transport. The baseline model uses a Relaxed Arakawa-Schubert (RAS) scheme that represents convection through a sequence of linearly entraining cloud plumes characterized by unique detrainment levels. Thermodynamics, moisture and trace gases are transported in the same manner. Various approximate forms of trace-gas transport are implemented, in which the box-averaged cloud mass fluxes from RAS are used with different numerical approaches. Substantial impacts on forward-model simulations of CO (using a linearized chemistry) are evident. In particular, some aspects of simulations using a diffusive form of sub-grid transport bear more resemblance to space-biased CO observations than do the baseline simulations with RAS transport. Implications for transport in the real atmosphere will be discussed. Another issue of importance is that many adjoint/inversion computations use simplified representations of sub-grid transport that may be inconsistent with the forward models: implications will be discussed. Finally, simulations using a complex chemistry model in GEOS-5 (in place of the linearized CO model) are underway: noteworthy results from this simulation will be mentioned.

  15. Where in the Marsh is the Water (and When)?: Measuring and modeling salt marsh hydrology for ecological and biogeochemical applications

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...

  16. Tightness of Salt Rocks and Fluid Percolation

    NASA Astrophysics Data System (ADS)

    Lüdeling, C.; Minkley, W.; Brückner, D.

    2016-12-01

    Salt formations are used for storage of oil and gas and as waste repositiories because of their excellent barrier properties. We summarise the current knowledge regarding fluid tightness of saliferous rocks, in particular rock salt. Laboratory results, in-situ observations and natural analogues, as well as theoretical and numerical investigations, indicate that pressure-driven percolation is the most important mechanism for fluid transport: If the fluid pressure exceeds the percolation threshold, i.e. the minor principal stress, the fluid can open up grain boundaries, create connected flow paths and initiate directed migration in the direction of major principal stress. Hence, this mechanism provides the main failure mode for rock salt barriers, where integrity can be lost if the minor principal stress is lowered, e.g. due to excavations or thermomechanical uplift. We present new laboratory experiments showing that there is no fluid permeation below the percolation threshold also at high temperatures and pressures, contrary to recent claims in the literature.

  17. Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas.

    PubMed

    Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G

    2014-01-01

    The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Conductivity and transport studies of plasticized chitosan-based proton conducting biopolymer electrolytes

    NASA Astrophysics Data System (ADS)

    Shukur, M. F.; Yusof, Y. M.; Zawawi, S. M. M.; Illias, H. A.; Kadir, M. F. Z.

    2013-11-01

    This paper focuses on the conductivity and transport properties of chitosan-based solid biopolymer electrolytes containing ammonium thiocyanate (NH4SCN). The sample containing 40 wt% NH4SCN exhibited the highest conductivity value of (1.81 ± 0.50) × 10-4 S cm-1 at room temperature. Conductivity has increased to (1.51 ± 0.12) × 10-3 S cm-1 with the addition of 25 wt% glycerol. The temperature dependence of conductivity for both salted and plasticized systems obeyed the Arrhenius rule. The activation energy (Ea) was calculated for both systems and it is found that the sample with 40 wt% NH4SCN in the salted system obtained an Ea value of 0.148 eV and that for the sample containing 25 wt% glycerol in the plasticized system is 0.139 eV. From the Fourier transform infrared studies, carboxamide and amine bands shifted to lower wavenumbers, indicating that chitosan has interacted with NH4SCN salt. Changes in the C-O stretching vibration band intensity are observed at 1067 cm-1 with the addition of glycerol. The Rice and Roth model was used to explain the transport properties of the salted and plasticized systems.

  19. Transportation Sector Model of the National Energy Modeling System. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. Themore » current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic

  20. Nutritional modelling: distributions of salt intake from processed foods in New Zealand.

    PubMed

    Thomson, Barbara M

    2009-09-01

    The salt content of processed foods is important because of the high intake of Na by most New Zealanders. A database of Na concentrations in fifty-eight processed foods was compiled from existing and new data and combined with 24 h diet recall data from two national nutrition surveys (5771 respondents) to derive salt intakes for seven population groups. Mean salt intakes from processed foods ranged from 6.9 g/d for young males aged 19-24 years to 3.5 g/d for children aged 5-6 years. A total of > or = 50 % of children aged 5-6 years, boys aged 11-14 years and young males aged 19-24 years had salt intakes that exceeded the upper limit for Na, calculated as salt (3.2-5.3 g/d), from processed foods only. Bread accounted for the greatest contribution to salt intake for each population group (35-43 % of total salt intake). Other foods that contributed 2 % or more and common across most age groups were sausage, meat pies, pizza, instant noodles and cheese. The Na concentrations of key foods have changed little over the 16-year period from 1987 to 2003 except for corned beef and whole milk that have decreased by 34 and 50 % respectively. Bread is an obvious target for salt reduction but the implication on iodine intake needs consideration as salt is used as a vehicle for iodine fortification of bread.

  1. Salt, hypertension and renal disease: comparative medicine, models and real diseases.

    PubMed Central

    Michell, A. R.

    1994-01-01

    Dogs are well established as experimental animals for the study of both renal disease and hypertension, but most work is based on surgical or pharmacological models and relatively little on spontaneous diseases. This review argues for the latter as an underexploited aspect of comparative medicine. The most important feature of canine hypertension may not be the ease with which models can be produced but the fact that dogs are actually rather resistant to hypertension, and perhaps to its effects, even when they have chronic renal failure. The importance of natural models of chronic renal failure is strengthened by the evidence that self-sustaining progression is a consequence of extreme nephron loss, that is, a late event, rather than the dominant feature of the course of the disease. The role of salt in hypertension is discussed and emphasis given to the importance of understanding the physiological basis of nutritional requirement and recognizing that it is unlikely to exceed 0.6 mmol/kg/day for most healthy adult mammals except during pregnancy or lactation. Such a perspective is essential to the evaluation of experiments, whether in animals or humans, in order to avoid arbitrary definitions of 'high' or 'low' sodium intake, and the serious misinterpretations of data which result. An age-related rise in arterial pressure may well be a warning of excess salt intake, rather than a normal occurrence. Problems of defining hypertension in the face of variability of arterial pressure are also discussed. PMID:7831161

  2. Thermal conductivity of molten salt mixtures: Theoretical model supported by equilibrium molecular dynamics simulations.

    PubMed

    Gheribi, Aïmen E; Chartrand, Patrice

    2016-02-28

    A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.

  3. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    PubMed

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  4. Modeling deformation processes of salt caverns for gas storage due to fluctuating operation pressures

    NASA Astrophysics Data System (ADS)

    Böttcher, N.; Nagel, T.; Goerke, U.; Khaledi, K.; Lins, Y.; König, D.; Schanz, T.; Köhn, D.; Attia, S.; Rabbel, W.; Bauer, S.; Kolditz, O.

    2013-12-01

    In the course of the Energy Transition in Germany, the focus of the country's energy sources is shifting from fossil to renewable and sustainable energy carriers. Since renewable energy sources, such as wind and solar power, are subjected to annual, seasonal, and diurnal fluctuations, the development and extension of energy storage capacities is a priority in German R&D programs. Common methods of energy storage are the utilization of subsurface caverns as a reservoir for natural or artificial fuel gases, such as hydrogen, methane, or the storage of compressed air. The construction of caverns in salt rock is inexpensive in comparison to solid rock formations due to the possibility of solution mining. Another advantage of evaporite as a host material is the self-healing capacity of salt rock. Gas caverns are capable of short-term energy storage (hours to days), so the operating pressures inside the caverns are fluctuating periodically with a high number of cycles. This work investigates the influence of fluctuating operation pressures on the stability of the host rock of gas storage caverns utilizing numerical models. Therefore, we developed a coupled Thermo-Hydro-Mechanical (THM) model based on the finite element method utilizing the open-source software platform OpenGeoSys. Our simulations include the thermodynamic behaviour of the gas during the loading/ unloading of the cavern. This provides information on the transient pressure and temperature distribution on the cavern boundary to calculate the deformation of its geometry. Non-linear material models are used for the mechanical analysis, which describe the creep and self-healing behavior of the salt rock under fluctuating loading pressures. In order to identify the necessary material parameters, we perform experimental studies on the mechanical behaviour of salt rock under varying pressure and temperature conditions. Based on the numerical results, we further derive concepts for monitoring THM quantities in the

  5. Improving crop salt tolerance.

    PubMed

    Flowers, T J

    2004-02-01

    Salinity is an ever-present threat to crop yields, especially in countries where irrigation is an essential aid to agriculture. Although the tolerance of saline conditions by plants is variable, crop species are generally intolerant of one-third of the concentration of salts found in seawater. Attempts to improve the salt tolerance of crops through conventional breeding programmes have met with very limited success, due to the complexity of the trait: salt tolerance is complex genetically and physiologically. Tolerance often shows the characteristics of a multigenic trait, with quantitative trait loci (QTLs) associated with tolerance identified in barley, citrus, rice, and tomato and with ion transport under saline conditions in barley, citrus and rice. Physiologically salt tolerance is also complex, with halophytes and less tolerant plants showing a wide range of adaptations. Attempts to enhance tolerance have involved conventional breeding programmes, the use of in vitro selection, pooling physiological traits, interspecific hybridization, using halophytes as alternative crops, the use of marker-aided selection, and the use of transgenic plants. It is surprising that, in spite of the complexity of salt tolerance, there are commonly claims in the literature that the transfer of a single or a few genes can increase the tolerance of plants to saline conditions. Evaluation of such claims reveals that, of the 68 papers produced between 1993 and early 2003, only 19 report quantitative estimates of plant growth. Of these, four papers contain quantitative data on the response of transformants and wild-type of six species without and with salinity applied in an appropriate manner. About half of all the papers report data on experiments conducted under conditions where there is little or no transpiration: such experiments may provide insights into components of tolerance, but are not grounds for claims of enhanced tolerance at the whole plant level. Whether enhanced

  6. Long Term Analysis of Deformations in Salt Mines: Kłodawa Salt Mine Case Study, Central Poland

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Tajduś, Antoni; Andrusikiewicz, Wacław; Kowalski, Michał; Kolano, Malwina; Stopkowicz, Agnieszka; Cyran, Katarzyna; Jakóbczyk, Joanna

    2017-09-01

    Located in central Poland, the Kłodawa salt dome is 26 km long and about 2 km wide. Exploitation of the dome started in 1956, currently rock salt extraction is carried out in 7 mining fields and the 12 mining levels at the depth from 322 to 625 meters below sea level (m.b.s.l.). It is planned to maintain the mining activity till 2052 and extend rock salt extraction to deeper levels. The dome is characterised by complex geological structure resulted from halokinetic and tectonic processes. Projection of the 3D numerical analysis took into account the following factors: mine working distribution within the Kłodawa mine (about 1000 rooms, 350 km of galleries), complex geological structure of the salt dome, complicated structure and geometry of mine workings and distinction in rocks mechanical properties e.g. rock salt and anhydrite. Analysis of past mine workings deformation and prediction of future rock mass behaviour was divided into four stages: building of the 3D model (state of mine workings in year 2014), model extension of the future mine workings planned for extraction in years 2015-2052, the 3D model calibration and stability analysis of all mine workings. The 3D numerical model of Kłodawa salt mine included extracted and planned mine workings in 7 mining fields and 14 mining levels (about 2000 mine workings). The dimensions of the model were 4200 m × 4700 m × 1200 m what was simulated by 33 million elements. The 3D model was calibrated on the grounds of convergence measurements and laboratory tests. Stability assessment of mine workings was based on analysis of the strength/stress ratio and vertical stress. The strength/stress ratio analysis enabled to indicate endangered area in mine workings and can be defined as the factor of safety. Mine workings in state close to collapse are indicated by the strength/stress ratio equals 1. Analysis of the vertical stress in mine workings produced the estimation of current state of stress in comparison to initial

  7. Reactive transport modeling

    USDA-ARS?s Scientific Manuscript database

    This special section in the Vadose Zone Journal focusing on reactive transport modeling was developed from a special symposium jointly sponsored by the Soil Physics and Soil Chemistry Divisions of the Soil Science Society of America at the 2010 annual meetings held in Long Beach, CA. It contains eig...

  8. Meteorological Modeling of Wintertime Cold Air Pool Stagnation Episodes in the Uintah and Salt Lake Basins

    NASA Astrophysics Data System (ADS)

    Crosman, E.; Horel, J.; Blaylock, B. K.; Foster, C.

    2014-12-01

    High wintertime ozone concentrations in rural areas associated with oil and gas development and high particulate concentrations in urban areas have become topics of increasing concern in the Western United States, as both primary and secondary pollutants become trapped within stable wintertime boundary layers. While persistent cold air pools that enable such poor wintertime air quality are typically associated with high pressure aloft and light winds, the complex physical processes that contribute to the formation, maintenance, and decay of persistent wintertime temperature inversions are only partially understood. In addition, obtaining sufficiently accurate numerical weather forecasts and meteorological simulations of cold air pools for input into chemical models remains a challenge. This study examines the meteorological processes associated with several wintertime pollution episodes in Utah's Uintah and Salt Lake Basins using numerical Weather Research and Forecasting model simulations and observations collected from the Persistent Cold Air Pool and Uintah Basin Ozone Studies. The temperature, vertical structure, and winds within these cold air pools was found to vary as a function of snow cover, snow albedo, land use, cloud cover, large-scale synoptic flow, and episode duration. We evaluate the sensitivity of key atmospheric features such as stability, planetary boundary layer depth, local wind flow patterns and transport mechanisms to variations in surface forcing, clouds, and synoptic flow. Finally, noted deficiencies in the meteorological models of cold air pools and modifications to the model snow and microphysics treatment that have resulted in improved cold pool simulations will be presented.

  9. Object-oriented data model of the municipal transportation

    NASA Astrophysics Data System (ADS)

    Pan, Yuqing; Sheng, Yehua; Zhang, Guiying

    2008-10-01

    The transportation problem is always one of main questions each big city all over the world faces. Managing the municipal transportation using GIS is becoming the important trend. And the data model is the transportation information system foundation. The organization and storage of the data must consider well in the system design. The data model not only needs to meet the demand that the transportation navigates, but also needs to achieve the good visual effects, also can carry on the management and the maintenance to the traffic information. According to the object-oriented theory and the method, the road is divided into segment, intersection. This paper analyzed the driveway, marking, sign and other transportation facilities and the relationship with the segment, intersection and constructed the municipal transportation data model which is adequate to the demand of vehicles navigation, visual and management. The paper also schemes the the all kinds of transportation data. The practice proves that this data model can satisfy the application demands of traffic management system.

  10. Simulation of salt production process

    NASA Astrophysics Data System (ADS)

    Muraveva, E. A.

    2017-10-01

    In this paper an approach to the use of simulation software iThink to simulate the salt production system has been proposed. The dynamic processes of the original system are substituted by processes simulated in the abstract model, but in compliance with the basic rules of the original system, which allows one to accelerate and reduce the cost of the research. As a result, a stable workable simulation model was obtained that can display the rate of the salt exhaustion and many other parameters which are important for business planning.

  11. Na/Cl molar ratio changes during a salting cycle and its application to the estimation of sodium retention in salted watersheds.

    PubMed

    Sun, Hongbing; Huffine, Maria; Husch, Jonathan; Sinpatanasakul, Leeann

    2012-08-01

    Using soil column experiments and data from natural watersheds, this paper analyzes the changes in Na/Cl molar ratios during a salting cycle of aqueous-soil systems. The soil column experiments involved introducing NaCl salt at various initial concentrations into multiple soil columns. At the start of a salting cycle in the column experiments, sodium was adsorbed more than chloride due to cation exchange processes. As a result, the initial Na/Cl molar ratio in column effluent was lower than 1, but increased thereafter. One-dimensional PHREEQC geochemical transport simulations also were conducted to further quantify these trends under more diverse scenarios. The experimentally determined Na/Cl molar ratio pattern was compared to observations in the annual salting cycle of four natural watersheds where NaCl is the dominant applied road deicing salt. Typically, Na/Cl molar ratios were low from mid-winter to early spring and increased after the bulk of the salt was flushed out of the watersheds during the summer, fall and early winter. The established relationship between the Na/Cl molar ratios and the amount of sodium retention derived from the column experiments and computer simulations present an alternative approach to the traditional budget analysis method for estimating sodium retention when the experimental and natural watershed patterns of Na/Cl molar ratio change are similar. Findings from this study enhance the understanding of sodium retention and help improve the scientific basis for future environmental policies intended to suppress the increase of sodium concentrations in salted watersheds. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures.

    PubMed

    Thakkar, Sachin G; Ruwona, Tinashe B; Williams, Robert O; Cui, Zhengrong

    2017-04-03

    Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2-8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations.

  13. The immunogenicity of thin-film freeze-dried, aluminum salt-adjuvanted vaccine when exposed to different temperatures

    PubMed Central

    Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2017-01-01

    ABSTRACT Insoluble aluminum salts such as aluminum oxyhydroxide have been used for decades as adjuvants in human vaccines, and many vaccines contain aluminum salts as adjuvants. Aluminum salt-adjuvanted vaccines must be managed in cold-chain (2–8° C) during transport and storage, as vaccine antigens in general are too fragile to be stable in ambient temperatures, and unintentional slowing freezing causes irreversible aggregation and permanent damage to the vaccines. Previously, we reported that thin-film freeze-drying can be used to convert vaccines adjuvanted with an aluminum salt from liquid suspension into dry powder without causing particle aggregation or decreasing in immunogenicity following reconstitution. In the present study, using ovalbumin (OVA)-adsorbed Alhydrogel® (i.e. aluminum oxyhydroxide, 2% w/v) as a model vaccine, we showed that the immunogenicity of thin-film freeze-dried OVA-adsorbed Alhydrogel® vaccine powder was not significantly changed after it was exposed for an extended period of time in temperatures as high as 40° C or subjected to repeated slow freezing-and-thawing. It is expected that immunization programs can potentially benefit by integrating thin-film freeze-drying into vaccine preparations. PMID:28051903

  14. Modeling wave attenuation by salt marshes in Jamaica Bay, New York, using a new rapid wave model

    NASA Astrophysics Data System (ADS)

    Marsooli, Reza; Orton, Philip M.; Mellor, George

    2017-07-01

    Using a new rapid-computation wave model, improved and validated in the present study, we quantify the value of salt marshes in Jamaica Bay—a highly urbanized estuary located in New York City—as natural buffers against storm waves. We augment the MDO phase-averaged wave model by incorporating a vegetation-drag-induced energy dissipation term into its wave energy balance equation. We adopt an empirical formula from literature to determine the vegetation drag coefficient as a function of environmental conditions. Model evaluation using data from laboratory-scale experiments show that the improved MDO model accurately captures wave height attenuation due to submerged and emergent vegetation. We apply the validated model to Jamaica Bay to quantify the influence of coastal-scale salt marshes on storm waves. It is found that the impact of marsh islands is largest for storms with lower flood levels, due to wave breaking on the marsh island substrate. However, the role of the actual marsh plants, Spartina alterniflora, grows larger for storms with higher flood levels, when wave breaking does not occur and the vegetative drag becomes the main source of energy dissipation. For the latter case, seasonality of marsh height is important; at its maximum height in early fall, S. alterniflora causes twice the reduction as when it is at a shorter height in early summer. The model results also indicate that the vegetation drag coefficient varies 1 order of magnitude in the study area, and suggest exercising extra caution in using a constant drag coefficient in coastal wetlands.

  15. Uncertainty in the Modeling of Tsunami Sediment Transport

    NASA Astrophysics Data System (ADS)

    Jaffe, B. E.; Sugawara, D.; Goto, K.; Gelfenbaum, G. R.; La Selle, S.

    2016-12-01

    Erosion and deposition from tsunamis record information about tsunami hydrodynamics and size that can be interpreted to improve tsunami hazard assessment. A recent study (Jaffe et al., 2016) explores sources and methods for quantifying uncertainty in tsunami sediment transport modeling. Uncertainty varies with tsunami properties, study site characteristics, available input data, sediment grain size, and the model used. Although uncertainty has the potential to be large, case studies for both forward and inverse models have shown that sediment transport modeling provides useful information on tsunami inundation and hydrodynamics that can be used to improve tsunami hazard assessment. New techniques for quantifying uncertainty, such as Ensemble Kalman Filtering inversion, and more rigorous reporting of uncertainties will advance the science of tsunami sediment transport modeling. Uncertainty may be decreased with additional laboratory studies that increase our understanding of the semi-empirical parameters and physics of tsunami sediment transport, standardized benchmark tests to assess model performance, and the development of hybrid modeling approaches to exploit the strengths of forward and inverse models. As uncertainty in tsunami sediment transport modeling is reduced, and with increased ability to quantify uncertainty, the geologic record of tsunamis will become more valuable in the assessment of tsunami hazard. Jaffe, B., Goto, K., Sugawara, D., Gelfenbaum, G., and La Selle, S., "Uncertainty in Tsunami Sediment Transport Modeling", Journal of Disaster Research Vol. 11 No. 4, pp. 647-661, 2016, doi: 10.20965/jdr.2016.p0647 https://www.fujipress.jp/jdr/dr/dsstr001100040647/

  16. Estimating rangeland runoff, soil erosion, and salt mobility and transport processes

    USDA-ARS?s Scientific Manuscript database

    Over 55% of sediment and salts entering the Colorado River are derived from accelerated soil erosion from federal rangelands with damages estimated to be $385 million per year. About 55% of the loading is derived from rangelands. This suggests a significant potential to reduce dissolved-solids loa...

  17. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    PubMed

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  18. Highly-resolved Modeling of Emissions and Concentrations of Carbon Monoxide, Carbon Dioxide, Nitrogen Oxides, and Fine Particulate Matter in Salt Lake City, Utah

    NASA Astrophysics Data System (ADS)

    Mendoza, D. L.; Lin, J. C.; Mitchell, L.; Ehleringer, J. R.

    2014-12-01

    Accurate, high-resolution data on air pollutant emissions and concentrations are needed to understand human exposures and for both policy and pollutant management purposes. An important step in this process is also quantification of uncertainties. We present a spatially explicit and highly resolved emissions inventory for Salt Lake County, Utah, and trace gas concentration estimates for carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and fine particles (PM2.5) within Salt Lake City. We assess the validity of this approach by comparing measured concentrations against simulated values derived from combining the emissions inventory with an atmospheric model. The emissions inventory for the criteria pollutants was constructed using the 2011 National Emissions Inventory (NEI). The spatial and temporal allocation methods from the Emission Modeling Clearinghouse data set are used to downscale the NEI data from annual to hourly scales and from county-level to 500 m x 500 m resolution. Onroad mobile source emissions were estimated by combining a bottom-up emissions calculation approach for large roadway links with a top-down spatial allocation approach for other roadways. Vehicle activity data for road links were derived from automatic traffic responder data. The emissions inventory for CO2 was obtained from the Hestia emissions data product at an hourly, building, facility, and road link resolution. The AERMOD and CALPUFF dispersion models were used to transport emissions and estimate air pollutant concentrations at an hourly temporal and 500 m x 500 m spatial resolution. Modeled results were compared against measurements from a mobile lab equipped with trace gas measurement equipment traveling on pre-determined routes in the Salt Lake City area. The comparison between both approaches to concentration estimation highlights spatial locations and hours of high variability/uncertainty. Results presented here will inform understanding of variability and

  19. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake

    PubMed Central

    Temme, Elisabeth H. M.; Hendriksen, Marieke A. H.; Milder, Ivon E. J.; Toxopeus, Ido B.; Westenbrink, Susanne; Brants, Henny A. M.; van der A, Daphne L.

    2017-01-01

    Background and objectives. High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011–2016) and differences in estimated salt intake over a 10-year period (2006–2015). Methods. To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011), and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. Results. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council. Conclusion. In the

  20. Salt Reductions in Some Foods in The Netherlands: Monitoring of Food Composition and Salt Intake.

    PubMed

    Temme, Elisabeth H M; Hendriksen, Marieke A H; Milder, Ivon E J; Toxopeus, Ido B; Westenbrink, Susanne; Brants, Henny A M; van der A, Daphne L

    2017-07-22

    High salt intake increases blood pressure and thereby the risk of chronic diseases. Food reformulation (or food product improvement) may lower the dietary intake of salt. This study describes the changes in salt contents of foods in the Dutch market over a five-year period (2011-2016) and differences in estimated salt intake over a 10-year period (2006-2015). To assess the salt contents of foods; we obtained recent data from chemical analyses and from food labels. Salt content of these foods in 2016 was compared to salt contents in the 2011 version Dutch Food Composition Database (NEVO, version 2011), and statistically tested with General Linear Models. To estimate the daily dietary salt intake in 2006, 2010, and 2015, men and women aged 19 to 70 years were recruited through random population sampling in Doetinchem, a small town located in a rural area in the eastern part of the Netherlands. The characteristics of the study population were in 2006: n = 317, mean age 49 years, 43% men, in 2010: n = 342, mean age 46 years, 45% men, and in 2015: n = 289, mean age 46 years, 47% men. Sodium and potassium excretion was measured in a single 24-h urine sample. All estimates were converted to a common metric: salt intake in grams per day by multiplication of sodium with a factor of 2.54. In 2016 compared to 2011, the salt content in certain types of bread was on average 19 percent lower and certain types of sauce, soup, canned vegetables and legumes, and crisps had a 12 to 26 percent lower salt content. Salt content in other types of foods had not changed significantly. Between 2006, 2010 and 2015 the estimated salt intake among adults in Doetinchem remained unchanged. In 2015, the median estimated salt intake was 9.7 g per day for men and 7.4 g per day for women. As in 2006 and 2010, the estimated salt intake in 2015 exceeded the recommended maximum intake of 6 g per day set by the Dutch Health Council. In the Netherlands, the salt content of bread, certain sauces, soups

  1. Separation of Cs and Sr from LiCl-KCl eutectic salt via a zone-refining process for pyroprocessing waste salt minimization

    NASA Astrophysics Data System (ADS)

    Shim, Moonsoo; Choi, Ho-Gil; Choi, Jeong-Hun; Yi, Kyung-Woo; Lee, Jong-Hyeon

    2017-08-01

    The purification of a LiCl-KCl salt mixture was carried out by a zone-refining process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone-refining method was used to grow pure LiCl-KCl salt ingots from a LiCl-KCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. From each zone-refined salt ingot, samples were collected axially along the salt ingot and the concentrations of Sr and Cs were determined. Experimental results show that the Sr and Cs concentrations at the initial region of the ingot were low and increased to a maximum at the final freezing region of the salt ingot. Concentration results of the zone-refined salt were compared with theoretical results furnished by the proposed model to validate its predictions. The keff values for Sr and Cs were 0.55 and 0.47, respectively. The correlation between the salt composition and separation behavior was also investigated. The keff values of the Sr in LiCl-KCl-SrCl2 and the Cs in LiCl-KCl-CsCl were found to be 0.53 and 0.44, respectively, by fitting the experimental data into the proposed model.

  2. Natural Variation of Root Hydraulics in Arabidopsis Grown in Normal and Salt-Stressed Conditions1[C][W

    PubMed Central

    Sutka, Moira; Li, Guowei; Boudet, Julie; Boursiac, Yann; Doumas, Patrick; Maurel, Christophe

    2011-01-01

    To gain insights into the natural variation of root hydraulics and its molecular components, genotypic differences related to root water transport and plasma membrane intrinsic protein (PIP) aquaporin expression were investigated in 13 natural accessions of Arabidopsis (Arabidopsis thaliana). The hydraulic conductivity of excised root systems (Lpr) showed a 2-fold variation among accessions. The contribution of aquaporins to water uptake was characterized using as inhibitors mercury, propionic acid, and azide. The aquaporin-dependent and -independent paths of water transport made variable contributions to the total hydraulic conductivity in the different accessions. The distinct suberization patterns observed among accessions were not correlated with their root hydraulic properties. Real-time reverse transcription-polymerase chain reaction revealed, by contrast, a positive overall correlation between Lpr and certain highly expressed PIP transcripts. Root hydraulic responses to salt stress were characterized in a subset of five accessions (Bulhary-1, Catania-1, Columbia-0, Dijon-M, and Monte-Tosso-0 [Mr-0]). Lpr was down-regulated in all accessions except Mr-0. In Mr-0 and Catania-1, cortical cell hydraulic conductivity was unresponsive to salt, whereas it was down-regulated in the three other accessions. By contrast, the five accessions showed qualitatively similar aquaporin transcriptional profiles in response to salt. The overall work provides clues on how hydraulic regulation allows plant adaptation to salt stress. It also shows that a wide range of root hydraulic profiles, as previously reported in various species, can be observed in a single model species. This work paves the way for a quantitative genetics analysis of root hydraulics. PMID:21212301

  3. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    PubMed Central

    Gowrishankar, TR; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-01-01

    Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the skin was solved by

  4. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion.

    PubMed

    Gowrishankar, T R; Stewart, Donald A; Martin, Gregory T; Weaver, James C

    2004-11-17

    Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1) surface contact heating and (2) spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42 degrees C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45 degrees C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. The heat transport system model of the skin was solved by exploiting the mathematical

  5. Salt-Sensitive Hypertension: Perspectives on Intrarenal Mechanisms

    PubMed Central

    Majid, Dewan S.A.; Prieto, Minolfa C.; Navar, L Gabriel

    2015-01-01

    Salt sensitive hypertension is characterized by increases in blood pressure in response to increases in dietary salt intake and is associated with an enhanced risk of cardiovascular and renal morbidity. Although researchers have sought for decades to understand how salt sensitivity develops in humans, the mechanisms responsible for the increases in blood pressure in response to high salt intake are complex and only partially understood. Until now, scientists have been unable to explain why some individuals are salt sensitive and others are salt resistant. Although a central role for the kidneys in the development of salt sensitivity and hypertension has been generally accepted, it is also recognized that hypertension is of multifactorial origin and a variety of factors can induce, or prevent, blood pressure responsiveness to the manipulation of salt intake. Excess salt intake in susceptible persons may also induce inappropriate central and sympathetic nervous system responses and increase the production of intrarenal angiotensin II, catecholamines and other factors such as oxidative stress and inflammatory cytokines. One key factor is the concomitant inappropriate or paradoxical activation of the intrarenal renin-angiotensin system, by high salt intake. This is reflected by the increases in urinary angiotensinogen during high salt intake in salt sensitive models. A complex interaction between neuroendocrine factors and the kidney may underlie the propensity for some individuals to retain salt and develop salt-dependent hypertension. In this review, we focus mainly on the renal contributions that provide the mechanistic link between chronic salt intake and the development of hypertension. PMID:26028244

  6. Sensitization of salt appetite is associated with increased "wanting" but not "liking" of a salt reward in the sodium-deplete rat.

    PubMed

    Clark, Jeremy J; Bernstein, Ilene L

    2006-02-01

    To examine the role of incentive sensitization in the potentiation of salt appetite by prior depletions, the authors assessed the motivation to obtain salt ("wanting") and the palatability of salt ("liking") independently in salt-sensitized rats. Breakpoint on a progressive ratio reinforcement schedule was used to measure salt wanting and taste reactivity was used to measure salt liking in rats with and without a history of Na+ depletion. Salt-sensitized rats displayed higher breakpoints relative to controls. However, a history of Na+ depletion was not associated with a greater positive shift in taste reactivity measures. The data suggest that these components of reward are separable in this model and support the general proposition that sensitization may alter wanting but not liking.

  7. Biased thermohaline exchanges with the Arctic across the Iceland-Faroe Ridge in ocean climate models

    NASA Astrophysics Data System (ADS)

    Olsen, S. M.; Hansen, B.; Østerhus, S.; Quadfasel, D.; Valdimarsson, H.

    2016-04-01

    The northern limb of the Atlantic thermohaline circulation and its transport of heat and salt towards the Arctic strongly modulate the climate of the Northern Hemisphere. The presence of warm surface waters prevents ice formation in parts of the Arctic Mediterranean, and ocean heat is directly available for sea-ice melt, while salt transport may be critical for the stability of the exchanges. Through these mechanisms, ocean heat and salt transports play a disproportionally strong role in the climate system, and realistic simulation is a requisite for reliable climate projections. Across the Greenland-Scotland Ridge (GSR) this occurs in three well-defined branches where anomalies in the warm and saline Atlantic inflow across the shallow Iceland-Faroe Ridge (IFR) have been shown to be particularly difficult to simulate in global ocean models. This branch (IF-inflow) carries about 40 % of the total ocean heat transport into the Arctic Mediterranean and is well constrained by observation during the last 2 decades but associated with significant inter-annual fluctuations. The inconsistency between model results and observational data is here explained by the inability of coarse-resolution models to simulate the overflow across the IFR (IF-overflow), which feeds back onto the simulated IF-inflow. In effect, this is reduced in the model to reflect only the net exchange across the IFR. Observational evidence is presented for a substantial and persistent IF-overflow and mechanisms that qualitatively control its intensity. Through this, we explain the main discrepancies between observed and simulated exchange. Our findings rebuild confidence in modelled net exchange across the IFR, but reveal that compensation of model deficiencies here through other exchange branches is not effective. This implies that simulated ocean heat transport to the Arctic is biased low by more than 10 % and associated with a reduced level of variability, while the quality of the simulated salt

  8. Workshop discusses community models for coastal sediment transport

    NASA Astrophysics Data System (ADS)

    Sherwood, Christopher R.; Signell, Richard P.; Harris, Courtney K.; Butman, Bradford

    Numerical models of coastal sediment transport are increasingly used to address problems ranging from remediation of contaminated sediments, to siting of sewage outfalls and disposal sites, to evaluating impacts of coastal development. They are also used as a test bed for sediment-transport algorithms, to provide realistic settings for biological and geochemical models, and for a variety of other research, both fundamental and applied. However, there are few full-featured, publicly available coastal sediment-transport models, and fewer still that are well tested and have been widely applied.This was the motivation for a workshop in Woods Hole, Massachusetts, on June 22-23, 2000, that explored the establishment of community models for coastal sediment-transport processes.

  9. Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada

    NASA Astrophysics Data System (ADS)

    Howard, Ken W. F.; Maier, Herb

    2007-04-01

    North America's fifth most populated municipality — the Greater Toronto Area (GTA) — is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-icing salt is the primary concern since there are no cost effective alternatives to NaCl de-icing salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-icing chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in areas where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.

  10. Road de-icing salt as a potential constraint on urban growth in the Greater Toronto Area, Canada.

    PubMed

    Howard, Ken W F; Maier, Herb

    2007-04-01

    North America's fifth most populated municipality--the Greater Toronto Area (GTA)--is undergoing rapid urban development with serious questions being raised regarding the long-term impacts of urban growth on the quality and quantity of ground and surface water. Degradation of groundwater quality by NaCl de-icing salt is the primary concern since there are no cost effective alternatives to NaCl de-icing salt and there is little evidence that salt loadings to the subsurface can be significantly reduced. In 2001, the issue acquired a new sense of urgency when de-icing chemicals containing inorganic chloride salts (with or without ferrocyanide de-caking agents) were designated as toxic under the Canadian Environmental Protection Act. To heighten concerns, future growth in the GTA will inevitably take place in areas where groundwater is regularly used for potable supply. Studies using groundwater flow and transport models show that significant deterioration of groundwater quality can be expected in shallow aquifers as a result of urban development with chloride concentrations approaching the drinking water quality standard of 250 mg/l. Results demonstrate that urban planning needs a fresh approach that explicitly includes groundwater protection and aquifer management in the decision-making process, clearly defines acceptable environmental performance standards and makes greater use of groundwater models to evaluate alternative urban designs.

  11. Marangoni convection in molten salts

    NASA Astrophysics Data System (ADS)

    Cramer, A.; Landgraf, S.; Beyer, E.; Gerbeth, G.

    2011-02-01

    Marangoni convection is involved in many technological processes. The substances of industrial interest are often governed by diffusive heat transport and their physical modelling is limited with respect to the Prandtl number Pr. The present paper addresses this deficiency. Studies were made on molten salts having Pr values in an intermediate range well below that of the typically employed organics. Since some of the selected species have a relatively high melting point, a high-temperature facility which allows studying thermocapillary convection at temperatures in excess of 1,000°C was built. The results presented here were obtained in a cylindrical geometry, although the equipment that was built is not restricted to this configuration because of its modular construction. Modelled after some applications, the fluid was heated centrically on top. The bulk was embedded in a large thermostatically controlled reservoir so as to establish the lower ambient reference temperature. A characteristic size of the experimental cell was chosen such that, on the one hand, the dynamic Bond number Bo did not become too high; on the other hand, the liquid had to have a certain depth to allow particle image velocimetry. The complicated balance between body forces and thermocapillary forces in the case of intermediate Bo was found to result in a distinct local separation into a bulk motion governed by natural convection with a recirculating Marangoni flow on top. In contrast to low viscosity organics, the vapour pressure of which increases considerably with decreasing Pr, high values of the Marangoni number can be reached. Comparisons of the topology of Marangoni vortices between molten salts with 2.3 ⩽ Pr ⩽ 6.4 and a silicone oil with Pr typically one order of magnitude higher suggest that the regime of non-negligible heat diffusion is entered.

  12. Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety.

    PubMed

    Soukup, Ondrej; Dolezal, Rafael; Malinak, David; Marek, Jan; Salajkova, Sarka; Pasdiorova, Marketa; Honegr, Jan; Korabecny, Jan; Nachtigal, Petr; Nachon, Florian; Jun, Daniel; Kuca, Kamil

    2016-02-15

    In the present paper, we describe the synthesis of a new group of 5-hydroxyisoquinolinium salts with different lengths of alkyl side-chain (C10-C18), and their chromatographic analysis and biological assay for in vitro activity against bacterial and fungal strains. We compare the lipophilicity and efficacy of hydroxylated isoquinolinium salts with the previously published (non-hydroxylated) isoquinolinium salts from the point of view of antibacterial and antifungal versatility and cytotoxic safety. Compound 11 (C18) had to be excluded from the testing due to its low solubility. Compounds 9 and 10 (C14, C16) showed only moderate efficacy against G+ bacteria, notably with excellent potency against Staphyloccocus aureus, but no effect against G- bacteria. In contrast, non-hydroxylated isoquinolinium salts showed excellent antimicrobial efficacy within the whole series, particularly 14 (C14) against G+ strains and 15 (C16) against fungi. The electronic properties and desolvation energies of 5-hydroxyisoquinolinium and isoquinolinium salts were studied by quantum-chemistry calculations employing B3LYP/6-311++G(d,p) method and an implicit water-solvent simulation model (SCRF). Despite the positive mesomeric effect of the hydroxyl moiety reducing the electron density of the quaternary nitrogen, it is probably the higher lipophilicity and lower desolvation energy of isoquinolinium salts, which is responsible for enhanced antimicrobial versatility and efficacy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. How Sensitive Are Transdermal Transport Predictions by Microscopic Stratum Corneum Models to Geometric and Transport Parameter Input?

    PubMed

    Wen, Jessica; Koo, Soh Myoung; Lape, Nancy

    2018-02-01

    While predictive models of transdermal transport have the potential to reduce human and animal testing, microscopic stratum corneum (SC) model output is highly dependent on idealized SC geometry, transport pathway (transcellular vs. intercellular), and penetrant transport parameters (e.g., compound diffusivity in lipids). Most microscopic models are limited to a simple rectangular brick-and-mortar SC geometry and do not account for variability across delivery sites, hydration levels, and populations. In addition, these models rely on transport parameters obtained from pure theory, parameter fitting to match in vivo experiments, and time-intensive diffusion experiments for each compound. In this work, we develop a microscopic finite element model that allows us to probe model sensitivity to variations in geometry, transport pathway, and hydration level. Given the dearth of experimentally-validated transport data and the wide range in theoretically-predicted transport parameters, we examine the model's response to a variety of transport parameters reported in the literature. Results show that model predictions are strongly dependent on all aforementioned variations, resulting in order-of-magnitude differences in lag times and permeabilities for distinct structure, hydration, and parameter combinations. This work demonstrates that universally predictive models cannot fully succeed without employing experimentally verified transport parameters and individualized SC structures. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Climatology of salt transitions and implications for stone weathering.

    PubMed

    Grossi, C M; Brimblecombe, P; Menéndez, B; Benavente, D; Harris, I; Déqué, M

    2011-06-01

    This work introduces the notion of salt climatology. It shows how climate affects salt thermodynamic and the potential to relate long-term salt damage to climate types. It mainly focuses on specific sites in Western Europe, which include some cities in France and Peninsular Spain. Salt damage was parameterised using the number of dissolution-crystallisation events for unhydrated (sodium chloride) and hydrated (sodium sulphate) systems. These phase transitions have been calculated using daily temperature and relative humidity from observation meteorological data and Climate Change models' output (HadCM3 and ARPEGE). Comparing the number of transitions with meteorological seasonal data allowed us to develop techniques to estimate the frequency of salt transitions based on the local climatology. Results show that it is possible to associate the Köppen-Geiger climate types with potential salt weathering. Temperate fully humid climates seem to offer the highest potential for salt damage and possible higher number of transitions in summer. Climates with dry summers tend to show a lesser frequency of transitions in summer. The analysis of temperature, precipitation and relative output from Climate Change models suggests changes in the Köppen-Geiger climate types and changes in the patterns of salt damage. For instance, West Europe areas with a fully humid climate may change to a more Mediterranean like or dry climates, and consequently the seasonality of different salt transitions. The accuracy and reliability of the projections might be improved by simultaneously running multiple climate models (ensembles). Copyright © 2011 Elsevier B.V. All rights reserved.

  15. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the...

  16. A mobile-mobile transport model for simulating reactive transport in connected heterogeneous fields

    NASA Astrophysics Data System (ADS)

    Lu, Chunhui; Wang, Zhiyuan; Zhao, Yue; Rathore, Saubhagya Singh; Huo, Jinge; Tang, Yuening; Liu, Ming; Gong, Rulan; Cirpka, Olaf A.; Luo, Jian

    2018-05-01

    Mobile-immobile transport models can be effective in reproducing heavily tailed breakthrough curves of concentration. However, such models may not adequately describe transport along multiple flow paths with intermediate velocity contrasts in connected fields. We propose using the mobile-mobile model for simulating subsurface flow and associated mixing-controlled reactive transport in connected fields. This model includes two local concentrations, one in the fast- and the other in the slow-flow domain, which predict both the concentration mean and variance. The normalized total concentration variance within the flux is found to be a non-monotonic function of the discharge ratio with a maximum concentration variance at intermediate values of the discharge ratio. We test the mobile-mobile model for mixing-controlled reactive transport with an instantaneous, irreversible bimolecular reaction in structured and connected random heterogeneous domains, and compare the performance of the mobile-mobile to the mobile-immobile model. The results indicate that the mobile-mobile model generally predicts the concentration breakthrough curves (BTCs) of the reactive compound better. Particularly, for cases of an elliptical inclusion with intermediate hydraulic-conductivity contrasts, where the travel-time distribution shows bimodal behavior, the prediction of both the BTCs and maximum product concentration is significantly improved. Our results exemplify that the conceptual model of two mobile domains with diffusive mass transfer in between is in general good for predicting mixing-controlled reactive transport, and particularly so in cases where the transfer in the low-conductivity zones is by slow advection rather than diffusion.

  17. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    NASA Astrophysics Data System (ADS)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  18. Nitric oxide contributes to high-salt perception in a blood-sucking insect model.

    PubMed

    Cano, Agustina; Pontes, Gina; Sfara, Valeria; Anfossi, Diego; Barrozo, Romina B

    2017-11-14

    In all organisms, salts produce either appetitive or aversive responses depending on the concentration. While low-salt concentration in food elicits positive responses to ingest, high-salt triggers aversion. Still the mechanisms involved in this dual behavior have just started to be uncovered in some organisms. In Rhodnius prolixus, using pharmacological and behavioral assays, we demonstrated that upon high-salt detection in food a nitric oxide (NO) dependent cascade is activated. This activation involves a soluble guanylate cyclase (sGC) and the production of cyclic guanosine monophosphate (cGMP). Thus, appetitive responses to low-salt diets turn to aversion whenever this cascade is activated. Conversely, insects feed over aversive high-salt solutions when it is blocked by reducing NO levels or by affecting the sGC activity. The activation of NO/sGC/cGMP cascade commands the avoidance feeding behavior in R. prolixus. Investigations in other insect species should examine the possibility that high-salt aversion is mediated by NO/sSG/cGMP signaling.

  19. Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na(+) root-to-shoot distribution.

    PubMed

    Porcel, Rosa; Aroca, Ricardo; Azcon, Rosario; Ruiz-Lozano, Juan Manuel

    2016-10-01

    Rice is a salt-sensitive crop whose productivity is strongly reduced by salinity around the world. Plants growing in saline soils are subjected to the toxicity of specific ions such as sodium, which damage cell organelles and disrupt metabolism. Plants have evolved biochemical and molecular mechanisms to cope with the negative effects of salinity. These include the regulation of genes with a role in the uptake, transport or compartmentation of Na(+) and/or K(+). Studies have shown that the arbuscular mycorrhizal (AM) symbiosis alleviates salt stress in several host plant species. However, despite the abundant literature showing mitigation of ionic imbalance by the AM symbiosis, the molecular mechanisms involved are barely explored. The objective of this study was to elucidate the effects of the AM symbiosis on the expression of several well-known rice transporters involved in Na(+)/K(+) homeostasis and measure Na(+) and K(+) contents and their ratios in different plant tissues. Results showed that OsNHX3, OsSOS1, OsHKT2;1 and OsHKT1;5 genes were considerably upregulated in AM plants under saline conditions as compared to non-AM plants. Results suggest that the AM symbiosis favours Na(+) extrusion from the cytoplasm, its sequestration into the vacuole, the unloading of Na(+) from the xylem and its recirculation from photosynthetic organs to roots. As a result, there is a decrease of Na(+) root-to-shoot distribution and an increase of Na(+) accumulation in rice roots which seems to enhance the plant tolerance to salinity and allows AM rice plants to maintain their growing processes under salt conditions.

  20. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  1. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  2. Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models.

    PubMed

    Agha, Nezha Ahmad; Feyerabend, Frank; Mihailova, Boriana; Heidrich, Stefanie; Bismayer, Ulrich; Willumeit-Römer, Regine

    2016-01-01

    Magnesium and its alloys have considerable potential for orthopedic applications. During the degradation process the interface between material and tissue is continuously changing. Moreover, too fast or uncontrolled degradation is detrimental for the outcome in vivo. Therefore in vitro setups utilizing physiological conditions are promising for the material/degradation analysis prior to animal experiments. The aim of this study is to elucidate the influence of inorganic salts contributing to the blood buffering capacity on degradation. Extruded pure magnesium samples were immersed under cell culture conditions for 3 and 10 days. Hank's balanced salt solution without calcium and magnesium (HBSS) plus 10% of fetal bovine serum (FBS) was used as the basic immersion medium. Additionally, different inorganic salts were added with respect to concentration in Dulbecco's modified Eagle's medium (DMEM, in vitro model) and human plasma (in vivo model) to form 12 different immersion media. Influences on the surrounding environment were observed by measuring pH and osmolality. The degradation interface was analyzed by electron-induced X-ray emission (EIXE) spectroscopy, including chemical-element mappings and electron microprobe analysis, as well as Fourier transform infrared reflection micro-spectroscopy (FTIR). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Quantifying errors in trace species transport modeling.

    PubMed

    Prather, Michael J; Zhu, Xin; Strahan, Susan E; Steenrod, Stephen D; Rodriguez, Jose M

    2008-12-16

    One expectation when computationally solving an Earth system model is that a correct answer exists, that with adequate physical approximations and numerical methods our solutions will converge to that single answer. With such hubris, we performed a controlled numerical test of the atmospheric transport of CO(2) using 2 models known for accurate transport of trace species. Resulting differences were unexpectedly large, indicating that in some cases, scientific conclusions may err because of lack of knowledge of the numerical errors in tracer transport models. By doubling the resolution, thereby reducing numerical error, both models show some convergence to the same answer. Now, under realistic conditions, we identify a practical approach for finding the correct answer and thus quantifying the advection error.

  4. Modeling and analysis of transport in the mammary glands

    NASA Astrophysics Data System (ADS)

    Quezada, Ana; Vafai, Kambiz

    2014-08-01

    The transport of three toxins moving from the blood stream into the ducts of the mammary glands is analyzed in this work. The model predictions are compared with experimental data from the literature. The utility of the model lies in its potential to improve our understanding of toxin transport as a pre-disposing factor to breast cancer. This work is based on a multi-layer transport model to analyze the toxins present in the breast milk. The breast milk in comparison with other sampling strategies allows us to understand the mass transport of toxins once inside the bloodstream of breastfeeding women. The multi-layer model presented describes the transport of caffeine, DDT and cimetidine. The analysis performed takes into account the unique transport mechanisms for each of the toxins. Our model predicts the movement of toxins and/or drugs within the mammary glands as well as their bioaccumulation in the tissues.

  5. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  6. Computational models for predicting interactions with membrane transporters.

    PubMed

    Xu, Y; Shen, Q; Liu, X; Lu, J; Li, S; Luo, C; Gong, L; Luo, X; Zheng, M; Jiang, H

    2013-01-01

    Membrane transporters, including two members: ATP-binding cassette (ABC) transporters and solute carrier (SLC) transporters are proteins that play important roles to facilitate molecules into and out of cells. Consequently, these transporters can be major determinants of the therapeutic efficacy, toxicity and pharmacokinetics of a variety of drugs. Considering the time and expense of bio-experiments taking, research should be driven by evaluation of efficacy and safety. Computational methods arise to be a complementary choice. In this article, we provide an overview of the contribution that computational methods made in transporters field in the past decades. At the beginning, we present a brief introduction about the structure and function of major members of two families in transporters. In the second part, we focus on widely used computational methods in different aspects of transporters research. In the absence of a high-resolution structure of most of transporters, homology modeling is a useful tool to interpret experimental data and potentially guide experimental studies. We summarize reported homology modeling in this review. Researches in computational methods cover major members of transporters and a variety of topics including the classification of substrates and/or inhibitors, prediction of protein-ligand interactions, constitution of binding pocket, phenotype of non-synonymous single-nucleotide polymorphisms, and the conformation analysis that try to explain the mechanism of action. As an example, one of the most important transporters P-gp is elaborated to explain the differences and advantages of various computational models. In the third part, the challenges of developing computational methods to get reliable prediction, as well as the potential future directions in transporter related modeling are discussed.

  7. Assessment of the Neutronic and Fuel Cycle Performance of the Transatomic Power Molten Salt Reactor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, Sean; Dewan, Leslie; Massie, Mark

    This report presents results from a collaboration between Transatomic Power Corporation (TAP) and Oak Ridge National Laboratory (ORNL) to provide neutronic and fuel cycle analysis of the TAP core design through the Department of Energy Gateway for Accelerated Innovation in Nuclear (GAIN) Nuclear Energy Voucher program. The TAP concept is a molten salt reactor using configurable zirconium hydride moderator rod assemblies to shift the neutron spectrum in the core from mostly epithermal at beginning of life to thermal at end of life. Additional developments in the ChemTriton modeling and simulation tool provide the critical moderator-to-fuel ratio searches and time-dependent parametersmore » necessary to simulate the continuously changing physics in this complex system. The implementation of continuous-energy Monte Carlo transport and depletion tools in ChemTriton provide for full-core three-dimensional modeling and simulation. Results from simulations with these tools show agreement with TAP-calculated performance metrics for core lifetime, discharge burnup, and salt volume fraction, verifying the viability of reducing actinide waste production with this concept. Additional analyses of mass feed rates and enrichments, isotopic removals, tritium generation, core power distribution, core vessel helium generation, moderator rod heat deposition, and reactivity coeffcients provide additional information to make informed design decisions. This work demonstrates capabilities of ORNL modeling and simulation tools for neutronic and fuel cycle analysis of molten salt reactor concepts.« less

  8. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    PubMed

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  9. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    USGS Publications Warehouse

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  10. Structural Insights into the Transport Mechanism of the Human Sodium-dependent Lysophosphatidylcholine Transporter MFSD2A*♦

    PubMed Central

    Quek, Debra Q. Y.; Nguyen, Long N.; Fan, Hao; Silver, David L.

    2016-01-01

    Major facilitator superfamily domain containing 2A (MFSD2A) was recently characterized as a sodium-dependent lysophosphatidylcholine transporter expressed at the blood-brain barrier endothelium. It is the primary route for importation of docosohexaenoic acid and other long-chain fatty acids into fetal and adult brain and is essential for mouse and human brain growth and function. Remarkably, MFSD2A is the first identified major facilitator superfamily member that uniquely transports lipids, implying that MFSD2A harbors unique structural features and transport mechanism. Here, we present three three-dimensional structural models of human MFSD2A derived by homology modeling using MelB- and LacY-based crystal structures and refined by biochemical analysis. All models revealed 12 transmembrane helices and connecting loops and represented the partially outward-open, outward-partially occluded, and inward-open states of the transport cycle. In addition to a conserved sodium-binding site, three unique structural features were identified as follows: a phosphate headgroup binding site, a hydrophobic cleft to accommodate a hydrophobic hydrocarbon tail, and three sets of ionic locks that stabilize the outward-open conformation. Ligand docking studies and biochemical assays identified Lys-436 as a key residue for transport. It is seen forming a salt bridge with the negative charge on the phosphate headgroup. Importantly, MFSD2A transported structurally related acylcarnitines but not a lysolipid without a negative charge, demonstrating the necessity of a negatively charged headgroup interaction with Lys-436 for transport. These findings support a novel transport mechanism by which lysophosphatidylcholines are “flipped” within the transporter cavity by pivoting about Lys-436 leading to net transport from the outer to the inner leaflet of the plasma membrane. PMID:26945070

  11. Modeling flow and solute transport in irrigation furrows

    USDA-ARS?s Scientific Manuscript database

    This paper presents an internally coupled flow and solute transport model for free-draining irrigation furrows. Furrow hydraulics is simulated with a numerical zero-inertia model and solute transport is computed with a model based on a numerical solution of the cross-section averaged advection-dispe...

  12. NMR studies on Na+ transport in Synechococcus PCC 6311

    NASA Technical Reports Server (NTRS)

    Nitschmann, W. H.; Packer, L.

    1992-01-01

    The freshwater cyanobacterium Synechococcus PCC 6311 is able to adapt to grow after sudden exposure to salt (NaCl) stress. We have investigated the mechanism of Na+ transport in these cells during adaptation to high salinity. Na+ influx under dark aerobic conditions occurred independently of delta pH or delta psi across the cytoplasmic membrane, ATPase activity, and respiratory electron transport. These findings are consistent with the existence of Na+/monovalent anion cotransport or simultaneous Na+/H+ +anion/OH- exchange. Na+ influx was dependent on Cl-, Br-, NO3-, or NO2-. No Na+ uptake occurred after addition of NaI, NaHCO3, or Na2SO4. Na+ extrusion was absolutely dependent on delta pH and on an ATPase activity and/or on respiratory electron transport. This indicates that Na+ extrusion via Na+/H+ exchange is driven by primary H+ pumps in the cytoplasmic membrane. Cells grown for 4 days in 0.5 m NaCl medium, "salt-grown cells," differ from control cells by a lower maximum velocity of Na+ influx and by lower steady-state ratios of [Na+]in/[Na+]out. These results indicate that cells grown in high-salt medium increase their capacity to extrude Na+. During salt adaptation Na+ extrusion driven by respiratory electron transport increased from about 15 to 50%.

  13. Mouse Model of Halogenated Platinum Salt Hypersensitivity

    EPA Science Inventory

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate a...

  14. Modeling Fate and Transport of Rotavirus in Surface Flow by Integrating WEPP and a Pathogen Transport Model

    NASA Astrophysics Data System (ADS)

    Bhattarai, R.; Kalita, P. K.; Davidson, P. C.; Kuhlenschmidt, M. S.

    2012-12-01

    More than 3.5 million people die each year from a water related diseases in this world. Every 20 seconds, a child dies from a water-related illness. Even in a developed country like the United States, there have been at least 1870 outbreaks associated with drinking water during the period of 1920 to 2002, causing 883,806 illnesses. Most of these outbreaks are resulted due to the presence of microbial pathogens in drinking water. Rotavirus infection has been recognized as the most common cause of diarrhea in young children throughout the world. Laboratory experiments conducted at the University of Illinois have demonstrated that recovery of rotavirus has been significantly affected by climatic and soil-surface conditions like slope, soil types, and ground cover. The objective of this study is to simulate the fate and transport of Rotavirus in overland and near-surface flow using a process-based model. In order to capture the dynamics of sediment-bound pathogens, the Water Erosion Prediction Project (WEPP) is coupled with the pathogen transport model. Transport of pathogens in overland flow can be simulated mathematically by including terms for the concentration of the pathogens in the liquid phase (in suspension or free-floating) and the solid phase (adsorbed to the fine solid particles like clay and silt). Advection, adsorption, and decay processes are considered. The mass balance equations are solved using numerical technique to predict spatial and temporal changes in pathogen concentrations in two phases. Outputs from WEPP simulations (flow velocity, depth, saturated conductivity and the soil particle fraction exiting in flow) are transferred as input for the pathogen transport model. Three soil types and three different surface cover conditions have been used in the experimental investigations. Results from these conditions have been used in calibrating and validating the simulation results. Bare surface conditions have produced very good agreement between

  15. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    PubMed Central

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  16. Mathematical modeling of kidney transport.

    PubMed

    Layton, Anita T

    2013-01-01

    In addition to metabolic waste and toxin excretion, the kidney also plays an indispensable role in regulating the balance of water, electrolytes, nitrogen, and acid-base. In this review, we describe representative mathematical models that have been developed to better understand kidney physiology and pathophysiology, including the regulation of glomerular filtration, the regulation of renal blood flow by means of the tubuloglomerular feedback mechanisms and of the myogenic mechanism, the urine concentrating mechanism, epithelial transport, and regulation of renal oxygen transport. We discuss the extent to which these modeling efforts have expanded our understanding of renal function in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  17. Transport Properties of LiTFSI-Acetamide Room Temperature Molten Salt Electrolytes Applied in an Li-Ion Battery

    NASA Astrophysics Data System (ADS)

    Yang, Chao-Chen; Hsu, Hsin-Yi; Hsu, Chen-Ruei

    2007-11-01

    In the present work some transport properties of the binary room temperature molten salt (RTMS) lithium bis(trifluoromethane sulfone)imide (LiTFSI)-acetamide [LiN(SO2CF3)2-CH3CONH2], applied in an Li-ion battery, have been investigated. The phase diagram was determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The result reveals that the binary RTMS has an eutectic point at 201 K and the 30 mol% LiTFSI composition. The electric conductivity was measured using a direct current computerized method. The result shows that the conductivities of the melts increase with increasing temperature and acetamide content. The densities of all melts decrease with increasing temperature and acetamide content. The equivalent conductivities were fitted by the Arrhenius equation, where the activation energies were 18.15, 18.52, 20.35, 25.08 kJ/mol for 10, 20, 30, 40 mol% LiTFSI, respectively. Besides the relationships between conductivity, density composition and temperature, of the ion interaction is discussed.

  18. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Donald A. Goddard; Ronald K. Zimmerman

    2005-05-10

    The principal research effort for Year 2 of the project has been data compilation and the determination of the burial and thermal maturation histories of the North Louisiana Salt Basin and basin modeling and petroleum system identification. In the first nine (9) months of Year 2, the research focus was on the determination of the burial and thermal maturation histories, and during the remainder of the year the emphasis has basin modeling and petroleum system identification. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, regional cross sections have been prepared, structuremore » and isopach maps have been constructed, and burial history, thermal maturation history and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface maps and related profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs are mainly Upper Jurassic and Lower Cretaceous fluvial-deltaic sandstone facies and Lower Cretaceous and Upper Cretaceous shoreline, marine bar and shallow shelf sandstone facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary

  19. Century/millennium internal climate oscillations in an ocean-atmosphere-continental ice sheet model

    NASA Technical Reports Server (NTRS)

    Birchfield, Edward G.; Wang, Huaxiao; Rich, Jonathan J.

    1994-01-01

    We demonstrate in a simple climate model that there exist nonlinear feedbacks between the atmosphere, ocean, and ice sheets capable of producing century/millennium timescale internal oscillations resembling those seen in the paleoclimate record. Feedbacks involve meridional heat and salt transports in the North Atlantic, surface ocean freshwater fluxes associated with melting and growing continental ice sheets in the northen hemisphere and with Atlantic to Pacific water vapor transport. The positive feedback between the production of North Atlantic Deep Water (NADW) and the meridional salt transport by the Atlantic thermohaline circulation tends to destabilize the climate system, while the negative feedback between the freshwater flux, either to or from the continental ice sheets, and meridional heat flux to the high-latitude North Atlantic, accomplished by the thermohaline circulation, stabilizes the system. The thermohaline circulation plays a central role in both positive and negative feedbacks because of its transport of both heat and salt. Because of asymmetries between the growth and melt phases the oscillations are, in general, accompanied by a growing or decreasing ice volume over each cycle, which in the model is reflected by increasing or decreasing mean salinity.

  20. The Importance of Protons in Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    McNeece, C. J.; Hesse, M. A.

    2014-12-01

    The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of

  1. Consumer knowledge and attitudes to salt intake and labelled salt information.

    PubMed

    Grimes, Carley A; Riddell, Lynn J; Nowson, Caryl A

    2009-10-01

    The objective of this study was to investigate consumers' knowledge of health risks of high salt intake and frequency of use and understanding of labelled salt information. We conducted a cross-sectional survey in shopping centres within Metropolitan Melbourne. A sample of 493 subjects was recruited. The questionnaire assessed salt related shopping behaviours, attitudes to salt intake and health and their ability to interpret labelled sodium information. Four hundred and seventy four valid surveys were collected (65% female, 64% being the main shopper). Most participants knew of the relationship between salt intake and high blood pressure (88%). Sixty five percent of participants were unable to correctly identify the relationship between salt and sodium. Sixty nine percent reported reading the salt content of food products when shopping. Salt label usage was significantly related to shoppers concern about the amount of salt in their diet and the belief that their health could improve by lowering salt intake. Approximately half of the sample was unable to accurately use labelled sodium information to pick low salt options. Raising consumer awareness of the health risks associated with high salt consumption may increase salt label usage and purchases of low salt foods. However, for food labels to be effective in helping consumers select low salt foods a more 'user friendly' labelling format is needed.

  2. Effect of salt entropy on protein solubility and Hofmeister series

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    We present a theory of salt effects on protein solubility that accounts for salting-in, salting-out, and the Hofmeister series. We represent protein charge by the first order multipole expansion to include attractive and repulsive electrostatic interactions in the model. Our model also includes non-electrostatic protein-ion interactions, and ion-solvent interactions via an effective solvated ion radius. We find that the finite size of the ions has significant effects on the translational entropy of the salt, which accounts for the changes in the protein solubility. At low salt the dominant effect comes from the entropic cost of confining ions within the aggregate. At high concentrations the salt drives a depletion attraction that favors aggregation. Our theory explains the reversal in the Hofmeister series observed in lysozyme cloud point measurements and semi-quantitatively describes the solubility of lysozyme and chymosin crystals.

  3. Evaluating Anthropogenic Carbon Emissions in the Urban Salt Lake Valley through Inverse Modeling: Combining Long-term CO2 Observations and an Emission Inventory using a Multiple-box Atmospheric Model

    NASA Astrophysics Data System (ADS)

    Catharine, D.; Strong, C.; Lin, J. C.; Cherkaev, E.; Mitchell, L.; Stephens, B. B.; Ehleringer, J. R.

    2016-12-01

    The rising level of atmospheric carbon dioxide (CO2), driven by anthropogenic emissions, is the leading cause of enhanced radiative forcing. Increasing societal interest in reducing anthropogenic greenhouse gas emissions call for a computationally efficient method of evaluating anthropogenic CO2 source emissions, particularly if future mitigation actions are to be developed. A multiple-box atmospheric transport model was constructed in conjunction with a pre-existing fossil fuel CO2 emission inventory to estimate near-surface CO2 mole fractions and the associated anthropogenic CO2 emissions in the Salt Lake Valley (SLV) of northern Utah, a metropolitan area with a population of 1 million. A 15-year multi-site dataset of observed CO2 mole fractions is used in conjunction with the multiple-box model to develop an efficient method to constrain anthropogenic emissions through inverse modeling. Preliminary results of the multiple-box model CO2 inversion indicate that the pre-existing anthropogenic emission inventory may over-estimate CO2 emissions in the SLV. In addition, inversion results displaying a complex spatial and temporal distribution of urban emissions, including the effects of residential development and vehicular traffic will be discussed.

  4. Transport of dense pollutants: nonlinear random walk modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Zoia, A.; Latrille, C.; Cartalade, A.

    2009-04-01

    Non-Fickian transport is widespread in radionuclides and/or chemical species migration, which is key in the context of nuclear waste disposal: the contaminant spread might grow nonlinearly in time, the resulting concentration profiles displaying a non-Gaussian behavior [1]. An important source of such anomalous features is the collective motion of pollutants due to reciprocal interactions. Migration of concentrated particles usually displays these nonlinear phenomena: indeed, the motion of a single contaminant parcel depends on the density of the fluid nearby, which in turn is affected by the number of such parcels at a given position. High density gradients are encountered when either the contaminant itself is strongly concentrated at the source, or the plume flows through regions that are rich in salt; this latter case might become a major concern for radioactive waste disposal near salt domes: even modest density differences with respect to the resident fluid might sensibly affect the contaminant dynamics [2-4]. We propose a model for the concentration-dependent dynamics of a dense contaminant plume through a porous material and we explore its qualitative behavior by resorting to Monte Carlo simulation. We start by considering a vertical column filled with fully saturated and uniformly packed sand. The injected contaminant can be conceptually represented as an ensemble of fluid parcels, whose force balance is then rewritten in nonlinear stochastic Langevin form. This equation can be directly integrated by particle tracking simulation. Nonlinearities arise from the fact that both advection and dispersion of the contaminant plume are concentration-dependent, so that microscopic particles trajectories are correlated via the density field: flow and transport are coupled. The strength of nonlinear terms is controlled by a parameter ε that is proportional to the molar concentration Cmol [mol/L] of the injected solution. When Cmol is weak, ε → 0 and standard

  5. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress.

    PubMed

    Stergiopoulos, Konstantinos; Cabrero, Pablo; Davies, Shireen-Anne; Dow, Julian A T

    2009-03-03

    To regulate their internal environments, organisms must adapt to varying ion levels in their diet. Adult Drosophila were exposed to dietary salt stress, and their physiological, survival, and gene expression responses monitored. Insects continued to feed on NaCl-elevated diet, although levels >4% wt/vol ultimately proved fatal. Affymetrix microarray analysis of flies fed on diet containing elevated NaCl showed a phased response: the earliest response was widespread upregulation of immune genes, followed by upregulation of carbohydrate metabolism as the immune response was downregulated, then finally a switch to amino acid catabolism and inhibition of genes associated with the reproductive axis. Significantly, the online transcriptomic resource FlyAtlas reports that most of the modulated genes are predominantly expressed in hindgut or Malpighian (renal) tubule, implicating these excretory tissues as the major responders to salt stress. Three genes were selected for further study: the SLC5 symporter CG2196, the GLUT transporter CG6484, and the transcription factor sugarbabe (previously implicated in starvation and stress responses). Expression profiles predicted by microarray were validated by quantitative PCR (qPCR); expression was mapped to the alimentary canal by in situ hybridization. CG2196::eYFP overexpression constructs were localized to the basolateral membrane of the Malpighian (renal) tubules, and RNAi against CG2196 improved survival on high-salt diet, even when driven specifically to just principal cells of the Malpighian tubule, confirming both this tissue and this transporter as major determinants of survival upon salt stress. Accordingly, CG2196 was renamed salty dog (salt).

  6. Modeling salinization and recovery of road salt-impacted lakes in temperate regions based on long-term monitoring of Lake George, New York (USA) and its drainage basin.

    PubMed

    Sutherland, J W; Norton, S A; Short, J W; Navitsky, C

    2018-05-08

    Road salt mitigates winter highway icing but accumulates in watershed soils and receiving waters, affecting soil chemistry and physical, biological, and ecological processes. Despite efforts to reduce salt loading in watersheds, accumulated cations and Cl - continue to impact tributaries and lakes, and the recovery process is not well understood. Lake George, New York (USA) is typical of many temperate lakes at risk for elevated Cl - concentrations from winter deicing; the lake salt concentration increased by ~3.4% year -1 since 1980. Here, we evaluated the ionic composition in Finkle Brook, a major watershed draining to Lake George, studied intermittently since 1970 and typical of other salt-impacted Lake George tributaries. Salt loading in the Lake George basin since the 1940s displaced cations from exchange sites in basin soils; these desorbed cations follow a simple ion-exchange model, with lower sodium and higher calcium, magnesium and potassium fluxes in runoff. Reduced salt application in the Finkle Brook watershed during the low-snow winter of 2015-2016 led to a 30-40% decline of Cl - and base cations in the tributary, implying a Cl - soil half-life of 1-2 years. We developed a conceptual model that describes cation behavior in runoff from a watershed that received road salt loading over a long period of time, and then recovery following reduced salt loading. Next, we developed a dynamic model estimating time to steady-state for Cl - in Lake George with road salt loading starting in 1940, calibrating the model with tributary runoff and lake chemistry data from 1970 and 1980, respectively, and forecasting Cl - concentrations in Lake George based on various scenarios of salt loading and soil retention of Cl - . Our Lake George models are readily adaptable to other temperate lakes with drainage basins where road salt is applied during freezing conditions and paved roads cover a portion of the watershed. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Internal structure of mushroom-shaped salt diapirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This book focuses on the dynamics and kinematics of salt diapirs with crestal bulbs shaped like a mushroom, one of the most complex types of diapirs, as interpreted by experimental modeling and from naturally occurring examples. Direct, practical applications of this research include use in the evaluation of salt domes as repositories for radioactive waste, in the exploration and production of salt, potash, and sulfur, and in the search for subtle hydrocarbon traps. The authors conducted 8 centrifuge experiments, which produced more than 100 model diapirs. These experiments were dynamically scaled to U.S. Gulf Coast salt domes, but the qualitativemore » results are also relevant to salt diapirs in other provinces and to granitoid diapirs penetrating metamorphic crust. The centrifuged domes grew under overburdens of constant thickness or under aggrading and prograding overburdens, a new experimental approach. Results indicate that external mushroom structure results from toroidal circulation of buoyant source and immediate cover having similar effective viscosities, whereas internal structure is produced by toroidal circulation confined within the diapir. The internal diapir structure elucidates the mechanics of emplacement and indicates whether an external mushroom shape can be expected and sought by further exploration.« less

  8. Impact of Transport Zone Number in Simulation Models on Cost-Benefit Analysis Results in Transport Investments

    NASA Astrophysics Data System (ADS)

    Chmielewski, Jacek

    2017-10-01

    Nowadays, feasibility studies need to be prepared for all planned transport investments, mainly those co-financed with UE grants. One of the fundamental aspect of feasibility study is the economic justification of an investment, evaluated in an area of so called cost-benefit analysis (CBA). The main goal of CBA calculation is to prove that a transport investment is really important for the society and should be implemented as economically efficient one. It can be said that the number of hours (PH - passengers hours) in trips and travelled kilometres (PK - passengers kilometres) are the most important for CBA results. The differences between PH and PK calculated for particular investment scenarios are the base for benefits calculation. Typically, transport simulation models are the best source for such data. Transport simulation models are one of the most powerful tools for transport network planning. They make it possible to evaluate forecast traffic volume and passenger flows in a public transport system for defined scenarios of transport and area development. There are many different transport models. Their construction is often similar, and they mainly differ in the level of their accuracy. Even models for the same area may differ in this matter. Typically, such differences come from the accuracy of supply side representation: road and public transport network representation. In many cases only main roads and a public transport network are represented, while local and service roads are eliminated as a way of reality simplification. This also enables a faster and more effective calculation process. On the other hand, the description of demand part of these models based on transport zones is often stable. Difficulties with data collection, mainly data on land use, resulted in the lack of changes in the analysed land division into so called transport zones. In this paper the author presents an influence of land division on the results of traffic analyses, and hence

  9. Investigation of salt loss from the Bonneville Salt Flats, northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer.A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  10. Salt Efflorescence Effects on Soil Surface Erodibility and Dust Emissions

    NASA Astrophysics Data System (ADS)

    Van Pelt, R. S.; Zhang, G.

    2017-12-01

    Soluble salts resulting from weathering of geological materials often form surface crusts or efflorescences in areas with shallow saline groundwater. In many cases, the affected areas are susceptible to wind erosion due to their lack of protective vegetation and their flat topography. Fugitive dusts containing soluble salts affect the biogeochemistry of deposition regions and may result in respiratory irritation during transport. We created efflorescent crusts on soil trays by surface evaporation of single salt solutions and bombarded the resultant efflorescences with quartz abrader sand in a laboratory wind tunnel. Four replicate trays containing a Torrifluvent soil affected by one of nine salts commonly found in arid and semiarid streams were tested and the emissions were captured by an aspirated multi-stage deposition and filtering system. We found that in most cases the efflorescent crust reduced the soil surface erodibility but also resulted in the emission of salt rich dust. Two of the salts, sodium thiosulfate and calcium chloride, resulted in increased soil volume and erodibility. However, one of the calcium chloride replicates was tested after an outbreak of humid air caused hygroscopic wetting of the soil and it became indurated upon drying greatly decreasing the erodibility. Although saline affected soils are not used for agricultural production and degradation is not a great concern, the release of salt rich dust is an area of environmental concern and steps to control the dust emissions from affected soils should be developed. Future testing will utilize suites of salts found in streams of arid and semiarid regions.

  11. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  12. Unsteady Aerodynamic Modeling in Roll for the NASA Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav; Frink, Neal T.

    2012-01-01

    Reducing the impact of loss-of-control conditions on commercial transport aircraft is a primary goal of the NASA Aviation Safety Program. One aspect in developing the supporting technologies is to improve the aerodynamic models that represent these adverse conditions. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. In this paper, a more general mathematical model is proposed for the subscale NASA Generic Transport Model (GTM) that covers both low and high angles of attack. Particular attention is devoted to the stall region where full-scale transports have demonstrated a tendency for roll instability. The complete aerodynamic model was estimated from dynamic wind-tunnel data. Advanced computational methods are used to improve understanding and visualize the flow physics within the region where roll instability is a factor.

  13. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  14. High-Capacity Mg-Organic Batteries Based on Nanostructured Rhodizonate Salts Activated by Mg-Li Dual-Salt Electrolyte.

    PubMed

    Tian, Jing; Cao, Dunping; Zhou, Xuejun; Hu, Jiulin; Huang, Minsong; Li, Chilin

    2018-04-24

    A magnesium battery is a promising candidate for large-scale transportation and stationary energy storage due to the security, low cost, abundance, and high volumetric energy density of a Mg anode. But there are still some obstacles retarding the wide application of Mg batteries, including poor kinetics of Mg-ion transport in lattices and low theoretical capacity in inorganic frameworks. A Mg-Li dual-salt electrolyte enables kinetic activation by dominant intercalation of Li-ions instead of Mg-ions in cathode lattices without the compromise of a stable Mg anode process. Here we propose a Mg-organic battery based on a renewable rhodizonate salt ( e. g., Na 2 C 6 O 6 ) activated by a Mg-Li dual-salt electrolyte. The nanostructured organic system can achieve a high reversible capacity of 350-400 mAh/g due to the existence of high-density carbonyl groups (C═O) as redox sites. Nanocrystalline Na 2 C 6 O 6 wired by reduced graphene oxide enables a high-rate performance of 200 and 175 mAh/g at 2.5 (5 C) and 5 A/g (10 C), respectively, which also benefits from a high intrinsic diffusion coefficient (10 -12 -10 -11 cm 2 /s) and pesudocapacitance contribution (>60%) of Na 2 C 6 O 6 for Li-Mg co-intercalation. The suppressed exfoliation of C 6 O 6 layers by a firmer non-Li pinning via Na-O-C or Mg-O-C and a dendrite-resistive Mg anode lead to a long-term cycling for at least 600 cycles. Such an extraordinary capacity/rate performance endows the Mg-Na 2 C 6 O 6 system with high energy and power densities up to 525 Wh/kg and 4490 W/kg (based on active cathode material), respectively, exceeding the level of high-voltage insertion cathodes with typical inorganic structures.

  15. Application of model abstraction techniques to simulate transport in soils

    USDA-ARS?s Scientific Manuscript database

    Successful understanding and modeling of contaminant transport in soils is the precondition of risk-informed predictions of the subsurface contaminant transport. Exceedingly complex models of subsurface contaminant transport are often inefficient. Model abstraction is the methodology for reducing th...

  16. Modeling pH variation in reverse osmosis.

    PubMed

    Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav

    2015-12-15

    The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  18. Transport of bile acids in multidrug-resistance-protein 3-overexpressing cells co-transfected with the ileal Na+-dependent bile-acid transporter.

    PubMed Central

    Zelcer, Noam; Saeki, Tohru; Bot, Ilse; Kuil, Annemieke; Borst, Piet

    2003-01-01

    Many of the transporters involved in the transport of bile acids in the enterohepatic circulation have been characterized. The basolateral bile-acid transporter of ileocytes and cholangiocytes remains an exception. It has been suggested that rat multidrug resistance protein 3 (Mrp3) fulfills this function. Here we analyse bile-salt transport by human MRP3. Membrane vesicles from insect ( Spodoptera frugiperda ) cells expressing MRP3 show time-dependent uptake of glycocholate and taurocholate. Furthermore, sulphated bile salts were high-affinity competitive inhibitors of etoposide glucuronide transport by MRP3 (IC50 approximately 10 microM). Taurochenodeoxycholate, taurocholate and glycocholate inhibited transport at higher concentrations (IC50 approximately 100, 250 and 500 microM respectively). We used mouse fibroblast-like cell lines derived from mice with disrupted Mdr1a, Mdr1b and Mrp1 genes to generate transfectants that express the murine apical Na+-dependent bile-salt transporter (Asbt) and MRP3. Uptake of glycocholate by these cells is Na+-dependent, with a K(m) and V(max) of 29+/-7 microM and 660 +/- 63 pmol/min per mg of protein respectively and is inhibited by several organic-aniontransport inhibitors. Expression of MRP3 in these cells limits the accumulation of glycocholate and increases the efflux from cells preloaded with taurocholate or glycocholate. In conclusion, we find that MRP3 transports both taurocholate and glycocholate, albeit with low affinity, in contrast with the high-affinity transport by rat Mrp3. Our results suggest that MRP3 is unlikely to be the principal basolateral bile-acid transporter of ileocytes and cholangiocytes, but that it may have a role in the removal of bile acids from the liver in cholestasis. PMID:12220224

  19. Alkali Salt-Doped Highly Transparent and Thickness-Insensitive Electron-Transport Layer for High-Performance Polymer Solar Cell.

    PubMed

    Xu, Rongguo; Zhang, Kai; Liu, Xi; Jin, Yaocheng; Jiang, Xiao-Fang; Xu, Qing-Hua; Huang, Fei; Cao, Yong

    2018-01-17

    Solution-processable highly transparent and thickness-insensitive hybrid electron-transport layer (ETL) with enhanced electron-extraction and electron-transport properties for high-performance polymer solar cell was reported. With the incorporation of Cs 2 CO 3 into the poly[(9,9-bis(6'-((N,N-diethyl)-N-ethylammonium)-hexyl)-2,7-fluorene)-alt-1,4-diphenylsulfide]dibromide (PF6NPSBr) ETL, the power conversion efficiency (PCE) of resulted polymer solar cells (PSCs) was significantly enhanced due to the favorable interfacial contact, energy-level alignment, and thus facile electron transport in the PSC device. These organic-inorganic hybrid ETLs also exhibited high transparency and high electron mobility. All of these combined properties ensured us to design novel thickness-insensitive ETLs that avoid the parasitic absorption of ETL itself simultaneously. With the conventional device structure with poly{4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophene-4,6-diyl} (PTB7-Th) as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC 71 BM) as an acceptor, devices with hybrid ETLs exhibited PCE of 8.30-9.45% within a wide range of ETL thickness. A notable PCE of 10.78% was achieved with the thick active layer poly(2,5-thiophene-alt-5,5'-(5,10-bis(4-(2-octyldodecyl)thiophen-2-yl)naphtho[1,2-c:5,6-c']bis([1,2,5]thiadiazole)) (PTNT812):PC 71 BM. These findings indicated that doping alkali salt into the organic interfacial materials can be a promising strategy to design highly efficient and thickness-insensitive ETL, which may be suitable for large-area PSC modules device fabrication with roll-to-roll printing technique.

  20. Component Design Report: International Transportation Energy Demand Determinants Model

    EIA Publications

    2017-01-01

    This Component Design Report discusses working design elements for a new model to replace the International Transportation Model (ITran) in the World Energy Projection System Plus (WEPS ) that is maintained by the U.S. Energy Information Administration. The key objective of the new International Transportation Energy Demand Determinants (ITEDD) model is to enable more rigorous, quantitative research related to energy consumption in the international transportation sectors.

  1. A case study of pollutants transported from HPCL (vishakhapatnam) accidental fire through synergy of flexpart model and ground-based instruments

    NASA Astrophysics Data System (ADS)

    Wankhede, Tushar

    Tushar Wankhede*, Harish Gadhavi, Amit K. Pandit National Atmospheric Research Laboratory (NARL), Gadanki-517112, Chittoor, A.P. *tushar1771@gmail.com, Mobile: +91-8297152481 A fire at Hindustan Petroleum Corporation Limited (HPCL) in Vishakhapatnam (17.70 ˚N, 83.24˚E) resulted from a gas leak in the salt water cooling tower system. This led to the release of various pollutants like hydrocarbons, black carbon, carbon mono-oxide and carbon dioxide etc(other gases) in just 44 min of fire in system a very huge amount of particles were emitted. The transport of these pollutants has been studied through FLEXPART which is a Lagrangian particle dispersion model having wide range of applications in atmospheric transport modeling. FLEXPART simulation of this accidental fire shows the direction and sensitivity of dispersed pollutants from its source. It was observed that the pollutants reached Gadanki, a rural site located at 13.45 ˚N, 79.18 ˚E in Southern-India. The concentration of pollutant obtained from FLEXPART output we are comparing with ground based instruments data collected at the observation site (Indian Climate Observatory Network-ICON, NARL Gadanki). This case-study provides significant information about the life-time of dispersed pollutants and their long-range transport pattern under the influence of small weather variability en-route from source to receptor. The detailed work of FLEXPART for the Long range transport of the particles will be presented later on in conference.

  2. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  3. Sea-salt injections into the low-latitude marine boundary layer: The transient response in three Earth system models

    NASA Astrophysics Data System (ADS)

    Alterskjær, Kari; Kristjánsson, Jón Egill; Boucher, Olivier; Muri, Helene; Niemeier, Ulrike; Schmidt, Hauke; Schulz, Michael; Timmreck, Claudia

    2013-11-01

    proposed mechanisms for counteracting global warming through solar radiation management is the deliberate injection of sea salt acting via marine cloud brightening and the direct effect of sea-salt aerosols. In this study, we show results from multidecadal simulations of such sea-salt climate engineering (SSCE) on top of the RCP4.5 emission scenario using three Earth system models. As in the proposed "G3" experiment of the Geoengineering Model Intercomparison Project, SSCE is designed to keep the top-of-atmosphere radiative forcing at the 2020 level for 50 years. SSCE is then turned off and the models run for another 20 years, enabling an investigation of the abrupt warming associated with a termination of climate engineering ("termination effect"). As in former idealized studies, the climate engineering in all three models leads to a significant suppression of evaporation from low-latitude oceans and reduced precipitation over low-latitude oceans as well as in the storm-track regions. Unlike those studies, however, we find in all models enhanced evaporation, cloud formation, and precipitation over low-latitude land regions. This is a response to the localized cooling over the low-latitude oceans imposed by the SSCE design. As a result, the models obtain reduced aridity in many low-latitude land regions as well as in southern Europe. Terminating the SSCE leads to a rapid near-surface temperature increase, which, in the Arctic, exceeds 2 K in all three models within 20 years after SSCE has ceased. In the same period September Arctic sea ice cover shrinks by over 25%.

  4. Increasing cyclic electron flow is related to Na+ sequestration into vacuoles for salt tolerance in soybean.

    PubMed

    He, Yi; Fu, Junliang; Yu, Chenliang; Wang, Xiaoman; Jiang, Qinsu; Hong, Jian; Lu, Kaixing; Xue, Gangping; Yan, Chengqi; James, Andrew; Xu, Ligen; Chen, Jianping; Jiang, Dean

    2015-11-01

    In land plants, the NAD(P)H dehydrogenase (NDH) complex reduces plastoquinones and drives cyclic electron flow (CEF) around PSI. It also produces extra ATP for photosynthesis and improves plant fitness under conditions of abiotic environmental stress. To elucidate the role of CEF in salt tolerance of the photosynthetic apparatus, Na(+) concentration, chlorophyll fluorescence, and expression of NDH B and H subunits, as well as of genes related to cellular and vacuolar Na(+) transport, were monitored. The salt-tolerant Glycine max (soybean) variety S111-9 exhibited much higher CEF activity and ATP accumulation in light than did the salt-sensitive variety Melrose, but similar leaf Na(+) concentrations under salt stress. In S111-9 plants, ndhB and ndhH were highly up-regulated under salt stress and their corresponding proteins were maintained at high levels or increased significantly. Under salt stress, S111-9 plants accumulated Na(+) in the vacuole, but Melrose plants accumulated Na(+) in the chloroplast. Compared with Melrose, S111-9 plants also showed higher expression of some genes associated with Na(+) transport into the vacuole and/or cell, such as genes encoding components of the CBL10 (calcineurin B-like protein 10)-CIPK24 (CBL-interacting protein kinase 24)-NHX (Na(+)/H(+) antiporter) and CBL4 (calcineurin B-like protein 4)-CIPK24-SOS1 (salt overly sensitive 1) complexes. Based on the findings, it is proposed that enhanced NDH-dependent CEF supplies extra ATP used to sequester Na(+) in the vacuole. This reveals an important mechanism for salt tolerance in soybean and provides new insights into plant resistance to salt stress. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Experimental & Numerical Modeling of Non-combusting Model Firebrands' Transport

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel

    2016-11-01

    Fire spotting is one of the major mechanisms of wildfire spread. Three phases of this phenomenon are firebrand formation and break-off from burning vegetation, lofting and downwind transport of firebrands through the velocity field of the wildfire, and spot fire ignition upon landing. The lofting and downwind transport phase is modeled by conducting large-scale wind tunnel experiments. Non-combusting rod-like model firebrands with different aspect ratios are released within the velocity field of a jet in a boundary layer cross-flow that approximates the wildfire velocity field. Characteristics of the firebrand dispersion are quantified by capturing the full trajectory of the model firebrands using the developed image processing algorithm. The results show that the lofting height has a direct impact on the maximum travel distance of the model firebrands. Also, the experimental results are utilized for validation of a highly scalable coupled stochastic & parametric firebrand flight model that, couples the LES-resolved velocity field of a jet-in-nonuniform-cross-flow (JINCF) with a 3D fully deterministic 6-degrees-of-freedom debris transport model. The validation results show that the developed numerical model is capable of estimating average statistics of the firebrands' flight. Authors would like to thank support of the National Science Foundation under Grant No. 1200560. Also, the presenter (Ali Tohid) would like to thank Dr. Michael Gollner from the University of Maryland College Park for the conference participation support.

  6. Salt sensitivity in normotensives with family history of hypertension: studies of membrane transport, intracellular electrolytes and alpha 2-adrenergic receptors.

    PubMed

    Skrabal, F; Gruber, G; Meister, B; Ledochowski, M; Doll, P; Lang, F; Cerny, E

    1985-12-01

    Using long-term automatic blood pressure recording it has previously been shown that subjects with family history of hypertension show a minute fall of blood pressure during sodium restriction, which is reversible by high sodium intake. Thus normotensives with hypertensive antecedents as a group are salt-sensitive, whereas normotensives without heredity of hypertension as a group are salt-resistant. The present study compares intracellular sodium, potassium and calcium, sodium pump activity, NaK-cotransport of red blood cells and density and affinity of alpha 2-adrenergic receptors of platelets in normotensive subjects classified according to family history of hypertension and according to 'salt sensitivity' and 'salt resistance'. Neither the family history of hypertension nor salt sensitivity correlated with intracellular sodium, potassium, calcium, Na-pump activity and NaK-cotransport. Alpha 2-adrenergic density was higher in salt-sensitive than in salt-resistant subjects (P < 0.05) but similar in subjects with a positive and negative family history of hypertension. However, alpha 2-adrenergic receptor density decreased significantly during 2 weeks of moderate salt restriction from 169.6 +/- 34.2 to 142.6 +/- 30.8 (P < 0.01, paired t-test), which may explain the decreased pressor response to infused noradrenaline observed in a previous study during moderate salt restriction. It is concluded that in humans there is no association of genetic predisposition of hypertension or of salt sensitivity to an alteration of sodium pump activity, NaK-cotransport, intracellular sodium and calcium. Alpha 2-receptor density of platelets deserves further study as a possible predictor of salt sensitivity in normotensives.

  7. Modeling axisymmetric flow and transport

    USGS Publications Warehouse

    Langevin, C.D.

    2008-01-01

    Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.

  8. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  9. Neutron Transport Models and Methods for HZETRN and Coupling to Low Energy Light Ion Transport

    NASA Technical Reports Server (NTRS)

    Blattnig, S.R.; Slaba, T.C.; Heinbockel, J.H.

    2008-01-01

    Exposure estimates inside space vehicles, surface habitats, and high altitude aircraft exposed to space radiation are highly influenced by secondary neutron production. The deterministic transport code HZETRN has been identified as a reliable and efficient tool for such studies, but improvements to the underlying transport models and numerical methods are still necessary. In this paper, the forward-backward (FB) and directionally coupled forward-backward (DC) neutron transport models are derived, numerical methods for the FB model are reviewed, and a computationally efficient numerical solution is presented for the DC model. Both models are compared to the Monte Carlo codes HETCHEDS and FLUKA, and the DC model is shown to agree closely with the Monte Carlo results. Finally, it is found in the development of either model that the decoupling of low energy neutrons from the light ion (A<4) transport procedure adversely affects low energy light ion fluence spectra and exposure quantities. A first order correction is presented to resolve the problem, and it is shown to be both accurate and efficient.

  10. Simultaneous leaching of arsenite, arsenate, selenite and selenate, and their migration in tunnel-excavated sedimentary rocks: II. Kinetic and reactive transport modeling.

    PubMed

    Tabelin, Carlito Baltazar; Sasaki, Ryosuke; Igarashi, Toshifumi; Park, Ilhwan; Tamoto, Shuichi; Arima, Takahiko; Ito, Mayumi; Hiroyoshi, Naoki

    2017-12-01

    Predicting the fates of arsenic (As) and selenium (Se) in natural geologic media like rocks and soils necessitates the understanding of how their various oxyanionic species behave and migrate under dynamic conditions. In this study, geochemical factors and processes crucial in the leaching and transport of arsenite (As III ), arsenate (As V ), selenite (Se IV ) and selenate (Se VI ) in tunnel-excavated rocks of marine origin were investigated using microscopic/extraction techniques, column experiments, dissolution-precipitation kinetics and one-dimensional reactive transport modeling. The results showed that evaporite salts were important because aside from containing As and Se, they played crucial roles in the evolution of pH and concentrations of coexisting ions, both of which had strong effects on adsorption-desorption reactions of As and Se species with iron oxyhydroxide minerals/phases. The observed leaching trends of As V , As III , Se IV and Se VI were satisfactorily simulated by one-dimensional reactive transport models, which predict that preferential adsorptions of As V and Se IV were magnified by geochemical changes in the columns due to water flow. Moreover, our results showed that migrations of As III , Se IV and Se VI could be predicted adequately by 1D solute transport with simple activity-K' d approach, but surface complexation was more reliable to simulate adsorption-desorption behavior of As V . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Alteration of the Helicobacter pylori membrane proteome in response to changes in environmental salt concentration

    PubMed Central

    Voss, Bradley J.; Loh, John T.; Hill, Salisha; Rose, Kristie L.; McDonald, W. Hayes; Cover, Timothy L.

    2015-01-01

    Purpose Helicobacter pylori infection and a high dietary salt intake are each risk factors for the development of gastric cancer. We hypothesize that changes in environmental salt concentrations lead to alterations in the H. pylori membrane proteome. Experimental Design Label-free and iTRAQ methods were used to identify H. pylori proteins that change in abundance in response to alterations in environmental salt concentrations. In addition, we biotinylated intact bacteria that were grown under high- or low-salt conditions, and thereby analyzed salt-induced changes in the abundance of surface-exposed proteins. Results Proteins with increased abundance in response to high salt conditions included CagA, the outer membrane protein HopQ, and fibronectin domain-containing protein HP0746. Proteins with increased abundance in response to low salt conditions included VacA, two VacA-like proteins (ImaA and FaaA), outer-membrane iron transporter FecA3, and several proteins involved in flagellar activity. Consistent with the proteomic data, bacteria grown in high salt conditions exhibited decreased motility compared to bacteria grown in lower salt conditions. Conclusions and clinical relevance Alterations in the H. pylori membrane proteome in response to high salt conditions may contribute to the increased risk of gastric cancer associated with a high salt diet. PMID:26109032

  12. Thermal-Hydraulics Phenomena Important in Modeling and Simulation of Liquid-Fuel Molten Salt Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bajorek, Stephen; Diamond, David J.

    This paper discusses liquid-fuel molten salt reactors, how they will operate under normal, transient, and accident conditions, and the results of an expert elicitation to determine the corresponding thermalhydraulic phenomena important to understanding their behavior. Identifying these phenomena will enable the U.S. Nuclear Regulatory Commission (NRC) to develop or identify modeling functionalities and tools required to carry out confirmatory analyses that examine the validity and accuracy of an applicant’s calculations and help determine the margin of safety in plant design. NRC frequently does an expert elicitation using a Phenomena Identification and Ranking Table (PIRT) to identify and evaluate the statemore » of knowledge of important modeling phenomena. However, few details about the design of these reactors and the sequence of events during accidents are known, so the process used was considered a preliminary PIRT. A panel met to define phenomena that would need to be modeled and considered the impact/importance of each phenomenon with respect to specific figures-of-merit (FoMs) (e.g., salt temperature, velocity, and composition). Each FoM reflected a potential impact on radionuclide release or loss of a barrier to release. The panel considered what the path forward might be with respect to being able to model the phenomenon in a simulation code. Results are explained for both thermal and fast spectrum designs.« less

  13. Assessment of soil and wash water quality beneath salt-spreader racks.

    DOT National Transportation Integrated Search

    2008-01-01

    The Virginia Department of Transportation's (VDOT) winter maintenance program hinges primarily on the use of granular NaCl for deicing. On average, VDOT applies more than 300,000 tons of NaCl each winter season. The majority of this salt is spread by...

  14. INNER SALTS

    DTIC Science & Technology

    been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a...Products that have been characterized include: (1) mesomeric phosphonium salts possessing phototropic properties; (2) pentavalent phosphorus compounds; and (3) a mesomeric inner salt. (Author)

  15. Use of Models in Urban Transportation Planning

    DOT National Transportation Integrated Search

    1973-04-01

    The report describes the most commonly used models in urban transportation planning. A background on urban transportation planning is given including changes in planning objectives and the effects of Federal legislation. General concepts and problems...

  16. Modeling of the T S D E Heater Test to Investigate Crushed Salt Reconsolidation and Rock Salt Creep for the Underground Disposal of High-Level Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.; Wolters, R.; Lux, K. H.

    2014-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its water and gas tightness in the undisturbed state, its ability to heal induced fractures and its high thermal conductivity as compared to other shallow-crustal rocks. In addition, the run-of-mine, granular salt, may be used to backfill the mined open spaces. We present simulation results associated with coupled thermal, hydraulic and mechanical processes in the TSDE (Thermal Simulation for Drift Emplacement) experiment, conducted in the Asse salt mine in Germany [1]. During this unique test, conceived to simulate reference repository conditions for spent nuclear fuel, a significant amount of data (temperature, stress changes and displacements, among others) was measured at 20 cross-sections, distributed in two drifts in which a total of six electrical heaters were emplaced. The drifts were subsequently backfilled with crushed salt. This test has been modeled in three-dimensions, using two sequential simulators for flow (mass and heat) and geomechanics, TOUGH-FLAC and FLAC-TOUGH [2]. These simulators have recently been updated to accommodate large strains and time-dependent rheology. The numerical predictions obtained by the two simulators are compared within the framework of an international benchmark exercise, and also with experimental data. Subsequently, a re-calibration of some parameters has been performed. Modeling coupled processes in saliniferous media for nuclear waste disposal is a novel approach, and in this study it has led to the determination of some creep parameters that are very difficult to assess at the laboratory-scale because they require extremely low strain rates. Moreover, the results from the benchmark are very satisfactory and validate the capabilities of the two simulators used to study coupled thermal, mechanical and hydraulic (multi-component, multi-phase) processes relative to the underground disposal of high

  17. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  18. DFT analysis of the structure and IR spectrum of potassium salt of diphenylsulfophthalide - A model compound for polydiphenylenesulfophthalide salts

    NASA Astrophysics Data System (ADS)

    Shishlov, N. M.; Akhmetzyanov, Sh S.; Khursan, S. L.

    2017-02-01

    Experimental IR spectra of crystalline dried and non-dried potassium diphenylsulfophthalide (TAC-K) as a model compound for polymeric salts are presented. DFT analysis (B3LYP/6-311G(d,p)) of the structure and IR spectra of a series of compounds similar in structure to TAC-K as well as their dimers indicates that the sulfonate group environment strongly affects the positions of absorption bands (ABs) of vibrations of Ssbnd O bonds and demonstrates that information on the exact structure of ion clusters is needed for reliable and unambiguous assignment of the ABs in experimental IR spectra of real sulfonate ion containing systems to particular vibrational modes. Various ways of metal ion coordination with sulfonate ion, as well as their reflection in IR spectra of model compounds, are considered and discussed. Using TAC-K as an example, the effect of an intramolecular hydrogen bond on the vibrational modes of sulfonate group and hydroxy group is considered. The effect of ion aggregation on the shape of the IR spectrum of TAC-K is analyzed for an energetically favorable dimer of this salt as an example. Based on a combination of calculated, literature and reference data, a number of ABs in the IR spectra of TAC-K have been tentatively assigned. In particular, the bands in the region of 3230-3180 cm-1 have been assigned to ν(Osbnd H); those at 1240-1160 cm-1, to νas(SO3-); the AB at 1080 cm-1, to νs(SO3-); that at 616 cm-1, to δ(oop)s(SO3-); and that at 570 cm-1, to δ(ip)as(SO3-).

  19. Stability of iodine in salt fortified with iodine and iron.

    PubMed

    Ranganathan, Srinivasaiyengar; Karmarkar, Madhu G; Krupadanam, Muddepaka; Brahmam, Ginnela N V; Rao, Mendhu Vishnuvardhana; Vijayaraghavan, Kamasamudram; Sivakumar, Bhattriprolu

    2007-03-01

    Determining the stability of iodine in fortified salt can be difficult under certain conditions. Current methods are sometimes unreliable in the presence of iron. To test the new method to more accurately estimate iodine content in double-fortified salt (DFS) fortified with iodine and iron by using orthophosphoric acid instead of sulfuric acid in the titration procedure. A double-blind, placebo-controlled study was carried out on DFS and iodized salt produced by the dry-mixing method. DFS and iodized salt were packed and sealed in color-coded, 0.5-kg, low-density polyethylene pouches, and 25 of these pouches were further packed and sealed in color-coded, double-lined, high-density polyethylene bags and transported by road in closed, light-protected containers to the International Council for the Control of Iodine Deficiency Disorders (ICCIDD), Delhi; the National Institute of Nutrition (NIN), Hyderabad; and the Orissa Unit of the National Nutrition Monitoring Bureau (NNMB), Bhubaneswar. The iodine content of DFS and iodized salt stored under normal room conditions in these places was measured by the modified method every month on the same prescribed dates during the first 6 months and also after 15 months. The iodine content of DFS and iodized salt stored under simulated household conditions was also measured in the first 3 months. After the color code was broken at the end of the study, it was found that the DFS and iodized salt stored at Bhubaneswar, Delhi, and Hyderabad retained more or less the same initial iodine content (30-40 ppm) during the first 6 months, and the stability was not affected after 15 months. The proportion of salt samples having more than 30 ppm iodine was 100% in DFS and iodized salt throughout the study period. Daily opening and closing of salt pouches under simulated household conditions did not result in any iodine loss. The DFS and iodized salt prepared by the dry-mixing method and stored at normal room conditions had excellent iodine

  20. Analytical mesoscale modeling of aeolian sand transport

    NASA Astrophysics Data System (ADS)

    Lämmel, Marc; Kroy, Klaus

    2017-11-01

    The mesoscale structure of aeolian sand transport determines a variety of natural phenomena studied in planetary and Earth science. We analyze it theoretically beyond the mean-field level, based on the grain-scale transport kinetics and splash statistics. A coarse-grained analytical model is proposed and verified by numerical simulations resolving individual grain trajectories. The predicted height-resolved sand flux and other important characteristics of the aeolian transport layer agree remarkably well with a comprehensive compilation of field and wind-tunnel data, suggesting that the model robustly captures the essential mesoscale physics. By comparing the predicted saturation length with field data for the minimum sand-dune size, we elucidate the importance of intermittent turbulent wind fluctuations for field measurements and reconcile conflicting previous models for this most enigmatic emergent aeolian scale.

  1. GEOS-5 Chemistry Transport Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  2. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard

    2006-05-26

    The principal research effort for Phase 1 (Concept Development) of the project has been data compilation; determination of the tectonic, depositional, burial, and thermal maturation histories of the North Louisiana Salt Basin; basin modeling (geohistory, thermal maturation, hydrocarbon expulsion); petroleum system identification; comparative basin evaluation; and resource assessment. Existing information on the North Louisiana Salt Basin has been evaluated, an electronic database has been developed, and regional cross sections have been prepared. Structure, isopach and formation lithology maps have been constructed, and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been prepared. Seismic data, cross sections, subsurface mapsmore » and burial history, thermal maturation history, and hydrocarbon expulsion profiles have been used in evaluating the tectonic, depositional, burial and thermal maturation histories of the basin. Oil and gas reservoirs have been found to be associated with salt-supported anticlinal and domal features (salt pillows, turtle structures and piercement domes); with normal faulting associated with the northern basin margin and listric down-to-the-basin faults (state-line fault complex) and faulted salt features; and with combination structural and stratigraphic features (Sabine and Monroe Uplifts) and monoclinal features with lithologic variations. Petroleum reservoirs include Upper Jurassic and Cretaceous fluvial-deltaic sandstone facies; shoreline, marine bar and shallow shelf sandstone facies; and carbonate shoal, shelf and reef facies. Cretaceous unconformities significantly contribute to the hydrocarbon trapping mechanism capacity in the North Louisiana Salt Basin. The chief petroleum source rock in this basin is Upper Jurassic Smackover lime mudstone beds. The generation of hydrocarbons from Smackover lime mudstone was initiated during the Early Cretaceous and continued into the Tertiary. Hydrocarbon

  3. A Lagrangian mixing frequency model for transported PDF modeling

    NASA Astrophysics Data System (ADS)

    Turkeri, Hasret; Zhao, Xinyu

    2017-11-01

    In this study, a Lagrangian mixing frequency model is proposed for molecular mixing models within the framework of transported probability density function (PDF) methods. The model is based on the dissipations of mixture fraction and progress variables obtained from Lagrangian particles in PDF methods. The new model is proposed as a remedy to the difficulty in choosing the optimal model constant parameters when using conventional mixing frequency models. The model is implemented in combination with the Interaction by exchange with the mean (IEM) mixing model. The performance of the new model is examined by performing simulations of Sandia Flame D and the turbulent premixed flame from the Cambridge stratified flame series. The simulations are performed using the pdfFOAM solver which is a LES/PDF solver developed entirely in OpenFOAM. A 16-species reduced mechanism is used to represent methane/air combustion, and in situ adaptive tabulation is employed to accelerate the finite-rate chemistry calculations. The results are compared with experimental measurements as well as with the results obtained using conventional mixing frequency models. Dynamic mixing frequencies are predicted using the new model without solving additional transport equations, and good agreement with experimental data is observed.

  4. Horizontal density-gradient effects on simulation of flow and transport in the Potomac Estuary

    USGS Publications Warehouse

    Schaffranek, Raymond W.; Baltzer, Robert A.; ,

    1990-01-01

    A two-dimensional, depth-integrated, hydrodynamic/transport model of the Potomac Estuary between Indian Head and Morgantown, Md., has been extended to include treatment of baroclinic forcing due to horizontal density gradients. The finite-difference model numerically integrates equations of mass and momentum conservation in conjunction with a transport equation for heat, salt, and constituent fluxes. Lateral and longitudinal density gradients are determined from salinity distributions computed from the convection-diffusion equation and an equation of state that expresses density as a function of temperature and salinity; thus, the hydrodynamic and transport computations are directly coupled. Horizontal density variations are shown to contribute significantly to momentum fluxes determined in the hydrodynamic computation. These fluxes lead to enchanced tidal pumping, and consequently greater dispersion, as is evidenced by numerical simulations. Density gradient effects on tidal propagation and transport behavior are discussed and demonstrated.

  5. DNA nanosensor surface grafting and salt dependence

    NASA Astrophysics Data System (ADS)

    Carvalho, B. G.; Fagundes, J.; Martin, A. A.; Raniero, L.; Favero, P. P.

    2013-02-01

    In this paper we investigated the Paracoccidoides brasiliensis fungus nanosensor by simulations of simple strand DNA grafting on gold nanoparticle. In order to improve the knowledge of nanoparticle environment, the addiction of salt solution was studied at the models proposed by us. Nanoparticle and DNA are represented by economic models validated by us in this paper. In addition, the DNA grafting and salt influences are evaluated by adsorption and bond energies calculations. This theoretical evaluation gives support to experimental diagnostics techniques of diseases.

  6. Molten salt oxidation of organic hazardous waste with high salt content.

    PubMed

    Lin, Chengqian; Chi, Yong; Jin, Yuqi; Jiang, Xuguang; Buekens, Alfons; Zhang, Qi; Chen, Jian

    2018-02-01

    Organic hazardous waste often contains some salt, owing to the widespread use of alkali salts during industrial manufacturing processes. These salts cause complications during the treatment of this type of waste. Molten salt oxidation is a flameless, robust thermal process, with inherent capability of destroying the organic constituents of wastes, while retaining the inorganic ingredients in the molten salt. In the present study, molten salt oxidation is employed for treating a typical organic hazardous waste with a high content of alkali salts. The hazardous waste derives from the production of thiotriazinone. Molten salt oxidation experiments have been conducted using a lab-scale molten salt oxidation reactor, and the emissions of CO, NO, SO 2 , HCl and dioxins are studied. Impacts are investigated from the composition of the molten salts, the types of feeding tube, the temperature of molten carbonates and the air factor. Results show that the waste can be oxidised effectively in a molten salt bath. Temperature of molten carbonates plays the most important role. With the temperature rising from 600 °C to 750 °C, the oxidation efficiency increases from 91.1% to 98.3%. Compared with the temperature, air factor has but a minor effect, as well as the composition of the molten salts and the type of feeding tube. The molten carbonates retain chlorine with an efficiency higher than 99.9% and the emissions of dioxins are below 8 pg TEQ g -1 sample. The present study shows that molten salt oxidation is a promising alternative for the disposal of organic hazardous wastes containing a high salt content.

  7. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-08-14

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.

  8. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-01-01

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418

  9. Interaction between crustal tectonics and salt deformation in the Eastern Sardinian margin, Western Tyrrhenian Sea: seismic data and analogue modelling

    NASA Astrophysics Data System (ADS)

    Vendeville, Bruno; Lymer, Gael; Gaullier, Virginie; Chanier, Frank; Maillard, Agnes; Sage, Françoise; Lofi, Johanna; Thinon, Isabelle

    2014-05-01

    by analogue modelling) show that basement fault slip and tilting (Eastward or Westward) was accommodated by lateral flow of salt, which thinned upslope and inflated downslope, while the overlying sediments remained sub-horizontal.

  10. Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.

    2016-12-01

    A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia

  11. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    NASA Astrophysics Data System (ADS)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  12. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  13. Network aggregation in transportation planning models

    DOT National Transportation Integrated Search

    1979-06-01

    This report contains six papers addressed at mathematical and computation aspects of an extraction aggregation model often employed in transportation planning studies. This model concerns the optimal flowing of an extracted subnetwork of a given netw...

  14. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  15. Comparison of the physicochemical properties of the N-(2-hydroxyethyl) pyrrolidine, diethylamine and sodium salt forms of diclofenac.

    PubMed

    O'Connor, K M; Corrigan, O I

    2001-07-17

    Non steroidal anti-inflammatory agents (NSAIDs) such as diclofenac have very low aqueous solubilities and consequently salt formation may be used to enhance solubility and dissolution rate. In this study, we examined the physicochemical properties of three diclofenac salts, diclofenac sodium (DNa), diclofenac N-(2-hydroxyethyl)pyrrolidine (DHEP) and diclofenac diethylamine (DDEA), and their different solid state forms to determine the influence of salt form on solubility, dissolution rate and membrane transport. The equilibrium solubility of DDEA at 25 degrees C was determined as 33 mM, lower than the solubilities of DHEP (273 mM) and DNa (66 mM) previously reported (Ledwidge and Corrigan, 1998). In addition to the dihydrate form of DHEP previously characterised, monohydrate forms of DHEP and DDEA were identified. Intrinsic dissolution rate studies were used to determine the solubility ratios of the hydrated and anhydrous forms. The monohydrate form of DHEP was found to be 1.8 times less soluble than the anhydrate, whereas DDEA anhydrate was approximately 1.7 times as soluble as the monohydrate form. On investigation of the pH-solubility profile (25 degrees C) of DDEA, appreciable supersaturation (76 mM) relative to the theoretical profile, was detected at the pH(max). This contrasts with values of >800 and 67 mM for DHEP and DNa, respectively. The transport of salt solutions through a porous membrane (Visking) was investigated. A linear relationship between concentration (mM) and rate of transport (mmol/h) was established for DNa and DHEP solutions. The mass transfer coefficient determined for DHEP was lower than that for the other two salts. Nevertheless, the maximum transport rate obtained for DHEP is almost six times higher than that obtained for DDEA.

  16. Corrosion Prediction with Parallel Finite Element Modeling for Coupled Hygro-Chemo Transport into Concrete under Chloride-Rich Environment

    PubMed Central

    Na, Okpin; Cai, Xiao-Chuan; Xi, Yunping

    2017-01-01

    The prediction of the chloride-induced corrosion is very important because of the durable life of concrete structure. To simulate more realistic durability performance of concrete structures, complex scientific methods and more accurate material models are needed. In order to predict the robust results of corrosion initiation time and to describe the thin layer from concrete surface to reinforcement, a large number of fine meshes are also used. The purpose of this study is to suggest more realistic physical model regarding coupled hygro-chemo transport and to implement the model with parallel finite element algorithm. Furthermore, microclimate model with environmental humidity and seasonal temperature is adopted. As a result, the prediction model of chloride diffusion under unsaturated condition was developed with parallel algorithms and was applied to the existing bridge to validate the model with multi-boundary condition. As the number of processors increased, the computational time decreased until the number of processors became optimized. Then, the computational time increased because the communication time between the processors increased. The framework of present model can be extended to simulate the multi-species de-icing salts ingress into non-saturated concrete structures in future work. PMID:28772714

  17. Integrated urban systems model with multiple transportation supply agents.

    DOT National Transportation Integrated Search

    2012-10-01

    This project demonstrates the feasibility of developing quantitative models that can forecast future networks under : current and alternative transportation planning processes. The current transportation planning process is modeled : based on empiric...

  18. Salt Composition Derived from Veazey Composition by Thermodynamic Modeling and Predicted Composition of Drum Contents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbrod, Kirk Ryan; Veirs, Douglas Kirk; Funk, David John

    This report describes the derivation of the salt composition from the Veazey salt stream analysis. It also provides an estimate of the proportions of the kitty litter, nitrate salt and neutralizer that was contained in drum 68660. While the actinide content of waste streams was judiciously followed in the 1980s in TA-55, no record of the salt composition could be found. Consequently, a salt waste stream produced from 1992 to 1994 and reported by Gerry Veazey provided the basis for this study. While chemical analysis of the waste stream was highly variable, an average analysis provided input to the Streammore » Analyzer software to calculate a composition for a concentrated solid nitrate salt and liquid waste stream. The calculation predicted the gas / condensed phase compositions as well as solid salt / saturated liquid compositions. The derived composition provides an estimate of the nitrate feedstream to WIPP for which kinetic measurements can be made. The ratio of salt to Swheat in drum 68660 contents was estimated through an overall mass balance on the parent and sibling drums. The RTR video provided independent confirmation concerning the volume of the mixture. The solid salt layer contains the majority of the salt at a ratio with Swheat that potentially could become exothermic.« less

  19. A Method of Lyophilizing Vaccines Containing Aluminum Salts into a Dry Powder Without Causing Particle Aggregation or Decreasing the Immunogenicity Following Reconstitution

    PubMed Central

    Li, Xinran; Thakkar, Sachin G.; Ruwona, Tinashe B.; Williams, Robert O.; Cui, Zhengrong

    2015-01-01

    Many currently licensed and commercially available human vaccines contain aluminum salts as vaccine adjuvants. A major limitation with these vaccines is that they must not be exposed to freezing temperatures during transport or storage such that the liquid vaccine freezes, because freezing causes irreversible coagulation that damages the vaccines (e.g., loss of efficacy). Therefore, vaccines that contain aluminum salts as adjuvants are formulated as liquid suspensions and are required to be kept in cold chain (2–8°C) during transport and storage. Formulating vaccines adjuvanted with aluminum salts into dry powder that can be readily reconstituted before injection may address the limitation. Spray freeze-drying of vaccines with low concentrations of aluminum salts and high concentrations of trehalose alone, or a mixture of sugars and amino acids, as excipients can convert vaccines containing aluminum salts into dry powder, but fails to preserve the particle size and/or immunogenicity of the vaccines. In the present study, using ovalbumin as a model antigen adsorbed onto aluminum hydroxide or aluminum phosphate, a commercially available tetanus toxoid vaccine adjuvanted with potassium alum, a human hepatitis B vaccine adjuvanted with aluminum hydroxide, and a human papillomavirus vaccine adjuvanted with aluminum hydroxyphosphate sulfate, it was shown that vaccines containing a relatively high concentration of aluminum salts (i.e., up to ~1%, w/v, of aluminum hydroxide) can be converted into a dry powder by thin-film freezing followed by removal of the frozen solvent by lyophilization while using low levels of trehalose (i.e., as low as 2% w/v) as an excipient. Importantly, the thin-film freeze-drying process did not cause particle aggregation, nor decreased the immunogenicity of the vaccines. Moreover, repeated freezing-and-thawing of the dry vaccine powder did not cause aggregation. Thin-film freeze-drying is a viable platform technology to produce dry powders of

  20. Variational multiscale models for charge transport.

    PubMed

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  1. Variational multiscale models for charge transport

    PubMed Central

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  2. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. Amore » three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.« less

  3. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

    PubMed

    Stepien, Piotr; Johnson, Giles N

    2009-02-01

    The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.

  4. Short- and medium-chain fatty acids enhance the cell surface expression and transport capacity of the bile salt export pump (BSEP/ABCB11).

    PubMed

    Kato, Takuya; Hayashi, Hisamitsu; Sugiyama, Yuichi

    2010-09-01

    The reduced expression of the bile salt export pump (BSEP/ABCB11) at the canalicular membrane is associated with cholestasis-induced hepatotoxicity due to the accumulation of bile acids in hepatocytes. We previously reported that 4-phenylbutyrate (4PBA), an approved drug for urea cycle disorders, is a promising agent for intrahepatic cholestasis because it increases both the cell surface expression and the transport capacity of BSEP. In the present study, we searched for effective compounds other than 4PBA by focusing on short- and medium-chain fatty acids, which have similar characteristics to 4PBA such as their low-molecular-weight and a carboxyl group. In transcellular transport studies using Madin-Darby canine kidney (MDCK) II cells, all short- and medium-chain fatty acids tested except for formate, acetate, and hexanoic acid showed more potent effects on wild type (WT) BSEP-mediated [3H]taurocholate transport than did 4PBA. The increase in WT BSEP transport with butyrate and octanoic acid treatment correlated with an increase in its expression at the cell surface. Two PFIC2-type variants, E297G and D482G BSEP, were similarly affected with both compounds treatment. The prolonged half-life of cell surface-resident WT BSEP was responsible for this increased octanoic acid-stimulated transport, but not for that of butyrate. In conclusion, short- and medium-chain fatty acids have potent effects on the increase in WT and PFIC2-type BSEP-mediated transport in MDCK II cells. Although both short- and medium-chain fatty acids enhance the transport capacity of WT and PFIC2-type BSEP by inducing those expressions at the cell surface, the underlying mechanism seems to differ between fatty acids. 2010 Elsevier B.V. All rights reserved.

  5. The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron.

    PubMed

    Hennings, J Christopher; Andrini, Olga; Picard, Nicolas; Paulais, Marc; Huebner, Antje K; Cayuqueo, Irma Karen Lopez; Bignon, Yohan; Keck, Mathilde; Cornière, Nicolas; Böhm, David; Jentsch, Thomas J; Chambrey, Régine; Teulon, Jacques; Hübner, Christian A; Eladari, Dominique

    2017-01-01

    Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule. Copyright © 2016 by the American Society of Nephrology.

  6. The ClC-K2 Chloride Channel Is Critical for Salt Handling in the Distal Nephron

    PubMed Central

    Hennings, J. Christopher; Andrini, Olga; Picard, Nicolas; Paulais, Marc; Huebner, Antje K.; Cayuqueo, Irma Karen Lopez; Bignon, Yohan; Keck, Mathilde; Cornière, Nicolas; Böhm, David; Jentsch, Thomas J.; Chambrey, Régine; Hübner, Christian A.

    2017-01-01

    Chloride transport by the renal tubule is critical for blood pressure (BP), acid-base, and potassium homeostasis. Chloride uptake from the urinary fluid is mediated by various apical transporters, whereas basolateral chloride exit is thought to be mediated by ClC-Ka/K1 and ClC-Kb/K2, two chloride channels from the ClC family, or by KCl cotransporters from the SLC12 gene family. Nevertheless, the localization and role of ClC-K channels is not fully resolved. Because inactivating mutations in ClC-Kb/K2 cause Bartter syndrome, a disease that mimics the effects of the loop diuretic furosemide, ClC-Kb/K2 is assumed to have a critical role in salt handling by the thick ascending limb. To dissect the role of this channel in detail, we generated a mouse model with a targeted disruption of the murine ortholog ClC-K2. Mutant mice developed a Bartter syndrome phenotype, characterized by renal salt loss, marked hypokalemia, and metabolic alkalosis. Patch-clamp analysis of tubules isolated from knockout (KO) mice suggested that ClC-K2 is the main basolateral chloride channel in the thick ascending limb and in the aldosterone-sensitive distal nephron. Accordingly, ClC-K2 KO mice did not exhibit the natriuretic response to furosemide and exhibited a severely blunted response to thiazide. We conclude that ClC-Kb/K2 is critical for salt absorption not only by the thick ascending limb, but also by the distal convoluted tubule. PMID:27335120

  7. Profiling Groundwater Salt Concentrations in Mangrove Swamps and Tropical Salt Flats

    NASA Astrophysics Data System (ADS)

    Ridd, Peter V.; Sam, Renagi

    1996-11-01

    The salt concentration of groundwater in mangrove swamps is an important parameter controlling the growth of mangrove species. Extremely high salt concentrations of groundwater in tropical salt flats are responsible for the complete absence of macrophytes. Determining groundwater salt concentrations can be a very time-consuming and laborious process if conventional techniques are used. Typically, groundwater samples must be extracted for later laboratory analysis. In this work, a simple conductivity probe has been developed which may be inserted easily to a depth of 2 m into the sediment. The changes in conductivity of the sediment is due primarily to porewater salt concentration, and thus ground conductivity is useful in determining changes in groundwater salt concentrations. Using the conductivity probe, transects of sediment conductivity can be undertaken quickly. As an example of a possible application of the probe, transects of ground conductivity were taken on a mangrove swamp/saltflat system. The transects show clearly the sharp delineation in conductivity between the salt flat and mangrove swamp due to a change in groundwater salt concentrations. Horizontal and vertical salt concentration gradients of up to 50 g l -1 m -1and 150 g l -1 m -1, respectively, were found. Very sharp changes in groundwater salt concentrations at the interface between salt flats and mangroves indicate that the mangroves may be modifying the salinity of the groundwater actively.

  8. Role of Vasopressin in Rat Models of Salt-Dependent Hypertension.

    PubMed

    Prager-Khoutorsky, Masha; Choe, Katrina Y; Levi, David I; Bourque, Charles W

    2017-05-01

    Dietary salt intake increases both plasma sodium and osmolality and therefore increases vasopressin (VP) release from the neurohypophysis. Although this effect could increase blood pressure by inducing fluid reabsorption and vasoconstriction, acute activation of arterial baroreceptors inhibits VP neurons via GABA A receptors to oppose high blood pressure. Here we review recent findings demonstrating that this protective mechanism fails during chronic high salt intake in rats. Two recent studies showed that chronic high sodium intake causes an increase in intracellular chloride concentration in VP neurons. This effect causes GABA A receptors to become excitatory and leads to the emergence of VP-dependent hypertension. One study showed that the increase in intracellular chloride was provoked by a decrease in the expression of the chloride exporter KCC2 mediated by local secretion of brain-derived neurotrophic factor and activation of TrkB receptors. Prolonged high dietary salt intake can cause pathological plasticity in a central homeostatic circuit that controls VP secretion and thereby contribute to peripheral vasoconstriction and hypertension.

  9. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  10. High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study.

    PubMed

    Wang, Chao; Huang, Zixin; Yu, Kequan; Ding, Ruiling; Ye, Keping; Dai, Chen; Xu, Xinglian; Zhou, Guanghong; Li, Chunbao

    2017-01-01

    High-salt diet has been considered to cause health problems, but it is still less known how high-salt diet affects gut microbiota, protein digestion, and passage in the digestive tract. In this study, C57BL/6J mice were fed low- or high-salt diets (0.25 vs. 3.15% NaCl) for 8 weeks, and then gut contents and feces were collected. Fecal microbiota was identified by sequencing the V4 region of 16S ribosomal RNA gene. Proteins and digested products of duodenal, jejunal, cecal, and colonic contents were identified by LC-MS-MS. The results indicated that the high-salt diet increased Firmicutes/Bacteroidetes ratio, the abundances of genera Lachnospiraceae and Ruminococcus ( P < 0.05), but decreased the abundance of Lactobacillus ( P < 0.05). LC-MS-MS revealed a dynamic change of proteins from the diet, host, and gut microbiota alongside the digestive tract. For dietary proteins, high-salt diet seemed not influence its protein digestion and absorption. For host proteins, 20 proteins of lower abundance were identified in the high-salt diet group in duodenal contents, which were involved in digestive enzymes and pancreatic secretion. However, no significant differentially expressed proteins were detected in jejunal, cecal, and colonic contents. For bacterial proteins, proteins secreted by gut microbiota were involved in energy metabolism, sodium transport, and protein folding. Five proteins (cytidylate kinase, trigger factor, 6-phosphogluconate dehydrogenase, transporter, and undecaprenyl-diphosphatase) had a higher abundance in the high-salt diet group than those in the low-salt group, while two proteins (acetylglutamate kinase and PBSX phage manganese-containing catalase) were over-expressed in the low-salt diet group than in the high-salt group. Consequently, high-salt diet may alter the composition of gut microbiota and has a certain impact on protein digestion.

  11. High-Salt Diet Has a Certain Impact on Protein Digestion and Gut Microbiota: A Sequencing and Proteome Combined Study

    PubMed Central

    Wang, Chao; Huang, Zixin; Yu, Kequan; Ding, Ruiling; Ye, Keping; Dai, Chen; Xu, Xinglian; Zhou, Guanghong; Li, Chunbao

    2017-01-01

    High-salt diet has been considered to cause health problems, but it is still less known how high-salt diet affects gut microbiota, protein digestion, and passage in the digestive tract. In this study, C57BL/6J mice were fed low- or high-salt diets (0.25 vs. 3.15% NaCl) for 8 weeks, and then gut contents and feces were collected. Fecal microbiota was identified by sequencing the V4 region of 16S ribosomal RNA gene. Proteins and digested products of duodenal, jejunal, cecal, and colonic contents were identified by LC-MS-MS. The results indicated that the high-salt diet increased Firmicutes/Bacteroidetes ratio, the abundances of genera Lachnospiraceae and Ruminococcus (P < 0.05), but decreased the abundance of Lactobacillus (P < 0.05). LC-MS-MS revealed a dynamic change of proteins from the diet, host, and gut microbiota alongside the digestive tract. For dietary proteins, high-salt diet seemed not influence its protein digestion and absorption. For host proteins, 20 proteins of lower abundance were identified in the high-salt diet group in duodenal contents, which were involved in digestive enzymes and pancreatic secretion. However, no significant differentially expressed proteins were detected in jejunal, cecal, and colonic contents. For bacterial proteins, proteins secreted by gut microbiota were involved in energy metabolism, sodium transport, and protein folding. Five proteins (cytidylate kinase, trigger factor, 6-phosphogluconate dehydrogenase, transporter, and undecaprenyl-diphosphatase) had a higher abundance in the high-salt diet group than those in the low-salt group, while two proteins (acetylglutamate kinase and PBSX phage manganese-containing catalase) were over-expressed in the low-salt diet group than in the high-salt group. Consequently, high-salt diet may alter the composition of gut microbiota and has a certain impact on protein digestion. PMID:29033907

  12. A three-dimensional transport model for the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Rasch, Philip J.; Tie, Xuexi; Boville, Byron A.; Williamson, David L.

    1994-01-01

    In this paper we describe fundamental properties of an 'off-line' three-dimensional transport model, that is, a model which uses prescribed rather than predicted winds. The model is currently used primarily for studying problems of the middle atmosphere because we have not (yet) incorporated a formulation for the convective transport of trace species, a prerequisite for many tropospheric problems. The off-line model is simpler and less expensive than a model which predicts the wind and mass evolution (an 'on-line' model), but it is more complex than the two-dimensional (2-D) zonally averaged transport models often used in the study of chemistry and transport in the middle atmosphere. It thus serves as a model of intermediate complexity and can fill a useful niche for the study of transport and chemistry. We compare simulations of four tracers, released in the lower stratosphere, in both the on- and off-line models to document the difference resulting from differences in modeling the same problem with this intermediate model. These differences identify the price to be paid in going to a cheaper and simpler calculation. The off-line model transports a tracer in three dimensions. For this reason, it requires fewer approximations than 2-D transport model, which must parameterize the effects of mixing by transient and zonally asymmetric wind features. We compare simulations of the off-line model with simulations of a 2-D model for two problems. First, we compare 2-D and three-dimensional (3-D) models by simulating the emission of an NO(x)-like tracer by a fleet of high-speed aircraft. The off-line model is then used to simulate the transport of C-14 and to contrast its simulation properties to that of the host of 2-D models which participated in an identical simulation in a recent NASA model intercomparison. The off-line model is shown to be somewhat sensitive to the sampling strategy for off-line winds. Simulations with daily averaged winds are in very good qualitative

  13. Salt stress induces changes in the proteomic profile of micropropagated sugarcane shoots

    PubMed Central

    Reis, Ricardo S.; Heringer, Angelo S.; Rangel, Patricia L.; Santa-Catarina, Claudete; Grativol, Clícia; Veiga, Carlos F. M.; Souza-Filho, Gonçalo A.

    2017-01-01

    Salt stress is one of the most common stresses in agricultural regions worldwide. In particular, sugarcane is affected by salt stress conditions, and no sugarcane cultivar presently show high productivity accompanied by a tolerance to salt stress. Proteomic analysis allows elucidation of the important pathways involved in responses to various abiotic stresses at the biochemical and molecular levels. Thus, this study aimed to analyse the proteomic effects of salt stress in micropropagated shoots of two sugarcane cultivars (CB38-22 and RB855536) using a label-free proteomic approach. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD006075. The RB855536 cultivar is more tolerant to salt stress than CB38-22. A quantitative label-free shotgun proteomic analysis identified 1172 non-redundant proteins, and 1160 of these were observed in both cultivars in the presence or absence of NaCl. Compared with CB38-22, the RB855536 cultivar showed a greater abundance of proteins involved in non-enzymatic antioxidant mechanisms, ion transport, and photosynthesis. Some proteins, such as calcium-dependent protein kinase, photosystem I, phospholipase D, and glyceraldehyde-3-phosphate dehydrogenase, were more abundant in the RB855536 cultivar under salt stress. Our results provide new insights into the response of sugarcane to salt stress, and the changes in the abundance of these proteins might be important for the acquisition of ionic and osmotic homeostasis during exposure to salt stress. PMID:28419154

  14. Clinton River Sediment Transport Modeling Study

    EPA Pesticide Factsheets

    The U.S. ACE develops sediment transport models for tributaries to the Great Lakes that discharge to AOCs. The models developed help State and local agencies to evaluate better ways for soil conservation and non-point source pollution prevention.

  15. A revised Pitzer model for low-temperature soluble salt assemblages at the Phoenix site, Mars

    NASA Astrophysics Data System (ADS)

    Toner, J. D.; Catling, D. C.; Light, B.

    2015-10-01

    The Wet Chemistry Laboratory (WCL) on the Mars Phoenix Lander measured ions in a soil-water extraction and found Na+, K+, H+ (pH), Ca2+, Mg2+, SO42-, ClO4-, and Cl-. Equilibrium models offer insights into salt phases that were originally present in the Phoenix soil, which dissolved to form the measured WCL solution; however, there are few experimental datasets for single cation perchlorates (ClO4-), and none for mixed perchlorates, at low temperatures, which are needed to build models. In this study, we measure ice and salt solubilities in binary and ternary solutions in the Na-Ca-Mg-ClO4 system, and then use this data, along with existing data, to construct a low-temperature Pitzer model for perchlorate brines. We then apply our model to a nominal WCL solution. Previous studies have modeled either freezing of a WCL solution or evaporation at a single temperature. For the first time, we model evaporation at subzero temperatures, which is relevant for dehydration conditions that might occur at the Phoenix site. Our model indicates that a freezing WCL solution will form ice, KClO4, hydromagnesite (3MgCO3·Mg(OH)2·3H2O), calcite (CaCO3), meridianiite (MgSO4·11H2O), MgCl2·12H2O, NaClO4·2H2O, and Mg(ClO4)2·6H2O at the eutectic (209 K). The total water held in hydrated salt phases at the eutectic is ∼1.2 wt.%, which is much greater than hydrated water contents when evaporation is modeled at 298.15 K (∼0.3 wt.%). Evaporation of WCL solutions at lower temperatures (down to 210 K) results in lower water activities and the formation of more dehydrated minerals, e.g. kieserite (MgSO4·H2O) instead of meridianiite. Potentially habitable brines, with water activity aw > 0.6, can occur when soil temperatures are above 220 K and when the soil liquid water content is greater than 0.4 wt.% (100 ×gH2O gsoil-1). In general, modeling indicates that mineral assemblages derived from WCL-type solutions are characteristic of the soil temperature, water content, and water

  16. Atmospheric transport of persistent organic pollutants - development of a 3-d dynamical transport model covering the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Hansen, K. M.; Christensen, J. H.; Geels, C.; Frohn, L. M.; Brandt, J.

    2003-04-01

    The Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur, lead, and mercury to the Arctic. The model has been validated carefully for these compounds. A new version of DEHM is currently being developed to describe the atmospheric transport of persistent organic pollutants (POPs) which are toxic, lipophilic and bio-accumulating compounds showing great persistence in the environment. The model has a horizontal resolution of 150 km x 150 km and 18 vertical layers, and it is driven by meteorological data from the numerical weather prediction model MM5V2. During environmental cycling POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The present model version describes the atmospheric transport of the pesticide alpha-hexachlorocyclohexane (alpha-HCH). Other POPs may be included when proper data on emissions and physical-chemical parameters becomes available. The model-processes and the first model results are presented. The atmospheric transport of alpha-HCH for the 1990s is well described by the model.

  17. Turbulent transport models for scramjet flowfields

    NASA Technical Reports Server (NTRS)

    Sindir, M. M.; Harsha, P. T.

    1984-01-01

    Turbulence modeling approaches were examined from the standpoint of their capability to predict the complex flowfield features observed in scramjet combustions. Thus, for example, the accuracy of each turbulence model, with respect to the prediction of recirculating flows, was examined. It was observed that for large diameter ratio axisymmetric sudden expansion flows, a choice of turbulence model was not critical because of the domination of their flowfields by pressure forces. For low diameter ratio axisymmetric sudden expansions and planar backward-facing steps flows, where turbulent shear stresses are of greater significance, the algebraic Reynolds stress approach, modified to increase its sensitivity to streamline curvature, was found to provide the best results. Results of the study also showed that strongly swirling flows provide a stringent test of turbulence model assumptions. Thus, although flows with very high swirl are not of great practical interest, they are useful for turbulence model development. Finally, it was also noted that numerical flowfields solution techniques have a strong interrelation with turbulence models, particularly with the turbulent transport models which involve source-dominated transport equations.

  18. Effect of excess dietary salt on calcium metabolism and bone mineral in a spaceflight rat model

    NASA Technical Reports Server (NTRS)

    Navidi, Meena; Wolinsky, Ira; Fung, Paul; Arnaud, Sara B.

    1995-01-01

    High levels of salt promote urinary calcium (UCa) loss and have the potential to cause bone mineral deficits if intestinal Ca absorption does not compensate for these losses. To determine the effect of excess dietary salt on the osteopenia that follows skeletal unloading, we used a spaceflight model that unloads the hindlimbs of 200-g rats by tail suspension (S). Rats were studied for 2 wk on diets containing high salt (4 and 8%) and normal calcium (0.45%) and for 4 wk on diets containing 8% salt (HiNa) and 0.2% Ca (LoCa). Final body weights were 9-11% lower in S than in control rats (C) in both experiments, reflecting lower growth rates in S than in C during pair feeding. UCa represented 12% of dietary Ca on HiNA diets and was twofold higher in S than in C transiently during unloading. Net intestinal Ca absorption was consistently 11-18% lower in S than in C. Serum 1,25-dihydroxyvitamin D was unaffected by either LoCa or HiNa diets in S but was increased by LoCa and HiNa diets in C. Despite depressed intestinal Ca absoption in S and a sluggish response of the Ca endocrine system to HiNa diets, UCa loss did not appear to affect the osteopenia induced by unloading. Although any deficit in bone mineral content from HiNa diets may have been too small to detect or the duration of the study too short to manifest, there were clear differences in Ca metabolism from control levels in the response of the spaceflight model to HiNa diets, indicated by depression of intestinal Ca absorption and its regulatory hormone.

  19. A new turbulence-based model for sand transport

    NASA Astrophysics Data System (ADS)

    Mayaud, Jerome; Wiggs, Giles; Bailey, Richard

    2016-04-01

    Knowledge of the changing rate of sediment flux in space and time is essential for quantifying surface erosion and deposition in desert landscapes. While many aeolian studies have relied on time-averaged parameters such as wind velocity (U) and wind shear velocity (u*) to determine sediment flux, there is increasing evidence that high-frequency turbulence is an important driving force behind the entrainment and transport of sand. However, turbulence has yet to be incorporated into a functional sand transport model that can be used for predictive purposes. In this study we present a new transport model (the 'turbulence model') that accounts for high-frequency variations in the horizontal (u) and vertical (w) components of wind flow. The turbulence model is fitted to wind velocity and sediment transport data from a field experiment undertaken in Namibia's Skeleton Coast National Park, and its performance at three temporal resolutions (10 Hz, 1 Hz, 1 min) is compared to two existing models that rely on time-averaged wind velocity data (Radok, 1977; Dong et al., 2003). The validity of the three models is analysed under a variety of saltation conditions, using a 2-hour (1 Hz measurement resolution) dataset from the Skeleton Coast and a 5-hour (1 min measurement resolution) dataset from the southwestern Kalahari Desert. The turbulence model is shown to outperform the Radok and Dong models when predicting total saltation count over the three experimental periods. For all temporal resolutions presented in this study (10 Hz-10 min), the turbulence model predicted total saltation count to within at least 0.34%, whereas the Radok and Dong models over- or underestimated total count by up to 5.50% and 20.53% respectively. The strong performance of the turbulence model can be attributed to a lag in mass flux response built into its formulation, which can be adapted depending on the temporal resolution of investigation. This accounts for the inherent lag within the physical

  20. Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins.

    PubMed

    Blaustein, Mordecai P; Hamlyn, John M

    2010-12-01

    Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension. Copyright © 2010 Elsevier B.V. All rights reserved.