Sample records for salt water volume

  1. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  2. Increased salt consumption induces body water conservation and decreases fluid intake.

    PubMed

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Johannes, Bernd; Marton, Adriana; Müller, Dominik N; Rauh, Manfred; Luft, Friedrich C; Titze, Jens

    2017-05-01

    The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO

  3. Increased salt consumption induces body water conservation and decreases fluid intake

    PubMed Central

    Rakova, Natalia; Kitada, Kento; Lerchl, Kathrin; Dahlmann, Anke; Birukov, Anna; Daub, Steffen; Kopp, Christoph; Pedchenko, Tetyana; Zhang, Yahua; Beck, Luis; Marton, Adriana; Müller, Dominik N.; Rauh, Manfred; Luft, Friedrich C.

    2017-01-01

    BACKGROUND. The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS. Over the course of 2 separate space flight simulation studies of 105 and 205 days’ duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS. A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION. Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING. Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology

  4. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  5. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water

    NASA Technical Reports Server (NTRS)

    Ortiz, R. M.; Worthy, G. A.; Byers, F. M.

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  6. Estimation of water turnover rates of captive West Indian manatees (Trichechus manatus) held in fresh and salt water.

    PubMed

    Ortiz, R M; Worthy, G A; Byers, F M

    1999-01-01

    The ability of West Indian manatees (Trichechus manatus) to move between fresh and salt water raises the question of whether manatees drink salt water. Water turnover rates were estimated in captive West Indian manatees using the deuterium oxide dilution technique. Rates were quantified in animals using four experimental treatments: (1) held in fresh water and fed lettuce (N=4), (2) held in salt water and fed lettuce (N=2), (3) acutely exposed to salt water and fed lettuce (N=4), and (4) chronically exposed to salt water with limited access to fresh water and fed sea grass (N=5). Animals held in fresh water had the highest turnover rates (145+/-12 ml kg-1 day-1) (mean +/- s.e.m.). Animals acutely exposed to salt water decreased their turnover rate significantly when moved into salt water (from 124+/-15 to 65+/-15 ml kg-1 day-1) and subsequently increased their turnover rate upon re-entry to fresh water (146+/-19 ml kg-1 day-1). Manatees chronically exposed to salt water had significantly lower turnover rates (21+/-3 ml kg-1 day-1) compared with animals held in salt water and fed lettuce (45+/-3 ml kg-1 day-1). Manatees chronically exposed to salt water and fed sea grass had very low turnover rates compared with manatees held in salt water and fed lettuce, which is consistent with a lack of mariposia. Manatees in fresh water drank large volumes of water, which may make them susceptible to hyponatremia if access to a source of Na+ is not provided.

  7. Salt water and skin interactions: new lines of evidence

    NASA Astrophysics Data System (ADS)

    Carbajo, Jose Manuel; Maraver, Francisco

    2018-04-01

    In Health Resort Medicine, both balneotherapy and thalassotherapy, salt waters and their peloids, or mud products are mainly used to treat rheumatic and skin disorders. These therapeutic agents act jointly via numerous mechanical, thermal, and chemical mechanisms. In this review, we examine a new mechanism of action specific to saline waters. When topically administered, this water rich in sodium and chloride penetrates the skin where it is able to modify cellular osmotic pressure and stimulate nerve receptors in the skin via cell membrane ion channels known as "Piezo" proteins. We describe several models of cutaneous adsorption/desorption and penetration of dissolved ions in mineral waters through the skin (osmosis and cell volume mechanisms in keratinocytes) and examine the role of these resources in stimulating cutaneous nerve receptors. The actions of salt mineral waters are mediated by a mechanism conditioned by the concentration and quality of their salts involving cellular osmosis-mediated activation/inhibition of cell apoptotic or necrotic processes. In turn, this osmotic mechanism modulates the recently described mechanosensitive piezoelectric channels.

  8. The Synthesis of Calcium Salt from Brine Water by Partial Evaporation and Chemical Precipitation

    NASA Astrophysics Data System (ADS)

    Lalasari, L. H.; Widowati, M. K.; Natasha, N. C.; Sulistiyono, E.; Prasetyo, A. B.

    2017-02-01

    In this study would be investigated the effects of partial evaporation and chemical precipitation in the formation of calcium salt from brine water resources. The chemical reagents used in the study was oxalate acid (C2H2O4), ammonium carbonate (NH4)2CO3) and ammonium hydroxide (NH4OH) with reagent concentration of 2 N, respectively. The procedure was 10 liters brine water evaporated until 20% volume and continued with filtration process to separate brine water filtrate from residue (salt). Salt resulted from evaporation process was characterized by Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) techniques. Filtrate then was reacted with C2H2O4, (NH4)2CO3 and NH4OH reagents to get salt products in atmospheric condition and variation ratio volume brine water/chemicals (v/v) [10/1; 10/5; 10/10; 10/20; 10/30; 10:50; 20/1; 20/5; 20/10; 20/20; 20/30; 20:50]. The salt product than were filtered, dried, measured weights and finally characterized by SEM/EDS and XRD techniques. The result of experiment showed the chemical composition of brine water from Tirta Sanita, Bogor was 28.87% Na, 9.17% Mg, 2.94% Ca, 22.33% O, 0.71% Sr, 30.02% Cl, 1.51% Si, 1.23% K, 0.55% S, 1.31% Al. The chemical composition of salt resulted by partial evaporation was 53.02% Ca, 28.93%O, 9.50% Na, 2.10% Mg, 1.53% Sr, 1.20% Cl, 1.10% Si, 0.63% K, 0.40% S, 0.39% Al. The salt resulted by total evaporation was indicated namely as NaCl. Whereas salt resulted by partial evaporation was CaCO3 with a purity of 90 % from High Score Plus analysis. In the experiment by chemical precipitation was reported that the reagents of ammonium carbonate were more reactive for synthesizing calcium salt from brine water compared to reagents of oxalate acid and ammonium hydroxide. The salts precipitated by NH4OH, (NH4)2CO3, and H2C2O4 reagents were indicated as NaCl, CaCO3 and CaC2O4.H2O, respectively. The techniques of partial evaporation until 20% volume sample of brine water and

  9. Calculation of area and volume for the north part of Great Salt Lake, Utah

    USGS Publications Warehouse

    Baskin, Robert L.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Forestry, Fire, and State Lands, collected bathymetric data for the north part of Great Salt Lake during the spring and early summer of 2006 using a single-beam, high-definition fathometer and real-time differential global positioning system. About 5.2 million depth measurements were collected along more than 765 miles (1,230 kilometers) of survey transects. Sound-velocity profiles were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping and calculation of area and volume. Area and volume calculations show a maximum area of about 385,000 acres (1,560 square kilometers) and a maximum volume of about 5,693,000 acre-feet (about 7 cubic kilometers) at a water-surface altitude of 4,200 feet (1,280 meters). Minimum natural water-surface altitude of the north part of Great Salt Lake is just below 4,167 feet (1,270 meters) in the area just north of the Union Pacific railroad causeway halfway between Saline and the western edge of the lake. The north part of Great Salt Lake generally grades gradually to the west and north and is bounded by steep scarps along its eastern border. Calculations for area and volume are based on a low altitude of 4,167 feet (1,270 meters) to a high altitude of 4,200 feet (1,280 meters).

  10. Water and salt balance of Great Salt Lake, Utah, and simulation of water and salt movement through the causeway

    USGS Publications Warehouse

    Wold, Steven R.; Thomas, Blakemore E.; Waddell, Kidd M.

    1997-01-01

    The water and salt balance of Great Salt Lake primarily depends on the amount of inflow from tributary streams and the conveyance properties of a causeway constructed during 1957-59 that divides the lake into the south and north parts. The conveyance properties of the causeway originally included two culverts, each 15 feet wide, and the permeable rock-fill material.During 1980-86, the salt balance changed as a result of record high inflow that averaged 4,627,000 acre-feet annually and modifications made to the conveyance properties of the causeway that included opening a 300-foot-wide breach. In this study, a model developed in 1973 by Waddell and Bolke to simulate the water and salt balance of the lake was revised to accommodate the high water-surface altitude and modifications made to the causeway. This study, done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of State Lands and Forestry, updates the model with monitoring data collected during 1980-86. This report describes the calibration of the model and presents the results of simulations for three hypothetical 10-year periods.During January 1, 1980, to July 31, 1984, a net load of 0.5 billion tons of dissolved salt flowed from the south to the north part of the lake primarily as a result of record inflows. From August 1, 1984, when the breach was opened, to December 31,1986, a net load of 0.3 billion tons of dissolved salt flowed from the north to the south part of the lake primarily as a result of the breach.For simulated inflow rates during a hypothetical 10-year period resulting in the water-surface altitude decreasing from about 4,200 to 4,192 feet, there was a net movement of about 1.0 billion tons of dissolved salt from the south to the north part, and about 1.7 billion tons of salt precipitated in the north part. For simulated inflow rates during a hypothetical 10-year period resulting in a rise in water-surface altitude from about 4,200 to 4

  11. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  12. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  13. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  14. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  15. 46 CFR 45.37 - Salt water load lines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Salt water load lines. 45.37 Section 45.37 Shipping... Marks § 45.37 Salt water load lines. Each vessel that operates in the salt water of the St. Lawrence... marks under § 45.77 for salt water; and (b) Be marked with the letters “FW” above the fresh water marks...

  16. Secondary Confinement of Water Observed in Eutectic Melting of Aqueous Salt Systems in Nanopores.

    PubMed

    Meissner, Jens; Prause, Albert; Findenegg, Gerhard H

    2016-05-19

    Freezing and melting of aqueous solutions of alkali halides confined in the cylindrical nanopores of MCM-41 and SBA-15 silica was probed by differential scanning calorimetry (DSC). We find that the confinement-induced shift of the eutectic temperature in the pores can be significantly greater than the shift of the melting temperature of pure water. Greatest shifts of the eutectic temperature are found for salts that crystallize as oligohydrates at the eutectic point. This behavior is explained by the larger fraction of pore volume occupied by salt hydrates as compared to anhydrous salts, on the assumption that precipitated salt constitutes an additional confinement for ice/water in the pores. A model based on this secondary confinement effect gives a good representation of the experimental data. Salt-specific secondary confinement may play a role in a variety of fields, from salt-impregnated advanced adsorbents and catalysts to the thermal weathering of building materials.

  17. Combined Theoretical and Experimental Study of Refractive Indices of Water-Acetonitrile-Salt Systems.

    PubMed

    An, Ni; Zhuang, Bilin; Li, Minglun; Lu, Yuyuan; Wang, Zhen-Gang

    2015-08-20

    We propose a simple theoretical formula for describing the refractive indices in binary liquid mixtures containing salt ions. Our theory is based on the Clausius-Mossotti equation; it gives the refractive index of the mixture in terms of the refractive indices of the pure liquids and the polarizability of the ionic species, by properly accounting for the volume change upon mixing. The theoretical predictions are tested by extensive experimental measurements of the refractive indices for water-acetonitrile-salt systems for several liquid compositions, different salt species, and a range of salt concentrations. Excellent agreement is obtained in all cases, especially at low salt concentrations, with no fitting parameters. A simplified expression of the refractive index for low salt concentration is also given, which can be the theoretical basis for determination of salt concentration using refractive index measurements.

  18. Changes of minimal erythema dose after water and salt water baths.

    PubMed

    Gambichler, T; Schröpl, F

    1998-01-01

    Knowledge about the influence of salt water baths on UV irradiation, especially balneophototherapy, is incomplete. The aim of this study was to investigate the influence of various concentrated salt solutions on the minimal erythema dose (MED). We determined the MEDdry (UVB) in 24 healthy, previously UV unexposed subjects on the inner forearm. Subjects were divided randomly into two groups of 12. Subsequently, the MEDwet was assessed on each forearm after 30 min tap water or 5% salt water bath (group A), respectively, or after 30 min 10% or 20% salt water bath (group B), respectively. Compared with the MEDdry, a significantly decreased MEDwet, was observed after all exposures (group A==>F = 18.94; P < 0.001; group B==>F = 11.73; P < 0.006). A maximal relative decrease in MEDdry of about 51.4% was observed after the 10% salt water bath. The 5% salt solution caused a modest relative decrease in MEDwet of 23.4%. We observed a markedly increased photosensitivity to UVB after all exposures, without a linear correlation between the MED and the salt water concentration. A determination of MED during balneophototherapy should be carried out after bathing in order to reduce the cumulative UV dose and to prevent acute photodamage.

  19. Rebar corrosion monitoring in concrete structure under salt water enviroment using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pan, Yuheng; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Wang, Shuang; He, Pan; Yan, Jinlin

    2015-08-01

    Monitoring corrosion of steel reinforcing bars is critical for the durability and safety of reinforced concrete structures. Corrosion sensors based on fiber optic have proved to exhibit meaningful benefits compared with the conventional electric ones. In recent years, Fiber Bragg Grating (FBG) has been used as a new kind of sensing element in an attempt to directly monitor the corrosion in concrete structure due to its remarkable advantages. In this paper, we present a novel kind of FBG based rebar corrosion monitoring sensor. The rebar corrosion is detected by volume expansion of the corroded rebar by transferring it to the axial strain of FBG when concrete structure is soaked in salt water. An accelerated salt water corrosion test was performed. The experiment results showed the corrosion can be monitored effectively and the corrosion rate is obtained by volume loss rate of rebar.

  20. A universal salt model based on under-ground precipitation of solid salts due to supercritical water `out-salting'

    NASA Astrophysics Data System (ADS)

    Rueslåtten, H.; Hovland, M. T.

    2010-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth’s surface-environment can be regarded as ‘water-friendly’ and ‘salt hostile’, the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, ‘salt-friendly’. The riddle as to how the salt accumulated in various locations on those two planets, is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed ‘evaporites’, meaning that they formed as a consequence of the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, as an ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will attain the phase of supercritical water vapor (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (T>400°C, P>300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the Red Sea indicates that a

  1. Increasing transports of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-06-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intensive of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21 century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport series has made it difficult to identify trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv =106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW =1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall trend over the two decades of observation was 9 ± 8% for volume transport and 18 ± 9% for heat transport (95% confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the Atlantic inflow

  2. Double knockout of carbonic anhydrase II (CAII) and Na(+)-Cl(-) cotransporter (NCC) causes salt wasting and volume depletion.

    PubMed

    Xu, Jie; Barone, Sharon; Brooks, Mary-Beth; Soleimani, Manoocher

    2013-01-01

    The thiazide-sensitive Na(+)-Cl(-) cotransporter NCC and the Cl(-)/HCO3(-)exchanger pendrin are expressed on apical membranes of distal cortical nephron segments and mediate salt absorption, with pendrin working in tandem with the epithelial Na(+) channel (ENaC) and the Na(+)-dependent chloride/bicarbonate exchanger (NDCBE), whereas NCC is working by itself. A recent study showed that NCC and pendrin compensate for loss of each other under basal conditions, therefore masking the role that each plays in salt reabsorption. Carbonic anhydrase II (CAII, CA2 or CAR2) plays an important role in acid-base transport and salt reabsorption in the proximal convoluted tubule and acid-base transport in the collecting duct. Animals with CAII deletion show remodeling of intercalated cells along with the downregulation of pendrin. NCC KO mice on the other hand show significant upregulation of pendrin and ENaC. Neither model shows any significant salt wasting under baseline conditions. We hypothesized that the up-regulation of pendrin is essential for the prevention of salt wasting in NCC KO mice. To test this hypothesis, we generated NCC/CAII double KO (dKO) mice by crossing mice with single deletion of NCC and CAII. The NCC/CAII dKO mice displayed significant downregulation of pendrin, along with polyuria and salt wasting. As a result, the dKO mice developed volume depletion, which was associated with the inability to concentrate urine. We conclude that the upregulation of pendrin is essential for the prevention of salt and water wasting in NCC deficient animals and its downregulation or inactivation will result in salt wasting, impaired water conservation and volume depletion in the setting of NCC inactivation or inhibition. © 2014 S. Karger AG, Basel.

  3. Calculation of area and volume for the south part of Great Salt Lake, Utah

    USGS Publications Warehouse

    Baskin, Robert L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Wildlife Resources, collected bathymetric data for the south part of Great Salt Lake during 2002-04 using a single-beam, high-definition fathometer and real-time differential global positioning system. About 7.6 million depth measurements were collected along more than 930 miles (1,690 kilometers) of survey transects. Sound-velocity profiles were obtained in conjunction with the bathymetric data to provide time-of-travel corrections to the depth calculations. Data were processed with commercial hydrographic software and exported into geographic information system (GIS) software for mapping and calculation of area and volume. Area and volume calculations show a maximum area of about 508,000 acres (2,056 square kilometers) and a maximum volume of about 9,257,000 acre-feet (11.42 cubic kilometers) at a water-surface altitude of 4,200 feet (1,280 meters). Minimum water-surface altitude of the south part of Great Salt Lake is just below 4,167 feet (1,279 meters) in the area just south of the Union Pacific railroad causeway halfway between Promontory Point and the western edge of the lake. At this altitude, and continuing up to about 4,176 feet (1,279 meters), the south part of the lake is separated into two areas by a ridge extending from Promontory Point to Hat Island. Calculations for area and volume are based on a low altitude of 4,167 feet (1,279 meters) to a high altitude of 4,200 feet (1,280 meters).

  4. Transport of volume, heat, and salt towards the Arctic in the Faroe Current 1993-2013

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Larsen, K. M. H.; Hátún, H.; Kristiansen, R.; Mortensen, E.; Østerhus, S.

    2015-09-01

    The flow of warm and saline water from the Atlantic Ocean, across the Greenland-Scotland Ridge, into the Nordic Seas - the Atlantic inflow - is split into three separate branches. The most intense of these branches is the inflow between Iceland and the Faroe Islands (Faroes), which is focused into the Faroe Current, north of the Faroes. The Atlantic inflow is an integral part of the North Atlantic thermohaline circulation (THC), which is projected to weaken during the 21st century and might conceivably reduce the oceanic heat and salt transports towards the Arctic. Since the mid-1990s, hydrographic properties and current velocities of the Faroe Current have been monitored along a section extending north from the Faroe shelf. From these in situ observations, time series of volume, heat, and salt transport have previously been reported, but the high variability of the transport has made it difficult to establish whether there are trends. Here, we present results from a new analysis of the Faroe Current where the in situ observations have been combined with satellite altimetry. For the period 1993 to 2013, we find the average volume transport of Atlantic water in the Faroe Current to be 3.8 ± 0.5 Sv (1 Sv = 106 m3 s-1) with a heat transport relative to 0 °C of 124 ± 15 TW (1 TW = 1012 W). Consistent with other results for the Northeast Atlantic component of the THC, we find no indication of weakening. The transports of the Faroe Current, on the contrary, increased. The overall increase over the 2 decades of observation was 9 ± 8 % for volume transport and 18 ± 9 % for heat transport (95 % confidence intervals). During the same period, the salt transport relative to the salinity of the deep Faroe Bank Channel overflow (34.93) more than doubled, potentially strengthening the feedback on thermohaline intensity. The increased heat and salt transports are partly caused by the increased volume transport and partly by increased temperatures and salinities of the

  5. Salt water and its relation to fresh ground water in Harris County, Texas

    USGS Publications Warehouse

    Winslow, Allen G.; Doyel, William Watson; Wood, L.A.

    1957-01-01

    Other less probable potential sources of salt-water contamination which are discussed include upward movement of salt water from below, vertical movement around salt domes or along faults, downward seepage from surface sources, and contamination through leaking wells.

  6. Cumulates, Dykes and Pressure Solution in the Ice-Salt Mantle of Europa: Geological Consequences of Pressure Dependent Liquid Compositions and Volume Changes During Ice-Salt Melting Reactions.

    NASA Astrophysics Data System (ADS)

    Day, S.; Asphaug, E.; Bruesch, L.

    2002-12-01

    Water-salt analogue experiments used to investigate cumulate processes in silicate magmas, along with observations of sea ice and ice shelf behaviour, indicate that crystal-melt separation in water-salt systems is a rapid and efficient process even on scales of millimetres and minutes. Squeezing-out of residual melts by matrix compaction is also predicted to be rapid on geological timescales. We predict that the ice-salt mantle of Europa is likely to be strongly stratified, with a layered structure predictable from density and phase relationships between ice polymorphs, aqueous saline solutions and crystalline salts such as hydrated magnesium sulphates (determined experimentally by, inter alia, Hogenboom et al). A surface layer of water ice flotation cumulate will be separated from denser salt cumulates by a cotectic horizon. This cotectic horizon will be both the site of subsequent lowest-temperature melting and a level of neutral buoyancy for the saline melts produced. Initial melting will be in a narrow depth range owing to increasing melting temperature with decreasing pressure: the phase relations argue against direct melt-though to the surface unless vesiculation occurs. Overpressuring of dense melts due to volume expansion on cotectic melting is predicted to lead to lateral dyke emplacement and extension above the dyke tips. Once the liquid leaves the cotectic, melting of water ice will involve negative volume change. Impact-generated melts will drain downwards through the fractured zones beneath crater floors. A feature in the complex crater Mannan'an, with elliptical ring fractures around a conical depression with a central pit, bears a close resemblance to Icelandic glacier collapse cauldrons produced by subglacial eruptions. Other structures resembling Icelandic cauldrons occur along Europan banded structures, while resurgence of ice rubble within collapse structures may produce certain types of chaos region. More general contraction of the ice mantle

  7. Harvesting Water from Air: Using Anhydrous Salt with Sunlight.

    PubMed

    Li, Renyuan; Shi, Yusuf; Shi, Le; Alsaedi, Mossab; Wang, Peng

    2018-05-01

    Atmospheric water is an abundant alternative water resource, equivalent to 6 times the water in all rivers on Earth. This work screens 14 common anhydrous and hydrated salt couples in terms of their physical and chemical stability, water vapor harvesting, and release capacity under relevant application scenarios. Among the salts screened, copper chloride (CuCl 2 ), copper sulfate (CuSO 4 ), and magnesium sulfate (MgSO 4 ) distinguish themselves and are further made into bilayer water collection devices, with the top layer being the photothermal layer, while the bottom layer acts as a salt-loaded fibrous membrane. The water collection devices are capable of capturing water vapor out of the air with low relative humidity (down to 15%) and releasing water under regular and even weakened sunlight (i.e., 0.7 kW/m 2 ). The work shines light on the potential use of anhydrous salt toward producing drinking water in water scarce regions.

  8. Innovative methods to reduce salt water intrusion in harbours

    NASA Astrophysics Data System (ADS)

    Groenenboom, J.; Uittenbogaard, R.; Hulsen, L.; van der Kaaij, T.; Kielen, N.

    2017-12-01

    The availability of fresh water in densely populated estuarine environments will in the future more often be threatened due to both human (e.g. channel deepening) and natural (sea-level rise, storm surges, extremely low river discharges) causes. Here, the salt water intrusion into the New Waterway, the main navigation channel of the port of Rotterdam, is used as a case study to elaborate on two innovative ways to mitigate the effects of salt water intrusion. The first method is based on the concept that vertical mixing of a salt wedge reduces its intrusion length. The idea is to equip a vessel with cranes that hold perforated tubes close to the bed alongside the vessel. By connecting compressors to the perforated tubes, a bubble screen with an adjustable vertical location can be created. Since the horizontal location of the bubble screens is not fixed, the vessel can sail in the vicinity of the moving salt wedge therewith increasing the effectiveness of the method. Another advantage of this intervention is that it can be deployed temporarily when the urgency for the prevention of salt water intrusion is high. The second method originates from the Port of Rotterdam Authority and is inspired by a small bypass that is present between two parallel channels (New Waterway and Caland Canal) connecting the North Sea to the Port of Rotterdam. Due to the different hydrodynamic characteristics of the hinterland of both channels, a difference in salinity and water level is present between both ends of the bypass. As a result, a lateral inflow of water into the New Waterway occurs at the same moment that the flood velocities transport saline water landwards. The lateral inflow of water into this channel has no momentum in the landward direction and therefore decreases the landward flow velocity and therewith the salt water intrusion. In addition, the inflow drives a vertical circulation that mixes the water column close to the bypass. Similar to the bubble screens mentioned

  9. The SALT NORM : a quantitative chemical-mineralogical characterization of natural waters

    USGS Publications Warehouse

    Bodine, Marc W.; Jones, Blair F.

    1986-01-01

    The new computer program SNORM calculates the salt norm from the chemical composition of a natural water. The salt norm is the quantitative ideal equilibrium assemblage that would crystallize if the water evaporated to dryness at 25 C and 1 bar pressure under atmospheric partial pressure of CO2. SNORM proportions solute concentrations to achieve charge balance. It quantitatively distributes the 18 acceptable solutes into normative salts that are assigned from 63 possible normative salts to allow only stable associations based on the Gibbs Phase Rule, available free energy values, and observed low-temperature mineral associations. Although most natural water compositions represent multiple solute origins, results from SNORM identify three major categories: meteoric or weathering waters that are characterized by normative alkali-bearing sulfate and carbonate salts: connate marine-like waters that are chloride-rich with a halite-bischofite-carnallite-kieserite-anhydrite association; and diagenetic waters that are frequently of marine origin but yield normative salts, such as Ca-bearing chlorides (antarcticite and tachyhydrite) and sylvite, which suggest solute alteration by secondary mineral reactions. The solute source or reaction process within each of the above categories is commonly indicated by the presence or absence of diagnostic normative salts and their relative abundance in the normative salt assemblage. For example, salt norms: (1) may identify lithologic source; (2) may identify the relative roles of carbonic and sulfuric acid hydrolysis in the evolution of weathering waters; (3) may identify the origin of connate water from normal marine, hypersaline, or evaporite salt resolution processes; and (4) may distinguish between dolomitization and silicate hydrolysis or exchange for the origin of diagenetic waters. (Author 's abstract)

  10. [Influence of removing iodized salt on children's goiter status in areas with high iodine in drinking water].

    PubMed

    Lu, Shengmin; Xu, Dong; Wang, Yuchun; Du, Yonggui; Jia, Lihui; Liang, Suoli

    2015-05-01

    To explore the changes of goiter prevalence of children living in areas with high iodine in drinking water after removing iodized salt from their diet. Three towns with median water iodine of 150 - 300 μg/L were selected randomly in Hengshui city of Hebei province of China. A total of 452 and 459 children in the 3 towns were randomly selected to measure thyroid volume by ultrasound before and after removing iodized salt, respectively. Their goiter status was judged using the criteria of age-specific thyroid volume recommended by the WHO. After removing iodized salt, the overall goiter prevalence in the three towns significantly decreased from 24.56% (111/452) to 5.88% (27/459) (P < 0.01). The goiter prevalence in 8, 9 and 10 year-old children decreased respectively from 33.70% (31/92), 23.32% (45/193) and 20.96% (35/167) to 6.10% (10/164), 5.52% (9/163) and 6.06% (8/132). The goiter prevalence in boys and girls decreased from 27.05% (66/244) and 21.63% (45/208 ) to 6.66% (15/226 ) and 5.15% (12/233), respectively. The decreases in children's goiter prevalence across gender and age group were all significant. Children's goiter prevalence decreased significantly after removing iodized salt from their diet for about one and half years in the HIA in Hebei province.

  11. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems.

    PubMed

    Hancer, M.; Celik, M. S.; Miller, J. D.

    2001-03-01

    Flotation of soluble salts with dodecyl amine hydrochloride (DAH) and sodium dodecyl sulfate (SDS) collectors has demonstrated that the interfacial water structure and hydration states of soluble salt surfaces together with the precipitation tendency of the corresponding collector salts are of considerable importance in explaining their flotation behavior. In particular, the high concentration of ions in these soluble salt brines and their hydration appear to modify the bulk and interfacial structure of water as revealed by contact angle measurements and this effect is shown to be an important feature in the flotation chemistry of soluble salt minerals including alkali halide and alkali oxyanion salts. Depending on characteristic chemical features (salt type), the salt can serve either as a structure maker, in which intermolecular hydrogen bonding between water molecules is facilitated, or as a structure breaker, in which intermolecular hydrogen bonding between water molecules is disrupted. For structure making salts the brine completely wets the salt surface and no contact angle can be measured. For structure breaking salts the brine does not completely wet the salt surface and a finite contact angle is measured. In this regard it has been found that soluble salt flotation either with the cationic DAH or anionic SDS collector is possible only if the salt is a structure breaker. Copyright 2001 Academic Press.

  12. Wetting and evaporation of salt-water nanodroplets: A molecular dynamics investigation.

    PubMed

    Zhang, Jun; Borg, Matthew K; Sefiane, Khellil; Reese, Jason M

    2015-11-01

    We employ molecular dynamics simulations to study the wetting and evaporation of salt-water nanodroplets on platinum surfaces. Our results show that the contact angle of the droplets increases with the salt concentration. To verify this, a second simulation system of a thin salt-water film on a platinum surface is used to calculate the various surface tensions. We find that both the solid-liquid and liquid-vapor surface tensions increase with salt concentration and as a result these cause an increase in the contact angle. However, the evaporation rate of salt-water droplets decreases as the salt concentration increases, due to the hydration of salt ions. When the water molecules have all evaporated from the droplet, two forms of salt crystals are deposited, clump and ringlike, depending on the solid-liquid interaction strength and the evaporation rate. To form salt crystals in a ring, it is crucial that there is a pinned stage in the evaporation process, during which salt ions can move from the center to the rim of the droplets. With a stronger solid-liquid interaction strength, a slower evaporation rate, and a higher salt concentration, a complete salt crystal ring can be deposited on the surface.

  13. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.

    PubMed

    Boglaienko, Daria; Tansel, Berrin; Sukop, Michael C

    2016-02-01

    Addition of granular materials to floating crude oil slicks can be effective in capturing and densifying the floating hydrophobic phase, which settles by gravity. Interaction of light hydrophobic liquids (LHL) with quartz sand was investigated in LHL-salt water systems. The LHLs studied were decane, tetradecane, hexadecane, benzene, toluene, ethylbenzene, m-xylene, and 2-cholorotoluene. Experiments were conducted with fine quartz sand (passing sieve No. 40 with openings 0.425 mm). Each LHL was dyed with few crystals of Sudan IV dye for ease of visual observation. A volume of 0.5 mL of each LHL was added to 100 mL salt water (34 g/L). Addition of one gram of quartz sand to the floating hydrophobic liquid layer resulted in formation of sand-encapsulated globules, which settled due to increased density. All LHLs (except for a few globules of decane) formed globules covered with fine sand particles that were heavy enough to settle by gravity. The encapsulated globules were stable and retained their shape upon settling. Polarity of hydrophobic liquids as the main factor of aggregation with minerals was found to be insufficient to explain LHL aggregation with sand. Contact angle measurements were made by submerging a large quartz crystal with the LHL drop on its surface into salt water. A positive correlation was observed between the wetting angle of LHL and the LHL volume captured (r = 0.75). The dependence of the globule density on globule radius was analyzed in relation to the coverage (%) of globule surface (LHL-salt water interface) by fine quartz particles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation.

    PubMed

    Kitada, Kento; Daub, Steffen; Zhang, Yahua; Klein, Janet D; Nakano, Daisuke; Pedchenko, Tetyana; Lantier, Louise; LaRocque, Lauren M; Marton, Adriana; Neubert, Patrick; Schröder, Agnes; Rakova, Natalia; Jantsch, Jonathan; Dikalova, Anna E; Dikalov, Sergey I; Harrison, David G; Müller, Dominik N; Nishiyama, Akira; Rauh, Manfred; Harris, Raymond C; Luft, Friedrich C; Wassermann, David H; Sands, Jeff M; Titze, Jens

    2017-05-01

    Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter-driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.

  15. High salt intake reprioritizes osmolyte and energy metabolism for body fluid conservation

    PubMed Central

    Kitada, Kento; Daub, Steffen; Zhang, Yahua; Klein, Janet D.; Nakano, Daisuke; Pedchenko, Tetyana; Lantier, Louise; LaRocque, Lauren M.; Marton, Adriana; Neubert, Patrick; Schröder, Agnes; Rakova, Natalia; Jantsch, Jonathan; Dikalova, Anna E.; Dikalov, Sergey I.; Harrison, David G.; Müller, Dominik N.; Nishiyama, Akira; Rauh, Manfred; Harris, Raymond C.; Luft, Friedrich C.; Wasserman, David H.; Sands, Jeff M.

    2017-01-01

    Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter–driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions. PMID:28414295

  16. Integrated processes for desalination and salt production: A mini-review

    NASA Astrophysics Data System (ADS)

    Wenten, I. Gede; Ariono, Danu; Purwasasmita, Mubiar; Khoirudin

    2017-03-01

    The scarcity of fresh water due to the rapid growth of population and industrial activities has increased attention on desalination process as an alternative freshwater supply. In desalination process, a large volume of saline water is treated to produce freshwater while a concentrated brine is discharged back into the environment. The concentrated brine contains a high concentration of salt and also chemicals used during desalination operations. Due to environmental impacts arising from improper treatment of the brine and more rigorous regulations of the pollution control, many efforts have been devoted to minimize, treat, or reuse the rejected brine. One of the most promising alternatives for brine handling is reusing the brine which can reduce pollution, minimize waste volume, and recover valuable salt. Integration of desalination and salt production can be implemented to reuse the brine by recovering water and the valuable salts. The integrated processes can achieve zero liquid discharge, increase water recovery, and produce the profitable salt which can reduce the overall desalination cost. This paper gives an overview of desalination processes and the brine impacts. The integrated processes, including their progress and advantages in dual-purpose desalination and salt production are discussed.

  17. Changes in apparent molar water volume and DKP solubility yield insights on the Hofmeister effect.

    PubMed

    Payumo, Alexander Y; Huijon, R Michael; Mansfield, Deauna D; Belk, Laurel M; Bui, Annie K; Knight, Anne E; Eggers, Daryl K

    2011-12-15

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the nonideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water.

  18. Identification and Control of Pollution from Salt Water Intrusion.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document contains informational guidelines for identifying and evaluating the nature and extent of pollution from salt water intrusion. The intent of these guidelines is to provide a basic framework for assessing salt water intrusion problems and their relationship to the total hydrologic system, and to provide assistance in developing…

  19. High pressure study of water-salt systems, phase equilibria, partitioning, thermodynic properties and implication for large icy worlds hydrospheres.

    NASA Astrophysics Data System (ADS)

    Journaux, B.; Brown, J. M.; Abramson, E.; Petitgirard, S.; Pakhomova, A.; Boffa Ballaran, T.; Collings, I.

    2017-12-01

    Water salt systems are predicted to be present in deep hydrosphere inside water-rich planetary bodies, following water/rock chemical interaction during early differentiation stages or later hydrothermal activity. Unfortunately the current knowledge of the thermodynamic and physical properties of aqueous salt mixtures at high pressure and high temperature is still insufficient to allow realistic modeling of the chemical or dynamic of thick planetary hydrospheres. Recent experimental results have shown that the presence of solutes, and more particularly salts, in equilibrium with high pressure ices have large effects on the stability fields, buoyancy and chemistry of all the phases present at these extreme conditions. Effects currently being investigated by our research group also covers ice melting curve depressions that depend on the salt species and incorporation of solutes inside the crystallographic lattice of high pressure ices. Both of these could have very important implication at the planetary scale, enabling thicker/deeper liquid oceans, and allowing chemical transportation through the high pressure ice layer in large icy worlds. We will present the latest results obtained in-situ using diamond anvil cell, coupled with Synchrotron X-Ray diffraction, Raman Spectroscopy and optical observations, allowing to probe the crystallographic structure, equations of state, partitioning and phase boundary of high pressure ice VI and VII in equilibrium with Na-Mg-SO4-Cl ionic species at high pressures (1-10 GPa). The difference in melting behavior depending on the dissolved salt species was characterized, suggesting differences in ionic speciation at liquidus conditions. The solidus P-T conditions were also measured as well as an increase of lattice volumes interpreted as an outcome of ionic incorporation in HP ice during incongruent crystallization. The measured phase diagrams, lattice volumes and important salt incorporations suggest a more complex picture of the

  20. Ouabain-insensitive salt and water movements in duck red cells. I. Kinetics of cation transport under hypertonic conditions

    PubMed Central

    Schmidt III, WF; McManus, TJ

    1977-01-01

    Duck red cells in hypertonic media experience rapid osmotic shrinkage followed by gradual reswelling back toward their original volume. This uptake of salt and water is self limiting and demands a specific ionic composition of the external solution. Although ouabain (10(-4)M) alters the pattern of cation accumulation from predominantly potassium to sodium, it does not affect the rate of the reaction, or the total amount of salt or water taken up. To study the response without the complications of active Na-K transport, ouabain was added to most incubations. All water accumulated by the cells can be accounted for by net salt uptake. Specific external cation requirements for reswelling include: sufficient sodium (more than 23 mM), and elevated potassium (more than 7 mM). In the absence of external potassium cells lose potassium without gaining sodium and continue to shrink instead of reswelling. Adding rubidium to the potassium- free solution promotes an even greater loss of cell potassium, yet causes swelling due to a net uptake of sodium and rubidium followed by chloride. The diuretic furosemide (10(-3)M) inhibits net sodium uptake which depends on potassium (or rubidium), as well as inhibits net sodium uptake which depends on sodium. As a result, cell volume is stabilized in the presence of this drug by inhibition of shrinkage, at low, and of swelling at high external potassium. The response has a high apparent energy of activation (15-20 kcal/mol). We propose that net salt and water movements in hypertonic solutions containing ouabain are mediated by direct coupling or cis-interaction, between sodium and potassium so that the uphill movement of one is driven by the downhill movement of the other in the same direction. PMID:894251

  1. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of climate, soil, and very critically, of crop sensitivity and the actual salinity of the irrigation water. The more sensitive the crop and more saline the water, the higher the agronomic cost and the greater the quantitative need for leaching. Israel is a forerunner in large-scale utilization of poor quality water for irrigation and can be used as a case study looking at long term repercussions of policy alternatively encouraging irrigation with recycled water or brackish groundwater. In cases studied in desert conditions of Israel, as much of half of the water applied to crops including bell peppers in greenhouses and date palms is actually used to leach salts from the root zone. The excess water used to leach salts and maintain agronomic and economic success when irrigating with water containing salts can become an environmental hazard, especially in dry areas where natural drainage is non-existent. The leachate often contains not only salts but also agrochemicals including nutrients, and natural contaminants can be picked up and transported as well. This leachate passes beyond the root zone and eventually reaches ground or surface water resources. This, together with evidence of ongoing increases in sodium content of fresh produce and increased SAR levels of soils, suggest that the current policy and practice in Israel of utilization of high amounts of low quality irrigation water is inherently non- sustainable. Current

  2. Thermal imaging of levitated fresh and salt water drops during laser irradiation

    NASA Astrophysics Data System (ADS)

    Brownell, Cody; Biggs, Harrison

    2017-11-01

    Simulation of high energy laser propagation and scattering in the maritime environment is problematic, due to the high likelihood of turbulence, fog, and rain or sea spray within the beam path. Considering large water drops (diameters of approximately 1-mm), such as those found in a light rain, an incident high energy laser will lead to rapid evaporation of the water drop as it traverses the beam path. In this work we present surface temperature measurements of a water drop obtained using a FLIR IR camera. The drop is acoustically levitated, and subject to a continuous wave laser with a wavelength of 1070-nm and a mean irradiance of approximately 800 W/cm2. These measurements show that the steady-state surface temperature of the drop is well below the saturation temperature, and for pure substances the equilibrium temperature decreases with decreasing drop volume similar to observations with smaller aqueous aerosols. Temperature non-uniformity within the drop is also assessed from statistics of the surface temperature fluctuations. Preliminary results from irradiated salt water drops show notably different behavior from fresh water drops, including temperature spikes as the drop volume decreases and occasional nucleate boiling. Acknowledge support from ONR #N00014-17-WX-00031.

  3. Changes in Apparent Molar Water Volume and DKP Solubility Yield Insights on the Hofmeister Effect

    PubMed Central

    Payumo, Alexander Y.; Huijon, R. Michael; Mansfield, Deauna D.; Belk, Laurel M.; Bui, Annie K.; Knight, Anne E.; Eggers, Daryl K.

    2011-01-01

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the non-ideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water. PMID:22029390

  4. Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85

    USGS Publications Warehouse

    Waddell, K.M.; Seiler, R.L.; Solomon, D.K.

    1986-01-01

    During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from

  5. Water structure and its influence on the flotation of carbonate and bicarbonate salts.

    PubMed

    Ozdemir, O; Celik, M S; Nickolov, Z S; Miller, J D

    2007-10-15

    Interfacial water structure is a most important parameter that influences the collector adsorption by salt minerals such as borax, potash and trona. According to previous studies, salts can be classified as water structure makers and water structure breakers. Water structure making and breaking properties of salt minerals in their saturated brine solutions are essential to explain their flotation behavior. In this work, water structure making-breaking studies in solutions of carbonate and bicarbonate salts (Na(2)CO(3), K(2)CO(3), NaHCO(3) and NH(4)HCO(3)) in 4 wt% D(2)O in H(2)O mixtures have been performed by FTIR analysis of the OD stretching band. This method reveals a microscopic picture of the water structure making/breaking character of the salts in terms of the hydrogen bonding between the water molecules in solution. The results from the vibrational spectroscopic studies demonstrate that carbonate salts (Na(2)CO(3) and K(2)CO(3)) act as strong structure makers, whereas bicarbonate salts (NaHCO(3) and NH(4)HCO(3)) act as weak structure makers. In addition, the changes in the OD band parameters of carbonate and bicarbonate salt solutions are in agreement with the viscosity characteristics of their solutions.

  6. The chemistry of salt-affected soils and waters

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the chemistry of salt affected soils and waters is necessary for management of irrigation in arid and semi-arid regions. In this chapter we review the origin of salts in the landscape, the major chemical reactions necessary for prediction of the soil solution composition, and the use of...

  7. The 2-D Ion Chromatography Development and Application: Determination of Sulfate in Formation Water at Pre-Salt Region

    NASA Astrophysics Data System (ADS)

    Tonietto, G. B.; Godoy, J. M.; Almeida, A. C.; Mendes, D.; Soluri, D.; Leite, R. S.; Chalom, M. Y.

    2015-12-01

    Formation water is the naturally-occurring water which is contained within the geological formation itself. The quantity and quality of the formation water can both be problematic. Over time, the water volume should decrease as the gas volumes increase. Formation water has been found to contain high levels of Cl, As, Fe, Ba, Mn, PAHs and may even contain naturally occurring radioactive materials. Chlorides in some cases have been found to be in excess of four-five times the level of concentrations found in the ocean. Within the management of well operation, there is sulfate between the analytes of greatest importance due to the potential for hydrogen sulphide formation and consequent corrosion of pipelines. As the concentration of sulfate in these waters can be less than n times that of chloride, a quantitative determination, using the technique of ion chromatography, constitutes an analytical challenge. This work aimed to develop and validate a method for the determination of sulphate ions in hyper-saline waters coming from the oil wells of the pre-salt, using 2D IC. In 2D IC the first column can be understood as a separating column, in which the species with retention times outside a preset range are discarded, while those belonging to this range are retained in a pre-concentrator column to further injecting a second column, the second dimension in which occurs the separation and quantification of the analytes of interest. As the chloride ions have a retention time lower than that of sulfate, a method was developed a for determining sulfate in very low range (mg L-1) by 2D IC, applicable to hypersaline waters, wherein the first dimension is used to the elimination of the matrix, ie, chloride ions, and the second dimension utilized in determining sulfate. For sulphate in a concentration range from 1.00 mg L-1 was obtained an accuracy of 1.0%. The accuracy of the method was tested by the standard addition method different samples of formation water in the pre-salt

  8. Protic Salt Polymer Membranes: High-Temperature Water-Free Proton-Conducting Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gervasio, Dominic Francis

    2010-09-30

    This research on proton-containing (protic) salts directly addresses proton conduction at high and low temperatures. This research is unique, because no water is used for proton ionization nor conduction, so the properties of water do not limit proton fuel cells. A protic salt is all that is needed to give rise to ionized proton and to support proton mobility. A protic salt forms when proton transfers from an acid to a base. Protic salts were found to have proton conductivities that are as high as or higher than the best aqueous electrolytes at ambient pressures and comparable temperatures without ormore » with water present. Proton conductivity of the protic salts occurs providing two conditions exist: i) the energy difference is about 0.8 eV between the protic-salt state versus the state in which the acid and base are separated and 2) the chemical constituents rotate freely. The physical state of these proton-conducting salts can be liquid, plastic crystal as well as solid organic and inorganic polymer membranes and their mixtures. Many acids and bases can be used to make a protic salt which allows tailoring of proton conductivity, as well as other properties that affect their use as electrolytes in fuel cells, such as, stability, adsorption on catalysts, environmental impact, etc. During this project, highly proton conducting (~ 0.1S/cm) protic salts were made that are stable under fuel-cell operating conditions and that gave highly efficient fuel cells. The high efficiency is attributed to an improved oxygen electroreduction process on Pt which was found to be virtually reversible in a number of liquid protic salts with low water activity (< 1% water). Solid flexible non-porous composite membranes, made from inorganic polymer (e.g., 10%indium 90%tin pyrophosphate, ITP) and organic polymer (e.g., polyvinyl pyridinium phosphate, PVPP), were found that give conductivity and fuel cell performances similar to phosphoric acid electrolyte with no need for hydration

  9. Nonpoint Source Road Salt Pollution from Urban Stormwater

    NASA Astrophysics Data System (ADS)

    DeGaetano, S.; Walter, M. T.

    2014-12-01

    In colder climates, such as the Northeast, road salts are commonly applied to deice roads in order to increase pedestrian and driver safety. This study was conducted to establish the mass if NaCl entering the local aquatic systems from Cornell's campus. Using trail cameras, two typical storm water pipes (draining into Cascadilla Creek) were monitored to determine the volume of runoff on an hourly bases. Grab samples were taken three times a week obtain storm water chloride concentration. In general, the average measured salt concentration was found to be 3.61 g/L, while high precipitation events Cl- concentration spiked to levels exceeding 12 g/L (≈ 20 g/L of salt). Combining runoff volumes and salt concentration values, a mass per drainage area was calculated for each monitored pipe. Outfall #1, located just upstream from the Wilson Synchrotron Module, expelled 262,300 kg of salt over a 42-day period of data collection while Outfall#2 discharged 4160 kg during the same period. These results were averaged and then applied to the total impervious area on Cornell's campus to approximate the total mass of sodium chloride leaving campus during the period of data collection.

  10. [Simulation of effect of irrigation with reclaimed water on soil water-salt movement by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    As the conflict between water supply and demand, wastewater reuse has become an important measure, which can relieve the water shortage in Beijing. In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing, a city of water shortage, under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this research. The accumulation trends of soil salinity were predicted. Simultaneously, it investigated the effects of different irrigation practices on soil water-salt movement and salt accumulation. Results indicated that annual averages of soil salinity (EC(e)) increased 29.5%, 97.2%, 197.8% respectively, with the higher irrigation, normal irrigation, and low irrigation under equilibrium conditions. Irrigation frequency had little effect on soil salt-water movement, and soil salt accumulation was in a downward trend with low frequency of irrigation. Under equilibrium conditions, annual averages of EC(e) increased 23.7%, 97.2%, 208.5% respectively, with irrigation water salinity (EC(w)) 0.6, 1.2, 2.4 dS x m(-1). Soil salinity increased slightly with EC(w) = 0.6 dS x m(-1), while soil salinization did not appear. Totally, the growth of Blue grass was not influenced by soil salinity under equilibrium conditions with the regular irrigation in Beijing, but mild soil salinization appeared.

  11. Renal excretion of water in men under hypokinesia and physical exercise with fluid and salt supplementation

    NASA Astrophysics Data System (ADS)

    Zorbas, Yan G.; Federenko, Youri F.; Togawa, Mitsui N.

    It has been suggested that under hypokinesia (reduced number of steps/day) and intensive physical exercise, the intensification of fluid excretion in men is apparently caused as a result of the inability of the body to retain optimum amounts of water. Thus, to evaluate this hypothesis, studies were performed with the use of fluid and sodium chloride (NaCl) supplements on 12 highly trained physically healthy male volunteers aged 19-24 years under 364 days of hypokinesis (HK) and a set of intensive physical exercises (PE). They were divided into two groups with 6 volunteers per group. The first group of subjects were submitted to HK and took daily fluid and salt supplements in very small doses and the second group of volunteers were subjected to intensive PE and fluid-salt supplements. For the simulation of the hypokinetic effect, both groups of subjects were kept under an average of 4000 steps/day. During the prehypokinetic period of 60 days and under the hypokinetic period of 364 days water consumed and eliminated in urine by the men, water content in blood, plasma volume, rate of glomerular filtration, renal blood flow, osmotic concentration of urine and blood were measured. Under HK, the rate of renal excretion of water increased considerably in both groups. The additional fluid and salt intake failed to normalize water balance adequately under HK and PE. It was concluded that negative water balance evidently resulted not from shortage of water in the diet but from the inability of the body to retain optimum amounts of fluid under HK and a set of intensive PEs.

  12. Watering cattle (young bulls) with brackish water--a hazard due to its salt content?

    PubMed

    Visscher, C F; Witzmann, S; Beyerbach, M; Kamphues, J

    2013-01-01

    The aim of this experimental study was primarily to test the effects and reactions of cattle offered salty water as the only source of drinking water. Mineral balance studies were carried out on three bull, continuously fed a ration based on hay, hay cobs, barley, soybean meal and a vitamin/mineral supplement. The salt content of the drinking water varied between the trials (trials I/II/III: 0.10/5.00/10.0 g/l; town water supplemented by different amounts of an additive containing 95.4% sodium chloride and 4.6% potassium chloride). Rising salt concentration of the drinking water led to significantly higher sodium, potassium and chloride intake (sodium: trial I/II/III = 5.42/59.5/ 157 g/day; potassium: trials I/II/III = 108/117/121 g/day; chloride: trials I/II/III = 22.8/112/266 g/day) mainly caused by a significantly higher water intake (trials I/II/III: 21.8 ± 2.03/30.4 ± 3.08/41.5 ± 5.89 kg/day). Amounts of urine increased significantly (trials I/II/III: 3.99 ± 0.46/ 9.66 ± 1.34/20.2 ± 3.14 kg/day). The concentrations of minerals in the urine (sodium: trials I/II/III = 123/3729/6705 mg/kg; potassium: trials I/II/III = 17345/9996/ 5496 mg/kg; chloride: trials I/II/III = 2020/ 9672/11870 mg/kg) and faeces (sodium: trials I/II/III = 1299/6544/ 7653 mg/kg; potassium: trials I/II/III = 6343/3719/3490 mg/kg; chloride: trials I/II/III = 3851/4580/4693 mg/kg) also changed significantly over time. Serum values of sodium tended to decrease (trials I/II/III: 142/137/137 mmol/l) within the physiological range, whereas those of chloride increased (trials I/II/III: 91.5/95.6/97.5 mmol/l) at higher salt concentrations in drinking water. The haematocrit, pH-value as well as urea content in blood were not affected by the higher salt intake. In balance trial III (highest salt load: 10.0 g/l), sodium intake of the bulls reached 0.57 ± 0.03 g/kg BW (~22.1 ± 0.9 g sodium/kg dry matter feed). An increase of salinity in drinking water up to 10 g/l--with otherwise harmless water

  13. Investigation of indigenous water, salt and soil for solar ponds

    NASA Astrophysics Data System (ADS)

    Marsh, H. E.

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  14. Investigation of indigenous water, salt and soil for solar ponds

    NASA Technical Reports Server (NTRS)

    Marsh, H. E.

    1983-01-01

    The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.

  15. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  16. Hot water, fresh beer, and salt

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1990-11-01

    In the ``hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO2) provided you first (a) get rid of much of the excess CO2 so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, ``Do ionizing particles produce bubbles in fresh beer?'' is answered experimentally.

  17. Novel ideas about salt, blood pressure, and pregnancy.

    PubMed

    Rakova, Natalia; Muller, Dominik N; Staff, Anne Cathrine; Luft, Friedrich C; Dechend, Ralf

    2014-03-01

    The molecular mechanisms leading to preeclampsia are poorly understood. It has been related to certain immune mechanisms, as well as the pathological regulation of the renin-angiotensin system together with perturbed salt and plasma volume regulation. Finally, a non-specific, vascular, inflammatory response is generated, which leads to the clinical syndrome. Here, we present novel findings in salt (NaCl) metabolism implying that salt is not only important in blood pressure control and volume homeostasis, but also in immune regulation. Sodium and chloride can be stored without accumulation of water in the interstitium at hypertonic concentrations through interactions with proteoglycans. Macrophages in the interstitium act as osmosensors for salt, producing increased amounts of vascular endothelial factor C, which increases the density of the lymph-capillary network and the production of nitric oxide in vessels. An increased interstitial salt concentration activates the innate immune system, especially Th17 cells, and may be an important trigger for autoimmune diseases. The novel findings with the idea of sodium storage and local mechanisms of volume and immune regulation are appealing for preeclampsia and may unify the "immune" and "vascular" hypotheses of preeclampsia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Salt-hydrate thermal-energy-storage system for space heating and air conditioning

    NASA Astrophysics Data System (ADS)

    MacCracken, C. D.; Armstrong, J. M.; MacCracken, M. M.; Silvetti, B. M.

    1980-07-01

    Latent heat storage equipment using three different salts was developed. The salts are: sodium sulfate pentahydrate which melts at 460 C, magnesium chloride hexahydrate which melts at 1150 C, and a eutectic combination of seven different materials which melts at 70 C. Stirring pumps, tanks, and tubing materials, and field filling of the salts into their tanks are developed. good performance for the tank/heat exchangers with all three salts is reported. Both the 1150 C and 460 C salts are almost equivalent in volume storage to water/ice. The 79.0 C salt, however, begins at about 56% of the BTU's per cubic foot of water/ice and declines due to separation to 40% after repeated cycling.

  19. Hydrogeology and Simulated Ground-Water Flow in the Salt Pond Region of Southern Rhode Island

    USGS Publications Warehouse

    Masterson, John P.; Sorenson, Jason R.; Stone, Janet R.; Moran, S. Bradley; Hougham, Andrea

    2007-01-01

    The Salt Pond region of southern Rhode Island extends from Westerly to Narragansett Bay and forms the natural boundary between the Atlantic Ocean and the shallow, highly permeable freshwater aquifer of the South Coastal Basin. Large inputs of fresh ground water coupled with the low flushing rates to the open ocean make the salt ponds particularly susceptible to eutrophication and bacterial contamination. Ground-water discharge to the salt ponds is an important though poorly quantified source of contaminants, such as dissolved nutrients. A ground-water-flow model was developed and used to delineate the watersheds to the salt ponds, including the areas that contribute ground water directly to the ponds and the areas that contribute ground water to streams that flow into ponds. The model also was used to calculate ground-water fluxes to these coastal areas for long-term average conditions. As part of the modeling analysis, adjustments were made to model input parameters to assess potential uncertainties in model-calculated watershed delineations and in ground-water discharge to the salt ponds. The results of the simulations indicate that flow to the salt ponds is affected primarily by the ease with which water is transmitted through a glacial moraine deposit near the regional ground-water divide, and by the specified recharge rate used in the model simulations. The distribution of the total freshwater flow between direct ground-water discharge and ground-water-derived surface-water (streamflow) discharge to the salt ponds is affected primarily by simulated stream characteristics, including the streambed-aquifer connection and the stream stage. The simulated position of the ground-water divide and, therefore, the model-calculated watershed delineations for the salt ponds, were affected only by changes in the transmissivity of the glacial moraine. Selected changes in other simulated hydraulic parameters had substantial effects on total freshwater discharge and the

  20. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    NASA Astrophysics Data System (ADS)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    Ecohydrological models have been widely used in studying plant-environment relations and hydraulic traits in response to water, light and nutrient limitations. In this context, models become a tool to investigate how plants exploit available resources to maximize transpiration and growth, eventually pointing out possible pathways to adaptation. In contrast, ecohydrologists have rarely focused on the effects of salinity on plant transpiration, which are commonly considered marginal in terrestrial biomes. The effect of salinity, however, cannot be neglected in the case of salt affected soils - estimated to cover over 9 billion ha worldwide - and in intertidal and coastal ecosystems. The objective of this study is to model the effects of salinity on plant-water relations in order to better understand the interplay of soil hyperosmotic conditions and osmoregulation strategies in determining different transpiration patterns. Salinity reduces the water potential, therefore is expected to affect the plant hydraulics and reduce plant conductance (eventually leading to cavitation for very high salt concentrations). Also, plant adaptation to short and long-term exposure to salinity comes into place to maintain an efficient water and nutrients uptake. We introduce a parsimonious soil-plant-atmosphere continuum (SPAC) model that incorporates parameterizations for morphological, physiological and biochemical mechanisms involving varying salt concentrations in the soil water solution. Transpiration is expressed as a function of soil water salinity and salt-mediated water flows within the SPAC (the conceptual representation of the model is shown in Figure c). The model is used to explain a paradox observed in salt-tolerant plants where maximum transpiration occurs at an intermediate value of salinity (CTr,max), and is lower in more fresh (CTr,max) and more saline (C>CTr,max) conditions (Figure a and b). In particular, we show that - in salt-tolerant species - osmoregulation

  1. Surface water and climatologic data, Salt Lake County, Utah, water year 1981, with selected data for water years 1980 and 1982

    USGS Publications Warehouse

    McCormack, H.F.; Christensen, R.C.; Stephens, D.W.; Pyper, G.E.; Weigel, J.F.; Conroy, L.S.

    1983-01-01

    This report contains precipitation, atmospheric-deposition, water- discharge and water-quality data collected in Salt Lake County as part of two investigations by the U.S. Geological Survey. The purpose of this report is to release data collected mainly during the 1981 water year. Selected data collected during the 1980 water year not previously published or revised and the 1982 water year also are included in this report.The first investigation, which was carried out from September 1979 to August 1982, was an urban-runoff study done in cooperation with the Salt Lake County Division of Flood Control and Water Quality. The objectives of the urban-runoff study were to identify the impact of urban runoff on the quantity and quality of the water in the canals east of the Jordan River and on the major tributaries to the river.The second investigation, which was carried out from December 1979 to September 1983, is a study of water-quality problems in the Jordan River. The study was done primarily to provide information about toxic substances, dissolved-oxygen depletion, sanitary quality, and turbidity and suspended sediment in the Jordan River. It also was funded in part by the Salt Lake County Division of Flood Control and Water Quality.Several Salt Lake County employees assisted in the collection of water- quality samples from storm runoff. Of those employees, Lee R. Armstrong, Gilbert H. Heal, Steven J. Mitckes, and Ben Santistevan worked on a daily basis with the authors and made a significant contribution in the collection of the data contained in this report. Organizations that furnished data are acknowledged in the station descriptions in tables 1 and 4.Information for previously published water-discharge, water-quality, atmospheric-deposition, and precipitation data for Salt Lake County are reported by Pyper and others (1981); Dustin (1977); Hely and others (1971) and references that they cited; and Feth and others (1964). Additional water- discharge and water

  2. Hot water, fresh beer, and salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    1990-11-01

    In the hot chocolate effect'' the best musical scales (those with the finest tone quality, largest range, and best tempo) are obtained by adding salt to a glass of hot water supersaturated with air. Good scales can also be obtained by adding salt to a glass of freshly opened beer (supersaturated with CO{sub 2}) provided you first (a) get rid of much of the excess CO{sub 2} so as to produce smaller, hence slower, rising bubbles, and (b) get rid of the head of foam, which damps the standing wave and ruins the tone quality. Finally the old question, Domore » ionizing particles produce bubbles in fresh beer '' is answered experimentally.« less

  3. Salt

    USGS Publications Warehouse

    Franson, J.C.; Friend, M.

    1999-01-01

    Animals become victims of salt poisoning or toxicosis when toxic levels of sodium and chloride accumulate in the blood after they ingest large amounts of salt or, in some species, are deprived of water. For birds, salt sources may include saline water and road salt.Normally, the salt glands of birds (Fig. 47.1) excrete sodium and chloride to maintain the proper physiologic chemical balance. However, when there has been insufficient time for acclimation of the salt gland to the saline environment, or when salt gland function is compromised by exposure to certain pesticides or oil, the electrolyte balance of the blood may be upset by the excess sodium and chloride, resulting in toxicosis. Salt accumulation on the outside of the body, or salt encrustation, is a greater problem for waterbirds that use very saline waters than is salt toxicosis. Salt encrustation can lead to exertion, acute muscle degeneration, and eventual drowning during the struggle to escape entrapment.

  4. Anthropogenic contamination of tap water, beer, and sea salt

    PubMed Central

    2018-01-01

    Plastic pollution has been well documented in natural environments, including the open waters and sediments within lakes and rivers, the open ocean and even the air, but less attention has been paid to synthetic polymers in human consumables. Since multiple toxicity studies indicate risks to human health when plastic particles are ingested, more needs to be known about the presence and abundance of anthropogenic particles in human foods and beverages. This study investigates the presence of anthropogenic particles in 159 samples of globally sourced tap water, 12 brands of Laurentian Great Lakes beer, and 12 brands of commercial sea salt. Of the tap water samples analyzed, 81% were found to contain anthropogenic particles. The majority of these particles were fibers (98.3%) between 0.1–5 mm in length. The range was 0 to 61 particles/L, with an overall mean of 5.45 particles/L. Anthropogenic debris was found in each brand of beer and salt. Of the extracted particles, over 99% were fibers. After adjusting for particles found in lab blanks for both salt and beer, the average number of particles found in beer was 4.05 particles/L with a range of 0 to 14.3 particles/L and the average number of particles found in each brand of salt was 212 particles/kg with a range of 46.7 to 806 particles/kg. Based on consumer guidelines, our results indicate the average person ingests over 5,800 particles of synthetic debris from these three sources annually, with the largest contribution coming from tap water (88%). PMID:29641556

  5. The water supply-water environment nexus in salt Intrusion area under the climate change

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2017-12-01

    Water resources are critical problems in in salt Intrusion area for the increasing water supply and water quality deterioration. And the climate change exacerbates these problems. In order to balance the relationship between water supply and water environment requirements, the water supply-water environment nexus should be understood well. Based on the de Saint-Venant system of equations and the convection diffusion equation, which can be used to reflect the laws of water quality, the water supply- water environment nexus equation has be determined. And the nexus is dynamic with the climate change factors. The methods of determined the nexus have then been applied to a case study of the water supply-water environment nexus for the Pearl River Delta in China. The results indicate that the water supply-water environment nexus is trade off each other and are mainly affected by the fresh water flow from the upstream, salt water intrusion will reduce the resilience of the water supply system in this area. Our methods provides a useful framework to quantify the nexus according to the mechanisms of the water quantity and water quality, which will useful freshwater allocation and management in this saltwater intrusion area.

  6. Enhanced water transport and salt rejection through hydrophobic zeolite pores.

    PubMed

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N

    2017-12-15

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  7. Enhanced water transport and salt rejection through hydrophobic zeolite pores

    NASA Astrophysics Data System (ADS)

    Humplik, Thomas; Lee, Jongho; O'Hern, Sean; Laoui, Tahar; Karnik, Rohit; Wang, Evelyn N.

    2017-12-01

    The potential of improvements to reverse osmosis (RO) desalination by incorporating porous nanostructured materials such as zeolites into the selective layer in the membrane has spurred substantial research efforts over the past decade. However, because of the lack of methods to probe transport across these materials, it is still unclear which pore size or internal surface chemistry is optimal for maximizing permeability and salt rejection. We developed a platform to measure the transport of water and salt across a single layer of zeolite crystals, elucidating the effects of internal wettability on water and salt transport through the ≈5.5 Å pores of MFI zeolites. MFI zeolites with a more hydrophobic (i.e., less attractive) internal surface chemistry facilitated an approximately order of magnitude increase in water permeability compared to more hydrophilic MFI zeolites, while simultaneously fully rejecting both potassium and chlorine ions. However, our results also demonstrated approximately two orders of magnitude lower permeability compared to molecular simulations. This decreased performance suggests that additional transport resistances (such as surface barriers, pore collapse or blockages due to contamination) may be limiting the performance of experimental nanostructured membranes. Nevertheless, the inclusion of hydrophobic sub-nanometer pores into the active layer of RO membranes should improve both the water permeability and salt rejection of future RO membranes (Fasano et al 2016 Nat. Commun. 7 12762).

  8. 46 CFR 46.10-45 - Nonsubmergence subdivision load lines in salt water.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Nonsubmergence subdivision load lines in salt water. 46.10-45 Section 46.10-45 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) LOAD LINES SUBDIVISION LOAD LINES FOR PASSENGER VESSELS Administration § 46.10-45 Nonsubmergence subdivision load lines in salt water. (a) Passenger vessels...

  9. Brine reuse in ion-exchange softening: salt discharge, hardness leakage, and capacity tradeoffs.

    PubMed

    Flodman, Hunter R; Dvorak, Bruce I

    2012-06-01

    Ion-exchange water softening results in the discharge of excess sodium chloride to the aquatic environment during the regeneration cycle. In order to reduce sodium chloride use and subsequent discharge from ion-exchange processes, either brine reclaim operations can be implemented or salt application during regeneration can be reduced. Both result in tradeoffs related to loss of bed volumes treated per cycle and increased hardness leakage. An experimentally validated model was used to compare concurrent water softening operations at various salt application quantities with and without the direct reuse of waste brine for treated tap water of typical midwestern water quality. Both approaches were able to reduce salt use and subsequent discharge. Reducing salt use and discharge by lowering the salt application rate during regeneration consequently increased hardness leakage and decreased treatment capacity. Single or two tank brine recycling systems are capable of reducing salt use and discharge without increasing hardness leakage, although treatment capacity is reduced.

  10. Investigation of iodine concentration in salt, water and soil along the coast of Zhejiang, China*

    PubMed Central

    Lu, Ying-li; Wang, Ning-jian; Zhu, Lan; Wang, Guo-xing; Wu, Hui; Kuang, Lin; Zhu, Wen-ming

    2005-01-01

    Objective: We aim to describe the environment iodine concentration in salt, water and soil along Zhejiang Province coast in the China foreland. It will be helpful for us to judge whether this area is insufficient in iodine and universal iodized salt is necessary or not. Methods: We collected iodized salt samples, drinking water samples (tap water in the towns, and well water or spring water in the villages), water samples from different sources (ditches, lakes, rivers) and soil samples through random sampling in June, 2005. Salt, water and soil iodine was detected by arsenic-cerium redox method. Statistical analysis was expressed as mean±SEM by Windows SPSS 13.0. Results: (1) The iodine concentration in salt was 27.9±4.33 mg/kg (n=108). (2) Seventy-five water samples were collected. The water iodine value was 0.6~84.8 μg/L (mean of 11.66 μg/L). The watershed along the Qiantang River has significantly higher iodine content than the water in Lin’an in mountain area (P<0.01). The iodine content and mean iodine content of tap water, well or spring water and natural water sources were 4.30±2.43 μg/L (n=34), 23.59±27.74 μg/L (n=19) and 12.72±10.72 μg/L (n=22) respectively. This indicated that among environmental water sources, the ditch iodine content was the highest with river water iodine being the lowest (P<0.01). (3) Soil iodine value was 0.11~2.93 mg/kg (mean of 1.32 mg/kg). Though there was no statistical difference of soil iodine in different districts (P=0.131), soil iodine content correlated positively with water iodine content. Conclusion: Iodine concentration in salt accords with national policy of adding iodine in salt. Foreland has more iodine in water than mountain area. The data reflected that water and soil iodine in foreland area was not high, which suggests universal iodized salt should be necessary. Environment iodine has relatively close association with pollution. PMID:16358379

  11. Salting-out assisted liquid-liquid extraction combined with capillary HPLC for the determination of sulfonylurea herbicides in environmental water and banana juice samples.

    PubMed

    Gure, Abera; Lara, Francisco J; Moreno-González, David; Megersa, Negussie; del Olmo-Iruela, Monsalud; García-Campaña, Ana M

    2014-09-01

    A salting-out assisted liquid-liquid extraction (SALLE) combined with capillary high performance liquid chromatography with diode array detector (capillary HPLC-DAD) was proposed for extraction and determination of residues of nine sulfonylurea herbicides (SUHs) in environmental water and banana juice samples. Various parameters affecting the extraction process such as the type and volume of the organic solvent, sample volume, type and amount of salt, pH of the sample and vortex time were optimized. Under optimum conditions, matrix matched calibration curves were established using river water and banana juice samples. Good linear relationships as well as low limits of detection, LODs (0.4-1.3 and 3-13 µg/L) and quantification, LOQs (1.3-4.3 and 10-43 µg/L) were obtained in water and banana juice samples, respectively. The precision (intra- and inter-day) of the peak areas expressed as relative standard deviations (%, RSD), at two concentration levels were below 10 % in both matrices. Recoveries obtained from spiked environmental waters (river water and groundwater) and banana juice samples, at two concentration levels, ranged from 72 to 115%. The results of the analysis revealed that the proposed SALLE-capillary HPLC method is simple, rapid, cheap and environmentally friendly, being successfully applicable for the determination of SUH residues in waters and banana juices. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  13. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  14. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  15. Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Sing; Green, Michael E.

    2011-01-01

    Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 watermore » molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if

  16. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    NASA Astrophysics Data System (ADS)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  17. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Yuanyuan; Xiang, Feng; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn, E-mail: suo@seas.harvard.edu

    2014-10-13

    Polyacrylamide hydrogels containing salt as electrolyte have been used as highly stretchable transparent electrodes in flexible electronics, but those hydrogels are easy to dry out due to water evaporation. Targeted, we try to enhance water retention capacity of polyacrylamide hydrogel by introducing highly hydratable salts into the hydrogel. These hydrogels show enhanced water retention capacity in different level. Specially, polyacrylamide hydrogel containing high content of lithium chloride can retain over 70% of its initial water even in environment with relative humidity of only 10% RH. The excellent water retention capacities of these hydrogels will make more applications of hydrogels becomemore » possible.« less

  18. [Collagen fractions, obtained by water-salt extraction from animal fats].

    PubMed

    Nekliudov, A D; Berdutina, A V; Ivankin, A N; Mitaleva, S I; Evstaf'eva, E A

    2003-01-01

    Collagen fractions have been isolated by water-salt extraction from raw materials of animal origin (various tendon types or subcutaneous tissues of cattle, or porcine skin). Collagen fractions with maximum capacity for water and fat retention were isolated with high efficiency by water-salt solutions containing 1-10% sodium chloride at temperatures below 50 degrees C. The values of the effective constant of extraction rate (min-1) at pH 6.5, 9.0, and 12.0 were equal to (2.7 +/- 0.1) x 10(-3), (6.2 +/- 0.5) x 10(-3), and (15.4 +/- 0.7) x 10(-3), respectively. The optimum conditions found made it possible to isolate collagen those proteinaceous fractions that are of practical use in food industry.

  19. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    PubMed

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  20. Perovskite nickelates as electric-field sensors in salt water

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri; Kotiuga, Michele; Dura, Joseph A.; Cherukara, Mathew; Zhou, Hua; Freeland, John W.; Li, Jiarui; Sutarto, Ronny; He, Feizhou; Wu, Chongzhao; Zhu, Jiaxin; Sun, Yifei; Ramadoss, Koushik; Nonnenmann, Stephen S.; Yu, Nanfang; Comin, Riccardo; Rabe, Karin M.; Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2018-01-01

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications. The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO3. This prototypical strongly correlated quantum material is stable in salt water, does not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures.

  1. An ion interaction model for the volumetric properties of natural waters: Density of the solution and partial molal volumes of electrolytes to high concentrations at 25°C

    NASA Astrophysics Data System (ADS)

    Monnin, Christophe

    1989-06-01

    Literature density data for binary and common ion ternary solutions in the Na-K-Ca-Mg-Cl-SO 4-HCO 3-CO3-H 2O system at 25°C have been analysed with Pitzer's ion interaction model, which provides an adequate representation of the experimental data for binary and common ion ternary solutions up to high concentration. This analysis yields Pitzer's interaction parameters for the apparent and partial molal volumes, which are the first derivatives with respect to pressure of the interaction parameters for the free energy. From this information, densities of natural waters as well as partial molal volumes of their solutes can be predicted with good accuracy, as shown by several comparisons of calculated and measured values. It is shown that V¯MX - V¯0mx, the excess partial molal volume of the salt MX, depends more on the type of salt than on the electrolyte itself and that it increases with the charges of the salt components. The influence of concentration and composition on the variation of activity coefficients with pressure and on the partial molal volumes of the salts is discussed, using as an example the partial molal volume of CaSO 4(aq) in solutions of various compositions. The increase of V¯CaSO 4, with ionic strength is very large but is not very different for a NaCl-dominated natural water like the Red Sea lower brine than for a simple NaCl solution. Although the variation of activity coefficients with pressure is usually ignored for moderate pressures, like those found in hydrothermal environments, the present example shows that it can be as large as 30% for a 2-2 salt for a pressure increase from 1 to 500 bars at high ionic strength.

  2. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration

    PubMed Central

    Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Purpose Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. Methods A literature search of the Medline database and a summary of recent studies that used human RPE cells. Results The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Conclusions Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration. PMID:28031693

  3. Intake of dietary salt and drinking water: Implications for the development of age-related macular degeneration.

    PubMed

    Bringmann, Andreas; Hollborn, Margrit; Kohen, Leon; Wiedemann, Peter

    2016-01-01

    Systemic hypertension is a risk factor of age-related retinal diseases such as diabetic retinopathy and age-related macular degeneration. High intake of dietary salt and low intake of water increase extracellular osmolality resulting in hypertension, in particular in salt-sensitive individuals. This review summarizes the present knowledge regarding the impact of salt and water intake on the regulation of blood pressure, retinal function, and the development of age-related retinal diseases. A literature search of the Medline database and a summary of recent studies that used human RPE cells. The salt sensitivity of the blood pressure and plasma osmolality increase with age, and body water deficits are common in older individuals. High plasma osmolality has adverse effects in the retina. In RPE cells, high osmolality induces expression and secretion of angiogenic factors, such as vascular endothelial growth factor (VEGF), placental growth factor, and basic fibroblast growth factor, and expression of aquaporin-5, a water channel implicated in transepithelial water transport. The transcriptional activities of hypoxia-inducible factor-1 (HIF-1) and nuclear factor of activated T cell 5 (NFAT5) are critical for the production of VEGF in response to salt-induced osmotic stress. Salt-induced osmotic stress also induces priming of the NLRP3 inflammasome and activates inflammatory enzymes in RPE cells. Raised plasma osmolality may aggravate age-related retinal diseases by stimulation of local inflammation and angiogenic factor production in the RPE. Alterations in salt and water consumption, and of minerals that stimulate renal salt excretion, may offer nutritional approaches to prevent age-related retinal disorders, in particular in salt-sensitive individuals and individuals who show signs of body dehydration.

  4. Effect of salts on the water sorption kinetics of dried pasta.

    PubMed

    Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    The water sorption kinetics of dried pasta were measured in the 20-90 °C range in 1.83 mol/L of NaCl and at 80 °C in 1.83 mol/L of LiCl, KCl, NaBr and NaI solutions in order to elucidate the role of salt in the kinetics. At the temperatures higher than 70.8 °C, the change in the enthalpy of sorption, ΔH, in the 1.83 mol/L NaCl solution was 33.1 kJ/mol, which was greater than the ΔH value in water, and the activation energy for the sorption, E, in the salt solution was 25.6 kJ/mol, which was slightly lower than the E value in water. The Hofmeister series of ions was an index for their effect on the equilibrium amount of the sorbed solution of pasta. The apparent diffusion coefficient of water into pasta was not correlated with the crystal radius of the salts, but was with the Stokes radius of the hydrated ions. Equations were formulated to predict the amount of sorbed solution under any condition of temperature and NaCl concentration.

  5. Chlorine-containing salts as water ice nucleating particles on Mars

    NASA Astrophysics Data System (ADS)

    Santiago-Materese, D. L.; Iraci, L. T.; Clapham, M. E.; Chuang, P. Y.

    2018-03-01

    Water ice cloud formation on Mars largely is expected to occur on the most efficient ice nucleating particle available. Salts have been observed on the Martian surface and have been known to facilitate water cloud formation on Earth. We examined heterogeneous ice nucleation onto sodium chloride and sodium perchlorate substrates under Martian atmospheric conditions, in the range of 150 to 180 K and 10-7 to 10-5 Torr water partial pressure. Sub-155 K data for the critical saturation ratio (Scrit) suggests an exponential model best describes the temperature-dependence of nucleation onset of water ice for all substrates tested. While sodium chloride does not facilitate water ice nucleation more easily than bare silicon, sodium perchlorate does support depositional nucleation at lower saturation levels than other substrates shown and is comparable to smectite-rich clay in its ability to support cloud initiation. Perchlorates could nucleate water ice at partial pressures up to 40% lower than other substrates examined to date under Martian atmospheric conditions. These findings suggest air masses on Mars containing uplifted salts such as perchlorates could form water ice clouds at lower saturation ratios than in air masses absent similar particles.

  6. An alternating voltage battery with two salt-water oscillators

    NASA Astrophysics Data System (ADS)

    Cervellati, Rinaldo; Soldà, Roberto

    2001-05-01

    We built a simple alternating voltage battery that periodically reverses value and sign of its electromotive force (emf). This battery consists of two coupled concentration salt-water oscillators that are phase shifted by initially extracting some drops of salt solution from one of the two oscillators. Although the actual frequency (period: ˜30 s) and emf (˜±55 mV) is low, our battery is suitable to demonstrate a practical application of oscillating systems in the physical, chemical, or biological laboratory for undergraduates. Interpretation of the phenomenon is given.

  7. Prenatal programming of renal salt wasting resets postnatal salt appetite, which drives food intake in the rat.

    PubMed

    Alwasel, Saleh H; Barker, David J P; Ashton, Nick

    2012-03-01

    Sodium retention has been proposed as the cause of hypertension in the LP rat (offspring exposed to a maternal low-protein diet in utero) model of developmental programming because of increased renal NKCC2 (Na+/K+/2Cl- co-transporter 2) expression. However, we have shown that LP rats excrete more rather than less sodium than controls, leading us to hypothesize that LP rats ingest more salt in order to maintain sodium balance. Rats were fed on either a 9% (low) or 18% (control) protein diet during pregnancy; male and female offspring were studied at 4 weeks of age. LP rats of both sexes held in metabolism cages excreted more sodium and urine than controls. When given water to drink, LP rats drank more and ate more food than controls, hence sodium intake matched excretion. However, when given a choice between saline and water to drink, the total volume of fluid ingested by LP rats fell to control levels, but the volume of saline taken was significantly larger [3.8±0.1 compared with 8.8±1.3 ml/24 h per 100 g of body weight in control and LP rats respectively; P<0.001]. Interestingly food intake also fell to control levels. Total body sodium content and ECF (extracellular fluid) volumes were greater in LP rats. These results show that prenatal programming of renal sodium wasting leads to a compensatory increase in salt appetite in LP rats. We speculate that the need to maintain salt homoeostasis following malnutrition in utero stimulates greater food intake, leading to accelerated growth and raised BP (blood pressure).

  8. Perovskite nickelates as electric-field sensors in salt water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhen; Schwanz, Derek; Narayanan, Badri

    Designing materials to function in harsh environments, such as conductive aqueous media, is a problem of broad interest to a range of technologies, including energy, ocean monitoring and biological applications(1-4). The main challenge is to retain the stability and morphology of the material as it interacts dynamically with the surrounding environment. Materials that respond to mild stimuli through collective phase transitions and amplify signals could open up new avenues for sensing. Here we present the discovery of an electric-field-driven, water-mediated reversible phase change in a perovskite-structured nickelate, SmNiO35-7. This prototypical strongly correlated quantum material is stable in salt water, doesmore » not corrode, and allows exchange of protons with the surrounding water at ambient temperature, with the concurrent modification in electrical resistance and optical properties being capable of multi-modal readout. Besides operating both as thermistors and pH sensors, devices made of this material can detect sub-volt electric potentials in salt water. We postulate that such devices could be used in oceanic environments for monitoring electrical signals from various maritime vessels and sea creatures« less

  9. Floaters and Sinkers: Solutions for Math and Science. Densities and Volumes. Book 5.

    ERIC Educational Resources Information Center

    Wiebe, Arthur, Ed.; And Others

    Developed to serve as a way to integrate mathematics skills and science processes, this booklet provides activities which demonstrate the concept of density for students of grades five through nine. Investigations are offered on the densities of water, salt, salt water, and woods. Opportunities are also provided in computing volumes of cylinders…

  10. Contact Freezing of Water by Salts.

    PubMed

    Niehaus, Joseph; Cantrell, Will

    2015-09-03

    Water is unlikely to crystallize homogeneously at temperatures greater than -34 °C. Freezing at higher temperatures is heterogeneous-catalyzed by the presence of a second substance. If that substance is at an air-water interface, then the mode is called contact freezing, and it typically will trigger nucleation at a higher temperature than if the substance were wholly immersed within the liquid. We find that the impact of salt particles initiates freezing in experiments using water droplets at supercoolings of 9 to 16 °C. These results show that contact freezing nuclei need not be effective as immersion mode nuclei. We discuss our results in the context of proposed mechanisms of contact freezing. Finally, we use the time scales for diffusion of heat and of ions and the propagation of a sound wave through the droplet to estimate that contact freezing occurs within 10 ns of impact.

  11. Wyoming Water Resources Data, Water Year 2002, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2003-01-01

    Water resources data for the 2002 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 156 gaging stations; water quality for 33 gaging stations and 34 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  12. Water Resources Data, Wyoming, Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Swanson, R.B.; Woodruff, R.E.; Laidlaw, G.A.; Watson, K.R.; Clark, M.L.

    2002-01-01

    Water resources data for the 2001 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 151 gaging stations, stage and contents for 12 lakes and reservoirs, and water quality for 33 gaging stations and 32 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  13. Wyoming Water Resources Data, Water Year 2003, Volume 2. Ground Water

    USGS Publications Warehouse

    Swanson, R.B.; Blajszczak, E.J.; Roberts, S.C.; Watson, K.R.; Mason, J.P.

    2004-01-01

    Water resources data for the 2003 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 160 gaging stations; water quality for 42 gaged stations and 28 ungaged stations, and stage and contents for one reservoir. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  14. Wyoming Water Resources Data, Water Year 2000, Volume 2. Ground Water

    USGS Publications Warehouse

    Mason, J.P.; Swanson, R.B.; Roberts, S.C.

    2001-01-01

    Water resources data for the 2000 water year for Wyoming consists of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 141 gaging stations; stage and contents for 15 lakes and reservoirs; and water quality for 22 gaging stations and 21 ungaged stations. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data together with the data in Volume 2 represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  15. Water resources data, Maryland and Delaware, water year 1997, volume 2. ground-water data

    USGS Publications Warehouse

    Smigaj, Michael J.; Saffer, Richard W.; Starsoneck, Roger J.; Tegeler, Judith L.

    1998-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State agencies, obtains a large amount of data pertaining to the water resources of Maryland and Delaware each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series entitled 'Water Resources Data - Maryland and Delaware.' This series of annual reports for Maryland and Delaware began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the l975 water year, the report format was changed to present, in one volume, data on quantities of surface water, quality of surface and ground water, and ground-water levels. In the 1989 water year, the report format was changed to two volumes. Both volumes contained data on quantities of surface water, quality of surface and ground water, and ground-water levels. Volume 1 contained data on the Atlantic Slope Basins (Delaware River thru Patuxent River) and Volume 2 contained data on the Monongahela and Potomac River basins. Beginning with the 1991 water year, Volume 1 contains all information on quantities of surface water and surface- water-quality data and Volume 2 contains ground-water levels and ground-water-quality data. This report is Volume 2 in our 1998 series and includes records of water levels and water quality of ground-water wells and springs. It contains records for water levels at 397 observation wells, discharge data for 6 springs, and water quality at 107 wells. Location of ground-water level wells are shown on figures 3 and 4. The location for the ground-water-quality sites are shown on figures 5

  16. WATER LEVEL AND OXYGEN DELIVERY/UTILIZATION IN POROUS SALT MARSH SEDIMENTS

    EPA Science Inventory

    Increasing terrestrial nutrient inputs to coastal waters is a global water quality issue worldwide, and salt marshes may provide a valuable nutrient buffer, either by direct removal or by smoothing out pulse inputs between sources and sensitive estuarine habitats. A major challen...

  17. Water resources data, Idaho, 2004; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 18 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  18. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  19. Iron clad wetlands: Soil iron-sulfur buffering determines coastal wetland response to salt water incursion

    NASA Astrophysics Data System (ADS)

    Schoepfer, Valerie A.; Bernhardt, Emily S.; Burgin, Amy J.

    2014-12-01

    Coastal freshwater wetland chemistry is rapidly changing due to increased frequency of salt water incursion, a consequence of global change. Seasonal salt water incursion introduces sulfate, which microbially reduces to sulfide. Sulfide binds with reduced iron, producing iron sulfide (FeS), recognizable in wetland soils by its characteristic black color. The objective of this study is to document iron and sulfate reduction rates, as well as product formation (acid volatile sulfide (AVS) and chromium reducible sulfide (CRS)) in a coastal freshwater wetland undergoing seasonal salt water incursion. Understanding iron and sulfur cycling, as well as their reduction products, allows us to calculate the degree of sulfidization (DOS), from which we can estimate how long soil iron will buffer against chemical effects of sea level rise. We show that soil chloride, a direct indicator of the degree of incursion, best predicted iron and sulfate reduction rates. Correlations between soil chloride and iron or sulfur reduction rates were strongest in the surface layer (0-3 cm), indicative of surface water incursion, rather than groundwater intrusion at our site. The interaction between soil moisture and extractable chloride was significantly related to increased AVS, whereas increased soil chloride was a stronger predictor of CRS. The current DOS in this coastal plains wetland is very low, resulting from high soil iron content and relatively small degree of salt water incursion. However, with time and continuous salt water exposure, iron will bind with incoming sulfur, creating FeS complexes, and DOS will increase.

  20. Salt-water imbalance and fluid overload in hemodialysis patients: a pivotal role of corin.

    PubMed

    Ricciardi, Carlo Alberto; Lacquaniti, Antonio; Cernaro, Valeria; Bruzzese, Annamaria; Visconti, Luca; Loddo, Saverio; Santoro, Domenico; Buemi, Michele

    2016-08-01

    Natriuretic peptides (NP) play a key role in regulation of salt and water balance. Corin, a serine protease which activates NP, plays a key role in regulation of blood pressure and cardiac function. The aim of the study was to evaluate the involvement of corin in renal physiopathology, analyze its levels in dialyzed patients and evaluate its relation with fluid overload and comorbidities such as heart failure and blood hypertension. We studied serum corin in uremic patients (n = 20) undergoing hemodialysis therapy (HD) and in healthy subjects (HS). Corin levels in uremic patients were higher than in HS (p < 0.0001). Moreover, its concentration did not change after a single HD session. Hypertensive patients and subject suffering from heart failure were characterized by high values of corin. After multivariate analysis, direct correlations were maintained between corin and dialysis vintage (β = 0.83; p = 0.0002), heart failure (β = 0.42; p < 0.0001), systolic blood pressure (β = -0.70; p = 0.0002) and body weight (β = -0.39; p < 0.0001). Corin might be implicated in the regulation of salt and water balance and the disturbances of volume homeostasis of HD patients. However, further studies are warranted to understand the role of corin in kidney diseases and to define its diagnostic and prognostic role.

  1. Highway deicing salt dynamic runoff to surface water and subsequent infiltration to groundwater during severe UK winters.

    PubMed

    Rivett, Michael O; Cuthbert, Mark O; Gamble, Richard; Connon, Lucy E; Pearson, Andrew; Shepley, Martin G; Davis, John

    2016-09-15

    Dynamic impact to the water environment of deicing salt application at a major highway (motorway) interchange in the UK is quantitatively evaluated for two recent severe UK winters. The contaminant transport pathway studied allowed controls on dynamic highway runoff and storm-sewer discharge to a receiving stream and its subsequent leakage to an underlying sandstone aquifer, including possible contribution to long-term chloride increases in supply wells, to be evaluated. Logged stream electrical-conductivity (EC) to estimate chloride concentrations, stream flow, climate and motorway salt application data were used to assess salt fate. Stream loading was responsive to salt applications and climate variability influencing salt release. Chloride (via EC) was predicted to exceed the stream Environmental Quality Standard (250mg/l) for 33% and 18% of the two winters. Maximum stream concentrations (3500mg/l, 15% sea water salinity) were ascribed to salt-induced melting and drainage of highway snowfall without dilution from, still frozen, catchment water. Salt persistance on the highway under dry-cold conditions was inferred from stream observations of delayed salt removal. Streambed and stream-loss data demonstrated chloride infiltration could occur to the underlying aquifer with mild and severe winter stream leakage estimated to account for 21 to 54% respectively of the 70t of increased chloride (over baseline) annually abstracted by supply wells. Deicing salt infiltration lateral to the highway alongside other urban/natural sources were inferred to contribute the shortfall. Challenges in quantifying chloride mass/fluxes (flow gauge accuracy at high flows, salt loading from other roads, weaker chloride-EC correlation at low concentrations), may be largely overcome by modest investment in enhanced data acquisition or minor approach modification. The increased understanding of deicing salt dynamic loading to the water environment obtained is relevant to improved

  2. THE ACUTE TOXICITY OF MAJOR ION SALTS TO CERIODAPHNIA DUBIA: I. INFLUENCE OF BACKGROUND WATER CHEMISTRY

    PubMed Central

    Mount, David R.; Erickson, Russell J.; Highland, Terry L.; Hockett, J. Russell; Hoff, Dale J.; Jenson, Correne T.; Norberg-King, Teresa J.; Peterson, Kira N.; Polaske, Zach; Wisniewski, Stephanie

    2018-01-01

    The ions Na+, K+, Ca2+, Mg2+, Cl−, SO42−, and HCO3−/CO32− (referred to here as “major ions”) are present in all fresh waters and are physiologically required by aquatic organisms, but can increase to harmful levels from a variety of anthropogenic activities. It is also known that the toxicities of major ion salts can vary depending on the concentrations of other ions, and understanding these relationships is key to establishing appropriate environmental limits. In this paper we present a series of experiments with Ceriodaphnia dubia to evaluate the acute toxicity of twelve major ion salts and to determine how toxicity of these salts varies as a function of background water chemistry. All salts except CaSO4 and CaCO3 were acutely toxic below saturation, with the lowest LC50s found for K salts. All ten salts that showed toxicity also showed some degree of reduced toxicity as the ionic content of the background water increased. Experiments that independently varied Ca:Mg ratio, Na:K ratio, Cl:SO4 ratio, and alkalinity/pH demonstrated that Ca concentration was the primary factor influencing the toxicities of Na and Mg salts, while the toxicities of K salts were primarily influenced by the concentration of Na. These experiments also indicated multiple mechanisms of toxicity and suggested important aspects of dosimetry: the toxicities of K, Mg, and Ca salts were best related to the chemical activity of the cation, while the toxicities of Na salts also reflected an influence of the anions and were well correlated with osmolarity. Understanding these relationships between major ion toxicity and background water chemistry should aid in the development of sensible risk assessment and regulatory standards. PMID:27167636

  3. Modeling of Dense Water Production and Salt Transport from Alaskan Coastal Polynyas

    NASA Technical Reports Server (NTRS)

    Signorini, Sergio R.; Cavalieri, Donald J.

    2000-01-01

    The main significance of this paper is that a realistic, three-dimensional, high-resolution primitive equation model has been developed to study the effects of dense water formation in Arctic coastal polynyas. The model includes realistic ambient stratification, realistic bottom topography, and is forced by time-variant surface heat flux, surface salt flux, and time-dependent coastal flow. The salt and heat fluxes, and the surface ice drift, are derived from satellite observations (SSM/I and NSCAT sensors). The model is used to study the stratification, salt transport, and circulation in the vicinity of Barrow Canyon during the 1996/97 winter season. The coastal flow (Alaska coastal current), which is an extension of the Bering Sea throughflow, is formulated in the model using the wind-transport regression. The results show that for the 1996/97 winter the northeastward coastal current exports 13% to 26% of the salt produced by coastal polynyas upstream of Barrow Canyon in 20 to 30 days. The salt export occurs more rapidly during less persistent polynyas. The inclusion of ice-water stress in the model makes the coastal current slightly weaker and much wider due to the combined effects of surface drag and offshore Ekman transport.

  4. Origin of salt giants in abyssal serpentinite systems

    NASA Astrophysics Data System (ADS)

    Scribano, Vittorio; Carbone, Serafina; Manuella, Fabio C.; Hovland, Martin; Rueslåtten, Håkon; Johnsen, Hans-K.

    2017-10-01

    Worldwide marine salt deposits ranging over the entire geological record are generally considered climate-related evaporites, derived from the precipitation of salts (mainly chlorides and sulfates) from saturated solutions driven by solar evaporation of seawater. This explanation may be realistic for a salt thickness ≤100 m, being therefore inadequate for thicker (>1 km) deposits. Moreover, sub-seafloor salt deposits in deep marine basins are difficult to reconcile with a surface evaporation model. Marine geology reports on abyssal serpentinite systems provide an alternative explanation for some salt deposits. Seawater-driven serpentinization consumes water and increases the salinity of the associated aqueous brines. Brines can be trapped in fractures and cavities in serpentinites and the surrounding `country' rocks. Successive thermal dehydration of buried serpentinites can mobilize and accumulate the brines, forming highly saline hydrothermal solutions. These can migrate upwards and erupt onto the seafloor as saline geysers, which may form salt-saturated water pools, as are currently observed in numerous deeps in the Red Sea and elsewhere. The drainage of deep-seated saline brines to seafloor may be a long-lasting, effective process, mainly occurring in areas characterized by strong tectonic stresses and/or igneous intrusions. Alternatively, brines could be slowly expelled from fractured serpentinites by buoyancy gradients and, hence, separated salts/brines could intrude vertically into surrounding rocks, forming salt diapirs. Serpentinization is an ubiquitous, exothermic, long-lasting process which can modify large volumes of oceanic lithosphere over geological times. Therefore, buried salt deposits in many areas of the world can be reasonably related to serpentinites.

  5. Chapter 3: Providing water and forage in the Salt-Verde River Basin

    Treesearch

    Leonard F. DeBano; Malchus B. Baker; Gerald J. Gottfried

    1999-01-01

    The Salt-Verde River Basin, covering about 8.4 million acres of the Central Arizona Highlands, supplies most of the water for the Salt River Valley in addition to providing other multiple use values. Mixed conifer, ponderosa pine forests, and a portion of the pinyon-juniper woodlands predominantly occupy the higher-elevation watersheds. Chaparral shrublands occupy a...

  6. Water resources data, North Carolina, water year 2004. Volume 2: Ground-water records

    USGS Publications Warehouse

    Howe, S.S.; Breton, P.L.; Chapman, M.J.

    2005-01-01

    Water-resources data for the 2004 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 217 gaging stations; stage and contents for 58 lakes and reservoirs; stage only records for 22 gaging stations; elevations for 9 stations; water quality for 39 gaging stations and 5 miscellaneous sites, and continuous water quality for 35 sites; and continuous precipitation at 127 sites. Volume 2 contains ground-water-level data from 161 observation wells, ground-water-quality data from 38 wells, continuous water quality for 7 sites and continuous precipitation at 7 sites. Additional water data were collected at 51 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  7. Water resources data, Idaho, 2003; Volume 3. Ground water records

    USGS Publications Warehouse

    Campbell, A.M.; Conti, S.N.; O'Dell, I.

    2003-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  8. Study Orientation Ply of Fiberglass on Blade Salt Water Pump Windmill using Abaqus

    NASA Astrophysics Data System (ADS)

    Badruzzaman, B.; Sifa, A.

    2018-02-01

    Windmill is one tool to generate energy from wind energy is converted into energy motion, salt production process still using traditional process by utilizing windmill to move sea water to salt field With a windmill driven water system, a horizontal axis type windmill with an average windmill height of 3-4 m, with a potential wind speed of 5-9 m / s, the amount of blade used for salt water pumps as much as 4 blades, one of the main factor of the windmill component is a blade, blade designed for the needs of a salt water pump by using fiberglass material. On layer orientation 0°,30°,45°,60° and 90° with layer number 10 and layer thickness 2 mm, the purpose of this study was to determine the strength of fiberglass that was influenced by the orientation of the layer, and to determine the orientation of fiberglass layer before making. This method used Finite Element Analysis method using ABAQUS, with homogenous and heterogeneous layer parameters. The simulation result shows the difference in von misses value at an angle of 0°, 30°, 45°,60° homogeneous value is greater than heterogeneous value, whereas in orientation 90 heterogeneous values have value 1,689e9 Pa, greater than homogenous 90 orientation value of 1,296e9 Pa.

  9. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress.

    PubMed

    Liu, Chunguang; Dai, Zheng; Sun, Hongwen

    2017-02-01

    Duckweed plays a major role in the removal of nitrogen (N) and phosphorus (P) from water. To determine the effect of salt stress on the removal of N and P by duckweed, we cultured Lemna minor, a common species of duckweed, in N and P-rich water with NaCl concentrations ranging from 0 to 100 mM for 24 h and 72 h, respectively. The results show that the removal capacity of duckweed for N and P was reduced by salt stress. Higher salt stress with longer cultivation period exerts more injury to duckweed and greater inhibition of N and P removal. Severe salt stress (100 mM NaCl) induced duckweed to release N and P and even resulted in negative removal efficiencies. The results indicate that L. minor should be used to remove N and P from water with salinities below 75 mM NaCl, or equivalent salt stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. 4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER TOWER, AND OFFICE BUILDING. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  11. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  12. Great Salt Lake and Bonneville Salt Flats, UT, USA

    NASA Image and Video Library

    1992-04-02

    This is a view of the Great Salt Lake and nearby Bonneville Salt Flats, UT, (41.0N, 112.5W). A railroad causeway divides the lake with a stark straight line changing the water level and chemistry of the lake as a result. Fresh water runoff enters from the south adding to the depth and reducing the salinity. The north half receives little frsh water and is more saline and shallow. The Bonnieville Salt Flats is the lakebed of a onetime larger lake.

  13. Effects of salt secretion on psychrometric determinations of water potential of cotton leaves.

    PubMed

    Klepper, B; Barrs, H D

    1968-07-01

    Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about -10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about -10 bars.

  14. Water resources data, North Carolina, water year 2002. Volume 1B: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Barker, R.G.; Robinson, J.B.

    2003-01-01

    Water-resources data for the 2002 water year for North Carolina consist of records of stage, discharge, water quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground-water levels and water quality of ground water. Volume 1 contains discharge records for 211 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 20 gaging stations; water quality for 52 gaging stations and 7 miscellaneous sites, and continuous water quality for 30 sites; and continuous precipitation at 109 sites. Volume 2 contains ground-water-level data from 143 observation wells and ground-water-quality data from 72 wells. Additional water data were collected at 85 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  15. Temperature invariance of NaCl solubility in water: inferences from salt-water cluster behavior of NaCl, KCl, and NH4Cl.

    PubMed

    Bharmoria, Pankaj; Gupta, Hariom; Mohandas, V P; Ghosh, Pushpito K; Kumar, Arvind

    2012-09-27

    The growth and stability of salt-water clusters have been experimentally studied in aqueous solutions of NaCl, KCl, and NH(4)Cl from dilute to near-saturation conditions employing dynamic light scattering and zeta potential measurements. In order to examine cluster stability, the changes in the cluster sizes were monitored as a function of temperature. Compared to the other cases, the average size of NaCl-water clusters remained almost constant over the studied temperature range of 20-70 °C. Information obtained from the temperature-dependent solution compressibility (determined from speed of sound and density measurements), multinuclear NMR ((1)H, (17)O, (35)Cl NMR), and FTIR were utilized to explain the cluster behavior. Comparison of NMR chemical shifts of saturated salt solutions with solid-state NMR data of pure salts, and evaluation of spectral modifications in the OH stretch region of saturated salt solutions as compared to that of pure water, provided important clues on ion pair-water interactions and water structure in the clusters. The high stability and temperature independence of the cluster sizes in aqueous NaCl shed light on the temperature invariance of its solubility.

  16. Water resources data, North Carolina, water year 2001. Volume 1A: Surface-water records

    USGS Publications Warehouse

    Ragland, B.C.; Walters, D.A.; Cartano, G.D.; Taylor, J.E.

    2002-01-01

    Water-resources data for the 2001 water year for North Carolina consist of records of stage, discharge, water-quality for streams; stage and contents for lakes and reservoirs; precipitation; and ground water levels and water-quality of ground-water. Volume 1 contains discharge records for 209 gaging stations; stage and contents for 62 lakes and reservoirs; stage for 52 gaging stations; water quality for 101 gaging stations and 91 miscellaneous sites; continuous daily tide stage at 4 sites; and continuous precipitation at 98 sites. Volume 2 contains ground-water-level data from 136 observation wells and ground-water-quality data from 68 wells. Additional water data were collected at 84 sites not involved in the systematic data-collection program, and are published as miscellaneous measurements in Volume 1. The collection of water-resources data in North Carolina is a part of the National Water-Data System operated by the U.S. Geological Survey in cooperation with State, municipal, and Federal agencies.

  17. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. I. Effect on TRC volume and Na+ flux.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; DeSimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by the measurement of intracellular Na(+) activity ([Na(+)](i)) in polarized rat fungiform taste receptor cells (TRCs) using fluorescence imaging and by chorda tympani (CT) taste nerve recordings. CT responses were monitored during lingual stimulation with ethanol solutions containing NaCl or KCl. CT responses were recorded in the presence of Bz (a specific blocker of the epithelial Na(+) channel [ENaC]) or the vanilloid receptor-1 (VR-1) antagonists capsazepine or SB-366791, which also block the Bz-insensitive salt taste receptor, a VR-1 variant. CT responses were recorded at 23 degrees C or 42 degrees C (a temperature at which the VR-1 variant salt taste receptor activity is maximally enhanced). In the absence of permeable cations, ethanol induced a transient decrease in TRC volume, and stimulating the tongue with ethanol solutions without added salt elicited only transient phasic CT responses that were insensitive to elevated temperature or SB-366791. Preshrinking TRCs in vivo with hypertonic mannitol (0.5 M) attenuated the magnitude of the phasic CT response, indicating that in the absence of mineral salts, transient phasic CT responses are related to the ethanol-induced osmotic shrinkage of TRCs. In the presence of mineral salts, ethanol increased the Bz-insensitive apical cation flux in TRCs without a change in cell volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a transient phasic component and a sustained tonic component. Ethanol increased the Bz-insensitive NaCl CT response. This effect was further enhanced by elevating the temperature from 23 degrees C to 42 degrees C, and was blocked by SB-366791. We conclude that in the presence of mineral salts, ethanol modulates the Bz-insensitive VR-1 variant salt taste receptor.

  18. Molecular dynamics study of salt-solution interface: solubility and surface charge of salt in water.

    PubMed

    Kobayashi, Kazuya; Liang, Yunfeng; Sakka, Tetsuo; Matsuoka, Toshifumi

    2014-04-14

    The NaCl salt-solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt-solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt-solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  19. Ion-specific weak adsorption of salts and water/octanol transfer free energy of a model amphiphilic hexapeptide.

    PubMed

    Déjugnat, Christophe; Dufrêche, Jean-François; Zemb, Thomas

    2011-04-21

    An amphiphilic hexapeptide has been used as a model to quantify how specific ion effects induced by addition of four salts tune the hydrophilic/hydrophobic balance and induce temperature-dependant coacervate formation from aqueous solution. The hexapeptide chosen is present as a dimer with low transfer energy from water to octanol. Taking sodium chloride as the reference state in the Hofmeister scale, we identify water activity effects and therefore measure the free energy of transfer from water to octanol and separately the free energy associated to the adsorption of chaotropic ions or the desorption of kosmotropic ions for the same amphiphilic peptide. These effects have the same order of magnitude: therefore, both energies of solvation as well as transfer into octanol strongly depend on the nature of the electrolytes used to formulate any buffer. Model peptides could be used on separation processes based on criteria linked to "Hofmeister" but different from volume and valency.

  20. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.E.; Halasz, S.J.; Liscum, F.

    1980-11-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysismore » of principal and selected minor dissolved constituents.« less

  1. Water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine salt domes, northeast Texas salt-dome basin

    USGS Publications Warehouse

    Carr, Jerry E.; Halasz, Stephen J.; Liscum, Fred

    1980-01-01

    This report contains water-quality data for aquifers, streams, and lakes in the vicinity of Keechi, Mount Sylvan, Oakwood, and Palestine Salt Domes, in the northeast Texas salt-dome basin. Water-quality data were compiled for aquifers in the Wilcox Group, the Carrizo Sand, and the Queen City Sand. The data include analyses for dissolved solids, pH, temperature, hardness, calcium, magnesium, sodium, bicarbonate, chloride, and sulfate. Water-quality and streamflow data were obtained from 63 surface-water sites in the vicinity of the domes. These data include water discharge, specific conductance, pH, water temperature, and dissolved oxygen. Samples were collected at selected sites for analysis of principal and selected minor dissolved constituents.

  2. Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers.

    PubMed

    Xue, Minmin; Qiu, Hu; Guo, Wanlin

    2013-12-20

    Desalination that produces clean freshwater from seawater holds the promise of solving the global water shortage for drinking, agriculture and industry. However, conventional desalination technologies such as reverse osmosis and thermal distillation involve large amounts of energy consumption, and the semipermeable membranes widely used in reverse osmosis face the challenge to provide a high throughput at high salt rejection. Here we find by comprehensive molecular dynamics simulations and first principles modeling that pristine graphyne, one of the graphene-like one-atom-thick carbon allotropes, can achieve 100% rejection of nearly all ions in seawater including Na(+), Cl(-), Mg(2+), K(+) and Ca(2+), at an exceptionally high water permeability about two orders of magnitude higher than those for commercial state-of-the-art reverse osmosis membranes at a salt rejection of ~98.5%. This complete ion rejection by graphyne, independent of the salt concentration and the operating pressure, is revealed to be originated from the significantly higher energy barriers for ions than for water. This intrinsic specialty of graphyne should provide a new possibility for the efforts to alleviate the global shortage of freshwater and other environmental problems.

  3. Effects of Salt Secretion on Psychrometric Determinations of Water Potential of Cotton Leaves

    PubMed Central

    Klepper, Betty; Barrs, H. D.

    1968-01-01

    Thermocouple psychrometers gave lower estimates of water potential of cotton leaves than did a pressure chamber. This difference was considerable for turgid leaves, but progressively decreased for leaves with lower water potentials and fell to zero at water potentials below about −10 bars. The conductivity of washings from cotton leaves removed from the psychrometric equilibration chambers was related to the magnitude of this discrepancy in water potential, indicating that the discrepancy is due to salts on the leaf surface which make the psychrometric estimates too low. This error, which may be as great as 400 to 500%, cannot be eliminated by washing the leaves because salts may be secreted during the equilibration period. Therefore, a thermocouple psychrometer is not suitable for measuring the water potential of cotton leaves when it is above about −10 bars. PMID:16656895

  4. Relating salt marsh pore water geochemistry patterns to vegetation zones and hydrologic influences

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Gorelick, Steven M.

    2016-03-01

    Physical, chemical, and biological factors influence vegetation zonation in salt marshes and other wetlands, but connections among these factors could be better understood. If salt marsh vegetation and marsh pore water geochemistry coorganize, e.g., via continuous plant water uptake and persistently unsaturated sediments controlling vegetation zone-specific pore water geochemistry, this could complement known physical mechanisms of marsh self-organization. A high-resolution survey of pore water geochemistry was conducted among five salt marsh vegetation zones at the same intertidal elevation. Sampling transects were arrayed both parallel and perpendicular to tidal channels. Pore water geochemistry patterns were both horizontally differentiated, corresponding to vegetation zonation, and vertically differentiated, relating to root influences. The geochemical patterns across the site were less broadly related to marsh hydrology than to vegetation zonation. Mechanisms contributing to geochemical differentiation included: root-induced oxidation and nutrient (P) depletion, surface and creek-bank sediment flushing by rainfall or tides, evapotranspiration creating aerated pore space for partial sediment flushing in some areas while persistently saturated conditions hindered pore water renewal in others, and evapoconcentration of pore water solutes overall. The concentrated pore waters draining to the tidal creeks accounted for 41% of ebb tide solutes (median of 14 elements), including being a potentially toxic source of Ni but a slight sink for Zn, at least during the short, winter study period in southern San Francisco Bay. Heterogeneous vegetation effects on pore water geochemistry are not only significant locally within the marsh but may broadly influence marsh-estuary solute exchange and ecology.

  5. Knowledge and Understanding of the Hydrogeology of the Salt Basin in South-Central New Mexico and Future Study Needs

    USGS Publications Warehouse

    Huff, G.F.; Chace, D.A.

    2006-01-01

    The Salt Basin covers about 2,400 square miles of south-central New Mexico and extends across the State line into Texas. As much as 57 million acre-feet of ground water may be stored within the New Mexico part of the Salt Basin of which 15 million acre-feet are potentially potable and recoverable. Recent work suggests that the volume of ground water in storage within the New Mexico portion of the Salt Basin may be substantially greater than 57 million acre-feet. In this report, aquifers contained in the San Andres, Bone Spring, and Victorio Peak Limestones and in the Yeso, Hueco, and Abo Formations are collectively referred to as the carbonate aquifer. Porosity and permeability of the major aquifer are primarily determined by the density and interconnectedness of fractures and karstic solution channels. The spatial variability of these fractures and karstic features leads to a large spatial variability in hydraulic properties in the carbonate aquifer. Ground water generally moves southward away from recharge areas along the northern border of the Salt Basin and generally moves eastward to southeastward away from areas of distributed recharge on the Otero Mesa and the Diablo Plateau. Ground water originating from these recharge areas generally moves toward the central valley. Present day discharge is mostly through ground-water withdrawal for agricultural irrigation. A zone of relatively low hydraulic gradient, corresponding to the location of the Otero Break, extends from near the Sacramento River watershed southward toward Dell City, Texas. Ground water in the carbonate aquifer generally is very hard and has dissolved-solids concentrations ranging from 500 to 6,500 milligrams per liter. Substantial variability exists in current estimates of (1) ground-water recharge, (2) natural ground-water discharge, (3) the volume of ground water in storage, (4) the volume of recoverable ground water, (5) the conceptual model of ground-water flow, (6) the distribution of ground-water

  6. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    Water management can be an integral part of urban comprehensive planning in a large metropolitan area. Water both imposes constraints on land use and offers opportunities for coordinated land and water management. Salt Creek basin in Cook and Du Page Counties of the Chicago metropolitan area is typical of rapidly developing suburban areas and has been selected to illustrate some of these constraints and opportunities and to suggest the effects of alternative solutions. The present study concentrates on the related problems of ground-water recharge, water quality, management of flood plains, and flood-control measures. Salt Creek basin has a drainage area of 150 square miles. It is in flat to. gently rolling terrain, underlain by glacial drift as much as 200 feet thick which covers a dolomite aquifer. In 1964, the population of the basin was about 400,000, and 40 percent of the land was in urban development. The population is expected to number 550,000 to 650,000 by 1990, and most of the land will be taken by urban development. Salt Creek is a sluggish stream, typical of small drainage channels in the headwaters area of northeastern Illinois. Low flows of 15 to 25 cubic feet per second in the lower part of the basin consist largely of sewage effluent. Nearly all the public water supplies in the basin depend on ground water. Of the total pumpage of 27.5 million gallons per day, 17.5 million gallons per day is pumped from the deep (Cambrian-Ordovician) aquifers and 10 million gallons per day is pumped from the shallow (Silurian dolomite and glacial drift) aquifers. The potential yield of the shallow aquifers, particularly glacial drift in the northern part of the basin, far exceeds present use. The largest concentration of pumpage from the shallow ,aquifers is in the Hinsdale-La Grange area. Salt Creek serves as an important source of recharge to these supplies, particularly just east of Hinsdale. The entire reach of Salt Creek south and east of Elmhurst can be

  7. Geologic appraisal of Paradox basin salt deposits for water emplacement

    USGS Publications Warehouse

    Hite, Robert J.; Lohman, Stanley William

    1973-01-01

    Thick salt deposits of Middle Pennsylvanian age are present in an area of 12,000 square miles in the Paradox basin of southeast Utah and southwest Colorado. The deposits are in the Paradox Member of the Hermosa Formation. The greatest thickness of this evaporite sequence is in a troughlike depression adjacent to the Uncompahgre uplift on the northeast side of the basin.The salt deposits consist of a cyclical sequence of thick halite units separated by thin units of black shale, dolomite, and anhydrite. Many halite units are several hundred feet thick and locally contain economically valuable potash deposits.Over much of the Paradox basin the salt deposits occur at depths of more than 5,000 feet. Only in a series of salt anticlines located along the northeastern side of the basin do the salt deposits rise to relatively shallow depths. The salt anticlines can be divided geographically and structurally into five major systems. Each system consists of a long undulating welt of thickened salt over which younger rocks are arched in anticlinal form. Locally there are areas along the axes of the anticlines where the Paradox Member was never covered by younger sediments. This allowed large-scale migration of Paradox strata toward and up through these holes in the sediment cover forming diapiric anticlines.The central or salt-bearing cores of the anticlines range in thickness from about 2,500 to 14,000 feet. Structure in the central core of the salt anticlines is the result of both regional-compression and flowage of the Paradox Member into the anticlines from adjacent synclines. Structure in the central cores of the salt anticlines ranges from relatively undeformed beds to complexly folded and faulted masses, in which stratigraphic continuity is undemonstrable.The presence of thick cap rock .over many of the salt anticlines is evidence of removal of large volumes of halite by groundwater. Available geologic and hydrologic information suggests that this is a relatively slow

  8. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    NASA Astrophysics Data System (ADS)

    Rayner, John

    2017-02-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  9. Using a Cell Phone to Investigate the Skin Depth Effect in Salt Water

    ERIC Educational Resources Information Center

    Rayner, John

    2017-01-01

    This paper describes an experimental investigation of the skin depth effect for electromagnetic waves in salt water using a cell phone that is immersed to a critical depth where it no longer responds when called. We show that this critical depth is directly proportional to the theoretical skin depth for a range of salt concentrations.

  10. Celebrating 50 years of SWIMs (Salt Water Intrusion Meetings)

    NASA Astrophysics Data System (ADS)

    Post, Vincent E. A.; Essink, Gualbert Oude; Szymkiewicz, Adam; Bakker, Mark; Houben, Georg; Custodio, Emilio; Voss, Clifford

    2018-06-01

    The Salt Water Intrusion Meetings, or SWIMs, are a series of meetings that focus on seawater intrusion in coastal aquifers and other salinisation processes. 2018 marks the 50th year of the SWIM and the 25th biennial meeting. The SWIM proceedings record half a century of research progress on site characterisation, geophysical and geochemical techniques, variable-density flow, modelling, and water management. The SWIM is positioning itself to remain a viable platform for discussing the coastal aquifer management challenges of the next 50 years.

  11. Dynamics of Phase Transitions in a Snow Mass Containing Water-Soluble Salt Particles

    NASA Astrophysics Data System (ADS)

    Zelenko, V. L.; Heifets, L. I.; Orlov, Yu. N.; Voskresenskiy, N. M.

    2018-07-01

    A macrokinetic approach is used to describe the dynamics of phase transitions in a snow mass containing water-soluble salt particles. Equations are derived that describe the rate of salt granule dissolution and the change in the phase composition and temperature of a snow mass under the conditions of heat transfer with an isothermal surface. An experimental setup that models the change in the state of a snow mass placed on an isothermal surface is created to verify theoretical conclusions. Experimental observations of the change in temperature of the snow mass are compared to theoretical calculations. The mathematical model that is developed can be used to predict the state of a snow mass on roads treated with a deicing agent, or to analyze the state of snow masses containing water-soluble salt inclusions and resting on mountain slopes.

  12. Protoplast Volume:Water Potential Relationship and Bound Water Fraction in Spinach Leaves 1

    PubMed Central

    Santakumari, Mane; Berkowitz, Gerald A.

    1989-01-01

    Methods used to estimate the (nonosmotic) bound water fraction (BWF) (i.e. apoplast water) of spinach (Spinacia oleracea L.) leaves were evaluated. Studies using three different methods of pressure/volume (P/V) curve construction all resulted in a similar calculation of BWF; approximately 40%. The theoretically derived BWF, and the water potential (Ψw)/relative water content relationship established from P/V curves were used to establish the relationship between protoplast (i.e. symplast) volume and Ψw. Another method of establishing the protoplast volume/Ψw relationship in spinach leaves was compared with the results from P/V curve experiments. This second technique involved the vacuum infiltration of solutions at a range of osmotic potentials into discs cut from spinach leaves. These solutions contained radioactively labeled H2O and sorbitol. This dual label infiltration technique allowed for simultaneous measurement of the total and apoplast volumes in leaf tissue; the difference yielded the protoplast volume. The dual label infiltration experiments and the P/V curve constructions both showed that below −1 megapascals, protoplast volume decreases sharply with decreasing water potential; with 50% reduction in protoplast volume occurring at −1.8 megapascals leaf water potential. PMID:16666983

  13. Method for excluding salt and other soluble materials from produced water

    DOEpatents

    Phelps, Tommy J [Knoxville, TN; Tsouris, Costas [Oak Ridge, TN; Palumbo, Anthony V [Oak Ridge, TN; Riestenberg, David E [Knoxville, TN; McCallum, Scott D [Knoxville, TN

    2009-08-04

    A method for reducing the salinity, as well as the hydrocarbon concentration of produced water to levels sufficient to meet surface water discharge standards. Pressure vessel and coflow injection technology developed at the Oak Ridge National Laboratory is used to mix produced water and a gas hydrate forming fluid to form a solid or semi-solid gas hydrate mixture. Salts and solids are excluded from the water that becomes a part of the hydrate cage. A three-step process of dissociation of the hydrate results in purified water suitable for irrigation.

  14. Drinking salt water enhances rehydration in horses dehydrated by frusemide administration and endurance exercise.

    PubMed

    Butudom, P; Schott, H C; Davis, M W; Kobe, C A; Nielsen, B D; Eberhart, S W

    2002-09-01

    Because the primary stimulus for thirst is an increase in plasma tonicity, we hypothesised that dehydrated horses would drink a greater total volume of fluid voluntarily during the first hour of recovery when they were initially offered salt water. To test this hypothesis, bodyweight (bwt), fluid intake (FI) and [Na+] were measured in 6 Arabian horses offered 3 rehydration solutions. After dehydration was induced by frusemide administration (1 mg/kg bwt, i.v.) followed by 45 km treadmill exercise, water (W), 0.45% NaCl and 0.9% NaCl were offered, in a randomised order, during the initial 5 min after completing exercise. Horses were subsequently placed in a stall and further intake of plain water during the first hour of recovery was measured. By the end of exercise, horses lost 5.2 +/- 0.2, 5.6 +/- 0.3 and 5.7 +/- 0.2% (P>0.05) bwt and FI during the first 5 min of recovery was 10.5 +/- 0.7, 11.6 +/- 0.8 and 11.6 +/- 1.5 l (P>0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively. After 20 min of recovery, [Na+] had decreased with W but remained unchanged from the end exercise values for both saline solutions. During the initial hour of recovery, further water intake was 0.9 +/- 0.4, 5.0 +/- 0.5 and 6.9 +/- 0.7 l (P<0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively. Therefore, total FI was 11.4 +/- 0.5, 16.6 +/- 0.7 and 18.5 +/- 1.7 l (P<0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively, and persisting bwt loss after 60 min of recovery was greater (P<0.05) for W (3.5%) than for the 2 saline solutions (24% for 0.45% NaCl and 1.9% for 0.9% NaCl). In conclusion, providing salt water as the initial rehydration fluid maintained an elevated [Na+] and resulted in greater total FI and recovery of bwt loss during the first hour of recovery, in comparison to offering only plain water.

  15. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  16. Tensile properties and translaminar fracture toughness of glass fiber reinforced unsaturated polyester resin composites aged in distilled and salt water

    NASA Astrophysics Data System (ADS)

    Sugiman, Gozali, M. Hulaifi; Setyawan, Paryanto Dwi

    2016-03-01

    Glass fiber reinforced polymer has been widely used in chemical industry and transportation due to lightweight and cost effective manufacturing. However due to the ability to absorb water from the environment, the durability issue is of interest for up to days. This paper investigated the water uptake and the effect of absorbed water on the tensile properties and the translaminar fracture toughness of glass fiber reinforced unsaturated polyester composites (GFRP) aged in distilled and salt water up to 30 days at a temperature of 50°C. It has been shown that GFRP absorbed more water in distilled water than in salt water. In distilled water, the tensile strength of GFRP tends to decrease steeply at 7 days and then slightly recovered for further immersion time. In salt water, the tensile strength tends to decrease continually up to 30 days immersion. The translaminar fracture toughness of GFRP aged in both distilled and salt-water shows the similar behavior. The translaminar fracture toughness increases after 7 days immersion and then tends to decrease beyond that immersion time. In the existence of ionics content in salt water, it causes more detrimental effect on the mechanical properties of fiberglass/unsaturated polyester composites compared to that of distilled water.

  17. Important observations and parameters for a salt water intrusion model

    USGS Publications Warehouse

    Shoemaker, W.B.

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  18. Important observations and parameters for a salt water intrusion model.

    PubMed

    Shoemaker, W Barclay

    2004-01-01

    Sensitivity analysis with a density-dependent ground water flow simulator can provide insight and understanding of salt water intrusion calibration problems far beyond what is possible through intuitive analysis alone. Five simple experimental simulations presented here demonstrate this point. Results show that dispersivity is a very important parameter for reproducing a steady-state distribution of hydraulic head, salinity, and flow in the transition zone between fresh water and salt water in a coastal aquifer system. When estimating dispersivity, the following conclusions can be drawn about the data types and locations considered. (1) The "toe" of the transition zone is the most effective location for hydraulic head and salinity observations. (2) Areas near the coastline where submarine ground water discharge occurs are the most effective locations for flow observations. (3) Salinity observations are more effective than hydraulic head observations. (4) The importance of flow observations aligned perpendicular to the shoreline varies dramatically depending on distance seaward from the shoreline. Extreme parameter correlation can prohibit unique estimation of permeability parameters such as hydraulic conductivity and flow parameters such as recharge in a density-dependent ground water flow model when using hydraulic head and salinity observations. Adding flow observations perpendicular to the shoreline in areas where ground water is exchanged with the ocean body can reduce the correlation, potentially resulting in unique estimates of these parameter values. Results are expected to be directly applicable to many complex situations, and have implications for model development whether or not formal optimization methods are used in model calibration.

  19. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching

    PubMed Central

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China. PMID:27806098

  20. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    PubMed

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  1. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  2. Fluoride Increase in Saliva and Dental Biofilm due to a Meal Prepared with Fluoridated Water or Salt: A Crossover Clinical Study.

    PubMed

    Lima, Carolina V; Tenuta, Livia M A; Cury, Jaime A

    2018-06-07

    Knowledge about fluoride delivery to oral fluids from foods cooked with fluoridated water and salt is scarce, and no study has evaluated fluoride concentrations in saliva or biofilm during meal consumption. In this randomized double-blind crossover study, 12 volunteers ingested meals (rice, beans, meat, and legumes) prepared with nonfluoridated water and salt (control group), fluoridated water (0.70 mg F/L; water group), and fluoridated salt (183.7 mg F/kg; salt group). Whole saliva was collected before meal ingestion, during mastication, and up to 2 h after meal ingestion. Dental biofilm was collected before and immediately after meal ingestion. Fluoride concentrations in saliva and dental biofilm were determined by an ion-specific electrode. The mean (±standard deviation; n = 4) fluoride concentrations in meals prepared for the control, water, and salt groups were 0.039 ± 0.01, 0.43 ± 0.04, and 1.71 ± 0.32 μg F/g, respectively. The three groups had significantly different fluoride concentrations in saliva collected during mastication (p < 0.0001) and after meal ingestion (p < 0.04; salt > water > control). The fluoride concentration in saliva returned to baseline 30 min after meal ingestion in the water group but remained high for up to 2 h in the salt group (p = 0.002). The fluoride concentration in biofilm fluid differed only between the salt and control groups (p = 0.008). The mastication of foods cooked with fluoridated water and salt increases fluoride concentrations in oral fluids and may contribute to the local effect of these community-based fluoride interventions on caries control. © 2018 S. Karger AG, Basel.

  3. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    PubMed

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  4. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  5. Journal of Special Operations Medicine, Volume 2, Edition 3

    DTIC Science & Technology

    2002-01-01

    propranolol, methyldopa, guanethidine Thyroid hormones--thyroxine Hallucinogens--LSD Salicylates, barbiturates General anesthetics --halothane...Alcohol LSD, lysergic acid diethylamide. Volume 2, Edition 3 / Summer 02 21 must be available and palatable , and water intake must be monitored. Water... palatability are controversial. High sugar solutions may impede water absorption. Salt losses should be made up (during the first 2 weeks in a hot

  6. Strong Control of Salts on Near Surface Liquid Water Content in a High Polar Desert Indicated by Near Surface Resistivity Mapping with a Helicopter-Borne TEM Sensor, Lower Taylor Valley, Antarctica

    NASA Astrophysics Data System (ADS)

    Foley, N.; Tulaczyk, S. M.; Auken, E.; Mikucki, J.; Myers, K. F.; Dugan, H.; Doran, P. T.; Virginia, R. A.

    2016-12-01

    Closed depressions in the Lower Taylor Valley (McMurdo Dry Valleys, Antarctica) have near surface (top 5m) electrical resistivity that is lower by about an order of magnitude than the resistivity of nearby slopes and ridges (100s of ohm-m vs. 1000s). We interpret this spatial pattern as being due to long term concentration of salts carried by liquid water and/or deliquescent vapor fronts. High concentration of salts in the top decimeters to meters beneath the surface may prolong the existence and abundance of liquid water in this otherwise very cold and dry high polar desert. Due to its connections with life and chemical transport, liquid water is a much studied feature in the McMurdo Dry Valleys. This setting can be used as an analogue for similar features on the surface of Mars, where liquid water tracks have been observed and are believed to be controlled by eutectic brines. Our study demonstrates the utility of mapping at a regional scale via helicopter-borne Transient EM. Airborne EM covers more ground and can measure deeper than surface-based measurements, at the expense of resolution. This allows creating valley-scale datasets which could not feasibly be collected on the ground. Our remote measurements complement physical samples that indicate that soluble salts concentrate in certain areas of surface soil where water moves ions and is later removed by evaporation or sublimation. In areas where we measured low resistivity, the integrated liquid water fraction in the top 5m may be a few to several percent by volume, equivalent to a few or several dozens of cm of water layer thickness. This estimate assumes that the interstitial waters have very low resistivity, comparable to seawater or hypersaline brines at freezing (0.2-0.35 ohm-m). If soil water was considerably fresher than this, liquid water content would have to reach dozens of percent throughout the top 5m for bulk resistivities to drop to 100s of ohm-m. We consider the latter case to be unlikely as

  7. Salt as a mitigation option for decreasing nitrogen leaching losses from grazed pastures.

    PubMed

    Ledgard, Stewart F; Welten, Brendon; Betteridge, Keith

    2015-12-01

    The main source of nitrogen (N) leaching from grazed pastures is animal urine with a high N deposition rate (i.e. per urine patch), particularly between late summer and early winter. Salt is a potential mitigation option as a diuretic to induce greater drinking-water intake, increase urination frequency, decrease urine N concentration and urine N deposition rate, and thereby potentially decrease N leaching. This hypothesis was tested in three phases: a cattle metabolism stall study to examine effects of salt supplementation rate on water consumption, urination frequency and urine N concentration; a grazing trial to assess effects of salt (150 g per heifer per day) on urination frequency; and a lysimeter study on effects of urine N rate on N leaching. Salt supplementation increased cattle water intake. Urination frequency increased by up to 69%, with a similar decrease in urine N deposition rate and no change in individual urination volume. Under field grazing, sensors showed increased urination frequency by 17%. Lysimeter studies showed a proportionally greater decrease in N leaching with decreased urine N rate. Modelling revealed that this could decrease per-hectare N leaching by 10-22%. Salt supplementation increases cattle water intake and urination frequency, resulting in a lower urine N deposition rate and proportionally greater decrease in urine N leaching. Strategic salt supplementation in autumn/early winter with feed is a practical mitigation option to decrease N leaching in grazed pastures. © 2015 Society of Chemical Industry.

  8. Effect of road deicing salt on the susceptibility of amphibian embryos to infection by water molds.

    PubMed

    Karraker, Nancy E; Ruthig, Gregory R

    2009-01-01

    Some causative agents of amphibian declines act synergistically to impact individual amphibians and their populations. In particular, pathogenic water molds (aquatic oomycetes) interact with environmental stressors and increase mortality in amphibian embryos. We documented colonization of eggs of three amphibian species, the wood frog (Rana sylvatica), the green frog (Rana clamitans), and the spotted salamander (Ambystoma maculatum), by water molds in the field and examined the interactive effects of road deicing salt and water molds, two known sources of mortality for amphibian embryos, on two species, R. clamitans and A. maculatum in the laboratory. We found that exposure to water molds did not affect embryonic survivorship in either A. maculatum or R. clamitans, regardless of the concentration of road salt to which their eggs were exposed. Road salt decreased survivorship of A. maculatum, but not R. clamitans, and frequency of malformations increased significantly in both species at the highest salinity concentration. The lack of an effect of water molds on survival of embryos and no interaction between road salt and water molds indicates that observations of colonization of these eggs by water molds in the field probably represent a secondary invasion of unfertilized eggs or of embryos that had died of other causes. Given increasing salinization of freshwater habitats on several continents and the global distribution of water molds, our results suggest that some amphibian species may not be susceptible to the combined effects of these factors, permitting amphibian decline researchers to devote their attention to other potential causes.

  9. Where in the Marsh is the Water (and When)?: Measuring and modeling salt marsh hydrology for ecological and biogeochemical applications

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a measurement and modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because o...

  10. Water Resources Data, New Jersey, Water Year 2002, Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Spehar, A.B.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.; Holzer, G.K.

    2003-01-01

    Water-resources data for the 2002 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 93 gaging stations; tide summaries at 31 gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 104 crest-stage partial-record stations and stage-only at 31 tidal crest-stage gages. Locations of these sites are shown in figures 8-11. Additional water data were collected at various sites that are not part of the systematic data-collection program. Discharge measurements were made at 201 low-flow partial-record stations and 121 miscellaneous sites.

  11. Modeling Approach for Estimating Co-Produced Water Volumes and Saltwater Disposal Volumes in Oklahoma

    NASA Astrophysics Data System (ADS)

    Murray, K. E.

    2016-12-01

    Management of produced fluids has become an important issue in Oklahoma because large volumes of saltwater are co-produced with oil and gas, and disposed into saltwater disposal wells at high rates. Petroleum production increased from 2009-2015, especially in central and north-central Oklahoma where the Mississippian and Hunton zones were redeveloped using horizontal wells and dewatering techniques that have led to a disproportional increase in produced water volumes. Improved management of co-produced water, including desalination for beneficial reuse and decreased saltwater disposal volumes, is only possible if spatial and temporal trends can be defined and related to the producing zones. It is challenging to quantify the volumes of co-produced water by region or production zone because co-produced water volumes are generally not reported. Therefore, the goal of this research is to estimate co-produced water volumes for 2008-present with an approach that can be replicated as petroleum production shifts to other regions. Oil and gas production rates from subsurface zones were multiplied by ratios of H2O:oil and H2O:gas for the respective zones. Initial H2O:oil and H2O:gas ratios were adjusted/calibrated, by zone, to maximize correlation of county-scale produced H2O estimates versus saltwater disposal volumes from 2013-2015. These calibrated ratios were then used to compute saltwater disposal volumes from 2008-2012 because of apparent data gaps in reported saltwater disposal volumes during that timeframe. This research can be used to identify regions that have the greatest need for produced water treatment systems. The next step in management of produced fluids is to explore optimal energy-efficient strategies that reduce deleterious effects.

  12. How Do Changes to the Railroad Causeway in Utah's Great Salt Lake Affect Water and Salt Flow?

    PubMed

    White, James S; Null, Sarah E; Tarboton, David G

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah's Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey's Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses.

  13. Linoleic acid salt with ultrapure soft water as an antibacterial combination against dermato-pathogenic Staphylococcus spp.

    PubMed

    Jang, H; Makita, Y; Jung, K; Ishizaka, S; Karasawa, K; Oida, K; Takai, M; Matsuda, H; Tanaka, A

    2016-02-01

    Skin colonization of Staphylococcus spp. critically affects the severity of dermatitis in humans and animals. We examined different types of fatty acid salts for their antibacterial activity against Staphylococcus spp. when used in ultrapure soft water (UPSW). We also evaluated their therapeutic effect on a spontaneous canine model of dermatitis. UPSW, in which Ca(++) and Mg(++) were replaced with Na(+) , was generated using a water softener with cation-exchange resin. Staphylococcus aureus (Staph. aureus), Staphylococcus intermedius (Staph. intermedius), and Staphylococcus pseudintermedius (Staph. pseudintermedius) were incubated with various fatty acid salts in distilled water (DW) or UPSW and the number of bacteria was counted. Among the fatty acids, oleic acid salt and linoleic acid (LA) salt reduced the number of these bacteria. Also, UPSW enhanced the antibacterial effect of LA on Staph. spp. In spontaneously developed itchy dermatitis in companion dogs, shampoo treatment with liquid soap containing 10% LA in UPSW improved skin conditions. LA salt showed antibacterial activity against Staph. spp. Treatment with soap containing LA with UPSW reduced clinical conditions in dogs with dermatitis. Because colonization of Staph. spp. on the skin exacerbates dermatitis, the use of LA-containing soap in UPSW may reduce unpleasant clinical symptoms of the skin. © 2015 The Society for Applied Microbiology.

  14. Water and salt balance in young male football players in training during the holy month of Ramadan.

    PubMed

    Shirreffs, Susan M; Maughan, Ronald J

    2008-12-01

    The aim of this study was to assess water and salt balance in young football players in training during Ramadan. Measurements were made in 92 young male football players before and during the month of Ramadan. Fifty-five participants were observing Ramadan fasting, while the other 37 participants were eating and drinking without restriction. In week 3 of Ramadan, water and salt balance measures were made during a training session of 60-70 min duration that was performed at an ambient temperature of 25-28 degrees C and relative humidity of 50-53%. Body mass was recorded before and after training. Fluid intake was assessed in non-fasting players by weighing drink bottles before and after training, and the volume of any urine output was recorded. Sweat composition was estimated from absorbent patches applied to four skin sites for the duration of training. Mean sweat loss of players amounted to 1.41 litres (s = 0.36) in fasting players and 1.61 litres (s = 0.51) in non-fasting players (P = 0.038). Mean fluid intake during training in non-fasting players was 1.92 litres (s = 0.66). Sweat sodium concentration was 20 mmol . l(-1) (s = 8) in fasting players and 17 mmol . l(-1) (s = 7) in non-fasting players, and total sweat sodium loss during training was 0.67 g (s = 0.41) and 0.65 g (s = 0.37) [corresponding to a salt loss of 1.7 g (s = 1.1) and 1.7 g (s = 0.9)] respectively, with no difference between fasting and non-fasting players. Sweat sodium loss was not related to estimated dietary sodium intake (r = -0.07). These descriptive data show large individual variations in all measured parameters with relatively little difference in sweat parameters between fasting and non-fasting individuals.

  15. Salt power - Is Neptune's ole salt a tiger in the tank

    NASA Astrophysics Data System (ADS)

    Wick, G. S.

    1980-02-01

    Methods of exploiting the 24 atm osmotic pressure difference between fresh and salt water to generate energy include reverse electrodialysis, wherein 80 millivolts of electricity cross each ion-selective membrane placed between solutions of fresh and salt water. Pressure-retarded osmosis, using pumps and pressure chambers, relies on semipermeable membranes that allow fresh water to flow into saline, with power generated by the permeated water being released through a turbine. In reverse vapor compression, water vapor rapidly transfers from fresh water to salt water in an evacuated chamber (due to the vapor pressure difference between them), and power can be extracted using 24 m diameter turbine blades. Environmental concerns include protecting estuaries from stress, managing sediments, and protecting marine animals, while filtration would be needed to keep the membranes free from corrosion, biological fouling, or silting.

  16. Water Resources Data, Pennsylvania, Water Year 1999. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 74 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 29 gaging stations and 11 ungaged streamsites; (4) water-quality records for 87 special-study stations;(5) water-level records for 55 network observation wells; and (6) water-quality analyses of ground water from 11 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA

  17. Water Resources Data, Pennsylvania, Water Year 2001. Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2002-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 77 continuous-record streamflow-gaging stations, 7 partial-record stations, and 46 special study and miscellaneous streamflow sites; (2) elevation and contents records for 13 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 11 ungaged streamsites; (4) water-quality records for 27 special-study stations; (5) water-level records for 56 network observation wells; and (6) water-quality analyses of ground water from 111 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield

  18. Water resources data, Pennsylvania, water year 2000, Volume 1. Delaware River Basin

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2001-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 1, contains: (1) discharge records for 76 continuous-record streamflow-gaging stations, 7 partial-record stations, and 13 special study and miscellaneous streamflow sites; (2) elevation and contents records for 14 lakes and reservoirs; (3) water-quality records for 28 gaging stations and 14 ungaged streamsites; (4) water-quality records for 77 special-study stations; (5) water-level records for 53 network observation wells; and (6) water-quality analyses of ground water from 101 ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-1." These water data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The

  19. Generating Electric Fields in PDMS Microfluidic Devices with Salt Water Electrodes

    PubMed Central

    Sciambi, Adam; Abate, Adam R.

    2014-01-01

    Droplet merging and sorting in microfluidic devices usually rely on electric fields generated by solid metal electrodes. We show that simpler and more reliable salt water electrodes, despite their lower conductivity, can perform the same droplet manipulations at the same voltages. PMID:24671446

  20. MzPIP2;1: An Aquaporin Involved in Radial Water Movement in Both Water Uptake and Transportation, Altered the Drought and Salt Tolerance of Transgenic Arabidopsis.

    PubMed

    Wang, Lin; Li, Qingtian; Lei, Qiong; Feng, Chao; Gao, Yinan; Zheng, Xiaodong; Zhao, Yu; Wang, Zhi; Kong, Jin

    2015-01-01

    Plants are unavoidably subjected to various abiotic stressors, including high salinity, drought and low temperature, which results in water deficit and even death. Water uptake and transportation play a critical role in response to these stresses. Many aquaporin proteins, localized at different tissues, function in various transmembrane water movements. We targeted at the key aquaporin in charge of both water uptake in roots and radial water transportation from vascular tissues through the whole plant. The MzPIP2;1 gene encoding a plasma membrane intrinsic protein was cloned from salt-tolerant apple rootstock Malus zumi Mats. The GUS gene was driven by MzPIP2;1 promoter in transgenic Arabidopsis. It indicated that MzPIP2;1 might function in the epidermal and vascular cells of roots, parenchyma cells around vessels through the stems and vascular tissues of leaves. The ectopically expressed MzPIP2;1 conferred the transgenic Arabidopsis plants enhanced tolerance to slight salt and drought stresses, but sensitive to moderate salt stress, which was indicated by root length, lateral root number, fresh weight and K+/Na+ ratio. In addition, the possible key cis-elements in response to salt, drought and cold stresses were isolated by the promoter deletion experiment. The MzPIP2;1 protein, as a PIP2 aquaporins subgroup member, involved in radial water movement, controls water absorption and usage efficiency and alters transgenic plants drought and salt tolerance.

  1. Salting out of methane by sodium chloride: A scaled particle theory study.

    PubMed

    Graziano, Giuseppe

    2008-08-28

    The salting out of methane by adding NaCl to water at 25 degrees C and 1 atm is investigated by calculating the work of cavity creation by means of scaled particle theory and the methane-solvent energy of attraction. The latter quantity changes to little extent on passing from pure water to an aqueous 4M NaCl solution, whereas the magnitude of the work of cavity creation increases significantly, accounting for the salting out effect. There is quantitative agreement between the experimental values of the hydration Gibbs energy and the calculated ones. The behavior of the work of cavity creation is due to the increase in the volume packing density of NaCl solutions, since the average effective molecular diameter does not change, being always 2.80 A. The same approach allows the rationalization of the difference in methane salting out along the alkali chloride series. These results indicate that, fixed the aqueous solution density, the solubility of nonpolar species is mainly determined by the effective diameter of solvent molecules and the corresponding volume packing density. There is no need to take into account the H-bond rearrangement because it is characterized by an almost complete enthalpy-entropy compensation.

  2. [Simulation of effects of soil properties and plants on soil water-salt movement with reclaimed water irrigation by ENVIRO-GRO model].

    PubMed

    Lü, Si-Dan; Chen, Wei-Ping; Wang, Mei-E

    2012-12-01

    In order to promote safe irrigation with reclaimed water and prevent soil salinisation, the dynamic transport of salts in urban soils of Beijing under irrigation of reclaimed water was simulated by ENVIRO-GRO model in this study. The accumulation trends and profile distribution of soil salinity were predicted. Simultaneously, the effects of different soil properties and plants on soil water-salt movement and salt accumulation were investigated. Results indicated that soil salinity in the profiles reached uniform equilibrium conditions by repeated simulation, with different initial soil salinity. Under the conditions of loam and clay loam soil, salinity in the profiles increased over time until reaching equilibrium conditions, while under the condition of sandy loam soil, salinity in the profiles decreased over time until reaching equilibrium conditions. The saturated soil salinity (EC(e)) under equilibrium conditions followed an order of sandy loam < loam < clay loam. Salt accumulations in Japan euonymus and Chinese pine were less than that in Blue grass. The temporal and spatial distributions of soil salinity were also different in these three types of plants. In addition, the growth of the plants was not influenced by soil salinity (except clay loam), but mild soil salinization occurred under all conditions (except sandy loam).

  3. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure.

    PubMed

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-08-14

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema.

  4. Double knockout of pendrin and Na-Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure

    PubMed Central

    Soleimani, Manoocher; Barone, Sharon; Xu, Jie; Shull, Gary E.; Siddiqui, Faraz; Zahedi, Kamyar; Amlal, Hassane

    2012-01-01

    The Na-Cl cotransporter (NCC), which is the target of inhibition by thiazides, is located in close proximity to the chloride-absorbing transporter pendrin in the kidney distal nephron. Single deletion of pendrin or NCC does not cause salt wasting or excessive diuresis under basal conditions, raising the possibility that these transporters are predominantly active during salt depletion or in response to excess aldosterone. We hypothesized that pendrin and NCC compensate for loss of function of the other under basal conditions, thereby masking the role that each plays in salt absorption. To test our hypothesis, we generated pendrin/NCC double knockout (KO) mice by crossing pendrin KO mice with NCC KO mice. Pendrin/NCC double KO mice displayed severe salt wasting and sharp increase in urine output under basal conditions. As a result, animals developed profound volume depletion, renal failure, and metabolic alkalosis without hypokalemia, which were all corrected with salt replacement. We propose that the combined inhibition of pendrin and NCC can provide a strong diuretic regimen without causing hypokalemia for patients with fluid overload, including patients with congestive heart failure, nephrotic syndrome, diuretic resistance, or generalized edema. PMID:22847418

  5. Quality and sources of shallow ground water in areas of recent residential development in Salt Lake Valley, Salt Lake County, Utah

    USGS Publications Warehouse

    Thiros, Susan A.

    2003-01-01

    Residential and commercial development of about 80 square miles that primarily replaced undeveloped and agricultural areas occurred in Salt Lake Valley, Utah, from 1963 to 1994. This study evaluates the occurrence and distribution of natural and anthropogenic compounds in shallow ground water underlying recently developed (post 1963) residential and commercial areas. Monitoring wells from 23 to 153 feet deep were installed at 30 sites. Water-quality data for the monitoring wells consist of analyses of field parameters, major ions, trace elements, nutrients, dissolved organic carbon, pesticides, and volatile organic compounds.Dissolved-solids concentration ranged from 134 to 2,910 milligrams per liter (mg/L) in water from the 30 monitoring wells. Dissolved arsenic concentration in water from 12 wells exceeded the drinking-water maximum contaminant level of 10 micrograms per liter. Water from monitoring wells in the northwestern part of the valley generally contained higher arsenic concentrations than did water from other areas. Nitrate concentration in water sampled from 26 of the 30 monitoring wells (86.7 percent) was higher than a background level of 2 mg/L, indicating a possible human influence. Nitrate concentrations ranged from less than 0.05 to 13.3 mg/L.Fifteen of the 104 pesticides and pesticide degradation products analyzed for were detected in 1 or more water samples from the monitoring wells. No pesticides were detected at concentrations that exceeded U.S. Environmental Protection Agency drinking-water standards or guidelines for 2002. The high detection frequency of atrazine, a restricted-use pesticide, in residential areas on the west side of Salt Lake Valley may be the result of application in agricultural or industrial areas that have been converted to residential uses or application in areas upgradient from the residential areas that was then transported by ground water.Fifteen of the 86 volatile organic compounds analyzed for were detected in 1 or

  6. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    NASA Astrophysics Data System (ADS)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    Soil and ground water are frequently contaminated by industrial activities, posing a potential risk to human and environmental health and limiting land use. Proper site management and remediation treatments can return contaminated areas to safe and useful states. Most remediation research focuses on single contaminants in coarse and medium textured soils. Contaminant mixtures are common and make remediation efforts complex due to differing chemical properties. Remediation in fine textured soils is difficult since their low hydraulic conductivities hinder addition of amendments into and removal of contaminated media out of the impacted zone. The objective of this research is to assess contaminant dynamics and potential remediation techniques for fine textured soil and ground water impacted by multiple contaminants in Edmonton, Alberta, Canada. The University of Alberta's Ellerslie Waste Management Facility was used to process liquid laboratory waste from 1972 to 2007. A waste water pond leak prior to 1984 resulted in salt and chlorinated organic compound contamination. An extensive annual ground water monitoring data set for the site is available since 1988. Analytical parameters include pH, electrical conductivity, major ions, volatile organic compounds, and metals. Data have been compared to Alberta Tier 1 Soil and Groundwater Remediation Guidelines to identify exceedances. The parameters of greatest concern, based on magnitude and frequency of detection, are electrical conductivity, sodium, chloride, chloroform, and dichloromethane. Spatial analyses of the data show that the contamination is focused in and down gradient of the former waste water pond. Temporal analyses show different trends depending on monitoring well location. Laboratory column experiments were used to assess leaching as a potential treatment for salt contamination in fine textured soils. Saturated hydraulic conductivity was measured for seven soils from two depth intervals with or without

  7. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.

    PubMed

    Mazzobre, M F; Longinotti, M P; Corti, H R; Buera, M P

    2001-11-01

    Trehalose and sucrose, two sugars that are involved in the protection of living organisms under extreme conditions, and their mixtures with salts were employed to prepare supercooled or freeze-dried glassy systems. The objective of the present work was to explore the effects of different salts on water sorption, glass transition temperature (T(g)), and formation and melting of ice in aqueous sugar systems. In the sugar-salt mixtures, water adsorption was higher than expected on the basis of the water uptake by each pure component. In systems with a reduced mass fraction of water (w less-than-or-equal 0.4), salts delayed water crystallization, probably due to ion-water interactions. In systems where > 0.6, water crystallization could be explained by the known colligative properties of the solutes. The glass transition temperature of the maximally concentrated matrix (T(g)') was decreased by the presence of salts. However, the actual T(g) values of the systems were not modified. Thus, the effect of salts on sorption behavior and formation of ice may reflect dynamic water-salt-sugar interactions which take place at a molecular level and are related to the charge/mass ratio of the cation present without affecting supramolecular or macroscopic properties. Copyright 2001 Elsevier Science (USA).

  8. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  9. Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies

    NASA Astrophysics Data System (ADS)

    Journaux, Baptiste; Daniel, Isabelle; Petitgirard, Sylvain; Cardon, Hervé; Perrillat, Jean-Philippe; Caracas, Razvan; Mezouar, Mohamed

    2017-04-01

    Water-rich planetary bodies including large icy moons and ocean exoplanets may host a deep liquid water ocean underlying a high-pressure icy mantle. The latter is often considered as a limitation to the habitability of the uppermost ocean because it would limit the availability of nutrients resulting from the hydrothermal alteration of the silicate mantle located beneath the deep ice layer. To assess the effects of salts on the physical properties of high-pressure ices and therefore the possible chemical exchanges and habitability inside H2O-rich planetary bodies, we measured partitioning coefficients and densities in the H2O-RbI system up to 450 K and 4 GPa; RbI standing as an experimentally amenable analog of NaCl in the H2O-salt solutions. We measured the partitioning coefficient of RbI between the aqueous fluid and ices VI and VII, using in-situ Synchrotron X-ray Fluorescence (XRF). With in-situ X-ray diffraction, we measured the unit-cell parameters and the densities of the high-pressure ice phases in equilibrium with the aqueous fluid, at pressures and temperatures relevant to the interior of planetary bodies. We conclude that RbI is strongly incompatible towards ice VI with a partitioning coefficient Kd(VI-L) = 5.0 (± 2.1) ṡ10-3 and moderately incompatible towards ice VII, Kd(VII-L) = 0.12 (± 0.05). RbI significantly increases the unit-cell volume of ice VI and VII by ca. 1%. This implies that RbI-poor ice VI is buoyant compared to H2O ice VI while RbI-enriched ice VII is denser than H2O ice VII. These new experimental results might profoundly impact the internal dynamics of water-rich planetary bodies. For instance, an icy mantle at moderate conditions of pressure and temperature will consist of buoyant ice VI with low concentration of salt, and would likely induce an upwelling current of solutes towards the above liquid ocean. In contrast, a deep and/or thick icy mantle of ice VII will be enriched in salt and hence would form a stable chemical boundary

  10. Chloride dynamics in a restored urban stream and the influence of road salts on water quality

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services from these widely used de-icers. Preliminary analysis identified a probable connection between road salt application and a stream wat...

  11. Water potential in soil and Atriplex nummularia (phytoremediator halophyte) under drought and salt stresses.

    PubMed

    de Melo, Hidelblandi Farias; de Souza, Edivan Rodrigues; de Almeida, Brivaldo Gomes; Mulas, Maurizio

    2018-02-23

    Atriplex nummularia is a halophyte widely employed to recover saline soils and was used as a model to evaluate the water potentials in the soil-plant system under drought and salt stresses. Potted plants grown under 70 and 37% of field capacity irrigated with solutions of NaCl and of a mixture of NaCl, KCl, MgCl 2 and CaCl 2 reproducing six electrical conductivity (EC): 0, 5, 10, 20, 30, and 40 dS m -1 . After 100 days, total water (Ψ w, plant ) and osmotic (Ψ o, plant ) potentials at predawn and midday and Ψ o, soil , matric potential (Ψ m, soil ) and Ψ w, soil were determined. The type of ion in the irrigation water did not influence the soil potential, but was altered by EC. The soil Ψ o component was the largest contributor to Ψ w, soil . Atriplex is surviving ECs close to 40 dS m -1 due to the decrease in the Ψ w . The plants reached a Ψ w of approximately -8 MPa. The water potentials determined for different moisture levels, EC levels and salt types showed huge importance for the management of this species in semiarid regions and can be used to recover salt affected soils.

  12. The influence of mixing water on the thermophysical properties of nanofluids based on solar salt and silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Muñoz-Sánchez, B.; Nieto-Maestre, J.; Iparraguirre-Torres, I.; Sánchez-García, J. A.; Julia, J. E.; García-Romero, A.

    2016-05-01

    The use of nanofluids (NFs) based on Solar Salt (SS) and nanoparticles (NPs), either as Thermal Energy Storage (TES) material or as Heat Transfer Fluid (HTF), is attracting great interest in recent years. Many authors [1,3] have reported important improvements on the thermophysical properties (specific heat capacity cp,thermal conductivity k) of NFs based on SS and ceramic NPs. These improvements would lead to important savings and better performance of TES facilities on new Concentrated Solar Power (CSP) plants due to lower quantities of material required and smaller storage tanks. To achieve these advantageous features in the final NFs, it is essential to avoid NP agglomeration during their preparation. Different synthesis procedures have been reported: mixing of solid NPs within a SS solution by means of ultrasounds [1-3], direct mixing of solid NPs and molten salt [4]. In this work, NFs based on SS and 1% by wt. of silica NPs were synthetized from a SS-water solution and a commercial water-silica NF called Ludox HS 30% (Sigma-Aldrich). The influence of the mixing water volume (MW) on the cp of NFs was evaluated. With this aim, the cp of these samples was measured by Differential Scanning Calorimetry (DSC) both in the solid and the liquid state. In addition, the distribution of sizes was measured during the whole preparation process by Dynamic Light Scattering (DLS). Further information about sizes and uniformity of the final NFs was obtained from Scanning Electron Microscopy (SEM) images. X-ray Diffraction (XRD) patterns of the SS and final NF were performed.

  13. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  14. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  15. Mixtures of lecithin and bile salt can form highly viscous wormlike micellar solutions in water.

    PubMed

    Cheng, Chih-Yang; Oh, Hyuntaek; Wang, Ting-Yu; Raghavan, Srinivasa R; Tung, Shih-Huang

    2014-09-02

    The self-assembly of biological surfactants in water is an important topic for study because of its relevance to physiological processes. Two common types of biosurfactants are lecithin (phosphatidylcholine) and bile salts, which are both present in bile and involved in digestion. Previous studies on lecithin-bile salt mixtures have reported the formation of short, rodlike micelles. Here, we show that lecithin-bile salt micelles can be further induced to grow into long, flexible wormlike structures. The formation of long worms and their resultant entanglement into transient networks is reflected in the rheology: the fluids become viscoelastic and exhibit Maxwellian behavior, and their zero-shear viscosity can be up to a 1000-fold higher than that of water. The presence of worms is further confirmed by data from small-angle neutron and X-ray scattering and from cryo-transmission electron microscopy (cryo-TEM). We find that micellar growth peaks at a specific molar ratio (near equimolar) of bile salt:lecithin, which suggests a strong binding interaction between the two species. In addition, micellar growth also requires a sufficient concentration of background electrolyte such as NaCl or sodium citrate that serves to screen the electrostatic repulsion of the amphiphiles and to "salt out" the amphiphiles. We postulate a mechanism based on changes in the molecular geometry caused by bile salts and electrolytes to explain the micellar growth.

  16. Efficient chemical and visible-light-driven water oxidation using nickel complexes and salts as precatalysts.

    PubMed

    Chen, Gui; Chen, Lingjing; Ng, Siu-Mui; Lau, Tai-Chu

    2014-01-01

    Chemical and visible-light-driven water oxidation catalyzed by a number of Ni complexes and salts have been investigated at pH 7-9 in borate buffer. For chemical oxidation, [Ru(bpy)3](3+) (bpy = 2,2'-bipyridine) was used as the oxidant, with turnover numbers (TONs) >65 and a maximum turnover frequency (TOFmax) >0.9 s(-1). Notably, simple Ni salts such as Ni(NO3 )2 are more active than Ni complexes that bear multidentate N-donor ligands. The Ni complexes and salts are also active catalysts for visible-light-driven water oxidation that uses [Ru(bpy)3](2+) as the photosensitizer and S2 O8 (2-) as the sacrificial oxidant; a TON>1200 was obtained at pH 8.5 by using Ni(NO3)2 as the catalyst. Dynamic light scattering measurements revealed the formation of nanoparticles in chemical and visible-light-driven water oxidation by the Ni catalysts. These nanoparticles aggregated during water oxidation to form submicron particles that were isolated and shown to be partially reduced β-NiOOH by various techniques, which include SEM, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, XRD, and IR spectroscopy. These results suggest that the Ni complexes and salts act as precatalysts that decompose under oxidative conditions to form an active nickel oxide catalyst. The nature of this active oxide catalyst is discussed. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Water Resources Data, California, Water Year 1989. Volume 5. Ground-Water Data

    USGS Publications Warehouse

    Lamb, C.E.; Johnson, J.A.; Fogelman, R.P.; Grillo, D.A.

    1990-01-01

    Water resources data for the 1989 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in weils. Volume 5 contains water levels for 1,037 observation wells and water-quality data for 254 monitoring wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperatine State and Federal agencies in California.

  18. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  19. A method for determining and exploring the distribution of organic matters and hardness salts in natural waters

    NASA Astrophysics Data System (ADS)

    Sargsyan, Suren

    2017-11-01

    A question regarding how organic matters in water are associated with hardness salts hasn't been completely studied. For partially clarifying this question, a water fractional separation and investigation method has been recommended. The experiments carried out by the recommended method showed that the dynamics of the distribution of total hardness and permanganate oxidation values in the fractions of frozen and melted water samples coincided completely based on which it has been concluded that organic matters in natural waters are associated with hardness salts and always distributed in this form. All these findings are useful information for the deep study of macro- and microelements in water.

  20. The influence of road salts on water quality in a restored urban stream (Columbus, OH)

    EPA Science Inventory

    Understanding the connection between road salts and water quality is essential to assess the implications for human health and ecosystem services. To assess the effects of the restoration on water quality, surface and ground water have been monitored at Minebank Run, MD since 20...

  1. How Do Changes to the Railroad Causeway in Utah’s Great Salt Lake Affect Water and Salt Flow?

    PubMed Central

    White, James S.; Null, Sarah E.; Tarboton, David G.

    2015-01-01

    Managing terminal lake elevation and salinity are emerging problems worldwide. We contribute to terminal lake management research by quantitatively assessing water and salt flow for Utah’s Great Salt Lake. In 1959, Union Pacific Railroad constructed a rock-filled causeway across the Great Salt Lake, separating the lake into a north and south arm. Flow between the two arms was limited to two 4.6 meter wide rectangular culverts installed during construction, an 88 meter opening (referred to locally as a breach) installed in 1984, and the semi porous material of the causeway. A salinity gradient developed between the two arms of the lake over time because the south arm receives approximately 95% of the incoming streamflow entering Great Salt Lake. The north arm is often at, or near, salinity saturation, averaging 317 g/L since 1966, while the south is considerably less saline, averaging 142 g/L since 1966. Ecological and industrial uses of the lake are dependent on long-term salinity remaining within physiological and economic thresholds, although optimal salinity varies for the ecosystem and between diverse stakeholders. In 2013, Union Pacific Railroad closed causeway culverts amid structural safety concerns and proposed to replace them with a bridge, offering four different bridge designs. As of summer 2015, no bridge design has been decided upon. We investigated the effect that each of the proposed bridge designs would have on north and south arm Great Salt Lake elevation and salinity by updating and applying US Geological Survey’s Great Salt Lake Fortran Model. Overall, we found that salinity is sensitive to bridge size and depth, with larger designs increasing salinity in the south arm and decreasing salinity in the north arm. This research illustrates that flow modifications within terminal lakes cannot be separated from lake salinity, ecology, management, and economic uses. PMID:26641101

  2. Ion aggregation in high salt solutions. VII. The effect of cations on the structures of ion aggregates and water hydrogen-bonding network

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Choi, Hyung Ran; Jeon, Jonggu; Cho, Minhaeng

    2017-10-01

    Ions in high salt solutions have a strong propensity to form polydisperse ion aggregates with broad size and shape distributions. In a series of previous comparative investigations using femtosecond IR pump-probe spectroscopy, molecular dynamics simulation, and graph theoretical analysis, we have shown that there exists a morphological difference in the structures of ion aggregates formed in various salt solutions. As salt concentration increases, the ions in high salt solutions form either cluster-like structures excluding water molecules or network-like structures entwined with water hydrogen-bonding networks. Interestingly, such morphological characteristics of the ion aggregates have been found to be in correlation with the solubility limits of salts. An important question that still remains unexplored is why certain salts with different cations have notably different solubility limits in water. Here, carrying out a series of molecular dynamics simulations of aqueous salt solutions and analyzing the distributions and connectivity patterns of ion aggregates with a spectral graph analysis method, we establish the relationship between the salt solubility and the ion aggregate morphology with a special emphasis on the cationic effects on water structures and ion aggregation. We anticipate that the understanding of large scale ion aggregate structures revealed in this study will be critical for elucidating the specific ion effects on the solubility and conformational stability of co-solute molecules such as proteins in water.

  3. Iodized salt sales in the United States.

    PubMed

    Maalouf, Joyce; Barron, Jessica; Gunn, Janelle P; Yuan, Keming; Perrine, Cria G; Cogswell, Mary E

    2015-03-10

    Iodized salt has been an important source of dietary iodine, a trace element important for regulating human growth, development, and metabolic functions. This analysis identified iodized table salt sales as a percentage of retail salt sales using Nielsen ScanTrack. We identified 1117 salt products, including 701 salt blends and 416 other salt products, 57 of which were iodized. When weighted by sales volume in ounces or per item, 53% contained iodized salt. These findings may provide a baseline for future monitoring of sales of iodized salt.

  4. Analysis of chlorophenoxy acid herbicides in water by large-volume on-line derivatization and gas chromatography-mass spectrometry.

    PubMed

    Ding, W H; Liu, C H; Yeh, S P

    2000-10-27

    This work presents a modified method to analyze chlorophenoxy acid herbicides in water samples. The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid). Silvex (2,4,5-trichlorophenoxypropionic acid) and 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) were used to evaluate the method. The method involves extraction of samples by a graphitized carbon black cartridge, and on-line derivatization in the GC injection port using a large-volume (10-20 microl) direct sample introduction (DSI) device with tetraalkylammonium salts. The analytes were then identified and quantitated by ion-trap gas chromatography-mass spectrometry. The large-volume DSI injection-port derivatization technique provides sensitivity, fast and reproducible results for chlorophenoxy acid herbicides residues, to quantitation at 0.1 to 0.2 microg/l in 500-ml water samples. An enhanced characteristic mass chromatogram of molecular ions of butylated chlorophenoxy acid herbicides with a significant chlorine isotope pattern by electron impact ionization MS allows us to determine herbicides residues at trace levels in aqueous samples. Recovery of the herbicide residues in spiked various water samples ranged from 70 to 99% while RSDs ranged from 1 to 13%.

  5. Oxygation enhances growth, gas exchange and salt tolerance of vegetable soybean and cotton in a saline vertisol.

    PubMed

    Bhattarai, Surya P; Midmore, David J

    2009-07-01

    Impacts of salinity become severe when the soil is deficient in oxygen. Oxygation (using aerated water for subsurface drip irrigation of crop) could minimize the impact of salinity on plants under oxygen-limiting soil environments. Pot experiments were conducted to evaluate the effects of oxygation (12% air volume/volume of water) on vegetable soybean (moderately salt tolerant) and cotton (salt tolerant) in a salinized vertisol at 2, 8, 14, 20 dS/m EC(e). In vegetable soybean, oxygation increased above ground biomass yield and water use efficiency (WUE) by 13% and 22%, respectively, compared with the control. Higher yield with oxygation was accompanied by greater plant height and stem diameter and reduced specific leaf area and leaf Na+ and Cl- concentrations. In cotton, oxygation increased lint yield and WUE by 18% and 16%, respectively, compared with the control, and was accompanied by greater canopy light interception, plant height and stem diameter. Oxygation also led to a greater rate of photosynthesis, higher relative water content in the leaf, reduced crop water stress index and lower leaf water potential. It did not, however, affect leaf Na+ or Cl- concentration. Oxygation invariably increased, whereas salinity reduced the K+ : Na+ ratio in the leaves of both species. Oxygation improved yield and WUE performance of salt tolerant and moderately tolerant crops under saline soil environments, and this may have a significant impact for irrigated agriculture where saline soils pose constraints to crop production.

  6. Environmental aspects of produced-water salt releases in onshore and coastal petroleum-producing areas of the conterminous U.S. - a bibliography

    USGS Publications Warehouse

    Otton, James K.

    2006-01-01

    Environmental effects associated with the production of oil and gas have been reported since the first oil wells were drilled in the Appalachian Basin in Pennsylvania and Kentucky in the early to mid-1800s. The most significant of these effects are the degradation of soils, ground water, surface water, and ecosystems they support by releases of suspended and dissolved hydrocarbons and co-produced saline water. Produced water salts are less likely than hydrocarbons to be adsorbed by mineral phases in the soil and sediment and are not subject to degradation by biologic processes. Sodium is a major dissolved constituent in most produced waters and it causes substantial degradation of soils through altering of clays and soil textures and subsequent erosion. Produced water salts seem to have the most wide-ranging effects on soils, water quality, and ecosystems. Trace elements, including boron, lithium, bromine, fluorine, and radium, also occur in elevated concentrations in some produced waters. Many trace elements are phytotoxic and are adsorbed and may remain in soils after the saline water has been flushed away. Radium-bearing scale and sludge found in oilfield equipment and discarded on soils pose additional hazards to human health and ecosystems. This bibliography includes studies from across the oil- and natural-gas-producing areas of the conterminous United States that were published in the last 80 yrs. The studies describe the effects of produced water salts on soils, water quality, and ecosystems. Also included are reports that describe (1) the inorganic chemistry of produced waters included in studies of formation waters for various purposes, (2) other sources of salt affecting water quality that may be mistaken for produced water effects, (3) geochemical and geophysical techniques that allow discrimination of salt sources, (4) remediation technologies designed to repair damage caused to soils and ground water by produced water salts, and (5) contamination by

  7. Wind effects on water and salt loss in playa lakes

    NASA Astrophysics Data System (ADS)

    Torgersen, T.

    1984-10-01

    The theory behind wind stress induced setup of water surface slope on a playa lake is reviewed. Due to the low gradient of the bottom in most playa lakes (1-20 cm km -1), the advance and retreat of lake waters due to wind stress can expose or cover many square kilometers. It is even possible for the surface slope to exceed the bottom slope and thereby create a "roving" lake. Such water movements can transport lake water over undersaturated "shore" sediments and water can therefore infiltrate and be lost without an increase in lake salinity. This case is demonstrated with data from Lake George, New South Wales, Australia. Such wind effects need to be examined for their relation to the diagenesis of sediments, the composition of the bitterns, and the salt budget of playa lakes.

  8. [Effect of shifting sand burial on evaporation reduction and salt restraint under saline water irrigation in extremely arid region].

    PubMed

    Zhang, Jian-Guo; Zhao, Ying; Xu, Xin-Wen; Lei, Jia-Qiang; Li, Sheng-Yu; Wang, Yong-Dong

    2014-05-01

    The Taklimakan Desert Highway Shelterbelt is drip-irrigated with high saline groundwater (2.58-29.70 g x L(-1)), and shifting sand burial and water-salt stress are most common and serious problems in this region. So it is of great importance to study the effect of shifting sand burial on soil moisture evaporation, salt accumulation and their distribution for water saving, salinity restraint, and suitable utilization of local land and water resources. In this study, Micro-Lysimeters (MLS) were used to investigate dynamics of soil moisture and salt under different thicknesses of sand burial (1, 2, 3, 4, and 5 cm), and field control experiments of drip-irrigation were also carried out to investigate soil moisture and salt distribution under different thicknesses of shifting sand burial (5, 10, 15, 20, 25, 30, 35, and 40 cm). The soil daily and cumulative evaporation decreased with the increase of sand burial thickness in MLS, cumulative evaporation decreased by 2.5%-13.7% compared with control. And evaporative inhibiting efficiency increased with sand burial thickness, evaporative inhibiting efficiency of 1-5 cm sand burial was 16.7%-79.0%. Final soil moisture content beneath the interface of sand burial increased with sand burial thickness, and it increased by 2.5%-13.7% than control. The topsoil EC of shifting sand in MLS decreased by 1.19-6.00 mS x cm(-1) with the increasing sand burial thickness, whereas soil salt content beneath the interface in MLS increased and amplitude of the topsoil salt content was higher than that of the subsoil. Under drip-irrigation with saline groundwater, average soil moisture beneath the interface of shifting sand burial increased by 0.4% -2.0% compare with control, and the highest value of EC was 7.77 mS x cm(-1) when the sand burial thickness was 10 cm. The trend of salt accumulation content at shifting sand surface increased firstly, and then decreased with the increasing sand burial thickness. Soil salt contents beneath the

  9. Characteristics of salt taste and free chlorine or chloramine in drinking water.

    PubMed

    Wiesenthal, K E; McGuire, M J; Suffet, I H

    2007-01-01

    Salty taste with or without chlorine or chloramine flavour is one of the major consumer complaints to water utilities. The flavour profile analysis (FPA) taste panel method determined the average taste threshold concentration for salt (NaCl) in Milli-Q water to be 640 +/- 3 mg/L at pH 8. Chlorine and chloramine disinfectants have no antagonistic or synergistic effects on the taste of NaCl, salt, in Milli-Q water. The flavour threshold concentrations for chlorine or chloramine in Milli-Q water alone or in the presence of NaCl could not be estimated by the Weber-Fechner curves due to the chlorine or chloramine flavour outliers in the 0.2-0.8 mg/L concentration range. Apparently, NaCl is not equilibrated with the concentration of ions in the saliva in the mouth and the concentration of free chlorine or chloramines cannot be tasted correctly. Therefore, dechlorinated tap water may be the best background water to use for a particular drinking water evaluation of chlorine and chloramine thresholds. Laboratory FPA studies of free chlorine found that a 67% dilution of Central Arizona Project (CAP) (Tucson, AZ) water with Milli-O water was required to reduce the free chlorine flavour to a threshold value instead of a theoretical value of 80% (Krasner and Barrett, 1980). No synergistic effect was found for chlorine flavour on the dilution of CAP water with Milli-Q water. When Central Avra Valley (AVRA) groundwater was used for the dilution of CAP water, a synergistic effect of the TDS present was observed for the chlorine flavour. Apparently, the actual mineral content of drinking water, and not just NaCl in Milli-Q water, is needed for comparative flavour tests for chlorine and chloramines.

  10. Volume and surface area size distribution, water mass and model fitting of GCE/CASE/WATOX marine aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.

    1990-06-01

    As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.

  11. Surface and ground water quality in a restored urban stream affected by road salts

    EPA Science Inventory

    In 2001 research began in Minebank Run, MD to examine the impact of restoration on water quality. Our research area was to determine if road salts in the surface and ground waters are detrimental to the stream channel restoration. The upstream reach (UP), above the Baltimore I-...

  12. The Effects of Salt Water on the Slow Crack Growth of Soda Lime Silicate Glass

    NASA Technical Reports Server (NTRS)

    Hausmann, Bronson D.; Salem, Jonathan A.

    2016-01-01

    The slow crack growth parameters of soda-lime silicate were measured in distilled and salt water of various concentrations in order to determine if stress corrosion susceptibility is affected by the presence of salt and the contaminate formation of a weak sodium film. Past research indicates that solvents effect the rate of crack growth, however, the effects of salt have not been studied. The results indicate a small but statistically significant effect on the slow crack growth parameters A and n. However, for typical engineering purposes, the effect can be ignored.

  13. Thermal-gradient migration of brine inclusions in salt crystals

    NASA Astrophysics Data System (ADS)

    Yagnik, S. K.

    1982-09-01

    High level nuclear waste disposal in a geologic repository was proposed. Natural salt deposits which are considered contain a small volume fraction of water in the form of brine inclusions distributed throughout the salt. Radioactive decay heating of the nuclear wastes will impose a temperature gradient on the surrounding salt which mobilizes the brine inclusions. Inclusions filled completely with brine migrate up the temperature gradient and eventually accumulate brine near the buried waste forms. The brine may slowly corrode or degrade the waste forms which is undesirable. In this work, thermal gradient migration of both all liquid and gas liquid inclusions was experimentally studied in synthetic single crystals of NaCl and KCl using a hot stage attachment to an optical microscope which was capable of imposing temperature gradients and axial compressive loads on the crystals. The migration velocities of the inclusion shape and size are discussed.

  14. Selected ground-water data, Bonneville Salt Flats and Pilot Valley, western Utah

    USGS Publications Warehouse

    Lines, Gregory C.

    1978-01-01

    This report contains ground-water data collected at wells and springs on the Bonneville Salt Flats and in Pilot Valley, western Utah. Most of the data were collected during a study of the hydrology and surface morphology of these two salt-crust areas during the period July 1975 - June 1977. The study was carried out in cooperation with the U.S. Bureau of Land Management. This report is intended to make the basic data conveniently available and to supplement an interpretive report that will be published separately. Some earlier data that were collected by the Geological Survey and other organizations are also included.

  15. Salt Content in Ready-to-Eat Food and Bottled Spring and Mineral Water Retailed in Novi Sad.

    PubMed

    Paplović, Ljiljana B Trajković; Popović, Milka B; Bijelović, Sanja V; Velicki, Radmila S; Torović, Ljilja D

    2015-01-01

    Salt intake above 5 g/person/day is a strong independent risk factor for hypertension, stroke and cardiovascular diseases. Published studies indicate that the main source of salt in human diet is processed ready-to-eat food, contributing with 65-85% to daily salt intake. The aim of this paper was to present data on salt content of ready-to-eat food retailed in Novi Sad, Serbia, and contribution of the salt contained in 100 g of food to the recommended daily intake of salt for healthy and persons with cardiovascular disease (CVD) risk. In 1,069 samples of ready-to-eat food, salt (sodium chloride) content was calculated based on chloride ion determined by titrimetric method, while in 54 samples of bottled water sodium content was determined using flame-photometry. Food items in each food group were categorized as low, medium or high salt. Average salt content of each food group was expressed as a percentage of recommended daily intake for healthy and for persons with CVD risk. Average salt content (g/100 g) ranged from 0.36 ± 0.48 (breakfast cereals) to 2.32 ± 1.02 (grilled meat). The vast majority of the samples of sandwiches (91.7%), pizza (80.7%), salami (73.9%), sausages (72.9%), grilled meat (70.0%) and hard cheese (69.6%) had a high salt profile. Average amount of salt contained in 100 g of food participated with levels ranging from 7.2% (breakfast cereals) to 46.4% (grilled meat) and from 9.6% to 61.8% in the recommended daily intake for healthy adult and person with CVD risk, respectively. Average sodium content in 100 ml of bottled spring and mineral water was 0.33 ± 0.30 mg and 33 ± 44 mg, respectively. Ready-to-eat food retailed in Novi Sad has high hidden salt content, which could be considered as an important contributor to relatively high salt consumption of its inhabitants.

  16. In-situ Use of Ground Water by Alfalfa

    USDA-ARS?s Scientific Manuscript database

    One proposal for drainage water disposal is to reuse drainage water for irrigation of salt tolerant crops until the volume has been reduced sufficiently to enable final disposal by evaporation. Part of this concept of serial biological concentration requires in-situ crop water reuse from shallow gr...

  17. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  18. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  19. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    PubMed

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Pressure-volume (P-V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions.

    PubMed

    Teixeira Lins, Cíntia Maria; Rodrigues de Souza, Edivan; Farias de Melo, Hidelblandi; Silva Souza Paulino, Martha Katharinne; Dourado Magalhães, Pablo Rugero; Yago de Carvalho Leal, Lucas; Bentzen Santos, Hugo Rafael

    2018-03-01

    The survival of Atriplex nummularia plants in saline environments is possible mainly due to the presence of salt-accumulating epidermal vesicles. Commonly, destructive methods, such as plant material maceration and subsequent reading in osmometers, are employed in studies on water relations and osmotic adjustment and are inconvenient due to their underestimation of the total water potential inside the cells, which can cause overestimation of an osmotic adjustment that is not present. As a result, methods that preserve leaf structure, such as pressure-volume (P-V) curves, which take into consideration only the salts that compose the symplastic solution, are more adequate. Thus, the main objectives of this study were to evaluate the effect of determination methods of osmotic potential (Ψ o ) in Atriplex nummularia through destructive and leaf structure-preserving techniques and to determine the water relations of the species under increasing NaCl concentrations. Plants were subjected to daily irrigations, maintaining soil moisture at 80% of field capacity, with solutions of increasing NaCl concentration (0, 0.05, 0.1, 0.2, 0.25 and 0.3 M) for 84 days. Water potential, osmotic potential and osmotic adjustment were determined. In addition, P-V curves were constructed using pressure chambers. Water and osmotic potentials decreased linearly with increasing NaCl concentration in the irrigation solution. The main discrepancies observed were related to the osmotic adjustments determined through maceration and P-V curves. Based on the present research, it was possible to conclude that in studies with species that have salt-accumulating vesicles in the epidermis, such as the plants in the genus Atriplex, constructing P-V curves is more adequate than destructive methods. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Mg-Sulfate Salts as Possible Water Reservoirs in Martian Regolith

    NASA Astrophysics Data System (ADS)

    Vaniman, D. T.; Bish, D. L.; Chipera, S. J.; Carey, J. W.; Feldman, W. C.

    2003-12-01

    Neutron spectrometer data from the Mars Odyssey orbiter provide evidence of high water-equivalent hydrogen abundance in some near-equatorial locations on Mars. In broad regions shallow (<1 m) regolith appears to have water abundances of up to ˜13 wt%. Water ice is predicted to be unstable at the present time at all depths below the surface in these equatorial regions. If present in hydrous silicate minerals such as clays or zeolites, which may contain water in abundances of ˜10-20% at Martian surface conditions, the Odyssey data require a regolith very enriched in hydrous silicates - an unlikely proposition. Viking X-ray fluorescence data and alteration assemblages in martian meteorites suggest the presence of sulfate salts in martian regolith. Viking data from excavated duricrust indicate that Mg and S are correlated and that ˜10% of an Mg-sulfate salt is a likely cementing agent. However, the range of possible Mg sulfates is large. Epsomite (7-hydrate, 51% water) and hexahydrite (6-hydrate, 47% water) are the most hydrated; both form structures of isolated SO4 tetrahedra with isolated octahedral sites consisting of Mg coordinated by six H2O molecules (epsomite has an extra H2O in addition to the six required to coordinate with Mg). Pentahydrite (5-hydrate, 43% water) has infinite chains of alternating SO4 tetrahedra and Mg octahedra, with 4/5 of the water forming apices in octahedral sites. Starkeyite (4-hydrate, 37% water) has clusters of two SO4 tetrahedra and two Mg octahedra, linked only by hydrogen bonds. The Mg-sulfate sanderite (2-hydrate, 23% water) is rare and has poorly known structure. Kieserite (1-hydrate, 13% water) is relatively common in evaporite deposits and has a framework structure of infinite tetrahedral-octahedral chains cross-linked by hydrogen bonds. The stability of Mg-sulfate hydrates under martian near-surface conditions depends on their structures; those with excess water beyond that required to form the octahedral Mg site (e

  2. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia

    PubMed Central

    Sutrisna, Aang; Knowles, Jacky; Basuni, Abas; Menon, Ravi; Sugihantono, Anung

    2018-01-01

    The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10–12 years of age (SAC), 13,233 women of reproductive age (WRA), and 578 pregnant women (PW). Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49%) and WRA (48%) and a quarter for PW (28%). The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES), iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets. PMID:29517995

  3. Iodine Intake Estimation from the Consumption of Instant Noodles, Drinking Water and Household Salt in Indonesia.

    PubMed

    Sutrisna, Aang; Knowles, Jacky; Basuni, Abas; Menon, Ravi; Sugihantono, Anung

    2018-03-08

    The objective of this study was to assess the contribution of iodine intake from iodised household salt, iodised salt in instant noodles, and iodine in ground water in five regions of Indonesia. Secondary data analysis was performed using the 2013 Primary Health Research Survey, the 2014 Total Diet Study, and data from food industry research. Iodine intake was estimated among 2719 children, 10-12 years of age (SAC), 13,233 women of reproductive age (WRA), and 578 pregnant women (PW). Combined estimated iodine intake from the three stated sources met 78%, 70%, and 41% of iodine requirements for SAC, WRA and PW, respectively. Household salt iodine contributed about half of the iodine requirements for SAC (49%) and WRA (48%) and a quarter for PW (28%). The following variations were found: for population group, the percentage of estimated dietary iodine requirements met by instant noodle consumption was significantly higher among SAC; for region, estimated iodine intake was significantly higher from ground water for WRA in Java, and from household salt for SAC and WRA in Kalimantan and Java; and for household socio-economic status (SES), iodine intake from household salt was significantly higher in the highest SES households. Enforcement of clear implementing regulations for iodisation of household and food industry salt will promote optimal iodine intake among all population groups with different diets.

  4. Water resources data, New Jersey, water year 2005. Volume 1 - surface-water data

    USGS Publications Warehouse

    White, B.T.; Hoppe, H.L.; Centinaro, G.L.; Dudek, J.F.; Painter, B.S.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 103 gaging stations; tide summaries at 28 tidal gaging stations; stage and contents at 34 lakes and reservoirs; and diversions from 50 surface-water sources. Also included are stage and discharge for 116 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 155 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 222 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  5. Water resources data, New Jersey, water year 2004-volume 1. surface-water data

    USGS Publications Warehouse

    Centinaro, G.L.; White, B.T.; Hoppe, H.L.; Dudek, J.F.; Protz, A.R.; Reed, T.J.; Shvanda, J.C.; Watson, A.F.

    2005-01-01

    Water-resources data for the 2004 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 1 contains discharge records for 105 gaging stations; tide summaries at 27 tidal gaging stations; stage and contents at 39 lakes and reservoirs; and diversions from 51 surface-water sources. Also included are stage and discharge for 108 crest-stage partial-record stations, stage-only at 34 tidal crest-stage gages, and discharge for 124 low-flow partial-record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 131 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including stream-flow, precipitation, reservoir conditions, and air temperatures.

  6. Cultural Meromixis: the Influence of Road Salt Deicers on Two Urban Kettle Lakes

    NASA Astrophysics Data System (ADS)

    Koretsky, C.; Sibert, R.; Wyman, D. A.; Griffey, D.; Krishnamurthy, R. V.

    2014-12-01

    The increasing global use of road salt deicers has led to an influx of salts, particularly NaCl and CaCl2, into urban surface waters. This influx has led to documented salinization of drinking water supplies, as well as damage to ecosystems. There is an increasing recognition that the influx of road salt deciers may also influence the physical mixing of lakes, with dramatic consequences for lake biogeochemistry. In this study, the water column chemistry of two kettle lakes in urban Kalamazoo, MI, USA was monitored for over a year. Woods Lake, an ~9.7 ha, 14 m max depth lake, receives most water from storm water sewers, whereas nearby Asylum Lake, an ~19.8 ha, 15.8 m max depth lake, is primarily groundwater fed. The water columns of both lakes are strongly redox stratified, but exhibit some significant differences in water chemistry. The input of road salt has caused Woods Lake to transition to meromixis, with permanently anoxic bottom waters and significant accumulations of dissolved Mn(II), Fe(II), NH3, PO4-3 and sometimes HS- in the hypolimnion. In contrast, Asylum Lake appears to be monomictic, with turnover occurring in fall, but not spring. During most seasons, the hypolimnion of Asylum Lake has significant levels of dissolved Mn(II), NH3, PO4-3, and sometimes HS-, but dissolved Fe(II) remains below detection limits. A comparison of δ18O and δD with the local meteoric water line demonstrates that both lakes undergo significant evaporation. Woods Lake is considerably more influenced by evaporation than Asylum Lake, presumably due to the longer residence time of water in Woods Lake. The longer residence time, together with the smaller volume of water in Woods Lake, likely explains the more rapid transition to meromixis compared to Asylum Lake. This study demonstrates that road salt deicers can significantly influence the biogeochemistry and physical function of urban lakes, and in some cases can result in dimictic lakes transitioning to cultural meromixis.

  7. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney.

    PubMed

    Sackin, H; Boulpaep, E L

    1975-12-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport.

  8. Models for coupling of salt and water transport; Proximal tubular reabsorption in Necturus kidney

    PubMed Central

    Sackin, H; Boulpaep, EL

    1975-01-01

    Models for coupling of salt and water transport are developed with two important assumptions appropriate for leaky epithelia. (a) The tight junction is permeable to both sale and water. (b) Active Na transport into the lateral speces is assumed to occur uniformly along the length of the channel. The proposed models deal specifically with the intraepithelial mechanism of proximal tubular resbsorption in the Necturus kidney although they have implications for epithelial transport in the gallbladder and small intestine as well. The first model (continuous version) is similar to the standing gradient model devised by Diamond and Bossert but used different boundary conditions. In contrast to Diamond and Bossert's model, the predicted concentration profiles are relatively flat with no sizable gradients along the interspace. The second model (compartment version) expands Curran's model of epithelial salt and water transport by including additional compartments and considering both electrical and chemical driving forces for individual Na and Cl ions as well as hydraulic and osmotic driving forces for water. In both models, ion and water fluxes are investigated as a function of the transport parameters. The behavior of the models is consistent with previously suggested mechanisms for the control of net transport, particularly during saline diuresis. Under all conditions the predicted ratio of net solute to solvent flux, or emergent concentration, deviates from exact isotonicity (except when the basement membrane has an appreciable salt reflection coefficient). However, the degree of hypertonicity may be small enough to be experimentally indistinguishable from isotonic transport. PMID:1104761

  9. Characterising protein, salt and water interactions with combined vibrational spectroscopic techniques.

    PubMed

    Perisic, Nebojsa; Afseth, Nils Kristian; Ofstad, Ragni; Hassani, Sahar; Kohler, Achim

    2013-05-01

    In this paper a combination of NIR spectroscopy and FTIR and Raman microspectroscopy was used to elucidate the effects of different salts (NaCl, KCl and MgSO(4)) on structural proteins and their hydration in muscle tissue. Multivariate multi-block technique Consensus Principal Component Analysis enabled integration of different vibrational spectroscopic techniques: macroscopic information obtained by NIR spectroscopy is directly related to microscopic information obtained by FTIR and Raman microspectroscopy. Changes in protein secondary structure observed at different concentrations of salts were linked to changes in protein hydration affinity. The evidence for this was given by connecting the underlying FTIR bands of the amide I region (1700-1600 cm(-1)) and the water region (3500-3000 cm(-1)) with water vibrations obtained by NIR spectroscopy. In addition, Raman microspectroscopy demonstrated that different cations affected structures of aromatic amino acid residues differently, which indicates that cation-π interactions play an important role in determination of the final structure of protein molecules. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Role of Salt, Pressure, and Water Activity on Homogeneous Ice Nucleation.

    PubMed

    Espinosa, Jorge R; Soria, Guiomar D; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2017-09-21

    Pure water can be substantially supercooled below the melting temperature without transforming into ice. The achievable supercooling can be enhanced by adding solutes or by applying hydrostatic pressure. Avoiding ice formation is of great importance in the cryopreservation of food or biological samples. In this Letter, we investigate the similarity between the effects of pressure and salt on ice formation using a combination of state-of-the-art simulation techniques. We find that both hinder ice formation by increasing the energetic cost of creating the ice-fluid interface. Moreover, we examine the widely accepted proposal that the ice nucleation rate for different pressures and solute concentrations can be mapped through the activity of water [ Koop , L. ; Tsias , P. Nature , 2000 , 406 , 611 ]. We show that such a proposal is not consistent with the nucleation rates predicted in our simulations because it does not include all parameters affecting ice nucleation. Therefore, even though salt and pressure have a qualitatively similar effect on ice formation, they cannot be quantitatively mapped onto one another.

  11. On the hydrophilicity of polyzwitterion poly (N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropane sulfonate) in water, deuterated water, and aqueous salt solutions.

    PubMed

    Hildebrand, Viet; Laschewsky, André; Zehm, Daniel

    2014-01-01

    A series of zwitterionic model polymers with defined molar masses up to 150,000 Da and defined end groups are prepared from sulfobetaine monomer N,N-dimethyl-N-(3-(methacrylamido)propyl)ammoniopropanesulfonate (SPP). Polymers are synthesized by reversible addition-fragmentation chain transfer polymerization (RAFT) using a functional chain transfer agent labeled with a fluorescent probe. Their upper critical solution temperature-type coil-to-globule phase transition in water, deuterated water, and various salt solutions is studied by turbidimetry. Cloud points increase with polyzwitterion concentration and molar mass, being considerably higher in D2O than in H2O. Moreover, cloud points are strongly affected by the amount and nature of added salts. Typically, they increase with increasing salt concentration up to a maximum value, whereas further addition of salt lowers the cloud points again, mostly down to below freezing point. The different salting-in and salting-out effects of the studied anions can be correlated with the Hofmeister series. In physiological sodium chloride solution and in phosphate buffered saline (PBS), the cloud point is suppressed even for high molar mass samples. Accordingly, SPP-polymers behave strongly hydrophilic under most conditions encountered in biomedical applications. However, the direct transfer of results from model studies in D2O, using, e.g. (1)H NMR or neutron scattering techniques, to 'normal' systems in H2O is not obvious.

  12. Water Resources Data, New Jersey, Water Year 2003; Volume 1. Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; White, B.T.; Centinaro, G.L.; Dudek, J.F.; Protz, A.R.; Shvanda, J.C.; Watson, A.F.

    2004-01-01

    Water-resources data for the 2003 Water Year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 1 contains discharge records for 100 gaging stations; tide summaries at 29 tidal gaging stations; and stage and contents at 39 lakes and reservoirs. Also included are stage and discharge for 106 crest-stage partial-record stations, stage-only at 33 tidal crest-stage gages, and discharge for 142 low-flow partial- record stations. Locations of these sites are shown in figures 8-11. Additional discharge measurements were made at 143 miscellaneous sites that are not part of the systematic data-collection program. Discontinued station tables for gaging stations, crest-stage gages, tidal crest-stage and tidal gaging stations show historical coverage. The data in this report represent that part of the National Water Information System (NWIS) data collected by the United States Geological Survey (USGS). Hydrologic conditions are also described for this water year, including streamflow, precipitation, reservoir conditions, and air temperatures.

  13. Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kidder, G.W. III; McCoy, A.A.

    1996-02-01

    The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals ins uncertain. To obtain constant results plastic spacers can be employed to hold the valves apart. This obviates valve position as an index of response and some other method is required. Electromyography of intact mussels is one such index, giving a simple, effective, and quantitative measurement of activity. Experiments are reported in this article on the effects of added mercury on salt water and fresh water species.

  14. Salting Constants of Small Organic Molecules in Aerosol-Relevant Salts and Application to Aerosol Formation in the Southeastern United States

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Carlton, A. M. G.; Ziemann, P. J.; Volkamer, R. M.

    2014-12-01

    Secondary organic aerosol (SOA) formation from small water-soluble molecules such as glyoxal and methyl glyoxal is a topic of emerging interest. Results from recent field campaigns, e.g. Waxman et al. (2013, GRL) and Knote et al. (2014, ACP), show that these molecules can form significant SOA mass as a result of 'salting-in'. Salting-in happens when a molecule's solubility increases with salt concentration and salting-out is the reverse. Salting effects modify the solubility exponentially with increasing salt concentration, and thus the effective Henry's law constant can strongly modify partitioning, and multiphase chemical reaction rates in aerosol water. Moreover, the solubility in aerosol water cannot easily inferred based on the solubility in cloud water, as the salting effects could change the solubility by a factor of 104 or more. In this work, we have devised and applied a novel experimental setup to measure salting constants using an ion trap mass spectrometer. We focus on small, water soluble molecules like methyl glyoxal and similar compounds and measure salting constants for aerosol-relevant salts including ammonium sulfate, ammonium nitrate, and sodium chloride. The Setschenow salting-constant values are then used to parameterize the effects of salting in CMAQ. We present a series of sensitivity studies of the effects that inorganic aerosols have on the SOA formation from small soluble molecules in the southeastern United States.

  15. Water Resources Data, Pennsylvania, Water Year 2001, Volume 2. Susquehanna and Potomac River Basins

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2001-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 2, contains: (1) discharge records for 83 continuous-record streamflow-gaging stations, 15 partial-record stations, and 24 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 9 streamflow gaging stations and 73 partial-record and project stations; and (4) water-level records for 36 ground-water network observation wells and water-quality analyses of ground water from 8 wells; (5) water-quality analyses at 123 special study ground-water wells; and, (6) miscellaneous water-level measurements at 80 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-2." These water-data reports, beginning with the 1971 water year, are for sale

  16. Receptacle model of salting-in by tetramethylammonium ions.

    PubMed

    Hribar-Lee, Barbara; Dill, Ken A; Vlachy, Vojko

    2010-11-25

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the Mercedes-Benz (MB) + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series as atomic ions do.

  17. Water resources data, Pennsylvania, water year 2000. Volume 2. Susquehanna and Potomac River Basins

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 2, contains: (1) discharge records for 83 continuous-record streamflow-gaging stations, 16 partial-record stations, and 24 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 11 streamflow gaging stations and 70 partial-record and project stations; and (4) water-level records for 30 ground-water network observation wells and water-quality analyses of ground water from 8 wells; and (5) water-quality analyses at 60 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-2." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U

  18. Water Resources Data, Pennsylvania, Water Year 1999. Volume 2. Susquehanna and Potomac River Basins

    USGS Publications Warehouse

    Durlin, R.R.; Schaffstall, W.P.

    2000-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio River and St. Lawrence River Basins.This report, Volume 2, contains: (1) discharge records for 83 continuous-record streamflow-gaging stations, 16 partial-record stations, and 24 special study and miscellaneous streamflow sites; (2) elevation and contents records for 12 lakes and reservoirs; (3) water-quality records for 11 streamflow gaging stations and 45 partial-record and project stations; and (4) water-level records for 30 ground-water network observation wells and water-quality analyses of ground water from 8 wells; and (5) water-quality analyses at 44 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented. Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-2." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U

  19. Hydrogen production from salt water by Marine blue green algae and solar radiation

    NASA Technical Reports Server (NTRS)

    Mitsui, A.; Rosner, D.; Kumazawa, S.; Barciela, S.; Phlips, E.

    1985-01-01

    Two marine bluegreen algae, Oscillatoria sp. Miami BG 7 and Synechococcus sp Miami 041511 have been selected as the result of over 10 years continuous and intensive effort of isolation, growth examination, and the screening of hydrogen photoproduction capability in this laboratory. Both strains photoproduced hydrogen for several days at high rates and a quantity of hydrogen was accumulated in a closed vessel. Overall hydrogen donor substance of the hydrogen photoproduction was found to be salt water. Using strain Miami BG 7, a two step method of hydrogen photoproduction from salt water was successfully developed and this was recycled several times over a one month period using both free cells and immobilized cells in both indoor and outdoor under natural sunlight. According to these experiments, a prototype floating hydrogen production system was designed for further development of the biosolar hydrogen production system.

  20. Storm Water Management Model Reference Manual Volume II ...

    EPA Pesticide Factsheets

    SWMM is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. The runoff component of SWMM operates on a collection of subcatchment areas that receive precipitation and generate runoff and pollutant loads. The routing portion of SWMM transports this runoff through a system of pipes, channels, storage/treatment devices, pumps, and regulators. SWMM tracks the quantity and quality of runoff generated within each subcatchment, and the flow rate, flow depth, and quality of water in each pipe and channel during a simulation period comprised of multiple time steps. The reference manual for this edition of SWMM is comprised of three volumes. Volume I describes SWMM’s hydrologic models, Volume II its hydraulic models, and Volume III its water quality and low impact development models. This document provides the underlying mathematics for the hydraulic calculations of the Storm Water Management Model (SWMM)

  1. The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations

    NASA Astrophysics Data System (ADS)

    Stwertka, C.; Strong, C.

    2012-12-01

    A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.

  2. Fluorescent halite from Bochnia salt mine, Poland

    NASA Astrophysics Data System (ADS)

    Waluś, Edyta; Głąbińska, Dobrochna; Puławska, Aleksandra; Flasza, Michał; Manecki, Maciej

    2016-04-01

    The photoluminescence of selected halite crystals from Bochnia Salt Mine (Bochnia, Poland) were discovered in 2014. This is a result of contemporary precipitation from percolating waters. In most cases the fluorescence is observed in whole crystals or in zones of crystals. Only clear parts of transparent crystals are orange-red fluorescent in short UV light (320 nm). Chemical microanalysis by scanning electron microscopy/energy dispersive spectroscopy SEM/EDS indicates that this is activated by Mn and Pb. The concentration of Mn is similar in fluorescent and inactive salt and equals to 0.13 - 0.27 wt.%. The concentration of Pb, however, averages to 3.8 wt.% in fluorescent parts reaching only 1.9 wt.% elsewhere. There is no difference in the unit cell parameters determined by powder X-ray diffraction. The percolating waters contain some Mn (ca. 3.9 ppm) but the concentration of Pb is below the detection limits. The experiments of precipitation of halite from the solutions containing various concentrations of Mn and Pb were performed to simulate this fenomenon using solutions containing: 1 mg Pb/L and 80 mg Mn/L; 1 mg Pb/L and 0.8 mg Mn/L; 1 mg Pb/L and 0.6 mg Mn/L; and 0 mg Pb/L and 80 mg Mn/L. The results indicate that fluorescence is apparent when halite forms from solutions containing more than 0.8 mg Mn/L and more than 1 mg Pb/L. The presence of lead as co-activator is necessary requirement: Mn alone does not activate the fluorescence of halite. This is in accordance with the results of previous work (Murata et al., 1946; Sidike et al., 2002). Rock salt in the mine does not show fluorescence at all. Fluorescence of contemporary salt in Bochnia salt mine is a result of mining activity and slight, sporadic contamination with traces of Mn and Pb. This work is partially funded by AGH research grant no 11.11.140.319. Murata K. J., Smith R. L., 1946. Manganese and lead as coactivators of red fluorescence in halite, American Mineralogist, Volume 31, pages 527

  3. A review of environmental impacts of salts from produced waters on aquatic resources

    USGS Publications Warehouse

    Farag, Aïda M.; Harper, David D.

    2014-01-01

    Salts are frequently a major constituent of waste waters produced during oil and gas production. These produced waters or brines must be treated and/or disposed and provide a daily challenge for operators and resource managers. Some elements of salts are regulated with water quality criteria established for the protection of aquatic wildlife, e.g. chloride (Cl−), which has an acute standard of 860 mg/L and a chronic standard of 230 mg/L. However, data for establishing such standards has only recently been studied for other components of produced water, such as bicarbonate (HCO3−), which has acute median lethal concentrations (LC50s) ranging from 699 to > 8000 mg/L and effects on chronic toxicity from 430 to 657 mg/L. While Cl− is an ion of considerable importance in multiple geographical regions, knowledge about the effects of hardness (calcium and magnesium) on its toxicity and about mechanisms of toxicity is not well understood. A multiple-approach design that combines studies of both individuals and populations, conducted both in the laboratory and the field, was used to study toxic effects of bicarbonate (as NaHCO3). This approach allowed interpretations about mechanisms related to growth effects at the individual level that could affect populations in the wild. However, additional mechanistic data for HCO3−, related to the interactions of calcium (Ca2 +) precipitation at the microenvironment of the gill would dramatically increase the scientific knowledge base about how NaHCO3 might affect aquatic life. Studies of the effects of mixtures of multiple salts present in produced waters and more chronic effect studies would give a better picture of the overall potential toxicity of these ions. Organic constituents in hydraulic fracturing fluids, flowback waters, etc. are a concern because of their carcinogenic properties and this paper is not meant to minimize the importance of maintaining vigilance with respect to potential organic contamination.

  4. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  5. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  6. Salting the landscapes in Transbaikalia: natural and technogenic factors

    NASA Astrophysics Data System (ADS)

    Peryazeva, E. G.; Plyusnin, A. M.; Chinavlev, A. M.

    2010-05-01

    Salting the soils, surface and subsurface waters is widespread in Transbaikalia. Hearths of salting occur within intermountain depressions of the Mesozoic and Cenozoic age both in the steppe arid and forest humid landscapes. Total water mineralization reaches 80 g/dm3 in lakes and 4-5 g/dm3 in subsurface waters. The waters belong to hydrocarbonate sodium and sulfate sodium types by chemical composition. The soda type of waters is widely spread through the whole area. Sulfate waters are found in several hearths of salting. Deposition of salts takes place in some lakes. Mirabilite and soda depositions are most commonly observed in muds of salt lakes. Deposition of salts occurs both as a result of evaporative concentrating and during freezing out the solvent. In the winter period, efflorescences of salts, where decawater soda is main mineral, are observed on ice surface. Solonchaks are spread in areas of shallow ground waters (1-2m). Soil salting is most intense in the lower parts of depressions, where surface of ground waters is at depth 0.5-1.0m. In soil cover of solonchaks, salt horizon is of various thicknesses, and it has various morphological forms of occurrence, i.e. as thick deposits of salts on soil surface and salting the surficial horizons. The soil has low alkaline reaction of medium and is characterized by high content of exchangeable bases with significant content of exchangeable sodium in the absorbing complex. Total amount of salts varies from 0.7 to 1.3%. Their maximal quantity (3.1%) is confined to the surficial layer. Sulfate-sodium type of salting is noted in the solonchak upper horizons and sulfate-magnesium-calcium one in the lower ones (Ubugunov et al, 2009). Formation of salting hearths is associated with natural and technogenic conditions. The Mesozoic depressions of Transbaikalia are characterized by intense volcanism. Covers of alkaline and moderately alkaline basalts that are enriched in potassium, sodium, carbon dioxide, fluorine, chlorine

  7. Matrix-elimination with steam distillation for determination of short-chain fatty acids in hypersaline waters from pre-salt layer by ion-exclusion chromatography.

    PubMed

    Ferreira, Fernanda N; Carneiro, Manuel C; Vaitsman, Delmo S; Pontes, Fernanda V M; Monteiro, Maria Inês C; Silva, Lílian Irene D da; Neto, Arnaldo Alcover

    2012-02-03

    A method for determination of formic, acetic, propionic and butyric acids in hypersaline waters by ion-exclusion chromatography (IEC), using steam distillation to eliminate matrix-interference, was developed. The steam distillation variables such as type of solution to collect the distillate, distillation time and volume of the 50% v/v H₂SO₄ solution were optimized. The effect of the addition of NaCl different concentrations to the calibration standards on the carboxylic acid recovery was also investigated. Detection limits of 0.2, 0.5, 0.3 and 1.5 mg L⁻¹ were obtained for formic, acetic, propionic and butyric acids, respectively. Produced waters from petroleum reservoirs in the Brazilian pre-salt layer containing about 19% m/v of NaCl were analyzed. Good recoveries (99-108%) were obtained for all acids in spiked produced water samples. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The role of succulent halophytes in the water balance of salt marsh rodents.

    PubMed

    Coulombe, Harry N

    1970-09-01

    The role of succulent halophytes in the water balance and ecology of salt marsh rodents is dependent upon an evaluation of the composition of the available sources and the physiological properties of their potential consumers. Studies of the osmotic properties of succulent halophytes from southern California coastal salt marshes are presented, together with experiments regarding the utilization of Common Pickleweed (Salicornia virginica L.) by indigenous populations of cricetid rodents (harvest mouse Reithrodontomys megalotis limicola Von Bloecker, and meadow-mouse Microtus californicus stephensi Von Bloecker). These data are discussed in relation to other available information concerning the ecology of coastal salt marshes, particularly in western North America.Extruded sap of Common Pickleweed was found to have a mean total osmotic pressure (TOP) of 1,450 mOsm/liter, with an average chloride ion content of 876 mEq/liter (about 70% of the TOP). A related species, Salicornia subterminale, had a slightly lower TOP (1,300 mOsm/liter), of which about 29% was accounted for by chloride ion concentration. Sea Blight (Suaeda fruticosa) was the only species in which the TOP correlated with the distance from the tide level; sap TOP increased away from the lagoon's edge. In both Sea Blight and Common Pickle weed, TOP was not directly related to chloride content, indicating the importance of other osmotically active solutes.Harvest mice were placed on three experimental regimes: 1) millet seeds only, 2) pickleweed only, and 3) pickleweed and millet seed. Meadow mice were tested on the last regime only. Harvest mice survived best on a strict millet seed diet; when Salicornia was consumed to a detectable extent, the mice did not survive. Meadow mice, however, could survive using Salicornia as a dietary source in conjunction with seeds. Kidney electrolyte concentrating abilities indicated that harvest mice should be able to utilize pickleweed; this was not confirmed in my

  9. A Kirkwood-Buff derived force field for alkaline earth halide salts

    NASA Astrophysics Data System (ADS)

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E.

    2018-06-01

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX2), where M = Mg2+, Ca2+, Sr2+, Ba2+ and X = Cl-, Br-, I-, which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  10. A Kirkwood-Buff derived force field for alkaline earth halide salts.

    PubMed

    Naleem, Nawavi; Bentenitis, Nikolaos; Smith, Paul E

    2018-06-14

    The activity and function of many macromolecules in cellular environments are coupled with the binding of divalent ions such as calcium or magnesium. In principle, computer simulations can be used to understand the molecular level aspects of how many important macromolecules interact with ions. However, most of the force fields currently available often fail to accurately reproduce the properties of divalent ions in aqueous environments. Here we develop classical non-polarizable force fields for the aqueous alkaline earth metal halides (MX 2 ), where M = Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ and X = Cl - , Br - , I - , which can be used in bimolecular simulations and which are compatible with the Simple Point Charge/Extended (SPC/E) water model. The force field parameters are specifically developed to reproduce the experimental Kirkwood-Buff integrals for aqueous solutions and thereby the experimental activity derivatives, partial molar volumes, and excess coordination numbers. This ensures that a reasonable balance between ion-ion, ion-water, and water-water distributions is obtained. However, this requires a scaling of the cation to water oxygen interaction strength in order to accurately reproduce the integrals. The scaling factors developed for chloride salts are successfully transferable to the bromide and iodide salts. Use of these new models leads to reasonable diffusion constants and dielectric decrements. However, the performance of the models decreases with increasing salt concentration (>4m), and simulations of the pure crystals exhibited unstable behavior.

  11. Water management can reinforce plant competition in salt-affected semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Coletti, Janaine Z.; Vogwill, Ryan; Hipsey, Matthew R.

    2017-09-01

    The diversity of vegetation in semi-arid, ephemeral wetlands is determined by niche availability and species competition, both of which are influenced by changes in water availability and salinity. Here, we hypothesise that ignoring physiological differences and competition between species when managing wetland hydrologic regimes can lead to a decrease in vegetation diversity, even when the overall wetland carrying capacity is improved. Using an ecohydrological model capable of resolving water-vegetation-salt feedbacks, we investigate why water surface and groundwater management interventions to combat vegetation decline have been more beneficial to Casuarina obesa than to Melaleuca strobophylla, the co-dominant tree species in Lake Toolibin, a salt-affected wetland in Western Australia. The simulations reveal that in trying to reduce the negative effect of salinity, the management interventions have created an environment favouring C. obesa by intensifying the climate-induced trend that the wetland has been experiencing of lower water availability and higher root-zone salinity. By testing alternative scenarios, we show that interventions that improve M. strobophylla biomass are possible by promoting hydrologic conditions that are less specific to the niche requirements of C. obesa. Modelling uncertainties were explored via a Markov Chain Monte Carlo (MCMC) algorithm. Overall, the study demonstrates the importance of including species differentiation and competition in ecohydrological models that form the basis for wetland management.

  12. Quantifying the Restorable Water Volume of California's Sierra Nevada Meadows

    NASA Astrophysics Data System (ADS)

    Emmons, J. D.; Yarnell, S. M.; Fryjoff-Hung, A.; Viers, J.

    2013-12-01

    The Sierra Nevada is estimated to provide over 66% of California's water supply, which is largely derived from snowmelt. Global climate warming is expected to result in a decrease in snow pack and an increase in melting rate, making the attenuation of snowmelt by any means, an important ecosystem service for ensuring water availability. Montane meadows are dispersed throughout the mountain range and can act like natural reservoirs, and also provide wildlife habitat, water filtration, and water storage. Despite the important role of meadows in the Sierra Nevada, a large proportion is degraded from stream incision, which increases volume outflows and reduces overbank flooding, thus reducing infiltration and potential water storage. Restoration of meadow stream channels would therefore improve hydrological functioning, including increased water storage. The potential water holding capacity of restored meadows has yet to be quantified, thus this research seeks to address this knowledge gap by estimating the restorable water volume due to stream incision. More than 17,000 meadows were analyzed by categorizing their erosion potential using channel slope and soil texture, ultimately resulting in six general erodibility types. Field measurements of over 100 meadows, stratified by latitude, elevation, and geologic substrate, were then taken and analyzed for each erodibility type to determine average depth of incision. Restorable water volume was then quantified as a function of water holding capacity of the soil, meadow area and incised depth. Total restorable water volume was found to be 120 x 10^6 m3, or approximately 97,000 acre-feet. Using 95% confidence intervals for incised depth, the upper and lower bounds of the total restorable water volume were found to be 107 - 140 x 10^6 m3. Though this estimate of restorable water volume is small in regards to the storage capacity of typical California reservoirs, restoration of Sierra Nevada meadows remains an important

  13. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    H.L. Shindel; J.H. Klingler; J.P. Mangus

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of themore » National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)« less

  14. Relating road salt to exceedances of the water quality standard for chloride in New Hampshire streams.

    PubMed

    Trowbridge, Philip R; Kahl, J Steve; Sassan, Dari A; Heath, Douglas L; Walsh, Edward M

    2010-07-01

    Six watersheds in New Hampshire were studied to determine the effects of road salt on stream water quality. Specific conductance in streams was monitored every 15 min for one year using dataloggers. Chloride concentrations were calculated from specific conductance using empirical relationships. Stream chloride concentrations were directly correlated with development in the watersheds and were inversely related to streamflow. Exceedances of the EPA water quality standard for chloride were detected in the four watersheds with the most development. The number of exceedances during a year was linearly related to the annual average concentration of chloride. Exceedances of the water quality standard were not predicted for streams with annual average concentrations less than 102 mg L(-1). Chloride was imported into three of the watersheds at rates ranging from 45 to 98 Mg Cl km(-2) yr(-1). Ninety-one percent of the chloride imported was road salt for deicing roadways and parking lots. A simple, mass balance equation was shown to predict annual average chloride concentrations from streamflow and chloride import rates to the watershed. This equation, combined with the apparent threshold for exceedances of the water quality standard, can be used for screening-level TMDLs for road salt in impaired watersheds.

  15. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  16. Novel waste printed circuit board recycling process with molten salt

    PubMed Central

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  17. Geology and ground-water features of salt springs, seeps, and plains in the Arkansas and Red River basins of western Oklahoma and adjacent parts of Kansas and Texas

    USGS Publications Warehouse

    Ward, P.E.

    1963-01-01

    The salt springs, seeps, and plains described in this report are in the Arkansas and Red River basins in western Oklahoma and adjacent areas in Kansas and Texas. The springs and seeps contribute significantly to the generally poor water quality of the rivers by bringing salt (HaCI) to the surface at an estimated daily rate of more than 8,000 tons. The region investigated is characterized by low hills and rolling plains. Many of the rivers are eroded 100 feet or more below the .surrounding upland surface and in places the valleys are bordered by steep bluffs. The alluvial plains of the major rivers are wide and the river channels are shallow and unstable. The flow of many surface streams is intermittent, especially in the western part of the area. All the natural salt-contributing areas studied are within the outcrop area of rocks of Permian age. The Permian rocks, commonly termed red beds, are composed principally of red and gray gypsiferous shale, siltstone, sandstone, gypsum, anhydrite, and dolomite. Many of the formations contain halite in the subsurface. The halite occurs mostly as discontinuous lenses in shale, although some of the thicker, more massive beds are extensive. It underlies the entire region studied at depths ranging from about 30 feet to more than 2,000 feet. The salt and associated strata show evidence of extensive removal of salt through solution by ground water. Although the salt generally occurs in relatively impervious shale small joints and fractures ,allow the passage of small quantities of water which dissolves the salt. Salt water occurs in the report area at depths ranging from less than 100 feet to more than 1,000 feet. Salt water occurs both as meteoric and connate, but the water emerging as salt springs is meteoric. Tritium analyses show that the age of the water from several springs is less than 20 years. The salt springs, seeps, and plains are confined to 13 local areas. The flow of the springs and seeps is small, but the chloride

  18. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  19. Water-in-oil-in-water double emulsion for the delivery of starter cultures in reduced-salt moromi fermentation of soy sauce.

    PubMed

    Devanthi, Putu Virgina Partha; Linforth, Robert; El Kadri, Hani; Gkatzionis, Konstantinos

    2018-08-15

    This study investigated the application of water-oil-water (W 1 /O/W 2 ) double emulsions (DE) for yeast encapsulation and sequential inoculation of Zygosaccharomyces rouxii and Tetragenococcus halophilus in moromi stage of soy sauce fermentation with reduced NaCl and/or substitution with KCl. Z. rouxii and T. halophilus were incorporated in the internal W 1 and external W 2 phase of DE, respectively. NaCl reduction and substitution promoted T. halophilus growth to 8.88 log CFU/mL, accompanied with faster sugar depletion and enhanced lactic acid production. Reducing NaCl without substitution increased the final pH (5.49) and decreased alcohols, acids, esters, furan and phenol content. However, the application of DE resulted in moromi with similar microbiological and physicochemical characteristics to that of high-salt. Principal component analysis of GC-MS data demonstrated that the reduced-salt moromi had identical aroma profile to that obtained in the standard one, indicating the feasibility of producing low-salt soy sauce without compromising its quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    NASA Astrophysics Data System (ADS)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  1. Production and application of O2 enriched air produced by fresh and salt water desorption in chemical plants.

    PubMed

    Galli, F; Previtali, D; Bozzano, G; Bianchi, C L; Manenti, F; Pirola, C

    2018-07-01

    Oxygen enriched air intensifies oxidation processes since smaller reactors reach the same conversion of typical unit operations that employ simple air as reactant. However, the cost to produce pure oxygen or oxygen enriched air with traditional methods, i.e. cryogenic separation or membrane technologies, may be unaffordable. Here, we propose a new continuous technology for gas mixture separation, focusing on the production of oxygen enriched air as a case study. This operation is an absorption-desorption process that takes advantage of the higher oxygen solubility in water compared to nitrogen. In a pressurized solubilisation tank, water absorbs air. Subsequently, reducing pressure desorbs oxygen enriched air. PRO/II 9.3 (Simsci-Scheider Electrics) simulated, optimized, and calculated the capital and operative expenses of this technology. Moreover, we tested for the first time salt water instead of distilled water as appealing possibility for chemical plant near sea and ocean. We varied the inlet water flowrate between 5 and 15 m 3 /h. The optimum operative absortion unit pressure is 15-35 barg. After degassing, water may be recycled. With salt water, the extracted quantity of enriched air decreases compared with the desorption from fresh water (20% less), while the concentration of oxygen is independent from the salt concentration. The cost of enriched air at the optimum condition is 2-3.35 EUR/Nm 3 . Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Earthquake hazards to domestic water distribution systems in Salt Lake County, Utah

    USGS Publications Warehouse

    Highland, Lynn M.

    1985-01-01

    A magnitude-7. 5 earthquake occurring along the central portion of the Wasatch Fault, Utah, may cause significant damage to Salt Lake County's domestic water system. This system is composed of water treatment plants, aqueducts, distribution mains, and other facilities that are vulnerable to ground shaking, liquefaction, fault movement, and slope failures. Recent investigations into surface faulting, landslide potential, and earthquake intensity provide basic data for evaluating the potential earthquake hazards to water-distribution systems in the event of a large earthquake. Water supply system components may be vulnerable to one or more earthquake-related effects, depending on site geology and topography. Case studies of water-system damage by recent large earthquakes in Utah and in other regions of the United States offer valuable insights in evaluating water system vulnerability to earthquakes.

  3. Time-lapse electric resistivity in a stressed mangrove forest to image the role of the root zone in porewater salt distribution

    NASA Astrophysics Data System (ADS)

    Downs, C. M.; Krauss, K.; Kruse, S.

    2017-12-01

    The movement and storage of porewater salts is poorly understood in mangrove forests with limited surface water exchange between the forest and neighboring lagoon. These mangroves are often the most stressed, and have the most unfavorable salinity balance that often transition to mortality during extreme drought. A time-lapse resistivity survey was conducted in a stressed mangrove forest over a diel period. Resistivity is sensitive to the entire soil volume, including fine roots. The objective was to image changes in porewater salinity structures around both mangrove trees, where roots can be a prolific contributor to soil volume, and a salt pan with little or no vegetation. Throughout the diel period, salt pan conductivities remained relatively constant. The most significant temporal changes occur in the root zone around mangrove trees. Particularly interesting is a drop in resistivity (increased conductivity) at sunset when transpiration from individual trees decreases (or even ceases), potentially identifying a cumulative concentration of salts around the mangrove root zone after a full day of transpiration. The resistivity gradient decreases immediately after its peak at sunset, potentially identifying the consequences of hydraulic redistribution in diluting soils surrounding trees immediately after transpiration ceases. This is quicker than expected, and may imply a very strong and rapid eco-hydrological connection in the tree-facilitated salinity balance essential to their survival under the most salinity-stressed environments. At sunrise, resistivity increases, further suggesting dilution of salts via hydraulic redistribution of fresh water from the tree into the upper soil layers, or suggests an accumulation of salts within roots when presumably less water is moving through the trees. Repeated electric resistivity arrays provide spatial and temporal information about these salts and contribute to an overall understanding of how stressed mangrove forests

  4. Comparative effectiveness of water and salt community-based fluoridation methods in preventing dental caries among schoolchildren.

    PubMed

    Fabruccini, A; Alves, L S; Alvarez, L; Alvarez, R; Susin, C; Maltz, M

    2016-12-01

    To compare the effectiveness of water and salt community-based fluoridation methods on caries experience among schoolchildren. Data derived from two population-based oral health surveys of 12-year-old schoolchildren exposed to different community-based fluoridation methods were compared: artificially fluoridated water in Porto Alegre, South Brazil and artificially fluoridated salt in Montevideo, Uruguay. Data on socio-demographic characteristics, maternal education and oral hygiene were collected. Dental caries was defined according to the WHO criteria (cavitated lesions) and to the modified WHO criteria (active noncavitated lesions and cavitated ones). The association between community-based fluoridation methods and dental caries was modelled using logistic (caries prevalence) and Poisson regression (DMFT). Odds ratios (OR), rate ratios (RR), and the 95% confidence intervals (CI) were estimated. A total of 1528 in Porto Alegre and 1154 in Montevideo were examined (response rates: 83.2% and 69.6%, respectively). Adjusted estimates for caries prevalence and DMFT showed that schoolchildren from Porto Alegre were less affected by dental caries than their counterparts from Montevideo, irrespective of the criteria used. After adjusting for important characteristics, schoolchildren exposed to fluoridated salt had significantly higher likelihood of having caries (WHO criteria) than those exposed to fluoridated water (OR for prevalence=1.61, 95% CI=1.26-2.07; RR for DMFT=1.32, 95% CI=1.16-1.51). Similar differences were observed using the modified WHO criteria. Fluoridated water appears to provide a better protective effect against dental caries than fluoridated household salt among schoolchildren from developing countries. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Salt excretion in Suaeda fruticosa.

    PubMed

    Labidi, Nehla; Ammari, Manel; Mssedi, Dorsaf; Benzerti, Maali; Snoussi, Sana; Abdelly, C

    2010-09-01

    Suaeda fruticosa is a perennial "includer" halophyte devoid of glands or trichomes with a strong ability of accumulating and sequestrating Na(+) and Cl(-). We were interested in determining whether leaf cuticle salt excretion could be involved as a further mechanism in salt response of this species after long-term treatment with high salinity levels. Seedlings had been treated for three months with seawater (SW) diluted with tap water (0, 25, 50 and 75% SW). Leaf scanning electron microscopy revealed a convex adaxial side sculpture and a higher accumulation of saline crystals at the lamina margin, with a large variability on repartition and size between treatments. No salt gland or salt bladder was found. Threedimensional wax decorations were the only structures found on leaf surface. Washing the leaf surface with water indicated that sodium and chloride predominated in excreted salts, and that potassium was poorly represented. Optimal growth of whole plant was recorded at 25% SW, correlating with maximum Na(+) and Cl(-) absolute secretion rate. The leaves of plants treated with SW retained more water than those of plants treated with tap water due to lower solute potential, especially at 25% SW. Analysis of compatible solute, such as proline, total soluble carbohydrates and glycinebetaine disclosed strong relationship between glycinebetaine and osmotic potential (r = 0.92) suggesting that tissue hydration was partly maintained by glycinebetaine accumulation. Thus in S. fruticosa , increased solute accumulation associated with water retention, and steady intracellular ion homeostasis confirms the "includer" strategy of salt tolerance previously demonstrated. However, salt excretion at leaf surface also participated in conferring to this species a capacity in high salinity tolerance.

  6. Thermodynamic analysis of the interaction of partially hydrophobic cationic polyelectrolytes with sodium halide salts in water

    NASA Astrophysics Data System (ADS)

    Bončina, Matjaž; Lukšič, Miha; Seručnik, Mojca; Vlachy, Vojko

    2014-05-01

    Isothermal titration calorimetry was used to determine the temperature and concentration dependence of the enthalpy of mixing of 3,3- and 6,6-ionene fluorides, bromides, and iodides with low molecular weight salts (NaF, NaCl, NaBr, and NaI) in water. The magnitudes of the enthalpies, measured in the temperature range from 273 to 318 K, depended on the number of methylene groups on the ionene polyion (hydrophobicity), and on the anion of the added salt (ion-specificity). All enthalpies of mixing of 3,3- and 6,6-ionene fluorides with low molecular weight salts (NaCl, NaBr, and NaI) were negative, which is in contrast to the predictions of standard theories of polyelectrolyte solutions. This fact was interpreted in the light of the ion-water short-range interactions that are not accounted for in those theories. In contrast, the enthalpies of mixing of 3,3- and 6,6-ionene bromides and iodides with NaF were positive, being in accord with theory. Using the calorimetric data, we performed a model thermodynamic analysis of the polyelectrolyte-salt mixing process to obtain changes in the apparent standard Gibbs free energy, enthalpy, entropy, and heat capacity relative to the pure ionene fluorides in water. The results prove that halide ions replace fluoride counterions with a strength increasing in the order chloride < bromide < iodide. The process is enthalpy governed, accompanied by a positive change in the heat capacity.

  7. [Effect of salts, stabilizing and destabilizing the structure of water, on the stacking association of adenosine].

    PubMed

    Maevskiĭ, A A; Sukhorukov, B I

    1976-11-01

    A spectrophotometric study, based on the concentration relationship of electron absorption spectra, of the effects of salts which stabilize and destabilize the water structure on the constant (K) of adenosine: stacking association has been carried out. A significant decrease of K was observed in NaClO4 which embodied strong destabilizing effect. Opposite effect was observed on other salts studied. According to K value the stacking-interaction of adenosine in the range of salt concentration 0 divided by 3M for different anions and cations are arranged in rows: SO4--greater than Cl- greater than ClO4-; Na+ greater than Li+greater than K+. The data obtained suggest that the effect of salts on thermostability of various oligo- and polynucleotides and on B leads to C DNA transition may be essentially concerned with the effect of both cations and anions of salts on the stacking-interaction of bases.

  8. The Receptacle Model of Salting-In by Tetramethylammonium Ions

    PubMed Central

    Hribar–Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2010-01-01

    Water is a poor solvent for nonpolar solutes. Water containing ions is an even poorer solvent. According to standard terminology, the tendency of salts to precipitate oils from water is called salting-out. However, interestingly, some salt ions, such as tetramethylammonium (TMA), cause instead the salting-in of hydrophobic solutes. Even more puzzling, there is a systematic dependence on solute size. TMA causes the salting-out of small hydrophobes and the salting-in of larger nonpolar solutes. We study these effects using NPT Monte Carlo simulations of the MB + dipole model of water, which was previously shown to account for hydrophobic effects and ion solubilities in water. The present model gives a structural interpretation for the thermodynamics of salting-in. The TMA structure allows deep penetration by a first shell of waters, the dipoles of which interact electrostatically with the ion. This first water shell sets up a second water shell that is shaped to act as a receptacle that binds the nonpolar solute. In this way, a nonpolar solute can actually bind more tightly to the TMA ion than to another hydrophobe, leading to the increased solubility and salting-in. Such structuring may also explain why molecular ions do not follow the same charge density series’ as atomic ions do. PMID:21028768

  9. Progress report on studies of salt-water encroachment on Long Island, New York, 1953

    USGS Publications Warehouse

    Lusczynski, N.J.; Upson, J.E.

    1954-01-01

    Nearly all the water used on Long Island, N. Y., is derived by wells from the thick and extensive water-bearing formations that underlie and compose the entire island. The unconsolidated deposits, consisting of sand, gravel, and clay, range in thickness from a few feet in northern Queens County to more than 2,000 feet in southern Suffolk County. Four main and relatively distinct aquifers, all interconnected hydraulically to a greater or lesser degree, have been recognized and delineated at least in a general way. They are, from younger to older, the upper Pleistocene deposits, in which the ground water is mainly unconfined, and three formations in which the water is generally confined - the Jameco gravel, of Pleistocene age, and the Magothy (?) formation and the Lloyd sand member of the Rartian formation, both of Lake Cretaceous age. Except for some artificial recharge, these aquifers are replenished entirely by infiltration of precipitation. Under natural conditions, the fresh water moves into and through the formations, discharging into the sea. With the growth of population on Long Island and the continuously increasing use of water over the years, not only has the infiltration of precipitation been seriously impeded at places, but the withdrawals from the ground-water reservoir have increased markedly. These factors have upset the natural balance between the fresh surface and ground water of the island and the surrounding sea water, and with increased use of water will do so more and more, thus leading to salt-water encroachment. In a sense, the whole problem of utilization of ground water on Long Island is one of determining how much ground water can be withdrawn without serious salt-water encroachment.

  10. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis

    PubMed Central

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K+. Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na+ and K+, and the expression of several genes associated with photosynthesis (RppsbA, RppsbD, RprbcL, and RprbcS) and genes coding for aquaporins or membrane transport proteins involved in K+ and/or Na+ uptake, translocation, or compartmentalization homeostasis (RpSOS1, RpHKT1, RpNHX1, and RpSKOR) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K+ content in plants, but evidently reduced the Na+ content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na+ in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes (RppsbA, RppsbD, and RprbcL) in leaves, and three genes (RpSOS1, RpHKT1, and RpSKOR) encoding membrane transport proteins involved in K+/Na+ homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial effects of AM symbiosis on

  11. Arbuscular Mycorrhizal Symbiosis Alleviates Salt Stress in Black Locust through Improved Photosynthesis, Water Status, and K+/Na+ Homeostasis.

    PubMed

    Chen, Jie; Zhang, Haoqiang; Zhang, Xinlu; Tang, Ming

    2017-01-01

    Soil salinization and the associated land degradation are major and growing ecological problems. Excess salt in soil impedes plant photosynthetic processes and root uptake of water and nutrients such as K + . Arbuscular mycorrhizal (AM) fungi can mitigate salt stress in host plants. Although, numerous studies demonstrate that photosynthesis and water status are improved by mycorrhizae, the molecular mechanisms involved have received little research attention. In the present study, we analyzed the effects of AM symbiosis and salt stress on photosynthesis, water status, concentrations of Na + and K + , and the expression of several genes associated with photosynthesis ( RppsbA, RppsbD, RprbcL , and RprbcS ) and genes coding for aquaporins or membrane transport proteins involved in K + and/or Na + uptake, translocation, or compartmentalization homeostasis ( RpSOS1, RpHKT1, RpNHX1 , and RpSKOR ) in black locust. The results showed that salinity reduced the net photosynthetic rate, stomatal conductance, and relative water content in both non-mycorrhizal (NM) and AM plants; the reductions of these three parameters were less in AM plants compared with NM plants. Under saline conditions, AM fungi significantly improved the net photosynthetic rate, quantum efficiency of photosystem II photochemistry, and K + content in plants, but evidently reduced the Na + content. AM plants also displayed a significant increase in the relative water content and an evident decrease in the shoot/root ratio of Na + in the presence of 200 mM NaCl compared with NM plants. Additionally, mycorrhizal colonization upregulated the expression of three chloroplast genes ( RppsbA, RppsbD , and RprbcL ) in leaves, and three genes ( RpSOS1, RpHKT1 , and RpSKOR ) encoding membrane transport proteins involved in K + /Na + homeostasis in roots. Expression of several aquaporin genes was regulated by AM symbiosis in both leaves and roots depending on soil salinity. This study suggests that the beneficial

  12. Water Resources Data, Pennsylvania, Water Year 2001. Volume 3. Ohio and St. Lawrence River Basins

    USGS Publications Warehouse

    Siwicki, Raymond W.

    2002-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 3, contains: (1) discharge records for 59 continuous-record streamflow-gaging stations, 5 partial-record stations, and 12 special study and miscellaneous streamflow sites; (2) elevation and contents records for 11 lakes and reservoirs; (3) water-quality records for 2 streamflow gaging station and 7 ungaged streamsites; (4) water-level records for 15 ground-water network observation wells; and, (5) water-quality analyses at 2 special study ground-water wells. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-01-3." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data

  13. Water Resources Data: New Jersey, Water Year 1998, Volume 1, Surface-Water Data

    USGS Publications Warehouse

    Reed, T.J.; Centinaro, G.L.; Dudek, J.F.; Corcino, V.; Stekroadt, G.C.; McTigure, R.C.

    1999-01-01

    This volume of the annual hydrologic data report of New Jersey is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local and federal agencies, and the private sector for developing and managing our Nation's land and water resources.

  14. ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minichan, R; Russell Eibling, R; James Elder, J

    2008-06-01

    The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipmentmore » (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the

  15. A scaled-ionic-charge simulation model that reproduces enhanced and suppressed water diffusion in aqueous salt solutions.

    PubMed

    Kann, Z R; Skinner, J L

    2014-09-14

    Non-polarizable models for ions and water quantitatively and qualitatively misrepresent the salt concentration dependence of water diffusion in electrolyte solutions. In particular, experiment shows that the water diffusion coefficient increases in the presence of salts of low charge density (e.g., CsI), whereas the results of simulations with non-polarizable models show a decrease of the water diffusion coefficient in all alkali halide solutions. We present a simple charge-scaling method based on the ratio of the solvent dielectric constants from simulation and experiment. Using an ion model that was developed independently of a solvent, i.e., in the crystalline solid, this method improves the water diffusion trends across a range of water models. When used with a good-quality water model, e.g., TIP4P/2005 or E3B, this method recovers the qualitative behaviour of the water diffusion trends. The model and method used were also shown to give good results for other structural and dynamic properties including solution density, radial distribution functions, and ion diffusion coefficients.

  16. Water Resources Data for California, Water Year 1987. Volume 5. Ground-water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1987 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 786 observation wells and water-quality data for 168 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  17. Water Resources Data for California, Water Year 1986. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Keeter, G.L.; Grillo, D.A.

    1988-01-01

    Water resources data for the 1986 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 5 contains water levels for 765 observation wells and water-quality data for 174 observation wells. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  18. Water Resources Data, Pennsylvania, Water Year 1999. Volume 3. Ohio and St. Lawrence River Basins

    USGS Publications Warehouse

    Siwicki, R.W.

    2000-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 3, contains: (1) discharge records for 57 continuous-record streamflow-gaging stations, 5 partial-record stations, and 16 special study and miscellaneous streamflow sites; (2) elevation and contents records for 11 lakes and reservoirs; (3) water-quality records for 1 streamflow gaging station and 121 partial-record and project stations; and (4) water-level records for 15 ground-water network observation wells and. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-99-3." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report

  19. Water resources data, Pennsylvania, water year 2000. Volume 3. Ohio and St. Lawrence River Basins

    USGS Publications Warehouse

    Siwicki, Raymond W.

    2001-01-01

    IntroductionThe Water Resources Division of the U.S. Geological Survey, in cooperation with State, municipal, and Federal agencies, collects a large amount of data pertaining to the water resources of Pennsylvania each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, these data are published annually in this report series entitled "Water Resources Data - Pennsylvania, Volumes 1, 2, and 3." Volume 1 contains data for the Delaware River Basin; Volume 2, the Susquehanna and Potomac River Basins; and Volume 3, the Ohio and St. Lawrence River Basins.This report, Volume 3, contains: (1) discharge records for 58 continuous-record streamflow-gaging stations, 5 partial-record stations, and 12 special study and miscellaneous streamflow sites; (2) elevation and contents records for 11 lakes and reservoirs; (3) water-quality records for 1 streamflow gaging station and 8 ungaged streamsites; and (4) water-level records for 15 ground-water network observation wells and. Additional water data collected at various sites not involved in the systematic data-collection program may also be presented.Publications similar to this report are published annually by the Geological Survey for all States. For the purpose of archiving, these official reports have an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report PA-00-3." These water-data reports, beginning with the 1971 water year, are for sale as paper copy or microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.The annual series of Water Data Reports for Pennsylvania began with the 1961 water-year report and

  20. Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

    NASA Astrophysics Data System (ADS)

    Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko

    2018-03-01

    A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

  1. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  2. Water Resources Data, Florida, Water Year 2003, Volume 4. Northwest Florida

    USGS Publications Warehouse

    prepared by Blum, Darlene A.; Alvarez, A. Ernie

    2004-01-01

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, obtains a large amount of data on the water resources of the State of Florida each water year. These data, accumulated during many water years, constitute a valuable database that is used by water-resources managers, emergency-management officials, and many others to develop an improved understanding of water resources within the State. This report series for the 2003 water year for the state of Florida consists of records for continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes, continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water for 133 surface-water sites and 308 wells. This volume (Volume 4, Northwest Florida)contains records of continuous or daily discharge for 72 streams, periodic discharge for 3 stream, continuous or daily stage for 13 streams, periodic stage for 0 stream, peak stage and discharge for 28 streams, continuous or daily elevations for 1 lake, periodic elevations for 0 lakes, continuous ground-water levels for 3 wells, periodic ground-water levels for 0 wells, and quality-of-water for 3 surface-water sites and 0 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Florida.

  3. Bile salts as semiochemicals in fish

    USGS Publications Warehouse

    Buchinger, Tyler J.; Li, Weiming; Johnson, Nicholas S.

    2014-01-01

    Bile salts are potent olfactory stimuli in fishes; however the biological functions driving such sensitivity remain poorly understood. We provide an integrative review of bile salts as semiochemicals in fish. First, we present characteristics of bile salt structure, metabolism, and function that are particularly relevant to chemical communication. Bile salts display a systematic pattern of structural variation across taxa, are efficiently synthesized, and are stable in the environment. Bile salts are released into the water via the intestine, urinary tract, or gills, and are highly water soluble. Second, we consider the potential role of bile salts as semiochemicals in the contexts of detecting nearby fish, foraging, assessing risk, migrating, and spawning. Lastly, we suggest future studies on bile salts as semiochemicals further characterize release into the environment, behavioral responses by receivers, and directly test the biological contexts underlying olfactory sensitivity.

  4. Calculating salt loads to Great Salt Lake and the associated uncertainties for water year 2013; updating a 48 year old standard

    USGS Publications Warehouse

    Shope, Christopher L.; Angeroth, Cory E.

    2015-01-01

    Effective management of surface waters requires a robust understanding of spatiotemporal constituent loadings from upstream sources and the uncertainty associated with these estimates. We compared the total dissolved solids loading into the Great Salt Lake (GSL) for water year 2013 with estimates of previously sampled periods in the early 1960s.We also provide updated results on GSL loading, quantitatively bounded by sampling uncertainties, which are useful for current and future management efforts. Our statistical loading results were more accurate than those from simple regression models. Our results indicate that TDS loading to the GSL in water year 2013 was 14.6 million metric tons with uncertainty ranging from 2.8 to 46.3 million metric tons, which varies greatly from previous regression estimates for water year 1964 of 2.7 million metric tons. Results also indicate that locations with increased sampling frequency are correlated with decreasing confidence intervals. Because time is incorporated into the LOADEST models, discrepancies are largely expected to be a function of temporally lagged salt storage delivery to the GSL associated with terrestrial and in-stream processes. By incorporating temporally variable estimates and statistically derived uncertainty of these estimates,we have provided quantifiable variability in the annual estimates of dissolved solids loading into the GSL. Further, our results support the need for increased monitoring of dissolved solids loading into saline lakes like the GSL by demonstrating the uncertainty associated with different levels of sampling frequency.

  5. Glyoxal and Methylglyoxal Setschenow Salting Constants in Sulfate, Nitrate, and Chloride Solutions: Measurements and Gibbs Energies.

    PubMed

    Waxman, Eleanor M; Elm, Jonas; Kurtén, Theo; Mikkelsen, Kurt V; Ziemann, Paul J; Volkamer, Rainer

    2015-10-06

    Knowledge about Setschenow salting constants, KS, the exponential dependence of Henry's Law coefficients on salt concentration, is of particular importance to predict secondary organic aerosol (SOA) formation from soluble species in atmospheric waters with high salt concentrations, such as aerosols. We have measured KS of glyoxal and methylglyoxal for the atmospherically relevant salts (NH4)2SO4, NH4NO3, NaNO3, and NaCl and find that glyoxal consistently "salts-in" (KS of -0.16, -0.06, -0.065, -0.1 molality(-1), respectively) while methylglyoxal "salts-out" (KS of +0.16, +0.075, +0.02, +0.06 molality(-1)). We show that KS values for different salts are additive and present an equation for use in atmospheric models. Additionally, we have performed a series of quantum chemical calculations to determine the interactions between glyoxal/methylglyoxal monohydrate with Cl(-), NO3(-), SO4(2-), Na(+), and NH4(+) and find Gibbs free energies of water displacement of -10.9, -22.0, -22.9, 2.09, and 1.2 kJ/mol for glyoxal monohydrate and -3.1, -10.3, -7.91, 6.11, and 1.6 kJ/mol for methylglyoxal monohydrate with uncertainties of 8 kJ/mol. The quantum chemical calculations support that SO4(2-), NO3(-), and Cl(-) modify partitioning, while cations do not. Other factors such as ion charge or partitioning volume effects likely need to be considered to fully explain salting effects.

  6. Water resources data--North Dakota water year 2005, Volume 1. Surface water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2006-01-01

    Water-resources data for the 2005 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 107 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 31 crest-stage stations; and water quality for 93 streamflow-gaging stations, 6 river-stage stations, 15 lake or reservoir stations, and about 50 miscellaneous sample sites on lakes and wetlands. Data are included for 8 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  7. Water Resources Data for California, Water Year 1988. Volume 5. Ground-Water Data for California

    USGS Publications Warehouse

    Lamb, C.E.; Fogelman, R.P.; Grillo, D.A.

    1989-01-01

    Water resources data for the 1988 water year for California consist of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water-quality in wells. Volume 5 contains water levels for 980 observation wells and water-quality data for 239 observation monitoring wells. These data represent that part of the National water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in California.

  8. Water Quality in the Great Salt Lake Basins, Utah, Idaho, and Wyoming, 1998-2001

    USGS Publications Warehouse

    Waddell, Kidd M.; Gerner, Steven J.; Thiros, Susan A.; Giddings, Elise M.; Baskin, Robert L.; Cederberg, Jay R.; Albano, Christine M.

    2004-01-01

    This report contains the major findings of a 1998-2001 assessment of water quality in the Great Salt Lake Basins. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to water quality in other areas across the Nation. The water-quality conditions in the Great Salt Lake Basins summarized in this report are discussed in detail in other reports that can be accessed at http://ut.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed at the national NAWQA Web site http://water.usgs.gov/nawqa.

  9. Comparative study on pharmaceuticals adsorption in reclaimed water desalination concentrate using biochar: Impact of salts and organic matter.

    PubMed

    Lin, Lu; Jiang, Wenbin; Xu, Pei

    2017-12-01

    The synergistic impact of salts and organic matter on adsorption of ibuprofen and sulfamethoxazole by three types of biochar and an activated carbon was investigated using reclaimed water reverse osmosis (RO) concentrate and synthetic solutions spiked with target organic compounds and non-target water constituents (e.g., Na + , Ca 2+ , Mg 2+ , K + , Cl - , SO 4 2- , alkalinity, humic acid (HA), and bovine serum albumin (BSA)). Kinetic modeling was used to better understand the adsorption process between the carbon adsorbents and pharmaceuticals and to elucidate the impact of water chemistry on pharmaceuticals adsorption. The adsorption capacity of pharmaceuticals by biochar was affected by their physicochemical properties including ash content, specific surface area, charge, pore volume, as well as hydrophobicity, π-energy, and speciation of pharmaceuticals. The adsorption of pharmaceuticals in concentrate was pH-dependent, the kinetic rate constant increased with deceasing pH due to the electrical interactions between pharmaceutical molecules and adsorbents. High salinity and electrolyte ions in RO concentrate improved adsorption, whereas the presence of carbonate species, HA, and BSA hindered the removal of ibuprofen and sulfamethoxazole. This study revealed the correlation of concentrate water quality on adsorption of pharmaceuticals by biochar and activated carbon. Biochar provides a promising alternative to activated carbon for removal of organic contaminants of emerging concerns in various wastewater and concentrate streams. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of water volume based on water absorption and mixing time on physical properties of tapioca starch – wheat composite bread

    NASA Astrophysics Data System (ADS)

    Prameswari, I. K.; Manuhara, G. J.; Amanto, B. S.; Atmaka, W.

    2018-05-01

    Tapioca starch application in bread processing change water absorption level by the dough, while sufficient mixing time makes the optimal water absorption. This research aims to determine the effect of variations in water volume and mixing time on physical properties of tapioca starch – wheat composite bread and the best method for the composite bread processing. This research used Complete Randomized Factorial Design (CRFD) with two factors: variations of water volume (111,8 ml, 117,4 ml, 123 ml) and mixing time (16 minutes, 17 minutes 36 seconds, 19 minutes 12 seconds). The result showed that water volume significantly affected on dough volume, bread volume and specific volume, baking expansion, and crust thickness. Mixing time significantly affected on dough volume and specific volume, bread volume and specific volume, baking expansion, bread height, and crust thickness. While the combination of water volume and mixing time significantly affected for all physical properties parameters except crust thickness.

  11. Water-vapor pressure control in a volume

    NASA Technical Reports Server (NTRS)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  12. Precision Monitoring of Water Level in a Salt Marsh with Low Cost Tilt Loggers

    NASA Astrophysics Data System (ADS)

    Sheremet, Vitalii A.; Mora, Jordan W.

    2016-04-01

    Several salt pannes and pools in the Sage Lot tidal marsh of Waquoit Bay system, MA were instrumented with newly developed Arm-and-Float water level gauges (utilizing accelerometer tilt logger) permitting to record water level fluctuations with accuracy of 1 mm and submillimeter resolution. The methodology of the instrument calibration, deployment, and elevation control are described. The instrument performance was evaluated. Several month long deployments allowed us to analyze the marsh flooding and draining processes, study differences among the salt pannes. The open channel flow flooding-draining mechanism and slower seepage were distinguished. From the drain curve the seepage rate can be quantified. The seepage rate remains approximately constant for all flooding draining episodes, but varies from panne to panne depending on bottom type and location. Seasonal differences due to the growth of vegetation are also recorded. The analysis of rain events allows us to estimate the catch area of subbasins in the marsh. The implication for marsh ecology and marsh accretion are discussed. The gradual sea level rise coupled with monthly tidal datum variability and storm surges result in migration and development of a salt marsh. The newly developed low cost instrumentation allows us to record and analyze these changes and may provide guidance for the ecological management.

  13. Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300.

    PubMed

    Yakushiji, Fumika; Muguruma, Kyohei; Hayashi, Yoshiki; Shirasaka, Takuya; Kawamata, Ryosuke; Tanaka, Hironari; Yoshiwaka, Yushi; Taguchi, Akihiro; Takayama, Kentaro; Hayashi, Yoshio

    2017-07-15

    Plinabulin and KPU-300 are promising anti-microtubule agents; however, the low water solubility of these compounds (<0.1µg/mL) has limited their pharmaceutical advantages. Here, we developed five water-soluble derivatives of plinabulin and KPU-300 with a click strategy using disodium salts of amino acids. The mother skeleton, diketopiperazine (DKP), was transformed into a monolactim-type alkyne and a copper-catalyzed alkyne azide cycloaddition (CuAAC) combined azides that was derived from amino acids as a water-solubilizing moiety. The conversion of carboxyl groups into disodium salts greatly improved the water solubility by 0.8 million times compared to the solubility of the parent molecules. In addition, the α-amino acid side chains of the water-solubilizing moieties affected both the water solubility and the half-lives of the compounds during enzymatic hydrolysis. Our effort to develop a variety of water-soluble derivatives using the click strategy has revealed that the replaceable water-solubilizing moieties can alter molecular solubility and stability under enzymatic hydrolysis. With this flexibility, we are approaching to the in vivo study using water-soluble derivative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of van der Waals forces and salt ions on the growth of water films on ice and the detachment of CO2 bubbles

    NASA Astrophysics Data System (ADS)

    Thiyam, P.; Lima, E. R. A.; Malyi, O. I.; Parsons, D. F.; Buhmann, S. Y.; Persson, C.; Boström, M.

    2016-02-01

    We study the effect of salts on the thickness of wetting films on melting ice and interactions acting on CO2 bubble near ice-water and vapor-water interfaces. Governing mechanisms are the Lifshitz and the double-layer interactions in the respective three-layer geometries. We demonstrate that the latter depend on the Casimir-Polder interaction of the salt ions dissolved in water with the respective ice, vapor and CO2 interfaces, as calculated using different models for their effective polarizability in water. Significant variation in the predicted thickness of the equilibrium water film is observed for different salt ions and when using different models for the ions' polarizabilities. We find that CO2 bubbles are attracted towards the ice-water interface and repelled from the vapor-water interface.

  15. Water Resources Data North Dakota Water Year 2002 Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Lundgren, R.F.; Norbeck, S.W.; Robinson, S.M.; Sether, B.A.

    2003-01-01

    Water-resources data for the 2002 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 106 streamflow-gaging stations; stage only for 22 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 96 streamflow-gaging stations, 3 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  16. Water Resources Data North Dakota Water Year 2003, Volume 1. Surface Water

    USGS Publications Warehouse

    Robinson, S.M.; Lundgren, R.F.; Sether, B.A.; Norbeck, S.W.; Lambrecht, J.M.

    2004-01-01

    Water-resources data for the 2003 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 108 streamflow-gaging stations; stage only for 24 river-stage stations; contents and/or stage for 14 lake or reservoir stations; annual maximum discharge for 32 crest-stage stations; and water-quality for 99 streamflow-gaging stations, 5 river-stage stations, 11 lake or reservoir stations, 8 miscellaneous sample sites on rivers, and 63 miscellaneous sample sites on lakes and wetlands. Data are included for 7 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  17. Water Resources Data North Dakota Water Year 2001, Volume 1. Surface Water

    USGS Publications Warehouse

    Harkness, R.E.; Berkas, W.R.; Norbeck, S.W.; Robinson, S.M.

    2002-01-01

    Water-resources data for the 2001 water year for North Dakota consists of records of discharge, stage, and water quality for streams; contents, stage, and water quality for lakes and reservoirs; and water levels and water quality for ground-water wells. Volume 1 contains records of water discharge for 103 streamflow-gaging stations; stage only for 20 river-stage stations; contents and/or stage for 13 lake or reservoir stations; annual maximum discharge for 35 crest-stage stations; and water-quality for 94 streamflow-gaging stations, 2 river-stage stations, 9 lake or reservoir stations, 7 miscellaneous sample sites on rivers, and 58 miscellaneous sample sites on lakes and wetlands. Data are included for 9 water-quality monitor sites on streams and 2 precipitation-chemistry stations. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in North Dakota.

  18. Water in the Oceanic Lithosphere: Salt Lake Crater Xenoliths, Oahu, Hawaii

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.; Bizimis, Michael

    2010-01-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient (2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx water

  19. Water in the oceanic lithosphere: Salt Lake Crater xenoliths, Oahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Peslier, A. H.; Bizimis, M.

    2010-12-01

    Water can be present in nominally anhydrous minerals of peridotites in the form of hydrogen bonded to structural oxygen. Such water in the oceanic upper mantle could have a significant effect on its physical and chemical properties. However, the water content of the MORB source has been inferred indirectly from the compositions of basalts. Direct determinations on abyssal peridotites are scarce because they have been heavily hydrothermally altered. Here we present the first water analyses of minerals from spinel peridotite xenoliths of Salt Lake Crater, Oahu, Hawaii, which are exceptionally fresh. These peridotites are thought to represent fragments of the Pacific oceanic lithosphere that was refertilized by alkalic Hawaiian melts. A few have unradiogenic Os and radiogenic Hf isotopes and may be fragments of an ancient ( 2 Ga) depleted and recycled lithosphere. Water contents in olivine (Ol), orthopyroxene (Opx), and clinopyroxene (Cpx) were determined by FTIR spectrometry. Preliminary H_{2}O contents show ranges of 8-10 ppm for Ol, 151-277 ppm for Opx, and 337-603 ppm for Cpx. Reconstructed bulk rock H_{2}O contents range from 88-131 ppm overlapping estimates for the MORB source. Water contents between Ol minerals of the same xenolith are heterogeneous and individual OH infrared bands vary within a mineral with lower 3230 cm^{-1} and higher 3650-3400 cm^{-1} band heights from core to edge. This observation suggests disturbance of the hydrogen in Ol likely occurring during xenolith entrainment to the surface. Pyroxene water contents are higher than most water contents in pyroxenes from continental peridotite xenoliths and higher than those of abyssal peridotites. Cpx water contents decrease with increasing degree of depletion (e.g. increasing Fo in Ol and Cr# in spinel) consistent with an incompatible behavior of water. However Cpx water contents also show a positive correlation with LREE/HREE ratios and LREE concentrations consistent with refertilization. Opx

  20. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates.

    PubMed

    Mächler, Elvira; Deiner, Kristy; Spahn, Fabienne; Altermatt, Florian

    2016-01-05

    Accurate detection of organisms is crucial for the effective management of threatened and invasive species because false detections directly affect the implementation of management actions. The use of environmental DNA (eDNA) as a species detection tool is in a rapid development stage; however, concerns about accurate detections using eDNA have been raised. We evaluated the effect of sampled water volume (0.25 to 2 L) on the detection rate for three macroinvertebrate species. Additionally, we tested (depending on the sampled water volume) what amount of total extracted DNA should be screened to reduce uncertainty in detections. We found that all three species were detected in all volumes of water. Surprisingly, however, only one species had a positive relationship between an increased sample volume and an increase in the detection rate. We conclude that the optimal sample volume might depend on the species-habitat combination and should be tested for the system where management actions are warranted. Nevertheless, we minimally recommend sampling water volumes of 1 L and screening at least 14 μL of extracted eDNA for each sample to reduce uncertainty in detections when studying macroinvertebrates in rivers and using our molecular workflow.

  1. [Effects of the grain size and thickness of dust deposits on soil water and salt movement in the hinterland of the Taklimakan Desert].

    PubMed

    Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying

    2009-08-01

    By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.

  2. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  3. Effects of lowering interior canal stages on salt-water intrusion into the shallow aquifer in Southeast Palm Beach County, Florida

    USGS Publications Warehouse

    Land, Larry F.

    1975-01-01

    Land in southeast Palm Beach County is undergoing a large-scale change in use, from agricultural to residential. To accommodate residential use, a proposal has been made by developers to the Board of the Lake Worth Drainage District to lower the canal stages in the interior part of the area undergoing change. This report documents one of the possible effects of such lowering. Of particular interest to the Board was whether the lower canal stages would cause an increase in salt-water intrusion into the shallow aquifer along the coast. The two main tools used in the investigation were a digital model for aquifer evaluation and an analytical technique for predicting the movement of the salt-water front in response to a change of ground-water flow into the ocean. The method of investigation consisted of developing a digital ground-water flow model for three east-west test strips. They pass through the northern half of municipal well fields in Lake Worth, Delray Beach, and Boca Raton. The strips were first modeled with no change in interior canal stages. Then they were modeled with a change in canal stages of 2 to 4 feet (0.6 to 1.6 metres). Also, two land development schemes were tested. One was for a continuation of the present level of land development, simulated by continuing the present pumpage rates. The second scheme was for land development to continue until the maximum allowable densities were reached, simulated by increasing the pumping rates. The results of the test runs for an east-west strip through Lake Worth show that lowering part of the interior canal water levels 3 feet (1.0 metre), as done in 1961, does not affect the aquifer head or salt-water intrusion along the coastal area of Lake Worth. As a result, no effect in the coastal area would be expected as a result of canal stage lowering in other, interior parts of the study area. Results from the other test runs show that lowering interior canal water levels by as much as 4 feet (1.2 metres) would

  4. Impact of removing iodized salt on the iodine nutrition of children living in areas with variable iodine content in drinking water.

    PubMed

    Lv, Shengmin; Zhao, Yinglu; Li, Yanxia; Wang, Yuchun; Liu, Hua; Li, Yang; Zhao, Jun; Rutherford, Shannon

    2015-09-01

    Excess iodine in drinking water has emerged as a public health issue in China. This study assesses the effectiveness of removing iodized salt on reducing the iodine excess in populations living in high-iodine areas and also to identify the threshold value for safe levels of iodine in water. Twelve villages from 5 cities of Hebei Province with iodine content in drinking water ranging from 39 to 313 µg/l were selected to compare the urinary iodine content of children aged 8-10 years before and after removing iodized salt from their diet. For 3 villages where median water iodine content (MWIC) was below 110 µg/l, following the removal of iodized salt (the intervention), the median urinary iodine content (MUIC) reduced to under 300 µg/l decreasing from 365, 380, 351 to 247, 240, 281 µg/l, respectively. However, the MUIC in the 9 villages with MWIC above 110 µg/l remained higher than 300 µg/l. The children's MUIC correlated positively with the MWIC in the 12 villages (p ≤ 0.001). The linear regression equation after removing iodized salt was MUIC = 0.6761MWIC + 225.67, indicating that to keep the MUIC below 300 µg/l (the iodine excess threshold recommended by the WHO) requires the MWIC to be under 110 µg/l. Removing iodized salt could only correct the iodine excess in the population living in the areas with MWIC below 110 µg/l. In the areas with water iodine above 110 µg/l, interventions should be focused on seeking water with lower iodine content. This study suggests a threshold value of 110 µg/l of iodine in drinking water to maintain a safe level of dietary iodine.

  5. Normotensive blood pressure in pregnancy: the role of salt and aldosterone.

    PubMed

    Gennari-Moser, Carine; Escher, Geneviève; Kramer, Simea; Dick, Bernhard; Eisele, Nicole; Baumann, Marc; Raio, Luigi; Frey, Felix J; Surbek, Daniel; Mohaupt, Markus G

    2014-02-01

    A successful pregnancy requires an accommodating environment. Salt and water availability are critical for plasma volume expansion. Any changes in sodium intake would alter aldosterone, a hormone previously described beneficial in pregnancy. To date, it remains ambiguous whether high aldosterone or high salt intake is preferable. We hypothesized that increased aldosterone is a rescue mechanism and appropriate salt availability is equally effective in maintaining a normotensive blood pressure (BP) phenotype in pregnancy. We compared normotensive pregnant women (n=31) throughout pregnancy with young healthy female individuals (n=31-62) and performed salt sensitivity testing within the first trimester. Suppression of urinary tetrahydro-aldosterone levels by salt intake as measured by gas chromatography-mass spectrometry and urinary sodium excretion corrected for creatinine, respectively, was shifted toward a higher salt intake in pregnancy (P<0.0001). In pregnancy, neither high urinary tetrahydro-aldosterone nor sodium excretion was correlated with higher BP. In contrast, in nonpregnant women, systolic BP rose with aldosterone (P<0.05). Testing the impact of salt on BP, we performed salt sensitivity testing in a final cohort of 19 pregnant and 24 nonpregnant women. On salt loading, 24-hour mean arterial pressure rose by 3.6±1.5 and dropped by -2.8±1.5 mm Hg favoring pregnant women (P<0.01; χ(2)=6.04; P<0.02). Our data suggest first that salt responsiveness of aldosterone is alleviated in conditions of pregnancy without causing aldosterone-induced hypertension. Second, salt seems to aid in BP lowering in pregnancy for reasons incompletely elucidated, yet involving renin suppression and potentially placental sensing mechanisms. Further research should identify susceptible individuals and clarify effector mechanisms.

  6. Influence of bioassay volume, water column height, and octanol-water partition coefficient on the toxicity of pesticides to rainbow trout.

    PubMed

    Altinok, Ilhan; Capkin, Erol; Boran, Halis

    2011-06-01

    Effects of water volume and water column height on toxicity of cypermethrin, carbaryl, dichlorvos, tetradifon, maneb, captan, carbosulfan endosulfan and HgCl₂ to juvenile rainbow trout (Oncorhynchus mykiss, 3.2 ± 0.7 g) were evaluated in different glass aquaria under static conditions. When fish were exposed to the chemical compounds in 23 cm water column height (25 L), their mortality ranged between 0% and 58%. At the same water volume, but lower water column height (9 cm), mortality of fish increased significantly and was in a range from 60% to 95%. At the same water column height, toxic effects of chemicals were significantly higher in 25 L water volume than that of 8.5 L, water except maneb which has lowest (-0.45) octanol-water partition coefficient value. Mortality rates ratio of 9 and 23 cm water column height ranged between 1.12 and 90 while mortality rates ratio of 9 and 25 L water volume ranged between 1.20 and 4.0. Because actual exposure concentrations were not affected by either water volume or water column height, we propose that increased pesticides' toxicity was related to an increase in bioassay volume, since more pesticide molecules were able to interact with or accumulate the fish. However, there seem to be no relationship between the effects of water volume, water column height and Kow value of chemicals with regard to toxicity in juvenile rainbow trout.

  7. Water resources data, Wyoming, water year 2004; Volume 1. Surface water; with List of discontinued and active surface-water, water-quality, sediment, and biological stations

    USGS Publications Warehouse

    Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.

    2005-01-01

    Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  8. A novel bread making process using salt-stressed Baker's yeast.

    PubMed

    Yeh, Lien-Te; Charles, Albert Linton; Ho, Chi-Tang; Huang, Tzou-Chi

    2009-01-01

    By adjusting the mixing order of ingredients in traditional formula, an innovative bread making process was developed. The effect of salt-stressed Baker's yeast on bread dough of different sugar levels was investigated. Baker's yeast was stressed in 7% salt solution then mixed into dough, which was then evaluated for fermentation time, dough fermentation producing gas, dough expansion, bread specific volumes, and sensory and physical properties. The results of this study indicated that salt-stressed Baker's yeast shortened fermentation time in 16% and 24% sugar dough. Forty minutes of salt stress produced significant amount of gas and increased bread specific volumes. The bread was softer and significantly improved sensory properties for aroma, taste, and overall acceptability were obtained.

  9. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  10. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-12-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  11. Hydrologic and climatologic data, 1965, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District. contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Release No. 11 contains data collected through 1964. This release contains climatologic and surface-water data for the 1965 water year (October 1964 to September 1965) and ground-water data collected during the 1965 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  12. Selected aquatic biological investigations in the Great Salt Lake basins, 1875-1998, National Water-Quality Assessment Program

    USGS Publications Warehouse

    Giddings, Elise M.P.; Stephens, Doyle W.

    1999-01-01

    This report summarizes previous investigations of aquatic biological communities, habitat, and contaminants in streams and selected large lakes within the Great Salt Lake Basins study unit as part of the U.S. Geological Survey?s National Water-Quality Assessment Program (NAWQA). The Great Salt Lake Basins study unit is one of 59 such units designed to characterize water quality through the examination of chemical, physical, and biological factors in surface and ground waters across the country. The data will be used to aid in the planning, collection, and analysis of biological information for the NAWQA study unit and to aid other researchers concerned with water quality of the study unit. A total of 234 investigations conducted during 1875-1998 are summarized in this report. The studies are grouped into three major subjects: (1) aquatic communities and habitat, (2) contamination of streambed sediments and biological tissues, and (3) lakes. The location and a general description of each study is listed. The majority of the studies focus on fish and macroinvertebrate communities. Studies of algal communities, aquatic habitat, riparian wetlands, and contamination of streambed sediment or biological tissues are less common. Areas close to the major population centers of Salt Lake City, Provo, and Logan, Utah, are generally well studied, but more rural areas and much of the Bear River Basin are lacking in detailed information, except for fish populations..

  13. Effectiveness of highway-drainage systems in preventing contamination of ground water by road salt, Route 25, southeastern Massachusetts; description of study area, data collection programs, and methodology

    USGS Publications Warehouse

    Church, P.E.; Armstrong, D.S.; Granato, G.E.; Stone, V.J.; Smith, K.P.; Provencher, P.L.

    1996-01-01

    Four test sites along a 7-mile section of Route 25 in southeastern Massachusetts, each representing a specific highway-drainage system, were instrumented to determine the effectiveness of the drainage systems in preventing contamination of ground water by road salt. One of the systems discharges highway runoff onsite through local drainpipes. The other systems use trunkline drainpipes through which runoff from highway surfaces, shoulders, and median strips is diverted and discharged into either a local stream or a coastal waterway. Route 25 was completed and opened to traffic in the summer of 1987. Road salt was first applied to the highway in the winter of 1987-88. The study area is on a thick outwash plain composed primarily of sand and gravel. Water-table depths range from 15 to 60 feet below land surface at the four test sites. Ground-water flow is in a general southerly direction, approximately perpendicular to the highway. Streamflow in the study area is controlled primarily by ground-water discharge. Background concentrations of dissolved chloride, sodium, and calcium-the primary constituents of road salt-are similar in ground water and surface water and range from 5 to 20, 5 to 10, and 1 to 5 milligrams per liter, respectively. Data-collection programs were developed for monitoring the application of road salt to the highway, the quantity of road-salt water entering the ground water, diverted through the highway-drainage systems, and entering a local stream. The Massachusetts Highway Department monitored road salt applied to the highway and reported these data to the U.S. Geological Survey. The U.S. Geological Survey designed and operated the ground-water, highway- drainage, and surface-water data-collection programs. A road-salt budget will be calculated for each test site so that the effectiveness of the different highway-drainage systems in preventing contamination of ground water by road salt can be determined.

  14. Responses of Water and Salt Parameters to Groundwater Levels for Soil Columns Planted with Tamarix chinensis

    PubMed Central

    Xia, Jiangbao; Zhao, Ximei; Chen, Yinping; Fang, Ying; Zhao, Ziguo

    2016-01-01

    Groundwater is the main water resource for plant growth and development in the saline soil of the Yellow River Delta in China. To investigate the variabilities and distributions of soil water and salt contents at various groundwater level (GL), soil columns with planting Tamarix chinensis Lour were established at six different GL. The results demonstrated the following: With increasing GL, the relative soil water content (RWC) declined significantly, whereas the salt content (SC) and absolute soil solution concentration (CS) decreased after the initial increase in the different soil profiles. A GL of 1.2 m was the turning point for variations in the soil water and salt contents, and it represented the highest GL that could maintain the soil surface moist within the soil columns. Both the SC and CS reached the maximum levels in these different soil profiles at a GL of 1.2 m. With the raise of soil depth, the RWC increased significantly, whereas the SC increased after an initial decrease. The mean SC values reached 0.96% in the top soil layer; however, the rates at which the CS and RWC decreased with the GL were significantly reduced. The RWC and SC presented the greatest variations at the medium (0.9–1.2 m) and shallow water levels (0.6 m) respectively, whereas the CS presented the greatest variation at the deep water level (1.5–1.8 m).The RWC, SC and CS in the soil columns were all closely related to the GL. However, the correlations among the parameters varied greatly within different soil profiles, and the most accurate predictions of the GL were derived from the RWC in the shallow soil layer or the SC in the top soil layer. A GL at 1.5–1.8 m was moderate for planting T. chinensis seedlings under saline groundwater conditions. PMID:26730602

  15. A prototype for communitising technology: Development of a smart salt water desalination device

    NASA Astrophysics Data System (ADS)

    Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.

    2018-04-01

    Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.

  16. Proposed Great Salt Lake Basin Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Johnson, W. P.; Tarboton, D. G.

    2004-12-01

    The dynamic physiography and population growth within the Great Salt Lake Basin provide the opportunity to observe climate and human-induced land-surface changes affecting water availability, water quality, and water use, thereby making the Great Salt Lake Basin a microcosm of contemporary water resource issues and an excellent site to pursue interdisciplinary and integrated hydrologic science. Important societal concerns center on: How do climate variability and human-induced landscape changes affect hydrologic processes, water quality and availability, and aquatic ecosystems over a range of scales? What are the resource, social, and economic consequences of these changes? The steep topography and large climatic gradients of the Great Salt Lake Basin yield hydrologic systems that are dominated by non-linear interactions between snow deposition and snow melt in the mountains, stream flow and groundwater recharge in the mid-elevations, and evaporative losses from the desert floor at lower elevations. Because the Great Salt Lake Basin terminates in a closed basin lake, it is uniquely suited to closing the water, solute, and sediment balances in a way that is rarely possible in a watershed of a size sufficient for coupling to investigations of atmospheric processes. Proposed infrastructure will include representative densely instrumented focus areas that will be nested within a basin-wide network, thereby quantifying fluxes, residence times, pathways, and storage volumes over a range of scales and land uses. The significant and rapid ongoing urbanization presents the opportunity for observations that quantify the interactions among hydrologic processes, human induced changes and social and economic dynamics. One proposed focus area will be a unique, highly instrumented mountain-to-basin transect that will quantify hydrologic processes extending from the mountain ridge top to the Great Salt Lake. The transect will range in elevation from about 1200 m to 3200 m, with a

  17. Modeling Episodic Ephemeral Brine Lake Evaporation and Salt Crystallization on the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Liu, T.; Harman, C. J.; Kipnis, E. L.; Bowen, B. B.

    2017-12-01

    Public concern about apparent reductions in the areal extent of the Bonneville Salt Flat (BSF) and perceived changes in inundation frequency has motivated renewed interest in the hydrologic and geochemical behavior of this salt playa. In this study, we develop a numerical modeling framework to simulate the relationship between hydrometeorologic variability, brine evaporation and salt crystallization processes on BSF. The BSF, locates in Utah, is the remnant of paleo-lake Bonneville, and is capped by up to 1 meter of salt deposition over a 100 km2 area. The BSF has two distinct hydrologic periods each year: a winter wet periods with standing surface brine and the summer dry periods when the brine is evaporated, exposing the surface salt crust. We develop a lumped non-linear dynamical models coupling conservation expressions from water, dissolved salt and thermal energy to investigate the seasonal and diurnal behavior of brine during the transition from standing brine to exposed salt at BSF. The lumped dynamic models capture important nonlinear and kinetic effects introduced by the high ionic concentration of the brine, including the pronounced effect of the depressed water activity coefficient on evaporation. The salt crystallization and dissolution rate is modeled as a kinetic process linearly proportional to the degree of supersaturation of brine. The model generates predictions of the brine temperature and the solute and solvent masses controlled by diurnal net radiation input and aerodynamic forcing. Two distinct mechanisms emerge as potential controls on salt production and dissolution: (1) evapo-concentration and (2) changes in solubility related to changes in brine temperature. Although the evaporation of water is responsible for ultimate disappearance of the brine each season ,variation in solubility is found to be the dominant control on diurnal cycles of salt precipitation and dissolution in the BSF case. Most salt is crystallized during nighttime, but the

  18. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate

  19. Hydrologic and climatologic data, 1966, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1967-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, Salt Lake City Chamber of Commerce, and the Central Utah Water Conservancy District contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11 and 12 contain data collected through 1965. This release contains climatologic and surface-water data for the 1966 water year (October 1965 to September 1966) and groundwater data collected during the 1966 calendar year. Similar annual releases will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  20. De-icing salt contamination reduces urban tree performance in structural soil cells.

    PubMed

    Ordóñez-Barona, Camilo; Sabetski, Vadim; Millward, Andrew A; Steenberg, James

    2018-03-01

    Salts used for de-icing roads and sidewalks in northern climates can have a significant impact on water quality and vegetation. Sub-surface engineering systems, such as structural soil cells, can regulate water runoff and pollutants, and provide the necessary soil volume and irrigation to grow trees. However, the ability of such systems to manage de-icing salt contamination, and the impact of this contamination on the trees growing in them, have not been evaluated. We report on an field investigation of de-icing salt contamination in structural cells in two street-revitalization projects in Toronto, Canada, and the impact of this contamination on tree performance. We analyzed soil chemistry and collected tree attributes; these data were examined together to understand the effect of salinity on tree mortality rates and foliar condition. Data collected from continuous soil salinity loggers from April to June for one of the two sites were used to determine whether there was a long-term accumulation of salts in the soils. Results for both sites indicate that both sites displayed high salinity and alkalinity, with levels elevated beyond those suggested before those reported to cause negative tree effects. For one site, trees that were alive and trees that had a better foliar condition had significantly lower levels of soil salinity and alkalinity than other trees. High salinity and alkalinity in the soil were also associated with lower nutrient levels for both sites. Although tests for salinity accumulation in the soils of one site were negative, a longer monitoring of the soil conditions within the soil cells is warranted. Despite structural cells being increasingly utilized for their dual role in storm-water management and tree establishment, there may be a considerable trade-off between storm-water management and urban-forest function in northern climates where de-icing salt application continues to be commonplace. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Don't Cry over Spilled Water: Identifying Risks and Solutions for Produced Water Spills

    NASA Astrophysics Data System (ADS)

    Shores, Amanda Rose

    Resource requirements and future energy generation requires careful evaluation, particularly due to climate change and water scarcity. This thesis discusses one aspect of energy generation linked to water; oil-and-gas extraction and the large volumes of waste water produced, otherwise known as "produced water". This research focuses on surface spills of produced water, their ramifications, safeguards against groundwater contamination at spill sites and potential remediation strategies. Produced water contains a variety of contaminants that include the group of known toxins, BTEX (benzene, toluene, ethylbenzene and xylene), and high salt concentrations. A combination of factors such as large volumes of generated produced water, the need for storage and transportation across large distances and the toxic-and-mobile nature of produced water constituents creates risks for spills that can pollute groundwater. Spills occur regularly, particularly in Weld County, Colorado, where the demand for natural gas is high. To answer spill-related hypotheses, a multitude of methodology were employed: modeling, greenhouse experimentation, gas chromatography and summarization of spill reports and statistical analyses. Using publically available spill data, this research found that the frequency of oil-and-gas related spills and the average spilled volume has increased in Weld County from 2011-2015. Additionally, the number of spills that have resulted in groundwater contamination has increased in the area. By focusing on the oil-and-gas operators responsible for these spills, a linear relationship was found between the volumes of oil-and-gas produced compared to the volumes of produced-water generated. However, larger oil-and-gas producers did not show a linear relationship between oil-and-gas produced and produced-water generated, such that larger producers were more efficient and generated less water per unit of energy. So while scale-up efficiency seems to exist for produced-water

  2. Ethanol modulates the VR-1 variant amiloride-insensitive salt taste receptor. II. Effect on chorda tympani salt responses.

    PubMed

    Lyall, Vijay; Heck, Gerard L; Phan, Tam-Hao T; Mummalaneni, Shobha; Malik, Shahbaz A; Vinnikova, Anna K; Desimone, John A

    2005-06-01

    The effect of ethanol on the amiloride- and benzamil (Bz)-insensitive salt taste receptor was investigated by direct measurement of intracellular Na(+) activity ([Na(+)](i)) using fluorescence imaging in polarized fungiform taste receptor cells (TRCs) and by chorda tympani (CT) taste nerve recordings. CT responses to KCl and NaCl were recorded in Sprague-Dawley rats, and in wild-type (WT) and vanilloid receptor-1 (VR-1) knockout mice (KO). CT responses were monitored in the presence of Bz, a specific blocker of the epithelial Na(+) channel (ENaC). CT responses were also recorded in the presence of agonists (resiniferatoxin and elevated temperature) and antagonists (capsazepine and SB-366791) of VR-1 that similarly modulate the Bz-insensitive VR-1 variant salt taste receptor. In the absence of mineral salts, ethanol induced a transient decrease in TRC volume and elicited only transient phasic CT responses. In the presence of mineral salts, ethanol increased the apical cation flux in TRCs without a change in volume, increased transepithelial electrical resistance across the tongue, and elicited CT responses that were similar to salt responses, consisting of both a phasic component and a sustained tonic component. At concentrations <50%, ethanol enhanced responses to KCl and NaCl, while at ethanol concentrations >50%, those CT responses were inhibited. Resiniferatoxin and elevated temperature increased the sensitivity of the CT response to ethanol in salt-containing media, and SB-366791 inhibited the effect of ethanol, resiniferatoxin, and elevated temperature on the CT responses to mineral salts. VR-1 KO mice demonstrated no Bz-insensitive CT response to NaCl and no sensitivity to ethanol. We conclude that ethanol increases salt taste sensitivity by its direct action on the Bz-insensitive VR-1 variant salt taste receptor.

  3. A Role for Cytoplasmic Structural Proteins in the Transport of Water and Salts in the Intestine

    DTIC Science & Technology

    1981-12-08

    inic Structural Proteins in the Transport ot Water and Salts in the Intestine by Paula T. Beall., Ph.D. D)epartment of Physiol.ogy Baylor CotleP,(e of...Med(icine 1200 Moursund Houston, ’T’exas 77030 December 8, 1981 Reproduction in whole or in part is permitted for any purpose of the United States...Research N00014-81-K-0167 A Role for Cytoplasmic Structural Proteins in the .. :..... . .-. ..... TiTans~por’t of Wa• and Salts in ’tIeIntestine

  4. Water resources data, Montana, water year 2005: Volume 2. Yellowstone and upper Columbia River basins and ground-water levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2006-01-01

    Water resources data for Montana for the 2005 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 120 streamflow-gaging stations; stage or content records for 22 lakes and reservoirs; water-quality records for 86 streamflow stations (32 ungaged), and 25 ground-water wells; water-level records for 25 observation wells; and precipitation records for 2 atmospheric-deposition stations. Additional water year 2005 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  5. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    NASA Astrophysics Data System (ADS)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    Although most ecosystems display a one-way connection with groundwater based on the regulation of deep water drainage (recharge), this link can become reciprocal when the saturated zone is shallow and plants take up groundwater (discharge). In what context is the reciprocal link most likely? How is it affected by land use changes? Has it consequences on salt and carbon cycling? We examine these questions across a precipitation gradient in the Pampas and Espinal of Argentina focusing on three vegetation change situations (mean annual rainfall): afforestation of humid (900-1300 mm) and subhumid grassland (700-900 mm/yr of rainfall), annual cultivation of subhumid grasslands (700-800 mm/yr), and annual cultivation of semiarid forests (500-700 mm). Humid and subhumid grasslands have shallow (< 5 m deep) groundwater tables that are poorly consumed by grasses but highly used by planted trees, as evidenced by satellite canopy temperatures, soil moisture and water table level records, and sapflow measurements. Groundwater contributions enhance carbon uptake in plantations compared to grasslands as suggested by aboveground biomass measurements and satellite vegetation indexes from sites with and without access to groundwater. Where rainfall is <1100 mm, grassland afforestation switches water fluxes to groundwater from positive (net recharge) to negative (net discharge) causing a salt accumulation process in soils and groundwater that is ultimately limited by the tolerance to salinity of tree species. Cultivation with corn and soybean can lead to groundwater consumption in the driest belt of subhumid grassland. Up to five-fold yield increases in lowlands vs. uplands during the driest years indicate a dramatic impact of groundwater use on carbon uptake and groundwater salinization suggests a recharge-to- discharge switch. In dry forests groundwater is not accessible (> 15 m deep) and recharge under natural conditions is null. The establishment of crops, however, triggers the

  6. Quality and sources of ground water used for public supply in Salt Lake Valley, Salt Lake County, Utah, 2001

    USGS Publications Warehouse

    Thiros, Susan A.; Manning, Andrew H.

    2004-01-01

    Ground water supplies about one-third of the water used by the public in Salt Lake Valley, Utah. The occurrence and distribution of natural and anthropogenic compounds in ground water used for public supply in the valley were evaluated. Water samples were collected from 31 public-supply wells in 2001 and analyzed for major ions, trace elements, radon, nutrients, dissolved organic carbon, methylene blue active substances, pesticides, and volatile organic compounds. The samples also were analyzed for the stable isotopes of water (oxygen-18 and deuterium), tritium, chlorofluorocarbons, and dissolved gases to determine recharge sources and ground-water age.Dissolved-solids concentration ranged from 157 to 1,280 milligrams per liter (mg/L) in water from the 31 public-supply wells. Comparison of dissolved-solids concentration of water sampled from the principal aquifer during 1988-92 and 1998-2002 shows a reduction in the area where water with less than 500 mg/L occurs. Nitrate concentration in water sampled from 12 of the 31 public-supply wells was higher than an estimated background level of 2 mg/L, indicating a possible human influence. At least one pesticide or pesticide degradation product was detected at a concentration much lower than drinking-water standards in water from 13 of the 31 wells sampled. Chloroform was the most frequently detected volatile organic compound (17 of 31 samples). Its widespread occurrence in deeper ground water is likely a result of the recharge of chlorinated public-supply water used to irrigate lawns and gardens in residential areas of Salt Lake Valley.Environmental tracers were used to determine the sources of recharge to the principal aquifer used for public supply in the valley. Oxygen-18 values and recharge temperatures computed from dissolved noble gases in the ground water were used to differentiate between mountain and valley recharge. Maximum recharge temperatures in the eastern part of the valley generally are below the range

  7. Effect of salts on the solubility of ionic liquids in water: experimental and electrolyte Perturbed-Chain Statistical Associating Fluid Theory†

    PubMed Central

    Mohammad, Sultan; Schleinitz, Miko; Coutinhoa, João A. P.; Freire, Mara G.

    2016-01-01

    Due to scarce available experimental data, as well as due to the absence of predictive models, the influence of salts on the solubility of ionic liquids (ILs) in water is still poorly understood. To this end, this work addresses the solubility of the IL 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4C1im][NTf2]), at 298.15 K and 0.1 MPa, in aqueous salt solutions (from 0.1 to 1.5 mol kg−1). At salt molalities higher than 0.2 mol kg−1, all salts caused salting-out of [C4C1im][NTf2] from aqueous solution with their strength decreasing in the following order: Al2(SO4)3 > ZnSO4 > K3C6H5O7 > KNaC4H4O6 > K3PO4 > Mg(CH3CO2)2 > K2HPO4 > MgSO4 > KH2PO4 > KCH3CO2. Some of these salts lead however to the salting-in of [C4C1im][NTf2] in aqueous medium at salt molalities lower than 0.20 mol kg−1. To attempt the development of a model able to describe the salt effects, comprising both the salting-in and salting-out phenomena observed, the electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) was applied using ion-specific parameters. The gathered experimental data was modelled using ePC-SAFT parameters complemented by fitting a single binary parameter between K+ and the IL-ions to the IL solubility in K3PO4 aqueous solutions. Based on this approach, the description of anion-specific salting-out effects of the remaining potassium salts was found to be in good agreement with experimental data. Remarkably, ePC-SAFT is even able to predict the salting-in effect induced by K2HPO4, based on the single K+/IL-ions binary parameter which was fitted to an exclusively salting-out effect promoted by K3PO4. Finally, ePC-SAFT was applied to predict the influence of other sodium salts on the [C4C1im][NTf2] solubility in water, with experimental data taken from literature, leading to an excellent description of the liquid–liquid phase behaviour. PMID:26575280

  8. Uranium in US surface, ground, and domestic waters. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, J.S.; Reynolds, S.; Owen, P.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  9. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Watermore » Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.« less

  10. Salt fluoridation and oral health.

    PubMed

    Marthaler, Thomas M

    2013-11-01

    The aim of this paper is to make known the potential of fluoridated salt in community oral health programs, particularly in South Eastern Europe. Since 1922, the addition of iodine to salt has been successful in Switzerland. Goiter is virtually extinct. By 1945, the caries-protective effect of fluorides was well established. Based on the success of water fluoridation, a gynecologist started adding of fluoride to salt. The sale of fluoridated salt began in 1956 in the Swiss Canton of Zurich, and several other cantons followed suit. Studies initiated in the early seventies showed that fluoride, when added to salt, inhibits dental caries. The addition of fluoride to salt for human consumption was officially authorized in 1980-82. In Switzerland 85% of domestic salt consumed is fluoridated and 67% in Germany. Salt fluoridation schemes are reaching more than one hundred million in Mexico, Colombia, Peru and Cuba. The cost of salt fluoridation is very low, within 0.02 and 0.05 € per year and capita. Children and adults of the low socio-economic strata tend to have substantially more untreated caries than higher strata. Salt fluoridation is by far the cheapest method for improving oral health. Salt fluoridation has cariostatic potential like water fluoridation (caries reductions up to 50%). In Europe, meaningful percentages of users have been attained only in Germany (67%) and Switzerland (85%). In Latin America, there are more than 100 million users, and several countries have arrived at coverage of 90 to 99%. Salt fluoridation is by far the cheapest method of caries prevention, and billions of people throughout the world could benefit from this method. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  11. 50th JANNAF Propulsion Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Eggleston, Debra S. (Editor)

    2001-01-01

    This volume, the first of two volumes, is a collection of 29 unclassified/unlimited-distribution papers which were presented at the 50th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meeting, held 11-13 July 2001 at the Salt Lake City Marriott Hotel in Salt Lake City, Utah.

  12. Water and salt dynamics and the hydraulic conductivity feedback: irreversible soil degradation and reclamation opportunities

    NASA Astrophysics Data System (ADS)

    Mau, Yair; Porporato, Amilcare

    2017-04-01

    We present a model for the dynamics of soil water, salt concentration and exchangeable sodium fraction in the root zone, driven by irrigation water of various qualities and stochastic rainfall. The main nonlinear feedback is the decrease in hydraulic conductivity for low salinity and/or high sodicity levels. The three variables have quite disparate characteristic time scales: soil water can vary two or three orders of magnitude faster than the exchangeable sodium fraction. In certain limiting cases in which the input of water is constant, the system can be simplified by eliminating the equation for soil water, allowing a full description of the dynamics in the two-dimensional salinity-sodicity phase space. We estimate soil structure degradation time scales for high sodium-adsorption-ratio irrigation water, and delineate the regions in the salinity-sodicity phase space where sodium-induced degradation is effectively irreversible. This apparent irreversibility is the result of relatively long evolution time scales with respect to human activity. When we take into account stochastic rainfall—and the accompanying wetting and drying cycles—the system produces a myriad of statistical steady states. This means that equal environmental conditions can produce different outcomes, accessible to each other only by large interventions, such as temporary changes in the quality of irrigation water or one-time amendment use. Our characterization of the dynamics of water and salt in the root zone, and how it depends on environmental parameters, offers us opportunities to control and reclaim degraded states making optimal resource use. We show an example of sodic soil reclamation through calcium-based fertigation, with minimal time (and applied water) expenditure.

  13. Water resources data, Montana, water year 2005: Volume 2. Yellowstone and upper Columbia River basins and ground-water levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2005-01-01

    Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 119 streamflow-gaging stations; stage or content records for 21 lakes and reservoirs; and water-quality records for 69 streamflow stations (17 ungaged), and 3 lake sites; water-level records for 51 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  14. Activation energy-activation volume master plots for ion transport behavior in polymer electrolytes and supercooled molten salts.

    PubMed

    Ingram, Malcolm D; Imrie, Corrie T; Stoeva, Zlatka; Pas, Steven J; Funke, Klaus; Chandler, Howard W

    2005-09-08

    We demonstrate the use of activation energy versus activation volume "master plots" to explore ion transport in typical fragile glass forming systems exhibiting non-Arrhenius behavior. These systems include solvent-free salt complexes in poly(ethylene oxide) (PEO) and low molecular weight poly(propylene oxide) (PPO) and molten 2Ca(NO3)2.3KNO3 (CKN). Plots showing variations in apparent activation energy EA versus apparent activation volume VA are straight lines with slopes given by M = DeltaEA/DeltaVA. A simple ion transport mechanism is described where the rate determining step involves a dilatation (expressed as VA) around microscopic cavities and a corresponding work of expansion (EA). The slopes of the master plots M are equated to internal elastic moduli, which vary from 1.1 GPa for liquid PPO to 5.0 GPa for molten CKN on account of differing intermolecular forces in these materials.

  15. Mechanism of oxidation of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt with oxygen in subcritical water.

    PubMed

    Imbierowicz, Mirosław

    2017-06-01

    The article presents the results of studies on the oxidation mechanism of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt (R-salt) with oxygen in subcritical water. To this aim, a series of experiments were carried out which showed that at a temperature of 413 K and pH > 9 the oxidation reaction of a substrate with oxygen was relatively quick and after approximately 40 min the R-salt oxidation yield exceeded 95%. In an acidic medium (pH < 7), the rate of R-salt oxidation is small. In order to identify the mechanism of R-salt oxidation, experiments were carried out at 413-569 K in solutions with pH = 10.0 and at partial oxygen pressure p O2  = 1.73 MPa. As a result of these experiments, a stable oxidation product was isolated from the reaction mixture and subjected to spectroscopic analysis. The analysis of H NMR of this product proved that a stable intermediate product of R-salt oxidation was 4-sulfophthalic acid sodium salt. The results of the experiments have shown that destructive oxidation of R-salt can easily be obtained at a temperature of 413 K, but satisfactory reduction of TOC in wastewater containing this substrate requires the use of very high temperature: at 569 K only 60% reduction of TOC was achieved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Mechanical response and microprocesses of reconsolidating crushed salt at elevated temperature

    DOE PAGES

    Broome, S. T.; Bauer, S. J.; Hansen, F. D.; ...

    2015-09-14

    Design, analysis and performance assessment of potential salt repositories for heat-generating nuclear waste require knowledge of thermal, mechanical, and fluid transport properties of reconsolidating granular salt. So, to inform salt repository evaluations, we have undertaken an experimental program to determine Bulk and Young’s moduli and Poisson’s ratio of reconsolidated granular salt as a function of porosity and temperature and to establish the deformational processes by which the salt reconsolidates. Our tests were conducted at 100, 175, and 250 °C. In hydrostatic tests, confining pressure is increased to 20 MPa with periodic unload/reload loops to determine K. Volume strain increases withmore » increasing temperature. In shear tests at 2.5 and 5 MPa confining pressure, after confining pressure is applied, the crushed salt is subjected to a differential stress, with periodic unload/reload loops to determine E and ν. At predetermined differential stress levels the stress is held constant and the salt consolidates. Displacement gages mounted on the samples show little lateral deformation until the samples reach a porosity of ~10 %. Interestingly, vapor is vented only for 250 °C tests and condenses at the vent port. It is hypothesized that the brine originates from fluid inclusions, which were made accessible by heating and intragranular deformational processes including decrepitation. Furthermore, identification and documentation of consolidation processes are inferred from optical and scanning electron microstructural observations. As a result, densification at low porosity is enhanced by water film on grain boundaries that enables solution-precipitation phenomena.« less

  17. Effects of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian D.; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise.

  18. Mechanisms of water-salt metabolism disturbances in dogs subjected to six month hypokinesia

    NASA Technical Reports Server (NTRS)

    Korolkov, V. I.; Kovalenko, Y. A.; Krotov, V. P.; Ilyushko, N. A.; Kondratyeva, V. A.; Kondratyev, Y. I.

    1980-01-01

    Water-salt metabolism in dogs during prolonged restricted motor activity (hypokinesia) was investigated. It was found that hydration occurred and fluid was redistributed between the extra- and intra-cellular sectors. Also, electrolyte excretion rose, and magnetism and calcium metabolism changed significantly. It is concluded that the forces caused by muscle strain proper (which was decreased under conditions of hypokinesia) influence the state of bone metabolism.

  19. Hydrologic and climatologic data, 1968, Salt Lake County, Utah

    USGS Publications Warehouse

    1969-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological SurveyThe investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 and 15 contain data collected through 1967. This release contains climatologic and surface-water data for the 1968 water year (October 1967 to September 1968) and ground-water data collected during the 1968 calendar year. This is the final annual release of basic data for this investigation. Interpretive reports summarizing the results are in preparation. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  20. Water resources data, Montana, water year 2005: Volume 1. Hudson Bay and upper Missouri River basins

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2005-01-01

    Water resources data for Montana for the 2004 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 134 streamflow-gaging stations; stage or content records for 18 lakes and reservoirs; and water-quality records for 66 streamflow stations (34 ungaged), and 13 ground-water wells. Additional water year 2004 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  1. A thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts.

    PubMed

    Wang, Kun; Chartrand, Patrice

    2018-06-15

    This paper presents a quantitative thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts, which is of technological importance to the Hall-Héroult electrolytic aluminum extraction cell. The Modified Quasichemical Model in the Quadruplet Approximation (MQMQA), as used to treat a large variety of molten salt systems, was adopted to thermodynamically describe the present liquid phase; all solid solutions were modeled using the Compound Energy Formalism (CEF); the gas phase was thermodynamically treated as an ideal mixture of all possible species. The model parameters were mainly obtained by critical evaluations and optimizations of thermodynamic and phase equilibrium data available from relative experimental measurements and theoretical predictions (first-principles calculations and empirical estimations) for the lower-order subsystems. These optimized model parameters were thereafter merged within the Kohler/Toop interpolation scheme, facilitating the prediction of gas solubility (H2O, HF and H2) in multicomponent cryolite-base molten salts using the FactSage thermochemical software. Several interesting diagrams were finally obtained in order to provide useful information for the industrial partners dedicated to the Hall-Héroult electrolytic aluminum production or other molten-salt technologies (the purification process and electroslag refining).

  2. Pearson’s correlations between moisture content, drip loss, expressible fluid and salt-induced water gain of broiler pectoralis major muscle

    USDA-ARS?s Scientific Manuscript database

    Moisture content, drip loss, expressible fluid, and % salt-induced water gain are widely used to estimate water states and water-holding capacity of raw meat. However, the relationships between these four measurements of broiler pectoralis (p.) major muscle describe are not well described. The objec...

  3. Leaf conductance and carbon gain under salt-stressed conditions

    NASA Astrophysics Data System (ADS)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.

    2011-12-01

    Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.

  4. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    PubMed

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  5. Injection-salting of pre rigor fillets of Atlantic salmon (Salmo salar).

    PubMed

    Birkeland, Sveinung; Akse, Leif; Joensen, Sjurdur; Tobiassen, Torbjørn; Skåra, Torstein

    2007-01-01

    The effects of temperature (-1, 4, and 10 degrees C), brine concentration (12% and 25% NaCl), injection volumes, and needle densities were investigated on fillet weight gain (%), salt content (%), fillet contraction (%), and muscle gaping in pre rigor brine-injected fillets of Atlantic salmon (Salmo salar). Increased brine concentration (12% to 25%) significantly increased the initial (< 5 min after injection) and final contraction (24 h after injection) of pre rigor fillets. Increased brine concentration significantly reduced weight gain and increased salt content but had no significant effect on muscle gaping. The temperatures tested did not significantly affect weight gain, fillet contraction, or gaping score. Significant regressions (P < 0.01) between the injection volume and weight gain (range: 2.5% to 15.5%) and salt content (range: 1.7% to 6.5%) were observed for injections of pre rigor fillets. Double injections significantly increased the weight gain and salt content compared to single injections. Initial fillet contraction measured 30 min after brine injection increased significantly (P < 0.01) with increasing brine injection volume but no significant difference in the fillet contraction was observed 12 h after brine injection (range: 7.9% to 8.9%). Brine-injected post rigor control fillets obtained higher weight gain, higher salt content, more muscle gaping, and significantly lower fillet contraction compared to the pre rigor injected fillets. Injection-salting is an applicable technology as a means to obtain satisfactory salt contents and homogenously distribute the salt into the muscle of pre rigor fillets of Atlantic salmon before further processing steps such as drying and smoking.

  6. Isotopic compositions and sources of nitrate in ground water from western Salt River Valley, Arizona

    USGS Publications Warehouse

    Gellenbeck, D.J.

    1994-01-01

    Isotopic and chemical compositions of ground water from western Salt River Valley near Phoenix, Arizona, were used to develop identification tech- niques for sources of nitrate in ground water. Four possible sources of nitrate were studied: dairies and feedlots, sewage-treatment plants, agricultural activities, and natural source. End members that represent these sources were analyzed for a variety of chemical and isotopic constituents; contents of the end-member and the ground water were compared to identify nitrate from these sources. Nitrate from dairies and feedlots was identified by delta 15N values higher than +9.0 per mil. Nitrate from sewage treatment plants was identified by some chemical constituents and values of delta 15N, delta 34S, delta 7Li, and delta 11B that were lighter than the values determined for ground water not affected by sewage-treatment plants. Nitrate from agricultural activities was identified by delta 15N, 3H, and delta 34S compositions. Natural nitrate derived from decomposing plants and accumulated by biological fixation was identified by delta 15N values that range between +2 and +8 per mil. In addition to identifying nitrate sources, some chemical and isotopic charabteristics of ground water were determined on the basis of data collected during this study. Concentrations of major ions, lithium, and boron and delta 7Li, delta 11B, 3H, delta D, and delta 18O data identify ground water in different geographic regions in the study area. These differences probably are related to different sources of ground water, geochemical processes, or geologic deposits. The Luke salt body and a geothermal anomaly alter the chemical and isotopic content of some ground water.

  7. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors.

    PubMed

    Lei, Weiwei; Portehault, David; Dimova, Rumiana; Antonietti, Markus

    2011-05-11

    A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440-528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics. © 2011 American Chemical Society

  8. Hydrologic and climatologic data, 1967, Salt Lake County, Utah

    USGS Publications Warehouse

    Hely, A.G.; Mower, Reed W.; Horr, C.A.

    1968-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed chiefly by equal contributions of the State of Utah and the Federal Government in accordance with an agreement between the Division of Water Rights, Utah Department of Natural Resources, and the Geological Survey. The investigation was financed during the period covered by this report by the following organizations: Utah Division of Water Rights (formerly State Engineer), Utah Division of Water Resources (formerly Water and Power Board), Salt Lake County, Salt Lake County Water Conservancy District, Central Utah Water Conservancy District, Metropolitan Water District of Salt Lake City, City of Murray, Granger-Hunter Improvement District, Taylorsville-Bennion Improvement District, Holladay Water Company, Magna Water and Sewer District, U.S. Bureau of Reclamation, U.S. Geological Survey.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. Utah Basic-Data Releases 11-13 contain data collected through 1966. This release contains climatologic and surfacewater data for the 1967 water year (October 1966 to September 1967) and ground-water data collected during the 1967 calendar year. A similar annual release will contain data collected during the remainder of the investigation, and interpretive reports will be prepared as the investigation proceeds. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables.

  9. Postmortem aging and freezing and thawing storage enhance ability of early deboned chicken pectoralis major muscle to hold added salt water.

    PubMed

    Zhuang, H; Savage, E M

    2012-05-01

    The effects of postdeboning aging and frozen storage on water-holding capacity (WHC) of chicken breast pectoralis major muscle were investigated. Broiler breast muscle was removed from carcasses either early postmortem (2 h) or later postmortem (24 h). Treatments included: no postdeboning aging; 1-d postdeboning aging at 2°C, 7-d postdeboning aging (2-h deboned meat only), and 6-d storage at -20°C plus 1-d thawing at 2°C (freezing and thawing treatment, 2-h deboned meat only). The WHC was determined by cooking loss, drip loss, a filter paper press method (results were presented as expressible fluid), and a salt-induced swelling and centrifugation method (results were presented as percentage of salt-induced water gain). There were no differences for WHC estimated by cooking loss and expressible fluid between the treatments. Only the freezing and thawing treatment resulted in a significant increase in drip loss. The average percentage of salt-induced water gains by the 24-h deboned samples, postdeboning aged 2 h samples, and frozen 2 h sample, which did not differ from each other, were significantly higher than that by the 2-h deboned sample. These results indicate that regardless of method (carcass aging vs. postdeboning aging) and time (aging for 1 d vs. for 7 d), postmortem aging more than 1 d does not affect WHC of the early deboned samples measured by dripping, cooking, and pressing. However, postmortem carcass aging, postdeboning aging, and freezing and thawing storage can significantly enhance the ability of chicken breast meat to hold added salt water or WHC measured by the salt-induced swelling and centrifuge method.

  10. Water resources data for Texas, water year 1993. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1993-11-01

    Water-resources data for the 1993 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 771 observation wells and water-quality data for 226 monitoring wells.

  11. Water resources data for Texas, water year 1996. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1995-30 September 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1996-11-22

    Water-resources data for the 1996 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 845 observation wells and 187 water-quality data for monitoring wells.

  12. Water resources data for Texas, water year 1994. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1993-30 September 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1994-12-12

    Water-resources data for the 1994 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 698 observation wells and water-quality data for 97 monitoring wells.

  13. Water resources data for Texas, water year 1997. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1996-30 September 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.; Barbie, D.L.

    1997-12-03

    Water-resources data for the 1997 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 790 observation wells and 245 water-quality data for monitoring wells.

  14. Water resources data for Texas, water year 1995. Volume 4. Ground-water data. Water-data report (Annual), 1 October 1994-30 September 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gandara, S.C.; Jones, R.E.

    1995-12-18

    Water-resources data for the 1995 water year for Texas consists of records of stage, discharge, and water quality of streams; stage and contents in lakes and reservoirs; and water levels and water quality in wells. Volume 4 contains water levels for 919 observation wells and 226 water-quality data for monitoring wells.

  15. The Transport of Salt and Water across Isolated Rat Ileum

    PubMed Central

    Clarkson, T. W.

    1967-01-01

    The flows of sodium, potassium, and chloride under electrical and chemical gradients and of salt and water in the presence of osmotic pressure gradients are described by phenomenological equations based on the thermodynamics of irreversible processes. The aim was to give the simplest possible description, that is to postulate the least number of active transport processes and the least number of separate pathways across the intestine. On this basis, the results were consistent with the following picture of the intestine: Two channels exist across this tissue, one allowing only passive transport of ions and the other only active. In the passive channel, the predominant resistance to ion flow is friction with the water in the channel. The electroosmotic flow indicates that the passive channel is lined with negative fixed charged groups having a surface charge density of 3000 esu cm-2. The values of the ion-water frictional coefficients, and the relationship between ionic concentrations and flows indicate that the passive channel is extracellular. The active channel behaves as two membranes in series, the first membrane being semipermeable but allowing active transport of sodium, and the second membrane being similar to the passive channel. Friction with the ions in the second "membrane" is the predominant resistance to water flow. PMID:11526854

  16. Water Resources Data, Florida, Water Year 2003, Volume 3B: Southwest Florida Ground Water

    USGS Publications Warehouse

    Kane, Richard L.; Fletcher, William L.; Lane, Susan L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3B contains records for continuous ground-water elevations for 128 wells; periodic ground-water elevations at 31 wells; miscellaneous ground-water elevations at 405 wells; and water quality at 32 ground-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  17. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  18. Where Does Road Salt Go - a Static Salt Model

    NASA Astrophysics Data System (ADS)

    Yu, C. W.; Liu, F.; Moriarty, V. W.

    2017-12-01

    Each winter, more than 15 million tons of road salt is applied in the United States for the de-icing purpose. Considerable amount of chloride in road salt flows into streams/drainage systems with the snow melt runoff and spring storms, and eventually goes into ecologically sensitive low-lying areas in the watershed, such as ponds and lakes. In many watersheds in the northern part of US, the chloride level in the water body has increased significantly in the past decades, and continues an upward trend. The environmental and ecological impact of the elevated chloride level can no longer be ignored. However although there are many studies on the biological impact of elevated chloride levels, there are few investigations on how the spatially distributed road salt application affects various parts of the watershed. In this presentation, we propose a static road salt model as a first-order metric to address spacial distribution of salt loading. Derived from the Topological Wetness Index (TWI) in many hydrological models, this static salt model provides a spatial impact as- sessment of road salt applications. To demonstrate the effectiveness of the static model, National Elevation Dataset (NED) of ten-meter resolution of Lake George watershed in New York State is used to generate the TWI, which is used to compute a spatially dis- tributed "salt-loading coefficient" of the whole watershed. Spatially varying salt applica- tion rate is then aggregated, using the salt-loading coefficients as weights, to provide salt loading assessments of streams in the watershed. Time-aggregated data from five CTD (conductivity-temperature-depth) sensors in selected streams are used for calibration. The model outputs and the sensor data demonstrate a strong linear correlation, with the R value of 0.97. The investigation shows that the static modeling approach may provide an effective method for the understanding the input and transport of road salt to within watersheds.

  19. A Curriculum Activities Guide to Water Pollution and Environmental Studies, Volume II - Appendices.

    ERIC Educational Resources Information Center

    Hershey, John T., Ed.; And Others

    This publication, Volume II of a two volume set of water pollution studies, contains seven appendices which support the studies. Appendix 1, Water Quality Parameters, consolidates the technical aspects of water quality including chemical, biological, computer program, and equipment information. Appendix 2, Implementation, outlines techniques…

  20. Water Resources Data, Georgia, 2000, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2000

    USGS Publications Warehouse

    McCallum, Brian E.; Hickey, Andrew C.

    2000-01-01

    Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  1. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    NASA Astrophysics Data System (ADS)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  2. Water Resources Data, New York, Water Year 1996; Volume 1. Eastern New York; Excluding Long Island

    USGS Publications Warehouse

    Butch, G.K.; Dalton, F.N.; Lent, H.G.; Murray, P.M.

    1997-01-01

    IntroductionWater-resources data for the 1996 water year for New York consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; ground-water levels; and precipitation quality. This volume contains records for water discharge at 122 gaging stations; stage only at 7 gaging stations; stage and contents at 4 gaging stations, and 18 other lakes and reservoirs; water quality at 28 gaging stations and 1 precipitation-quality station; and water levels at 3 observation wells. Also included are data for 33 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements and analyses in this volume. These data together with the data in Volumes 2 and 3 represent that part of the National Water Data System operated by the U.S. Geological Survey in cooperation with State, Municipal, and Federal agencies in New York.Records of discharge and stage of streams, and contents and stage of lakes and reservoirs, were first published in a series of U.S. Geological Survey water-supply papers entitled, “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961-65 and 1966-70. Records of water quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled “Quality of Surface Waters of the United States.” Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled “Ground-Water Levels in the United States.” Water-supply papers may be consulted in the libraries of the principal cities and universities in the United States or may be purchased from the U.S. Geological Survey, Branch of Distribution, 604 South Pickett Street, Alexandria, VA 22304.Since the 1961

  3. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    PubMed

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effect of acute salt ingestion upon core temperature in healthy men.

    PubMed

    Muller, Matthew D; Ryan, Edward J; Bellar, David M; Kim, Chul-Ho; Williamson, Megan E; Glickman, Ellen L; Blankfield, Robert P

    2011-06-01

    Salt intake may cause conflict for the cardiovascular system as it attempts to simultaneously maintain blood pressure (BP) and temperature homeostasis. Our objective was to determine the effect of a salt and water load vs. a water load upon rectal temperature (Tre) in healthy volunteers. Twenty-two healthy, non-hypertensive Caucasian men enrolled in two trials in which they ingested either salt and body temperature water (SALT), or body temperature water (WATER). BP, Tre, cardiac index, peripheral resistance and urine output were monitored one, 2 and 3 h post-baseline. Changes in the dependent variables were compared between those subjects who were salt sensitive (SS) and those who were salt resistant (SR) at the same time intervals. The percentage change reduction in Tre was greater following SALT compared with WATER at +120 min (-1.1±0.7 vs. -0.6±0.5%, P=0.009) and at +180 min (-1.3±0.8 vs. -0.7±0.6%, P=0.003). The percentage change reduction in Tre was greater in the SR group compared with the SS group at +180 min (-1.6±0.9 vs. -0.9±0.5%, P=0.043). SALT decreased Tre more than WATER. SS individuals maintained temperature homeostasis more effectively than SR individuals following SALT. These results may explain why some individuals are SS while others are SR. If these results are generalizable, it would be possible to account for the role of sodium chloride in the development of SS hypertension.

  5. Determination of tertiary amines and salts of organic acids in acetic acid by catalytic thermometric titration.

    PubMed

    Vajgand, V J; Gaál, F F

    1967-03-01

    A new method of determination of tertiary amines and salts of organic adds in acetic acid solution, to which about 2 % of water and 8% acetic anhydride are added, is described. After the equivalence point, the excess of perchloric acid catalyses the exothermic reaction of water with acetic anhydride. The end-point is determined from the graph of temperature against volume of added titrant. If a slightly soluble compound is produced during the titration, the precision of the new method is superior to that of the potentiometric method.

  6. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    PubMed

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P₂ peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. Copyright © 2014. Published by Elsevier Ltd.

  7. Mathematical simulation of water and salt transfer in geosystems of solonetzic soils in the Northern Caspian region

    NASA Astrophysics Data System (ADS)

    Golovanov, A. I.; Sotneva, N. I.

    2009-03-01

    The Dzhanybek two-dimensional radial-axial mathematical model was developed for water and salt transfer in geosystems of solonetzic complexes of the Northern Caspian region; the model is capable of considering the geochemical links and revealing the features of migration processes between the conjugated elements of the microcatena. The simulation results suggested that the stabilization of salinization-desalinization processes occurs under stable weather conditions within approximately 100 years. When the weather conditions changed (the total moisture pool of the area increased from 1978), the simulation results indicated a tendency toward salinization of dark-colored soils in microdepressions and removal of salts in the upper 1-m thick soil layer on microhighs and microslopes. Predictions for 2040 showed that a deep accumulation of salts in microdepressions and desalinization of soils of microhighs and microslopes will occur under the current weather conditions. Thus, the changes in the halogeochemical capacity of geosystems of solonetzic complexes primarily depend on the climatic conditions, although the capacity value remains almost constant with increasing total water reserves; the changes occur only between the conjugated soils of solonetzic complexes, which is of great importance for predicting the soil-geochemical status of the entire landscape.

  8. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies

    PubMed Central

    Vane, Leland M.

    2017-01-01

    BACKGROUND When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. RESULTS This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. CONCLUSION Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used. PMID:29225395

  9. Review: Water recovery from brines and salt-saturated solutions: operability and thermodynamic efficiency considerations for desalination technologies.

    PubMed

    Vane, Leland M

    2017-03-08

    When water is recovered from a saline source, a brine concentrate stream is produced. Management of the brine stream can be problematic, particularly in inland regions. An alternative to brine disposal is recovery of water and possibly salts from the concentrate. This review provides an overview of desalination technologies and discusses the thermodynamic efficiencies and operational issues associated with the various technologies particularly with regard to high salinity streams. Due to the high osmotic pressures of the brine concentrates, reverse osmosis, the most common desalination technology, is impractical. Mechanical vapor compression which, like reverse osmosis, utilizes mechanical work to operate, is reported to have the highest thermodynamic efficiency of the desalination technologies for treatment of salt-saturated brines. Thermally-driven processes, such as flash evaporation and distillation, are technically able to process saturated salt solutions, but suffer from low thermodynamic efficiencies. This inefficiency could be offset if an inexpensive source of waste or renewable heat could be used. Overarching issues posed by high salinity solutions include corrosion and the formation of scales/precipitates. These issues limit the materials, conditions, and unit operation designs that can be used.

  10. Spacecraft Water Exposure Guidelines for Selected Contaminants. Volume 2

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The International Space Station is a closed and complex environment, so some contamination of its internal atmosphere and water system is expected. To protect space crews from contaminants in potable and hygiene water, the National Aeronautics and Space Administration (NASA) requested that the National Research Council (NRC) provide guidance on how to develop water exposure guidelines and review NASA s development of the exposure guidelines for specific chemicals. NASA selects water contaminants for which spacecraft water exposure guidelines (SWEGs) will be established; this involves identifying toxicity effects relevant to astronauts and calculating exposure concentrations on the basis of those end points. SWEGs are established for exposures of 1, 10, 100, and 1,000 days. This report is the second volume in the series, Spacecraft Water Exposure Guidelines for Selected Chemicals. SWEG reports for acetone, alkylamines, ammonia, barium, cadmium, caprolactam, formate, formaldehyde, manganese, total organic carbon, and zinc are included in this report. The committee concludes that the SWEGs developed for these chemicals are scientifically valid based on the data reviewed by NASA and are consistent with the NRC (2000) report, Methods for Developing Spacecraft Water Exposure Guidelines. SWEG reports for additional chemicals will be presented in a subsequent volume.

  11. [Ethical aspects of the fluoridation of water, salt, and milk].

    PubMed

    Rippe, K P

    2009-05-01

    The article discusses two ethical aspects of the fluoridation of water, salt, and milk. First, it considers whether fluoridation contradicts the right of self-determination. Second, it discusses the chances and risks of fluoridation. The answer to the first question depends on whether people can choose other options. Freedom of choice is not simply the right to choose between different options. It is a right which defends the moral integrity of persons. Nobody should be coerced to eat or drink something which he or she rejects morally. In the political sphere, personal rights of persons can be restricted if and only if it is necessary, if there is a public interest, and if the restriction of the right is reasonable. Regarding fluoridation, even in the best risk-chance scenario, some persons have to expect a net harm. Therefore, the reasoning in favor of fluoridation has to have a specific purpose. The proclaimed reasoning is that fluoridation will benefit the worst off and is therefore a demand of justice. But this argument fails as there are other options to benefit the worst off. Even in the best risk-chance scenario, only one option is morally permissible: the fluoridation of salt, which respects the freedom of choice.

  12. Liquid salt environment stress-rupture testing

    DOEpatents

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  13. Myosin-induced volume increase of the hyper-mobile water surrounding actin filaments.

    PubMed

    Suzuki, Makoto; Kabir, Syed Rashel; Siddique, Md Shahjahan Parvez; Nazia, Umme Salma; Miyazaki, Takashi; Kodama, Takao

    2004-09-10

    Microwave dielectric spectroscopy can measure the rotational mobility of water molecules that hydrate proteins and the hydration-shell volume. Using this technique, we have recently shown that apart from typical hydrating water molecules with lowered mobility there are other water molecules around the actin filaments (F-actin) which have a much higher mobility than that of bulk water [Biophys. J. 85 (2003) 3154]. We report here that the volume of this water component (hyper-mobile water) markedly increases without significant change of the volume of the ordinary hydration shell when the myosin motor-domain (S1, myosin subfragment-1) binds to F-actin. No hyper-mobile component was found in the hydration shell of S1 itself. The present results strongly suggest that the solvent space around S1 bound to F-actin is diffusionally asymmetric, which supports our model of force generation by actomyosin proposed previously [op. cit.].

  14. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  15. Distinct Osmoadaptation Strategies in the Strict Halophilic and Halotolerant Bacteria Isolated from Lunsu Salt Water Body of North West Himalayas.

    PubMed

    Vaidya, Shivani; Dev, Kamal; Sourirajan, Anuradha

    2018-07-01

    Two strict halophilic bacterial strains, Halobacillus trueperi SS1, and Halobacillus trueperi SS3, and three halotolerant bacterial strains, Shewanella algae SS2, Halomonas venusta SS5, and Marinomonas sp. SS8 of Lunsu salt water body, Himachal Pradesh, India, were selected to study the mechanism of salt tolerance and the role of osmolytes therein. A combination of flame photometry, chromatographic and colorimetric assays was used to study the mechanism of salt tolerance in the selected strict halophilic and halotolerant bacterial strains. The strict halophiles and, one of the halotolerants, Marinomonas sp. SS8 were found to utilize both "salt-in strategy" and "accumulation of compatible solutes strategy" for osmoregulation in hypersaline conditions. On the contrary, the remaining two halotolerants used "accumulation of compatible solutes strategy" under saline stress and not the "salt-in strategy". The present study suggests towards distinct mechanisms of salt tolerance in the two classes, wherein strict halophiles accumulate compatible solutes as well as adopt salt-in strategy, while the halotolerant bacteria accumulate a range of compatible solutes, except Marinomonas sp. SS8, which utilizes both the strategies to combat salt stress.

  16. Biodegradation of resin acid sodium salts

    Treesearch

    Richard W. Hemingway; H. Greaves

    1973-01-01

    The sodium salts of resin acids were readily degraded by microflora from two types of river water and from an activated sewage sludge. A lag phase with little or no resin acid salt degradation but rapid bacterial development occurred which was greatly extended by a decrease in incubation temperature. After this initial lag phase, the resin acid salts were rapidly...

  17. Fluoride metabolism when added to salt.

    PubMed

    Whitford, Gary M

    2005-01-01

    The purpose of this review is to present the general characteristics of the metabolism of fluoride particularly as it occurs when ingested with fluoridated salt. Following the absorption of salt-borne fluoride from the stomach and intestines, its metabolism is identical to that of water-borne fluoride or other vehicles containing ionized fluoride. Because fluoridated salt is almost always ingested with food, however, absorption from the gastrointestinal tract may be delayed or reduced. Reports dealing with this subject have shown that fluoride absorption is delayed and, therefore, peak plasma concentrations are lower than when fluoride is ingested with water. The amount of ingested fluoride that is finally absorbed, however, is not appreciably affected unless the meal is composed mainly of components with high calcium concentrations. In this case, the extent of absorption can be reduced by as much as 50%. Fluoridated salt is also ingested less frequently than fluoridated water. Data are presented to show that the dose size and frequency of ingestion have only minor effects on fluoride retention in the body and on the concentrations in plasma, bone and enamel. Finally, calculations are presented to show that the risk of acute toxicity from fluoridated salt is virtually non-existent.

  18. Sea salts as a potential source of food spoilage fungi.

    PubMed

    Biango-Daniels, Megan N; Hodge, Kathie T

    2018-02-01

    Production of sea salt begins with evaporation of sea water in shallow pools called salterns, and ends with the harvest and packing of salts. This process provides many opportunities for fungal contamination. This study aimed to determine whether finished salts contain viable fungi that have the potential to cause spoilage when sea salt is used as a food ingredient by isolating fungi on a medium that simulated salted food with a lowered water activity (0.95 a w ). The viable filamentous fungi from seven commercial salts were quantified and identified by DNA sequencing, and the fungal communities in different salts were compared. Every sea salt tested contained viable fungi, in concentrations ranging from 0.07 to 1.71 colony-forming units per gram of salt. In total, 85 fungi were isolated representing seven genera. One or more species of the most abundant genera, Aspergillus, Cladosporium, and Penicillium was found in every salt. Many species found in this study have been previously isolated from low water activity environments, including salterns and foods. We conclude that sea salts contain many fungi that have potential to cause food spoilage as well as some that may be mycotoxigenic. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  20. Pore Pressure and Field stress variation from Salt Water Injection; A case Study from Beaver Lodge Field in Williston Basin

    NASA Astrophysics Data System (ADS)

    Mohammed, R. A.; Khatibi, S.

    2017-12-01

    One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.

  1. Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Kiro, Yael; Goldstein, Steven L.; Garcia-Veigas, Javier; Levy, Elan; Kushnir, Yochanan; Stein, Mordechai; Lazar, Boaz

    2017-04-01

    Thick halite intervals recovered by the Dead Sea Deep Drilling Project cores show evidence for severely arid climatic conditions in the eastern Mediterranean during the last three interglacials. In particular, the core interval corresponding to the peak of the last interglacial (Marine Isotope Stage 5e or MIS 5e) contains ∼30 m of salt over 85 m of core length, making this the driest known period in that region during the late Quaternary. This study reconstructs Dead Sea lake levels during the salt deposition intervals, based on water and salt budgets derived from the Dead Sea brine composition and the amount of salt in the core. Modern water and salt budgets indicate that halite precipitates only during declining lake levels, while the amount of dissolved Na+ and Cl- accumulates during wetter intervals. Based on the compositions of Dead Sea brines from pore waters and halite fluid inclusions, we estimate that ∼12-16 cm of halite precipitated per meter of lake-level drop. During periods of halite precipitation, the Mg2+ concentration increases and the Na+/Cl- ratio decreases in the lake. Our calculations indicate major lake-level drops of ∼170 m from lake levels of 320 and 310 m below sea level (mbsl) down to lake levels of ∼490 and ∼480 mbsl, during MIS 5e and the Holocene, respectively. These lake levels are much lower than typical interglacial lake levels of around 400 mbsl. These lake-level drops occurred as a result of major decreases in average fresh water runoff, to ∼40% of the modern value (pre-1964, before major fresh water diversions), reflecting severe droughts during which annual precipitation in Jerusalem was lower than 350 mm/y, compared to ∼600 mm/y today. Nevertheless, even during salt intervals, the changes in halite facies and the occurrence of alternating periods of halite and detritus in the Dead Sea core stratigraphy reflect fluctuations between drier and wetter conditions around our estimated average. The halite intervals include

  2. Effect of guar gum and salt concentrations on drag reduction and shear degradation properties of turbulent flow of water in a pipe.

    PubMed

    Sokhal, Kamaljit Singh; Gangacharyulu, Dasaroju; Bulasara, Vijaya Kumar

    2018-02-01

    Concentrated solutions of guar gum in water (1000-3000ppm) with and without KCl salt (1000-4000ppm) were injected near the wall for a short period (2.5min) to investigate their effect on drag reduction in turbulent flow of water through a pipe (Re≈17000-45000). Relative to bulk solution, the concentrations of polymer and salt were 50-150ppm and 50-200ppm, respectively. A drag reduction of 71.45% was observed for 3000ppm of biopolymer without salt. Guar gum experienced mechanical degradation under high shear conditions and addition of KCl improved shear stability up to 47% (for Re≈45000). A polymer concentration of 3000ppm and salt concentration of 2000ppm in the injection fluid were found to be optimum for achieving the highest drag reduction with better shear stability. Results indicated that boundary layer injection shows better drag reduction ability than pre-mixed solutions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effect of sea-level rise on salt water intrusion near a coastal well field in southeastern Florida.

    PubMed

    Langevin, Christian D; Zygnerski, Michael

    2013-01-01

    A variable-density groundwater flow and dispersive solute transport model was developed for the shallow coastal aquifer system near a municipal supply well field in southeastern Florida. The model was calibrated for a 105-year period (1900 to 2005). An analysis with the model suggests that well-field withdrawals were the dominant cause of salt water intrusion near the well field, and that historical sea-level rise, which is similar to lower-bound projections of future sea-level rise, exacerbated the extent of salt water intrusion. Average 2005 hydrologic conditions were used for 100-year sensitivity simulations aimed at quantifying the effect of projected rises in sea level on fresh coastal groundwater resources near the well field. Use of average 2005 hydrologic conditions and a constant sea level result in total dissolved solids (TDS) concentration of the well field exceeding drinking water standards after 70 years. When sea-level rise is included in the simulations, drinking water standards are exceeded 10 to 21 years earlier, depending on the specified rate of sea-level rise. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.

  4. A simple, dynamic, hydrological model of a mesotidal salt marsh

    EPA Science Inventory

    Salt marsh hydrology presents many difficulties from a modeling standpoint: the bi-directional flows of tidal waters, variable water densities due to mixing of fresh and salt water, significant influences from vegetation, and complex stream morphologies. Because of these difficu...

  5. Technical Note: The determination of enclosed water volume in large flexible-wall mesocosms "KOSMOS"

    NASA Astrophysics Data System (ADS)

    Czerny, J.; Schulz, K. G.; Krug, S. A.; Ludwig, A.; Riebesell, U.

    2013-03-01

    The volume of water enclosed inside flexible-wall mesocosm bags is hard to estimate using geometrical calculations and can be strongly variable among bags of the same dimensions. Here we present a method for precise water volume determination in mesocosms using salinity as a tracer. Knowledge of the precise volume of water enclosed allows establishment of exactly planned treatment concentrations and calculation of elemental budgets.

  6. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    USGS Publications Warehouse

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be

  7. Camera on Vessel: A Camera-Based System to Measure Change in Water Volume in a Drinking Glass.

    PubMed

    Ayoola, Idowu; Chen, Wei; Feijs, Loe

    2015-09-18

    A major problem related to chronic health is patients' "compliance" with new lifestyle changes, medical prescriptions, recommendations, or restrictions. Heart-failure and hemodialysis patients are usually placed on fluid restrictions due to their hemodynamic status. A holistic approach to managing fluid imbalance will incorporate the monitoring of salt-water intake, body-fluid retention, and fluid excretion in order to provide effective intervention at an early stage. Such an approach creates a need to develop a smart device that can monitor the drinking activities of the patient. This paper employs an empirical approach to infer the real water level in a conically shapped glass and the volume difference due to changes in water level. The method uses a low-resolution miniaturized camera to obtain images using an Arduino microcontroller. The images are processed in MATLAB. Conventional segmentation techniques (such as a Sobel filter to obtain a binary image) are applied to extract the level gradient, and an ellipsoidal fitting helps to estimate the size of the cup. The fitting (using least-squares criterion) between derived measurements in pixel and the real measurements shows a low covariance between the estimated measurement and the mean. The correlation between the estimated results to ground truth produced a variation of 3% from the mean.

  8. Camera on Vessel: A Camera-Based System to Measure Change in Water Volume in a Drinking Glass

    PubMed Central

    Ayoola, Idowu; Chen, Wei; Feijs, Loe

    2015-01-01

    A major problem related to chronic health is patients’ “compliance” with new lifestyle changes, medical prescriptions, recommendations, or restrictions. Heart-failure and hemodialysis patients are usually placed on fluid restrictions due to their hemodynamic status. A holistic approach to managing fluid imbalance will incorporate the monitoring of salt-water intake, body-fluid retention, and fluid excretion in order to provide effective intervention at an early stage. Such an approach creates a need to develop a smart device that can monitor the drinking activities of the patient. This paper employs an empirical approach to infer the real water level in a conically shapped glass and the volume difference due to changes in water level. The method uses a low-resolution miniaturized camera to obtain images using an Arduino microcontroller. The images are processed in MATLAB. Conventional segmentation techniques (such as a Sobel filter to obtain a binary image) are applied to extract the level gradient, and an ellipsoidal fitting helps to estimate the size of the cup. The fitting (using least-squares criterion) between derived measurements in pixel and the real measurements shows a low covariance between the estimated measurement and the mean. The correlation between the estimated results to ground truth produced a variation of 3% from the mean. PMID:26393600

  9. Environmental consequences of the Retsof Salt Mine roof collapse

    USGS Publications Warehouse

    Yager, Richard M.

    2013-01-01

    In 1994, the largest salt mine in North America, which had been in operation for more than 100 years, catastrophically flooded when the mine ceiling collapsed. In addition to causing the loss of the mine and the mineral resources it provided, this event formed sinkholes, caused widespread subsidence to land, caused structures to crack and subside, and changed stream flow and erosion patterns. Subsequent flooding of the mine drained overlying aquifers, changed the groundwater salinity distribution (rendering domestic wells unusable), and allowed locally present natural gas to enter dwellings through water wells. Investigations including exploratory drilling, hydrologic and water-quality monitoring, geologic and geophysical studies, and numerical simulation of groundwater flow, salinity, and subsidence have been effective tools in understanding the environmental consequences of the mine collapse and informing decisions about management of those consequences for the future. Salt mines are generally dry, but are susceptible to leaks and can become flooded if groundwater from overlying aquifers or surface water finds a way downward into the mined cavity through hundreds of feet of rock. With its potential to flood the entire mine cavity, groundwater is a constant source of concern for mine operators. The problem is compounded by the viscous nature of salt and the fact that salt mines commonly lie beneath water-bearing aquifers. Salt (for example halite or potash) deforms and “creeps” into the mined openings over time spans that range from years to centuries. This movement of salt can destabilize the overlying rock layers and lead to their eventual sagging and collapse, creating permeable pathways for leakage of water and depressions or openings at land surface, such as sinkholes. Salt is also highly soluble in water; therefore, whenever water begins to flow into a salt mine, the channels through which it flows increase in diameter as the surrounding salt dissolves

  10. An Equation of State for Hypersaline Water in Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Naftz, D.L.; Millero, F.J.; Jones, B.F.; Green, W.R.

    2011-01-01

    Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (??) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ?? of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L-1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (?? = ?? 0.32 kg m-3): ?? - ??0 = 184.01062 + 1.04708 * S - 1.21061*T + 3.14721E - 4*S2 + 0.00199T2 where ??0 is the density of pure water in kg m-3, S is conductivity salinity g L-1, and T is water temperature in degrees Kelvin. ?? 2011 U.S. Government.

  11. Conversion of an Aziridine to an Oxazolidinone Using a Salt and Carbon Dioxide in Water

    ERIC Educational Resources Information Center

    Wallace, Justin R.; Lieberman, Deborah L.; Hancock, Matthew T.; Pinhas, Allan R.

    2005-01-01

    A convenient, inexpensive, environment friendly, and regioselective conversion of an aziridine to an oxazolidinone is developed by using iodide salt and CO[2] in water. A description is provided, on the way in which this series of experiments will show students how to change experimental conditions to obtain mainly one desired regiosomer of a…

  12. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles.

    PubMed

    Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo

    2016-01-01

    Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient ( P f ) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, P f determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast P f . We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites ( P f / P s ), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth

  13. The Water to Solute Permeability Ratio Governs the Osmotic Volume Dynamics in Beetroot Vacuoles

    PubMed Central

    Vitali, Victoria; Sutka, Moira; Amodeo, Gabriela; Chara, Osvaldo; Ozu, Marcelo

    2016-01-01

    Plant cell vacuoles occupy up to 90% of the cell volume and, beyond their physiological function, are constantly subjected to water and solute exchange. The osmotic flow and vacuole volume dynamics relies on the vacuole membrane -the tonoplast- and its capacity to regulate its permeability to both water and solutes. The osmotic permeability coefficient (Pf) is the parameter that better characterizes the water transport when submitted to an osmotic gradient. Usually, Pf determinations are made in vitro from the initial rate of volume change, when a fast (almost instantaneous) osmolality change occurs. When aquaporins are present, it is accepted that initial volume changes are only due to water movements. However, in living cells osmotic changes are not necessarily abrupt but gradually imposed. Under these conditions, water flux might not be the only relevant driving force shaping the vacuole volume response. In this study, we quantitatively investigated volume dynamics of isolated Beta vulgaris root vacuoles under progressively applied osmotic gradients at different pH, a condition that modifies the tonoplast Pf. We followed the vacuole volume changes while simultaneously determining the external osmolality time-courses and analyzing these data with mathematical modeling. Our findings indicate that vacuole volume changes, under progressively applied osmotic gradients, would not depend on the membrane elastic properties, nor on the non-osmotic volume of the vacuole, but on water and solute fluxes across the tonoplast. We found that the volume of the vacuole at the steady state is determined by the ratio of water to solute permeabilites (Pf/Ps), which in turn is ruled by pH. The dependence of the permeability ratio on pH can be interpreted in terms of the degree of aquaporin inhibition and the consequently solute transport modulation. This is relevant in many plant organs such as root, leaves, cotyledons, or stems that perform extensive rhythmic growth movements

  14. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  15. Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules.

    PubMed

    Endo, Satoshi; Pfennigsdorff, Andrea; Goss, Kai-Uwe

    2012-02-07

    Salting-out in aqueous NaCl solutions is relevant for the environmental behavior of organic contaminants. In this study, Setschenow (or salting-out) coefficients (K(s) [M(-1)]) for 43 diverse neutral compounds in NaCl solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The results were used to calibrate and evaluate estimation models for K(s). The molar volume of the solute correlated only moderately with K(s) (R(2) = 0.49, SD = 0.052). The polyparameter linear free energy relationship (pp-LFER) model that uses five compound descriptors resulted in a more accurate fit to our data (R(2) = 0.83, SD = 0.031). The pp-LFER analysis revealed that Na(+) and Cl(-) in aqueous solutions increase the cavity formation energy cost and the polar interaction energies toward neutral organic solutes. Accordingly, the salting-out effect increases with the size and decreases with the polarity of the solute molecule. COSMO-RS, a quantum mechanics-based fully predictive model, generally overpredicted the experimental K(s), but the predicted values were moderately correlated with the experimental values (R(2) = 0.66, SD = 0.042). Literature data (n = 93) were predicted by the calibrated pp-LFER and COSMO-RS models with root mean squared errors of 0.047 and 0.050, respectively. This study offers prediction models to estimate K(s), allowing implementation of the salting-out effect in contaminant fate models, linkage of various partition coefficients (such as air-water, sediment-water, and extraction phase-water partition coefficients) measured for fresh water and seawater, and estimation of enhancement of extraction efficiency in analytical procedures.

  16. Controls on salt mobility and storage in the weathered dolerites of north-east Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Sweeney, Margaret; Moore, Leah

    2014-05-01

    Changes in land use and vegetation due to agriculture, forestry practices and urbanisation can mobilise naturally occurring salts in the landscape and accelerate the expression of land and water salinisation, potentially threatening built and natural assets. Some salts are released during rock weathering or are derived from marine sediments or wind-blown dust, but in Tasmania most originate from salt dissolved in rainfall that is concentrated during evaporation. The volume of salts deposited over north-east Tasmania from precipitation exceeds 70kg/ha/year. The dominant lithology of the salt affected regions in Tasmania is dolerite which breaks down to form secondary minerals including: smectite and kaolinite clays and Fe-bearing sesquioxides. The weathering of Tasmanian dolerites, sampled from fresh corestones, weathering rinds and sequentially through the soil horizon, has been examined petrographically and geochemically. The EC1:5 increases with weathering to a maximum 4.9 dS/m and decreases in the pedogenic zone. This confirms field observations that deeply weathered dolerite can serve as a significant store for salt in the landscape. The water associated with dolerite weathering is typically a bicarbonate fluid. The pH1:5 decreases as the samples weather and increases in the pedogenic zone. Clay content increases with distance from corestones (sandy clay loam to heavy clay), and this is also reflected in the density (2.6-1.3 gm/cm3) and loss on ignition (1.3-13.3 wt%). The patterns for Na are complicated as it is enriched through NaCl accession and removed during the weathering of plagioclase. The net enrichment of Cl (up to 5239 ppm) implies decoupling of Cl from Na during weathering. Potassium, Ca and Sr are mobilised from the profile as plagioclase weathers, and silica is progressively lost from the profile with the weathering of silicate phases. Iron is initially mobilised with the weathering of pyroxene and mafic accessory minerals, but is rapidly fixed in

  17. Water resources data Virginia water year 2005 Volume 1. Surface-water discharge and surface-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  18. Coastal salt pans: strengthening the new emerging role of Maltese shore platforms for geo-tourism with GIS Mapping

    NASA Astrophysics Data System (ADS)

    Gauci, Ritienne; Schembri, John A.; Mizzi, Raphael; Inkpen, Rob

    2015-04-01

    Salt has been a foremost natural resource for millennia with a wide range of uses from preserving edible foods, and cooking with it, to cleaning, laundry, hygiene, and as a medicinal balm. The Mediterranean, with its long indented coastline, numerous islands and a distinctive climate has been a favourable area for salt production from sea water. It was the source of supply of salt to the Eurasian land mass, and trekking it through to sub-Saharan Africa. With a salinity of around 36 ppt, the Mediterranean is one of the most productive areas in the globe for salt yield per volume of water. In small islands with poor natural resources, the production of salt from sea water, through insolation, aeolian processes and intense human endeavour, offered economic benefits and created a socio-environmental cultural heritage around the sites of production of this staple resource. The Maltese Islands are no exception to this activity with rectangular or oblong pans etched on the softer surface limestone of Malta and Gozo. Located strategically on the foreshore, the rectangular (0.5-1.5 m2), shallow pits (ca 15cm), supplemented by larger reservoirs occupy significant areas as near to the shoreline as possible. There are about 40 artisanal sites along the littoral varying in area from one thousand to 17,000 m2and with their nearest point located between one and ten metres from the water's edge. Some are no longer in use. Their total area around the islands is about 170,000 m2. This aim of this paper is to explore the multiple geographies of still existing salt pans in selected sites on Malta. This research aims to map out the traditional but complex management system present at each selected shore platform site, some of which are considered the best preserved salt pans on the Islands. Consequently, they transform into focal touristic attractions, especially during the summer months when a daily display of soil harvesting work can be witnessed and admired. The mapping and

  19. Montana Water Resources Data - 2003, Volume 2. Yellowstone and Upper Columbia River Basins and Ground-Water Levels

    USGS Publications Warehouse

    Berkas, Wayne R.; White, Melvin K.; Ladd, Patricia B.; Bailey, Fred A.; Dodge, Kent A.

    2004-01-01

    Water resources data for Montana for the 2003 water year, volumes 1 and 2, consist of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels in wells. This volume contains discharge records for 114 streamflow-gaging stations; stage or content records for 4 lakes and large reservoirs and content for 26 smaller reservoirs; water-quality records for 76 streamflow stations (11 ungaged), and 3 lakes; water-level records for 53 observation wells; and precipitation and water-quality records for 2 atmospheric-deposition stations. Additional water year 2003 data collected at crest-stage gage and miscellaneous-measurement sites were collected but are not published in this report. These data are stored within the District office files in Helena and are available on request. These data represent part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Montana.

  20. High day-to-day reliability in lower leg volume measured by water displacement.

    PubMed

    Pasley, Jeffrey D; O'Connor, Patrick J

    2008-07-01

    The day-to-day reliability of lower leg volume is poorly documented. This investigation determined the day-to-day reliability of lower leg volume (soleus and gastrocnemius) measured using water displacement. Thirty young adults (15 men and 15 women) had their right lower leg volume measured by water displacement on five separate occasions. The participants performed normal activities of daily living and were measured at the same time of day after being seated for 30 min. The results revealed a high day-to-day reliability for lower leg volume. The mean percentage change in lower leg volume across days compared to day 1 ranged between 0 and 0.37%. The mean within subjects coefficient of variation in lower leg volume was 0.72% and the coefficient of variation for the entire sample across days ranged from 5.66 to 6.32%. A two way mixed model intraclass correlation (30 subjects x 5 days) showed that the lower leg volume measurement was highly reliable (ICC = 0.972). Foot and total lower leg volumes showed similarly high reliability. Water displacement offers a cost effective and reliable solution for the measurement of lower leg edema across days.

  1. Bioavailability of iodine and hardness (magnesium and calcium salt) in drinking water in the etiology of endemic goitre in Sundarban delta of West Bengal (India).

    PubMed

    Chandra, Amar K; Tripathy, Smritiratan; Debnath, Arijit; Ghosh, Dishari

    2007-04-01

    Endemic goitre has been reported from the ecologically diverse Sundarban delta of West Bengal (India). To study the etiological factors for the persistence of endemic goitre, bioavailability of iodine and hardness of water used for drinking in the region were evaluated because these common environmental factors are inversely and directly related with goitre prevalence in several geographical regions. For the present study from 19 Community Development Blocks of Sundarban delta, 19 areas were selected at random. From each area at least 8 drinking water samples were collected and analyzed for iodine and the hardness (calcium and magnesium salt content). Iodine content in the drinking water samples was found in the range from 21 to 119 mg/L and total hardness of drinking water was found to range from 50 to 480 ppm. Presence of magnesium salt was found higher than the calcium salts in most of the samples. These findings suggest that the entire delta region is environmentally iodine sufficient but water is relatively hard and thus possibility of hardness of water for the persistence of endemic goitre may not be ruled out.

  2. The water content of recurring slope lineae on Mars

    USGS Publications Warehouse

    Edwards, Christopher S.; Piqueux, Sylvain

    2016-01-01

    Observations of recurring slope lineae (RSL) from the High-Resolution Imaging Science Experiment have been interpreted as present-day, seasonally variable liquid water flows; however, orbital spectroscopy has not confirmed the presence of liquid H2O, only hydrated salts. Thermal Emission Imaging System (THEMIS) temperature data and a numerical heat transfer model definitively constrain the amount of water associated with RSL. Surface temperature differences between RSL-bearing and dry RSL-free terrains are consistent with no water associated with RSL and, based on measurement uncertainties, limit the water content of RSL to at most 0.5–3 wt %. In addition, distinct high thermal inertia regolith signatures expected with crust-forming evaporitic salt deposits from cyclical briny water flows are not observed, indicating low water salinity (if any) and/or low enough volumes to prevent their formation. Alternatively, observed salts may be preexisting in soils at low abundances (i.e., near or below detection limits) and largely immobile. These RSL-rich surfaces experience ~100 K diurnal temperature oscillations, possible freeze/thaw cycles and/or complete evaporation on time scales that challenge their habitability potential. The unique surface temperature measurements provided by THEMIS are consistent with a dry RSL hypothesis or at least significantly limit the water content of Martian RSL.

  3. Estimates of the volume of water in five coal aquifers, Northern Cheyenne Indian Reservation, southeastern Montana

    USGS Publications Warehouse

    Tuck, L.K.; Pearson, Daniel K.; Cannon, M.R.; Dutton, DeAnn M.

    2013-01-01

    The Tongue River Member of the Tertiary Fort Union Formation is the primary source of groundwater in the Northern Cheyenne Indian Reservation in southeastern Montana. Coal beds within this formation generally contain the most laterally extensive aquifers in much of the reservation. The U.S. Geological Survey, in cooperation with the Northern Cheyenne Tribe, conducted a study to estimate the volume of water in five coal aquifers. This report presents estimates of the volume of water in five coal aquifers in the eastern and southern parts of the Northern Cheyenne Indian Reservation: the Canyon, Wall, Pawnee, Knobloch, and Flowers-Goodale coal beds in the Tongue River Member of the Tertiary Fort Union Formation. Only conservative estimates of the volume of water in these coal aquifers are presented. The volume of water in the Canyon coal was estimated to range from about 10,400 acre-feet (75 percent saturated) to 3,450 acre-feet (25 percent saturated). The volume of water in the Wall coal was estimated to range from about 14,200 acre-feet (100 percent saturated) to 3,560 acre-feet (25 percent saturated). The volume of water in the Pawnee coal was estimated to range from about 9,440 acre-feet (100 percent saturated) to 2,360 acre-feet (25 percent saturated). The volume of water in the Knobloch coal was estimated to range from about 38,700 acre-feet (100 percent saturated) to 9,680 acre-feet (25 percent saturated). The volume of water in the Flowers-Goodale coal was estimated to be about 35,800 acre-feet (100 percent saturated). Sufficient data are needed to accurately characterize coal-bed horizontal and vertical variability, which is highly complex both locally and regionally. Where data points are widely spaced, the reliability of estimates of the volume of coal beds is decreased. Additionally, reliable estimates of the volume of water in coal aquifers depend heavily on data about water levels and data about coal-aquifer characteristics. Because the data needed to

  4. Vertical Redistribution of Ocean Salt Content

    NASA Astrophysics Data System (ADS)

    Liang, X.; Liu, C.; Ponte, R. M.; Piecuch, C. G.

    2017-12-01

    Ocean salinity is an important proxy for change and variability in the global water cycle. Multi-decadal trends have been observed in both surface and subsurface salinity in the past decades, and are usually attributed to the change in air-sea freshwater flux. Although air-sea freshwater flux, a major component of the global water cycle, certainly contributes to the change in surface and upper ocean salinity, the salt redistribution inside the ocean can affect the surface and upper ocean salinity as well. Also, the mechanisms controlling the surface and upper ocean salinity changes likely depend on timescales. Here we examined the ocean salinity changes as well as the contribution of the vertical redistribution of salt with a 20-year dynamically consistent and data-constrained ocean state estimate (ECCO: Estimating Circulation and Climate of the Ocean). A decrease in the spatial mean upper ocean salinity and an upward salt flux inside the ocean were observed. These findings indicate that over 1992-2011, surface freshwater fluxes contribute to the decrease in spatial mean upper ocean salinity and are partly compensated by the vertical redistribution of salt inside the ocean. Between advection and diffusion, the two major processes determining the vertical exchange of salt, the advective term at different depths shows a downward transport, while the diffusive term is the dominant upward transport contributor. These results suggest that the salt transport in the ocean interior should be considered in interpreting the observed surface and upper ocean salinity changes, as well as inferring information about the changes in the global water cycle.

  5. Moderate (20%) fructose-enriched diet stimulates salt-sensitive hypertension with increased salt retention and decreased renal nitric oxide.

    PubMed

    Gordish, Kevin L; Kassem, Kamal M; Ortiz, Pablo A; Beierwaltes, William H

    2017-04-01

    Previously, we reported that 20% fructose diet causes salt-sensitive hypertension. In this study, we hypothesized that a high salt diet supplemented with 20% fructose (in drinking water) stimulates salt-sensitive hypertension by increasing salt retention through decreasing renal nitric oxide. Rats in metabolic cages consumed normal rat chow for 5 days (baseline), then either: (1) normal salt for 2 weeks, (2) 20% fructose in drinking water for 2 weeks, (3) 20% fructose for 1 week, then fructose + high salt (4% NaCl) for 1 week, (4) normal chow for 1 week, then high salt for 1 week, (5) 20% glucose for 1 week, then glucose + high salt for 1 week. Blood pressure, sodium excretion, and cumulative sodium balance were measured. Systolic blood pressure was unchanged by 20% fructose or high salt diet. 20% fructose + high salt increased systolic blood pressure from 125 ± 1 to 140 ± 2 mmHg ( P  < 0.001). Cumulative sodium balance was greater in rats consuming fructose + high salt than either high salt, or glucose + high salt (114.2 ± 4.4 vs. 103.6 ± 2.2 and 98.6 ± 5.6 mEq/Day19; P  < 0.05). Sodium excretion was lower in fructose + high salt group compared to high salt only: 5.33 ± 0.21 versus 7.67 ± 0.31 mmol/24 h; P  < 0.001). Nitric oxide excretion was 2935 ± 256  μ mol/24 h in high salt-fed rats, but reduced by 40% in the 20% fructose + high salt group (2139 ± 178  μ mol /24 hrs P  < 0.01). Our results suggest that fructose predisposes rats to salt-sensitivity and, combined with a high salt diet, leads to sodium retention, increased blood pressure, and impaired renal nitric oxide availability. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  6. Blood and urine responses to ingesting fluids of various salt and glucose concentrations. [to combat orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Frey, Mary A.; Riddle, Jeanne; Charles, John B.; Bungo, Michael W.

    1991-01-01

    To compensate for the reduced blood and fluid volumes that develop during weightlessness, the Space Shuttle crewmembers consume salt tablets and water equivalent to 1 l of normal saline, about 2 hrs before landing. This paper compares the effects on blood, urine, and cardiovascular variables of the ingestion of 1 l of normal (0.9 percent) saline with the effects of distilled water, 1 percent glucose, 0.74 percent saline with 1 percent glucose, 0.9 percent saline with 1 percent glucose, and 1.07 percent saline. It was found that the expansion of plasma volume and the concentration of urine were greater 4 hrs after ingestion of 1.07 percent saline solution than after ingestion of normal saline and that the solutions containig glucose did not enhance any variables as compared with normal saline.

  7. Foot volume estimates based on a geometric algorithm in comparison to water displacement.

    PubMed

    Mayrovitz, H N; Sims, N; Litwin, B; Pfister, S

    2005-03-01

    Assessing lower extremity limb volume and its change during and after lymphedema therapy is important for determining treatment efficacy and documenting outcomes. Although leg volumes may be determined by tape measure and other methods, there is no metric method to routinely assess foot volumes. Exclusion of foot volumes can under- or overestimate therapeutic progress. Our aim was to develop and test a metric measurement procedure and algorithm for practicing therapists to use to estimate foot volumes. The method uses a caliper and ruler to measure foot dimensions at standardized locations and calculates foot volume (VM) by a mathematical algorithm. VM was compared to volumes measured by water displacement (Vw) in 30 subjects (60 feet) using regression analysis and limits of agreement (LOA). Vw and VM (mean +/- sd) were similar 857 +/- 150 ml vs. 859 +/- 154 ml, and were highly correlated VM = 1.00Vw + 1.67 ml, r = 0.965, p < 0.001. The LOA for absolute volume differences and percentages were respectively +/- 79.6 ml and +/- 9.28 %. These results indicate that this metric method can be a useful alternative to water displacement when foot volumes are needed, but the water displacement method is contraindicated, impractical to implement, too time consuming or is not available.

  8. Hydrologic and climatologic data collected through 1964, Salt Lake County, Utah

    USGS Publications Warehouse

    Iorns, W.V.; Mower, Reed W.; Horr, C.A.

    1966-01-01

    An investigation of the water resources of Salt Lake County, Utah, was undertaken by the Water Resources Division of the U.S. Geological Survey in July 1963. This investigation is a cooperative project financed equally by the State of Utah and the Federal Government in accordance with an agreement between the State Engineer and the Geological Survey. The Utah Water and Power Board, Utah Fish and Game Commission, Salt Lake County Water Conservancy District, Metropolitan Water District of Salt Lake City, Salt Lake County, Kennecott Copper Corporation, Utah Power and Light Company, and Salt Lake City Chamber of Commerce contributed funds to the State Engineer's office toward support of the project.The investigation encompasses the collection and interpretation of a large variety of climatologic, hydrologic, and geologic data in and near Salt Lake County. This basic-data report sets forth climatologic and surface-water data collected by project personnel and others during the water year beginning October 1, 1963, and ending September 30, 1964, and ground-water data collected by project personnel and others for the period July 1, 1963, through December 31, 1964. Included also are some earlier ground-water data not previously published. Organizations that furnished data are acknowledged in station descriptions and footnotes to tables. Data collected during the period of investigation will be published in annual basic-data releases and an interpretative report will be published at the completion of the investigation.

  9. Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex.

    PubMed

    Kolosov, Dennis; Kelly, Scott P

    2016-08-01

    This study utilized dietary salt loading and ion-poor water (IPW) exposure of rainbow trout (Oncorhynchus mykiss) to further understand the role of fish gill epithelium tight junction (TJ) physiology in salt and water balance. Gill morphology, biochemistry and molecular physiology were examined, with an emphasis on genes encoding TJ proteins. Fish were either fed a control or salt-enriched diet (~10 % NaCl) for 4 weeks prior to IPW exposure for 24 h. Serum [Na(+)], [Cl(-)] and muscle moisture content were unaltered by salt feeding, but changed in response to IPW irrespective of diet. Dietary salt loading altered the morphology (reduced Na(+)-K(+)-ATPase-immunoreactive cell numbers and surface exposure of mitochondrion-rich cells), biochemistry (decreased vacuolar-type H(+)-ATPase activity) and molecular physiology (decreased nkaα1a and cftrII mRNA abundance) of the gill in a manner indicative of reduced active ion uptake activity. But in control fish and not salt-fed fish, gill mRNA abundance of nkaα1c increased and nbc decreased after IPW exposure. Genes encoding TJ proteins were typically either responsive to salt feeding or IPW, but select genes responded to combined experimental treatment (e.g. IPW responsive but only if fish were salt-fed). Therefore, using salt feeding and IPW exposure, new insights into what factors influence gill TJ proteins and the role that specific TJ proteins might play in regulating the barrier properties of the gill epithelium have been acquired. In particular, evidence suggests that TJ proteins in the gill epithelium, or the regulatory networks that control them, respond independently to external or internal stimuli.

  10. Elimination of Acid Cleaning of High Temperature Salt Water Heat Exchangers: Redesigned Pre-Production Full-Scale Heat Pipe Bleed Air Cooler for Shipboard Evaluation

    DTIC Science & Technology

    2011-11-01

    Cleaning of High Temperature Salt Water Heat Exchangers ESTCP WP-200302 Subtitle: Redesigned Pre-production Full-Scale Heat Pipe Bleed Air Cooler For...FINAL 3. DATES COVERED (From - To) 1-Jan-2003 – 1-Oct-2009 4. TITLE AND SUBTITLE Elimination of Acid Cleaning of High Temperature Salt Water Heat...6-5 Figure 6- 6 HP-BAC Tube Sheet Being Immersed in Ultrasonic Cleaning Tank ..................................... 6-6 Figure 6- 7 Heat Pipe

  11. Salt-water encroachment, geology, and ground-water resources of Savannah area, Georgia and South Carolina

    USGS Publications Warehouse

    Counts, H.B.; Donsky, Ellis

    1964-01-01

    The Savannah area consists of about 2,300 square miles of the Coastal Plain along the coast of eastern Georgia and southeastern South Carolina. Savannah is near the center of the area. Most of the large ground-water developments are in or near Savannah. About 98 percent of the approximately 60 mgd of ground water used is pumped from the principal artesian aquifer, which is composed of about 600 feet of limestone of middle Eocene, Oligocene, and early Miocene ages. Industrial and other wells of large diameter yield as much as 4,200 gpm from the principal artesian aquifer. Pumping tests and flow-net analyses show that the coefficient of transmissibility averages about 200,000 gpd per ft in the immediate Savannah area. The specific capacity of wells in the principal artesian aquifer generally is about 50 gpm per ft of drawdown. The coefficient of storage of the principal artesian aquifer is about 0.0003 in the Savannah area. Underlying the Savannah area are a series of unconsolidated and semiconsolidated sediments ranging in age from Late Cretaceous to Recent. The Upper Cretaceous, Paleocene, and lower Eocene sediments supply readily available and usable water in other parts of the Coastal Plain, but although the character and physical properties of these formations are similar in the Savannah area to the same properties in other areas, the hydraulic and structural conditions appear to be different. Deep test wells are needed to evaluate the ground-water potential of these rocks. The lower part of the sediments of middle Eocene age acts as a confining layer to the vertical movement of water into or out of the principal artesian aquifer. Depending on the location and depth, the principal artesian aquifer consists of from one to five geologic units. The lower boundary of the aquifer is determined by a reduction in permeability and an increase in salt-water content. Although the entire limestone section is considered water bearing, most of the ground water used in the

  12. Crystallization of DNA fragments from water-salt solutions, containing 2-methylpentane-2,3-diol.

    PubMed

    Osica, V D; Sukharevsky, B Y; Vasilchenko, V N; Verkin, B I; Polyvtsev, O F

    1976-09-01

    Fragments of calf thymus DNA have been crystallized by precipitation from water-salt solutions, containing 2-methylpentane-2,3-diol (MPD). DNA crystals usually take the form either of spherulites up to 100 mu in diameter or of needles with the length up to 50 mu. No irreversible denaturation of DNA occurs during the crystallization process. X-ray diffraction from dense slurries of DNA crystals yields crystalline powder patterns.

  13. Increased abscisic acid levels in transgenic maize overexpressing AtLOS5 mediated root ion fluxes and leaf water status under salt stress

    PubMed Central

    Zhang, Juan; Yu, Haiyue; Zhang, Yushi; Wang, Yubing; Li, Maoying; Zhang, Jiachang; Duan, Liusheng; Zhang, Mingcai; Li, Zhaohu

    2016-01-01

    Abscisic acid (ABA) is a vital cellular signal in plants, and effective ABA signalling is pivotal for stress tolerance. AtLOS5 encoding molybdenum cofactor sulphurase is a key regulator of ABA biosynthesis. Here, transgenic AtLOS5 plants were generated to explore the role of AtLOS5 in salt tolerance in maize. AtLOS5 overexpression significantly up-regulated the expression of ZmVp14-2, ZmAO, and ZmMOCO, and increased aldehyde oxidase activities, which enhanced ABA accumulation in transgenic plants under salt stress. Concurrently, AtLOS5 overexpression induced the expression of ZmNHX1, ZmCBL4, and ZmCIPK16, and enhanced the root net Na+ efflux and H+ influx, but decreased net K+ efflux, which maintained a high cytosolic K+/Na+ ratio in transgenic plants under salt stress. However, amiloride or sodium orthovanadate could significantly elevate K+ effluxes and decrease Na+ efflux and H+ influx in salt-treated transgenic roots, but the K+ effluxes were inhibited by TEA, suggesting that ion fluxes regulated by AtLOS5 overexpression were possibly due to activation of Na+/H+ antiport and K+ channels across the plasma membrane. Moreover, AtLOS5 overexpression could up-regulate the transcripts of ZmPIP1:1, ZmPIP1:5, and ZmPIP2:4, and enhance root hydraulic conductivity. Thus transgenic plants had higher leaf water potential and turgor, which was correlated with greater biomass accumulation under salt stress. Thus AtLOS5 overexpression induced the expression of ABA biosynthetic genes to promote ABA accumulation, which activated ion transporter and PIP aquaporin gene expression to regulate root ion fluxes and water uptake, thus maintaining high cytosolic K+ and Na+ homeostasis and better water status in maize exposed to salt stress. PMID:26743432

  14. Collecting duct-specific knockout of nitric oxide synthase 3 impairs water excretion in a sex-dependent manner

    PubMed Central

    Gao, Yang; Stuart, Deborah; Pollock, Jennifer S.; Takahishi, Takamune

    2016-01-01

    Nitric oxide (NO) inhibits collecting duct (CD) Na+ and water reabsorption. Mice with CD-specific knockout (KO) of NO synthase 1 (NOS1) have salt-sensitive hypertension. In contrast, the role of NOS3 in CD salt and water reabsorption is unknown. Mice with CD NOS3 KO were generated with loxP-flanked exons 9–12 (encodes the calmodulin binding site) of the NOS3 gene and the aquaporin-2 promoter-Cre transgene. There were no differences between control and CD NOS3 KO mice, irrespective of sex, in food intake, water intake, urine volume, urinary Na+ or K+ excretion, plasma renin concentration, blood pressure, or pulse during 7 days of normal (0.3%), high (3.17%), or low (0.03%) Na+ intake. Blood pressure was similar between genotypes during DOCA-high salt. CD NOS3 KO did not alter urine volume or urine osmolality after water deprivation. In contrast, CD NOS3 KO male, but not female, mice had lower urine volume and higher urine osmolality over the course of 7 days of water loading compared with control mice. Male, but not female, CD NOS3 KO mice had reduced urinary nitrite+nitrate excretion compared with controls after 7 days of water loading. Urine AVP and AVP-stimulated cAMP accumulation in isolated inner medullary CD were similar between genotypes. Western analysis did not reveal a significant effect of CD NOS3 KO on renal aquaporin expression. In summary, these data suggest that CD NOS3 may be involved in the diuretic response to a water load in a sex-specific manner; the mechanism of this effect remains to be determined. PMID:27707708

  15. Water Resources Data, Georgia, 2001, Volume 2: Continuous ground-water level data, and periodic surface-water- and ground-water-quality data, Calendar Year 2001

    USGS Publications Warehouse

    Coffin, Robert; Grams, Susan C.; Cressler, Alan M.; Leeth, David C.

    2001-01-01

    Water resources data for the 2001 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2001, including: discharge records of 133 gaging stations; stage for 144 gaging stations; precipitation for 58 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 17 stations; the annual peak stage and annual peak discharge for 76 crest-stage partial-record stations; and miscellaneous streamflow measurements at 27 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2001, including continuous water-level records of 159 ground-water wells and periodic records at 138 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins. To obtain a copy of the CD version of this report, you may call the U.S. Geological Survey office in Atlanta at (770) 903-9100, or send e-mail to request the publication. Please include your name and mailing address in your e-mail.

  16. Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  17. Water resources data, Idaho, 2003; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  18. Water resources data, Idaho, 2004; Volume 1. Surface water records for Great Basin and Snake River basin above King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  19. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions

    PubMed Central

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-01-01

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material. PMID:28811444

  20. Self-Healing Characteristics of Damaged Rock Salt under Different Healing Conditions.

    PubMed

    Chen, Jie; Ren, Song; Yang, Chunhe; Jiang, Deyi; Li, Lin

    2013-08-12

    Salt deposits are commonly regarded as ideal hosts for geologic energy reservoirs. Underground cavern construction-induced damage in salt is reduced by self-healing. Thus, studying the influencing factors on such healing processes is important. This research uses ultrasonic technology to monitor the longitudinal wave velocity variations of stress-damaged rock salts during self-recovery experiments under different recovery conditions. The influences of stress-induced initial damage, temperature, humidity, and oil on the self-recovery of damaged rock salts are analyzed. The wave velocity values of the damaged rock salts increase rapidly during the first 200 h of recovery, and the values gradually increase toward stabilization after 600 h. The recovery of damaged rock salts is subjected to higher initial damage stress. Water is important in damage recovery. The increase in temperature improves damage recovery when water is abundant, but hinders recovery when water evaporates. The presence of residual hydraulic oil blocks the inter-granular role of water and restrains the recovery under triaxial compression. The results indicate that rock salt damage recovery is related to the damage degree, pore pressure, temperature, humidity, and presence of oil due to the sealing integrity of the jacket material.

  1. Recycling of salt-contaminated stormwater runoff for brine production at Virginia Department of Transportation road-salt storage facilities.

    DOT National Transportation Integrated Search

    2008-01-01

    A large part of the Virginia Department of Transportation's (VDOT's) maintenance effort comprises the implementation of its snow removal and ice control program. Earlier research confirmed that VDOT captures significant volumes of salt-laden stormwat...

  2. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  3. Salt Plug Formation Caused by Decreased River Discharge in a Multi-channel Estuary

    PubMed Central

    Shaha, Dinesh Chandra; Cho, Yang-Ki

    2016-01-01

    Freshwater input to estuaries may be greatly altered by the river barrages required to meet human needs for drinking water and irrigation and prevent salt water intrusion. Prior studies have examined the salt plugs associated with evaporation and salt outwelling from tidal salt flats in single-channel estuaries. In this work, we discovered a new type of salt plug formation in the multi-channel Pasur River Estuary (PRE) caused by decreasing river discharges resulting from an upstream barrage. The formation of a salt plug in response to changes in river discharge was investigated using a conductivity-temperature-depth (CTD) recorder during spring and neap tides in the dry and wet seasons in 2014. An exportation of saline water from the Shibsa River Estuary (SRE) to the PRE through the Chunkhuri Channel occurred during the dry season, and a salt plug was created and persisted from December to June near Chalna in the PRE. A discharge-induced, relatively high water level in the PRE during the wet season exerted hydrostatic pressure towards the SRE from the PRE and thereby prevented the intrusion of salt water from the SRE to the PRE. PMID:27255892

  4. Effect of solvent volume ratio and time extraction of glycerol purification

    NASA Astrophysics Data System (ADS)

    Sinaga, M. S.; Rico, G.; Nababan, A. N.; Manullang, T. A.

    2018-02-01

    Glycerol as a byproduct of biodiesel production about 10% of the biodiesel weight. Impurities which contained in the glycerol such as catalyst, soap, methanol, water, salt, and matter organic nonglycerol (MONG) on have a significant effect on the glycerol concentration. So, it is necessary to treat the impurities. The purpose of this study is to know the effect of ethylene glycol to glycerol purification process with acidification method using phosphoric acid aspretreatment process. This research was begun with an acid addition to the glycerol to neutralize the base content and to split the soap content into free fatty acid and salt, which easier separated from glycerol. Then the process was continued with extraction by the solvent ethylene glycol using the variable of test volume ratio (v/v) (1:0,5, 1:1, 1:1,5) and the extraction time (20, 40, and 60 minutes). The results showed that the more volume of solvent used, gave less extraction time to produce high purity of glycerol. The highest purity produced in this study amounted to 90.646% is obtained at the ratio of the volume solvent (v/v) 1:1 with extraction time 60 minutes.

  5. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    PubMed

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  6. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, A; Michael Paller, M

    2006-11-17

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective inmore » removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.« less

  7. Water resources data, Idaho, 2004; Volume 2. Surface water records for Upper Columbia River basin and Great Basin below King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2005-01-01

    Water resources data for the 2004 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 209 stream-gaging stations and 8 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 39 stream-gaging stations and partial record sites, 3 lakes sites, and 395 groundwater wells; and water levels for 425 observation network wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  8. Hand volume estimates based on a geometric algorithm in comparison to water displacement.

    PubMed

    Mayrovitz, H N; Sims, N; Hill, C J; Hernandez, T; Greenshner, A; Diep, H

    2006-06-01

    Assessing changes in upper extremity limb volume during lymphedema therapy is important for determining treatment efficacy and documenting outcomes. Although arm volumes may be determined by tape measure, the suitability of circumference measurements to estimate hand volumes is questionable because of the deviation in circularity of hand shape. Our aim was to develop an alternative measurement procedure and algorithm for routine use to estimate hand volumes. A caliper was used to measure hand width and depth in 33 subjects (66 hands) and volumes (VE) were calculated using an elliptical frustum model. Using regression analysis and limits of agreement (LOA), VE was compared to volumes determined by water displacement (VW), to volumes calculated from tape-measure determined circumferences (VC), and to a trapezoidal model (VT). VW and VE (mean +/- SD) were similar (363 +/- 98 vs. 362 +/-100 ml) and highly correlated; VE = 1.01VW -3.1 ml, r=0.986, p<0.001, with LOA of +/- 33.5 ml and +/- 9.9 %. In contrast, VC (480 +/- 138 ml) and VT (432 +/- 122 ml) significantly overestimated volume (p<0.0001). These results indicate that the elliptical algorithm can be a useful alternative to water displacement when hand volumes are needed and the water displacement method is contra-indicated, impractical to implement, too time consuming or not available.

  9. Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts

    EPA Science Inventory

    AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...

  10. The Distribution of Road Salt in Private Drinking Water Wells in a Southeastern New York Suburban Township.

    PubMed

    Kelly, Victoria R; Cunningham, Mary Ann; Curri, Neil; Findlay, Stuart E; Carroll, Sean M

    2018-05-01

    We used a GIS analysis of sodium and chloride concentrations in private water wells in a southeastern New York township to describe the pattern of distribution of road salt in aquifers tapped for drinking water. The primary source of road salt was sodium chloride, and sodium and chloride concentrations were significantly correlated ( = 0.80, < 0.01). Chloride concentrations in wells increased as the percentage of impervious surface cover (ISC) within a 250-m radius around wells increased ( = 0.87, < 0.01) and declined with increasing distance to the nearest road ( = 0.76, < 0.01). Wells that were located lower in elevation than the nearest road had higher concentrations of chloride than wells that were higher than the nearest road, but this occurred only when the nearest road was >30 m from the wells ( < 0.01). Chloride concentrations were not affected by well depth or adjacent road type (major or minor roads). Surface geology and hydrologic soil class had significant effects ( < 0.01) on chloride concentrations in wells, with porous surface geology types and well-drained soils having higher concentrations; these effects may be confounded by the fact that ISC was more likely to occur on these permeable surface geology and soil types. Hot and cold spot analysis revealed substantial unevenness in chloride concentrations. Results for sodium were similar to those for chloride. Overall, these results indicate that road salt contamination of groundwater is unevenly distributed and is affected by landscape factors that can be used to guide well testing and best management practices of deicing salt distribution. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.

    PubMed

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G

    2012-10-25

    Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.

  12. GmWRKY53, a water- and salt-inducible soybean gene for rapid dissection of regulatory elements in BY-2 cell culture

    PubMed Central

    Tripathi, Prateek; Rabara, Roel C.; Lin, Jun; Rushton, Paul J.

    2013-01-01

    Drought is the major cause of crop losses worldwide. Water stress-inducible promoters are important for understanding the mechanisms of water stress responses in crop plants. Here we utilized tobacco (Nicotiana tabacum L.) Bright Yellow 2 (BY-2) cell system in presence of polyethylene glycol, salt and phytohormones. Extension of the system to 85 mM NaCl led to inducibility of up to 10-fold with the water stress and salt responsive soybean GmWRKY53 promoter. Upon ABA and JA treatment fold inducibility was up to 5-fold and 14-fold, respectively. Thus, we hypothesize that GmWRKY53 could be used as potential model candidate for dissecting drought regulatory elements as well as understanding crosstalk utilizing a rapid heterologous system of BY-2 culture. PMID:23511199

  13. DENITRIFICATION ENZYME ACTIVITY OF FRINGE SALT MARSHES IN NEW ENGLAND (USA)

    EPA Science Inventory

    Coastal salt marshes are a buffer between the uplands and adjacent coastal waters in New England (USA). With increasing N loads from developed watersheds, salt marshes could play an important role in the water quality maintenance of coastal waters. In this study we examined seaso...

  14. Analysis of the high water wave volume for the Sava River near Zagreb

    NASA Astrophysics Data System (ADS)

    Trninic, Dusan

    2010-05-01

    The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm

  15. Video-Growing Salt Crystals Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.

  16. Role of the Vascular Wall in Sodium Homeostasis and Salt Sensitivity

    PubMed Central

    Olde Engberink, Rik H.G.; Rorije, Nienke M.G.; Homan van der Heide, Jaap J.; van den Born, Bert-Jan H.

    2015-01-01

    Excessive sodium intake is associated with both hypertension and an increased risk of cardiovascular events, presumably because of an increase in extracellular volume. The extent to which sodium intake affects extracellular volume and BP varies considerably among individuals, discriminating subjects who are salt-sensitive from those who are salt-resistant. Recent experiments have shown that, other than regulation by the kidney, sodium homeostasis is also regulated by negatively charged glycosaminoglycans in the skin interstitium, where sodium is bound to glycosaminoglycans without commensurate effects on extracellular volume. The endothelial surface layer is a dynamic layer on the luminal side of the endothelium that is in continuous exchange with flowing blood. Because negatively charged glycosaminoglycans are abundantly present in this layer, it may act as an intravascular buffer compartment that allows sodium to be transiently stored. This review focuses on the putative role of the endothelial surface layer as a contributor to salt sensitivity, the consequences of a perturbed endothelial surface layer on sodium homeostasis, and the endothelial surface layer as a possible target for the treatment of hypertension and an expanded extracellular volume. PMID:25294232

  17. Salinization of the Upper Colorado River - Fingerprinting Geologic Salt Sources

    USGS Publications Warehouse

    Tuttle, Michele L.W.; Grauch, Richard I.

    2009-01-01

    Salt in the upper Colorado River is of concern for a number of political and socioeconomic reasons. Salinity limits in the 1974 U.S. agreement with Mexico require the United States to deliver Colorado River water of a particular quality to the border. Irrigation of crops, protection of wildlife habitat, and treatment for municipal water along the course of the river also place restrictions on the river's salt content. Most of the salt in the upper Colorado River at Cisco, Utah, comes from interactions of water with rock formations, their derived soil, and alluvium. Half of the salt comes from the Mancos Shale and the Eagle Valley Evaporite. Anthropogenic activities in the river basin (for example, mining, farming, petroleum exploration, and urban development) can greatly accelerate the release of constituents from these geologic materials, thus increasing the salt load of nearby streams and rivers. Evaporative concentration further concentrates these salts in several watersheds where agricultural land is extensively irrigated. Sulfur and oxygen isotopes of sulfate show the greatest promise for fingerprinting the geologic sources of salts to the upper Colorado River and its major tributaries and estimating the relative contribution from each geologic formation. Knowing the salt source, its contribution, and whether the salt is released during natural weathering or during anthropogenic activities, such as irrigation and urban development, will facilitate efforts to lower the salt content of the upper Colorado River.

  18. The springs of Lake Pátzcuaro: chemistry, salt-balance, and implications for the water balance of the lake

    USGS Publications Warehouse

    Bischoff, James L.; Israde-Alcántara, Isabel; Garduno-Monroy, Victor H.; Shanks, Wayne C.

    2004-01-01

    Lake Pa??tzcuaro, the center of the ancient Tarascan civilization located in the Mexican altiplano west of the city of Morelia, has neither river input nor outflow. The relatively constant lake-salinity over the past centuries indicates the lake is in chemical steady state. Springs of the south shore constitute the primary visible input to the lake, so influx and discharge must be via sub-lacustrine ground water. The authors report on the chemistry and stable isotope composition of the springs, deeming them representative of ground-water input. The springs are dominated by Ca, Mg and Na, whereas the lake is dominated by Na. Combining these results with previously published precipitation/rainfall measurements on the lake, the authors calculate the chemical evolution from spring water to lake water, and also calculate a salt balance of the ground-water-lake system. Comparing Cl and ??18O compositions in the springs and lake water indicates that 75-80% of the spring water is lost evaporatively during evolution toward lake composition. During evaporation Ca and Mg are lost from the water by carbonate precipitation. Each liter of spring water discharging into the lake precipitates about 18.7 mg of CaCO3. Salt balance calculations indicate that ground water input to the lake is 85.9??106 m3/a and ground water discharge from the lake is 23.0??106 m3/a. Thus, the discharge is about 27% of the input, with the rest balanced by evaporation. A calculation of time to reach steady-state ab initio indicates that the Cl concentration of the present day lake would be reached in about 150 a. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Changes in Phosphatidylcholine Headgroup Tilt and Water Order Induced by Monovalent Salts: Molecular Dynamics Simulations

    PubMed Central

    Sachs, Jonathan N.; Nanda, Hirsh; Petrache, Horia I.; Woolf, Thomas B.

    2004-01-01

    The association between monovalent salts and neutral lipid bilayers is known to influence global bilayer structural properties such as headgroup conformational fluctuations and the dipole potential. The local influence of the ions, however, has been unknown due to limited structural resolution of experimental methods. Molecular dynamics simulations are used here to elucidate local structural rearrangements upon association of a series of monovalent Na+ salts to a palmitoyl-oleoyl-phosphatidylcholine bilayer. We observe association of all ion types in the interfacial region. Larger anions, which are meant to rationalize data regarding a Hofmeister series of anions, bind more deeply within the bilayer than either Cl− or Na+. Although the simulations are able to reproduce experimentally measured quantities, the analysis is focused on local properties currently invisible to experiments, which may be critical to biological systems. As such, for all ion types, including Cl−, we show local ion-induced perturbations to headgroup tilt, the extent and direction of which is sensitive to ion charge and size. Additionally, we report salt-induced ordering of the water well beyond the interfacial region, which may be significant in terms of hydration repulsion between stacked bilayers. PMID:15189873

  20. Geologic controls on movement of produced-water releases at US geological survey research Site A, Skiatook lake, Osage county, Oklahoma

    USGS Publications Warehouse

    Otton, J.K.; Zielinski, R.A.; Smith, B.D.; Abbott, M.M.

    2007-01-01

    Highly saline produced water was released from multiple sources during oil field operations from 1913 to 1973 at the USGS research Site A on Skiatook Lake in northeastern Oklahoma. Two pits, designed to hold produced water and oil, were major sources for release of these fluids at the site. Produced water spills from these and other features moved downslope following topography and downdip by percolating through permeable eolian sand and colluvium, underlying permeable sandstone, and, to a lesser extent, through shales and mudstones. Saline water penetrated progressively deeper units as it moved through the gently dipping bedrock to the north and NW. A large eroded salt scar north of the pits coincides with underlying fine-grained rocks that have retained substantial concentrations of salt, causing slow revegetation. Where not eroded, thick eolian sand or permeable sandstone bedrock is near the surface, and vegetation has been little affected or has reestablished itself after the introduced salt was flushed by precipitation. The extent of salt-contaminated bedrock extends well beyond existing surface salt scars. These results indicate that one of the legacies of surface salt spills can be a volume of subsurface salinization larger than the visible surface disturbance. ?? 2007.

  1. View of the Salt Lake City, Utah area

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An oblique view of the Salt Lake City, Utah area as photographed from Earth orbit by one of the six lenses of the Itek-furnished S190-A Multispectral Photographic Facility Experiment aboard the Skylab space station. Approximately two-thirds of the Great Salt Lake is in view. The smaller body of water south of Salt Lake City is Utah Lake. The Wasatch Range is on the east side of the Great Salt Lake.

  2. Water resources data, Idaho, 2003; Volume 2. Surface water records for Upper Columbia River basin and Great Basin below King Hill

    USGS Publications Warehouse

    Brennan, T.S.; Lehmann, A.K.; O'Dell, I.

    2004-01-01

    Water resources data for the 2003 water year for Idaho consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; discharge of irrigation diversions; and water levels and water quality of groundwater. The three volumes of this report contain discharge records for 208 stream-gaging stations and 14 irrigation diversions; stage only records for 6 stream-gaging stations; stage only for 6 lakes and reservoirs; contents only for 13 lakes and reservoirs; water-quality for 50 stream-gaging stations and partial record sites, 3 lakes sites, and 398 groundwater wells; and water levels for 427 observation network wells and 900 special project wells. Additional water data were collected at various sites not involved in the systematic data collection program and are published as miscellaneous measurements. Volumes 1 & 2 contain the surface-water and surface-water-quality records. Volume 3 contains the ground-water and ground-water-quality records. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Idaho, adjacent States, and Canada.

  3. Two planets: Earth and Mars - One salt model: The Hydrothermal SCRIW-Model

    NASA Astrophysics Data System (ADS)

    Hovland, M. T.; Rueslaatten, H.; Johnsen, H. K.; Indreiten, T.

    2011-12-01

    One of the common characteristics of planets Earth and Mars is that both host water (H2O) and large accumulations of salt. Whereas Earth's surface-environment can be regarded as 'water-friendly' and 'salt hostile', the reverse can be said for the surface of Mars. This is because liquid water is stable on Earth, and the atmosphere transports humidity around the globe, whereas on planet Mars, liquid water is unstable, rendering the atmosphere dry and, therefore, 'salt-friendly'. The riddle as to how the salt accumulated in various locations on those two planets is one of long-lasting and great debate. The salt accumulations on Earth are traditionally termed 'evaporites', meaning that they formed by the evaporation of large masses of seawater. How the accumulations on Mars formed is much harder to explain, with a similar model, as surface water, representing a large ocean only existed briefly. Although water molecules and OH-groups may exist in abundance in bound form (crystal water, adsorbed water, etc.), the only place where free water is expected to be stable on Mars is within underground faults, fractures, and crevices. Here it likely occurs as brine or in the form of ice. Based on these conditions, a key to understanding the accumulation of large deposits of salt on both planets is linked to how brines behave in the subsurface when pressurized and heated beyond their supercritical point. At depths greater than about 3 km (i.e., a pressure, P>300 bars) water will no longer boil in a steam phase. Rather, it becomes supercritical and will form a supercritical water 'vapor' (SCRIW) with a specific gravity of typically 0.3 g/cm3. An important characteristic of SCRIW is its inability to dissolve the common sea salts. The salt dissolved in the brines will therefore precipitate as solid particles when brines (seawater on the Earth) move into the supercritical P&T-domain (above 400 C and 300 bars). Numerical modeling of a hydrothermal system in the Atlantis II Deep of the

  4. [Study on quality standards of decoction pieces of salt Alpinia].

    PubMed

    Li, Wenbing; Hu, Changjiang; Long, Lanyan; Huang, Qinwan; Xie, Xiuqiong

    2010-12-01

    To establish the quality criteria for decoction pieces of salt Alpinia. Decoction pieces of salt Alpinia were measured with moisture, total ash, acid-insoluble ash, water-extract and volatile oils according to the procedures recorded in the Chinese Pharmacopoeia 2010. The content of Nootkatone was determined by HPLC, and NaCl, by chloridion electrode method. We obtained results of total ash, acid-insoluble ash, water-extract and volatile oils of 10 batches of decoction pieces of salt Alpinia moisture; Meanwhile we set the HPLC and chloridion electrode method. This research established a fine quality standard for decoction pieces of salt Alpinia.

  5. Water management, purification, and conservation in arid climates. Volume 3: Water conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosen, M.F.A.; Shayya, W.H.

    1999-07-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three thingsmore » in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 3 addresses aspects of water conservation and includes rainwater harvesting and wastewater reuse and reclamation.« less

  6. Water management, purification, and conservation in arid climates. Volume 2: Water purification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosen, M.F.A.; Shayya, W.H.

    1999-10-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three thingsmore » in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 2 presents various methods of purifying water, and includes membrane processes and alternative techniques such as solar desalination.« less

  7. Total Mercury and Methylmercury Response in Water, Sediment, and Biota to Destratification of the Great Salt Lake, Utah, United States.

    PubMed

    Valdes, Carla; Black, Frank J; Stringham, Blair; Collins, Jeffrey N; Goodman, James R; Saxton, Heidi J; Mansfield, Christopher R; Schmidt, Joshua N; Yang, Shu; Johnson, William P

    2017-05-02

    Measurements of chemical and physical parameters made before and after sealing of culverts in the railroad causeway spanning the Great Salt Lake in late 2013 documented dramatic alterations in the system in response to the elimination of flow between the Great Salt Lake's north and south arms. The flow of denser, more-saline water through the culverts from the north arm (Gunnison Bay) to the south arm (Gilbert Bay) previously drove the perennial stratification of the south arm and the existence of oxic shallow brine and anoxic deep brine layers. Closure of the causeway culverts occurred concurrently with a multiyear drought that resulted in a decrease in the lake elevation and a concomitant increase in top-down erosion of the upper surface of the deep brine layer by wind-forced mixing. The combination of these events resulted in the replacement of the formerly stratified water column in the south arm with one that was vertically homogeneous and oxic. Total mercury concentrations in the deep waters of the south arm decreased by approximately 81% and methylmercury concentrations in deep waters decreased by roughly 86% due to destratification. Methylmercury concentrations decreased by 77% in underlying surficial sediment, whereas there was no change observed in total mercury. The dramatic mercury loss from deep waters and methylmercury loss from underlying sediment in response to causeway sealing provides new understanding of the potential role of the deep brine layer in the accumulation and persistence of methylmercury in the Great Salt Lake. Additional mercury measurements in biota appear to contradict the previously implied connection between elevated methylmercury concentrations in the deep brine layer and elevated mercury in avian species reported prior to causeway sealing.

  8. Effect of winds and waves on salt intrusion in the Pearl River estuary

    NASA Astrophysics Data System (ADS)

    Gong, Wenping; Lin, Zhongyuan; Chen, Yunzhen; Chen, Zhaoyun; Zhang, Heng

    2018-02-01

    Salt intrusion in the Pearl River estuary (PRE) is a dynamic process that is influenced by a range of factors and to date, few studies have examined the effects of winds and waves on salt intrusion in the PRE. We investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system applied to the PRE. After careful validation, the model is used for a series of diagnostic simulations. It is revealed that the local wind considerably strengthens the salt intrusion by lowering the water level in the eastern part of the estuary and increasing the bottom landward flow. The remote wind increases the water mixing on the continental shelf, elevates the water level on the shelf and in the PRE and pumps saltier shelf water into the estuary by Ekman transport. Enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing. Sensitivity analysis shows that the axial down-estuary wind, is most efficient in driving increases in salt intrusion via wind straining effect.

  9. Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water.

    PubMed

    Noh, Yeonsik; Bales, Justin R; Reyes, Bersain A; Molignano, Jennifer; Clement, Amanda L; Pins, George D; Florian, John P; Chon, Ki H

    2016-08-01

    In this study, we evaluated the performance of two novel conductive carbon black (CB) and polydimethlysiloxane (PDMS) bio-potential electrodes, with and without an integrated flexible copper mesh, against commercially available electrodes (Polar(®) textile, Silver-coated textile, and carbon rubber). The electrodes were tested in three types of water (fresh/unfiltered, chlorinated, and salt water). Our testing revealed that our CB/PDMS electrode with integrated copper mesh provided a high-fidelity ECG signal morphologies without any amplitude degradation in all of the types of water tested (N = 10). The non-meshed CB/PDMS electrodes were also subjected to a long-term durability test by the US Navy SCUBA divers during which the electrodes maintained ECG signal quality for a 6 h period of continuous use. The results of a material degradation analysis revealed the CB/PDMS composite material does not exhibit significant changes in physical integrity after prolonged exposure to the test conditions. The newly developed meshed CB/PDMS electrodes have the potential to be used in a wide variety of both dry and wet environments including the challenge of obtaining ECG signals in salt water environments.

  10. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi

    1994-01-01

    A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  11. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, Tadafumi.

    1994-08-23

    A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  12. Molecular Dynamics Simulation of Salt Diffusion in Polyelectrolyte Assemblies.

    PubMed

    Zhang, Ran; Duan, Xiaozheng; Ding, Mingming; Shi, Tongfei

    2018-06-05

    The diffusion of salt ions and charged probe molecules in polyelectrolyte assemblies is often assumed to follow a theoretical hopping model, in which the diffusing ion is hopping between charged sites of chains based on electroneutrality. However, experimental verification of diffusing pathway at such microscales is difficult, and the corresponding molecular mechanisms remain elusive. In this study, we perform all-atom molecular dynamics (MD) simulations of salt diffusion in polyelectrolyte (PE) assembly of poly (sodium 4-styrenesulfonate) (PSS) and poly (diallyldimethylammonium chloride) (PDAC). Besides the ion hopping mode, the diffusing trajectories are found presenting common features of a jump process, i.e., subjecting to PE relaxation, water pockets in the structure open and close, thus the ion can move from one pocket to another. Anomalous subdiffusion of ions and water is observed due to the trapping scenarios in these water pockets. The jump events are much rarer compared with ion hopping but significantly increases salt diffusion with increasing temperature. Our result strongly indicates that salt diffusion in hydrated PDAC/PSS is a combined process of ion hopping and jump motion. This provides new molecular explanation for the coupling of salt motion with chain motion and the nonlinear increase of salt diffusion at glass transition temperature.

  13. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    PubMed Central

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758

  14. Water-quality conditions and an evaluation of ground- and surface-water sampling programs in the Livermore-Amador Valley, California

    USGS Publications Warehouse

    Sorenson, S.K.; Cascos, P.V.; Glass, R.L.

    1984-01-01

    A program to monitor the ground- and surface water quality in the Livermore-Amador Valley has been operated since 1976. As of 1982, this monitoring network consisted of approximately 130 wells, about 100 of which were constructed specifically for this program, and 9 surface water stations. Increased demand on the groundwater for municipal and industrial water supply in the past has caused a decline in water levels and a gradual buildup of salts from natural surface-water recharge and land disposal of treated wastewater from waste treatment plants. Results of this study identify the salt buildup to be the major problem with the groundwater quality. Established water quality objectives for dissolved solids are exceeded in 52 of 130 wells. Concentrations of dissolved nitrate are also in excess of basin objectives and health standards. Water quality in both surface and groundwater is highly variable areally. Magnesium to calcium magnesium bicarbonate groundwater are found in the areas where most of the high volume municipal wells are located. Large areas of sodium bicarbonate water occur in the northern part of the valley. Except for two stations on Arroyo Las Positas which has sodium chloride water, surface water is mixed-cation bicarbonate water. (USGS)

  15. Water management, purification, and conservation in arid climates. Volume 1: Water management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosen, M.F.A.; Shayya, W.H.

    1999-07-01

    Arid regions are already feeling the severe restraining effects of potable water shortages. In coming years, humid and sub-humid regions of the world will also have to face many of these same problems. In the future, serious conflicts may arise not because of a lack of oil, but due to water shortages. Are there solutions to these problems? Aside from increasing public awareness about the importance of water, society needs to take a three pronged approach: water needs to be effectively managed, it needs to be economically purified, and it needs to be conserved. Only by doing these three thingsmore » in unison can they hope to alleviate the water problems faced by arid regions of the world. This book presents information valuable to seeking, finding and using current technologies to help solve these problems now. Volume 1 examines water management problems in detail, along with water problems and water resources in arid climates, and includes chapters that cover aspects of water management. Water purification technology is another key issue. The economics of this technology is becoming more critical in arid areas due to increasing urbanization and industrialization.« less

  16. Drinking water contributes to high salt consumption in young adults in coastal Bangladesh.

    PubMed

    Talukder, Mohammad Radwanur Rahman; Rutherford, Shannon; Phung, Dung; Malek, Abdul; Khan, Sheela; Chu, Cordia

    2016-04-01

    Increasing salinity of freshwater from environmental and anthropogenic influences is threatening the health of 35 million inhabitants in coastal Bangladesh. Yet little is known about the characteristics of their exposure to salt (sodium), a major risk factor for hypertension and related chronic diseases. This research examined sodium consumption levels and associated factors in young adults. We assessed spot urine samples for 282 participants (19-25 years) during May-June 2014 in a rural sub-district in southwestern coastal Bangladesh and measured sodium levels of their potable water sources. The significant factors associated with high sodium consumption were determined from logistic regression analyses. Mean sodium content in tube-well water (885 mg/L) was significantly higher than pond water (738 mg/L) (P = 0.01). Fifty three percent of subjects were consuming sodium at levels above the WHO recommended level (≥2 g/day). The users of tube-well water were more likely to consume sodium above this recommended level than pond water users. Salinity problems are projected to increase with climate change, and with large populations potentially at risk, appropriate public health and behavior-change interventions are an urgent priority for this vulnerable coastal region along with targeted research to better understand sodium exposure pathways and health benefits of alternative water supplies.

  17. Free energy landscape of a minimalist salt bridge model.

    PubMed

    Li, Xubin; Lv, Chao; Corbett, Karen M; Zheng, Lianqing; Wu, Dongsheng; Yang, Wei

    2016-01-01

    Salt bridges are essential to protein stability and dynamics. Despite the importance, there has been scarce of detailed discussion on how salt bridge partners interact with each other in distinct solvent exposed environments. In this study, employing a recent generalized orthogonal space tempering (gOST) method, we enabled efficient molecular dynamics simulation of repetitive breaking and reforming of salt bridge structures within a minimalist salt-bridge model, the Asp-Arg dipeptide and thereby were able to map its detailed free energy landscape in aqueous solution. Free energy surface analysis shows that although individually-solvated states are more favorable, salt-bridge states still occupy a noticeable portion of the overall population. Notably, the competing forces, e.g. intercharge attractions that drive the formation of salt bridges and solvation forces that pull the charged groups away from each other, are energetically comparable. As the result, the salt bridge stability is highly tunable by local environments; for instance when local water molecules are perturbed to interact more strongly with each other, the population of the salt-bridge states is likely to increase. Our results reveal the critical role of local solvent structures in modulating salt-bridge partner interactions and imply the importance of water fluctuations on conformational dynamics that involves solvent accessible salt bridge formations. © 2015 The Protein Society.

  18. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    NASA Astrophysics Data System (ADS)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  19. Temporal dynamics of flooding, evaporation, and desiccation cycles and observations of salt crust area change at the Bonneville Salt Flats, Utah

    NASA Astrophysics Data System (ADS)

    Bowen, Brenda B.; Kipnis, Evan L.; Raming, Logan W.

    2017-12-01

    The Bonneville Salt Flats (BSF) in Utah is a dynamic saline playa environment responding to natural and anthropogenic forces. Over the last century, the saline groundwater from below BSF has been harvested to produce potash via evaporative mining, mostly used as agricultural fertilizers, while the surface halite crust has provided a significant recreational site for land speed racing. Perceptions of changes in the salt crust through time have spurred debates about land use and management; however, little is known about the timescales of natural change as the salt crust responds to climatic parameters that drive flooding, evaporation, and desiccation (FED) cycles that control surface salt growth and dissolution. Climate data over the last 30 years are examined to identify annual patterns in surface water balance at BSF to identify annual and seasonal climate constraints on FED cycles. Landsat satellite data from 1986 to the present are used to map the areal extent of the surface halite salt crust at BSF at the end of the desiccation season (between August 15 and October 30) annually. Overall, the observed area of the desiccation-stage BSF halite crust has varied from a maximum of 156 km2 in 1993 to a minimum of 72 km2 in 2014 with an overall trend of declining area of halite observed over the 30 years of analysis. Climatic variables that influence FED cycles and seasonal salt dissolution and precipitation have also varied through this time period; however, the relationship between surface water fluxes and salt crust area do not clearly correlate, suggesting that other processes are influencing the extent of the salt. Intra-annual analyses of salt area and weather illustrate the importance of ponded surface water, wind events, and microtopography in shaping a laterally extensive but thin and ephemeral halite crust. Examination of annual to decadal changes in salt crust extent and environmental parameters at BSF provides insights into the processes driving change and

  20. Partition/Ion-Exclusion Chromatographic Ion Stacking for the Analysis of Trace Anions in Water and Salt Samples by Ion Chromatography.

    PubMed

    Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami

    2018-01-01

    A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.

  1. Investigation of the source of residual phthalate in sundried salt.

    PubMed

    Kim, Jin Hyo; Lee, Jin Hwan; Kim, So-Young

    2014-03-01

    Phthalate contamination in sundried salt has recently garnered interest in Korea. Phthalate concentrations were investigated in Korean sundried salts, source waters, and aqueous extracts from polyvinyl chloride materials used in salt ponds. Preliminary screening results for phthalates in Korean sundried salts revealed that only di(2-ethylhexyl)phthalate (DEHP) was over the limit of detection, with an 8.6% detection rate, and the concentration ranged from below the limit of detection to 0.189 mg/kg. The tolerable daily intake contribution ratio of the salt was calculated to be only 0.001%. Residual phthalates were below 0.026 mg/liter in source water, and the aqueous extracted di-n-butylphthalate, benzylbutylphthalate, and DEHP, which are considered endocrine disruptors, were below 0.029 mg/kg as derived from the polyvinyl chloride materials in salt ponds. The transfer ratios of the six phthalates from seawater to sundried salts were investigated; transfer ratio was correlated with vapor pressure (r(2) = 0.9875). Thus, di-n-butylphthalate, benzylbutylphthalate, DEHP, and di-n-octylphthalate can be considered highly likely residual pollutants in some consumer salts.

  2. Air pollutant intrusion into the Wieliczka Salt Mine

    USGS Publications Warehouse

    Salmon, L.G.; Cass, G.R.; Kozlowski, R.; Hejda, A.; Spiker, E. C.; Bates, A.L.

    1996-01-01

    The Wieliczka Salt Mine World Cultural Heritage Site contains many rock salt sculptures that are threatened by water vapor condensation from the mine ventilation air. Gaseous and particulate air pollutant concentrations have been measured both outdoors and within the Wieliczka Salt Mine, along with pollutant deposition fluxes to surfaces within the mine. One purpose of these measurements was to determine whether or not low deliquescence point ionic materials (e.g., NH4NO3) are accumulating on surfaces to an extent that would exacerbate the water vapor condensation problems in the mine. It was found that pollutant gases including SO2 and HNO3 present in outdoor air are removed rapidly and almost completely from the air within the mine by deposition to surfaces. Sulfur isotope analyses confirm the accumulation of air pollutant-derived sulfur in liquid dripping from surfaces within the mine. Particle deposition onto interior surfaces in the mine is apparent, with resulting soiling of some of those sculptures that have been carved from translucent rock salt. Water accumulation by salt sculpture surfaces was studied both experimentally and by approximate thermodynamic calculations. Both approaches suggest that the pollutant deposits on the sculpture surfaces lower the relative humidity (RH) at which a substantial amount of liquid water will accumulate by 1% to several percent. The extraordinarily low SO2 concentrations within the mine may explain the apparent success of a respiratory sanatorium located deep within the mine.

  3. Effects of salt or cosolvent addition on solubility of a hydrophobic solute in water: Relevance to those on thermal stability of a protein

    NASA Astrophysics Data System (ADS)

    Murakami, Shota; Hayashi, Tomohiko; Kinoshita, Masahiro

    2017-02-01

    The solubility of a nonpolar solute in water is changed upon addition of a salt or cosolvent. Hereafter, "solvent" is formed by water molecules for pure water, by water molecules, cations, and anions for water-salt solution, and by water and cosolvent molecules for water-cosolvent solution. Decrease and increase in the solubility, respectively, are ascribed to enhancement and reduction of the hydrophobic effect. Plenty of experimental data are available for the change in solubility of argon or methane arising from the addition. We show that the integral equation theory combined with a rigid-body model, in which the solute and solvent particles are modeled as hard spheres with different diameters, can reproduce the data for the following items: salting out by an alkali halide and salting in by tetramethylammonium bromide, increase in solubility by a monohydric alcohol, and decrease in solubility by sucrose or urea. The orders of cation or anion species in terms of the power of decreasing the solubility can also be reproduced for alkali halides. With the rigid-body model, the analyses are focused on the roles of entropy originating from the translational displacement of solvent particles. It is argued by decomposing the solvation entropy of a nonpolar solute into physically insightful constituents that the solvent crowding in the bulk is a pivotal factor of the hydrophobic effect: When the solvent crowding in the bulk becomes more serious, the effect is strengthened, and when it becomes less serious, the effect is weakened. It is experimentally known that the thermal stability of a protein is also influenced by the salt or cosolvent addition. The additions which decrease and increase the solubility of a nonpolar solute, respectively, usually enhance and lower the thermal stability. This suggests that the enhanced or reduced hydrophobic effect is also a principal factor governing the stability change. However, urea decreases the solubility but lowers the stability

  4. Salt and cocrystals of sildenafil with dicarboxylic acids: solubility and pharmacokinetic advantage of the glutarate salt.

    PubMed

    Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R

    2013-12-02

    Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.

  5. Dissolved-mineral inflow to Great Salt Lake and chemical characteristics of the salt lake brine: Summary for water years 1960, 1961, and 1964

    USGS Publications Warehouse

    Hahl, D.C.

    1968-01-01

    The investigation of dissolved-mineral inflow to Great Salt Lake during the water years 1960, 1961, and 1964 was conducted during conditions of streamflow that were representative of the lowest and the average recorded during the water years 1934-64. The study conducted during the 1960 and 1961 water years was limited to defining surface-water inflow at sites close to the lakeshore, as well as at sites used in the 1960-6 study. From these comparative data, estimates of inflow at the lakeshore were made for the 1960 and 1961 water years. During the 1964 water year, when inflow to the lake was probably representative of the 31-year period, about 800,000 acre-feet of water containing 2,200,000 tons of dissolved solids entered the lake.During the years of average streamflow, about 500,000 acre-feet of water which might be developed for culinary use, passes the lowest sampling sites on the Bear and Weber Rivers. Also, more than 90 percent of the flow near the mouths of the Bear, Weber, and Jordan Rivers would be suitable for irrigation.Sources of inflow could be selected to provide a water supply for a fresh-water lake east of Antelope Island. The supply would range from 300,000 acre-feet of water containing 800 ppm (parts per million) of dissolved solids during periods of low streamflow to 1 million acre-feet containing 500 ppm during periods of average streamflow.

  6. Transport of water and solutes in reverse osmosis and nanofiltration membranes

    NASA Astrophysics Data System (ADS)

    Cahill, David

    2009-03-01

    The polyamide active layers of reverse osmosis and nanofiltration membranes used for water purification are real-world examples of nanoscale functional materials: the active layer is only ˜100 nm thick. Because the active layer is formed by a process of interfacial polymerization, the structure and composition of the membrane is highly inhomogeneous and even such basic physical and chemical properties as the atomic density, swelling in water, the distribution of charged species between water and membrane, and the mobility of water and ions, are poorly understood. We are using Rutherford backscattering spectrometry (RBS) to determine the composition, roughness, and thickness of the membrane; reveal the surprisingly high solubility of salt ions in the polymer active layer; analyze the acid-base chemistry of charged functional groups; and determine the degree of polymer cross-linking. Measurements of mass-uptake and adsorption-induced mechanical stress of membranes in humid air enable us to determine the water solubility, specific volume of water, and the mechanical strength of the membrane. Comparisons between these equilibrium data and the permeability of the membrane to water and salts show that the mobility of water molecules in the membrane approaches the mobility of bulk water, and that the rejection of salt ions is accomplished by low mobility, not low solubility. My collaborators in this work are Xijing Zhang, Orlando Coronell, and Prof. Benito Mariñas.

  7. Water and salt balance modelling to predict the effects of land-use changes in forested catchments. 1. Small catchment water balance model

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Ruprecht, John K.; Viney, Neil R.

    1996-03-01

    A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers.The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.

  8. [Study on the present status of the areas with high iodine concentration in drinking water and edible salt at household levels in Ohio of Yellow River].

    PubMed

    Guo, Xiao-wei; Zhai, Li-ping; Liu, Yuan; Wang, Xin

    2005-11-01

    To understand the present condition of iodine excess areas and edible salt at household levels in Ohio of Yellow River,which will provide the evidence to control it. A cross section in one time was adopted for the epidemiological survey based on the east, west, south, north and central in all of townships from 8 counties. 2 samples of drinking water from each village were tested their water iodine content as well as the data regarding to their recourses and the depth of wells. 5 samples of edible salt were collected from each village for quantitative analysis. We investigated 451 villages in 92 townships of 8 counties. 800 samples of drinking water were tested which values of iodine content were (110.93 +/- 152.26) microg/L in main, 55.83 microg/L (0.84 - 997.82 microg/L) in medium. 102.39 thousand population are at risk for iodine excess and living in 24 townships of 7 counties where iodine concentration is over 150 microg/L in drinking water, with (327.72 +/- 192.19) microg/L in mean value or 253.87 microg/L (150.78 - 997.82 microg/L) in medium. The rate of iodized salt is 97.2%. All the iodine excess areas are located in alluvial plain of Yellow River. The etiology of high iodine in shallow well water may be supposed to be iodine aggregation formed by Yellow River in terms of thousands of flood in thousands of years. But iodine excess in deep well water may be related to rotten, deposit marine living beings rich in iodine millions upon millions years ago. There were distinctive features of iodine excess in drinking water from both shallow well and deep well, 24 iodine excess areas in Ohio of Yellow River. It has suggested that iodized salt intervention should be stopped in the areas and starting the health education project, survey of iodized salt in the region.

  9. Salicylic acid confers salt tolerance in potato plants by improving water relations, gaseous exchange, antioxidant activities and osmoregulation.

    PubMed

    Faried, Hafiz Nazar; Ayyub, Chaudhary Muhammad; Amjad, Muhammad; Ahmed, Rashid; Wattoo, Fahad Masoud; Butt, Madiha; Bashir, Mohsin; Shaheen, Muhammad Rashid; Waqas, Muhammad Ahmed

    2017-04-01

    Potato is an important vegetable; however, salt stress drastically affects its growth and yield. A pot experiment was therefore conducted to assess salicylic acid efficacy in improving performance of potato cultivars, grown under salt stress (50 mmol L -1 ). Salicylic acid at 0.5 mmol L -1 was sprayed on to potato plants after 1 week of salinity application. Salt stress effects were ameliorated by salicylic acid effectively in both the studied cultivars. N-Y LARA proved more responsive to salicylic acid application than 720-110 NARC, which confirmed genetic variation between cultivars. Salicylic acid scavenged reactive oxygen species by improving antioxidant enzyme activities (superoxide dismutase, catalase, peroxidases) and regulating osmotic adjustment (proline, phenolic contents), which led to enhanced water relation and gaseous exchange attributes, and thereby increased potassium availability and reduced sodium content in potato leaves. Moreover, potato tuber yield showed a positive correlation with potassium content, photosynthesis and antioxidant enzyme activities. Salt tolerance efficacy of salicylic acid is authenticated in improving potato crop performance under salt stress. Salicylic acid effect was more pronounced in N-Y LARA, reflecting greater tolerance than 720-110 NARC, which was confirmed as a susceptible cultivar. Hence salicylic acid at 0.5 mmol L -1 and cultivation of N-Y LARA may be recommended in saline soil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. Water resources data, Iowa, water year 2001, Volume 2. surface water--Missouri River basin, and ground water

    USGS Publications Warehouse

    Nalley, G.M.; Gorman, J.G.; Goodrich, R.D.; Miller, V.E.; Turco, M.J.; Linhart, S.M.

    2002-01-01

    The Water Resources Division of the U.S. Geological Survey, in cooperation with State, county, municipal, and other Federal agencies, obtains a large amount of data pertaining to the water resources of Iowa each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make this data readily available to interested parties outside of the Geological Survey, the data is published annually in this report series entitled “Water Resources Data - Iowa” as part of the National Water Data System. Water resources data for water year 2001 for Iowa consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. This report, in two volumes, contains stage or discharge records for 132 gaging stations; stage records for 9 lakes and reservoirs; water-quality records for 4 gaging stations; sediment records for 13 gaging stations; and water levels for 163 ground-water observation wells. Also included are peak-flow data for 92 crest-stage partial-record stations, water-quality data from 86 municipal wells, and precipitation data collected at 6 gaging stations and 2 precipitation sites. Additional water data were collected at various sites not included in the systematic data-collection program, and are published here as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating local, State, and Federal agencies in Iowa.Records of discharge or stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled “Surface Water Supply of the United States.” Through September 30, 1960, these water-supply papers were published in an annual series; during 1961-65 and 1966-70, they

  11. Expression of hypoxia-inducible factor 1α mRNA in hearts and lungs of broiler chickens with ascites syndrome induced by excess salt in drinking water.

    PubMed

    Zhang, Jianjun; Feng, Xuejian; Zhao, Lihong; Wang, Wei; Gao, Mingyu; Wu, Boning; Qiao, Jian

    2013-08-01

    Hypoxia-inducible factor 1 (HIF-1) is a ubiquitously expressed heterodimeric transcription factor that mediates adaptive responses to hypoxia in all nucleated cells of metazoan organisms. Hypoxia-inducible factor 1α is involved in the pathogenesis of pulmonary hypertension in humans and animals, but whether HIF-1α is associated with the development of pulmonary hypertension syndrome (also known as ascites syndrome, AS) in broiler chickens has not been determined. In the present paper we addressed this issue by measuring the expression of HIF-1α mRNA in hearts and lungs of broiler chickens with AS induced by excess salt in drinking water. We conducted 2 experiments. The first experiment was used to observe the effects of excess salt on AS incidence. The results indicated that total incidence (20%) of AS in excess salt group (receiving 0.3% NaCl in drinking water) was much higher compared with the control group (receiving tap water) over a 43-d time course (P < 0.05). In the second experiment, we determined mean pulmonary arterial pressure (mPAP), ascites heart index (AHI), and expression of HIF-1α mRNA in lungs and hearts of broiler chickens after the excess salt treatment. Our results showed that excess salt induced pulmonary hypertension (indicated by higher mPAP) and right ventricular hypertrophy (greater ascites heart index) in broiler chickens. Meanwhile, the expression levels of HIF-1α mRNA in lungs and hearts were significantly increased at different time points in the excess salt group compared with the control group. Linear correlation analysis showed that the expression of HIF-1α mRNA in lungs was significantly positively correlated with mPAP (correlation coefficient = 0.79, P < 0.001), demonstrating that expression of HIF-1α mRNA was gradually increased in the excess salt group with the increase of pulmonary arterial pressure. In addition, the ascitic chickens showed significantly higher transcriptional levels of HIF-1α in hearts and lungs

  12. Water volume and sediment accumulation in Lake Linganore, Frederick County, Maryland, 2009

    USGS Publications Warehouse

    Sekellick, Andrew J.; Banks, S.L.

    2010-01-01

    To assist in understanding sediment and phosphorus loadings and the management of water resources, a bathymetric survey was conducted at Lake Linganore in Frederick County, Maryland in June 2009 by the U.S. Geological Survey, in cooperation with the City of Frederick and Frederick County, Maryland. Position data and water-depth data were collected using a survey grade echo sounder and a differentially corrected global positioning system. Data were compiled and edited using geographic information system software. A three-dimensional triangulated irregular network model of the lake bottom was created to calculate the volume of stored water in the reservoir. Large-scale topographic maps of the valley prior to inundation in 1972 were provided by the City of Frederick and digitized. The two surfaces were compared and a sediment volume was calculated. Cartographic representations of both water depth and sediment accumulation were produced along with an area/capacity table. An accuracy assessment was completed on the resulting bathymetric model. Vertical accuracy at the 95-percent confidence level for the collected data, the bathymetric surface model, and the bathymetric contour map was calculated to be 0.95 feet, 1.53 feet, and 3.63 feet, respectively. The water storage volume of Lake Linganore was calculated to be 1,860 acre-feet at full pool elevation. Water volume in the reservoir has decreased by 350 acre-feet (about 16 percent) in the 37 years since the dam was constructed. The total calculated volume of sediment deposited in the lake since 1972 is 313 acre-feet. This represents an average rate of sediment accumulation of 8.5 acre-feet per year since Linganore Creek was impounded. A sectional analysis of sediment distribution indicates that the most upstream third of Lake Linganore contains the largest volume of sediment whereas the section closest to the dam contains the largest amount of water. In comparison to other Maryland Piedmont reservoirs, Lake Linganore

  13. Molecular dynamics study on glycolic acid in the physiological salt solution

    NASA Astrophysics Data System (ADS)

    Matsunaga, S.

    2018-05-01

    Molecular dynamics (MD) study on glycolic acid in the physiological salt solution has been performed, which is a model of a biofuel cell. The structure and charge distribution of glycolic acid in aqueous solution used in MD is beforehand optimized by Gaussian09 utilizing the density functional theory. MD is performed in the NTV constant condition, i.e. the number of particles, temperature, and volume of MD cell are definite. The structure difference of the glycolic acid and oxalic acid is detected by the water distribution around the molecules using the pair distribution functions, gij(r), and the frequency dependent diffusion coefficients, Di(ν). The anomalous dielectric constant of the solution, i.e. about 12 times larger than that of water, has been obtained, which may be attributed to the ion pair formation in the solution.

  14. Salt and nitric oxide synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity.

    PubMed

    Oktar, Süleyman; Ilhan, Selçuk; Meydan, Sedat; Aydin, Mehmet; Yönden, Zafer; Gökçe, Ahmet

    2010-01-01

    The specific aim of this study was to examine the effects of salt-loading on kidney function and brain antioxidant capacity. Wistar rats were divided into four groups: Control rats were given normal drinking water and no drug treatment for 2 weeks. LNNA group: rats were given normal drinking water and the nitric oxide (NO) inhibitor NG-nitro-L-arginine (L-NNA), 3 mg/kg/day. LNNA + Salt group: rats were given drinking water containing salt 2% and 3 mg/kg L-NNA. Salt group: rats were given drinking water containing salt 2% and no drug treatment. Basal blood pressure and the levels of serum BUN, creatinine, uric acid, cortisol, electrolyte, serum antioxidant capacity, and oxidative stress were measured. NO, superoxide dismutase (SOD), and catalase (CAT) levels were measured in the hypothalamus, brainstem, and cerebellum. Salt overload increased the blood pressure of the LNNA + Salt group. Salt-loading enhanced BUN, creatinine, sodium retention. High salt produced an increase in uric acid levels and a decrease in cortisol levels in serum. Additionally, the oxidative stress index in serum increased in the LNNA + Salt group. Salt-loading enhanced brain NO levels, but not SOD and CAT activity. L-NNA increased brain SOD activity, but not CAT and NO levels. In conclusion, salt-loading causes hypertension, kidney dysfunction, and enhances oxidative stress in salt-sensitive rats.

  15. Method to synthesize dense crystallized sodalite pellet for immobilizing halide salt radioactive waste

    DOEpatents

    Koyama, T.

    1992-01-01

    This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.

  16. Impact of thiocyanate salts on zein properties

    USDA-ARS?s Scientific Manuscript database

    A new class of zein plasticizer was investigated, thiocyanate salts. Ammonium (ATC), potassium (KTC), guanidine (GTC) and magnesium thiocyanate (MTC) salts were added to solutions of zein in 90% ethanol/10% water with various amounts of tri(ethylene glycol) (TEG), cast as films and then tested to de...

  17. Water resources data for Pennsylvania, water year 1993. Volume 2. Susquehanna and Potomac river basins. Water-data report (Annual), 1 October 1992-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durlin, R.R.; Schaffstall, W.P.

    1994-01-01

    Water resources data for the 1993 water year for Pennsylvania consist of records of discharge and water quality of streams; contents and elevations of lakes and reservoirs; and water levels and water quality of ground-water wells. The report, Volume 2, includes records from the Susquehanna and Potomac River Basins. Specifically, Volume 2 contains (1) discharge records for 97 continuous-record streamflow-gaging stations and 39 partial-record stations; (2) elevation and contents records for 13 lakes and reservoirs; and (3) water-level records for 25 observation wells. The location of these sites is shown in figures 6-8. Additional waste data collected at various sitesmore » not involved in the systematic data-collection program are also presented.« less

  18. Use of Nitrogen Trifluoride To Purify Molten Salt Reactor Coolant and Heat Transfer Fluoride Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; Casella, Andrew M.; McNamara, Bruce K.

    2017-05-02

    Abstract: The molten salt cooled nuclear reactor is included as one of the Generation IV reactor types. One of the challenges with the implementation of this reactor is purifying and maintaining the purity of the various molten fluoride salts that will be used as coolants. The method used for Oak Ridge National Laboratory’s molten salt experimental test reactor was to treat the coolant with a mixture of H2 and HF at 600°C. In this article we evaluate thermal NF3 treatment for purifying molten fluoride salt coolant candidates based on NF3’s 1) past use to purify fluoride salts, 2) other industrialmore » uses, 3) commercial availability, 4) operational, chemical, and health hazards, 5) environmental effects and environmental risk management methods, 6) corrosive properties, and 7) thermodynamic potential to eliminate impurities that could arise due to exposure to water and oxygen. Our evaluation indicates that nitrogen trifluoride is a viable and safer alternative to the previous method.« less

  19. Comparison of water immersion and saline infusion as a means of inducing volume expansion in man

    NASA Technical Reports Server (NTRS)

    Epstein, M.; Pins, D. S.; Arrington, R.; Denunzio, A. G.; Engstrom, R.

    1975-01-01

    The study compares the natriuresis induced by head-out water immersion to that of a standard saline infusion and assesses the relative effectiveness of these two techniques as volume determinants of renal sodium and water handling in humans in a seated posture. The data obtained show that the volume stimulus of immersion is identical to that of standard saline-induced extracellular fluid volume expansion (ECVE) in normal seated subjects. The ability of head-out water immersion to induce a natriuresis without a concomitant increase in total blood volume and with a decrease in body weight suggests that water immersion may be preferred as an investigative tool for assessing the effects of ECVE in man.

  20. Examination of Liquid Fluoride Salt Heat Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets,more » and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat

  1. Salt or ice diapirism origin for the honeycomb terrain in Hellas basin, Mars?: Implications for the early martian climate

    NASA Astrophysics Data System (ADS)

    Weiss, David K.; Head, James W.

    2017-03-01

    K within Hellas in order to reproduce the observed diapir wavelength. Conversely, the viability of the salt diapir mechanism requires sufficiently thick evaporite deposits to accumulate in Hellas (generally ≃1-3 km), which requires the emplacement and evaporation within Hellas of a 14-2045 m global equivalent layer (GEL) of saline water (∼2 × 106 km3 to ∼3 × 108 km3). On the basis of our analysis, we conclude that ice diapirism is more likely due to the thin deposits (∼0.1-1 km thick) and low water volumes required (only 0.3-24 m GEL water), and the potential for either glacial deposits or a frozen ocean to supply the necessary ice. Salt diapirism requires thick evaporite deposits and high water volumes by comparison, and thus appears less likely. Deformation of subglacial sediment: The honeycomb terrain has been proposed to be the imprints of grounded icebergs (comparable to terrestrial wallow pits, which form when an iceberg displaces/deforms the underlying sediment; e.g., Bigg, 2016; Moore and Wilhelms, 2001). Bernhardt et al. (2016a) find this origin unlikely due to the wide distribution of sizes expected and smaller dimensions (widths less than ∼100 m, depths less than 25 m) of these features compared to the relatively consistent (and larger) dimensions of the honeycomb cells. Thermokarst origin:Bernhardt et al. (2016a) explored a thermokarst origin for the honeycomb terrain, wherein loss of pore- or massive-ice in the subsurface by melting or sublimation generates shallow scallop-shaped depressions (which frequently overlap). While the widths of thermokarst features (up to ∼15 km in diameter; e.g., Pewe and Journaux, 1983) appear to be consistent with the cells of the honeycomb terrain, Bernhardt et al. (2016a) do not favor a thermokarst origin based on the shallow depths (few tens of meters) of thermokarst holes and lack of overlap observed for the cells within the honeycomb terrain. Impact melt convection has been proposed

  2. Heat storage with an incongruently melting salt hydrate as storage medium based on the extra water principle

    NASA Astrophysics Data System (ADS)

    Furbo, S.

    1980-12-01

    The extra water principle, a heat of fusion storage method, is described. The extra water principle uses an inorganic, incongruently melting salt hydrate as a reliable and stable storage medium in an inexpensive way. Different heat storages using the extra water principle are described. The advantages of using a heat fusion storage unit based on Na2S2O(3).5H2O and the extra water principle instead of a traditional hot water tank in small solar heating systems for domestic hot water supply are shown. In small solar heating systems the heat fusion storage supplies all the wanted hot water in the summer during longer periods than an ordinary hot water storage. It is concluded that the heat of fusion storage is favourable in domestic hot water supply systems with an auxiliary energy source which during the summer have a large energy consumption compared with the energy demands for the hot water supply.

  3. Assessment of the Use of Nitrogen Trifluoride for Purifying Coolant and Heat Transfer Salts in the Fluoride Salt-Cooled High-Temperature Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheele, Randall D.; Casella, Andrew M.

    2010-09-28

    This report provides an assessment of the use of nitrogen trifluoride for removing oxide and water-caused contaminants in the fluoride salts that will be used as coolants in a molten salt cooled reactor.

  4. The non-diuretic hypotensive effects of thiazides are enhanced during volume depletion states

    PubMed Central

    Alshahrani, Saeed; Rapoport, Robert M.; Zahedi, Kamyar; Jiang, Min; Nieman, Michelle; Barone, Sharon; Meredith, Andrea L.; Lorenz, John N.; Rubinstein, Jack

    2017-01-01

    Thiazide derivatives including Hydrochlorothiazide (HCTZ) represent the most common treatment of mild to moderate hypertension. Thiazides initially enhance diuresis via inhibition of the kidney Na+-Cl- Cotransporter (NCC). However, chronic volume depletion and diuresis are minimal while lowered blood pressure (BP) is maintained on thiazides. Thus, a vasodilator action of thiazides is proposed, likely via Ca2+-activated K+ (BK) channels in vascular smooth muscles. This study ascertains the role of volume depletion induced by salt restriction or salt wasting in NCC KO mice on the non-diuretic hypotensive action of HCTZ. HCTZ (20mg/kg s.c.) lowered BP in 1) NCC KO on a salt restricted diet but not with normal diet; 2) in volume depleted but not in volume resuscitated pendrin/NCC dKO mice; the BP reduction occurs without any enhancement in salt excretion or reduction in cardiac output. HCTZ still lowered BP following treatment of NCC KO on salt restricted diet with paxilline (8 mg/kg, i.p.), a BK channel blocker, and in BK KO and BK/NCC dKO mice on salt restricted diet. In aortic rings from NCC KO mice on normal and low salt diet, HCTZ did not alter and minimally decreased maximal phenylephrine contraction, respectively, while contractile sensitivity remained unchanged. These results demonstrate 1) the non-diuretic hypotensive effects of thiazides are augmented with volume depletion and 2) that the BP reduction is likely the result of HCTZ inhibition of vasoconstriction through a pathway dependent on factors present in vivo, is unrelated to BK channel activation, and involves processes associated with intravascular volume depletion. PMID:28719636

  5. Effective charges and zeta potentials of oil in water microemulsions in the presence of Hofmeister salts.

    PubMed

    Dos Santos, Alexandre P; Levin, Yan

    2018-06-14

    We present a theory which allows us to calculate the effective charge and zeta potential of oil droplets in microemulsions containing Hofmeister salts. A modified Poisson-Boltzmann equation is used to account for the surface and ion polarizations and hydrophobic and dispersion interactions. The ions are classified as kosmotropes and chaotropes according to their Jones-Dole viscosity B coefficient. Kosmotropes stay hydrated and do not enter into the oil phase, while chaotropes can adsorb to the oil-water interface. The effective interaction potentials between ions and oil-water interface are parametrized so as to accurately account for the excess interfacial tension.

  6. Effective charges and zeta potentials of oil in water microemulsions in the presence of Hofmeister salts

    NASA Astrophysics Data System (ADS)

    dos Santos, Alexandre P.; Levin, Yan

    2018-06-01

    We present a theory which allows us to calculate the effective charge and zeta potential of oil droplets in microemulsions containing Hofmeister salts. A modified Poisson-Boltzmann equation is used to account for the surface and ion polarizations and hydrophobic and dispersion interactions. The ions are classified as kosmotropes and chaotropes according to their Jones-Dole viscosity B coefficient. Kosmotropes stay hydrated and do not enter into the oil phase, while chaotropes can adsorb to the oil-water interface. The effective interaction potentials between ions and oil-water interface are parametrized so as to accurately account for the excess interfacial tension.

  7. Fludrocortisone therapy in cerebral salt wasting.

    PubMed

    Taplin, Craig E; Cowell, Christopher T; Silink, Martin; Ambler, Geoffrey R

    2006-12-01

    Cerebral salt wasting is an increasingly recognized condition in pediatrics and is characterized by inappropriate natriuresis and volume contraction in the presence of cerebral pathology. Diagnosis can be difficult and therapy challenging. A few single case reports of the successful use of fludrocortisone exist. We report 4 patients with cerebral salt wasting, all of whom presented with hyponatremia in the presence of known intracerebral pathology. All had clinically significant hyponatremia, and 3 had hyponatremic seizures. Two of the patients also satisfied clinical criteria for diabetes insipidus. They all were treated with regimens using increased sodium and fluid administration but experienced ongoing salt wasting. Fludrocortisone was instituted in all 4 patients and in 3 resulted in rapid improvement in net sodium balance, enabling the weaning of hypertonic fluids and stabilization of serum electrolytes. In 3 patients, fludrocortisone treatment was complicated by hypokalemia, and in 1 patient by hypertension, which necessitated a dose reduction or brief cessation of therapy. Duration of therapy was 4 to 125 days. Cerebral salt wasting presents considerable management challenges; however, fludrocortisone therapy can be an effective adjunct to treatment.

  8. Monitoring change in Great Salt Lake

    USGS Publications Warehouse

    Naftz, David L.; Angeroth, Cory E.; Freeman, Michael L.; Rowland, Ryan C.; Carling, Gregory

    2013-01-01

    Despite the ecological and economic importance of Great Salt Lake, only limited water quality monitoring has occurred historically. To change this, new monitoring stations and networks—gauges of lake level height and rate of inflow, moored buoys, and multiple lake-bottom sensors—will provide important information that can be used to make informed decisions regarding future management of the Great Salt Lake ecosystem.

  9. Dilatometric measurement of the partial molar volume of water sorbed to durum wheat flour.

    PubMed

    Hasegawa, Ayako; Ogawa, Takenobu; Adachi, Shuji

    2013-01-01

    Moisture sorption isotherms were measured at 25 °C for untreated, dry-heated and pre-gelatinized durum wheat flour samples. The isotherms could be expressed by the Guggenheim-Anderson-de Boer equation. The amount of water sorbed to the untreated flour was highest for low water activity, with water sorbed to the pre-gelatinized and dry-heated flour samples following. The dry-heated and pregelatinized flour samples exhibited the same dependence of the moisture content on the partial molar volume of water at 25 °C as the untreated flour. The partial molar volume of water was ca. 9 cm(3)/mol at a moisture content of 0.03 kg-H2O/kg-d.m. The volume increased with increasing moisture content, and reached a constant value of ca. 17.5 cm(3)/mol at a moisture content of 0.2 kg-H2O/kg-d.m. or higher.

  10. Determination of the Volume of Water for Suppressing the Thermal Decomposition of Forest Combustibles

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zhdanova, A. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-07-01

    From the results of experimental studies of the processes of suppressing the thermal decomposition of the typical forest combustibles (birch leaves, fir needles, asp twigs, and a mixture of these three materials) by water aerosol, the minimum volumes of the fire-extinguishing liquid have been determined (by varying the volume of samples of the forest combustibles from 0.00002 m3 to 0.0003 m3 and the area of their open surface from 0.0001 m2 to 0.018 m2). The dependences of the minimum volume of water on the area of the open surface of the forest combustible have been established. Approximation expressions for these dependences have been obtained. Forecast has been made of the minimum volume of water for suppressing the process of thermal decomposition of forest combustibles in areas from 1 cm2 to 1 km2, as well as of the characteristic quenching times by varying the water concentration per unit time. It has been shown that the amount of water needed for effective suppression of the process of thermal decomposition of forest combustibles is several times less than is customarily assumed.

  11. Dynamics of water in the amphiphilic pore of amyloid β fibrils

    NASA Astrophysics Data System (ADS)

    GhattyVenkataKrishna, Pavan K.; Mostofian, Barmak

    2013-09-01

    Alzheimers disease related amyloid peptide, Aβ, forms a fibrillar structure through aggregation. The aggregate is stabilized by a salt bridge that is responsible for the formation of an amphiphilic pore that can accommodate water molecules. None of the reported structures of Aβ, however, contain water. We present results from molecular dynamics simulations on dimeric Aβ fibrils solvated in water. Water penetrates and fills the amphiphilic pore increasing its volume. We observe a thick wire of water that is translationally and rotationally stiff in comparison to bulk water and may be essential for the stabilization of the amyloid Aβ protein.

  12. Economic impacts of urban flooding in South Florida: Potential consequences of managing groundwater to prevent salt water intrusion.

    PubMed

    Czajkowski, Jeffrey; Engel, Vic; Martinez, Chris; Mirchi, Ali; Watkins, David; Sukop, Michael C; Hughes, Joseph D

    2018-04-15

    High-value urban zones in coastal South Florida are considered particularly vulnerable to salt water intrusion into the groundwater-based, public water supplies caused by sea level rise (SLR) in combination with the low topography, existing high water table, and permeable karst substrate. Managers in the region closely regulate water depths in the extensive South Florida canal network to control closely coupled groundwater levels and thereby reduce the risk of saltwater intrusion into the karst aquifer. Potential SLR adaptation strategies developed by local managers suggest canal and groundwater levels may have to be increased over time to prevent the increased salt water intrusion risk to groundwater resources. However, higher canal and groundwater levels cause the loss of unsaturated zone storage and lead to an increased risk of inland flooding when the recharge from rainfall exceeds the capacity of the unsaturated zone to absorb it and the water table reaches the surface. Consequently, higher canal and groundwater levels are also associated with increased risk of economic losses, especially during the annual wet seasons. To help water managers and urban planners in this region better understand this trade-off, this study models the relationships between flood insurance claims and groundwater levels in Miami-Dade County. Via regression analyses, we relate the incurred number of monthly flood claims in 16 Miami-Dade County watersheds to monthly groundwater levels over the period from 1996 to 2010. We utilize these estimated statistical relationships to further illustrate various monthly flood loss scenarios that could plausibly result, thereby providing an economic quantification of a "too much water" trade-off. Importantly, this understanding is the first of its kind in South Florida and is exceedingly useful for regional-scale hydro-economic optimization models analyzing trade-offs associated with high water levels. Copyright © 2017 Elsevier B.V. All rights

  13. [Physicochemical quality of drinking water in Southern Algeria: study of excess mineral salts].

    PubMed

    Djellouli, H M; Taleb, S; Harrache-Chettouh, D; Djaroud, S

    2005-01-01

    The aim of this study was to determine the physicochemical composition of water intended for human consumption in several regions of Southern Algeria. Excess minerals in drinking water, including magnesium, calcium, sulfates and fluorides play a fundamental role in the prevention of urinary calculi, which are formed mainly from calcium oxalate. The ever-increasingly prevalence of this disorder and its recurrence make it a real public health problem in Algeria. The most elementary preventive treatment, recommended to all subjects with lithiasis, is to drink 2 to 3 L water distributed throughout the (24-hour) day. This study began by conducting a physicochemical analysis of the principal components of water from several sources. We will subsequently test it to examine the effects of its mineral salts on the crystallization kinetics of the principal component of calculi (calcium oxalate). The results indicate that 77.5 % of the samples had magnesium concentrations ([Mg 2+] > 50 mg/L), 95 % were sulfated, with sulfate ion concentrations exceeding the standard recommended by WHO ([SO4 2-] > 250 mg/L). Moreover, 57.5 % had excess fluoride levels, [F-] > 1.5 mg/L, and 65 % excessive calcium concentrations, with Ca 2+ > 150 mg/L.

  14. Quantification of Protozoa and Viruses from Small Water Volumes

    PubMed Central

    Bonilla, J. Alfredo; Bonilla, Tonya D.; Abdelzaher, Amir M.; Scott, Troy M.; Lukasik, Jerzy; Solo-Gabriele, Helena M.; Palmer, Carol J.

    2015-01-01

    Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The goals of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels. PMID:26114244

  15. Quantification of Protozoa and Viruses from Small Water Volumes.

    PubMed

    Bonilla, J Alfredo; Bonilla, Tonya D; Abdelzaher, Amir M; Scott, Troy M; Lukasik, Jerzy; Solo-Gabriele, Helena M; Palmer, Carol J

    2015-06-24

    Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation-IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.

  16. Municipal water reuse for urban agriculture in Namibia: Modeling nutrient and salt flows as impacted by sanitation user behavior.

    PubMed

    Woltersdorf, L; Scheidegger, R; Liehr, S; Döll, P

    2016-03-15

    Adequate sanitation, wastewater treatment and irrigation infrastructure often lacks in urban areas of developing countries. While treated, nutrient-rich reuse water is a precious resource for crop production in dry regions, excessive salinity might harm the crops. The aim of this study was to quantify, from a system perspective, the nutrient and salt flows a new infrastructure connecting water supply, sanitation, wastewater treatment and nutrient-rich water reuse for the irrigation of agriculture, from a system perspective. For this, we developed and applied a quantitative assessment method to understand the benefits and to support the management of the new water infrastructure in an urban area in semi-arid Namibia. The nutrient and salt flows, as affected by sanitation user behavior, were quantified by mathematical material flow analysis that accounts for the low availability of suitable and certain data in developing countries, by including data ranges and by assessing the effects of different assumptions in cases. Also the nutrient and leaching requirements of a crop scheme were calculated. We found that, with ideal sanitation use, 100% of nutrients and salts are reclaimed and the slightly saline reuse water is sufficient to fertigate 10 m(2)/cap/yr (90% uncertainty interval 7-12 m(2)/cap/yr). However, only 50% of the P contained in human excreta could be finally used for crop nutrition. During the pilot phase fewer sanitation users than expected used slightly more water per capita, used the toilets less frequently and practiced open defecation more frequently. Therefore, it was only possible to reclaim about 85% of nutrients from human excreta, the reuse water was non-saline and contained less nutrient so that the P was the limiting factor for crop fertigation. To reclaim all nutrients from human excreta and fertigate a larger agricultural area, sanitation user behavior needs to be improved. The results and the methodology of this study can be generalized and

  17. Evidence of carcinogenicity in humans of water-soluble nickel salts

    PubMed Central

    2010-01-01

    Background Increased risks of nasal cancer and lung cancer in nickel refiners have been investigated scientifically and discussed since they were detected in the 1930s. Nickel compounds are considered to be the main cause of the cancer excess. Parts of the nickel producing industry and their consultants oppose the classification of water-soluble nickel salts as human carcinogens, and argue that the risk in exposed workers should be ascribed to other occupational exposures and smoking. Discussion Respiratory cancer risks in Welsh, Finnish, and Norwegian nickel refiners add to the evidence of carcinogenicity of water-soluble nickel. In Norwegian refiners, the first epidemiological study in 1973 identified high risks of lung cancer and nasal cancer among long-term electrolysis workers. Risk analyses based on exposure estimates developed in the 1980s supported the view that water-soluble nickel compounds were central in the development of cancer. Recently, new exposure estimates were worked out for the same cohort based on personal monitoring of total nickel and chemical determination of four forms of nickel. Additional data have been collected on life-time smoking habits, and on exposure to arsenic, asbestos, sulphuric acid mists, cobalt, and occupational lung carcinogens outside the refinery. After adjustment for these potential confounding exposures in case-control analyses, the risk pattern added to the evidence of an important role of water-soluble nickel compounds as causes of lung cancer. These Norwegian cancer studies rely on national Cancer Registry data, considered close to complete from 1953 onwards; and on National Population Register data continuously updated with mortality and emigration. Canadian mortality studies--perceived to offer the strongest support to the industry position not to recognise carcinogenicity of water-soluble nickel--appear to suffer from limitations in follow-up time, loss to follow-up, absence of risk analysis with individual

  18. Reversed association between aldosterone and mortality in hemodialysis patients: Role of volume overload.

    PubMed

    Hung, Szu-Chun; Tarng, Der-Cherng

    2016-07-01

    The role of aldosterone has expanded from its genomic effects that involve renal sodium transport to nongenomic effects such as cardiac and renal fibrosis. Elevated aldosterone levels are associated with increased mortality in the general population. However, the association is reversed in patients with end-stage renal disease on maintenance hemodialysis. We have shown that the inverse association between aldosterone and mortality in hemodialysis patients is due to the confounding effect of volume overload. Volume overload, which is prevalent in patients with chronic kidney disease, is associated with both lower aldosterone concentrations and higher mortality. Our findings support salt and water restriction and treatment of hyperaldosteronemia in hemodialysis patients who have achieved strict volume control. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Numerical investigation of road salt impact on an urban wellfield.

    PubMed

    Bester, M L; Frind, E O; Molson, J W; Rudolph, D L

    2006-01-01

    The impact of road salt on a wellfield in a complex glacial moraine aquifer system is studied by numerical simulation. The moraine underlies an extensive urban and industrial landscape, which draws its water supply from >20 wellfields, several of which are approaching or have exceeded the drinking water limit for chloride. The study investigates the mechanisms of road salt infiltration, storage, and transport in the subsurface and assesses the effectiveness of mitigation measures designed to reduce the impact. The three-dimensional transport model accounts for increases in salt loading, as well as growth of the urbanized area and road network over the past 50 years. The simulations, which focus on one impacted wellfield, show chloride plumes originating mainly at arterial roads and migrating through aquitard windows into the water supply aquifers. The results suggest that the aquifer system contains a large and heterogeneously distributed mass of chloride and that concentrations in the aquifer can be substantially higher than the concentrations in the well water. Future impact scenarios indicate that although the system responds rapidly to reductions in salt loading, the residual chloride mass may take decades to flush out, even if road salting were discontinued. The implications with respect to urban wellfields in typical snow-belt areas are discussed.

  20. Flow strength of highly hydrated Mg- and Na-sulfate hydrate salts, pure and in mixtures with water ice, with application to Europa

    USGS Publications Warehouse

    Durham, W.B.; Stern, L.A.; Kubo, T.; Kirby, S.H.

    2005-01-01

    We selected two Europan-ice-shell candidate highly hydrated sulfate salts for a laboratory survey of ductile flow properties: MgSO4 ?? 7H2O (epsomite) and Na2SO4 ?? 10H2O (mirabilite), called MS7 and NS10, respectively. Polycrystalline samples in pure form and in mixtures with water ice I were tested using our cryogenic high-pressure creep apparatus at temperatures 232 ??? T ??? 294 K, confining pressures P = 50 and 100 MPa, and strain rates 4 ?? 10-8 ??? ???dot;e ??? 7 ?? 10-5 s-1. Grain size of NS10 samples was > 100 ??m. The flow strength ?? of pure MS7 was over 100 times that of polycrystalline ice I at comparable conditions; that of pure NS10 over 20 times that of ice. In terms of the creep law ???dot;e = A??n e-Q/RT, where R is the gas constant, we determine parameter values of A = 1012.1 MPa-ns-1, n = 5.4, and Q = 128 kJ/mol for pure NS10. Composites of ice I and NS10 of volume fraction ?? NS10 have flow strength ??c = [??NS10??NS10J + (1 - ?? NS10)??iceIJ]1/J where J ??? -0.5, making the effect on the flow of ice with low volume fractions of NS10 much like that of virtually undeformable hard rock inclusions. Being much stronger and denser than ice, massive sulfate inclusions in the warmer, ductile layer of the Europan ice shell are less likely to be entrained in convective ice flow and more likely to be drawn to the base of the ice shell by gravitational forces and eventually expelled. With only smaller, dispersed sulfate inclusions, at probable sulfate ?? < 0.2, the shell may be treated rheologically as pure, polycrystalline ice, with boundary conditions perhaps influenced by the high density and low thermal conductivity of the hydrated salts. Copyright 2005 by the American Geophysical Union.

  1. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts.

    PubMed

    Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T

    2013-01-01

    The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water

  2. Ex vivo assessment and validation of water exchange performance of 23 heat and moisture exchangers for laryngectomized patients.

    PubMed

    van den Boer, Cindy; Muller, Sara H; Vincent, Andrew D; van den Brekel, Michiel W M; Hilgers, Frans J M

    2014-08-01

    Breathing through a tracheostoma results in insufficient warming and humidification of the inspired air. This loss of air conditioning, especially humidification, can be partially restored with the application of a heat and moisture exchanger (HME) over the tracheostoma. For medical professionals, it is not easy to judge differences in water exchange performance of various HMEs owing to the lack of universal outcome measures. This study has three aims: assessment of the water exchange performance of commercially available HMEs for laryngectomized patients, validation of these results with absolute humidity outcomes, and assessment of the role of hygroscopic salt present in some of the tested HMEs. Measurements of weight and absolute humidity at end inspiration and end expiration at different breathing volumes of a healthy volunteer were performed using a microbalance and humidity sensor. Twenty-three HMEs from 6 different manufacturers were tested. Associations were determined between core weight, weight change, breathing volume, and absolute humidity, using both linear and nonlinear mixed effects models. Water exchange of the 23 HMEs at a breathing volume of 0.5 L varies between 0.5 and 3.6 mg. Both water exchange and wet core weight correlate strongly with the end-inspiratory absolute humidity values (r2 =0.89/0.87). Hygroscopic salt increases core weight. The 23 tested HMEs for laryngectomized patients show wide variation in water exchange performance. Water exchange correlates well with the end-inspiratory absolute humidity outcome, which validates the ex vivo weight change method. Wet core weight is a predictor of HME performance. Hygroscopic salt increases the weight of the core material. The results of this study can help medical professionals to obtain a more founded opinion about the performance of available HMEs for pulmonary rehabilitation in laryngectomized patients, and allow them to make an informed decision about which HME type to use.

  3. Relation between species assemblages of fishes and water quality in salt ponds and sloughs in South San Francisco Bay

    USGS Publications Warehouse

    Mejia, F.; Saiki, M.K.; Takekawa, John Y.

    2008-01-01

    This study was conducted to characterize fishery resources inhabiting salt-evaporation ponds and sloughs in South San Francisco Bay, and to identify key environmental variables that influence distribution of fishes. The ponds, which were originally constructed and operated for commercial production of salt, have undergone preliminary modifications (installation of culverts, gates, and other water-control structures) in preparation for full restoration to mostly tidal wetlands over the next 2 decades. We sampled fish from two salt-pond complexes (Alviso complex and Eden Landing complex), each consisting of several pond systems and their associated sloughs. Cluster analysis of species of fish indicated that at least two species assemblages were present, one characteristic of ponds and the other characteristic of sloughs and slough-like ponds. The slough-like ponds exhibited water-quality conditions (especially salinity) that resembled conditions found in the sloughs. Pond fishes were represented by 12 species, whereas slough fishes were represented by 22 species. Except for bay pipefish (Syngnathus leptorhynchus), which was unique to ponds, all species present in ponds also were in sloughs and slough-like ponds. These results indicated that species of fish in ponds originated from the sloughs. According to canonical-discriminant analysis, four environmental variables were useful for discriminating between the two species assemblages. Most discriminatory power was contributed by the index of habitat connectivity, a measure of minimum distance that a fish must travel to reach a particular pond from the nearest slough. Apparently, as fish from sloughs enter and move through interconnected salt ponds, environmental stress factors increase in severity until only the more tolerant species remain. The most likely source of stress is salinity, because this variable was second in importance to the index of habitat connectivity in discriminating between the two species

  4. Effects of road salts on groundwater and surface water dynamics of socium and chloride in an urban restored stream

    EPA Science Inventory

    Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...

  5. PLANNING MODELS FOR URBAN WATER SUPPLY EXPANSION. VOLUME 1. PLANNING FOR THE EXPANSION OF REGIONAL WATER SUPPLY SYSTEMS

    EPA Science Inventory

    A three-volume report was developed relative to the modelling of investment strategies for regional water supply planning. Volume 1 is the study of capacity expansion over time. Models to aid decision making for the deterministic case are presented, and a planning process under u...

  6. Water resources data, Ohio, water year 2003 : Volume 1. Ohio River basin excluding project data

    USGS Publications Warehouse

    Shindel, H.L.; Mangus, J.P.; Frum, S.R.

    2004-01-01

    Water-resources data for the 2003 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 138 gaging stations and various partial-record sites; water levels at 217 observation wells and 35 crest-stage gages; and water quality at 30 gaging stations, 34 observation wells, and no partial-record sites. Also included are data from miscellaneous and synoptic sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Information System collected by the U.S. Geological Survey and cooperating Federal, State, and local agencies in Ohio.

  7. Geochemical evolution of Great Salt Lake, Utah, USA

    USGS Publications Warehouse

    Jones, B.F.; Naftz, D.L.; Spencer, R.J.; Oviatt, Charles G.

    2009-01-01

    The Great Salt Lake (GSL) of Utah, USA, is the largest saline lake in North America, and its brines are some of the most concentrated anywhere in the world. The lake occupies a closed basin system whose chemistry reflects solute inputs from the weathering of a diverse suite of rocks in its drainage basin. GSL is the remnant of a much larger lacustrine body, Lake Bonneville, and it has a long history of carbonate deposition. Inflow to the lake is from three major rivers that drain mountain ranges to the east and empty into the southern arm of the lake, from precipitation directly on the lake, and from minor groundwater inflow. Outflow is by evaporation. The greatest solute inputs are from calcium bicarbonate river waters mixed with sodium chloride-type springs and groundwaters. Prior to 1930 the lake concentration inversely tracked lake volume, which reflected climatic variation in the drainage, but since then salt precipitation and re-solution, primarily halite and mirabilite, have periodically modified lake-brine chemistry through density stratification and compositional differentiation. In addition, construction of a railway causeway has restricted circulation, nearly isolating the northern from the southern part of the lake, leading to halite precipitation in the north. These and other conditions have created brine differentiation, mixing, and fractional precipitation of salts as major factors in solute evolution. Pore fluids and diagenetic reactions have been identified as important sources and especially sinks for CaCO3, Mg, and K in the lake, depending on the concentration gradient and clays. ?? U.S. Geological Survey 2008.

  8. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  9. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  10. Waste Isolation Pilot Plant Salt Decontamination Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmer, Ricky Lynn; Reese, Stephen Joseph

    2015-03-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. Several practical, easily deployable methods of decontaminating WIPP salt, using a surrogate contaminant and americium (241Am), were developed and tested. The effectiveness of the methods is evaluated qualitatively, and to the extent practical, quantitatively. Of the methods tested (dry brushing, vacuum cleaning, water washing, mechanical grinding, strippable coatings, and fixative barriers), the most practical seems to be water washing. Effectiveness is very high, and water washing is easy and rapid to deploy. The amount of wastewater produced (~2 L/m2) would bemore » substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from water washed coupons found no residual removable contamination. Thus, whatever contamination is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.« less

  11. Fetal bile salt metabolism

    PubMed Central

    Smallwood, R. A.; Lester, R.; Piasecki, G. J.; Klein, P. D.; Greco, R.; Jackson, B. T.

    1972-01-01

    for less than 5% of the dose. Fetal bile volume increased 15-fold on average, while bile salt concentrations increased two- to threefold. It is concluded that bile salt is taken up, conjugated, and excreted by the fetal liver with remarkable efficiency. The excreted material is either stored and concentrated in the fetal gallbladder or released into the intestine and reabsorbed to be reexcreted in bile. PMID:5063379

  12. The Effects of Salt Water on Mechanical Properties of Glacial Ice

    NASA Astrophysics Data System (ADS)

    Holt, R. A.; McCarthy, C.

    2017-12-01

    An improved understanding of the mechanical properties of glacial ice, including factors that may change them, is essential for understanding vulnerability of ice sheets to climate change. It is understood that the temperature of intruding subglacial seawater affects the melting of glacial ice and therefore destabilizes ice shelves, but we hypothesize that seawater bathing the bottom of the glacier may also influence mechanical properties such as friction and elastic modulus. We undertook experiments to determine how the presence of saline solution at grain boundaries of ice might lead to weaker behavior. We created an ice sample by finely grinding and sieving seed ice, pressing it into a rectangular mold, and flooding with a 3.5wt% saline solution. We then quickly brought it to subsolidus (-22°) to completely freeze. The bulk composition of the sample was determined by refractive index to be 0.28wt%. Microstructural characterization of the sample indicates that, above the solidus, the melt phase was located at grain triple junctions and along grain boundaries. To test the frictional behavior of ice with saline sliding against rock, we used a cryo-biaxial apparatus designed to simulate the basal sliding of glacial ice. The experiments were run in the double direct configuration at 100 KPa normal stress and at T=-5°. The results demonstrate that ice containing a liquid saline solution has lower steady state friction than pure ice at the same conditions, and therefore can slip at a faster velocity. In addition to the bi-axial experiment we determined the elastic properties using an ultrasonic velocity testing system. P waves velocities through the saline ice sample were consistent with published values (Spencer et al., 1968, JGR). We also used both measured and estimated values to calculate the Young's modulus. We found that ice containing salt water has a lower Young's modulus than that of pure ice. Salt water significantly changes the mechanical properties of

  13. Estimating water volume stored in the south-eastern Greenland firn aquifer using magnetic-resonance soundings

    NASA Astrophysics Data System (ADS)

    Legchenko, Anatoly; Miège, Clément; Koenig, Lora S.; Forster, Richard R.; Miller, Olivia; Solomon, D. K.; Schmerr, Nicholas; Montgomery, Lynn; Ligtenberg, Stefan; Brucker, Ludovic

    2018-03-01

    Recent observations of the Greenland ice sheet show an increase of the area affected by progressive melt of snow and ice, thus resulting in production of the additional meltwater. In 2011, an important storage of meltwater in the firn has been observed in the S-E Greenland. This water does not freeze during the wintertime and forms a perennial firn aquifer. The aquifer spatial extent has been initially monitored with combined ground and airborne radar observations, but these geophysical techniques are not able to inform us on the amount of meltwater stored at depth. In this study, we use the magnetic resonance soundings (MRS) method for estimating the volume of water stored in the Greenland ice sheet firn and mapping its spatial variability. Our study area covers a firn aquifer along a 16-km E-W transect, ranging between elevations of 1520 and 1760 m. In July 2015 and July 2016, we performed MRS measurements that allow estimating the water volume in the studied area as well as the one-year water volume evolution. Water storage is not homogeneous, fluctuating between 0.2 and 2 m3/m2, and contains discontinuities in the hydrodynamic properties. We estimate an average volume of water stored in the firn in 2016 to be 0.76 m3/m2, which corresponds to a 0.76-m-thick layer of bulk water. MRS monitoring reveals that from April 2015 to July 2016 the volume of water stored at the location of our transect increases by about 36%. We found MRS-estimated depth to water in a good agreement with that obtained with the ground penetrating radar (GPR).

  14. South Bay Salt Pond Mercury Studies Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Mercury Studies Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  15. The SALT HRS Spectrograph

    NASA Astrophysics Data System (ADS)

    Tyas, Luke Martin Graham

    2012-05-01

    SALT HRS (Southern African Large Telescope High Resolution Échelle Spectrograph) is a high-resolution, high-efficiency spectrograph for the 11m SALT telescope in Sutherland, South Africa. The initial optical design work was performed at the University of Canterbury, New Zealand. Revisions to the concept, the mechanical design, manufacture, assembly and testing have been handled by the Centre for Advanced Instrumentation, at Durham University in the United Kingdom. SALT HRS is a fibre-fed échelle grating spectrograph with four operational modes: low-, medium- and high-resolution and high-stability modes, having spectral resolutions of R≈16000, 37000, 67000 and 67000 respectively over a wavelength range of 370-890nm. The instrument is of a dual channel, 'white pupil' design, in which the primary mirror acts to collimate light onto a single R4 échelle grating, and also to focus dispersed light to an intermediate focus. A dichroic beam-splitter separates the dispersed light into two separate spectral channels. Spherical pupil mirrors transfer the separated beams via a fold mirror to two wavelength-specific volume-phase holographic gratings (VPHGs) used as cross-dispersers. Cross-dispersed spectra are then imaged by two fully dioptric camera systems onto optimized CCD detectors. This thesis presents the results of the laboratory testing and specification of several critical sub-systems of SALT HRS, as well as the development of key software tools for the design verification and operation at the telescope. In Chapter 1 we first review the technical development of high-resolution spectroscopy and its specific implementation in SALT HRS. In Chapter 2 we develop a comprehensive throughput model of the entire system based on a combination of as-built performance and specific throughput measurements in the laboratory. This is used to make some specific predictions for the on-sky performance of SALT HRS and the magnitude limits for science targets. We also present a

  16. Synthesis, crystal structure and antitumor activities of water soluble protonated salt of 20(S)-camptothecin

    NASA Astrophysics Data System (ADS)

    Lu, Wen; Wang, Yong; Wang, Luna; Zhao, Fengyi; Yang, Shilong; Xi, Chengjie; Yang, Yu; Xu, Li; Chi, Xingwei

    2018-03-01

    A water soluble camptothecin protonated salt has been synthesized; single crystals were grown by slow evaporation solution growth technique at room temperature and characterized by single crystal X-ray diffraction, FT-IR and 1H NMR. The CPT was protonated as (CPT+H+) cations, the cationic protonation occurred on the N position at pyridine group, which fromed a cation-anion compound with perchlorate ion that determined by X-Ray diffraction. Its activities against Hela (cervix), MCF-7 (breast), A549 (lung), HepG2 (liver) and HUVEC (umbilical vein, normal cell) were investigated. The toxicity of the protonated salt was slightly lower than camptothecin. IC50 values of 7.01 μM against HepG-2 cell, 8.61 μM against A549 cell, 17.82 μM against McF-7 cell, all of them are lower than the IC50 values of CPT against these cells except Hela cell.

  17. Salt enrichment of municipal sewage: New prevention approaches in Israel

    NASA Astrophysics Data System (ADS)

    Weber, Baruch; Avnimelech, Yoram; Juanico, Marcelo

    1996-07-01

    Wastewater irrigation is an environmentally sound wastewater disposal practice, but sewage is more saline than the supplied fresh water and the salts are recycled together with the water. Salts have negative environmental effects on crops, soils, and groundwater. There are no inexpensive ways to remove the salts once they enter sewage, and the prevention of sewage salt enrichment is the most immediately available solution. The body of initiatives presently structured by the Ministry of the Environment of Israel are herein described, with the aim to contribute to the search for a long-term solution of salinity problems in arid countries. The new initiatives are based on: (1) search for new technologies to reduce salt consumption and discharge into sewage; (2) different technologies to cope with different situations; (3) raising the awareness of the public and industry on the environmental implications of salinity pollution; and (4) an elastic legal approach expressed through new state-of-the-art regulations. The main contributor to the salinity of sewage in Israel is the watersoftening process followed by the meat koshering process. Some of the adopted technical solutions are: the discharge of the brine into the sea, the substitution of sodium by potassium salts in the ion-exchangers, the construction of centralized systems for the supply of soft water in industrial areas, the precipitation of Ca and Mg in the effluents from ion-exchangers and recycling of the NaCI solution, a reduction of the discharge of salts by the meat koshering process, and new membrane technology for salt recovery.

  18. Residual volume on land and when immersed in water: effect on percent body fat.

    PubMed

    Demura, Shinichi; Yamaji, Shunsuke; Kitabayashi, Tamotsu

    2006-08-01

    There is a large residual volume (RV) error when assessing percent body fat by means of hydrostatic weighing. It has generally been measured before hydrostatic weighing. However, an individual's maximal exhalations on land and in the water may not be identical. The aims of this study were to compare residual volumes and vital capacities on land and when immersed to the neck in water, and to examine the influence of the measurement error on percent body fat. The participants were 20 healthy Japanese males and 20 healthy Japanese females. To assess the influence of the RV error on percent body fat in both conditions and to evaluate the cross-validity of the prediction equation, another 20 males and 20 females were measured using hydrostatic weighing. Residual volume was measured on land and in the water using a nitrogen wash-out technique based on an open-circuit approach. In water, residual volume was measured with the participant sitting on a chair while the whole body, except the head, was submerged . The trial-to-trial reliabilities of residual volume in both conditions were very good (intraclass correlation coefficient > 0.98). Although residual volume measured under the two conditions did not agree completely, they showed a high correlation (males: 0.880; females: 0.853; P < 0.05). The limits of agreement for residual volumes in both conditions using Bland-Altman plots were -0.430 to 0.508 litres. This range was larger than the trial-to-trial error of residual volume on land (-0.260 to 0.304 litres). Moreover, the relationship between percent body fat computed using residual volume measured in both conditions was very good for both sexes (males: r = 0.902; females: r = 0.869, P < 0.0001), and the errors were approximately -6 to 4% (limits of agreement for percent body fat: -3.4 to 2.2% for males; -6.3 to 4.4% for females). We conclude that if these errors are of no importance, residual volume measured on land can be used when assessing body composition.

  19. Solvation of actinide salts in water using a polarizable continuum model.

    PubMed

    Kumar, Narendra; Seminario, Jorge M

    2015-01-29

    In order to determine how actinide atoms are dressed when solvated in water, density functional theory calculations have been carried out to study the equilibrium structure of uranium plutonium and thorium salts (UO2(2+), PuO2(2+), Pu(4+), and Th(4+)) both in vacuum as well as in solution represented by a conductor-like polarizable continuum model. This information is of paramount importance for the development of sensitive nanosensors. Both UO2(2+) and PuO2(2+) ions show coordination number of 4-5 with counterions replacing one or two water molecules from the first coordination shell. On the other hand, Pu(4+), has a coordination number of 8 both when completely solvated and also in the presence of chloride and nitrate ions with counterions replacing water molecules in the first shell. Nitrates were found to bind more strongly to Pu(IV) than chloride anions. In the case of the Th(IV) ion, the coordination number was found to be 9 or 10 in the presence of chlorides. Moreover, the Pu(IV) ion shows greater affinity for chlorides than the Th(IV) ion. Adding dispersion and ZPE corrections to the binding energy does not alter the trends in relative stability of several conformers because of error cancelations. All structures and energetics of these complexes are reported.

  20. Effects of Chloride and Sulfate Salts on the Inhibition or Promotion of Sucrose Crystallization in Initially Amorphous Sucrose-Salt Blends.

    PubMed

    Thorat, Alpana A; Forny, Laurent; Meunier, Vincent; Taylor, Lynne S; Mauer, Lisa J

    2017-12-27

    The effects of salts on the stability of amorphous sucrose and its crystallization in different environments were investigated. Chloride (LiCl, NaCl, KCl, MgCl 2 , CaCl 2 , CuCl 2 , FeCl 2 , FeCl 3 , and AlCl 3 ) and sulfate salts with the same cations (Na 2 SO 4 , K 2 SO 4 , MgSO 4 , CuSO 4 , Fe(II)SO 4 , and Fe(III)SO 4 ) were studied. Samples (sucrose controls and sucrose:salt 1:0.1 molar ratios) were lyophilized, stored in controlled temperature and relative humidity (RH) conditions, and monitored for one month using X-ray diffraction. Samples were also analyzed by differential scanning calorimetry, microscopy, and moisture sorption techniques. All lyophiles were initially amorphous, but during storage the presence of a salt had a variable impact on sucrose crystallization. While all samples remained amorphous when stored at 11 and 23% RH at 25 °C, increasing the RH to 33 and 40% RH resulted in variations in crystallization onset times. The recrystallization time generally followed the order monovalent cations < sucrose < divalent cations < trivalent cations. The presence of a salt typically increased water sorption as compared to sucrose alone when stored at the same RH; however, anticrystallization effects were observed for sucrose combined with salts containing di- and trivalent cations in spite of the increased water content. The cation valency and hydration number played a major role in dictating the impact of the added salt on sucrose crystallization.