Sample records for salton seismic imaging

  1. The Salton Seismic Imaging Project (SSIP): Rift Processes and Earthquake Hazards in the Salton Trough (Invited)

    NASA Astrophysics Data System (ADS)

    Hole, J. A.; Stock, J. M.; Fuis, G. S.; Rymer, M. J.; Murphy, J. M.; Sickler, R. R.; Criley, C. J.; Goldman, M.; Catchings, R. D.; Ricketts, J. W.; Gonzalez-Fernandez, A.; Driscoll, N.; Kent, G.; Harding, A. J.; Klemperer, S. L.

    2009-12-01

    The Salton Seismic Imaging Project (SSIP) and coordinated projects will acquire seismic data in and across the Salton Trough in southern California and northern Mexico, including the Coachella, Imperial, and Mexicali Valleys. These projects address both rifting processes at the northern end of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. In the central Salton Trough, North American lithosphere appears to have been rifted completely apart. Based primarily on a 1979 seismic refraction project, the 20-22 km thick crust is apparently composed entirely of new crust added by magmatism from below and sedimentation from above. The new data will constrain the style of continental breakup, the role and mode of magmatism, the effects of rapid Colorado River sedimentation upon extension and magmatism, and the partitioning of oblique extension. The southernmost San Andreas Fault is considered at high risk of producing a large damaging earthquake, yet structures of the fault and adjacent basins are poorly constrained. To improve hazard models, SSIP will image the geometry of the San Andreas and Imperial Faults, structure of sedimentary basins in the Salton Trough, and three-dimensional seismic velocity of the crust and uppermost mantle. SSIP and collaborating projects have been funded by several different programs at NSF and the USGS. These projects include seven lines of land refraction and low-fold reflection data, airguns and OBS data in the Salton Sea, coordinated fieldwork for onshore-offshore and 3-D data, and a densely sampled line of broadband stations across the trough. Fieldwork is tentatively scheduled for 2010. Preliminary work in 2009 included calibration shots in the Imperial Valley that quantified strong ground motion and proved lack of harm to agricultural irrigation tile drains from explosive shots. Piggyback and complementary studies are encouraged.

  2. The Salton Seismic Imaging Project: Seismic velocity structure of the Brawley Seismic Zone, Salton Buttes and Geothermal Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Delph, J.; Hole, J. A.; Fuis, G. S.; Stock, J. M.; Rymer, M. J.

    2011-12-01

    The Salton Trough is an active rift in southern California in a step-over between the plate-bounding Imperial and San Andreas Faults. In March 2011, the Salton Seismic Imaging Project (SSIP) investigated the rift's crustal structure by acquiring several seismic refraction and reflection lines. One of the densely sampled refraction lines crosses the northern-most Imperial Valley, perpendicular to the strike-slip faults and parallel to a line of small Quaternary rhyolitic volcanoes. The line crosses the obliquely extensional Brawley Seismic Zone and goes through one of the most geothermally productive areas in the United States. Well logs indicate the valley is filled by several kilometers of late Pliocene-recent lacustrine, fluvial, and shallow marine sediment. The 42-km long seismic line was comprised of eleven 110-460 kg explosive shots and receivers at a 100 m spacing. First arrival travel times were used to build a tomographic seismic velocity image of the upper crust. Velocity in the valley increases smoothly from <2 km/s to >5 km/s, indicating diagenesis and gradational metamorphism of rift sediments at very shallow depth due to an elevated geotherm. The velocity gradient is much smaller in the relatively low velocity (<6 km/s) crystalline basement comprised of recently metamorphosed sediment reaching greenschist to lower amphibolite facies. The depth of this basement is about 4-km below the aseismic region of the valley west of the Brawley Seismic Zone, but rises sharply to ~2 km depth beneath the seismically, geothermally, and volcanically active area of the Brawley Seismic Zone. The basement deepens to the northeast of the active tectonic zone and then is abruptly offset to shallower depth on the northeast side of the valley. This offset may be the subsurficial expression of a paleofault, most likely an extension of the Sand Hills Fault, which bounds the basin to the east. Basement velocity east of the fault is ~5.7 km/s, consistent with the granitic rocks

  3. Calibration Shots Recorded for the Salton Seismic Imaging Project, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Murphy, J. M.; Rymer, M. J.; Fuis, G. S.; Stock, J. M.; Goldman, M.; Sickler, R. R.; Miller, S. A.; Criley, C. J.; Ricketts, J. W.; Hole, J. A.

    2009-12-01

    The Salton Seismic Imaging Project (SSIP) is a collaborative venture between the U.S. Geological Survey, California Institute of Technology, and Virginia Polytechnic Institute and State University, to acquire seismic reflection/wide angle refraction data, and currently is scheduled for data acquisition in 2010. The purpose of the project is to get a detailed subsurface 3-D image of the structure of the Salton Trough (including both the Coachella and Imperial Valleys) that can be used for earthquake hazards analysis, geothermal studies, and studies of the transition from ocean-ocean to continent-continent plate-boundary. In June 2009, a series of calibration shots were detonated in the southern Imperial Valley with specific goals in mind. First, these shots were used to measure peak particle velocity and acceleration at various distances from the shots. Second, the shots were used to calibrate the propagation of energy through sediments of the Imperial Valley. Third, the shots were used to test the effects of seismic energy on buried clay drainage pipes, which are abundant throughout the irrigated parts of the Salton Trough. Fourth, we tested the ODEX drilling technique, which uses a down-hole casing hammer for a tight casing fit. Information obtained from the calibration shots will be used for final planning of the main project. The shots were located in an unused field adjacent to Hwy 7, about 6 km north of the U.S. /Mexican border (about 18 km southeast of El Centro). Three closely spaced shot points (16 meters apart) were aligned N-S and drilled to 21-m, 23.5-m, and 27-m depth. The holes were filled with 23-kg, 68-kg, and 123-kg of ammonium-nitrate explosive, respectively. Four instrument types were used to record the seismic energy - six RefTek RT130 6-channel recorders with a 3-component accelerometer and a 3-component 2-Hz velocity sensor, seven RefTek RT130 3-channel recorders with a 3-component 4.5-Hz velocity sensor, 35 Texans with a vertical component 4

  4. Structure of the active rift zone and margins of the northern Imperial Valley from Salton Seismic Imaging Project (SSIP) data

    NASA Astrophysics Data System (ADS)

    Livers, A.; Han, L.; Delph, J. R.; White-Gaynor, A. L.; Petit, R.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2012-12-01

    First-arrival refraction data were used to create a seismic velocity model of the upper crust across the actively rifting northern Imperial Valley and its margins. The densely sampled seismic refraction data were acquired by the Salton Seismic Imaging Project (SSIP) , which is investigating rift processes in the northern-most rift segment of the Gulf of California extensional province and earthquake hazards at the southern end of the San Andreas Fault system. A 95-km long seismic line was acquired across the northern Imperial Valley, through the Salton Sea geothermal field, parallel to the five Salton Butte volcanoes and perpendicular to the Brawley Seismic Zone and major strike-slip faults. Nineteen explosive shots were recorded with 100 m seismometer spacing across the valley and with 300-500 m spacing into the adjacent ranges. First-arrival travel times were picked from shot gathers along this line and a seismic velocity model was produced using tomographic inversion. Sedimentary basement and seismic basement in the valley are interpreted to be sediment metamorphosed by the very high heat flow. The velocity model shows that this basement to the west of the Brawley Seismic Zone is at ~4-km depth. The basement shallows to ~2-km depth in the active geothermal field and Salton Buttes volcanic field which locally coincide with the Brawley Seismic Zone. At the eastern edge of the geothermal field, the basement drops off again to ~3.5-km depth. The eastern edge of the valley appears to be fault bounded by the along-strike extension of the Sand Hills Fault, an inactive strike-slip fault. The seismic velocities to the east of the fault correspond to metamorphic rock of the Chocolate Mountains, different from the metamorphosed basement in the valley. The western edge of the valley appears to be fault bounded by the active Superstition Hills Fault. To the west of the valley, >4-km deep valley basement extends to the active Superstition Hills Fault. Basement then shallows

  5. The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough

    NASA Astrophysics Data System (ADS)

    Kell, Anna Marie

    The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery

  6. The Salton Seismic Imaging Project: Tomographic characterization of a sediment-filled rift valley and adjacent ranges, southern California

    NASA Astrophysics Data System (ADS)

    Davenport, K.; Hole, J. A.; Stock, J. M.; Fuis, G. S.; Carrick, E.; Tikoff, B.

    2011-12-01

    The Salton Trough in Southern California represents the northernmost rift of the Gulf of California extensional system. Relative motion between the Pacific and North American plates is accommodated by continental rifting in step-over zones between the San Andreas, Imperial, and Cerro Prieto transform faults. Rapid sedimentation from the Colorado River has isolated the trough from the southern portion of the Gulf of California, progressively filling the subsiding rift basin. Based on data from previous seismic surveys, the pre-existing continent has ruptured completely, and a new ~22 km thick crust has been created entirely by sedimentation overlying rift-related magmatism. The MARGINS, EarthScope, and USGS-funded Salton Seismic Imaging Project (SSIP) was designed to investigate the nature of this new crust, the ongoing process of continental rifting, and associated earthquake hazards. SSIP, acquired in March 2011, comprises 7 lines of onshore seismic refraction / wide-angle reflection data, 2 lines of refraction / reflection data in the Salton Sea, and a line of broadband stations. This presentation focuses on the refraction / wide-angle reflection line across the Imperial Valley, extending ~220 km across California from Otay Mesa, near Tijuana, to the Colorado River. The data from this line includes seventeen 100-160 kg explosive shots and receivers at 100 m spacing across the Imperial Valley to constrain the structure of the Salton Trough rift basin, including the Imperial Fault. Eight larger shots (600-920 kg) at 20-35 km spacing and receivers at 200-500 m spacing extend the line across the Peninsular Ranges and the Chocolate Mountains. These data will contrast the structure of the rift to that of the surrounding crust and provide constraints on whole-crust and uppermost mantle structure. Preliminary work has included tomographic inversion of first-arrival travel times across the Valley, emphasizing a minimum-structure approach to create a velocity model of the

  7. Borehole-explosion and air-gun data acquired in the 2011 Salton Seismic Imaging Project (SSIP), southern California: description of the survey

    USGS Publications Warehouse

    Rose, Elizabeth J.; Fuis, Gary S.; Stock, Joann M.; Hole, John A.; Kell, Annie M.; Kent, Graham; Driscoll, Neal W.; Goldman, Mark; Reusch, Angela M.; Han, Liang; Sickler, Robert R.; Catchings, Rufus D.; Rymer, Michael J.; Criley, Coyn J.; Scheirer, Daniel S.; Skinner, Steven M.; Slayday-Criley, Coye J.; Murphy, Janice M.; Jensen, Edward G.; McClearn, Robert; Ferguson, Alex J.; Butcher, Lesley A.; Gardner, Max A.; Emmons, Iain; Loughran, Caleb L.; Svitek, Joseph R.; Bastien, Patrick C.; Cotton, Joseph A.; Croker, David S.; Harding, Alistair J.; Babcock, Jeffrey M.; Harder, Steven H.; Rosa, Carla M.

    2013-01-01

    The Imperial and Coachella Valleys are being formed by active plate-tectonic processes. From the Imperial Valley southward into the Gulf of California, plate motions are rifting the continent apart. In the Coachella Valley, the plates are sliding past one another along the San Andreas and related faults (fig. 1). These processes build the stunning landscapes of the region, but also produce damaging earthquakes. Rupture of the southern section of the San Andreas Fault (SAF), from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard that California will face in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of infrastructure (freeways, aqueducts, power, petroleum, and communication lines) that might bring much of southern California to a standstill. As part of the nation’s efforts to avert a catastrophe of this magnitude, a number of projects have been undertaken to more fully understand and mitigate the effects of such an event. The Salton Seismic Imaging Project (SSIP), funded jointly by the National Science Foundation (NSF) and the U.S. Geological Survey (USGS), seeks to understand, through seismic imaging, the structure of the Earth surrounding the SAF, including the sedimentary basins on which cities are built. The principal investigators (PIs) of this collaborative project represent the USGS, Virginia Polytechnic Institute and State University (Virginia Tech), California Institute of Technology (Caltech), Scripps Institution of Oceanography (Scripps), University of Nevada, Reno (UNR), and Stanford University. SSIP will create images of underground structure and sediments in the Imperial and Coachella Valleys and adjacent mountain ranges to investigate the earthquake hazards posed to cities in this area. Importantly, the images will help determine the underground geometry of the SAF, how deep the sediments are, and how fast

  8. Seismic calibration shots conducted in 2009 in the Imperial Valley, southern California, for the Salton Seismic Imaging Project (SSIP)

    USGS Publications Warehouse

    Murphy, Janice; Goldman, Mark; Fuis, Gary; Rymer, Michael; Sickler, Robert; Miller, Summer; Butcher, Lesley; Ricketts, Jason; Criley, Coyn; Stock, Joann; Hole, John; Chavez, Greg

    2011-01-01

    Rupture of the southern section of the San Andreas Fault, from the Coachella Valley to the Mojave Desert, is believed to be the greatest natural hazard facing California in the near future. With an estimated magnitude between 7.2 and 8.1, such an event would result in violent shaking, loss of life, and disruption of lifelines (freeways, aqueducts, power, petroleum, and communication lines) that would bring much of southern California to a standstill. As part of the Nation's efforts to prevent a catastrophe of this magnitude, a number of projects are underway to increase our knowledge of Earth processes in the area and to mitigate the effects of such an event. One such project is the Salton Seismic Imaging Project (SSIP), which is a collaborative venture between the United States Geological Survey (USGS), California Institute of Technology (Caltech), and Virginia Polytechnic Institute and State University (Virginia Tech). This project will generate and record seismic waves that travel through the crust and upper mantle of the Salton Trough. With these data, we will construct seismic images of the subsurface, both reflection and tomographic images. These images will contribute to the earthquake-hazard assessment in southern California by helping to constrain fault locations, sedimentary basin thickness and geometry, and sedimentary seismic velocity distributions. Data acquisition is currently scheduled for winter and spring of 2011. The design and goals of SSIP resemble those of the Los Angeles Region Seismic Experiment (LARSE) of the 1990's. LARSE focused on examining the San Andreas Fault system and associated thrust-fault systems of the Transverse Ranges. LARSE was successful in constraining the geometry of the San Andreas Fault at depth and in relating this geometry to mid-crustal, flower-structure-like decollements in the Transverse Ranges that splay upward into the network of hazardous thrust faults that caused the 1971 M 6.7 San Fernando and 1987 M 5

  9. Faulting, Seismicity and Stress Interaction in the Salton Sea Region of Southern California

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.

    2009-12-01

    The Salton Sea region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal interaction of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton Sea transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton Sea reveal that the majority of faults under the southern Salton Sea trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton Sea. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between processes at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton Sea can modulate the stress field in the BSZ and along the SAF. These tests include

  10. Seismic Reflectivity of the Crust in the Northern Salton Trough

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Fuis, G. S.; Goldman, M.; Persaud, P.; Ryberg, T.; Langenheim, V. E.; Scheirer, D. S.; Rymer, M. J.; Hole, J. A.; Stock, J. M.; Catchings, R.

    2015-12-01

    The Salton Trough in southern California is a tectonically active pull-apart basin that was formed by migrating step-overs between strike-slip faults, of which the San Andreas Fault (SAF) and the Imperial Fault are the current, northernmost examples. The Salton Seismic Imaging Project (SSIP) was undertaken to improve our knowledge of fault geometry and seismic velocities within the sedimentary basins and underlying crystalline crust around the SAF. Such data are useful as input for modeling scenarios of strong ground shaking in the surrounding high-population areas. We used pre-stack depth migration of line segments from shot gathers in several seismic profiles that were acquired in the northern part of the SSIP study area (Lines 4 - 7). Our migration approach can be considered as an infinite-frequency approximation of the Fresnel volume pre-stack depth migration method. We use line segments instead of the original waveform data. We demonstrate the method using synthetic data and analyze real data from Lines 4 - 7 to illustrate the relationship between distinct phases in the time domain and their resulting image at depth. We show both normal-moveout reflections from sub-horizontal interfaces and reverse-moveout reflections from steep interfaces, such as faults. Migrated images of dipping faults, such as the SAF and the Pinto Mountain Fault, are presented in this way. The SAF is imaged along Line 4, through the Mecca Hills, as a number of steeply dipping fault segments that collectively form a flower structure, above 5 km depth, that sole into a moderately NE-dipping fault below that depth. The individual migrated reflection packages correlate with mapped surface fault traces in the Mecca Hills. A similar geometry is seen on Line 6, from Palm Springs through Yucca Valley, where fault splays sole or project into a moderately dipping SAF below 10-km depth. We also show and discuss the reflectivity pattern of the middle and lower crust for Lines 4 - 7.

  11. Continental rupture and the creation of new crust in the Salton Trough rift, Southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Harding, Alistair J.; Rymer, Michael J.; González-Fernández, Antonio; Lázaro-Mancilla, Octavio

    2016-10-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from 3 to 8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched preexisting crust or higher-grade metamorphosed sediment. The lower crust below 12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 km depth as it does to the south, and a weak reflection suggests Moho at 28 km depth. Structure in adjacent Mexico has slower midcrustal velocity, and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  12. Continental rupture and the creation of new crust in the Salton Trough rift, southern California and northern Mexico: Results from the Salton Seismic Imaging Project

    USGS Publications Warehouse

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Kell, Annie; Driscoll, Neal W.; Kent, Graham M.; Rymer, Michael J.; Gonzalez-Fernandez, Antonio; Aburto-Oropeza, Octavio

    2016-01-01

    A refraction and wide-angle reflection seismic profile along the axis of the Salton Trough, California and Mexico, was analyzed to constrain crustal and upper mantle seismic velocity structure during active continental rifting. From the northern Salton Sea to the southern Imperial Valley, the crust is 17-18 km thick and approximately one-dimensional. The transition at depth from Colorado River sediment to underlying crystalline rock is gradual and is not a depositional surface. The crystalline rock from ~3 to ~8 km depth is interpreted as sediment metamorphosed by high heat flow. Deeper felsic crystalline rock could be stretched pre-existing crust or higher grade metamorphosed sediment. The lower crust below ~12 km depth is interpreted to be gabbro emplaced by rift-related magmatic intrusion by underplating. Low upper-mantle velocity indicates high temperature and partial melting. Under the Coachella Valley, sediment thins to the north and the underlying crystalline rock is interpreted as granitic basement. Mafic rock does not exist at 12-18 depth as it does to the south, and a weak reflection suggests Moho at ~28 km depth. Structure in adjacent Mexico has slower mid-crustal velocity and rocks with mantle velocity must be much deeper than in the Imperial Valley. Slower velocity and thicker crust in the Coachella and Mexicali valleys define the rift zone between them to be >100 km wide in the direction of plate motion. North American lithosphere in the central Salton Trough has been rifted apart and is being replaced by new crust created by magmatism, sedimentation, and metamorphism.

  13. Tectonic evolution of the Salton Sea inferred from seismic reflection data

    USGS Publications Warehouse

    Brothers, D.S.; Driscoll, N.W.; Kent, G.M.; Harding, A.J.; Babcock, J.M.; Baskin, R.L.

    2009-01-01

    Oblique extension across strike-slip faults causes subsidence and leads to the formation of pull-apart basins such as the Salton Sea in southern California. The formation of these basins has generally been studied using laboratory experiments or numerical models. Here we combine seismic reflection data and geological observations from the Salton Sea to understand the evolution of this nascent pull-apart basin. Our data reveal the presence of a northeast-trending hinge zone that separates the sea into northern and southern sub-basins. Differential subsidence (10 mm yr 1) in the southern sub-basin suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline, which may control the spatial distribution of young volcanism. Rotated and truncated strata north of the hinge zone suggest that the onset of extension associated with this pull-apart basin began after 0.5 million years ago. We suggest that slip is partitioned spatially and temporally into vertical and horizontal domains in the Salton Sea. In contrast to previous models based on historical seismicity patterns, the rapid subsidence and fault architecture that we document in the southern part of the sea are consistent with experimental models for pull-apart basins. ?? 2009 Macmillan Publishers Limited.

  14. Relationships among seismic velocity, metamorphism, and seismic and aseismic fault slip in the Salton Sea Geothermal Field region

    USGS Publications Warehouse

    McGuire, Jeffrey J.; Lohman, Rowena B.; Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.

    2015-01-01

    The Salton Sea Geothermal Field is one of the most geothermally and seismically active areas in California and presents an opportunity to study the effect of high-temperature metamorphism on the properties of seismogenic faults. The area includes numerous active tectonic faults that have recently been imaged with active source seismic reflection and refraction. We utilize the active source surveys, along with the abundant microseismicity data from a dense borehole seismic network, to image the 3-D variations in seismic velocity in the upper 5 km of the crust. There are strong velocity variations, up to ~30%, that correlate spatially with the distribution of shallow heat flow patterns. The combination of hydrothermal circulation and high-temperature contact metamorphism has significantly altered the shallow sandstone sedimentary layers within the geothermal field to denser, more feldspathic, rock with higher P wave velocity, as is seen in the numerous exploration wells within the field. This alteration appears to have a first-order effect on the frictional stability of shallow faults. In 2005, a large earthquake swarm and deformation event occurred. Analysis of interferometric synthetic aperture radar data and earthquake relocations indicates that the shallow aseismic fault creep that occurred in 2005 was localized on the Kalin fault system that lies just outside the region of high-temperature metamorphism. In contrast, the earthquake swarm, which includes all of the M > 4 earthquakes to have occurred within the Salton Sea Geothermal Field in the last 15 years, ruptured the Main Central Fault (MCF) system that is localized in the heart of the geothermal anomaly. The background microseismicity induced by the geothermal operations is also concentrated in the high-temperature regions in the vicinity of operational wells. However, while this microseismicity occurs over a few kilometer scale region, much of it is clustered in earthquake swarms that last from

  15. 3-D Velocity Model of the Coachella Valley, Southern California Based on Explosive Shots from the Salton Seismic Imaging Project

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2014-12-01

    We have analyzed explosive shot data from the 2011 Salton Seismic Imaging Project (SSIP) across a 2-D seismic array and 5 profiles in the Coachella Valley to produce a 3-D P-wave velocity model that will be used in calculations of strong ground shaking. Accurate maps of seismicity and active faults rely both on detailed geological field mapping and a suitable velocity model to accurately locate earthquakes. Adjoint tomography of an older version of the SCEC 3-D velocity model shows that crustal heterogeneities strongly influence seismic wave propagation from moderate earthquakes (Tape et al., 2010). These authors improve the crustal model and subsequently simulate the details of ground motion at periods of 2 s and longer for hundreds of ray paths. Even with improvements such as the above, the current SCEC velocity model for the Salton Trough does not provide a match of the timing or waveforms of the horizontal S-wave motions, which Wei et al. (2013) interpret as caused by inaccuracies in the shallow velocity structure. They effectively demonstrate that the inclusion of shallow basin structure improves the fit in both travel times and waveforms. Our velocity model benefits from the inclusion of known location and times of a subset of 126 shots detonated over a 3-week period during the SSIP. This results in an improved velocity model particularly in the shallow crust. In addition, one of the main challenges in developing 3-D velocity models is an uneven stations-source distribution. To better overcome this challenge, we also include the first arrival times of the SSIP shots at the more widely spaced Southern California Seismic Network (SCSN) in our inversion, since the layout of the SSIP is complementary to the SCSN. References: Tape, C., et al., 2010, Seismic tomography of the Southern California crust based on spectral-element and adjoint methods: Geophysical Journal International, v. 180, no. 1, p. 433-462. Wei, S., et al., 2013, Complementary slip distributions

  16. Seismicity and source spectra analysis in Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2016-12-01

    The surge of "man-made" earthquakes in recent years has led to considerable concerns about the associated hazards. Improved monitoring of small earthquakes would significantly help understand such phenomena and the underlying physical mechanisms. In the Salton Sea Geothermal field in southern California, open access of a local borehole network provides a unique opportunity to better understand the seismicity characteristics, the related earthquake hazards, and the relationship with the geothermal system, tectonic faulting and other physical conditions. We obtain high-resolution earthquake locations in the Salton Sea Geothermal Field, analyze characteristics of spatiotemporal isolated earthquake clusters, magnitude-frequency distributions and spatial variation of stress drops. The analysis reveals spatial coherent distributions of different types of clustering, b-value distributions, and stress drop distribution. The mixture type clusters (short-duration rapid bursts with high aftershock productivity) are predominately located within active geothermal field that correlate with high b-value, low stress drop microearthquake clouds, while regular aftershock sequences and swarms are distributed throughout the study area. The differences between earthquakes inside and outside of geothermal operation field suggest a possible way to distinguish directly induced seismicity due to energy operation versus typical seismic slip driven sequences. The spatial coherent b-value distribution enables in-situ estimation of probabilities for M≥3 earthquakes, and shows that the high large-magnitude-event (LME) probability zones with high stress drop are likely associated with tectonic faulting. The high stress drop in shallow (1-3 km) depth indicates the existence of active faults, while low stress drops near injection wells likely corresponds to the seismic response to fluid injection. I interpret the spatial variation of seismicity and source characteristics as the result of fluid

  17. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    USGS Publications Warehouse

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (T<1  s">T<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault.

  18. The effects of thick sediment upon continental breakup: seismic imaging and thermal modeling of the Salton Trough, southern California

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.

    2015-12-01

    Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is

  19. Salton Seismic Imaging Project Line 5—the San Andreas Fault and Northern Coachella Valley Structure, Riverside County, California

    NASA Astrophysics Data System (ADS)

    Rymer, M. J.; Fuis, G.; Catchings, R. D.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas Fault (SAF) and the adjacent basins (Imperial and Coachella Valleys) in southern California. Here, we focus on SSIP Line 5, one of four 2-D NE-SW-oriented seismic profiles that were acquired across the Coachella Valley. The 38-km-long SSIP-Line-5 seismic profile extends from the Santa Rosa Ranges to the Little San Bernardino Mountains and crosses both strands of the SAF, the Mission Creek (MCF) and Banning (BF) strands, near Palm Desert. Data for Line 5 were generated from nine buried explosive sources (most spaced about 2 to 8 km apart) and were recorded on approximately 281 Texan seismographs (average spacing 138 m). First-arrival refractions were used to develop a refraction tomographic velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 8 km depth, P-wave velocities range from about 2 km/s to more than 7.5 km/s, with the lowest velocities within a well-defined (~2-km-deep, 15-km-wide) basin (< 4 km/s), and the highest velocities below the transition from the Coachella Valley to the Santa Rosa Ranges on the southwest and within the Little San Bernardino Mountains on the northeast. The MCF and BF strands of the SAF bound an approximately 2.5-km-wide horst-type structure on the northeastern side of the Coachella Valley, beneath which the upper crust is characterized by a pronounced low-velocity zone that extends to the bottom of the velocity image. Rocks within the low-velocity zone have significantly lower velocities than those to the northeast and the southwest at the same depths. Conversely, the velocities of rocks on both sides of the Coachella Valley are greater than 7 km/s at depths exceeding about 4 km. The relatively narrow zone of shallow high-velocity rocks between the surface traces of

  20. Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.

    PubMed

    Brodsky, Emily E; Lajoie, Lia J

    2013-08-02

    Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.

  1. The Effects of Rapid Sedimentation upon Continental Breakup: Kinematic and Thermal Modeling of the Salton Trough, Southern California, Based upon Recent Seismic Images

    NASA Astrophysics Data System (ADS)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.

    2016-12-01

    The Salton Seismic Imaging Project (SSIP) illuminated crustal and upper mantle structure of the Salton Trough, the northern-most rift segment of the Gulf of California plate boundary. The crust is 17-18 km thick and homogeneous for 100 km in the plate motion direction. New crust is being created by distributed rift magmatism, Colorado River sedimentation, and metamorphism of the sediment. A 5 km thick pre-existing crustal layer may still exist. The crust has not broken apart to enable initiation of seafloor spreading. A one-dimensional time-dependent kinematic and thermal model was developed to simulate these observations. We assume that all crustal layers are stretched uniformly during extension. Distributed mafic magmatism and sedimentation are added simultaneously to compensate for the crustal thinning. The ratio of magmatism to sedimentation is constrained by the seismic observations. Heat is transported by thermal conduction and by advection due to stretching of the crust. A constant temperature boundary at the Moho is used to represent partial melting in the upper mantle. Assuming a constant plate motion rate, the zone of active rifting extends linearly with time. The crustal thickness and internal structure also evolve with time. The model constraints are the observed seismic structure and heat flow. The model rapidly reaches quasi-steady state, and could continue for many millions of years. The observed seismic structure and heat flow are reproduced after 3 Myr. The yield strength profile calculated from lithology and model temperature indicates that ductile deformation in the middle and lower crust dominates the crustal rheology. Rapid sedimentation delays crustal breakup and the initiation of seafloor spreading by maintaining the thickness of the crust and keeping it predominantly ductile. This process probably occurs wherever a large river flows into an active rift driven by far-field extension. It may have built passive margins in many locations

  2. A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields

    NASA Astrophysics Data System (ADS)

    Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri

    2016-01-01

    Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

  3. Fault zone characteristics and basin complexity in the southern Salton Trough, California

    USGS Publications Warehouse

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang

    2016-01-01

    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  4. Salton Seismic Imaging Project Line 6: San Andreas Fault and Northern Coachella Valley Structure, Riverside and San Bernardino Counties, California

    NASA Astrophysics Data System (ADS)

    Catchings, R. D.; Fuis, G.; Rymer, M. J.; Goldman, M.; Tarnowski, J. M.; Hole, J. A.; Stock, J. M.; Matti, J. C.

    2012-12-01

    The Salton Seismic Imaging Project (SSIP) is a large-scale, active- and passive-source seismic project designed to image the San Andreas fault (SAF) and adjacent basins (Imperial and Coachella Valleys) in southernmost California. Data and preliminary results from many of the seismic profiles are reported elsewhere (including Fuis et al., Rymer et al., Goldman et al., Langenheim et al., this meeting). Here, we focus on SSIP Line 6, one of four 2-D seismic profiles that were acquired across the Coachella Valley. The 44-km-long, SSIP-Line-6 seismic profile extended from the east flank of Mt. San Jacinto northwest of Palm Springs to the Little San Bernardino Mountains and crossed the SAF (Mission Creek (MCF), Banning (BF), and Garnet Hill (GHF) strands) roughly normal to strike. Data were generated by 10 downhole explosive sources (most spaced about 3 to 5 km apart) and were recorded by approximately 347 Texan seismographs (average spacing 126 m). We used first-arrival refractions to develop a P-wave refraction tomography velocity image of the upper crust along the seismic profile. The seismic data were also stacked and migrated to develop low-fold reflection images of the crust. From the surface to about 7 km depth, P-wave velocities range from about 2.5 km/s to about 7.2 km/s, with the lowest velocities within an ~2-km-deep, ~20-km-wide basin, and the highest velocities below the transition zone from the Coachella Valley to Mt. San Jacinto and within the Little San Bernardino Mountains. The BF and GHF strands bound a shallow sub-basin on the southwestern side of the Coachella Valley, but the underlying shallow-depth (~4 km) basement rocks are P-wave high in velocity (~7.2 km/s). The lack of a low-velocity zone beneath BF and GHF suggests that both faults dip northeastward. In a similar manner, high-velocity basement rocks beneath the Little San Bernardino Mountains suggest that the MCF dips vertically or southwestward. However, there is a pronounced low-velocity zone

  5. Strike-slip Fault Structure in the Salton Trough and Deformation During and After the 2010 M7.2 El Mayor-Cucapah Earthquake from Geodetic and Seismic Data

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Sun, J.; Gonzalez-Ortega, A.; González-Escobar, M.; Freed, A. M.; Burgmann, R.; Samsonov, S. V.; Gonzalez-Garcia, J.; Fletcher, J. M.; Hinojosa, A.

    2013-12-01

    The Pacific-North America plate boundary character changes southward from the strike-slip and transpressional configuration along most of California to oblique rifting in the Gulf of California, with a transitional zone of transtension beneath the Salton Trough in southernmost California and northern Mexico. The Salton Trough is characterized by extremely high heat flow and thin lithosphere with a thick fill of sedimentary material delivered by the Colorado River during the past 5-6 million years. Because of the rapid sedimentation, most of the faults in Salton Trough are buried and reveal themselves when they slip either seismically or aseismically. They can also be located by refraction and reflection of seismic waves. The 4 April 2010 El Mayor-Cucapah earthquake (Mw 7.2) in Baja California and Sonora, Mexico is probably the largest earthquake in the Salton Trough for at least 120 years, and had primarily right-lateral strike-slip motion. The earthquake ruptured a complex set of faults that lie to the west of the main plate boundary fault, the Cerro Prieto Fault, and shows that the strike-slip fault system in the southern Salton Trough has multiple sub-parallel active faults, similar to southern California. The Cerro Prieto Fault is still likely absorbing the majority of strain in the plate boundary. We study the coseismic and postseismic deformation of the 2010 earthquake with interferometric analysis of synthetic aperture radar (SAR) images (InSAR) and pixel tracking by subpixel correlation of SAR and optical images. We combine sampled InSAR and subpixel correlation results with GPS (Global Positioning System) offsets at PBO (Plate Boundary Observatory) stations to estimate the likely subsurface geometry of the major faults that slipped during the earthquake and to derive a static coseismic slip model. We constrained the surface locations of the fault segments to mapped locations in the Sierra Cucapah to the northwest of the epicenter. SAR along-track offsets

  6. Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2015-12-01

    Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung

  7. Imperial Valley and Salton Sea, California

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Southern California's Salton Sea is a prominent visual for astronauts. This large lake supports the rich agricultural fields of the Imperial, Coachella and Mexicali Valleys in the California and Mexico desert. The Salton Sea formed by accident in 1905 when an irrigation canal ruptured, allowing the Colorado River to flood the Salton Basin. Today the Sea performs an important function as the sink for agricultural runoff; water levels are maintained by the runoff from the surrounding agricultural valleys. The Salton Sea salinity is high-nearly 1/4 saltier than ocean water-but it remains an important stopover point for migratory water birds, including several endangered species. The region also experiences several environmental problems. The recent increased demands for the limited Colorado River water threatens the amount of water allowed to flow into the Salton Sea. Increased salinity and decreased water levels could trigger several regional environmental crises. The agricultural flow into the Sea includes nutrients and agricultural by-products, increasing the productivity and likelihood of algae blooms. This image shows either a bloom, or suspended sediment (usually highly organic) in the water that has been stirred up by winds. Additional information: The Salton Sea A Brief Description of Its Current Conditions, and Potential Remediation Projects and Land Use Across the U.S.-Mexico Border Astronaut photograph STS111-E-5224 was taken by the STS-111 Space Shuttle crew that recently returned from the International Space Station. The image was taken June 12, 2002 using a digital camera. The image was provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  8. Salton Sea, California

    NASA Image and Video Library

    2015-09-23

    The Salton Sea in south California was created in 1905 when spring flooding on the Colorado River breached a canal. For 18 months the entire volume of the river rushed into the Salton Trough, creating a lake 32 km wide and 72 km long. In the 1950s, resorts sprang up along the shores. However, shrinking of the lake and increased salinity led to the abandonment of the resorts. The two images show the shrinking lake on May 31, 1984 (Landsat) and June 14, 2015 (ASTER). The images cover an area of 37.5 x 27 km, and are located at 33.2 degrees north, 115.7 degrees west. http://photojournal.jpl.nasa.gov/catalog/PIA19786

  9. Comprehensive analysis of earthquake source spectra and swarms in the Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Chen, X.; Shearer, P. M.

    2011-09-01

    We study earthquakes within California's Salton Trough from 1981 to 2009 from a precisely relocated catalog. We process the seismic waveforms to isolate source spectra, station spectra and travel-time dependent spectra. The results suggest an average P wave Q of 340, agreeing with previous results indicating relatively high attenuation in the Salton Trough. Stress drops estimated from the source spectra using an empirical Green's function (EGF) method reveal large scatter among individual events but a low median stress drop of 0.56 MPa for the region. The distribution of stress drop after applying a spatial-median filter indicates lower stress drops near geothermal sites. We explore the relationships between seismicity, stress drops and geothermal injection activities. Seismicity within the Salton Trough shows strong spatial clustering, with 20 distinct earthquake swarms with at least 50 events. They can be separated into early-Mmax and late-Mmax groups based on the normalized occurrence time of their largest event. These swarms generally have a low skew value of moment release history, ranging from -9 to 3.0. The major temporal difference between the two groups is the excess of seismicity and an inverse power law increase of seismicity before the largest event for the late-Mmax group. All swarms exhibit spatial migration of seismicity at a statistical significance greater than 85%. A weighted L1-norm inversion of linear migration parameters yields migration velocities from 0.008 to 0.8 km/hour. To explore the influence of fluid injection in geothermal sites, we also model the migration behavior with the diffusion equation, and obtain a hydraulic diffusion coefficient of approximately 0.25 m2/s for the Salton Sea geothermal site, which is within the range of expected values for a typical geothermal reservoir. The swarms with migration velocities over 0.1 km/hour cannot be explained by the diffusion curve, rather, their velocity is consistent with the propagation

  10. Crustal and upper mantle velocity structure of the Salton Trough, southeast California

    USGS Publications Warehouse

    Parsons, T.; McCarthy, J.

    1996-01-01

    This paper presents data and modelling results from a crustal and upper mantle wide-angle seismic transect across the Salton Trough region in southeast California. The Salton Trough is a unique part of the Basin and Range province where mid-ocean ridge/transform spreading in the Gulf of California has evolved northward into the continent. In 1992, the U.S. Geological Survey (USGS) conducted the final leg of the Pacific to Arizona Crustal Experiment (PACE). Two perpendicular models of the crust and upper mantle were fit to wide-angle reflection and refraction travel times, seismic amplitudes, and Bouguer gravity anomalies. The first profile crossed the Salton Trough from the southwest to the northeast, and the second was a strike line that paralleled the Salton Sea along its western edge. We found thin crust (???21-22 km thick) beneath the axis of the Salton Trough (Imperial Valley) and locally thicker crust (???27 km) beneath the Chocolate Mountains to the northeast. We modelled a slight thinning of the crust further to the northeast beneath the Colorado River (???24 km) and subsequent thickening beneath the metamorphic core complex belt northeast of the Colorado River. There is a deep, apparently young basin (???5-6 km unmetamorphosed sediments) beneath the Imperial Valley and a shallower (???2-3 km) basin beneath the Colorado River. A regional 6.9-km/s layer (between ???15-km depth and the Moho) underlies the Salton Trough as well as the Chocolate Mountains where it pinches out at the Moho. This lower crustal layer is spatially associated with a low-velocity (7.6-7.7 km/s) upper mantle. We found that our crustal model is locally compatible with the previously suggested notion that the crust of the Salton Trough has formed almost entirely from magmatism in the lower crust and sedimentation in the upper crust. However, we observe an apparently magmatically emplaced lower crust to the northeast, outside of the Salton Trough, and propose that this layer in part

  11. Constraints on mantle melt geometries from body wave attenuation in the Salton Trough and Snake River Plain

    NASA Astrophysics Data System (ADS)

    Byrnes, J. S.; Bezada, M.

    2017-12-01

    Melt can be retained in the mantle at triple junctions between grain boundaries, be spread in thin films along two-grain boundaries, or be organized by shear into elongate melt-rich bands. Which of these geometries is most prevalent is unknown. This ambiguity makes the interpretation of anomalous seismic velocities and quality factors difficult, since different geometries would result in different mechanical effects. Here, we compare observations of seismic attenuation beneath the Salton Trough and the Snake River Plain; two regions where the presence of melt has been inferred. The results suggest that seismic attenuation is diagnostic of melt geometry. We measure the relative attenuation of P waves from deep focus earthquakes using a time-domain method. Even though the two regions are underlain by comparably strong low-velocity anomalies, their attenuation signature is very different. The upper mantle beneath the Salton Trough is sufficiently attenuating that the presence of melt must lower Qp, while attenuation beneath the Snake River Plain is not anomalous with respect to surrounding regions. These seemingly contradictory results can be reconciled if different melt geometries characterize each region. SKS splitting from the Salton Trough suggests that melt is organized into melt-rich bands, while this is not the case for the Snake River Plain. We infer that beneath the Snake River Plain melt is retained at triple junctions between grain boundaries, a geometry that is not predicted to cause seismic attenuation. More elongate geometries beneath the Salton Trough may cause seismic attenuation via the melt-squirt mechanism. In light of these results, we conclude that prior observations of low seismic velocities with somewhat high quality factors beneath the East Pacific Rise and Southern California suggest that melt does not organize into elongate bands across much of the asthenosphere.

  12. Shallow Crustal Structure in the Northern Salton Trough, California: Insights from a Detailed 3-D Velocity Model

    NASA Astrophysics Data System (ADS)

    Ajala, R.; Persaud, P.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.; Scheirer, D. S.

    2017-12-01

    The Coachella Valley is the northern extent of the Gulf of California-Salton Trough. It contains the southernmost segment of the San Andreas Fault (SAF) for which a magnitude 7.8 earthquake rupture was modeled to help produce earthquake planning scenarios. However, discrepancies in ground motion and travel-time estimates from the current Southern California Earthquake Center (SCEC) velocity model of the Salton Trough highlight inaccuracies in its shallow velocity structure. An improved 3-D velocity model that better defines the shallow basin structure and enables the more accurate location of earthquakes and identification of faults is therefore essential for seismic hazard studies in this area. We used recordings of 126 explosive shots from the 2011 Salton Seismic Imaging Project (SSIP) to SSIP receivers and Southern California Seismic Network (SCSN) stations. A set of 48,105 P-wave travel time picks constituted the highest-quality input to a 3-D tomographic velocity inversion. To improve the ray coverage, we added network-determined first arrivals at SCSN stations from 39,998 recently relocated local earthquakes, selected to a maximum focal depth of 10 km, to develop a detailed 3-D P-wave velocity model for the Coachella Valley with 1-km grid spacing. Our velocity model shows good resolution ( 50 rays/cubic km) down to a minimum depth of 7 km. Depth slices from the velocity model reveal several interesting features. At shallow depths ( 3 km), we observe an elongated trough of low velocity, attributed to sediments, located subparallel to and a few km SW of the SAF, and a general velocity structure that mimics the surface geology of the area. The persistence of the low-velocity sediments to 5-km depth just north of the Salton Sea suggests that the underlying basement surface, shallower to the NW, dips SE, consistent with interpretation from gravity studies (Langenheim et al., 2005). On the western side of the Coachella Valley, we detect depth-restricted regions of

  13. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity

    DOE PAGES

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.

    2015-07-30

    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templatesmore » that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2–M0.8. Here, the increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.« less

  14. Subsidence rates at the southern Salton Sea consistent with reservoir depletion

    NASA Astrophysics Data System (ADS)

    Barbour, Andrew J.; Evans, Eileen L.; Hickman, Stephen H.; Eneva, Mariana

    2016-07-01

    Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr-1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.

  15. Subsidence rates at the southern Salton Sea consistent with reservoir depletion

    USGS Publications Warehouse

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    Space geodetic measurements from the Envisat satellite between 2003 and 2010 show that subsidence rates near the southeastern shoreline of the Salton Sea in Southern California are up to 52mmyr−1 greater than the far-field background rate. By comparing these measurements with model predictions, we find that this subsidence appears to be dominated by poroelastic contraction associated with ongoing geothermal fluid production, rather than the purely fault-related subsidence proposed previously. Using a simple point source model, we suggest that the source of this proposed volumetric strain is at depths between 1.0 km and 2.4 km (95% confidence interval), comparable to generalized boundaries of the Salton Sea geothermal reservoir. We find that fault slip on two previously imaged tectonic structures, which are part of a larger system of faults in the Brawley Seismic Zone, is not an adequate predictor of surface velocity fields because the magnitudes of the best fitting slip rates are often greater than the full plate boundary rate and at least 2 times greater than characteristic sedimentation rates in this region. Large-scale residual velocity anomalies indicate that spatial patterns predicted by fault slip are incompatible with the observations.

  16. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    USGS Publications Warehouse

    Han, Liang; Hole, John; Stock, Joann; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan; Davenport, Kathy; Livers, Amanda

    2016-01-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65–90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ∼7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ∼1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ∼3 km depth in most of the valley, but at only ∼1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7–8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  17. Seismic imaging of the metamorphism of young sediment into new crystalline crust in the actively rifting Imperial Valley, California

    NASA Astrophysics Data System (ADS)

    Han, Liang; Hole, John A.; Stock, Joann M.; Fuis, Gary S.; Williams, Colin F.; Delph, Jonathan R.; Davenport, Kathy K.; Livers, Amanda J.

    2016-11-01

    Plate-boundary rifting between transform faults is opening the Imperial Valley of southern California and the rift is rapidly filling with sediment from the Colorado River. Three 65-90 km long seismic refraction profiles across and along the valley, acquired as part of the 2011 Salton Seismic Imaging Project, were analyzed to constrain upper crustal structure and the transition from sediment to underlying crystalline rock. Both first arrival travel-time tomography and frequency-domain full-waveform inversion were applied to provide P-wave velocity models down to ˜7 km depth. The valley margins are fault-bounded, beyond which thinner sediment has been deposited on preexisting crystalline rocks. Within the central basin, seismic velocity increases continuously from ˜1.8 km/s sediment at the surface to >6 km/s crystalline rock with no sharp discontinuity. Borehole data show young sediment is progressively metamorphosed into crystalline rock. The seismic velocity gradient with depth decreases approximately at the 4 km/s contour, which coincides with changes in the porosity and density gradient in borehole core samples. This change occurs at ˜3 km depth in most of the valley, but at only ˜1.5 km depth in the Salton Sea geothermal field. We interpret progressive metamorphism caused by high heat flow to be creating new crystalline crust throughout the valley at a rate comparable to the ≥2 km/Myr sedimentation rate. The newly formed crystalline crust extends to at least 7-8 km depth, and it is shallower and faster where heat flow is higher. Most of the active seismicity occurs within this new crust.

  18. Temporal Variability in Seismic Velocity at the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Taira, T.; Nayak, A.; Brenguier, F.

    2015-12-01

    We characterize the temporal variability of ambient noise wavefield and search for velocity changes associated with activities of the geothermal energy development at the Salton Sea Geothermal Field. The noise cross-correlations (NCFs) are computed for ~6 years of continuous three-component seismic data (December 2007 through January 2014) collected at 8 sites from the CalEnergy Subnetwork (EN network) with MSNoise software (Lecocq et al., 2014, SRL). All seismic data are downloaded from the Southern California Earthquake Data Center. Velocity changes (dv/v) are obtained by measuring time delay between 5-day stacks of NCFs and the reference NCF (average over the entire 6 year period). The time history of dv/v is determined by averaging dv/v measurements over all station/channel pairs (252 combinations). Our preliminary dv/v measurement suggests a gradual increase in dv/v over the 6-year period in a frequency range of 0.5-8.0 Hz. The resultant increase rate of velocity is about 0.01%/year. We also explore the frequency-dependent velocity change at the 5 different frequency bands (0.5-2.0 Hz, 0.75-3.0 Hz, 1.0-4.0 Hz, 1.5-6.0 Hz, and 2.0-8.0 Hz) and find that the level of this long-term dv/v variability is increased with increase of frequency (i.e., the highest increase rate of ~0.15%/year at the 0.5-2.0 Hz band). This result suggests that the velocity changes were mostly occurred in a depth of ~500 m assuming that the coda parts of NCFs (~10-40 s depending on station distances) are predominantly composed of scattered surface waves, with the SoCal velocity model (Dreger and Helmberger, 1993, JGR). No clear seasonal variation of dv/v is observed in the frequency band of 0.5-8.0 Hz.

  19. 75 FR 55600 - Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ...] Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife Refuge... Bono Salton Sea National Wildlife Refuge (NWR) Complex, which consists of the Sonny Bono Salton Sea NWR... any of the following methods. E-mail: [email protected] . Include ``Sonny Bono Salton Sea...

  20. An Evaluation of Subsurface Plumbing of a Hydrothermal Seep Field and Possible Influence from Local Seismicity from New Time-Series Data Collected at the Davis-Schrimpf Seep Field, Salton Trough, California

    NASA Astrophysics Data System (ADS)

    Rao, A.; Onderdonk, N.

    2016-12-01

    The Davis­-Schrimpf Seep Field (DSSF) is a group of approximately 50 geothermal mud seeps (gryphons) in the Salton Trough of southeastern California. Its location puts it in line with the mapped San Andreas Fault, if extended further south, as well as within the poorly-understood Brawley Seismic Zone. Much of the geomorphology, geochemistry, and other characteristics of the DSSF have been analyzed, but its subsurface structure remains unknown. Here we present data and interpretations from five new temperature time­series from four separate gryphons at the DSSF, and compare them both amongst themselves, and within the context of all previously collected data to identify possible patterns constraining the subsurface dynamics. Simultaneously collected time-series from different seeps were cross-correlated to quantify similarity. All years' time-series were checked against the record of local seismicity to identify any seismic influence on temperature excursions. Time-series captured from the same feature in different years were statistically summarized and the results plotted to examine their evolution over time. We found that adjacent vents often alternate in temperature, suggesting a switching of flow path of the erupted mud at the scale of a few meters or less. Noticeable warming over time was observed in most of the features with time-series covering multiple years. No synchronicity was observed between DSSF features' temperature excursions, and seismic events within a 24 kilometer radius covering most of the width of the surrounding Salton Trough.

  1. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited)

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2013-12-01

    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical

  2. Analysis of Earthquake Source Spectra in Salton Trough

    NASA Astrophysics Data System (ADS)

    Chen, X.; Shearer, P. M.

    2009-12-01

    Previous studies of the source spectra of small earthquakes in southern California show that average Brune-type stress drops vary among different regions, with particularly low stress drops observed in the Salton Trough (Shearer et al., 2006). The Salton Trough marks the southern end of the San Andreas Fault and is prone to earthquake swarms, some of which are driven by aseismic creep events (Lohman and McGuire, 2007). In order to learn the stress state and understand the physical mechanisms of swarms and slow slip events, we analyze the source spectra of earthquakes in this region. We obtain Southern California Seismic Network (SCSN) waveforms for earthquakes from 1977 to 2009 archived at the Southern California Earthquake Center (SCEC) data center, which includes over 17,000 events. After resampling the data to a uniform 100 Hz sample rate, we compute spectra for both signal and noise windows for each seismogram, and select traces with a P-wave signal-to-noise ratio greater than 5 between 5 Hz and 15 Hz. Using selected displacement spectra, we isolate the source spectra from station terms and path effects using an empirical Green’s function approach. From the corrected source spectra, we compute corner frequencies and estimate moments and stress drops. Finally we analyze spatial and temporal variations in stress drop in the Salton Trough and compare them with studies of swarms and creep events to assess the evolution of faulting and stress in the region. References: Lohman, R. B., and J. J. McGuire (2007), Earthquake swarms driven by aseismic creep in the Salton Trough, California, J. Geophys. Res., 112, B04405, doi:10.1029/2006JB004596 Shearer, P. M., G. A. Prieto, and E. Hauksson (2006), Comprehensive analysis of earthquake source spectra in southern California, J. Geophys. Res., 111, B06303, doi:10.1029/2005JB003979.

  3. Curie Depth Analysis of the Salton Sea Region, Southern California

    NASA Astrophysics Data System (ADS)

    Mickus, Kevin; Hussein, Musa

    2016-02-01

    Aeromagnetic data were analyzed to determine the bottom of magnetic bodies that might be related to the Curie point depth (CPD) by 2D spectral and 3D inversion methods within the Salton Trough and the surrounding region in southern California. The bottom of the magnetic bodies for 55 × 55 km windows varied in depth between 11 and 23 km in depth using 2D spectral methods. Since the 55 × 55 km square window may include both shallow and deep source, a 3D inversion method was used to provide better resolution of the bottom of the magnetic bodies. The 3D models indicate the depth to the bottom of the magnetic bodies varied between 5 and 23 km. Even though both methods produced similar results, the 3D inversion method produced higher resolution of the CPD depths. The shallowest depths (5-8 km) occur along and west of the Brawley Seismic Zone and the southwestern portion of the Imperial Valley. The source of these shallow CPD values may be related to geothermal systems including hydrothermal circulation and/or partially molten material. Additionally, shallow CPD depths (7-12 km) were found in a northwest-trending zone in the center of the Salton Trough. These depths coincide with previous seismic analyses that indicated a lower crustal low velocity region which is believed to be caused by partially molten material. Lower velocity zones in several regions may be related to fracturing and/or hydrothermal fluids. If the majority of these shallow depths are related to temperature, they are likely associated with the CPD, and the partially molten material extends over a wider zone than previously known. Greater depths within the Salton Trough coincide with the base of basaltic material and/or regions of intense metamorphism intruded by mafic material in the middle/lower crust.

  4. The USGS Salton Sea Science Office

    USGS Publications Warehouse

    Case, Harvey Lee; Barnum, Douglas A.

    2007-01-01

    The U.S. Geological Survey's (USGS) Salton Sea Science Office (SSSO) provides scientific information and evaluations to decisionmakers who are engaged in restoration planning and actions associated with the Salton Sea. The primary focus is the natural resources of the Salton Sea, including the sea?s ability to sustain biological resources and associated social and economic values.

  5. Thermal and petrologic constraints on lower crustal melt accumulation under the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, Ozge; Dufek, Josef; Mangan, Margaret T.; Wright, Heather M.; Bachmann, Olivier

    2017-06-01

    In the Salton Sea region of southern California (USA), concurrent magmatism, extension, subsidence, and sedimentation over the past 0.5 to 1.0 Ma have led to the creation of the Salton Sea Geothermal Field (SSGF)-the second largest and hottest geothermal system in the continental United States-and the small-volume rhyolite eruptions that created the Salton Buttes. In this study, we determine the flux of mantle-derived basaltic magma that would be required to produce the elevated average heat flow and sustain the magmatic roots of rhyolite volcanism observed at the surface of the Salton Sea region. We use a 2D thermal model to show that a lower-crustal, partially molten mush containing < 20- 40% interstitial melt develops over a ∼105-yr timescale for basalt fluxes of 0.008 to 0.010 m3 /m2 /yr (∼0.0008 to ∼0.001 km3/yr injection rate) given extension rates at or below the current value of ∼0.01 m/yr (Brothers et al., 2009). These regions of partial melt are a natural consequence of a thermal regime that scales with average surface heat flow in the Salton Trough, and are consistent with seismic observations. Our results indicate limited melting and assimilation of pre-existing rocks in the lower crust. Instead, we find that basalt fractionation in the lower crust produces derivative melts of andesitic to dacitic composition. Such melts are then expected to ascend and accumulate in the upper crust, where they further evolve to give rise to small-volume rhyolite eruptions (Salton Buttes) and fuel local spikes in surface heat flux as currently seen in the SSGF. Such upper crustal magma evolution, with limited assimilation of hydrothermally altered material, is required to explain the slight decrease in δ18 O values of zircons (and melts) that have been measured in these rhyolites.

  6. Imaging of Upper-Mantle Upwelling Beneath the Salton Trough, Southern California, by Joint Inversion of Ambient Noise Dispersion Curves and Receiver Functions

    NASA Astrophysics Data System (ADS)

    Klemperer, S. L.; Barak, S.

    2016-12-01

    We present a new 2D shear-wave velocity model of the crust and upper-mantle across the Salton Trough, southern California, obtained by jointly inverting our new dataset of receiver functions and our previously published Rayleigh-wave group-velocity model (Barak et al., G-cubed, 2015), obtained from ambient-noise tomography. Our results show an upper-mantle low-velocity zone (LVZ) with Vs ≤4.2 km/s extending from the Elsinore Fault to the Sand Hills Fault, that together bracket the full width of major San Andreas dextral motion since its inception 6 Ma b.p., and underlying the full width of low topography of the Imperial Valley and Salton Trough. The lateral extent of the LVZ is coincident with the lateral extent of an upper-mantle anisotropic region interpreted as a zone of SAF-parallel melt pockets (Barak & Klemperer, Geology, 2016). The shallowest part of the LVZ is 40 km depth, coincident with S-receiver function images. The western part of the LVZ, between the Elsinore and San Jacinto faults (the region of greatest modern dextral slip), appears to continue to significantly greater depth; but a puzzling feature of our preliminary models is that the eastern part of the LVZ, from the San Jacinto Fault to the Sand Hills Fault, appears to be underlain by more-normalvelocity upper mantle (Vs ≥ 4.5 km/s) below 75 km depth. We compare our model to the current SCEC community models CVM-H and CVM-S, and to P-wave velocity models obtained by the active-source Salton Sea Imaging Project (SSIP). The hypothesized lower-crustal low-velocity zone beneath the Salton Trough in our previous model (Barak et al., G-cubed, 2015), there interpreted as a region of partial melt, is not supported by our new modeling. Melt may be largely absent from the lower crust of the Salton trough; but appears required in the upper mantle at depths as shallow as 40 km.

  7. Salton Trough regional deformation estimated from combined trilateration and survey-mode GPS data

    USGS Publications Warehouse

    Anderson, G.; Agnew, D.C.; Johnson, H.O.

    2003-01-01

    The Salton Trough in southeastern California, United States, has one of the highest seismicity and deformation rates in southern California, including 20 earthquakes M 6 or larger since 1892. From 1972 through 1987, the U.S. Geological Survey (USGS) measured a 41-station trilateration network in this region. We remeasured 37 of the USGS baselines using survey-mode Global Positioning System methods from 1995 through 1999. We estimate the Salton Trough deformation field over a nearly 30-year period through combined analysis of baseline length time series from these two datasets. Our primary result is that strain accumulation has been steady over our observation span, at a resolution of about 0.05 ??strain/yr at 95% confidence, with no evidence for significant long-term strain transients despite the occurrence of seven large regional earthquakes during our observation period. Similar to earlier studies, we find that the regional strain field is consistent with 0.5 ?? 0.03 ??strain/yr total engineering shear strain along an axis oriented 311.6?? ?? 23?? east of north, approximately parallel to the strike of the major regional faults, the San Andreas and San Jacinto (all uncertainties in the text and tables are standard deviations unless otherwise noted). We also find that (1) the shear strain rate near the San Jacinto fault is at least as high as it is near the San Andreas fault, (2) the areal dilatation near the southeastern Salton Sea is significant, and (3) one station near the southeastern Salton Sea moved anomalously during the period 1987.95-1995.11.

  8. Salton Sea Ecosystem Monitoring Project

    USGS Publications Warehouse

    Miles, A. Keith; Ricca, Mark A.; Meckstroth, Anne; Spring, Sarah E.

    2009-01-01

    The Salton Sea is critically important for wintering and breeding waterbirds, but faces an uncertain future due to water delivery reductions imposed by the Interstate and Federal Quantification Settlement Agreement of 2003. The current preferred alternative for wetland restoration at the Salton Sea is saline habitat impoundments created to mitigate the anticipated loss of wetland habitat. In 2006, a 50-hectare experimental complex that consisted of four inter-connected, shallow water saline habitat ponds (SHP) was constructed at the southeastern shoreline of the Salton Sea and flooded with blended waters from the Alamo River and Salton Sea. The present study evaluated ecological risks and benefits of the SHP concept prior to widespread restoration actions. This study was designed to evaluate (1) baseline chemical, nutrient, and contaminant measures from physical and biological constituents, (2) aquatic invertebrate community structure and colonization patterns, and (3) productivity of and contaminant risks to nesting waterbirds at the SHP. These factors were evaluated and compared with those of nearby waterbird habitat, that is, reference sites.

  9. Integrated Science Investigations of the Salton Sea, California, USA

    NASA Astrophysics Data System (ADS)

    Barnum, D.

    2006-12-01

    The Salton Sea is the latest waterbody to be formed by Colorado River floodwaters within the Salton Trough. Over the past 100 years, floodwaters have been replaced by agricultural drainage water and municipal discharges so that today, most of the water reaching the Salton Sea is agricultural drainwater flowing down the New, Alamo and Whitewater Rivers. An evaporation of about 6 feet per year and inputs of more than 4 million tons of salt per year have increased salinity of the waters of the Salton Sea. The current salinity level of approximately 46 parts per thousand is about 25% more saline than ocean water. Diverting water from the Imperial Valley agricultural lands to urban Southern California, and anticipated loss of inflows from Mexico and increasing water conservation activities will result in less water flowing into the Salton Sea. A Restoration Program is being conducted to evaluate the effects of diminished inflows on the Salton Sea Ecosystem and recommend alternatives to avoid or minimize those effects. The Salton Sea has become increasingly important as habitat for migratory birds because of wetland losses. California has lost approximately 91% of interior wetland acreage from pre-settlement until the mid-1980's. The Salton Sea provides critical habitat linking distant wetlands of Pacific and Central Flyways to wintering habitats in Mexico and Central and South America. More than 400 species of birds have been observed in the Salton Sea Ecosystem. Large percentages of the populations for several bird species such as the endangered Yuma Clapper Rail, the Eared Grebe, Snowy Plover and American White Pelican utilize the Salton Sea. Approximately 20 species of conservation concern utilize the Salton Sea ecosystem. Fish-eating birds such as Great Blue Herons, California Brown Pelicans, Double-crested Cormorants and several species of egrets are highly dependent upon the fishery of the Salton Sea. The Salton Sea fishery is now primarily comprised of tilapia

  10. 75 FR 59285 - Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R8-R-2010-N169; 80230-1265-0000-S3] Sonny Bono Salton Sea National Wildlife Refuge Complex (Sonny Bono Salton Sea National Wildlife Refuge and Coachella Valley National Wildlife Refuge), Imperial and Riverside Counties, CA Correction Notice...

  11. Cyanobacteria toxins in the Salton Sea

    PubMed Central

    Carmichael, Wayne W; Li, RenHui

    2006-01-01

    Background The Salton Sea (SS) is the largest inland body of water in California: surface area 980 km2, volume 7.3 million acre-feet, 58 km long, 14–22 km wide, maximum depth 15 m. Located in the southeastern Sonoran desert of California, it is 85 m below sea level at its lowest point. It was formed between 1905 and 1907 from heavy river flows of the Colorado River. Since its formation, it has attracted both people and wildlife, including flocks of migratory birds that have made the Salton Sea a critical stopover on the Pacific flyway. Over the past 15 years wintering populations of eared grebe (Podiceps nigricollis) at the Salton Sea, have experienced over 200,000 mortalities. The cause of these large die-offs remains unknown. The unique environmental conditions of the Salton Sea, including salinities from brackish freshwater at river inlets to hypersaline conditions, extreme daily summer temperatures (>38°C), and high nutrient loading from rivers and agricultural drainage favor eutrophic conditions that encourage algal blooms throughout the year. A significant component of these algal blooms are the prokaryotic group – the Cyanophyta or blue-green algae (also called Cyanobacteria). Since many Cyanobacteria produce toxins (the cyanotoxins) it became important to evaluate their presence and to determine if they are a contributing factor in eared-grebe mortalities at the Salton Sea. Results From November 1999 to April 2001, 247 water and sediment samples were received for phytoplankton identification and cyanotoxin analyses. Immunoassay (ELISA) screening of these samples found that eighty five percent of all water samples contained low but detectable levels of the potent cyclic peptide liver toxin called microcystins. Isolation and identification of cyanobacteria isolates showed that the picoplanktonic Synechococcus and the benthic filamentous Oscillatoria were dominant. Both organisms were found to produce microcystins dominated by microcystin-LR and YR. A

  12. Cyanobacteria toxins in the Salton Sea.

    PubMed

    Carmichael, Wayne W; Li, RenHui

    2006-04-19

    The Salton Sea (SS) is the largest inland body of water in California: surface area 980 km2, volume 7.3 million acre-feet, 58 km long, 14-22 km wide, maximum depth 15 m. Located in the southeastern Sonoran desert of California, it is 85 m below sea level at its lowest point. It was formed between 1905 and 1907 from heavy river flows of the Colorado River. Since its formation, it has attracted both people and wildlife, including flocks of migratory birds that have made the Salton Sea a critical stopover on the Pacific flyway. Over the past 15 years wintering populations of eared grebe (Podiceps nigricollis) at the Salton Sea, have experienced over 200,000 mortalities. The cause of these large die-offs remains unknown. The unique environmental conditions of the Salton Sea, including salinities from brackish freshwater at river inlets to hypersaline conditions, extreme daily summer temperatures (>38 degrees C), and high nutrient loading from rivers and agricultural drainage favor eutrophic conditions that encourage algal blooms throughout the year. A significant component of these algal blooms are the prokaryotic group - the Cyanophyta or blue-green algae (also called Cyanobacteria). Since many Cyanobacteria produce toxins (the cyanotoxins) it became important to evaluate their presence and to determine if they are a contributing factor in eared-grebe mortalities at the Salton Sea. From November 1999 to April 2001, 247 water and sediment samples were received for phytoplankton identification and cyanotoxin analyses. Immunoassay (ELISA) screening of these samples found that eighty five percent of all water samples contained low but detectable levels of the potent cyclic peptide liver toxin called microcystins. Isolation and identification of cyanobacteria isolates showed that the picoplanktonic Synechococcus and the benthic filamentous Oscillatoria were dominant. Both organisms were found to produce microcystins dominated by microcystin-LR and YR. A laboratory strain

  13. Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.

    2015-12-01

    The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.

  14. Trace elements and pesticides in Salton Sea area, California

    USGS Publications Warehouse

    Schroeder, Roy A.; Setmire, James G.; Wolfe, John C.

    1988-01-01

    Concentrations of numerous potentially toxic trace elements and pesticides were determined in water, sediment, and biota from the Salton Sea area in southestern California. Comparison of results with data from other studies in this area and from other areas, and with various water-quality standards or criteria, indicate that selenium probably is the principal contaminant of concern in the Salton Sea basin and that it probably is related to agricultural practices. Selenium is mobilized in the subsurface drainwater produced by agricultural irrigation and transported in ditches and rivers, some of which pass through or near the Salton Sea National Wildlife Refuge before entering the Salton Sea. Some selenium apparently is incorporated into the food chain. In response to the finding of elevated selenium residues in fish from the area by State agencies, the Imperial County Health Department has issued a health advisory restricting or prohibiting human consumption of fish from the Salton Sea and drains.

  15. Salton Sea ecosystem monitoring and assessment plan

    USGS Publications Warehouse

    Case(compiler), H. L.; Boles, Jerry; Delgado, Arturo; Nguyen, Thang; Osugi, Doug; Barnum, Douglas A.; Decker, Drew; Steinberg, Steven; Steinberg, Sheila; Keene, Charles; White, Kristina; Lupo, Tom; Gen, Sheldon; Baerenklau, Ken A.

    2013-01-01

    The Salton Sea, California’s largest lake, provides essential habitat for several fish and wildlife species and is an important cultural and recreational resource. It has no outlet, and dissolved salts contained in the inflows concentrate in the Salton Sea through evaporation. The salinity of the Salton Sea, which is currently nearly one and a half times the salinity of ocean water, has been increasing as a result of evaporative processes and low freshwater inputs. Further reductions in inflows from water conservation, recycling, and transfers will lower the level of the Salton Sea and accelerate the rate of salinity increases, reduce the suitability of fish and wildlife habitat, and affect air quality by exposing lakebed playa that could generate dust. Legislation enacted in 2003 to implement the Quantification Settlement Agreement (QSA) stated the Legislature’s intent for the State of California to undertake the restoration of the Salton Sea ecosystem. As required by the legislation, the California Resources Agency (now California Natural Resources Agency) produced the Salton Sea Ecosystem Restoration Study and final Programmatic Environmental Impact Report (PEIR; California Resources Agency, 2007) with the stated purpose to “develop a preferred alternative by exploring alternative ways to restore important ecological functions of the Salton Sea that have existed for about 100 years.” A decision regarding a preferred alternative currently resides with the California State Legislature (Legislature), which has yet to take action. As part of efforts to identify an ecosystem restoration program for the Salton Sea, and in anticipation of direction from the Legislature, the California Department of Water Resources (DWR), California Department of Fish and Wildlife (CDFW), U.S. Bureau of Reclamation (Reclamation), and U.S. Geological Survey (USGS) established a team to develop a monitoring and assessment plan (MAP). This plan is the product of that effort. The

  16. Metagenomic sequencing of two salton sea microbiomes.

    PubMed

    Hawley, Erik R; Schackwitz, Wendy; Hess, Matthias

    2014-01-23

    The Salton Sea is the largest inland body of water in California, with salinities ranging from brackish freshwater to hypersaline. The lake experiences high nutrient input, and its surface water is exposed to temperatures up to 40°C. Here, we report the community profiles associated with surface water from the Salton Sea.

  17. State of the Salton Sea—A science and monitoring meeting of scientists for the Salton Sea

    USGS Publications Warehouse

    Barnum, Douglas A.; Bradley, Timothy; Cohen, Michael; Wilcox, Bruce; Yanega, Gregor

    2017-01-19

    IntroductionThe Salton Sea (Sea) is an ecosystem facing large systemic changes in the near future. Managers and stakeholders are seeking solutions to the decline of the Sea and have turned to the scientific community for answers. In response, scientists gathered in Irvine, California, to review existing science and propose scientific studies and monitoring needs required for understanding how to retain the Sea as a functional ecosystem. This document summarizes the proceedings of this gathering of approximately 50 scientists at a September 8–10, 2014, workshop on the State of the Salton Sea.

  18. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  19. Passive seismic imaging based on seismic interferometry: method and its application to image the structure around the 2013 Mw6.6 Lushan earthquake

    NASA Astrophysics Data System (ADS)

    Gu, N.; Zhang, H.

    2017-12-01

    Seismic imaging of fault zones generally involves seismic velocity tomography using first arrival times or full waveforms from earthquakes occurring around the fault zones. However, in most cases seismic velocity tomography only gives smooth image of the fault zone structure. To get high-resolution structure of the fault zones, seismic migration using active seismic data needs to be used. But it is generally too expensive to conduct active seismic surveys, even for 2D. Here we propose to apply the passive seismic imaging method based on seismic interferometry to image fault zone detailed structures. Seismic interferometry generally refers to the construction of new seismic records for virtual sources and receivers by cross correlating and stacking the seismic records on physical receivers from physical sources. In this study, we utilize seismic waveforms recorded on surface seismic stations for each earthquake to construct zero-offset seismic record at each earthquake location as if there was a virtual receiver at each earthquake location. We have applied this method to image the fault zone structure around the 2013 Mw6.6 Lushan earthquake. After the occurrence of the mainshock, a 29-station temporary array is installed to monitor aftershocks. In this study, we first select aftershocks along several vertical cross sections approximately normal to the fault strike. Then we create several zero-offset seismic reflection sections by seismic interferometry with seismic waveforms from aftershocks around each section. Finally we migrate these zero-offset sections to create seismic structures around the fault zones. From these migration images, we can clearly identify strong reflectors, which correspond to major reverse fault where the mainshock occurs. This application shows that it is possible to image detailed fault zone structures with passive seismic sources.

  20. Salton Sea Project, Phase 1. [solar pond power plant

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.

    1982-01-01

    A feasibility study was made for a salt gradient solar pond power plant in or near the Salton Sea of California. The conclusions support continuance 5-MWe proof-of-concept experiment, and ultimate construction by an electric utility company of a 600-MWe plant. The Solar Pond concept would be an environmental benefit to the Salton Sea by reversing the increasing salinity trend. The greatest cost drivers are the lake dike construction and pond sealing. Problems to be resolved include method of brine production from Salton Sea water for the first unit (which requires evaporation pond area and time), the high turbidity and color content of the Salton Sea water (which requires pretreatment), and other questions related to pond permeability, bio-activity and soil/brine chemical reactions. All technical and environmental problems appear solvable and/or manageable if care is taken in mitigating impacts.

  1. Using Seismic Interferometry to Investigate Seismic Swarms

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Morency, C.; Templeton, D. C.

    2017-12-01

    Seismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Hundreds of small earthquakes often occur along a fault during a seismic swarm. This seismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the fault, itself. Here we focus on two methods of seismic interferometry, ambient noise correlation (ANC) and the virtual seismometer method (VSM). ANC is based on the observation that the Earth's background noise includes coherent energy, which can be recovered by observing over long time periods and allowing the incoherent energy to cancel out. The cross correlation of ambient noise between a pair of stations results in a waveform that is identical to the seismogram that would result if an impulsive source located at one of the stations was recorded at the other, the Green function (GF). The calculation of the GF is often stable after a few weeks of continuous data correlation, any perturbations to the GF after that point are directly related to changes in the subsurface and can be used for 4D monitoring.VSM is a style of seismic interferometry that provides fast, precise, high frequency estimates of the Green's function (GF) between earthquakes. VSM illuminates the subsurface precisely where the pressures are changing and has the potential to image the evolution of seismicity over time, including changes in the style of faulting. With hundreds of earthquakes, we can calculate thousands of waveforms. At the same time, VSM collapses the computational domain, often by 2-3 orders of magnitude. This allows us to do high frequency 3D modeling in the fault region. Using data from a swarm of earthquakes near the Salton Sea, we demonstrate the power of these techniques, illustrating our ability to scale from the far field, where sources are well separated, to the near field where their locations fall within each other

  2. STS-49 Earth observation of the Salton Sea and the Gulf of California

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, shows the Salton Sea and the Gulf of California. The nearly cloud-free view follows the Colorado River Delta from the Gulf of California (Mexico) to the Salton Sea (California). The Colorado River enters its delta from the right (east), then turns directly south to form saline tidal flats at the edge of the gulf. Nearly all the water is used for irrigation. The United States (U.S.) / Mexican border shows clearly in the different field patterns and the intensity of the greenish color. The irrigated agricultural area offers a sharp contrast to the surrounding desert. The crew used a handheld HASSELBLAD camera with a 100-mm lens to record the image.

  3. Seismic reflection imaging of shallow oceanographic structures

    NASA Astrophysics Data System (ADS)

    Piété, Helen; Marié, Louis; Marsset, Bruno; Thomas, Yannick; Gutscher, Marc-André

    2013-05-01

    Multichannel seismic (MCS) reflection profiling can provide high lateral resolution images of deep ocean thermohaline fine structure. However, the shallowest layers of the water column (z < 150 m) have remained unexplored by this technique until recently. In order to explore the feasibility of shallow seismic oceanography (SO), we reprocessed and analyzed four multichannel seismic reflection sections featuring reflectors at depths between 10 and 150 m. The influence of the acquisition parameters was quantified. Seismic data processing dedicated to SO was also investigated. Conventional seismic acquisition systems were found to be ill-suited to the imaging of shallow oceanographic structures, because of a high antenna filter effect induced by large offsets and seismic trace lengths, and sources that typically cannot provide both a high level of emission and fine vertical resolution. We considered a test case, the imagery of the seasonal thermocline on the western Brittany continental shelf. New oceanographic data acquired in this area allowed simulation of the seismic acquisition. Sea trials of a specifically designed system were performed during the ASPEX survey, conducted in early summer 2012. The seismic device featured: (i) four seismic streamers, each consisting of six traces of 1.80 m; (ii) a 1000 J SIG sparker source, providing a 400 Hz signal with a level of emission of 205 dB re 1 μPa @ 1 m. This survey captured the 15 m thick, 30 m deep seasonal thermocline in unprecedented detail, showing images of vertical displacements most probably induced by internal waves.

  4. a Comparative Case Study of Reflection Seismic Imaging Method

    NASA Astrophysics Data System (ADS)

    Alamooti, M.; Aydin, A.

    2017-12-01

    Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.

  5. Updated Tomographic Seismic Imaging at Kilauea Volcano, Hawaii

    NASA Astrophysics Data System (ADS)

    Okubo, P.; Johnson, J.; Felts, E. S.; Flores, N.

    2013-12-01

    Improved and more detailed geophysical, geological, and geochemical observations and measurements at Kilauea, along with prolonged eruptions at its summit caldera and east rift zone, are encouraging more ambitious interpretation and modeling of volcanic processes over a range of temporal and spatial scales. We are updating three-dimensional models of seismic wave-speed distributions within Kilauea using local earthquake arrival time tomography to support waveform-based modeling of seismic source mechanisms. We start from a tomographic model derived from a combination of permanent seismic stations comprising the Hawaiian Volcano Observatory (HVO) seismographic network and a dense deployment of temporary stations in the Kilauea caldera region in 1996. Using P- and S-wave arrival times measured from the HVO network for local earthquakes from 1997 through 2012, we compute velocity models with the finite difference tomographic seismic imaging technique implemented by Benz and others (1996), and applied to numerous volcanoes including Kilauea. Particular impetus to our current modeling was derived from a focused effort to review seismicity occurring in Kilauea's summit caldera and adjoining regions in 2012. Our results reveal clear P-wave low-velocity features at and slightly below sea level beneath Kilauea's summit caldera, lying between Halemaumau Crater and the north-facing scarps that mark the southern caldera boundary. The results are also suggestive of changes in seismic velocity distributions between 1996 and 2012. One example of such a change is an apparent decrease in the size and southeastward extent, compared to the earlier model, of the low VP feature imaged with the more recent data. However, we recognize the distinct possibility that these changes are reflective of differences in earthquake and seismic station distributions in the respective datasets, and we need to further populate the more recent HVO seismicity catalogs to possibly address this concern

  6. Controlled Source 4D Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Morency, C.; Tromp, J.

    2009-12-01

    Earth's material properties may change after significant tectonic events, e.g., volcanic eruptions, earthquake ruptures, landslides, and hydrocarbon migration. While many studies focus on how to interpret observations in terms of changes in wavespeeds and attenuation, the oil industry is more interested in how we can identify and locate such temporal changes using seismic waves generated by controlled sources. 4D seismic analysis is indeed an important tool to monitor fluid movement in hydrocarbon reservoirs during production, improving fields management. Classic 4D seismic imaging involves comparing images obtained from two subsequent seismic surveys. Differences between the two images tell us where temporal changes occurred. However, when the temporal changes are small, it may be quite hard to reliably identify and characterize the differences between the two images. We propose to back-project residual seismograms between two subsequent surveys using adjoint methods, which results in images highlighting temporal changes. We use the SEG/EAGE salt dome model to illustrate our approach. In two subsequent surveys, the wavespeeds and density within a target region are changed, mimicking possible fluid migration. Due to changes in material properties induced by fluid migration, seismograms recorded in the two surveys differ. By back propagating these residuals, the adjoint images identify the location of the affected region. An important issue involves the nature of model. For instance, are we characterizing only changes in wavespeed, or do we also consider density and attenuation? How many model parameters characterize the model, e.g., is our model isotropic or anisotropic? Is acoustic wave propagation accurate enough or do we need to consider elastic or poroelastic effects? We will investigate how imaging strategies based upon acoustic, elastic and poroelastic simulations affect our imaging capabilities.

  7. Reducing the uncertainty in the fidelity of seismic imaging results

    NASA Astrophysics Data System (ADS)

    Zhou, H. W.; Zou, Z.

    2017-12-01

    A key aspect in geoscientific inversion is quantifying the quality of the results. In seismic imaging, we must quantify the uncertainty of every imaging result based on field data, because data noise and methodology limitations may produce artifacts. Detection of artifacts is therefore an important aspect in uncertainty quantification in geoscientific inversion. Quantifying the uncertainty of seismic imaging solutions means assessing their fidelity, which defines the truthfulness of the imaged targets in terms of their resolution, position error and artifact. Key challenges to achieving the fidelity of seismic imaging include: (1) Difficulty to tell signal from artifact and noise; (2) Limitations in signal-to-noise ratio and seismic illumination; and (3) The multi-scale nature of the data space and model space. Most seismic imaging studies of the Earth's crust and mantle have employed inversion or modeling approaches. Though they are in opposite directions of mapping between the data space and model space, both inversion and modeling seek the best model to minimize the misfit in the data space, which unfortunately is not the output space. The fact that the selection and uncertainty of the output model are not judged in the output space has exacerbated the nonuniqueness problem for inversion and modeling. In contrast, the practice in exploration seismology has long established a two-fold approach of seismic imaging: Using velocity modeling building to establish the long-wavelength reference velocity models, and using seismic migration to map the short-wavelength reflectivity structures. Most interestingly, seismic migration maps the data into an output space called imaging space, where the output reflection images of the subsurface are formed based on an imaging condition. A good example is the reverse time migration, which seeks the reflectivity image as the best fit in the image space between the extrapolation of time-reversed waveform data and the prediction

  8. Chemical evolution of the Salton Sea, California: Nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, R.A.; Orem, W.H.; Kharaka, Y.K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (???44 000 mg l-1 dissolved solids) lake started as fresh water in 1905-07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr-1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  9. Chemical evolution of the Salton Sea, California: nutrient and selenium dynamics

    USGS Publications Warehouse

    Schroeder, Roy A.; Orem, William H.; Kharaka, Yousif K.

    2002-01-01

    The Salton Sea is a 1000-km2 terminal lake located in the desert area of southeastern California. This saline (∼44 000 mg l−1 dissolved solids) lake started as fresh water in 1905–07 by accidental flooding of the Colorado River, and it is maintained by agricultural runoff of irrigation water diverted from the Colorado River. The Salton Sea and surrounding wetlands have recently acquired substantial ecological importance because of the death of large numbers of birds and fish, and the establishment of a program to restore the health of the Sea. In this report, we present new data on the salinity and concentration of selected chemicals in the Salton Sea water, porewater and sediments, emphasizing the constituents of concern: nutrients (N and P), Se and salinity. Chemical profiles from a Salton Sea core estimated to have a sedimentation rate of 2.3 mm yr−1 show increasing concentrations of OC, N, and P in younger sediment that are believed to reflect increasing eutrophication of the lake. Porewater profiles from two locations in the Sea show that diffusion from bottom sediment is only a minor source of nutrients to the overlying water as compared to irrigation water inputs. Although loss of N and Se by microbial-mediated volatilization is possible, comparison of selected element concentrations in river inputs and water and sediments from the Salton Sea indicates that most of the N (from fertilizer) and virtually all of the Se (delivered in irrigation water from the Colorado River) discharged to the Sea still reside within its bottom sediment. Laboratory simulation on mixtures of sediment and water from the Salton Sea suggest that sediment is a potential source of N and Se to the water column under aerobic conditions. Hence, it is important that any engineered changes made to the Salton Sea for remediation or for transfer of water out of the basin do not result in remobilization of nutrients and Se from the bottom sediment into the overlying water.

  10. Salton Sea sampling program: baseline studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tullis, R.E.; Carter, J.L.; Langlois, G.W.

    1981-04-13

    Baseline data are provided on three species of fish from the Salton Sea, California. The fishes considered were the orange mouth corvina (Cynoscion xanthulus), gulf croaker (Bairdiella icistius) and sargo (Anisotremus davidsonii). Morphometric and meristic data are presented as a baseline to aid in the evaluation of any physiological stress the fish may experience as a result of geothermal development. Analyses were made on muscle, liver, and bone of the fishes sampled to provide baseline data on elemental tissue burdens. The elements measured were: As, Br, Ca, Cu, Fe, Ga, K, Mn, Mi, Pb, Rb, Se, Sr, Zn, and Zr.more » These data are important if an environmentally sound progression of geothermal power production is to occur at the Salton Sea.« less

  11. Seismic imaging of the oil and geothermal reservoirs using the induced seismicity

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Toksoz, M. N.; Fehler, M.

    2011-12-01

    It is known that microseismicity can be induced in the oil field due to the stress change caused by oil/gas production. Similarly, injection of high-pressure fluids into the reservoir can also induce microseismicity. Due to the proximity of induced seismicity to the reservoir, in some cases, it may be advantageous to use induced seismicity to image the reservoir. The seismic stations for monitoring the induced seismicity are usually sparse. Conventional travel time tomography using travel times from seismic events to stations may not be applicable because of poor ray coverage outside the source region. In comparison, the double-difference tomography method of Zhang and Thurber (2003) that uses the differential travel times is able to image the reservoir by avoiding determining the velocity structure outside the source region. In this study, we present two case studies of applying double-difference tomography to induced seismicity monitored by borehole stations. In the case of an oil field in Oman, five closely spaced monitoring wells are used to monitor microseismicity induced by gas production. In each well, multiple seismic sensors are positioned from depths 750 m - 1250 m and about 2000 events are selected for tomography. Reservoir imaging shows encouraging results in identifying structures and velocity changes within reservoir layers. Clear velocity contrast was seen across the major northeast-southwest faults. Low Vp, low Vs and low Vp/Vs anomalies are mainly associated with the gas production layer. For the case of the Soultz Enhanced Geothermal System at Soultz-sous-Forets, France, we used travel time data from the September and October 1993 hydraulic stimulations, where only four borehole stations are available. The results showed that the S-wave velocity structure correlated well with seismicity and showed low velocity zones at depths between 2900 and 3300 meters, where fluid was believed to have infiltrated the reservoir. We also attempt time

  12. GIS Plate Tectonic Reconstruction of the Gulf of California-Salton Trough Oblique Rift

    NASA Astrophysics Data System (ADS)

    Skinner, L. A.; Bennett, S. E.; Umhoefer, P. J.; Oskin, M. E.; Dorsey, R. J.; Nava, R. A.

    2011-12-01

    We present GIS-based plate tectonic reconstruction maps for the Gulf of California-Salton Trough oblique rift. The maps track plate boundary deformation in 2 and 1 Myr slices (6-2 Ma and 2 Ma-present) using a custom ArcGIS add-in tool to close extensional basins and restore slip on dextral faults. The tool takes a set of polygons depicting present day locations of tectonic blocks and sequentially restores displacement of their centroids along a vector specific to that time slice. Tectonic blocks are defined by faults, geology, seismic data, and bathymetry/topography. Spreading center and fault-slip rates were acquired from geologic data, cross-Gulf tie points, GPS studies, and aeromagnetic data. A recent GPS study indicated that ~92% of modern-day Pacific-North America (PAC-NAM) plate motion is localized between the Baja California microplate and North America. Relative plate motion azimuth varies from ~302° in the southern Gulf to ~314° in the Salton Trough. Baja-North America GPS rates agree remarkably with ~6 Ma geologic offsets across the Gulf and are used during reconstruction steps back to 6 Ma. In the southern Gulf, unpublished GPS data indicate that modern plate motion is partitioned between the plate boundary, Gulf-margin system, and borderland faults west of Baja California. The Alarcon and Guaymas spreading centers initiated at 2.4 Ma and 6 Ma (Lizarralde et al., 2007), respectively, while the Farallon, Pescadero, and Carmen spreading centers began between ~2-1 Ma (Lonsdale, 1989). Therefore, the 2, 4, and 6 Ma reconstruction steps include a long transtensional fault zone along much of the southern Gulf, connecting the Guaymas spreading center with either the Alarcon spreading center or East Pacific Rise. In the northern Gulf, transtensional strain initiated in coastal Sonora by ~7 Ma and migrated westward as the Gulf opened. At ~6 Ma strain migrated west into marine pull-apart basins that now lie within the eastern Gulf. Seismic reflection studies

  13. Salton Trough Post-seismic Afterslip, Viscoelastic Response, and Contribution to Regional Hazard

    NASA Astrophysics Data System (ADS)

    Parker, J. W.; Donnellan, A.; Lyzenga, G. A.

    2012-12-01

    The El Mayor-Cucapah M7.2 April 4 2010 earthquake in Baja California may have affected accumulated hazard to Southern California cities due to loading of regional faults including the Elsinore, San Jacinto and southern San Andreas, faults which already have over a century of tectonic loading. We examine changes observed via multiple seismic and geodetic techniques, including micro seismicity and proposed seismicity-based indicators of hazard, high-quality fault models, the Plate Boundary Observatory GNSS array (with 174 stations showing post-seismic transients with greater than 1 mm amplitude), and interferometric radar maps from UAVSAR (aircraft) flights, showing a network of aseismic fault slip events at distances up to 60 km from the end of the surface rupture. Finite element modeling is used to compute the expected coseismic motions at GPS stations with general agreement, including coseismic uplift at sites ~200 km north of the rupture. Postseismic response is also compared, with GNSS and also with the CIG software "RELAX." An initial examination of hazard is made comparing micro seismicity-based metrics, fault models, and changes to coulomb stress on nearby faults using the finite element model. Comparison of seismicity with interferograms and historic earthquakes show aseismic slip occurs on fault segments that have had earthquakes in the last 70 years, while other segments show no slip at the surface but do show high triggered seismicity. UAVSAR-based estimates of fault slip can be incorporated into the finite element model to correct Coloumb stress change.

  14. Imaging near surface mineral targets with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Dales, P.; Audet, P.; Olivier, G.

    2017-12-01

    To keep up with global metal and mineral demand, new ore-deposits have to be discovered on a regular basis. This task is becoming increasingly difficult, since easily accessible deposits have been exhausted to a large degree. The typical procedure for mineral exploration begins with geophysical surveys followed by a drilling program to investigate potential targets. Since the retrieved drill core samples are one-dimensional observations, the many holes needed to interpolate and interpret potential deposits can lead to very high costs. To reduce the amount of drilling, active seismic imaging is sometimes used as an intermediary, however the active sources (e.g. large vibrating trucks or explosive shots) are expensive and unsuitable for operation in remote or environmentally sensitive areas. In recent years, passive seismic imaging using ambient noise has emerged as a novel, low-cost and environmentally sensitive approach for exploring the sub-surface. This technique dispels with active seismic sources and instead uses ambient seismic noise such as ocean waves, traffic or minor earthquakes. Unfortunately at this point, passive surveys are not capable of reaching the required resolution to image the vast majority of the ore-bodies that are being explored. In this presentation, we will show the results of an experiment where ambient seismic noise recorded on 60 seismic stations was used to image a near-mine target. The target consists of a known ore-body that has been partially exhausted by mining efforts roughly 100 years ago. The experiment examined whether ambient seismic noise interferometry can be used to image the intact and exhausted ore deposit. A drilling campaign was also conducted near the target which offers the opportunity to compare the two methods. If the accuracy and resolution of passive seismic imaging can be improved to that of active surveys (and beyond), this method could become an inexpensive intermediary step in the exploration process and result

  15. Avian disease at the Salton Sea

    USGS Publications Warehouse

    Friend, M.

    2002-01-01

    A review of existing records and the scientific literature was conducted for occurrences of avian diseases affecting free-ranging avifauna within the Salton Sea ecosystem. The period for evaluation was 1907 through 1999. Records of the U.S. Department of Agriculture, Bureau of Biological Survey and the scientific literature were the data sources for the period of 1907a??1939. The narrative reports of the U.S. Fish and Wildlife Service's Sonny Bono National Wildlife Refuge Complex and the epizootic database of the U.S. Geological Survey's National Wildlife Health Center were the primary data sources for the remainder of the evaluation. The pattern of avian disease at the Salton Sea has changed greatly over time. Relative to past decades, there was a greater frequency of major outbreaks of avian disease at the Salton Sea during the 1990s than in previous decades, a greater variety of disease agents causing epizootics, and apparent chronic increases in the attrition of birds from disease. Avian mortality was high for about a decade beginning during the mid-1920s, diminished substantially by the 1940s and was at low to moderate levels until the 1990s when it reached the highest levels reported. Avian botulism (Clostridium botulinum type C) was the only major cause of avian disease until 1979 when the first major epizootic of avian cholera (Pasteurella multocidia) was documented. Waterfowl and shorebirds were the primary species affected by avian botulism. A broader spectrum of species have been killed by avian cholera but waterfowl have suffered the greatest losses. Avian cholera reappeared in 1983 and has joined avian botulism as a recurring cause of avian mortality. In 1989, avian salmonellosis (Salmonella typhimurium) was first diagnosed as a major cause of avian disease within the Salton Sea ecosystem and has since reappeared several times, primarily among cattle egrets (Bubulcus ibis). The largest loss from a single epizootic occurred in 1992, when an estimated

  16. Similarity Measures in Scientometric Research: The Jaccard Index versus Salton's Cosine Formula.

    ERIC Educational Resources Information Center

    Hamers, Lieve; And Others

    1989-01-01

    Describes two similarity measures used in citation and co-citation analysis--the Jaccard index and Salton's cosine formula--and investigates the relationship between the two measures. It is shown that Salton's formula yields a numerical value that is twice Jaccard's index in most cases, and an explanation is offered. (13 references) (CLB)

  17. Salton Sea Scientific Drilling Program

    USGS Publications Warehouse

    Sass, J.H.

    1988-01-01

    The Salton Sea Scientific Drilling Program (SSSDP) was the first large-scale drilling project undertaken by the U.S Continental Scientific Drilling Program. The objectives of the SSSDP were (1) to drill a deep well into the Salton Sea Geothermal Field in the Imperial Valley of California, (2) to retrieve a high percentage of core and cuttings along the entire depth of the well, (3) to obtain a comprehensive suite of geophysical logs, (4) to conduct flow tests at two depths  (and to take fluid samples therefrom), and (5) to carry out several downhole experiments. These activites enabled the U.S Geological Survey and cooperating agencies to study the physical and chemical processes involved in an active hydrothermal system driven by a molten-rock heat source. This program, orginally conceived by Wilfred A. Elders, professor of geology at the University of California at Riverside, was coordinated under an inter-agency accord among the Geological Survey, the U.S Department of Energy, and the National Science Foundation. 

  18. Geometry of the southern San Andreas fault and its implications for seismic hazard

    NASA Astrophysics Data System (ADS)

    Langenheim, V. E.; Dorsey, R. J.; Fuis, G. S.; Cooke, M. L.; Fattaruso, L.; Barak, S.

    2015-12-01

    The southern San Andreas fault (SSAF) provides rich opportunities for studying the geometry and connectivity of fault stepovers and intersections, including recently recognized NE tilting of the Salton block between the SSAF and San Jacinto fault (SJF) that likely results from slight obliquity of relative plate motion to the strike of the SSAF. Fault geometry and predictions of whether the SSAF will rupture through the restraining bend in San Gorgonio Pass (SGP) are controversial, with significant implications for seismic hazard. The evolution of faulting in SGP has led to various models of strain accommodation, including clockwise rotation of fault-bounded blocks east of the restraining bend, and generation of faults that siphon strike slip away from the restraining bend onto the SJF (also parallel to the SSAF). Complex deformation is not restricted to the upper crust but extends to mid- and lower-crustal depths according to magnetic data and ambient-noise surface-wave tomography. Initiation of the SJF ~1.2 Ma led to formation of the relatively intact Salton block, and end of extension on the West Salton detachment fault on the west side of Coachella Valley. Geologic and geomorphic data show asymmetry of the southern Santa Rosa Mountains, with a steep fault-bounded SW flank produced by active uplift, and gentler topographic gradients on the NE flank with tilted, inactive late Pleistocene fans that are incised by modern upper fan channels. Gravity data indicate the basin floor beneath Coachella Valley is also asymmetric, with a gently NE-dipping basin floor bound by a steep SSAF; seismic-reflection data suggest that NE tilting took place during Quaternary time. 3D numerical modeling predicts gentle NE dips in the Salton block that result from the slight clockwise orientation of relative motion across a NE-dipping SSAF. A NE dip of the SSAF, supported by various geophysical datasets, would reduce shaking in Coachella Valley compared to a vertical fault.

  19. Semi-automatic mapping for identifying complex geobodies in seismic images

    NASA Astrophysics Data System (ADS)

    Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid

    2017-03-01

    Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.

  20. Characterizing potentially induced earthquake rate changes in the Brawley Seismic Zone, southern California

    USGS Publications Warehouse

    Llenos, Andrea L.; Michael, Andrew J.

    2016-01-01

    The Brawley seismic zone (BSZ), in the Salton trough of southern California, has a history of earthquake swarms and geothermal energy exploitation. Some earthquake rate changes may have been induced by fluid extraction and injection activity at local geothermal fields, particularly at the North Brawley Geothermal Field (NBGF) and at the Salton Sea Geothermal Field (SSGF). We explore this issue by examining earthquake rate changes and interevent distance distributions in these fields. In Oklahoma and Arkansas, where considerable wastewater injection occurs, increases in background seismicity rate and aftershock productivity and decreases in interevent distance were indicative of fluid‐injection‐induced seismicity. Here, we test if similar changes occur that may be associated with fluid injection and extraction in geothermal areas. We use stochastic epidemic‐type aftershock sequence models to detect changes in the underlying seismogenic processes, shown by statistically significant changes in the model parameters. The most robust model changes in the SSGF roughly occur when large changes in net fluid production occur, but a similar correlation is not seen in the NBGF. Also, although both background seismicity rate and aftershock productivity increased for fluid‐injection‐induced earthquake rate changes in Oklahoma and Arkansas, the background rate increases significantly in the BSZ only, roughly corresponding with net fluid production rate increases. Moreover, in both fields the interevent spacing does not change significantly during active energy projects. This suggests that, although geothermal field activities in a tectonically active region may not significantly change the physics of earthquake interactions, earthquake rates may still be driven by fluid injection or extraction rates, particularly in the SSGF.

  1. A deterministic and stochastic velocity model for the Salton Trough/Basin and Range transition zone and constraints on magmatism during rifting

    NASA Astrophysics Data System (ADS)

    Larkin, Steven P.; Levander, Alan; Okaya, David; Goff, John A.

    1996-12-01

    As a high resolution addition to the 1992 Pacific to Arizona Crustal Experiment (PACE), a 45-km-long deep crustal seismic reflection profile was acquired across the Chocolate Mountains in southeastern California to illuminate crustal structure in the transition between the Salton Trough and the Basin and Range province. The complex seismic data are analyzed for both large-scale (deterministic) and fine-scale (stochastic) crustal features. A low-fold near-offset common-midpoint (CMP) stacked section shows the northeastward lateral extent of a high-velocity lower crustal body which is centered beneath the Salton Trough. Off-end shots record a high-amplitude diffraction from the point where the high velocity lower crust pinches out at the Moho. Above the high-velocity lower crust, moderate-amplitude reflections occur at midcrustal levels. These reflections display the coherency and frequency characteristics of reflections backscattered from a heterogeneous velocity field, which we model as horizontal intrusions with a von Kármán (fractal) distribution. The effects of upper crustal scattering are included by combining the mapped surface geology and laboratory measurements of exposed rocks within the Chocolate Mountains to reproduce the upper crustal velocity heterogeneity in our crustal velocity model. Viscoelastic finite difference simulations indicate that the volume of mafic material within the reflective zone necessary to produce the observed backscatter is about 5%. The presence of wavelength-scale heterogeneity within the near-surface, upper, and middle crust also produces a 0.5-s-thick zone of discontinuous reflections from a crust-mantle interface which is actually a first-order discontinuity.

  2. The Utility of the Extended Images in Ambient Seismic Wavefield Migration

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J. C.

    2015-12-01

    Active-source 3D seismic migration and migration velocity analysis (MVA) are robust and highly used methods for imaging Earth structure. One class of migration methods uses extended images constructed by incorporating spatial and/or temporal wavefield correlation lags to the imaging conditions. These extended images allow users to directly assess whether images focus better with different parameters, which leads to MVA techniques that are based on the tenets of adjoint-state theory. Under certain conditions (e.g., geographical, cultural or financial), however, active-source methods can prove impractical. Utilizing ambient seismic energy that naturally propagates through the Earth is an alternate method currently used in the scientific community. Thus, an open question is whether extended images are similarly useful for ambient seismic migration processing and verifying subsurface velocity models, and whether one can similarly apply adjoint-state methods to perform ambient migration velocity analysis (AMVA). Herein, we conduct a number of numerical experiments that construct extended images from ambient seismic recordings. We demonstrate that, similar to active-source methods, there is a sensitivity to velocity in ambient seismic recordings in the migrated extended image domain. In synthetic ambient imaging tests with varying degrees of error introduced to the velocity model, the extended images are sensitive to velocity model errors. To determine the extent of this sensitivity, we utilize acoustic wave-equation propagation and cross-correlation-based migration methods to image weak body-wave signals present in the recordings. Importantly, we have also observed scenarios where non-zero correlation lags show signal while zero-lags show none. This may be a valuable missing piece for ambient migration techniques that have yielded largely inconclusive results, and might be an important piece of information for performing AMVA from ambient seismic recordings.

  3. Towards Exascale Seismic Imaging and Inversion

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Bozdag, E.; Lefebvre, M. P.; Smith, J. A.; Lei, W.; Ruan, Y.

    2015-12-01

    Post-petascale supercomputers are now available to solve complex scientific problems that were thought unreachable a few decades ago. They also bring a cohort of concerns tied to obtaining optimum performance. Several issues are currently being investigated by the HPC community. These include energy consumption, fault resilience, scalability of the current parallel paradigms, workflow management, I/O performance and feature extraction with large datasets. In this presentation, we focus on the last three issues. In the context of seismic imaging and inversion, in particular for simulations based on adjoint methods, workflows are well defined.They consist of a few collective steps (e.g., mesh generation or model updates) and of a large number of independent steps (e.g., forward and adjoint simulations of each seismic event, pre- and postprocessing of seismic traces). The greater goal is to reduce the time to solution, that is, obtaining a more precise representation of the subsurface as fast as possible. This brings us to consider both the workflow in its entirety and the parts comprising it. The usual approach is to speedup the purely computational parts based on code optimization in order to reach higher FLOPS and better memory management. This still remains an important concern, but larger scale experiments show that the imaging workflow suffers from severe I/O bottlenecks. Such limitations occur both for purely computational data and seismic time series. The latter are dealt with by the introduction of a new Adaptable Seismic Data Format (ASDF). Parallel I/O libraries, namely HDF5 and ADIOS, are used to drastically reduce the cost of disk access. Parallel visualization tools, such as VisIt, are able to take advantage of ADIOS metadata to extract features and display massive datasets. Because large parts of the workflow are embarrassingly parallel, we are investigating the possibility of automating the imaging process with the integration of scientific workflow

  4. Analyses of organic and inorganic contaminants in Salton Sea fish.

    PubMed

    Riedel, Ralf; Schlenk, Daniel; Frank, Donnell; Costa-Pierce, Barry

    2002-05-01

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthulus (orangemouth corvina), and Oreochromis spp. (tilapia) were sampled from two river mouths and two nearshore areas of the Salton Sea. Muscle tissues were analyzed for a complete suite of 14 trace metals and 53 pesticides. Fish muscle tissues had concentrations of selenium ranging between 1.89 and 2.73 microg/g wet weight. 4,4'-DDE accounted for 94% of the total DDT metabolites. Total DDTs ranged between 17.1 and 239.0 and total PCBs between 2.5 and 18.6 ng/g wet weight. PCB congeners 132, 138, 153, 168, and 180 comprised over 50% of the total PCBs. Given the potential implementation of a commercial fishing at the Salton Sea in the future, the presence of persistent organic pollutants and selenium warrants further research into the effects of these mixtures on fish populations, and on wildlife and humans consuming fish.

  5. Advanced seismic imaging of overdeepened alpine valleys

    NASA Astrophysics Data System (ADS)

    Burschil, Thomas; Buness, Hermann; Tanner, David; Gabriel, Gerald; Krawczyk, Charlotte M.

    2017-04-01

    Major European alpine valleys and basins are densely populated areas with infrastructure of international importance. To protect the environment by, e.g., geohazard assessment or groundwater estimation, understanding of the geological structure of these valleys is essential. The shape and deposits of a valley can clarify its genesis and allows a prediction of behaviour in future glaciations. The term "overdeepened" refers to valleys and basins, in which pressurized melt-water under the glacier erodes the valley below the fluvial level. Most overdeepened valleys or basins were thus refilled during the ice melt or remain in the form of lakes. The ICDP-project Drilling Overdeepened Alpine Valleys (DOVE) intends to correlate the sedimentary succession from boreholes between valleys in the entire alpine range. Hereby, seismic exploration is essential to predict the most promising well path and drilling site. In a first step, this DFG-funded project investigates the benefit of multi-component techniques for seismic imaging. At two test sites, the Tannwald Basin and the Lienz Basin, the Leibniz Institute for Applied Geophysics acquired P-wave reflection profiles to gain structural and facies information. Built on the P-wave information, several S-wave reflection profiles were acquired in the pure SH-wave domain as well as 6-C reflection profiles using a horizontal S-wave source in inline and crossline excitation and 3-C receivers. Five P-wave sections reveal the structure of the Tannwald Basin, which is a distal branch basin of the Rhine Glacier. Strong reflections mark the base of the basin, which has a maximum depth of 240 metres. Internal structures and facies vary strongly and spatially, but allow a seismic facies characterization. We distinguish lacustrine, glacio-fluvial, and deltaic deposits, which make up the fill of the Tannwald Basin. Elements of the SH-wave and 6-C seismic imaging correlate with major structures in the P-wave image, but vary in detail. Based on

  6. Discriminating Characteristics of Tectonic and Human-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Zaliapin, I. V.; Ben-Zion, Y.

    2015-12-01

    We analyze statistical features of background and clustered subpopulations of earthquakes in different regions in an effort to distinguish between human-induced and natural seismicity. Analysis of "end-member" areas known to be dominated by human-induced earthquakes (the Geyser geothermal field in northern California and TauTona gold mine in South Africa) and regular tectonic activity (the San Jacinto fault zone in southern California and Coso region excluding the Coso geothermal field in eastern central California) reveals several distinguishing characteristics. Induced seismicity is shown to have (i) higher rate of background events (both absolute and relative to the total rate), (ii) faster temporal offspring decay, (iii) higher intensity of repeating events, (iv) larger proportion of small clusters, and (v) larger spatial separation between parent and offspring, compared to regular tectonic activity. These differences also successfully discriminate seismicity within the Coso and Salton Sea geothermal fields in California before and after the expansion of geothermal production during the 1980s.

  7. Diffraction Seismic Imaging of the Chalk Group Reservoir Rocks

    NASA Astrophysics Data System (ADS)

    Montazeri, M.; Fomel, S.; Nielsen, L.

    2016-12-01

    In this study we investigate seismic diffracted waves instead of seismic reflected waves, which are usually much stronger and carry most of the information regarding subsurface structures. The goal of this study is to improve imaging of small subsurface features such as faults and fractures. Moreover, we focus on the Chalk Group, which contains important groundwater resources onshore and oil and gas reservoirs in the Danish sector of the North Sea. Finding optimum seismic velocity models for the Chalk Group and estimating high-quality stacked sections with conventional processing methods are challenging tasks. Here, we try to filter out as much as possible of undesired arrivals before stacking the seismic data. Further, a plane-wave destruction method is applied on the seismic stack in order to dampen the reflection events and thereby enhance the visibility of the diffraction events. After this initial processing, we estimate the optimum migration velocity using diffraction events in order to obtain a better resolution stack. The results from this study demonstrate how diffraction imaging can be used as an additional tool for improving the images of small-scale features in the Chalk Group reservoir, in particular faults and fractures. Moreover, we discuss the potential of applying this approach in future studies focused on such reservoirs.

  8. Seismic Imager Space Telescope

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin; Coste, Keith; Cunningham, J.; Sievers,Michael W.; Agnes, Gregory S.; Polanco, Otto R.; Green, Joseph J.; Cameron, Bruce A.; Redding, David C.; Avouac, Jean Philippe; hide

    2012-01-01

    A concept has been developed for a geostationary seismic imager (GSI), a space telescope in geostationary orbit above the Pacific coast of the Americas that would provide movies of many large earthquakes occurring in the area from Southern Chile to Southern Alaska. The GSI movies would cover a field of view as long as 300 km, at a spatial resolution of 3 to 15 m and a temporal resolution of 1 to 2 Hz, which is sufficient for accurate measurement of surface displacements and photometric changes induced by seismic waves. Computer processing of the movie images would exploit these dynamic changes to accurately measure the rapidly evolving surface waves and surface ruptures as they happen. These measurements would provide key information to advance the understanding of the mechanisms governing earthquake ruptures, and the propagation and arrest of damaging seismic waves. GSI operational strategy is to react to earthquakes detected by ground seismometers, slewing the satellite to point at the epicenters of earthquakes above a certain magnitude. Some of these earthquakes will be foreshocks of larger earthquakes; these will be observed, as the spacecraft would have been pointed in the right direction. This strategy was tested against the historical record for the Pacific coast of the Americas, from 1973 until the present. Based on the seismicity recorded during this time period, a GSI mission with a lifetime of 10 years could have been in position to observe at least 13 (22 on average) earthquakes of magnitude larger than 6, and at least one (2 on average) earthquake of magnitude larger than 7. A GSI would provide data unprecedented in its extent and temporal and spatial resolution. It would provide this data for some of the world's most seismically active regions, and do so better and at a lower cost than could be done with ground-based instrumentation. A GSI would revolutionize the understanding of earthquake dynamics, perhaps leading ultimately to effective warning

  9. Seismic reflection imaging with conventional and unconventional sources

    NASA Astrophysics Data System (ADS)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant

  10. Walker Ranch 3D seismic images

    DOE Data Explorer

    Robert J. Mellors

    2016-03-01

    Amplitude images (both vertical and depth slices) extracted from 3D seismic reflection survey over area of Walker Ranch area (adjacent to Raft River). Crossline spacing of 660 feet and inline of 165 feet using a Vibroseis source. Processing included depth migration. Micro-earthquake hypocenters on images. Stratigraphic information and nearby well tracks added to images. Images are embedded in a Microsoft Word document with additional information. Exact location and depth restricted for proprietary reasons. Data collection and processing funded by Agua Caliente. Original data remains property of Agua Caliente.

  11. Probabilistic seismic history matching using binary images

    NASA Astrophysics Data System (ADS)

    Davolio, Alessandra; Schiozer, Denis Jose

    2018-02-01

    Currently, the goal of history-matching procedures is not only to provide a model matching any observed data but also to generate multiple matched models to properly handle uncertainties. One such approach is a probabilistic history-matching methodology based on the discrete Latin Hypercube sampling algorithm, proposed in previous works, which was particularly efficient for matching well data (production rates and pressure). 4D seismic (4DS) data have been increasingly included into history-matching procedures. A key issue in seismic history matching (SHM) is to transfer data into a common domain: impedance, amplitude or pressure, and saturation. In any case, seismic inversions and/or modeling are required, which can be time consuming. An alternative to avoid these procedures is using binary images in SHM as they allow the shape, rather than the physical values, of observed anomalies to be matched. This work presents the incorporation of binary images in SHM within the aforementioned probabilistic history matching. The application was performed with real data from a segment of the Norne benchmark case that presents strong 4D anomalies, including softening signals due to pressure build up. The binary images are used to match the pressurized zones observed in time-lapse data. Three history matchings were conducted using: only well data, well and 4DS data, and only 4DS. The methodology is very flexible and successfully utilized the addition of binary images for seismic objective functions. Results proved the good convergence of the method in few iterations for all three cases. The matched models of the first two cases provided the best results, with similar well matching quality. The second case provided models presenting pore pressure changes according to the expected dynamic behavior (pressurized zones) observed on 4DS data. The use of binary images in SHM is relatively new with few examples in the literature. This work enriches this discussion by presenting a new

  12. High-resolution lithospheric imaging with seismic interferometry

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; Campman, Xander; Draganov, Deyan; Wapenaar, Kees

    2010-10-01

    In recent years, there has been an increase in the deployment of relatively dense arrays of seismic stations. The availability of spatially densely sampled global and regional seismic data has stimulated the adoption of industry-style imaging algorithms applied to converted- and scattered-wave energy from distant earthquakes, leading to relatively high-resolution images of the lower crust and upper mantle. We use seismic interferometry to extract reflection responses from the coda of transmitted energy from distant earthquakes. In theory, higher-resolution images can be obtained when migrating reflections obtained with seismic interferometry rather than with conversions, traditionally used in lithospheric imaging methods. Moreover, reflection data allow the straightforward application of algorithms previously developed in exploration seismology. In particular, the availability of reflection data allows us to extract from it a velocity model using standard multichannel data-processing methods. However, the success of our approach relies mainly on a favourable distribution of earthquakes. In this paper, we investigate how the quality of the reflection response obtained with interferometry is influenced by the distribution of earthquakes and the complexity of the transmitted wavefields. Our analysis shows that a reasonable reflection response could be extracted if (1) the array is approximately aligned with an active zone of earthquakes, (2) different phase responses are used to gather adequate angular illumination of the array and (3) the illumination directions are properly accounted for during processing. We illustrate our analysis using a synthetic data set with similar illumination and source-side reverberation characteristics as field data recorded during the 2000-2001 Laramie broad-band experiment. Finally, we apply our method to the Laramie data, retrieving reflection data. We extract a 2-D velocity model from the reflections and use this model to migrate the

  13. Chemical Data for Detailed Studies of Irrigation Drainage in the Salton Sea Area, California, 1995?2001

    USGS Publications Warehouse

    Schroeder, Roy A.

    2004-01-01

    The primary purpose of this report is to present all chemical data from the Salton Sea area collected by the U.S. Geological Survey between 1995 and 2001. The data were collected primarily for the Department of the Interior's National Irrigation Water Quality Program (NIWQP). The report also contains a brief summary and citation to investigations done for the NIWQP between 1992 and 1995. The NIWQP began studies in the Salton Sea area in 1986 to evaluate effects on the environment from potential toxins, especially selenium, in irrigation-induced drainage. This data report is a companion to several reports published from the earlier studies and to interpretive publications that make use of historical and recent data from this area. Data reported herein are from five collection studies. Water, bottom material, and suspended sediment collected in 1995-96 from the New River, the lower Colorado River, and the All-American Canal were analyzed for elements, semi-volatile (extractable) organic compounds, and organochlorine compounds. Sufficient suspended sediment for chemical analyses was obtained by tangential-flow filtration. A grab sample of surficial bottom sediment collected from near the deepest part of the Salton Sea in 1996 was analyzed for 44 elements and organic and inorganic carbon. High selenium concentration confirmed the effective transfer (sequestration) of selenium into the bottom sediment. Similar grab samples were collected 2 years later (1998) from 11 locations in the Salton Sea and analyzed for elements, as before, and also for nutrients, organochlorine compounds, and polycyclic aromatic hydrocarbons. Nutrients were measured in bottom water, and water-column profiles were obtained for pH, conductance, temperature, and dissolved oxygen. Element and nutrient concentrations were obtained in 1999 from cores at 2 of the above 11 sites, in the north subbasin of the Salton Sea. The most-recent study reported herein was done in 2001 and contains element data on

  14. Rapid Non-Gaussian Uncertainty Quantification of Seismic Velocity Models and Images

    NASA Astrophysics Data System (ADS)

    Ely, G.; Malcolm, A. E.; Poliannikov, O. V.

    2017-12-01

    Conventional seismic imaging typically provides a single estimate of the subsurface without any error bounds. Noise in the observed raw traces as well as the uncertainty of the velocity model directly impact the uncertainty of the final seismic image and its resulting interpretation. We present a Bayesian inference framework to quantify uncertainty in both the velocity model and seismic images, given noise statistics of the observed data.To estimate velocity model uncertainty, we combine the field expansion method, a fast frequency domain wave equation solver, with the adaptive Metropolis-Hastings algorithm. The speed of the field expansion method and its reduced parameterization allows us to perform the tens or hundreds of thousands of forward solves needed for non-parametric posterior estimations. We then migrate the observed data with the distribution of velocity models to generate uncertainty estimates of the resulting subsurface image. This procedure allows us to create both qualitative descriptions of seismic image uncertainty and put error bounds on quantities of interest such as the dip angle of a subduction slab or thickness of a stratigraphic layer.

  15. Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array

    NASA Astrophysics Data System (ADS)

    Chen, T.; Snelson, C. M.; Mellors, R. J.

    2017-12-01

    The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.

  16. Detecting aseismic strain transients from seismicity data

    USGS Publications Warehouse

    Llenos, A.L.; McGuire, J.J.

    2011-01-01

    Aseismic deformation transients such as fluid flow, magma migration, and slow slip can trigger changes in seismicity rate. We present a method that can detect these seismicity rate variations and utilize these anomalies to constrain the underlying variations in stressing rate. Because ordinary aftershock sequences often obscure changes in the background seismicity caused by aseismic processes, we combine the stochastic Epidemic Type Aftershock Sequence model that describes aftershock sequences well and the physically based rate- and state-dependent friction seismicity model into a single seismicity rate model that models both aftershock activity and changes in background seismicity rate. We implement this model into a data assimilation algorithm that inverts seismicity catalogs to estimate space-time variations in stressing rate. We evaluate the method using a synthetic catalog, and then apply it to a catalog of M???1.5 events that occurred in the Salton Trough from 1990 to 2009. We validate our stressing rate estimates by comparing them to estimates from a geodetically derived slip model for a large creep event on the Obsidian Buttes fault. The results demonstrate that our approach can identify large aseismic deformation transients in a multidecade long earthquake catalog and roughly constrain the absolute magnitude of the stressing rate transients. Our method can therefore provide a way to detect aseismic transients in regions where geodetic resolution in space or time is poor. Copyright 2011 by the American Geophysical Union.

  17. Deep Seismic Reflection Images of the Sumatra Seismic and Aseismic Gaps

    NASA Astrophysics Data System (ADS)

    Singh, S. C.; Hananto, N. D.; Chauhan, A.; Carton, H. D.; Midenet, S.; Djajadihardja, Y.

    2009-12-01

    The Sumatra subduction zone is seismically most active region on the Earth, and has been the site of three great earthquakes only in the last four years. The first of the series, the 2004 Boxing Day earthquake, broke 1300 km of the plate boundary and produced the devastating tsunami around the Indian Ocean. The second great earthquake occurred three months later in March 2005, about 150 km SE of the 2004 event. The Earth waited for three years, and then broke again in September 2007 at 1300 km SE of the 2004 event producing a twin earthquake of magnitudes of 8.5 and 7.9 at an interval of 12 hours, leaving a seismic gap of about 600 km between the second and third earthquake, the Sumatra Seismic Gap. Seismological and geodetic studies suggest that this gap is fully locked and may break any time. In order to study the seismic and tsunami risk in this locked region, a deep seismic reflection survey (Tsunami Investigation Deep Evaluation Seismic -TIDES) was carried out in May 2009 using the CGGVeritas vessel Geowave Champion towing a 15 long streamer, the longest ever used during a seismic survey, to image the nature of the subducting plate and associated features, including the seismogenic zone, from seafloor down to 50 km depth. A total of 1700 km of deep seismic reflection data were acquired. Three dip lines traverse the Sumatra subduction zone; one going through the Sumatra Seismic Gap, one crossing the region that broke during the 2007 great earthquake, and one going through the aseismic zone. These three dip profiles should provide insight about the locking mechanism and help us to understand why an earthquake occurs in one zone and not in aseismic zone. A strike-line was shot in the forearc basin connecting the locked zone with broken zone profiles, which should provide insight about barriers that might have stopped propagation of 2007 earthquake rupture further northward.

  18. Lithospheric Structure and Active Deformation in the Salton Trough from Coseismic and Postseismic Models of the 2010 Mw 7.2 El Mayor-Cucapah Earthquake

    NASA Astrophysics Data System (ADS)

    Fielding, E. J.; Huang, M. H.; Dickinson, H.; Freed, A. M.; Burgmann, R.; Gonzalez-Ortega, J. A.; Andronicos, C.

    2016-12-01

    The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) Earthquake ruptured about 120 km along several NW-striking faults to the west of the Cerro Prieto Fault in the Salton Trough of Baja California, Mexico. We analyzed interferometric synthetic aperture radar (SAR), SAR and optical pixel offsets, and continuous and campaign GPS data to optimize an EMC coseismic rupture model with 9 fault segments, which fits the complex structure of the faults. Coseismic slip inversion with a layered elastic model shows that largely right-lateral slip is confined to upper 10 km with strong variations along strike. Near-field GPS measures slip on a north-striking normal fault that ruptured at the beginning of the earthquake, previously inferred from seismic waveforms. EMC Earthquake postseismic deformation shows the Earth's response to the large coseismic stress changes. InSAR shows rapid shallow afterslip at the north and south ends of the main ruptures. Continuous GPS from the Plate Boundary Observatory operated by UNAVCO measures the first six years of postseismic deformation, extremely rapid near the rupture. Afterslip on faults beneath the coseismic rupture cannot explain far-field displacements that are best explained by viscoelastic relaxation of the lower crust and upper mantle. We built a viscoelastic 3D finite element model of the lithosphere and asthenosphere based on available data for the region with the EMC coseismic faults embedded inside. Coseismic slip was imposed on the model, allowed to relax for 5 years, and then compared to the observed surface deformation. Systematic exploration of the viscoelastic parameters shows that horizontal and vertical heterogeneity is required to fit the postseismic deformation. Our preferred viscoelastic model has weaker viscosity layers beneath the Salton Trough than adjacent blocks that are consistent with the inferred differences in the geotherms. Defining mechanical lithosphere as rocks that have viscosities greater than 10^19 Pa s (able

  19. Geothermal induced seismicity: What links source mechanics and event magnitudes to faulting regime and injection rates?

    NASA Astrophysics Data System (ADS)

    Martinez-Garzon, Patricia; Kwiatek, Grzegorz; Bohnhoff, Marco; Dresen, Georg

    2017-04-01

    Improving estimates of seismic hazard associated to reservoir stimulation requires advanced understanding of the physical processes governing induced seismicity, which can be better achieved by carefully processing large datasets. To this end, we investigate source-type processes (shear/tensile/compaction) and rupture geometries with respect to the local stress field using seismicity from The Geysers (TG) and Salton Sea geothermal reservoirs, California. Analysis of 869 well-constrained full moment tensors (MW 0.8-3.5) at TG reveals significant non-double-couple (NDC) components (>25%) for 65% of the events and remarkably diversity in the faulting mechanisms. Volumetric deformation is clearly governed by injection rates with larger NDC components observed near injection wells and during high injection periods. The overall volumetric deformation from the moment tensors increases with time, possibly reflecting a reservoir pore pressure increase after several years of fluid injection with no significant production nearby. The obtained source mechanisms and fault orientations are magnitude-dependent and vary significantly between faulting regimes. Normal faulting events (MW < 2) reveal substantial NDC components indicating dilatancy, and they occur on varying fault orientations. In contrast, strike-slip events dominantly reveal a double-couple source, larger magnitudes (MW > 2) and mostly occur on optimally oriented faults with respect to the local stress field. NDC components indicating closure of cracks and pore spaces in the source region are found for reverse faulting events with MW > 2.5. Our findings from TG are generally consistent with preliminary source-type results from a reduced subset of well-recorded seismicity at the Salton Sea geothermal reservoir. Combined results imply that source processes and magnitudes of geothermal-induced seismicity are strongly affected by and systematically related to the hydraulic operations and the local stress state.

  20. Seismic Full Waveform Modeling & Imaging in Attenuating Media

    NASA Astrophysics Data System (ADS)

    Guo, Peng

    Seismic attenuation strongly affects seismic waveforms by amplitude loss and velocity dispersion. Without proper inclusion of Q parameters, errors can be introduced for seismic full waveform modeling and imaging. Three different (Carcione's, Robertsson's, and the generalized Robertsson's) isotropic viscoelastic wave equations based on the generalized standard linear solid (GSLS) are evaluated. The second-order displacement equations are derived, and used to demonstrate that, with the same stress relaxation times, these viscoelastic formulations are equivalent. By introducing separate memory variables for P and S relaxation functions, Robertsson's formulation is generalized to allow different P and S wave stress relaxation times, which improves the physical consistency of the Qp and Qs modelled in the seismograms.The three formulations have comparable computational cost. 3D seismic finite-difference forward modeling is applied to anisotropic viscoelastic media. The viscoelastic T-matrix (a dynamic effective medium theory) relates frequency-dependent anisotropic attenuation and velocity to reservoir properties in fractured HTI media, based on the meso-scale fluid flow attenuation mechanism. The seismic signatures resulting from changing viscoelastic reservoir properties are easily visible. Analysis of 3D viscoelastic seismograms suggests that anisotropic attenuation is a potential tool for reservoir characterization. To compensate the Q effects during reverse-time migration (RTM) in viscoacoustic and viscoelastic media, amplitudes need to be compensated during wave propagation; the propagation velocity of the Q-compensated wavefield needs to be the same as in the attenuating wavefield, to restore the phase information. Both amplitude and phase can be compensated when the velocity dispersion and the amplitude loss are decoupled. For wave equations based on the GSLS, because Q effects are coupled in the memory variables, Q-compensated wavefield propagates faster than

  1. Seismic Imaging and Characterization of Bright Spots in the West Bohemia Seismic Zone (Germany and Czech Republic)

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Schreiter, L.; Hlousek, F.; Jusri, T.; Buske, S.

    2017-12-01

    In crystalline environments, imaging faults, layer boundaries and small scale structures is challenging due to the complex geometry of the structures themselves and the influence of the hardrock environment on the seismic wavefield. Optimally designed active seismic surveys and careful processing can produce a clear image of the subsurface structures. However, if little is known about the local geology and tectonic state of the area, the imaged reflections can be difficult to interpret. This is the case in the West Bohemia Seismic Zone, located along the border of Germany and Czech Republic. This geodynamically active area is spotted with springs and gas vents, and frequently experiences low magnitude seismic swarms. The most active region is located in the Cheb basin and coincides with the junction of a northwest trending fault with a north-south trending shear zone, making for a structurally complex hardrock setting. In the early 1990s, two long-offset reflection seismic profiles were collected along the boundary of the Cheb basin: MVE-90 along the northern edge, and 9HR-91 in the east. These profiles were recently reprocessed using Kirchhoff PreStack Depth Migration, revealing high amplitude reflections, or bright spots, that correlate to nearby seismicity. Several studies have hypothesized that the 9HR-91 bright spots image a fluid trap, where mantle-sourced fluids accumulate, thereby facilitating slip on the faults and triggering the swarms. However, the exact nature of the bright spots remains an open question. They may be a change in lithology and/or porosity, an infilled vein or an impermeable fault. We aim to answer this question by first using Coherency-Based PreStack Depth Migration to produce detailed images of the bright spots. We then forward model the waveforms guided by the reflection coefficients in order to derive rock-physical parameters. Finally, the best-fitting models are interpreted in terms of their possible relationship to the West Bohemia

  2. Characterizing Novel Archaeal Lineages in Salton Sea Sediments

    NASA Astrophysics Data System (ADS)

    Tarn, J.; Valentine, D. L.

    2016-12-01

    Biological communities in extreme environments are often dominated by microorganisms of the domain Archaea. Abundant microbial assemblages of this group are found in the hottest, saltiest, and most thermodynamically-limited ecosystems on earth. These taxing surroundings are thought to impose a state of chronic energy stress on resident organisms due to high costs of cellular maintenance relative to resource availability. Even in more temperate settings, Archaea are regularly associated with low-nutrient lifestyles, reflecting their adaptation to extreme, biologically-limiting conditions, which may be an ancestral, domain-wide trait. In this study, we seek to characterize the Archaeal community of the Salton Sea, where members of this domain are novel and highly abundant. Previous work by Swan et al. in 2010 showed that gradients in salinity, sulfate, carbon and nitrogen across sediment horizons of the Salton Sea are linked to changes in Archaeal dominance and community structure. In light of recent taxonomic revisions of the domain, I reclassified the 107 published small subunit rRNA Archaeal sequences from the 2010 study using updated reference databases. The majority of these Euryarchaeal sequences were reassigned to the so-called DPANN superphylum, with Pacearchaeota-related sequences being very abundant in shallow, organic-rich sediments. In deeper, energy-limited strata, several groups of Bathyarchaeota and one divergent DPANN clade were dominant. Ongoing metagenomic work on these sediment communities is being used to assemble genomes of these novel Archaeal groups. These results will help define genomic adaptations of Salton Sea Archaea to varying levels of energy stress as well as inform future cultivation efforts.

  3. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    PubMed Central

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  4. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    PubMed

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  5. Influence of seismic diffraction for high-resolution imaging: applications in offshore Malaysia

    NASA Astrophysics Data System (ADS)

    Bashir, Yasir; Ghosh, Deva Prasad; Sum, Chow Weng

    2018-04-01

    Small-scale geological discontinuities are not easy to detect and image in seismic data, as these features represent themselves as diffracted rather than reflected waves. However, the combined reflected and diffracted image contains full wave information and is of great value to an interpreter, for instance enabling the identification of faults, fractures, and surfaces in built-up carbonate. Although diffraction imaging has a resolution below the typical seismic wavelength, if the wavelength is much smaller than the width of the discontinuity then interference effects can be ignored, as they would not play a role in generating the seismic diffractions. In this paper, by means of synthetic examples and real data, the potential of diffraction separation for high-resolution seismic imaging is revealed and choosing the best method for preserving diffraction are discussed. We illustrate the accuracy of separating diffractions using the plane-wave destruction (PWD) and dip frequency filtering (DFF) techniques on data from the Sarawak Basin, a carbonate field. PWD is able to preserve the diffraction more intelligently than DFF, which is proven in the results by the model and real data. The final results illustrate the effectiveness of diffraction separation and possible imaging for high-resolution seismic data of small but significant geological features.

  6. Seismic Imaging of a Prospective Geothermal Play, Using a Dense Geophone Array

    NASA Astrophysics Data System (ADS)

    Trow, A.; Pankow, K. L.; Wannamaker, P. E.; Lin, F. C.; Ward, K. M.

    2017-12-01

    In the summer of 2016 a dense array of 48 Nodal Seismic geophones was deployed near Beaver, Utah on the eastern flank of the Mineral Mountains. The array aperture was approximately 20 kilometers and recorded continuous seismic data for 30 days. Geophones were centered on a previously known shallow (5km depth) magnetolluric (MT) low-resistivity body. This region of low resistivity was interpreted to possibly contain hydrothermal/geothermal fluids and was targeted for further seismic investigation. The seismic array geometry was designed to optimize seismic event detection for small (magnitude of completeness zero) earthquakes and to facilitate seismic imaging at depths of 5 km and deeper. For the duration of the experiment, one ML 1 earthquake was detected underneath the array with 15 other earthquakes detected to the east and south in the more seismically active Pavant Range. Different passive imaging techniques, including ambient noise and earthquake tomography are being explored in order to produce a seismic velocity image. Understanding the subsurface, specifically the fracture network and fluid content of the bedrock is important for characterization of a geothermal prospect. If it is rich in fluids, it can be assumed that some fracture network is in place to accommodate such fluids. Both fractures and fluid content of the prospect will have an effect on the seismic velocities in the basement structure. These properties can help determine the viability of a geothermal system for power production.

  7. Seismically imaging the Afar plume

    NASA Astrophysics Data System (ADS)

    Hammond, J. O.; Kendall, J. M.; Bastow, I. D.; Stuart, G. W.; Keir, D.; Ayele, A.; Ogubazghi, G.; Ebinger, C. J.; Belachew, M.

    2011-12-01

    Plume related flood basalt volcanism in Ethiopia has long been cited to have instigated continental breakup in northeast Africa. However, to date seismic images of the mantle beneath the region have not produced conclusive evidence of a plume-like structure. As a result the nature and even existence of a plume in the region and its role in rift initiation and continental rupture are debated. Previous seismic studies using regional deployments of sensors in East-Africa show that low seismic velocities underlie northeast Africa, but their resolution is limited to the top 200-300km of the Earth. Thus, the connection between the low velocities in the uppermost mantle and those imaged in global studies in the lower mantle is unclear. We have combined new data from Afar, Ethiopia with 6 other regional experiments and global network stations across Ethiopia, Eritrea, Djibouti and Yemen, to produce high-resolution models of upper mantle P- and S- wave velocities to the base of the transition zone. Relative travel time tomographic inversions show that the top 100km is dominated by focussed low velocity zones, likely associated with melt in the lithosphere/uppermost asthenosphere. Below these depths a broad SW-NE oriented sheet like upwelling extends down to the top of the transition zone. Within the transition zone two focussed sharp-sided low velocity regions exist: one beneath the Western Ethiopian plateau outside the rift valley, and the other beneath the Afar depression. The nature of the transition zone anomalies suggests that small upwellings may rise from a broader low velocity plume-like feature in the lower mantle. This interpretation is supported by numerical and analogue experiments that suggest the 660km phase change and viscosity jump may impede flow from the lower to upper mantle creating a thermal boundary layer at the base of the transition zone. This allows smaller, secondary upwellings to initiate and rise to the surface. Our images of secondary upwellings

  8. Particulate Matter Sources and Composition near a Shrinking Saline Lake (Salton Sea)

    NASA Astrophysics Data System (ADS)

    Frie, A. L.; Dingle, J. H.; Garrison, A.; Ying, S.; Bahreini, R.

    2017-12-01

    Dried lake beds (playas) are large dust sources in arid regions, and with increased global water demand many large lakes are shrinking. The Salton Sea is an example of one such lake in the early stages of desiccation, with about 15,000 acres of exposed playa. To quantify the impacts of the shrinking lake on airborne particulate matter(PM) composition, PM samples were collected in August of 2015 and February of 2016 near the Salton Sea, CA. These samples were analyzed for total elemental concentration of 15 elements. For these elements, enrichment factors relative to aluminum were calculated and PMF modeling was applied to deconvolve source factors. From these data, desert-like and playa-like sources were estimated to accounted for 45% and 9% of PM10 mass during these sampling periods. PMF results also revealed that playa sources account for 70% of PM10 Na, evidencing playa-driven PM compositional changes. Additionally, PM Se displayed strong seasonal variation, which is thought to be driven by Se volatilization within Salton Sea sediments, playas, or waters.

  9. Seismic imaging: From classical to adjoint tomography

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Gu, Y. J.

    2012-09-01

    Seismic tomography has been a vital tool in probing the Earth's internal structure and enhancing our knowledge of dynamical processes in the Earth's crust and mantle. While various tomographic techniques differ in data types utilized (e.g., body vs. surface waves), data sensitivity (ray vs. finite-frequency approximations), and choices of model parameterization and regularization, most global mantle tomographic models agree well at long wavelengths, owing to the presence and typical dimensions of cold subducted oceanic lithospheres and hot, ascending mantle plumes (e.g., in central Pacific and Africa). Structures at relatively small length scales remain controversial, though, as will be discussed in this paper, they are becoming increasingly resolvable with the fast expanding global and regional seismic networks and improved forward modeling and inversion techniques. This review paper aims to provide an overview of classical tomography methods, key debates pertaining to the resolution of mantle tomographic models, as well as to highlight recent theoretical and computational advances in forward-modeling methods that spearheaded the developments in accurate computation of sensitivity kernels and adjoint tomography. The first part of the paper is devoted to traditional traveltime and waveform tomography. While these approaches established a firm foundation for global and regional seismic tomography, data coverage and the use of approximate sensitivity kernels remained as key limiting factors in the resolution of the targeted structures. In comparison to classical tomography, adjoint tomography takes advantage of full 3D numerical simulations in forward modeling and, in many ways, revolutionizes the seismic imaging of heterogeneous structures with strong velocity contrasts. For this reason, this review provides details of the implementation, resolution and potential challenges of adjoint tomography. Further discussions of techniques that are presently popular in

  10. Micro-seismic imaging using a source function independent full waveform inversion method

    NASA Astrophysics Data System (ADS)

    Wang, Hanchen; Alkhalifah, Tariq

    2018-03-01

    At the heart of micro-seismic event measurements is the task to estimate the location of the source micro-seismic events, as well as their ignition times. The accuracy of locating the sources is highly dependent on the velocity model. On the other hand, the conventional micro-seismic source locating methods require, in many cases manual picking of traveltime arrivals, which do not only lead to manual effort and human interaction, but also prone to errors. Using full waveform inversion (FWI) to locate and image micro-seismic events allows for an automatic process (free of picking) that utilizes the full wavefield. However, full waveform inversion of micro-seismic events faces incredible nonlinearity due to the unknown source locations (space) and functions (time). We developed a source function independent full waveform inversion of micro-seismic events to invert for the source image, source function and the velocity model. It is based on convolving reference traces with these observed and modeled to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. The extended image for the source wavelet in Z axis is extracted to check the accuracy of the inverted source image and velocity model. Also, angle gathers is calculated to assess the quality of the long wavelength component of the velocity model. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity for synthetic examples used here, like those corresponding to the Marmousi model and the SEG/EAGE overthrust model.

  11. Seismic imaging of post-glacial sediments - test study before Spitsbergen expedition

    NASA Astrophysics Data System (ADS)

    Szalas, Joanna; Grzyb, Jaroslaw; Majdanski, Mariusz

    2017-04-01

    This work presents results of the analysis of reflection seismic data acquired from testing area in central Poland. For this experiment we used total number of 147 vertical component seismic stations (DATA-CUBE and Reftek "Texan") with accelerated weight drop (PEG-40). The profile was 350 metres long. It is a part of pilot study for future research project on Spitsbergen. The purpose of the study is to recognise the characteristics of seismic response of post-glacial sediments in order to design the most adequate survey acquisition parameters and processing sequence for data from Spitsbergen. Multiple tests and comparisons have been performed to obtain the best possible quality of seismic image. In this research we examine the influence of receiver interval size, front mute application and surface wave attenuation attempts. Although seismic imaging is the main technique we are planning to support this analysis with additional data from traveltime tomography, MASW and other a priori information.

  12. Closed-loop multiple-scattering imaging with sparse seismic measurements

    NASA Astrophysics Data System (ADS)

    Berkhout, A. J. Guus

    2018-03-01

    In the theoretical situation of noise-free, complete data volumes (`perfect data'), seismic data matrices are fully filled and multiple-scattering operators have the minimum-phase property. Perfect data allow direct inversion methods to be successful in removing surface and internal multiple scattering. Moreover, under these perfect data conditions direct source wavefields realize complete illumination (no irrecoverable shadow zones) and, therefore, primary reflections (first-order response) can provide us with the complete seismic image. However, in practice seismic measurements always contain noise and we never have complete data volumes at our disposal. We actually deal with sparse data matrices that cannot be directly inverted. The message of this paper is that in practice multiple scattering (including source ghosting) must not be removed but must be utilized. It is explained that in the real world we badly need multiple scattering to fill the illumination gaps in the subsurface. It is also explained that the proposed multiple-scattering imaging algorithm gives us the opportunity to decompose both the image and the wavefields into order-based constituents, making the multiple scattering extension easy to apply. Last but not least, the algorithm allows us to use the minimum-phase property to validate and improve images in an objective way.

  13. Possible importance of algal toxins in the Salton Sea, California

    USGS Publications Warehouse

    Reifel, K.M.; McCoy, M.P.; Rocke, T.E.; Tiffany, M.A.; Hurlbert, S.H.; Faulkner, D.J.

    2002-01-01

    In response to wildlife mortality including unexplained eared grebe (Podiceps nigricollis) die-off events in 1992 and 1994 and other mortality events including large fish kills, a survey was conducted for the presence of algal toxins in the Salton Sea. Goals of this survey were to determine if and when algal toxins are present in the Salton Sea and to describe the phytoplankton composition during those times. A total of 29 samples was collected for toxicity analysis from both nearshore and midlake sites visited biweekly from January to December 1999. Dinoflagellates and diatoms dominated most samples, but some were dominated by a prymnesiophyte (Pleurochrysis pseudoroscoffensis) or a raphidophyte (Chattonella marina). Several types of blooms were observed and sampled. The dinoflagellate Gyrodinium uncatenum formed an extensive, dense (up to 310 000 cells ml−1) and long-lasting bloom during the winter in 1999. A coccolithophorid, Pleurochrysis pseudoroscoffensis, occurred at high densities in surface films and nearshore areas during the spring and summer of 1999. These surface films also contained high densities of one or two other species (an unidentified scrippsielloid, Heterocapsa niei, Chattonella marina). Localized blooms were also observed in the Salton Sea. An unknown small dinoflagellate reached high densities (110 000 cells ml−1) inside Varner Harbor, and an unidentified species of Gymnodinium formed a dense (270 000 cells ml−1) band along part of the southern shoreline during the summer. Three species known to produce toxins in other systems were found. Protoceratium reticulatum (=Gonyaulax grindleyi) and Chattonella marina were found in several samples taken during summer months, and Prorocentrum minimum was found in low densities in several samples. Extracts of most samples, including those containing known toxic species, showed a low level (<10% mortality across all concentrations) of activity in the brine shrimp lethality assay

  14. Target-oriented retrieval of subsurface wave fields - Pushing the resolution limits in seismic imaging

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Ivan; Ozmen, Neslihan; van der Neut, Joost; Cui, Tianci

    2017-04-01

    Travelling wide-bandwidth seismic waves have long been used as a primary tool in exploration seismology because they can probe the subsurface over large distances, while retaining relatively high spatial resolution. The well-known Born resolution limit often seems to be the lower bound on spatial imaging resolution in real life examples. In practice, data acquisition cost, time constraints and other factors can worsen the resolution achieved by wavefield imaging. Could we obtain images whose resolution beats the Born limits? Would it be practical to achieve it, and what are we missing today to achieve this? In this talk, we will cover aspects of linear and nonlinear seismic imaging to understand elements that play a role in obtaining "super-resolved" seismic images. New redatuming techniques, such as the Marchenko method, enable the retrieval of subsurface fields that include multiple scattering interactions, while requiring relatively little knowledge of model parameters. Together with new concepts in imaging, such as Target-Enclosing Extended Images, these new redatuming methods enable new targeted imaging frameworks. We will make a case as to why target-oriented approaches to reconstructing subsurface-domain wavefields from surface data may help in increasing the resolving power of seismic imaging, and in pushing the limits on parameter estimation. We will illustrate this using a field data example. Finally, we will draw connections between seismic and other imaging modalities, and discuss how this framework could be put to use in other applications

  15. Improving fault image by determination of optimum seismic survey parameters using ray-based modeling

    NASA Astrophysics Data System (ADS)

    Saffarzadeh, Sadegh; Javaherian, Abdolrahim; Hasani, Hossein; Talebi, Mohammad Ali

    2018-06-01

    In complex structures such as faults, salt domes and reefs, specifying the survey parameters is more challenging and critical owing to the complicated wave field behavior involved in such structures. In the petroleum industry, detecting faults has become crucial for reservoir potential where faults can act as traps for hydrocarbon. In this regard, seismic survey modeling is employed to construct a model close to the real structure, and obtain very realistic synthetic seismic data. Seismic modeling software, the velocity model and parameters pre-determined by conventional methods enable a seismic survey designer to run a shot-by-shot virtual survey operation. A reliable velocity model of structures can be constructed by integrating the 2D seismic data, geological reports and the well information. The effects of various survey designs can be investigated by the analysis of illumination maps and flower plots. Also, seismic processing of the synthetic data output can describe the target image using different survey parameters. Therefore, seismic modeling is one of the most economical ways to establish and test the optimum acquisition parameters to obtain the best image when dealing with complex geological structures. The primary objective of this study is to design a proper 3D seismic survey orientation to achieve fault zone structures through ray-tracing seismic modeling. The results prove that a seismic survey designer can enhance the image of fault planes in a seismic section by utilizing the proposed modeling and processing approach.

  16. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    NASA Astrophysics Data System (ADS)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  17. Seismic imaging in hardrock environments: The role of heterogeneity?

    NASA Astrophysics Data System (ADS)

    Bongajum, Emmanuel; Milkereit, Bernd; Adam, Erick; Meng, Yijian

    2012-10-01

    We investigate the effect of petrophysical scale parameters and structural dips on wave propagation and imaging in heterogeneous media. Seismic wave propagation effects within the heterogeneous media are studied for different velocity models with scale lengths determined via stochastic analysis of petrophysical logs from the Matagami mine, Quebec, Canada. The elastic modeling study reveals that provided certain conditions of the velocity fluctuations are met, strong local distortions of amplitude and arrival times of propagating waves are observed as the degree of scale length anisotropy in the P-wave velocity increases. The location of these local amplitude anomalies is related to the dips characterizing the fabric of the host rocks. This result is different from the elliptical shape of direct waves often defined by effective anisotropic parameters used for layered media. Although estimates of anisotropic parameters suggest weak anisotropy in the investigated models, these effective anisotropic parameters often used in VTI/TTI do not sufficiently describe the effects of scale length anisotropy in heterogeneous media that show such local amplitude, travel time, and phase distortions in the wavefields. Numerical investigations on the implications for reverse time migration (RTM) routines corroborate that mean P-wave velocity of the host rocks produces reliable imaging results. Based on the RTM results, we postulate the following: weak anisotropy in hardrock environments is a sufficient assumption for processing seismic data; and seismic scattering effects due to velocity heterogeneity with a dip component is not sufficient to cause mislocation errors of target structures as observed in the discrepancy between the location of the strong seismic reflections associated to the Matagami sulfide orebody and its true location. Future work will investigate other factors that may provide plausible explanations for these mislocation problems, with the objective of providing a

  18. Does the West Salton Detachment extend through San Gorgonio Pass, southern California?

    NASA Astrophysics Data System (ADS)

    Matti, J. C.; Langenheim, V. E.

    2008-12-01

    Rift-related extension and low-angle crustal detachment are key structural elements of the late Cenozoic southern San Andreas Fault system, as manifested by the West Salton Detachment (WSD). The most northwestern exposure of the WSD is in the Santa Rosa Mts (SRM), where the Zosel Fault bottoms a hangingwall sequence of upper Cenozoic marine and terrestrial sedimentary deposits that include stratigraphic units well known throughout the Salton Trough region. We have used geologic and geophysical data to investigate the distribution of the WSD system in the northern Salton Trough, including its possible extension into and beyond San Gorgonio Pass. Although the WSD is not exposed north of the SRM, late Miocene marine and terrigenous sedimentary rocks at Garnet Hill probably are hangingwall deposits squeezed up within the San Andreas Fault zone. West of Garnet Hill lie San Gorgonio Pass (SGP) and the 3 km-high northern escarpment of the San Jacinto Mountains (SJM). In SGP, upper Cenozoic sedimentary rocks south of the Banning strand of the San Gabriel Fault include the marine Imperial Formation and associated terrestrial deposits, a sequence similar to that in the WSD hangingwall throughout the greater Salton Trough region. We propose that the WSD originally extended from the NW head of Coachella Valley west into SGP, where the detachment may form the base of the Cenozoic marine and terrestrial sedimentary sequence. The WSD probably continues west beyond SGP, with extensional translation decreasing until the detachment intersects the Banning Fault near Calimesa. There, we propose that the WSD underlies a subsurface sedimentary package north of the San Timoteo badlands and south of the Banning Fault that a gravity low suggests is 2 km thick, and that reportedly contains marine sediment penetrated in boreholes. When ~44 km of right-slip is restored on the Banning Fault (Matti and Morton, 1993), the Calimesa low restores opposite a similar low in the northwestern Coachella

  19. Sparseness- and continuity-constrained seismic imaging

    NASA Astrophysics Data System (ADS)

    Herrmann, Felix J.

    2005-04-01

    Non-linear solution strategies to the least-squares seismic inverse-scattering problem with sparseness and continuity constraints are proposed. Our approach is designed to (i) deal with substantial amounts of additive noise (SNR < 0 dB); (ii) use the sparseness and locality (both in position and angle) of directional basis functions (such as curvelets and contourlets) on the model: the reflectivity; and (iii) exploit the near invariance of these basis functions under the normal operator, i.e., the scattering-followed-by-imaging operator. Signal-to-noise ratio and the continuity along the imaged reflectors are significantly enhanced by formulating the solution of the seismic inverse problem in terms of an optimization problem. During the optimization, sparseness on the basis and continuity along the reflectors are imposed by jointly minimizing the l1- and anisotropic diffusion/total-variation norms on the coefficients and reflectivity, respectively. [Joint work with Peyman P. Moghaddam was carried out as part of the SINBAD project, with financial support secured through ITF (the Industry Technology Facilitator) from the following organizations: BG Group, BP, ExxonMobil, and SHELL. Additional funding came from the NSERC Discovery Grants 22R81254.

  20. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields

    NASA Astrophysics Data System (ADS)

    Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon

    2017-01-01

    Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

  1. High vertical resolution crosswell seismic imaging

    DOEpatents

    Lazaratos, Spyridon K.

    1999-12-07

    A method for producing high vertical resolution seismic images from crosswell data is disclosed. In accordance with one aspect of the disclosure, a set of vertically spaced, generally horizontally extending continuous layers and associated nodes are defined within a region between two boreholes. The specific number of nodes is selected such that the value of a particular characteristic of the subterranean region at each of the nodes is one which can be determined from the seismic data. Once values are established at the nodes, values of the particular characteristic are assigned to positions between the node points of each layer based on the values at node within that layer and without regard to the values at node points within any other layer. A seismic map is produced using the node values and the assigned values therebetween. In accordance with another aspect of the disclosure, an approximate model of the region is established using direct arrival traveltime data. Thereafter, the approximate model is adjusted using reflected arrival data. In accordance with still another aspect of the disclosure, correction is provided for well deviation. An associated technique which provides improvements in ray tracing is also disclosed.

  2. Toward seismic source imaging using seismo-ionospheric data

    NASA Astrophysics Data System (ADS)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  3. New insights into North America-Pacific Plate boundary deformation from Lake Tahoe, Salton Sea and southern Baja California

    NASA Astrophysics Data System (ADS)

    Brothers, Daniel Stephen

    Five studies along the Pacific-North America (PA-NA) plate boundary offer new insights into continental margin processes, the development of the PA-NA tectonic margin and regional earthquake hazards. This research is based on the collection and analysis of several new marine geophysical and geological datasets. Two studies used seismic CHIRP surveys and sediment coring in Fallen Leaf Lake (FLL) and Lake Tahoe to constrain tectonic and geomorphic processes in the lakes, but also the slip-rate and earthquake history along the West Tahoe-Dollar Point Fault. CHIRP profiles image vertically offset and folded strata that record deformation associated with the most recent event (MRE). Radiocarbon dating of organic material extracted from piston cores constrain the age of the MRE to be between 4.1--4.5 k.y. B.P. Offset of Tioga aged glacial deposits yield a slip rate of 0.4--0.8 mm/yr. An ancillary study in FLL determined that submerged, in situ pine trees that date to between 900-1250 AD are related to a medieval megadrought in the Lake Tahoe Basin. The timing and severity of this event match medieval megadroughts observed in the western United States and in Europe. CHIRP profiles acquired in the Salton Sea, California provide new insights into the processes that control pull-apart basin development and earthquake hazards along the southernmost San Andreas Fault. Differential subsidence (>10 mm/yr) in the southern sea suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline. In contrast to previous models, the rapid subsidence and fault architecture observed in the southern part of the sea are consistent with experimental models for pull-apart basins. Geophysical surveys imaged more than 15 ˜N15°E oriented faults, some of which have produced up to 10 events in the last 2-3 kyr. Potentially 2 of the last 5 events on the southern San Andreas Fault (SAF) were synchronous with rupture on offshore faults, but it appears that ruptures on

  4. Seismic Imaging of Mantle Plumes

    NASA Astrophysics Data System (ADS)

    Nataf, Henri-Claude

    The mantle plume hypothesis was proposed thirty years ago by Jason Morgan to explain hotspot volcanoes such as Hawaii. A thermal diapir (or plume) rises from the thermal boundary layer at the base of the mantle and produces a chain of volcanoes as a plate moves on top of it. The idea is very attractive, but direct evidence for actual plumes is weak, and many questions remain unanswered. With the great improvement of seismic imagery in the past ten years, new prospects have arisen. Mantle plumes are expected to be rather narrow, and their detection by seismic techniques requires specific developments as well as dedicated field experiments. Regional travel-time tomography has provided good evidence for plumes in the upper mantle beneath a few hotspots (Yellowstone, Massif Central, Iceland). Beneath Hawaii and Iceland, the plume can be detected in the transition zone because it deflects the seismic discontinuities at 410 and 660 km depths. In the lower mantle, plumes are very difficult to detect, so specific methods have been worked out for this purpose. There are hints of a plume beneath the weak Bowie hotspot, as well as intriguing observations for Hawaii. Beneath Iceland, high-resolution tomography has just revealed a wide and meandering plume-like structure extending from the core-mantle boundary up to the surface. Among the many phenomena that seem to take place in the lowermost mantle (or D''), there are also signs there of the presence of plumes. In this article I review the main results obtained so far from these studies and discuss their implications for plume dynamics. Seismic imaging of mantle plumes is still in its infancy but should soon become a turbulent teenager.

  5. Seaview/Westshores High School Gymnasium & Classroom Building, Salton City, California.

    ERIC Educational Resources Information Center

    Design Cost Data, 2001

    2001-01-01

    Presents design, construction, and cost data for Salton City, California's, Seaview/Westshores High School Gymnasium and Classroom Building, which is being utilized by the school and surrounding community. Includes a list of project manufacturers and suppliers, along with five photographs and two floor plans. (GR)

  6. Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.

    2015-12-01

    Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.

  7. Site-Specific Research Conducted in Support of the Salton Sea Solar Pond Project - FY 1982 Report

    NASA Technical Reports Server (NTRS)

    French, R. L.; Marsh, H. E.; Roschke, E. J.; Wu, Y. C.

    1984-01-01

    The design and operation of a salt-gradient solar pond power plant at the Salton Sea presents problems not encountered at small research ponds that were built in the United States. The specific characteristics of the Salton Sea site and the desire to construct the pond using the local clay as a sealant represent major deviations from previous solar pond experience. The site-specific research in support of the plant design is described. The research activity included validation of the spectrophotometric light transmission measurement technique, a search for options for clarifying the turbid and colored water of the Salton Sea, development of water clarification specifications in terms common to industry practice, quantification of gas production from microbiological reactions in the ground, a determination of the combined effects of temperature and salinity on the permeation of the local clays, and a preliminary evaluation of material corrosion.

  8. The Potential for Renewable Energy Development to Benefit Restoration of the Salton Sea. Analysis of Technical and Market Potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagne, Douglas; Haase, Scott; Oakleaf, Brett

    This report summarizes the potential for renewable energy development in the Salton Sea region, as well as the potential for revenues from this development to contribute financially to Salton Sea restoration costs. It considers solar, geothermal, biofuels or nutraceutical production from algae pond cultivation, desalination using renewable energy, and mineral recovery from geothermal fluids.

  9. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    USGS Publications Warehouse

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  10. Enhanced Seismic Imaging of Turbidite Deposits in Chicontepec Basin, Mexico

    NASA Astrophysics Data System (ADS)

    Chavez-Perez, S.; Vargas-Meleza, L.

    2007-05-01

    We test, as postprocessing tools, a combination of migration deconvolution and geometric attributes to attack the complex problems of reflector resolution and detection in migrated seismic volumes. Migration deconvolution has been empirically shown to be an effective approach for enhancing the illumination of migrated images, which are blurred versions of the subsurface reflectivity distribution, by decreasing imaging artifacts, improving spatial resolution, and alleviating acquisition footprint problems. We utilize migration deconvolution as a means to improve the quality and resolution of 3D prestack time migrated results from Chicontepec basin, Mexico, a very relevant portion of the producing onshore sector of Pemex, the Mexican petroleum company. Seismic data covers the Agua Fria, Coapechaca, and Tajin fields. It exhibits acquisition footprint problems, migration artifacts and a severe lack of resolution in the target area, where turbidite deposits need to be characterized between major erosional surfaces. Vertical resolution is about 35 m and the main hydrocarbon plays are turbidite beds no more than 60 m thick. We also employ geometric attributes (e.g., coherent energy and curvature), computed after migration deconvolution, to detect and map out depositional features, and help design development wells in the area. Results of this workflow show imaging enhancement and allow us to identify meandering channels and individual sand bodies, previously undistinguishable in the original seismic migrated images.

  11. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California

    NASA Astrophysics Data System (ADS)

    Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.

    2017-11-01

    The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.

  12. Born from a flood: The Salton Sea and its story of survival

    DOE PAGES

    Tompson, Andrew F. B.

    2016-02-02

    The Salton Sea is a terminal lake located in the deepest point of the topographically closed Salton Trough in southeastern California. It is currently the largest lake in area in the state. It was created by a flooding event along the Colorado River in 1905–1907, similar to the way historical floods over past centuries created ephemeral incarnations of ancient Lake Cahuilla in the same location. Its position at the center of today’s Imperial Valley, a hot and arid locale home to some of the most productive irrigated agricultural lands in the United States, has ensured its ongoing survival through amore » delicate balance between agricultural runoff, its principal form of input, and vast evaporation losses. Nevertheless, its parallel role as a recreational resource and important wildlife habitat, established over its first century of existence, is threatened by increasing salinity decreasing water quality, and reduced water allocations from the Colorado River that feeds the valley’s agriculture. Furthermore, the Salton Sea faces an increasingly uncertain future that will be influenced by reduced water imports from the Colorado River, demands for additional water sources to support farming and energy industries in the valley, and needs to stabilize the lake salinity, maintain recreational resources, and preserve what have become important ecosystems and wildlife habitats.« less

  13. Born from a flood: The Salton Sea and its story of survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompson, Andrew F. B.

    The Salton Sea is a terminal lake located in the deepest point of the topographically closed Salton Trough in southeastern California. It is currently the largest lake in area in the state. It was created by a flooding event along the Colorado River in 1905–1907, similar to the way historical floods over past centuries created ephemeral incarnations of ancient Lake Cahuilla in the same location. Its position at the center of today’s Imperial Valley, a hot and arid locale home to some of the most productive irrigated agricultural lands in the United States, has ensured its ongoing survival through amore » delicate balance between agricultural runoff, its principal form of input, and vast evaporation losses. Nevertheless, its parallel role as a recreational resource and important wildlife habitat, established over its first century of existence, is threatened by increasing salinity decreasing water quality, and reduced water allocations from the Colorado River that feeds the valley’s agriculture. Furthermore, the Salton Sea faces an increasingly uncertain future that will be influenced by reduced water imports from the Colorado River, demands for additional water sources to support farming and energy industries in the valley, and needs to stabilize the lake salinity, maintain recreational resources, and preserve what have become important ecosystems and wildlife habitats.« less

  14. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    USGS Publications Warehouse

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  15. Mapping Diffuse Seismicity Using Empirical Matched Field Processing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Templeton, D C; Harris, D B

    The objective of this project is to detect and locate more microearthquakes using the empirical matched field processing (MFP) method than can be detected using only conventional earthquake detection techniques. We propose that empirical MFP can complement existing catalogs and techniques. We test our method on continuous seismic data collected at the Salton Sea Geothermal Field during November 2009 and January 2010. In the Southern California Earthquake Data Center (SCEDC) earthquake catalog, 619 events were identified in our study area during this time frame and our MFP technique identified 1094 events. Therefore, we believe that the empirical MFP method combinedmore » with conventional methods significantly improves the network detection ability in an efficient matter.« less

  16. Seismic reflection imaging, accounting for primary and multiple reflections

    NASA Astrophysics Data System (ADS)

    Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel

    2015-04-01

    Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are

  17. High Resolution SAR Imaging Employing Geometric Features for Extracting Seismic Damage of Buildings

    NASA Astrophysics Data System (ADS)

    Cui, L. P.; Wang, X. P.; Dou, A. X.; Ding, X.

    2018-04-01

    Synthetic Aperture Radar (SAR) image is relatively easy to acquire but difficult for interpretation. This paper probes how to identify seismic damage of building using geometric features of SAR. The SAR imaging geometric features of buildings, such as the high intensity layover, bright line induced by double bounce backscattering and dark shadow is analysed, and show obvious differences texture features of homogeneity, similarity and entropy in combinatorial imaging geometric regions between the un-collapsed and collapsed buildings in airborne SAR images acquired in Yushu city damaged by 2010 Ms7.1 Yushu, Qinghai, China earthquake, which implicates a potential capability to discriminate collapsed and un-collapsed buildings from SAR image. Study also shows that the proportion of highlight (layover & bright line) area (HA) is related to the seismic damage degree, thus a SAR image damage index (SARDI), which related to the ratio of HA to the building occupation are of building in a street block (SA), is proposed. While HA is identified through feature extraction with high-pass and low-pass filtering of SAR image in frequency domain. A partial region with 58 natural street blocks in the Yushu City are selected as study area. Then according to the above method, HA is extracted, SARDI is then calculated and further classified into 3 classes. The results show effective through validation check with seismic damage classes interpreted artificially from post-earthquake airborne high resolution optical image, which shows total classification accuracy 89.3 %, Kappa coefficient 0.79 and identical to the practical seismic damage distribution. The results are also compared and discussed with the building damage identified from SAR image available by other authors.

  18. Seismic imaging for an ocean drilling site survey and its verification in the Izu rear arc

    NASA Astrophysics Data System (ADS)

    Yamashita, Mikiya; Takahashi, Narumi; Tamura, Yoshihiko; Miura, Seiichi; Kodaira, Shuichi

    2018-01-01

    To evaluate the crustal structure of a site proposed for International Ocean Discovery Program drilling, the Japan Agency for Marine-Earth Science and Technology carried out seismic surveys in the Izu rear arc between 2006 and 2008, using research vessels Kaiyo and Kairei. High-resolution dense grid surveys, consisting of three kinds of reflection surveys, generated clear seismic profiles, together with a seismic velocity image obtained from a seismic refraction survey. In this paper, we compare the seismic profiles with the geological column obtained from the drilling. Five volcaniclastic sedimentary units were identified in seismic reflection profiles above the 5 km/s and 6 km/s contours of P-wave velocity obtained from the velocity image from the seismic refraction survey. However, some of the unit boundaries interpreted from the seismic images were not recognised in the drilling core, highlighting the difficulties of geological target identification in volcanic regions from seismic images alone. The geological core derived from drilling consisted of seven lithological units (labelled I to VII). Units I to V were aged at 0-9 Ma, and units VI and VII, from 1320-1806.5 m below seafloor (mbsf) had ages from 9 to ~15 Ma. The strong heterogeneity of volcanic sediments beneath the drilling site U1437 was also identified from coherence, calculated using cross-spectral analysis between grid survey lines. Our results suggest that use of a dense grid configuration is important in site surveys for ocean drilling in volcanic rear-arc situations, in order to recognise heterogeneous crustal structure, such as sediments from different origins.

  19. Analysis of earthquake clustering and source spectra in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Chen, X.

    2015-12-01

    The Salton Sea Geothermal field is located within the tectonic step-over between San Andreas Fault and Imperial Fault. Since the 1980s, geothermal energy exploration has resulted with step-like increase of microearthquake activities, which mirror the expansion of geothermal field. Distinguishing naturally occurred and induced seismicity, and their corresponding characteristics (e.g., energy release) is important for hazard assessment. Between 2008 and 2014, seismic data recorded by a local borehole array were provided public access from CalEnergy through SCEC data center; and the high quality local recording of over 7000 microearthquakes provides unique opportunity to sort out characteristics of induced versus natural activities. We obtain high-resolution earthquake location using improved S-wave picks, waveform cross-correlation and a new 3D velocity model. We then develop method to identify spatial-temporally isolated earthquake clusters. These clusters are classified into aftershock-type, swarm-type, and mixed-type (aftershock-like, with low skew, low magnitude and shorter duration), based on the relative timing of largest earthquakes and moment-release. The mixed-type clusters are mostly located at 3 - 4 km depth near injection well; while aftershock-type clusters and swarm-type clusters also occur further from injection well. By counting number of aftershocks within 1day following mainshock in each cluster, we find that the mixed-type clusters have much higher aftershock productivity compared with other types and historic M4 earthquakes. We analyze detailed spatial variation of 'b-value'. We find that the mixed-type clusters are mostly located within high b-value patches, while large (M>3) earthquakes and other types of clusters are located within low b-value patches. We are currently processing P and S-wave spectra to analyze the spatial-temporal correlation of earthquake stress parameter and seismicity characteristics. Preliminary results suggest that the

  20. Active tectonics of the Imperial Valley, southern California: fault damage zones, complex basins and buried faults

    NASA Astrophysics Data System (ADS)

    Persaud, P.; Ma, Y.; Stock, J. M.; Hole, J. A.; Fuis, G. S.; Han, L.

    2016-12-01

    Ongoing oblique slip at the Pacific-North America plate boundary in the Salton Trough produced the Imperial Valley. Deformation in this seismically active area is distributed across a complex network of exposed and buried faults resulting in a largely unmapped seismic hazard beneath the growing population centers of El Centro, Calexico and Mexicali. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project (SSIP) to construct a P-wave velocity profile to 15 km depth, and a 3-D velocity model down to 8 km depth including the Brawley Geothermal area. We obtained detailed images of a complex wedge-shaped basin at the southern end of the San Andreas Fault system. Two deep subbasins (VP <5.65 km/s) are located in the western part of the larger Imperial Valley basin, where seismicity trends and active faults play a significant role in shaping the basin edge. Our 3-D VP model reveals previously unrecognized NE-striking cross faults that are interacting with the dominant NW-striking faults to control deformation. New findings in our profile include localized regions of low VP (thickening of a 5.65-5.85 km/s layer) near faults or seismicity lineaments interpreted as possibly faulting-related. Our 3-D model and basement map reveal velocity highs associated with the geothermal areas in the eastern valley. The improved seismic velocity model from this study, and the identification of important unmapped faults or buried interfaces will help refine the seismic hazard for parts of Imperial County, California.

  1. Deep-towed high resolution seismic imaging II: Determination of P-wave velocity distribution

    NASA Astrophysics Data System (ADS)

    Marsset, B.; Ker, S.; Thomas, Y.; Colin, F.

    2018-02-01

    The acquisition of high resolution seismic data in deep waters requires the development of deep towed seismic sources and receivers able to deal with the high hydrostatic pressure environment. The low frequency piezoelectric transducer of the SYSIF (SYstème Sismique Fond) deep towed seismic device comply with the former requirement taking advantage of the coupling of a mechanical resonance (Janus driver) and a fluid resonance (Helmholtz cavity) to produce a large frequency bandwidth acoustic signal (220-1050 Hz). The ability to perform deep towed multichannel seismic imaging with SYSIF was demonstrated in 2014, yet, the ability to determine P-wave velocity distribution wasn't achieved. P-wave velocity analysis relies on the ratio between the source-receiver offset range and the depth of the seismic reflectors, thus towing the seismic source and receivers closer to the sea bed will provide a better geometry for P-wave velocity determination. Yet, technical issues, related to the acoustic source directivity, arise for this approach in the particular framework of piezoelectric sources. A signal processing sequence is therefore added to the initial processing flow. Data acquisition took place during the GHASS (Gas Hydrates, fluid Activities and Sediment deformations in the western Black Sea) cruise in the Romanian waters of the Black Sea. The results of the imaging processing are presented for two seismic data sets acquired over gas hydrates and gas bearing sediments. The improvement in the final seismic resolution demonstrates the validity of the velocity model.

  2. Crustal strain accumulation on Southern Basin and Range Province faults modulated by distant plate boundary earthquakes? Evidence from geodesy, seismic imaging, and paleoseismology

    NASA Astrophysics Data System (ADS)

    Bennett, R. A.; Shirzaei, M.; Broermann, J.; Spinler, J. C.; Holland, A. A.; Pearthree, P.

    2014-12-01

    GPS in Arizona reveals a change in the pattern of crustal strain accumulation in 2010 and based on viscoelastic modeling appears to be associated with the distant M7.2 El Mayor-Cucapah (EMC) earthquake in Baja California, Mexico. GPS data collected between 1999 and 2009 near the Santa Rita normal fault in SE Arizona reveal a narrow zone of crustal deformation coincident with the fault trace, delineated by W-NW facing Pleistocene fault scarps of heights 1 to 7 m. The apparent deformation zone is also seen in a preliminary InSAR interferogram. Total motion across the zone inferred using an elastic block model constrained by the pre-2010 GPS measurements is ~1 mm/yr in a sense consistent with normal fault motion. However, continuous GPS measurements throughout Arizona reveal pronounced changes in crustal velocity following the EMC earthquake, such that the relative motion across the Santa Rita fault post-2010 is negligible. Paleoseismic evidence indicates that mapped Santa Rita fault scarps were formed by two or more large magnitude (M6.7 to M7.6) surface rupturing normal-faulting earthquakes 60 to 100 kyrs ago. Seismic refraction and reflection data constrained by deep (~800 m) well log data provide evidence of progressive, possibly intermittent, displacement on the fault through time. The rate of strain accumulation observed geodetically prior to 2010, if constant over the past 60 to 100 kyrs, would imply an untenable minimum slip rate deficit of 60 to 100 m since the most recent earthquake. One explanation for the available geodetic, seismic, and paleoseismic evidence is that strain accumulation is modulated by viscoelastic relaxation associated with frequent large magnitude earthquakes in the Salton Trough region, episodically inhibiting the accumulation of elastic strain required to generate large earthquakes on the Santa Rita and possibly other faults in the Southern Basin and Range. An important question is thus for how long the postseismic velocity changes

  3. An active seismic experiment at Tenerife Island (Canary Island, Spain): Imaging an active volcano edifice

    NASA Astrophysics Data System (ADS)

    Garcia-Yeguas, A.; Ibañez, J. M.; Rietbrock, A.; Tom-Teidevs, G.

    2008-12-01

    An active seismic experiment to study the internal structure of Teide Volcano was carried out on Tenerife, a volcanic island in Spain's Canary Islands. The main objective of the TOM-TEIDEVS experiment is to obtain a 3-dimensional structural image of Teide Volcano using seismic tomography and seismic reflection/refraction imaging techniques. At present, knowledge of the deeper structure of Teide and Tenerife is very limited, with proposed structural models mainly based on sparse geophysical and geological data. This multinational experiment which involves institutes from Spain, Italy, the United Kingdom, Ireland, and Mexico will generate a unique high resolution structural image of the active volcano edifice and will further our understanding of volcanic processes.

  4. Diverse Seismic Imaging Created by the Seismic Explosion Experiment of the TAIGER Project

    NASA Astrophysics Data System (ADS)

    Wang, C.; Okaya, D.; Wu, F.; Yen, H.; Huang, B.; Liang, W.

    2008-12-01

    The TAIGER (TAiwan Integrated GEodynamics Research) project which examines the Taiwan orogeny includes five experiments: natural earthquake recording, man-made explosion recording, Magnetotelluic imaging, marine MCS and sea-land shooting, and deformation evolution modeling. During Feb-Mar 2008, the explosion experiment was carried out. Ten sources with 500~3000kg dynamite were detonated along two transects across northern and southern Taiwan. Over 600 PASSCAL Texans and 40 R-130 instruments record the signals over 100~300 km range. Additional arrays with 100 seismometers were deployed to collect north-south line and fan shoot data for 3D imaging. Furthermore, there are 9 ocean bottom seismometers (OBS) in the Taiwan Strait and two lines with 20 seismometers deployed on the mainland China side. A large volume of qualified data has been created. Except explosion signals, numerous local and regional earthquakes were also recorded even by the Texan instruments. The rich earthquake-explosion dataset now exists at the Institute of Earth Sciences, Academia Sinica operated by the Taiwan Earthquake Center (TEC). Preliminary examination of the data reveal crustal Pg, PmP, Pn and intermediate crustal reflection phases within the transect profiles and in the 3D cross-arrays. These data provide direct seismic imaging of the continental Moho under Taiwan and the sharp Moho root configuration associated with mountain building. Seismic tomography and raytrace methods reveal velocity structure consistent with convergence and vertical exhumation of the Central Ranges.

  5. High precision gas hydrate imaging of small-scale and high-resolution marine sparker multichannel seismic data

    NASA Astrophysics Data System (ADS)

    Luo, D.; Cai, F.

    2017-12-01

    Small-scale and high-resolution marine sparker multi-channel seismic surveys using large energy sparkers are characterized by a high dominant frequency of the seismic source, wide bandwidth, and a high resolution. The technology with a high-resolution and high-detection precision was designed to improve the imaging quality of shallow sedimentary. In the study, a 20KJ sparker and 24-channel streamer cable with a 6.25m group interval were used as a seismic source and receiver system, respectively. Key factors for seismic imaging of gas hydrate are enhancement of S/N ratio, amplitude compensation and detailed velocity analysis. However, the data in this study has some characteristics below: 1. Small maximum offsets are adverse to velocity analysis and multiple attenuation. 2. Lack of low frequency information, that is, information less than 100Hz are invisible. 3. Low S/N ratio since less coverage times (only 12 times). These characteristics make it difficult to reach the targets of seismic imaging. In the study, the target processing methods are used to improve the seismic imaging quality of gas hydrate. First, some technologies of noise suppression are combined used in pre-stack seismic data to suppression of seismic noise and improve the S/N ratio. These technologies including a spectrum sharing noise elimination method, median filtering and exogenous interference suppression method. Second, the combined method of three technologies including SRME, τ-p deconvolution and high precision Radon transformation is used to remove multiples. Third, accurate velocity field are used in amplitude energy compensation to highlight the Bottom Simulating Reflector (short for BSR, the indicator of gas hydrates) and gas migration pathways (such as gas chimneys, hot spots et al.). Fourth, fine velocity analysis technology are used to improve accuracy of velocity analysis. Fifth, pre-stack deconvolution processing technology is used to compensate for low frequency energy and

  6. ANALYSES OF ORGANIC AND INORGANIC CONTAMINANTS IN SALTON SEA FISH. (R826552)

    EPA Science Inventory

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthul...

  7. 3D Seismic Imaging using Marchenko Methods

    NASA Astrophysics Data System (ADS)

    Lomas, A.; Curtis, A.

    2017-12-01

    Marchenko methods are novel, data driven techniques that allow seismic wavefields from sources and receivers on the Earth's surface to be redatumed to construct wavefields with sources in the subsurface - including complex multiply-reflected waves, and without the need for a complex reference model. In turn, this allows subsurface images to be constructed at any such subsurface redatuming points (image or virtual receiver points). Such images are then free of artefacts from multiply-scattered waves that usually contaminate migrated seismic images. Marchenko algorithms require as input the same information as standard migration methods: the full reflection response from sources and receivers at the Earth's surface, and an estimate of the first arriving wave between the chosen image point and the surface. The latter can be calculated using a smooth velocity model estimated using standard methods. The algorithm iteratively calculates a signal that focuses at the image point to create a virtual source at that point, and this can be used to retrieve the signal between the virtual source and the surface. A feature of these methods is that the retrieved signals are naturally decomposed into up- and down-going components. That is, we obtain both the signal that initially propagated upwards from the virtual source and arrived at the surface, separated from the signal that initially propagated downwards. Figure (a) shows a 3D subsurface model with a variable density but a constant velocity (3000m/s). Along the surface of this model (z=0) in both the x and y directions are co-located sources and receivers at 20-meter intervals. The redatumed signal in figure (b) has been calculated using Marchenko methods from a virtual source (1200m, 500m and 400m) to the surface. For comparison the true solution is given in figure (c), and shows a good match when compared to figure (b). While these 2D redatuming and imaging methods are still in their infancy having first been developed in

  8. Combining deterministic and stochastic velocity fields in the analysis of deep crustal seismic data

    NASA Astrophysics Data System (ADS)

    Larkin, Steven Paul

    Standard crustal seismic modeling obtains deterministic velocity models which ignore the effects of wavelength-scale heterogeneity, known to exist within the Earth's crust. Stochastic velocity models are a means to include wavelength-scale heterogeneity in the modeling. These models are defined by statistical parameters obtained from geologic maps of exposed crystalline rock, and are thus tied to actual geologic structures. Combining both deterministic and stochastic velocity models into a single model allows a realistic full wavefield (2-D) to be computed. By comparing these simulations to recorded seismic data, the effects of wavelength-scale heterogeneity can be investigated. Combined deterministic and stochastic velocity models are created for two datasets, the 1992 RISC seismic experiment in southeastern California and the 1986 PASSCAL seismic experiment in northern Nevada. The RISC experiment was located in the transition zone between the Salton Trough and the southern Basin and Range province. A high-velocity body previously identified beneath the Salton Trough is constrained to pinch out beneath the Chocolate Mountains to the northeast. The lateral extent of this body is evidence for the ephemeral nature of rifting loci as a continent is initially rifted. Stochastic modeling of wavelength-scale structures above this body indicate that little more than 5% mafic intrusion into a more felsic continental crust is responsible for the observed reflectivity. Modeling of the wide-angle RISC data indicates that coda waves following PmP are initially dominated by diffusion of energy out of the near-surface basin as the wavefield reverberates within this low-velocity layer. At later times, this coda consists of scattered body waves and P to S conversions. Surface waves do not play a significant role in this coda. Modeling of the PASSCAL dataset indicates that a high-gradient crust-mantle transition zone or a rough Moho interface is necessary to reduce precritical Pm

  9. High-Resolution Seismic Imaging of Near-Surface Voids

    NASA Astrophysics Data System (ADS)

    Gritto, R.; Korneev, V. A.; Elobaid, E. A.; Mohamed, F.; Sadooni, F.

    2017-12-01

    A major hazard in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. We present a suite of seismic techniques applied to a controlled experiment to detect, locate and estimate the size of a karst analog in form of a man-made water shaft on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation, we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We use the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two orthogonal transmission surveys

  10. Seismic Imaging of VTI, HTI and TTI based on Adjoint Methods

    NASA Astrophysics Data System (ADS)

    Rusmanugroho, H.; Tromp, J.

    2014-12-01

    Recent studies show that isotropic seismic imaging based on adjoint method reduces low-frequency artifact caused by diving waves, which commonly occur in two-wave wave-equation migration, such as Reverse Time Migration (RTM). Here, we derive new expressions of sensitivity kernels for Vertical Transverse Isotropy (VTI) using the Thomsen parameters (ɛ, δ, γ) plus the P-, and S-wave speeds (α, β) as well as via the Chen & Tromp (GJI 2005) parameters (A, C, N, L, F). For Horizontal Transverse Isotropy (HTI), these parameters depend on an azimuthal angle φ, where the tilt angle θ is equivalent to 90°, and for Tilted Transverse Isotropy (TTI), these parameters depend on both the azimuth and tilt angles. We calculate sensitivity kernels for each of these two approaches. Individual kernels ("images") are numerically constructed based on the interaction between the regular and adjoint wavefields in smoothed models which are in practice estimated through Full-Waveform Inversion (FWI). The final image is obtained as a result of summing all shots, which are well distributed to sample the target model properly. The impedance kernel, which is a sum of sensitivity kernels of density and the Thomsen or Chen & Tromp parameters, looks crisp and promising for seismic imaging. The other kernels suffer from low-frequency artifacts, similar to traditional seismic imaging conditions. However, all sensitivity kernels are important for estimating the gradient of the misfit function, which, in combination with a standard gradient-based inversion algorithm, is used to minimize the objective function in FWI.

  11. Upper crustal structures beneath Yogyakarta imaged by ambient seismic noise tomography

    NASA Astrophysics Data System (ADS)

    Zulfakriza, Saygin, E.; Cummins, P.; Widiyantoro, S.; Nugraha, Andri Dian

    2013-09-01

    Delineating the upper crustal structures beneath Yogyakarta is necessary for understanding its tectonic setting. The presence of Mt. Merapi, fault line and the alluvial deposits contributes to the complex geology of Yogyakarta. Recently, ambient seismic noise tomography can be used to image the subsurface structure. The cross correlations of ambient seismic noise of pair stations were applied to extract the Green's function. The total of 27 stations from 134 seismic stations available in MERapi Amphibious EXperiment (MERAMEX) covering Yogyakarta region were selected to conduct cross correlation. More than 500 Rayleigh waves of Green's functions could be extracted by cross-correlating available the station pairs of short-period and broad-band seismometers. The group velocities were obtained by filtering the extracted Green's function between 0.5 and 20 s. 2-D inversion was applied to the retrieved travel times. Features in the derived tomographic images correlate with the surface geology of Yogyakarta. The Merapi active volcanoes and alluvial deposit in Yogyakarta are clearly described by lower group velocities. The high velocity anomaly contrasts which are visible in the images obtained from the period range between 1 and 5 s, correspond to subsurface imprints of fault that could be the Opak Fault.

  12. Matrix Approach of Seismic Wave Imaging: Application to Erebus Volcano

    NASA Astrophysics Data System (ADS)

    Blondel, T.; Chaput, J.; Derode, A.; Campillo, M.; Aubry, A.

    2017-12-01

    This work aims at extending to seismic imaging a matrix approach of wave propagation in heterogeneous media, previously developed in acoustics and optics. More specifically, we will apply this approach to the imaging of the Erebus volcano in Antarctica. Volcanoes are actually among the most challenging media to explore seismically in light of highly localized and abrupt variations in density and wave velocity, extreme topography, extensive fractures, and the presence of magma. In this strongly scattering regime, conventional imaging methods suffer from the multiple scattering of waves. Our approach experimentally relies on the measurement of a reflection matrix associated with an array of geophones located at the surface of the volcano. Although these sensors are purely passive, a set of Green's functions can be measured between all pairs of geophones from ice-quake coda cross-correlations (1-10 Hz) and forms the reflection matrix. A set of matrix operations can then be applied for imaging purposes. First, the reflection matrix is projected, at each time of flight, in the ballistic focal plane by applying adaptive focusing at emission and reception. It yields a response matrix associated with an array of virtual geophones located at the ballistic depth. This basis allows us to get rid of most of the multiple scattering contribution by applying a confocal filter to seismic data. Iterative time reversal is then applied to detect and image the strongest scatterers. Mathematically, it consists in performing a singular value decomposition of the reflection matrix. The presence of a potential target is assessed from a statistical analysis of the singular values, while the corresponding eigenvectors yield the corresponding target images. When stacked, the results obtained at each depth give a three-dimensional image of the volcano. While conventional imaging methods lead to a speckle image with no connection to the actual medium's reflectivity, our method enables to

  13. Fuzzy logic and image processing techniques for the interpretation of seismic data

    NASA Astrophysics Data System (ADS)

    Orozco-del-Castillo, M. G.; Ortiz-Alemán, C.; Urrutia-Fucugauchi, J.; Rodríguez-Castellanos, A.

    2011-06-01

    Since interpretation of seismic data is usually a tedious and repetitive task, the ability to do so automatically or semi-automatically has become an important objective of recent research. We believe that the vagueness and uncertainty in the interpretation process makes fuzzy logic an appropriate tool to deal with seismic data. In this work we developed a semi-automated fuzzy inference system to detect the internal architecture of a mass transport complex (MTC) in seismic images. We propose that the observed characteristics of a MTC can be expressed as fuzzy if-then rules consisting of linguistic values associated with fuzzy membership functions. The constructions of the fuzzy inference system and various image processing techniques are presented. We conclude that this is a well-suited problem for fuzzy logic since the application of the proposed methodology yields a semi-automatically interpreted MTC which closely resembles the MTC from expert manual interpretation.

  14. Diversity patterns in the terrestrial avifauna of the Salton sea

    Treesearch

    Mark B. Mendelsohn; William I. Boarman; Robert N. Fisher

    2005-01-01

    We performed bird point counts monthly March-June 2001 and bi-monthly August 2001-February 2002 across a sampling grid of 35 points along the west edge of Salton Sea. We found that landbird species diversity (both in numbers of species, and numbers per species) was dependent on proximity to the sea. Diversity was at a maximum nearest the shore, and was significantly...

  15. Use of a nesting platform by Gull-billed Terns and Black Skimmers at the Salton Sea, California

    USGS Publications Warehouse

    Molina, Kathy C.; Ricca, Mark A.; Miles, A. Keith; Schoneman, Christian

    2009-01-01

    In 2006, we constructed an elevated nesting platform at the Salton Sea, California, and monitored its use by Gull-billed Terns and Black Skimmers over three subsequent breeding seasons. Black Skimmers were the first to colonize the platform with a total of five nests in 2006. In 2007 Gull-billed Terns colonized the platform with a total of 28 nests and the number of Black Skimmer nests increased to 20. Neither species nested on the platform in 2008. Low success for both species was probably influenced by at least two factors. First, when both species nested on the platform, nest densities were higher than is typical of their colonies on larger, earthen islands, and colony success may have been reduced by overcrowding. Second, lack of access to water may have reduced chicks' ability to thermoregulate effectively in the hot environment of the Salton Sea. Refinements to the size, design, and location of artificial nesting habitats are necessary to enhance productivity of colonial groundnesting birds at the Salton Sea successfully.

  16. Evaluating the Use of Declustering for Induced Seismicity Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Llenos, A. L.; Michael, A. J.

    2016-12-01

    The recent dramatic seismicity rate increase in the central and eastern US (CEUS) has motivated the development of seismic hazard assessments for induced seismicity (e.g., Petersen et al., 2016). Standard probabilistic seismic hazard assessment (PSHA) relies fundamentally on the assumption that seismicity is Poissonian (Cornell, BSSA, 1968); therefore, the earthquake catalogs used in PSHA are typically declustered (e.g., Petersen et al., 2014) even though this may remove earthquakes that may cause damage or concern (Petersen et al., 2015; 2016). In some induced earthquake sequences in the CEUS, the standard declustering can remove up to 90% of the sequence, reducing the estimated seismicity rate by a factor of 10 compared to estimates from the complete catalog. In tectonic regions the reduction is often only about a factor of 2. We investigate how three declustering methods treat induced seismicity: the window-based Gardner-Knopoff (GK) algorithm, often used for PSHA (Gardner and Knopoff, BSSA, 1974); the link-based Reasenberg algorithm (Reasenberg, JGR,1985); and a stochastic declustering method based on a space-time Epidemic-Type Aftershock Sequence model (Ogata, JASA, 1988; Zhuang et al., JASA, 2002). We apply these methods to three catalogs that likely contain some induced seismicity. For the Guy-Greenbrier, AR earthquake swarm from 2010-2013, declustering reduces the seismicity rate by factors of 6-14, depending on the algorithm. In northern Oklahoma and southern Kansas from 2010-2015, the reduction varies from factors of 1.5-20. In the Salton Trough of southern California from 1975-2013, the rate is reduced by factors of 3-20. Stochastic declustering tends to remove the most events, followed by the GK method, while the Reasenberg method removes the fewest. Given that declustering and choice of algorithm have such a large impact on the resulting seismicity rate estimates, we suggest that more accurate hazard assessments may be found using the complete catalog.

  17. Anatomy of the western Java plate interface from depth-migrated seismic images

    NASA Astrophysics Data System (ADS)

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-11-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the décollement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous décollement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous décollement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the décollement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity.

  18. Anatomy of the western Java plate interface from depth-migrated seismic images

    USGS Publications Warehouse

    Kopp, H.; Hindle, D.; Klaeschen, D.; Oncken, O.; Reichert, C.; Scholl, D.

    2009-01-01

    Newly pre-stack depth-migrated seismic images resolve the structural details of the western Java forearc and plate interface. The structural segmentation of the forearc into discrete mechanical domains correlates with distinct deformation styles. Approximately 2/3 of the trench sediment fill is detached and incorporated into frontal prism imbricates, while the floor sequence is underthrust beneath the d??collement. Western Java, however, differs markedly from margins such as Nankai or Barbados, where a uniform, continuous d??collement reflector has been imaged. In our study area, the plate interface reveals a spatially irregular, nonlinear pattern characterized by the morphological relief of subducted seamounts and thicker than average patches of underthrust sediment. The underthrust sediment is associated with a low velocity zone as determined from wide-angle data. Active underplating is not resolved, but likely contributes to the uplift of the large bivergent wedge that constitutes the forearc high. Our profile is located 100 km west of the 2006 Java tsunami earthquake. The heterogeneous d??collement zone regulates the friction behavior of the shallow subduction environment where the earthquake occurred. The alternating pattern of enhanced frictional contact zones associated with oceanic basement relief and weak material patches of underthrust sediment influences seismic coupling and possibly contributed to the heterogeneous slip distribution. Our seismic images resolve a steeply dipping splay fault, which originates at the d??collement and terminates at the sea floor and which potentially contributes to tsunami generation during co-seismic activity. ?? 2009 Elsevier B.V.

  19. Pleurochrysis pseudoroscoffensis (Prymnesiophyceae) blooms on the surface of the Salton Sea, California

    USGS Publications Warehouse

    Reifel, K.M.; McCoy, M.P.; Tiffany, M.A.; Rocke, T.E.; Trees, C.C.; Barlow, S.B.; Faulkner, D.J.; Hurlbert, S.H.

    2001-01-01

    Dense populations of the coccolithophore Pleurochrysis pseudoroscoffensis were found in surface films at several locations around the Salton Sea in Februarya??August, 1999. An unidentified coccolithophorid was also found in low densities in earlier studies of the lake (1955a??1956). To our knowledge, this is the first record of this widespread marine species in any lake. Samples taken from surface films typically contained high densities of one or two other phytoplankton species as well as high densities of the coccolithophore. Presence or absence of specific algal pigments was used to validate direct cell counts. In a preliminary screen using a brine shrimp lethality assay, samples showed moderate activity. Extracts were then submitted to a mouse bioassay, and no toxic activity was observed. These results indicate that blooms of P. pseudoroscoffensis are probably not toxic to vertebrates and do not contribute to the various mortality events of birds and fish that occur in the Salton Sea.

  20. Pleurochrysis pseudoroscoffensis (Prymnesiophyceae) blooms on the surface of the Salton Sea, California

    USGS Publications Warehouse

    Reifel, K.M.; McCoy, M.P.; Tiffany, M.A.; Rocke, T.E.; Trees, C.C.; Barlow, S.B.; Faulkner, D.J.; Hurlbert, S.H.

    2001-01-01

    Dense populations of the coccolithophore Pleurochrysis pseudoroscoffensis were found in surface films at several locations around the Salton Sea in February-August, 1999. An unidentified coccolithophorid was also found in low densities in earlier studies of the lake (1955-1956). To our knowledge, this is the first record of this widespread marine species in any lake. Samples taken from surface films typically contained high densities of one or two other phytoplankton species as well as high densities of the coccolithophore. Presence or absence of specific algal pigments was used to validate direct cell counts. In a preliminary screen using a brine shrimp lethality assay, samples showed moderate activity. Extracts were then submitted to a mouse bioassay, and no toxic activity was observed. These results indicate that blooms of P. pseudoroscoffensis are probably not toxic to vertebrates and do not contribute to the various mortality events of birds and fish that occur in the Salton Sea.

  1. A linked hydrodynamic and water quality model for the Salton Sea

    USGS Publications Warehouse

    Chung, E.G.; Schladow, S.G.; Perez-Losada, J.; Robertson, Dale M.

    2008-01-01

    A linked hydrodynamic and water quality model was developed and applied to the Salton Sea. The hydrodynamic component is based on the one-dimensional numerical model, DLM. The water quality model is based on a new conceptual model for nutrient cycling in the Sea, and simulates temperature, total suspended sediment concentration, nutrient concentrations, including PO4-3, NO3-1 and NH4+1, DO concentration and chlorophyll a concentration as functions of depth and time. Existing water temperature data from 1997 were used to verify that the model could accurately represent the onset and breakup of thermal stratification. 1999 is the only year with a near-complete dataset for water quality variables for the Salton Sea. The linked hydrodynamic and water quality model was run for 1999, and by adjustment of rate coefficients and other water quality parameters, a good match with the data was obtained. In this article, the model is fully described and the model results for reductions in external phosphorus load on chlorophyll a distribution are presented. ?? 2008 Springer Science+Business Media B.V.

  2. Southern San Andreas Fault Slip History Refined Using Pliocene Colorado River Deposits in the Western Salton Trough

    NASA Astrophysics Data System (ADS)

    Dorsey, R. J.; Bennett, S. E. K.; Housen, B. A.

    2016-12-01

    Tectonic reconstructions of Pacific-North America plate motion in the Salton Trough region (Bennett et al., 2016) are constrained by: (1) late Miocene volcanic rocks that record 255 +/-10 km of transform offset across the northern Gulf of California since 6 Ma (average 42 mm/yr; Oskin and Stock, 2003); and (2) GPS data that show modern rates of 50-52 mm/yr between Pacific and North America plates, and 46-48 mm/yr between Baja California (BC) and North America (NAM) (Plattner et al., 2007). New data from Pliocene Colorado River deposits in the Salton Trough provide an important additional constraint on the geologic history of slip on the southern San Andreas Fault (SAF). The Arroyo Diablo Formation (ADF) in the San Felipe Hills SW of the Salton Sea contains abundant cross-bedded channel sandstones deformed in the dextral Clark fault zone. The ADF ranges in age from 4.3 to 2.8 Ma in the Fish Creek-Vallecito basin, and in the Borrego Badlands its upper contact with the Borrego Formation is 2.9 Ma based on our new magnetostratigraphy. ADF paleocurrent data from a 20-km wide, NW-oriented belt near Salton City record overall transport to the SW (corrected for bedding dip, N=165), with directions ranging from NW to SE. Spatial domain analysis reveals radial divergence of paleoflow to the: W and NW in the NW domain; SW in the central domain; and S in the SE domain. Data near Borrego Sink, which restores to south of Salton City after removing offset on the San Jacinto fault zone, show overall transport to the SE. Pliocene patterns of radial paleoflow divergence strongly resemble downstream bifurcation of fluvial distributary channels on the modern Colorado River delta SW of Yuma, and indicate that Salton City has translated 120-130 km NW along the SAF since 3 Ma. We propose a model in which post-6 Ma BC-NAM relative motion gradually accelerated to 50 mm/yr by 4 Ma, continued at 50 mm/yr from 4-1 Ma, and decreased to 46 mm/yr from 1-0 Ma (split equally between the SAF and

  3. A seismic reflection image for the base of a tectonic plate.

    PubMed

    Stern, T A; Henrys, S A; Okaya, D; Louie, J N; Savage, M K; Lamb, S; Sato, H; Sutherland, R; Iwasaki, T

    2015-02-05

    Plate tectonics successfully describes the surface of Earth as a mosaic of moving lithospheric plates. But it is not clear what happens at the base of the plates, the lithosphere-asthenosphere boundary (LAB). The LAB has been well imaged with converted teleseismic waves, whose 10-40-kilometre wavelength controls the structural resolution. Here we use explosion-generated seismic waves (of about 0.5-kilometre wavelength) to form a high-resolution image for the base of an oceanic plate that is subducting beneath North Island, New Zealand. Our 80-kilometre-wide image is based on P-wave reflections and shows an approximately 15° dipping, abrupt, seismic wave-speed transition (less than 1 kilometre thick) at a depth of about 100 kilometres. The boundary is parallel to the top of the plate and seismic attributes indicate a P-wave speed decrease of at least 8 ± 3 per cent across it. A parallel reflection event approximately 10 kilometres deeper shows that the decrease in P-wave speed is confined to a channel at the base of the plate, which we interpret as a sheared zone of ponded partial melts or volatiles. This is independent, high-resolution evidence for a low-viscosity channel at the LAB that decouples plates from mantle flow beneath, and allows plate tectonics to work.

  4. Seismic depth imaging of sequence boundaries beneath the New Jersey shelf

    NASA Astrophysics Data System (ADS)

    Riedel, M.; Reiche, S.; Aßhoff, K.; Buske, S.

    2018-06-01

    Numerical modelling of fluid flow and transport processes relies on a well-constrained geological model, which is usually provided by seismic reflection surveys. In the New Jersey shelf area a large number of 2D seismic profiles provide an extensive database for constructing a reliable geological model. However, for the purpose of modelling groundwater flow, the seismic data need to be depth-converted which is usually accomplished using complementary data from borehole logs. Due to the limited availability of such data in the New Jersey shelf, we propose a two-stage processing strategy with particular emphasis on reflection tomography and pre-stack depth imaging. We apply this workflow to a seismic section crossing the entire New Jersey shelf. Due to the tomography-based velocity modelling, the processing flow does not depend on the availability of borehole logging data. Nonetheless, we validate our results by comparing the migrated depths of selected geological horizons to borehole core data from the IODP expedition 313 drill sites, located at three positions along our seismic line. The comparison yields that in the top 450 m of the migrated section, most of the selected reflectors were positioned with an accuracy close to the seismic resolution limit (≈ 4 m) for that data. For deeper layers the accuracy still remains within one seismic wavelength for the majority of the tested horizons. These results demonstrate that the processed seismic data provide a reliable basis for constructing a hydrogeological model. Furthermore, the proposed workflow can be applied to other seismic profiles in the New Jersey shelf, which will lead to an even better constrained model.

  5. Steep-dip seismic imaging of the shallow San Andreas Fault near Parkfield

    USGS Publications Warehouse

    Hole, J.A.; Catchings, R.D.; St. Clair, K.C.; Rymer, M.J.; Okaya, D.A.; Carney, B.J.

    2001-01-01

    Seismic reflection and refraction images illuminate the San Andreas Fault to a depth of 1 kilometer. The prestack depth-migrated reflection image contains near-vertical reflections aligned with the active fault trace. The fault is vertical in the upper 0.5 kilometer, then dips about 70° to the southwest to at least 1 kilometer subsurface. This dip reconciles the difference between the computed locations of earthquakes and the surface fault trace. The seismic velocity cross section shows strong lateral variations. Relatively low velocity (10 to 30%), high electrical conductivity, and low density indicate a 1-kilometer-wide vertical wedge of porous sediment or fractured rock immediately southwest of the active fault trace.

  6. Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing

    NASA Astrophysics Data System (ADS)

    Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.

    2007-05-01

    The rich oil reserves of the Gulf of Mexico are buried in deep and ultra-deep waters up to 30,000 feet from the surface. Minerals Management Service (MMS), the federal agency in the U.S. Department of the Interior that manages the nation's oil, natural gas and other mineral resources on the outer continental shelf in federal offshore waters, estimates that the Gulf of Mexico holds 37 billion barrels of "undiscovered, conventionally recoverable" oil, which, at 50/barrel, would be worth approximately 1.85 trillion. These reserves are very difficult to find and reach due to the extreme depths. Technological advances in seismic imaging represent an opportunity to overcome this obstacle by providing more accurate models of the subsurface. Among these technological advances, Reverse Time Migration (RTM) yields the best possible images. RTM is based on the solution of the two-way acoustic wave-equation. This technique relies on the velocity model to image turning waves. These turning waves are particularly important to unravel subsalt reservoirs and delineate salt-flanks, a natural trap for oil and gas. Because it relies on an accurate velocity model, RTM opens new frontier in designing better velocity estimation algorithms. RTM has been widely recognized as the next chapter in seismic exploration, as it can overcome the limitations of current migration methods in imaging complex geologic structures that exist in the Gulf of Mexico. The chief impediment to the large-scale, routine deployment of RTM has been a lack of sufficient computer power. RTM needs thirty times the computing power used in exploration today to be commercially viable and widely usable. Therefore, advancing seismic imaging to the next level of precision poses a multi-disciplinary challenge. To overcome these challenges, the Kaleidoscope project, a partnership between Repsol YPF, Barcelona Supercomputing Center, 3DGeo Inc., and IBM brings together the necessary components of modeling, algorithms and the

  7. Imaging the Danish Chalk Group with high resolution, 3-component seismics

    NASA Astrophysics Data System (ADS)

    Kammann, J.; Rasmussen, S. L.; Nielsen, L.; Malehmir, A.; Stemmerik, L.

    2016-12-01

    The Chalk Group in the Danish Basin forms important reservoirs to hydrocarbons as well as water resources, and it has been subject to several seismic studies to determine e.g. structural elements, deposition and burial history. This study focuses on the high quality seismic response of a survey acquired with an accelerated 45 kg weight drop and 3-component MEMS-based sensors and additional wireless vertical-type sensors. The 500 m long profile was acquired during one day close to a chalk quarry and chalk cliffs of the Stevns peninsula in eastern Denmark where the well-known K-T (Cretaceous-Tertiary) boundary and different chalk lithologies are well-exposed. With this simple and fast procedure we were able to achieve deep P-wave penetration to the base of the Chalk Group at about 900 m depth. Additionally, the CMP-processed seismic image of the vertical component stands out by its high resolution. Sedimentary features are imaged in the near-surface Danian, as well as in the deeper Maastrichtian and Upper Campanian parts of the Chalk Group. Integration with borehole data suggests that changes in composition, in particular clay content, correlate with changes in reflectivity of the seismic data set. While the pure chalk in the Maastrichtian deposits shows rather low reflectivity, succession enriched in clay appear to be more reflective. The integration of the mentioned methods gives the opportunity to connect changes in facies to the elastic response of the Chalk Group in its natural environmental conditions.

  8. Data Processing Methods for 3D Seismic Imaging of Subsurface Volcanoes: Applications to the Tarim Flood Basalt.

    PubMed

    Wang, Lei; Tian, Wei; Shi, Yongmin

    2017-08-07

    The morphology and structure of plumbing systems can provide key information on the eruption rate and style of basalt lava fields. The most powerful way to study subsurface geo-bodies is to use industrial 3D reflection seismological imaging. However, strategies to image subsurface volcanoes are very different from that of oil and gas reservoirs. In this study, we process seismic data cubes from the Northern Tarim Basin, China, to illustrate how to visualize sills through opacity rendering techniques and how to image the conduits by time-slicing. In the first case, we isolated probes by the seismic horizons marking the contacts between sills and encasing strata, applying opacity rendering techniques to extract sills from the seismic cube. The resulting detailed sill morphology shows that the flow direction is from the dome center to the rim. In the second seismic cube, we use time-slices to image the conduits, which corresponds to marked discontinuities within the encasing rocks. A set of time-slices obtained at different depths show that the Tarim flood basalts erupted from central volcanoes, fed by separate pipe-like conduits.

  9. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    USGS Publications Warehouse

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J. Wright; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  10. Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia

    NASA Astrophysics Data System (ADS)

    Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.

    2014-05-01

    Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is

  11. Seismic images of a Grenvillian terrane boundary

    USGS Publications Warehouse

    Milkereit, B.; Forsyth, D. A.; Green, A.G.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1992-01-01

    A series of gently dipping reflection zones extending to mid-crustal depths is recorded by seismic data from Lakes Ontario and Erie. These prominent reflection zones define a broad complex of southeast-dipping ductile thrust faults in the interior of the Grenville orogen. One major reflection zone provides the first image of a proposed Grenvillian suture—the listric boundary zone between allochthonous terranes of the Central Gneiss and Central Metasedimentary belts. Curvilinear bands of reflections that may represent "ramp folds" and "ramp anticlines" that originally formed in a deep crustal-scale duplex abut several faults. Vertical stacking of some curvilinear features suggests coeval or later out-of-sequence faulting of imbricated and folded thrust sheets. Grenvillian structure reflections are overlain by a thin, wedge-shaped package of shallow-dipping reflections that probably originates from sediments deposited in a local half graben developed during a period of post-Grenville extension. This is the first seismic evidence for such extension in this region, which could have occurred during terminal collapse of the Grenville orogen, or could have marked the beginning of pre-Appalachian continental rifting.

  12. Seismic Migration Imaging of the Mantle Transition Zone Beneath Continental US with Receiver Functions

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Schmandt, B.

    2017-12-01

    The mantle transition zone has been widely studied by multiple sub-fields in geosciences including seismology, mineral physics and geodynamics. Due to the relatively high water storage capacity of olivine polymorphs (wadsleyite and ringwoodite) inside the transition zone, it is proposed to be a potential geochemical water reservoir that may contain one or more ocean masses of water. However, there is an ongoing debate about the hydration level of those minerals and how it varies from place to place. Considering that dehydration melting, which may happen during mantle flow across phase transitions between hydrated olivine polymorphs, may be seismically detectable, large-scale seismic imaging of heterogeneous scattering in the transition zone can contribute to the debate. To improve our understanding of the properties of the mantle transition zone and how they relate to mantle flow across its boundaries, it is important to gain an accurate image with large spatial coverage. The accuracy is primarily limited by the density of broadband seismic data and the imaging algorithms applied to the data, while the spatial coverage is limited by the availability of wide-aperture (>500 km) seismic arrays. Thus, the emergence of the USArray seismic data set (www.usarray.org) provides a nearly ideal data source for receiver side imaging of the mantle transition zone due to its large aperture ( 4000 km) with relatively small station spacing ( 70 km), which ensures that the transition zone beneath it is well sampled by teleseismic waves. In total, more than 200,000 P to S receiver functions will be used for imaging structures in depth range of 300 km to 800 km beneath the continental US with an improved 3D Kirchhoff pre-stacking migration method. The method uses 3-D wave fronts calculated for P and S tomography models to more accurately calculate point scattering coefficients and map receiver function lag times to 3-D position. The new images will help resolve any laterally sporadic

  13. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1986-87

    USGS Publications Warehouse

    Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.

    1990-01-01

    Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)

  14. Hydrology and physiography of the Salton Sea, California

    USGS Publications Warehouse

    Littlefield, W.M.

    1966-01-01

    The increased utilization of the Salton Sea and its shore for recreation, the development of residential complexes on its shore, and the encroachment of the sea into these developments have emphasized the need for a concise summary of hydrologic and physiographic information concerning the area. This report attempts to fill that need.The report was authorized by a cooperative agreement between the U.S. Geological Survey and the California Department of Water Resources. It was prepared under the general direction of Walter Hofmann, district chief of the Water Resources Division of the Geological Survey, at Menlo Park. 

  15. Pulling the rug out from under California: Seismic images of the Mendocino Triple Junction region

    USGS Publications Warehouse

    Tréhu, Anne M.

    1995-01-01

    In 1993 and 1994 a network of large-aperture seismic profiles was collected to image the crustal and upper-mantle structure beneath northern California and the adjacent continental margin. The data include approximately 650 km of onshore seismic refraction/reflection data, 2000 km of off-shore multichannel seismic (MCS) reflection data, and simultaneous onshore and offshore recording of the MCS airgun source to yield large-aperture data. Scientists from more than 12 institutions were involved in data acquisition.

  16. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data

    DOE PAGES

    Chen, Ting; Huang, Lianjie

    2015-07-30

    For characterizing geothermal systems, it is important to have clear images of steeply-dipping fault zones because they may confine the boundaries of geothermal reservoirs and influence hydrothermal flow. Elastic reverse-time migration (ERTM) is the most promising tool for subsurface imaging with multicomponent seismic data. However, conventional ERTM usually generates significant artifacts caused by the cross correlation of undesired wavefields and the polarity reversal of shear waves. In addition, it is difficult for conventional ERTM to directly image steeply-dipping fault zones. We develop a new ERTM imaging method in this paper to reduce these artifacts and directly image steeply-dipping fault zones.more » In our new ERTM method, forward-propagated source wavefields and backward-propagated receiver wavefields are decomposed into compressional (P) and shear (S) components. Furthermore, each component of these wavefields is separated into left- and right-going, or downgoing and upgoing waves. The cross correlation imaging condition is applied to the separated wavefields along opposite propagation directions. For converted waves (P-to-S or S-to-P), the polarity correction is applied to the separated wavefields based on the analysis of Poynting vectors. Numerical imaging examples of synthetic seismic data demonstrate that our new ERTM method produces high-resolution images of steeply-dipping fault zones.« less

  17. Imaging shallow magma chambers at Alaskan volcanoes with ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Haney, M. M.; Prejean, S. G.

    2009-05-01

    Ambient noise tomography/inversion (ANT) is an emerging technique in seismology with the ability to provide 3D images of subsurface volcanic structure using relatively sparse seismic networks. The method relies on the principle that the cross-correlation of noise recordings at two different seismic stations reproduces an experiment in which one of the stations acts as an active source. Ambient seismic noise in the frequency band from 0.1 to 1 Hz is mostly composed of fundamental mode surface waves, of both Love and Rayleigh type. As a result, noise cross-correlations are sensitive to shear-wave structure and complement compressional-wave images computed from phase arrivals of local earthquakes. At Okmok volcano in the Aleutian islands, a 3D image constructed from 40 days of noise recordings in 2005 on a 12 station network clearly shows two low velocity zones (LVZs) centered about the 10-km-wide caldera: a shallow zone in the upper 1-2 km and a deeper zone between 4-4.5 km. The shallow LVZ is interpreted to be weak, poorly-consolidated material within the caldera; the deeper LVZ is indicative of the shallow magma chamber at Okmok. That the chamber is imaged as an LVZ in 2005 points to it remaining in a molten state throughout the time period between the 1997 and 2008 eruptions. The existence of a shallow chamber at Okmok is consistent with independent studies based on GPS, InSAR, and petrologic data. A 3D image has also been determined for the Katmai group of volcanoes along the Alaska peninsula from 60 days of continuous recordings in 2005 and 2006. An LVZ at Katmai Pass, previously known from local earthquake tomography (LET), is evident in the 3D shear-wave velocity model at depths down to 2 km BSL. That the LVZ exists in compressional-wave velocity models suggests it is a shallow magma storage area for Trident volcano. In contrast, low shear-wave velocity under Martin volcano is likely fluid-related, given the lack of low compressional-wave velocities in images

  18. Imaging the crustal structure of Haiti's transpressional fault system using seismicity and tomography

    NASA Astrophysics Data System (ADS)

    Possee, D.; Keir, D.; Harmon, N.; Rychert, C.; Rolandone, F.; Leroy, S. D.; Stuart, G. W.; Calais, E.; Boisson, D.; Ulysse, S. M. J.; Guerrier, K.; Momplaisir, R.; Prepetit, C.

    2017-12-01

    Oblique convergence of the Caribbean and North American plates has partitioned strain across an extensive transpressional fault system that bisects Haiti. Most recently the 2010, MW7.0 earthquake ruptured multiple thrust faults in southern Haiti. However, while the rupture mechanism has been well studied, how these faults are segmented and link to deformation across the plate boundary is still debated. Understanding the link between strain accumulation and faulting in Haiti is also key to future modelling of seismic hazards. To assess seismic activity and fault structures we used data from 31 broadband seismic stations deployed on Haiti for 16-months. Local earthquakes were recorded and hypocentre locations determined using a 1D velocity model. A high-quality subset of the data was then inverted using travel-time tomography for relocated hypocentres and 2D images of Vp and Vp/Vs crustal structure. Earthquake locations reveal two clusters of seismic activity, the first delineates faults associated with the 2010 earthquake and the second shows activity 100km further east along a thrust fault north of Lake Enriquillo (Dominican Republic). The velocity models show large variations in seismic properties across the plate boundary; shallow low-velocity zones with a 5-8% decrease in Vp and high Vp/Vs ratios of 1.85-1.95 correspond to sedimentary basins that form the low-lying terrain on Haiti. We also image a region with a 4-5% decrease in Vp and an increased Vp/Vs ratio of 1.80-1.85 dipping south to a depth of 20km beneath southern Haiti. This feature matches the location of a major thrust fault and suggests a substantial damage zone around this fault. Beneath northern Haiti a transition to lower Vp/Vs values of 1.70-1.75 reflects a compositional change from mafic facies such as the Caribbean large igneous province in the south, to arc magmatic facies associated with the Greater Antilles arc in the north. Our seismic images are consistent with the fault system across

  19. Type C botulism in pelicans and other fish-eating birds at the Salton Sea

    USGS Publications Warehouse

    Rocke, T.E.; Nol, P.; Pelizza, C.; Sturm, K.K.

    2004-01-01

    In 1996, type C avian botulism killed over 10,000 pelicans and nearly 10,000 other fish-eating birds at the Salton Sea in southern California. Although botulism had been previously documented in waterbirds at the Sea, this die-off was unusual in that it involved primarily fish-eating birds. The American White Pelican (Pelecanus erythrorynchos) was the species with the greatest mortality in 1996. Since 1996, mortality has recurred every year but losses have declined (<2,000 birds/year), with relatively more Brown Pelicans (P. occidentalis) than White Pelicans afflicted. In 2000, morbidity and mortality of Brown Pelicans with type C botulism (1311) approached the numbers afflicted in 1996 (2034). In recent years, mortality reached a peak earlier in the summer, July and August, in contrast to 1996 when mortality reached a peak in September. An exotic fish species, tilapia (Oreochromis mossambicus), has been implicated as the source of toxin for birds at Salton Sea, but the source of toxin for fish is unknown.

  20. Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA.

    PubMed

    Sapozhnikova, Yelena; Bawardi, Ola; Schlenk, Daniel

    2004-05-01

    The Salton Sea, the largest manmade lake in California, is officially designated by the State of California as an agricultural drainage reservoir. The purpose of this study was to determine organochlorine and organophosphorous pesticides, as well as polychlorinated biphenyl (PCB) concentrations in sediments and fish tissues in the Salton Sea and evaluate the relative ecological risk of these compounds. Sediment samples were taken during 2000-2001 and fish tissues (Tilapia mossambique, Cynoscion xanthulu) were collected in May 2001. All samples were analyzed for 12 chlorinated pesticides, 6 organophosphorus pesticides, and 55 polychlorinated biphenyl (PCB) congeners. SigmaDichlorodiphenyltrichloroethane (SigmaDDT) and total PCB concentrations observed in sediments ranged from 10 to 40 and 116 to 304 ng/g dry wt, respectively. DDT/DDD ratios in sediments and fish tissues of the northern Sea in 2001 indicated recent DDT exposure. Lindane, dieldrin, dichlorodiphenylethane (DDE) and total PCB concentrations detected in sediments exceeded probable effect levels established for freshwater ecosystems, and pp-DDE and total PCB concentrations were higher than effect range-median values developed for marine and estuarine sediments. In fish liver, concentrations of endrin and SigmaDDT exceeded threshold effect level established for invertebrates. SigmaDDT concentrations detected in fish tissues were higher than threshold concentrations for the protection of wildlife consumers of aquatic biota. DDE concentrations in fish muscles tissues were above the 50 ng/g concentration threshold for the protection of predatory birds. Dimethoate, diazinon, malathion, chlorpyrifos, disulfoton varied from < or = 0.15 to 9.5 ng/g dry wt in sediments and from < or = 0.1 to 80.3 ng/g wet wt in fish tissues. Disulfoton was found in relatively high concentrations (up to 80.3 ng/g) in all organs from Tilapia and Corvina. These results demonstrate continued contamination of specific organochlorine

  1. Simulation of Wind-Driven Circulation in the Salton Sea: Implications for Indigenous Ecosystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Chris B.; Orlob, Gerald T.; Huston, David W.

    The Salton Sea Authority is seeking methods for reducing water levels and controlling salinity within ranges that will protect beneficial uses of the Sea, its adjacent lands, and its indigenous ecosystems. Proposed solutions include various physical changes in the bathymetry and configuration of the Sea. Because circulation in the Sea is driven primarily by wind stresses imposed on the water surface, and circulation changes are likely to affect the Sea?s quality and ecology, a methodology for quantifying the effects of specific alternatives is required. For this purpose a mathematical model for simulation of the hydrodynamic behavior of the Sea hasmore » been developed, calibrated to data gathered by a field investigation conducted in 1997, and applied to alternative schemes that will isolate sections of the southern basin. The Salton Sea Hydrodynamic/Water Quality Model is constructed using the finite element method to represent the bathymetry of the Sea in a three-dimensional grid. Given certain boundary conditions, for example wind stresses imposed on the surface, the model solves the three-dimensional equations of motion and continuity, the advection-dispersion equation, and an equation of state dependent upon temperature and salinity, to obtain temporal and spatial descriptions of velocities and temperatures over a specified period of time. The model successfully replicated principal features of the Sea's behavior, especially the persistence of a counterclockwise gyre in the southern basin and seasonal stratification. Once calibrated, the model was applied to evaluate the possible effects of changing water surface elevations in the Sea and altering its configuration to isolate sections for evaporative concentration of salts. These effects, evident in changes in velocity, were quantified with regard to their possible impacts on the aquatic habitat and the health of the Salton Sea ecology. A comparative evaluation of alternatives is presented.« less

  2. Massive infestation by Amyloodinium ocellatum (Dinoflagellida) of fish in a highly saline lake, Salton Sea, California, USA.

    PubMed

    Kuperman, B I; Matey, V E

    1999-12-22

    Persistent fish infestation by the parasitic dinoflagellate Amyloodinium ocellatum was found at a highly saline lake, Salton Sea, California, USA. The seasonal dynamics of the infestation of young tilapia was traced in 1997-1998. First appearing in May, it became maximal in June-August, decreased in October and was not detectable in November. Outbreak of the infestation and subsequent mortality of young fish was registered at the Sea at a water temperature and salinity of 40 degrees C and 46 ppt, respectively. Some aspects of the ultrastructure of parasitic trophonts of A. ocellatum and their location on the fish from different size groups are considered. The interactions of parasitological and environmental factors and their combined effect upon fish from the Salton Sea are discussed.

  3. Seismic Images of the Non-Volcanic Tremor Region around Cholame, California, USA

    NASA Astrophysics Data System (ADS)

    Gutjahr, S.; Buske, S.

    2012-04-01

    We reprocessed the industry seismic reflection profile "WSJ-6" which is so far the only seismic profile crossing the San Andreas fault at the non-volcanic tremor region around Cholame. The profile "WSJ-6" runs from Morro Bay eastward to the foothills of the Sierra Nevada and crosses several prominent fault systems, e.g.the Rinconada fault as well as the San Juan fault and the San Andreas fault respectively. By applying the so-called Fresnel Volume migration to the data we produced seismic images of the lower crust and the upper mantle down to depths of approximately 40 km. A 3D tomographic velocity model derived from local earthquake data analysis (Thurber et al., 2006, Lin et al., 2010) was used for slowness analyses and traveltime calculations. The imaging technique was implemented in 3D taking into account the true shot and receiver locations on the crooked profile line. The imaged subsurface volume itself was divided into three separate parts to correctly account for the significant kink in the profile line near the San Andreas fault. The most prominent features in the resulting images are areas of high reflectivity down to 30 km depth in particular in the central western part of the profile corresponding to the Salinian Block between the Rinconada fault and the San Andreas fault. Southwest of the San Andreas fault surface trace a broad zone of high reflectivity is located at depths between 20 km to 35 km. In this region non-volcanic tremor has been located below the seismogenic zone down to 30 km depth. Tremor locations correlate with zones of high reflectivity. This correlation may be an indicator for high pore pressures and fluid content in that region as it is assumed by several authors. The images of the eastern part of the profile show slightly west dipping sedimentary layers in the area of the San Joaquin Valley that are folded and faulted below the Kettleman Hills. Our imaging results will be compared to existing interpretations of the same data.

  4. Seismic Reflection Imaging of Detachment Faulting at 13°N on the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Falder, M.; Reston, T. J.; Peirce, C.; Simão, N.; MacLeod, C. J.; Searle, R. C.

    2016-12-01

    The observation of domal corrugated surfaces at slow spreading ridges less than two decades ago, has dramatically challenged our understanding of seafloor spreading. These `oceanic core complexes' are believed to be caused by large-scale detachment faults which accommodate plate separation during periods when melt supply is low or absent entirely. Despite increasing recognition of their importance, the mechanics of, and interactions between, detachment faults at OCCs is not well understood. In Jan-Feb 2016, seismic reflection and refraction data were acquired across the 13N OCCs. The twelve-airgun array seismic source was recorded by a 3000m-long streamer, with shots fired with the full array at either 20 s intervals, or with half the array in a "flip flop" fashion every 10 s. A shorter firing rate results in significantly less spatial aliasing and enhances the performance of the F-K domain filtering. Here we present preliminary seismic reflection images of the 13N region. The currently active 13° 20'N detachment fault is imaged continuing downwards from the smooth fault plane exposed at the seabed. Away from the fault, and between the two OCCs in the area, fewer subsurface structures are observed, which may either represent an actual lack of sharp acoustic contrasts or be as a result of the challenging imaging conditions. Acoustic energy scattered by rough bathymetry both within and out of plane of section is the main challenge of seismic reflection imaging in this area and various strategies are being investigated for its attenuation, including prediction based on high-resolution bathymetry acquired.

  5. Unusual dominance by desert pupfish (Cyprinodon macularius) in experimental ponds within the Salton Sea Basin

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; Anderson, Thomas W.

    2011-01-01

    In October 2006, months after shallow experimental ponds in the Salton Sea Basin were filled with water from the Alamo River and Salton Sea, fish were observed in several ponds, although inlets had been screened to exclude fish. During October 2007November 2009, nine surveys were conducted using baited minnow traps to document species and relative abundance of fish. Surveys yielded 3,620 fish representing five species. Desert pupfish (Cyprinodon macularius), the only native species encountered, was the most numerous and comprised >93% of the catch. Nonnative species included western mosquitofish (Gambusia affinis, 4.1%), sailfin molly (Poecilia latipinna, 2.8%), and tilapia (a mixture of hybrid Mozambique tilapia Oreochromis mossambicus ?? O. urolepis and redbelly tilapia Tilapia zillii, <0.1%). Dominance by desert pupfish, which persisted over our 2 years of study, was unusual because surveys conducted in nearby agricultural drains yielded relatively few desert pupfish.

  6. REVIEW OF THE FISHERIES OF THE SALTON SEA, CALIFORNIA, USA: PAST, PRESENT, FUTURE. (R826552)

    EPA Science Inventory

    The Salton Sea is an endorheic, 980-km2 salt lake in the Sonoran Desert of southern California. The historical fish community switched from freshwater to marine species as salinity increased due to evaporation and brackish water inflows. Three species, bairdiella (<...

  7. Seismic Imaging of the West Napa Fault in Napa, California

    NASA Astrophysics Data System (ADS)

    Goldman, M.; Catchings, R.; Chan, J. H.; Sickler, R. R.; Nevitt, J. M.; Criley, C.

    2017-12-01

    In October 2016, we acquired high-resolution P- and S-wave seismic data along a 120-m-long, SW-NE-trending profile in Napa, California. Our seismic survey was designed to image a strand of the West Napa Fault Zone (WNFZ), which ruptured during the 24 August 2014 Mw 6.0 South Napa Earthquake. We separately acquired P- and S-wave data at every station using multiple hammer hits, which were edited and stacked into individual shot gathers in the lab. Each shot was co-located with and recorded by 118 P-wave (40-Hz) geophones, spaced at 1 m, and by 180 S-wave (4.5-Hz) geophones, spaced at 1 m. We developed both P- and S-wave tomographic velocity models, as well as Poisson's ratio and a Vp/Vs ratio models. We observed a well-defined zone of elevated Vp/Vs ratios below about 10 m depth, centered beneath the observed surface rupture. P-wave reflection images show that the fault forms a flower-structure in the upper few tens of meters. This method has been shown to delineate fault structures even in areas of rough terrain.

  8. Organochlorine pesticide, polychlorinated biphenyl, trace element and metal residues in bird eggs from Salton Sea, California, 2004

    USGS Publications Warehouse

    Henny, Charles J.; Anderson, T.W.; Crayon, J.J.

    2008-01-01

    The Salton Sea is a highly eutrophic, hypersaline terminal lake that receives inflows primarily from agricultural drainages in the Imperial and Coachella valleys. Impending reductions in water inflow at Salton Sea may concentrate existing contaminants which have been a concern for many years, and result in higher exposure to birds. Thus, waterbird eggs were collected and analyzed in 2004 and compared with residue concentrations from earlier years; these data provide a base for future comparisons. Eggs from four waterbird species (black-crowned night-heron [Nycticorax nycticorax], great egret [Ardea alba], black-necked stilt [Himantopus mexicanus], and American avocet [Recurvirostra Americana]) were collected. Eggs were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), metals, and trace elements, with current results compared to those reported for eggs collected from the same species and others during 1985a??1993. The two contaminants of primary concern were p,pa??-DDE (DDE) and selenium. DDE concentrations in night-heron and great egret eggs collected from the northwest corner of Salton Sea (Whitewater River delta) decreased 91 and 95%, respectively, by 2004, with a concomitant increase in eggshell thickness for both species. Decreases in bird egg DDE levels paralleled those in tissues of tilapia (Oreochromis mossambicus ?? O. urolepis), an important prey species for herons and egrets. Despite most nests of night-herons and great egrets failing in 2004 due to predation, predicted reproductive effects based on DDE concentrations in eggs were low or negligible for these species. The 2004 DDE findings were in dramatic contrast to those in the past decade, and included an 81% decrease in black-necked stilt eggs, although concentrations were lower historically than those reported in night-herons and egrets. Selenium concentrations in black-necked stilt eggs from the southeast corner of Salton Sea (Davis Road) were similar in 1993 and 2004, with 4

  9. 2-D traveltime and waveform inversion for improved seismic imaging: Naga Thrust and Fold Belt, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Zelt, Colin A.; Bally, Albert W.; Dasgupta, Rahul

    2008-05-01

    Exploration along the Naga Thrust and Fold Belt in the Assam province of Northeast India encounters geological as well as logistic challenges. Drilling for hydrocarbons, traditionally guided by surface manifestations of the Naga thrust fault, faces additional challenges in the northeast where the thrust fault gradually deepens leaving subtle surface expressions. In such an area, multichannel 2-D seismic data were collected along a line perpendicular to the trend of the thrust belt. The data have a moderate signal-to-noise ratio and suffer from ground roll and other acquisition-related noise. In addition to data quality, the complex geology of the thrust belt limits the ability of conventional seismic processing to yield a reliable velocity model which in turn leads to poor subsurface image. In this paper, we demonstrate the application of traveltime and waveform inversion as supplements to conventional seismic imaging and interpretation processes. Both traveltime and waveform inversion utilize the first arrivals that are typically discarded during conventional seismic processing. As a first step, a smooth velocity model with long wavelength characteristics of the subsurface is estimated through inversion of the first-arrival traveltimes. This velocity model is then used to obtain a Kirchhoff pre-stack depth-migrated image which in turn is used for the interpretation of the fault. Waveform inversion is applied to the central part of the seismic line to a depth of ~1 km where the quality of the migrated image is poor. Waveform inversion is performed in the frequency domain over a series of iterations, proceeding from low to high frequency (11-19 Hz) using the velocity model from traveltime inversion as the starting model. In the end, the pre-stack depth-migrated image and the waveform inversion model are jointly interpreted. This study demonstrates that a combination of traveltime and waveform inversion with Kirchhoff pre-stack depth migration is a promising approach

  10. Geostatistics applied to cross-well reflection seismic for imaging carbonate aquifers

    NASA Astrophysics Data System (ADS)

    Parra, Jorge; Emery, Xavier

    2013-05-01

    Cross-well seismic reflection data, acquired from a carbonate aquifer at Port Mayaca test site near the eastern boundary of Lake Okeechobee in Martin County, Florida, are used to delineate flow units in the region intercepted by two wells. The interwell impedance determined by inversion from the seismic reflection data allows us to visualize the major boundaries between the hydraulic units. The hydraulic (flow) unit properties are based on the integration of well logs and the carbonate structure, which consists of isolated vuggy carbonate units and interconnected vug systems within the carbonate matrix. The vuggy and matrix porosity logs based on Formation Micro-Imager (FMI) data provide information about highly permeable conduits at well locations. The integration of the inverted impedance and well logs using geostatistics helps us to assess the resolution of the cross-well seismic method for detecting conduits and to determine whether these conduits are continuous or discontinuous between wells. A productive water zone of the aquifer outlined by the well logs was selected for analysis and interpretation. The ELAN (Elemental Log Analysis) porosity from two wells was selected as primary data and the reflection seismic-based impedance as secondary data. The direct and cross variograms along the vertical wells capture nested structures associated with periodic carbonate units, which correspond to connected flow units between the wells. Alternatively, the horizontal variogram of impedance (secondary data) provides scale lengths that correspond to irregular boundary shapes of flow units. The ELAN porosity image obtained by cokriging exhibits three similar flow units at different depths. These units are thin conduits developed in the first well and, at about the middle of the interwell separation region, these conduits connect to thicker flow units that are intercepted by the second well. In addition, a high impedance zone (low porosity) at a depth of about 275 m, after

  11. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOEpatents

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2006-11-14

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  12. Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs

    DOEpatents

    Goloshubin, Gennady M.; Korneev, Valeri A.

    2005-09-06

    A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

  13. Martian seismicity

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.; Grimm, Robert E.

    1991-01-01

    The design and ultimate success of network seismology experiments on Mars depends on the present level of Martian seismicity. Volcanic and tectonic landforms observed from imaging experiments show that Mars must have been a seismically active planet in the past and there is no reason to discount the notion that Mars is seismically active today but at a lower level of activity. Models are explored for present day Mars seismicity. Depending on the sensitivity and geometry of a seismic network and the attenuation and scattering properties of the interior, it appears that a reasonable number of Martian seismic events would be detected over the period of a decade. The thermoelastic cooling mechanism as estimated is surely a lower bound, and a more refined estimate would take into account specifically the regional cooling of Tharsis and lead to a higher frequency of seismic events.

  14. Seismic imaging of small horizontal scale structures of the shallow thermocline on the western Brittany continental shelf (North-East Atlantic)

    NASA Astrophysics Data System (ADS)

    Piete, H.; Marié, L.; Marsset, B.; Gutscher, M.

    2012-12-01

    The recent development of the seismic oceanography technique has made possible the imaging of a variety of deep oceanographic structures (Holbrook et al., 2003); however, until now this method has remained ill suited for the study of shallow (<200m) thermohaline structures. This difficulty is partly due to the fact that both important seismic trace lengths and large offsets that characterize the acoustic receiver device (seismic streamer) cause significant signal attenuations through an induced antenna filter effect. Further difficulties are related to limitations of currently employed seismic sources, which do not conciliate 1- high power (essential to the imaging of weakly reflective structures in a noisy environment) and 2- spectral contents offering high vertical resolutions (relevant to the mapping of small vertical wavelength structures). In this study we defined and tested a new experimental seismic acquisition system capable of imaging the ~10 m thick seasonal thermocline on the western Brittany continental shelf. To accomplish this task, we pursued two complementary approaches: 1. Analysis of legacy seismic data (multi-channel seismic reflection profiles acquired on the East-Corsican margin, Bahamas Plateau and Gulf of Cadiz in various oceanographic environments) featuring reflectors at depths between 25 and 150 m, in order to identify and quantify the influence of acquisition parameters (seismic trace length, offsets, emission level and frequency content). 2. Incorporation of new oceanographic data acquired during the FROMVAR cruise (July 28th to August 10th 2010) on the western Brittany shelf in thermally stratified waters for use in the simulation of the seismic acquisition, in order to further define the optimal parameters for the system. Finally a 3D seismic system has emerged and was tested during the ASPEX scientific cruise led from June 17th to 19th 2012 across the western Brittany shelf. The device featured: i- four seismic streamers, each

  15. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  16. 2D magnetotelluric inversion using reflection seismic images as constraints and application in the COSC project

    NASA Astrophysics Data System (ADS)

    Kalscheuer, Thomas; Yan, Ping; Hedin, Peter; Garcia Juanatey, Maria d. l. A.

    2017-04-01

    We introduce a new constrained 2D magnetotelluric (MT) inversion scheme, in which the local weights of the regularization operator with smoothness constraints are based directly on the envelope attribute of a reflection seismic image. The weights resemble those of a previously published seismic modification of the minimum gradient support method introducing a global stabilization parameter. We measure the directional gradients of the seismic envelope to modify the horizontal and vertical smoothness constraints separately. An appropriate choice of the new stabilization parameter is based on a simple trial-and-error procedure. Our proposed constrained inversion scheme was easily implemented in an existing Gauss-Newton inversion package. From a theoretical perspective, we compare our new constrained inversion to similar constrained inversion methods, which are based on image theory and seismic attributes. Successful application of the proposed inversion scheme to the MT field data of the Collisional Orogeny in the Scandinavian Caledonides (COSC) project using constraints from the envelope attribute of the COSC reflection seismic profile (CSP) helped to reduce the uncertainty of the interpretation of the main décollement. Thus, the new model gave support to the proposed location of a future borehole COSC-2 which is supposed to penetrate the main décollement and the underlying Precambrian basement.

  17. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    USGS Publications Warehouse

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  18. Faults on Skylab imagery of the Salton Trough area, Southern California

    NASA Technical Reports Server (NTRS)

    Merifield, P. M.; Lamar, D. L. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Large segments of the major high angle faults in the Salton Trough area are readily identifiable in Skylab images. Along active faults, distinctive topographic features such as scarps and offset drainage, and vegetation differences due to ground water blockage in alluvium are visible. Other fault-controlled features along inactive as well as active faults visible in Skylab photography include straight mountain fronts, linear valleys, and lithologic differences producing contrasting tone, color or texture. A northwestern extension of a fault in the San Andreas set, is postulated by the regional alignment of possible fault-controlled features. The suspected fault is covered by Holocene deposits, principally windblown sand. A northwest trending tonal change in cultivated fields across Mexicali Valley is visible on Skylab photos. Surface evidence for faulting was not observed; however, the linear may be caused by differences in soil conditions along an extension of a segment of the San Jacinto fault zone. No evidence of faulting could be found along linears which appear as possible extensions of the Substation and Victory Pass faults, demonstrating that the interpretation of linears as faults in small scale photography must be corroborated by field investigations.

  19. Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes

    NASA Astrophysics Data System (ADS)

    Hasegawa, Akira; Nakajima, Junichi

    2017-12-01

    We review studies of intermediate-depth seismicity and seismic imaging of the interior of subducting slabs in relation to slab metamorphism and their implications for the genesis of intermediate-depth earthquakes. Intermediate-depth events form a double seismic zone in the depth range of c. 40-180 km, which occur only at locations where hydrous minerals are present, and are particularly concentrated along dehydration reaction boundaries. Recent studies have revealed detailed spatial distributions of these events and a close relationship with slab metamorphism. Pressure-temperature paths of the crust for cold slabs encounter facies boundaries with large H2O production rates and positive total volume change, which are expected to cause highly active seismicity near the facies boundaries. A belt of upper-plane seismicity in the crust nearly parallel to 80-90 km depth contours of the slab surface has been detected in the cold Pacific slab beneath eastern Japan, and is probably caused by slab crust dehydration with a large H2O production rate. A seismic low-velocity layer in the slab crust persists down to the depth of this upper-plane seismic belt, which provides evidence for phase transformation of dehydration at this depth. Similar low-velocity subducting crust closely related with intraslab seismicity has been detected in several other subduction zones. Seismic tomography studies in NE Japan and northern Chile also revealed the presence of a P-wave low-velocity layer along the lower plane of a double seismic zone. However, in contrast to predictions based on the serpentinized mantle, S-wave velocity along this layer is not low. Seismic anisotropy and pore aspect ratio may play a role in generating this unique structure. Although further validation is required, observations of these distinct low P-wave velocities along the lower seismic plane suggest the presence of hydrated rocks or fluids within that layer. These observations support the hypothesis that dehydration

  20. Imaging the Chicxulub central crater zone from large scale seismic acoustic wave propagation and gravity modeling

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Ortiz-Aleman, C.; Martin, R.

    2017-12-01

    Large complex craters are characterized by central uplifts that represent large-scale differential movement of deep basement from the transient cavity. Here we investigate the central sector of the large multiring Chicxulub crater, which has been surveyed by an array of marine, aerial and land-borne geophysical methods. Despite high contrasts in physical properties,contrasting results for the central uplift have been obtained, with seismic reflection surveys showing lack of resolution in the central zone. We develop an integrated seismic and gravity model for the main structural elements, imaging the central basement uplift and melt and breccia units. The 3-D velocity model built from interpolation of seismic data is validated using perfectly matched layer seismic acoustic wave propagation modeling, optimized at grazing incidence using shift in the frequency domain. Modeling shows significant lack of illumination in the central sector, masking presence of the central uplift. Seismic energy remains trapped in an upper low velocity zone corresponding to the sedimentary infill, melt/breccias and surrounding faulted blocks. After conversion of seismic velocities into a volume of density values, we use massive parallel forward gravity modeling to constrain the size and shape of the central uplift that lies at 4.5 km depth, providing a high-resolution image of crater structure.The Bouguer anomaly and gravity response of modeled units show asymmetries, corresponding to the crater structure and distribution of post-impact carbonates, breccias, melt and target sediments

  1. Diversity of terrestrial avifauna in response to distance from the shoreline of the Salton Sea

    USGS Publications Warehouse

    Mendelsohn, M.B.; Boarman, W.I.; Fisher, R.N.; Hathaway, S.A.

    2007-01-01

    Large aquatic bodies influence surrounding terrestrial ecosystems by providing water and nutrients. In arid landscapes, the increased primary productivity that results may greatly enhance vertebrate biodiversity. The Salton Sea, a large saline lake in the Colorado Desert of southern California, provides nutrients in the form of hundreds of thousands of dead fish carcasses, brine flies, and chemical compounds through windborne salt sea spray. We performed point counts for landbirds and shorebirds monthly or every other month between March 2001 and February 2002 across a sampling grid of 35 points along the west edge of Salton Sea. We found that avian diversity (numbers of species and numbers per species) was dependent on proximity to the Sea. Diversity was at a maximum nearest the shore, and was significantly lower away from the Sea's edge, at all surveyed distances up to 1 km from the shore. Cover by the dominant shrubs on the study site also corresponded to proximity to the water's edge. Whereas one may hypothesize that the avian diversity patterns are caused by these differences in vegetation structure, our data did not support this. Future studies should further investigate this potential correlation between vegetation and bird patterns. Until more is understood about the relationship between elevated avian diversity and the physical environment of the land-shore interface, our results suggest that the Sea's surface be stabilized near its present level. Future management schemes at the Salton Sea that include reductions of water sources should be carefully analyzed, so as to not jeopardize the terrestrial avifauna at this unique ecosystem. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Elastic Velocity Updating through Image-Domain Tomographic Inversion of Passive Seismic Data

    NASA Astrophysics Data System (ADS)

    Witten, B.; Shragge, J. C.

    2014-12-01

    Seismic monitoring at injection sites (e.g., CO2sequestration, waste water disposal, hydraulic fracturing) has become an increasingly important tool for hazard identification and avoidance. The information obtained from this data is often limited to seismic event properties (e.g., location, approximate time, moment tensor), the accuracy of which greatly depends on the estimated elastic velocity models. However, creating accurate velocity models from passive array data remains a challenging problem. Common techniques rely on picking arrivals or matching waveforms requiring high signal-to-noise data that is often not available for the magnitude earthquakes observed over injection sites. We present a new method for obtaining elastic velocity information from earthquakes though full-wavefield wave-equation imaging and adjoint-state tomography. The technique exploits images of the earthquake source using various imaging conditions based upon the P- and S-wavefield data. We generate image volumes by back propagating data through initial models and then applying a correlation-based imaging condition. We use the P-wavefield autocorrelation, S-wavefield autocorrelation, and P-S wavefield cross-correlation images. Inconsistencies in the images form the residuals, which are used to update the P- and S-wave velocity models through adjoint-state tomography. Because the image volumes are constructed from all trace data, the signal-to-noise in this space is increased when compared to the individual traces. Moreover, it eliminates the need for picking and does not require any estimation of the source location and timing. Initial tests show that with reasonable source distribution and acquisition array, velocity anomalies can be recovered. Future tests will apply this methodology to other scales from laboratory to global.

  3. High-Resolution Seismic Reflection Imaging of the Reelfoot Fault, New Madrid, Missouri

    NASA Astrophysics Data System (ADS)

    Rosandich, B.; Harris, J. B.; Woolery, E. W.

    2017-12-01

    Earthquakes in the Lower Mississippi Valley are mainly concentrated in the New Madrid Seismic Zone and are associated with reactivated faults of the Reelfoot Rift. Determining the relationship between the seismogenic faults (in crystalline basement rocks) and deformation at the Earth's surface and in the shallow subsurface has remained an active research topic for decades. An integrated seismic data set, including compressional (P-) wave and shear (S-) wave seismic reflection profiles, was collected in New Madrid, Missouri, across the "New Madrid" segment of the Reelfoot Fault, whose most significant rupture produced the M 7.5, February 7, 1812, New Madrid earthquake. The seismic reflection profiles (215 m long) were centered on the updip projection of the fault, which is associated with a surface drainage feature (Des Cyprie Slough) located at the base of a prominent east-facing escarpment. The seismic reflection profiles were collected using 48-channel (P-wave) and 24-channel (S-wave) towable landsteamer acquisition equipment. Seismic energy was generated by five vertical impacts of a 1.8-kg sledgehammer on a small aluminum plate for the P-wave data and five horizontal impacts of the sledgehammer on a 10-kg steel I-beam for the S-wave data. Interpretation of the profiles shows a west-dipping reverse fault (Reelfoot Fault) that propagates upward from Paleozoic sedimentary rocks (>500 m deep) to near-surface Quaternary sediments (<10 m deep). The hanging wall of the fault is anticlinally folded, a structural setting almost identical to that imaged on the Kentucky Bend and Reelfoot Lake segments (of the Reelfoot Fault) to the south.

  4. Surprises from the Magnetotelluric Component of the USArray in the Eastern United States: Perplexing Anticorrelations with Seismic Images and Puzzling Insights into Continental Dynamics

    NASA Astrophysics Data System (ADS)

    Murphy, B. S.; Egbert, G. D.

    2017-12-01

    In addition to its broadband seismic component, the USArray has also been collecting long-period magnetotelluric (MT) data across the continental United States. These data allow for an unprecedented three-dimensional view of the lithospheric geoelectric structure of the continent. As electrical conductivity and seismic properties provide complementary views of the Earth, synthesizing seismic and MT images can reduce ambiguity inherent in each technique and can thereby allow for tighter constraints on lithospheric properties. In the western US, comparison of MT and seismic results has clarified some issues (e.g., with regard to fluids and volatiles) and has raised some new questions, but for the most part the two techniques provide views that generally mesh well together. In sharp contrast, MT and seismic results in the eastern US lead to seemingly contradictory conclusions about lithosphere properties. The most striking example is the Piedmont region of the southeastern United States; here seismic images suggest a relatively thin, warm Phanerozoic lithosphere, while MT images show a large, deep, highly resistive body that seems to require thick, cold, even cratonic lithosphere. While these MT results shed intriguing new light onto the enigmatic post-Paleozoic history of eastern North America, the strong anticorrelation with seismic images remains a mystery. A similar anticorrelation appears to also exist in the Northern Appalachians, and preliminary views of the geoelectric signature of the well-studied Northern Appalachian Anomaly suggest that synthesizing the seismic and MT images of that region may be nontrivial. Clearly, a major challenge in continued analysis of USArray data is the reconciliation of seemingly contradictory seismic and MT images. The path forward in addressing this problem will require closer collaboration between seismologists and MT scientists and will likely require a careful reconsideration of how each group interprets the physical meaning

  5. Seismic velocity structure of the crust and shallow mantle of the Central and Eastern United States by seismic surface wave imaging

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2016-01-01

    Seismic surface waves from the Transportable Array of EarthScope's USArray are used to estimate phase velocity structure of 18 to 125 s Rayleigh waves, then inverted to obtain three-dimensional crust and upper mantle structure of the Central and Eastern United States (CEUS) down to ∼200 km. The obtained lithosphere structure confirms previously imaged CEUS features, e.g., the low seismic-velocity signature of the Cambrian Reelfoot Rift and the very low velocity at >150 km depth below an Eocene volcanic center in northwestern Virginia. New features include high-velocity mantle stretching from the Archean Superior Craton well into the Proterozoic terranes and deep low-velocity zones in central Texas (associated with the late Cretaceous Travis and Uvalde volcanic fields) and beneath the South Georgia Rift (which contains Jurassic basalts). Hot spot tracks may be associated with several imaged low-velocity zones, particularly those close to the former rifted Laurentia margin.

  6. The epizootiology of type C botulism in fish-eating birds at Salton Sea, California

    USGS Publications Warehouse

    Nol, P.

    2002-01-01

    During 1996, type C avian botulism killed over 15,000 fish-eating birds at the Salton Sea in southern California. Amont those affected were nearly 10,000 western white pelicans (Pelecanus erythrorhynchos) and over 1,200 endangered California brown pelicans (Pelecanus occidentalis californicus). Since 1996, smaller epizootics have occurred every year. Type C botulism is not typically associated with fish-eating birds. In the case of the Salton Sea, Mozambique tilapia (Oreochromis mossambicus) are the suspected source of type C toxin, although the mechanism by which the fish acquire the toxin is still unknown. The goals of this study were to: 1) Determine presence/absence of active Clostridium botulinum type C and type C botulinum toxin in tilapia in the Salton Sea. 2) Use geospatial analyses to evaluate relationships between patterns of mortality in birds and fish and presence/absence of toxin and/or toxin-producing bacteria in sediments and fish. We investigated a method of detecting C. botulinum type C cells in the intestinal contents of Mozambique tilapia. This method involved extraction of predominantly cellular DNA and uses a polymerase chain reaction assay to detect presence of type C toxin gene. We collected sick, dead and healthy fish from various sites throughout the Sea during the summers of 1999 to 2001 in order to test them for the presence of active C. botulinum type C by PCR and for the presence of type C toxin by ELISA and mouse test. The results demonstrate that the tilapia population in the Salton Sea harbors C. botulinum type C cells within their gastrointestinal tract and the prevalence of this organism varies from year to year. The total number of fish with toxin-producing bacteria was significantly greater in 2000 than in 2001. No difference in the numbers of positives was detected between sick and dead fish compared to live fish, and there were no differences noted with regard to location of fish collection. The prevalence of active type C

  7. An efficient implementation of 3D high-resolution imaging for large-scale seismic data with GPU/CPU heterogeneous parallel computing

    NASA Astrophysics Data System (ADS)

    Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng

    2018-02-01

    De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.

  8. Seismic imaging along a 600 km transect of the Alaska Subduction zone (Invited)

    NASA Astrophysics Data System (ADS)

    Calkins, J. A.; Abers, G. A.; Freymueller, J. T.; Rondenay, S.; Christensen, D. H.

    2010-12-01

    We present earthquake locations, scattered wavefield migration images, and phase velocity maps from preliminary analysis of combined seismic data from the Broadband Experiment Across the Alaska Range (BEAAR) and Multidisciplinary Observations of Onshore Subduction (MOOS) projects. Together, these PASSCAL broadband arrays sampled a 500+ km transect across a portion of the subduction zone characterized by the Yakutat terrane/Pacific plate boundary in the downgoing plate, and the Denali volcanic gap in the overriding plate. These are the first results from the MOOS experiment, a 34-station array that was deployed from 2006-2008 to fill in the gap between the TACT offshore refraction profile (south and east of the coastline of the Kenai Peninsula), and the BEAAR array (spanning the Alaska Range between Talkeetna and Fairbanks). 2-D images of the upper 150 km of the subduction zone were produced by migrating forward- and back-scattered arrivals in the coda of P waves from large teleseismic earthquakes, highlighting S-velocity perturbations from a smoothly-varying background model. The migration images reveal a shallowly north-dipping low velocity zone that is contiguous near 20 km depth on its updip end with previously obtained images of the subducting plate offshore. The low velocity zone steepens further to the north, and terminates near 120 km beneath the Alaska Range. We interpret this low velocity zone to be the crust of the downgoing plate, and the reduced seismic velocities to be indicative of hydrated gabbroic compositions. Earthquakes located using the temporary arrays and nearby stations of the Alaska Regional Seismic Network correlate spatially with the inferred subducting crust. Cross-sections taken along nearly orthogonal strike lines through the MOOS array reveal that both the dip angle and the thickness of the subducting low velocity zone change abruptly across a roughly NNW-SSE striking line drawn through the eastern Kenai Peninsula, coincident with a

  9. Evaluating the Possibility of a joint San Andreas-Imperial Fault Rupture in the Salton Trough Region

    NASA Astrophysics Data System (ADS)

    Kyriakopoulos, C.; Oglesby, D. D.; Meltzner, A. J.; Rockwell, T. K.

    2016-12-01

    A geodynamic investigation of possible earthquakes in a given region requires both field data and numerical simulations. In particular, the investigation of past earthquakes is also a fundamental part of understanding the earthquake potential of the Salton Trough region. Geological records from paleoseismic trenches inform us of past ruptures (length, magnitude, timing), while dynamic rupture models allow us to evaluate numerically the mechanics of such earthquakes. The two most recent events (Mw 6.4 1940 and Mw 6.9 1979) on the Imperial fault (IF) both ruptured up to the northern end of the mapped fault, giving the impression that rupture doesn't propagate further north. This result is supported by small displacements, 20 cm, measured at the Dogwood site near the end of the mapped rupture in each event. However, 3D paleoseismic data from the same site corresponding to the most recent pre-1940 event (1710 CE) and 5th (1635 CE) and 6th events back revealed up to 1.5 m of slip in those events. Since we expect the surface displacement to decrease toward the termination of a rupture, we postulate that in these earlier cases the rupture propagated further north than in 1940 or 1979. Furthermore, paleoseismic data from the Coachella site (Philibosian et al., 2011) on the San Andreas fault (SAF) indicates slip events ca. 1710 CE and 1588-1662 CE. In other words, the timing of two large paleoseismic displacements on the IF cannot be distinguished from the timing of the two most recent events on the southern SAF, leaving a question: is it possible to have through-going rupture in the Salton Trough? We investigate this question through 3D dynamic finite element rupture modeling. In our work, we considered two scenarios: rupture initiated on the IF propagating northward, and rupture initiated on the SAF propagating southward. Initial results show that, in the first case, rupture propagates north of the mapped northern terminus of the IF only under certain pre

  10. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    NASA Astrophysics Data System (ADS)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  11. Is the Local Seismicity in Haiti Capable of Imaging the Northern Caribbean Subduction?

    NASA Astrophysics Data System (ADS)

    Corbeau, J.; Clouard, V.; Rolandone, F.; Leroy, S. D.; de Lepinay, B. M.

    2017-12-01

    The boundary between the Caribbean (CA) and North American (NAM) plates in the Hispaniola region is the western prolongation of the NAM plate subduction evolving from a frontal subduction in the Lesser Antilles to an oblique collision against the Bahamas platform in Cuba. We analyze P-waveforms arriving at 27 broadband seismic temporary stations deployed along a 200 km-long N-S transect across Haiti, during the Trans-Haiti project. We compute teleseismic receiver functions using the ETMTRF method, and determine crustal thickness and bulk composition (Vp/Vs) using the H-k stacking method. Three distinctive crustal domains are imaged. We relate these domains to crustal terranes that have been accreted along the plate boundary during the northeastwards displacement of the CA plate. We propose a N-S crustal profile across Haiti accounting for the surface geology, shallow structural history and these new seismological constraints. Local seismicity recorded by the temporary network from April 2013 to June 2014 is used to relocate the seismicity. A total of 593 events were identified with magnitudes ranging from 1.6 to 4.5. This local seismicity, predominantly shallow (< 20 km) and situated in the southern part of Haiti along the major Enriquillo-Plantain-Garden strike-slip fault zone (EPGFZ) and offshore in Gonâve Bay, helps us to image deep active structures. Moment tensors for earthquakes with magnitudes between 3 and 4 were calculated by full waveform inversion using the ISOLA software. The analysis of the new moment tensors for the Haiti upper lithosphere indicates that normal, thrust and strike-slip faulting are equitably distributed. We found strike-slip events along the EPGFZ, near the location of the January 12th, 2010 earthquake. Most of the normal events are located in the area of Enriquillo and Azuei lakes, while the thrust events are located on both sides of the southern Peninsula of Haiti. The preliminary seismic data of our Haitian network, even noisy

  12. Reprocessing Seismic Data - Using Wits Seismic Exploration Data to Image the Karoo Basin

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Scheiber-Enslin, S. E.; Manzi, M. S.

    2016-12-01

    During the heyday of seismic exploration of the Witwatersrand Basin, Anglo American's Gold Division acquired several thousand kilometres of Vibroseis reflection seismic data. These data, acquired from 1983-1994, were collected with the goal of finding extensions to the Witwatersrand Basin. In a prescient move, over 500 line kilometres were collected at 16 s two way travel time (TWT), extending to depths of 50 -70 km and have provided critical insight into the formation of the Kaapvaal Craton. In addition to these deep seismic lines, Anglo American acquired an extensive network of heretofore unpublished seismic lines that were collected at 6 sec TWT extending well beyond the known limits of the Witwatersrand Basin. The South African government as part of the national geophysical program in the late 1980s acquired six research reflection seismic lines in varied geological settings accruing another 700 km of data. Many of these data are now hosted at the University of the Witwatersrand's newly established Seismic Research Centre and represent unprecedented coverage and research opportunities. With recent global interest in shale gas, attention focused on the Karoo Basin in South Africa. Early exploration seismic data acquired by Soekor in the 1970s has been lost; however, digitized paper records indicate clear reflection targets. Here we examine one of the AngloGold seismic lines that was acquired in the middle of the Karoo Basin just south of Trompsburg extending to the southeast towards Molteno. This 150 km long line crosses the edge of the Kaapvaal Craton and shows clear reflectors throughout the Karoo Basin. These include the well-defined base of the Karoo and a number of dolerite sills within it. Nearby gas escape structures have been identified on surface and it is likely that several disruptions along this line are related to these or to dykes associated with the sills.

  13. Improved 3D seismic images of dynamic deformation in the Nankai Trough off Kumano

    NASA Astrophysics Data System (ADS)

    Shiraishi, K.; Moore, G. F.; Yamada, Y.; Kinoshita, M.; Sanada, Y.; Kimura, G.

    2016-12-01

    In order to improve the seismic reflection image of dynamic deformation and seismogenic faults in the Nankai trough, the 2006 Kumano 3D seismic dataset was reprocessed from the original field records by applying advanced technologies a decade after the data acquisition and initial processing. The 3D seismic survey revealed the geometry of megasplay fault system. However, there were still unclear regions in the accretionary prism beneath from Kumano basin to the outer ridge, because of sea floor multiple reflections and noise caused by the Kuroshio current. For the next stage of deep scientific drilling into the Nankai trough seismogenic zone, it is essential to know exactly the shape and depth of the megasplay, and fine structures around the drilling site. Three important improvements were achieved in data processing before imaging. First, full deghosting and optimized zero phasing techniques could recover broadband signals, especially in low frequency, by compensating for ghost effects at both source and receiver, and removing source bubbles. Second, the multiple reflections better attenuated by applying advanced techniques in combination, and the strong noise caused by the Kuroshio were attenuated carefully. Third, data regularization by means of the optimized 4D trace interpolation was effective both to mitigate non-uniform fold distribution and to improve data quality. Further imaging processes led to obvious improvement from previous results by applying PSTM with higher order correction of VTI anisotropy, and PSDM based on the velocity model built by reflection tomography with TTI anisotropy. Final reflection images show new geological aspects, such as clear steep dip faults around the "notch", and fine scale faults related to main thrusts in frontal thrust zone. The improved images will highly contribute to understanding the deformation process in the old accretionary prism and seismogenic features related to the megasplay faults.

  14. Seismic Wavefield Imaging of Long-Period Ground Motion in the Tokyo Metropolitan Area, Japan

    NASA Astrophysics Data System (ADS)

    Nagao, H.; Kano, M.; Nagata, K.; Ito, S. I.; Sakai, S.; Nakagawa, S.; Hori, M.; Hirata, N.

    2017-12-01

    Long-period ground motions due to large earthquakes can cause devastating disasters, especially in urbanized areas located on sedimentary basins. To assess and mitigate such damage, it is essential to rapidly evaluate seismic hazards for infrastructures, which can be simulated by seismic response analyses that use waveforms at the base of each infrastructure as an input ground motion. The present study reconstructs the seismic wavefield in the Tokyo metropolitan area located on the Kanto sedimentary basin, Japan, from seismograms of the Metropolitan Seismic Observation network (MeSO-net). The obtained wavefield fully explains the observed waveforms in the frequency band of 0.10-0.20 Hz. This is attributed to the seismic wavefield imaging technique proposed by Kano et al. (2017), which implements the replica exchange Monte Carlo method to simultaneously estimate model parameters related to the subsurface structure and source information. Further investigation shows that the reconstructed seismic wavefield lower than 0.30 Hz is of high quality in terms of variance reduction (VR), which quantifies a misfit in waveforms but that the VR rapidly worsens in higher frequencies. Meanwhile, the velocity response spectra show good agreement with observations up to 0.90 Hz in terms of the combined goodness of fit (CGOF), which is a measure of misfit in the velocity response spectra. Inputting the reconstructed wavefield into seismic response analyses, we can rapidly assess the overall damage to infrastructures immediately after a large earthquake.

  15. Overview of the Kinematics of the Salton Trough and Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Stock, J. M.

    2016-12-01

    In the Salton Trough and Northern Gulf of California, transtensional rifting is leading to full continental plate breakup, as a major continental block is being transferred to an oceanic plate. Since at least 6 Ma this region has taken up most of the plate boundary slip between the Pacific and North America plates at this latitude. We review the structural history of plate separation, as constrained by many recent studies of present and past fault configurations, seismicity, and basin development as seen from geology and geophysics. Modern activity in the USA is dominated by NW-striking strike-slip faults (San Andreas, San Jacinto, Elsinore), and subsidiary NE-striking faults. There is an equally broad zone in Mexico (faults from the Mexicali Valley to the Colorado River Delta and bounding the Laguna Salada basin), including active low-angle detachment faults. In both areas, shifts in fault activity are indicated by buried faults and exhumed or buried earlier basin strata. Seismicity defines 3 basin segments in the N Gulf: Consag-Wagner, Upper Delfin, and Lower Delfin, but localization is incomplete. These basins occupy a broad zone of modern deformation, lacking single transform faults, although major strike-slip faults formed in the surrounding continental area. The off-boundary deformation on the western side of the plate boundary has changed with time, as seen by Holocene and Quaternary faults controlling modern basins in the Gulf Extensional Province of NE Baja California, and stranded Pliocene continental and marine basin strata in subaerial fault blocks. The eastern side of the plate boundary, in the shallow northeastern Gulf, contains major NW-striking faults that may have dominated the earlier (latest Miocene-early Pliocene) kinematics. The Sonoran coastal plain likely buries additional older faults and basin sequences; further studies here are needed to refine models of the earlier structural development of this sector. Despite > 250 km of plate

  16. Seismic imaging beneath southwest Africa based on finite-frequency body wave tomography

    NASA Astrophysics Data System (ADS)

    Youssof, Mohammad; Yuan, Xiaohui; Tilmann, Frederik; Heit, Benjamin; Weber, Michael; Jokat, Wilfried; Geissler, Wolfram; Laske, Gabi

    2016-04-01

    We present a seismic model of southwest Africa from teleseismic tomographic inversion of the P- and S- wave data recorded by an amphibious temporary seismic network. The area of study is located at the intersection of the Walvis Ridge with the continental margin of northern Namibia, and extends into the Congo craton. Utilizing 3D finite-frequency sensitivity kernels, we invert traveltime residuals of the teleseismic body waves to image seismic structures in the upper mantle. To test the robustness of our tomographic imaging, we employed various resolution assessments that allow us to inspect the extent of smearing effects and to evaluate the optimum regularization weights (i.e., damping and smoothness). These tests include applying different (ir)regular parameterizations, classical checkerboard and anomaly tests and squeezing modeling. Furthermore, we performed different kinds of weighing schemes for the traveltime dataset. These schemes account for balancing between the picks data amount with their corresponding events directions. Our assessment procedure involves also a detailed investigation of the effect of the crustal correction on the final velocity image, which strongly influenced the image resolution for the mantle structures. Our model can resolve horizontal structures of 1° x 1° below the array down to 300-350 km depth. The resulting model is mainly dominated by the difference in the oceanic and continental mantle lithosphere beneath the study area, with second-order features related to their respective internal structures. The fast lithospheric keel of the Congo Craton reaches a depth of ~250 km. The orogenic Damara Belt and continental flood basalt areas are characterized by low velocity perturbations down to a depth of ~150 km, indicating a normal fertile mantle. High velocities in the oceanic lithosphere beneath the Walvis Ridge appear to show signatures of chemical depletion. A pronounced anomaly of fast velocity is imaged underneath continental NW

  17. Back-Projection Imaging of extended, diffuse seismic sources in volcanic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.; Beroza, G. C.

    2017-12-01

    Volcanic and hydrothermal systems exhibit a wide range of seismicity that is directly linked to fluid and volatile activity in the subsurface and that can be indicative of imminent hazardous activity. Seismograms recorded near volcanic and hydrothermal systems typically contain "noisy" records, but in fact, these complex signals are generated by many overlapping low-magnitude displacements and pressure changes at depth. Unfortunately, excluding times of high-magnitude eruptive activity that typically occur infrequently relative to the length of a system's entire eruption cycle, these signals often have very low signal-to-noise ratios and are difficult to identify and study using established seismic analysis techniques (i.e. phase-picking, template matching). Arrays of short-period and broadband seismic sensors are proven tools for monitoring short- and long-term changes in volcanic and hydrothermal systems. Time-reversal techniques (i.e. back-projection) that are improved by additional seismic observations have been successfully applied to locating volcano-seismic sources recorded by dense sensor arrays. We present results from a new computationally efficient back-projection method that allows us to image the evolution of extended, diffuse sources of volcanic and hydrothermal seismicity. We correlate short time-window seismograms from receiver-pairs to find coherent signals and propagate them back in time to potential source locations in a 3D subsurface model. The strength of coherent seismic signal associated with any potential source-receiver-receiver geometry is equal to the correlation of the short time-windows of seismic records at appropriate time lags as determined by the velocity structure and ray paths. We stack (sum) all short time-window correlations from all receiver-pairs to determine the cumulative coherence of signals at each potential source location. Through stacking, coherent signals from extended and/or repeating sources of short-period energy

  18. Chronostratigraphy of the Fish Creek-Vallecito Basin, SW Salton Trough: A High-Fidelity Record of Slip on the West Salton Detachment Fault and Subsidence in its Upper Plate

    NASA Astrophysics Data System (ADS)

    Dorsey, R. J.; Housen, B. A.; Janecke, S. U.; McDougall, K.; Fanning, M.; Fluette, A.; Axen, G. J.; Shirvell, C. R.

    2006-12-01

    The Fish Creek-Vallecito basin contains a 5.1-km thick section of sedimentary rocks in the SW Salton Trough that range in age from 8.1 to 0.9 Ma. The section preserves a record of basin subsidence related to slip on the West Salton detachment fault (WSDF), which formed the main western rift-flank structure of the Salton Trough. We obtained a well-constrained chronology from compilation of existing (Johnson et al., 1983) and new paleomagnetic data, ages of two tuffs high in the section, and thicknesses calculated from the geologic map of Winker (1987) and our work in the lower 1.3 km. The tuffs yielded SHRIMP U-Pb ages of 2.56 ± 0.09 and 2.54 ± 0.09 Ma from single zircons. Geohistory analysis, corrected for paleobathymetry and global sea- level change, yields a decompacted subsidence curve with 5 segments bounded by abrupt changes in subsidence rate: (1) 0.46 mm/yr from 8.1 to 5.5 Ma; (2) 1.8 mm/yr from 5.5 to 5.2 Ma; (3) zero subsidence or slight uplift from 5.2 to 4.6 Ma; (4) 1.9 mm/yr from 4.6 to 3.2 Ma; and (5) 0.4 mm/yr from 3.2 to 0.9 Ma. The base of the Elephant Trees Fm, dated here at 8.1 Ma, provides the earliest well dated record of extension in the SW Salton Trough. Earliest marine incursion is dated at 6.3 Ma, and the first appearance of Colorado River sand coincides closely with the Miocene-Pliocene boundary (5.33 Ma). Because the base of the marine Imperial Group does not coincide with a change in subsidence rate, we suggest that initial marine incursion resulted from a latest Miocene global sea-level highstand superposed on steady subsidence. Thus, the inflections at 8.1 and 5.5 Ma are the two most likely ages for onset of slip on the WSDF, but 4.6 Ma is also possible. Variations in subsidence rate are not predicted by models for extensional detachment faults, and may reflect episodic pulsed fault slip and/or long-wavelength folding related to dextral-wrench tectonics. Rapid subsidence in segment 4 began during progradation of the Colorado River

  19. The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen

    NASA Astrophysics Data System (ADS)

    Hetényi, György; Molinari, Irene; Clinton, John; Bokelmann, Götz; Bondár, István; Crawford, Wayne C.; Dessa, Jean-Xavier; Doubre, Cécile; Friederich, Wolfgang; Fuchs, Florian; Giardini, Domenico; Gráczer, Zoltán; Handy, Mark R.; Herak, Marijan; Jia, Yan; Kissling, Edi; Kopp, Heidrun; Korn, Michael; Margheriti, Lucia; Meier, Thomas; Mucciarelli, Marco; Paul, Anne; Pesaresi, Damiano; Piromallo, Claudia; Plenefisch, Thomas; Plomerová, Jaroslava; Ritter, Joachim; Rümpker, Georg; Šipka, Vesna; Spallarossa, Daniele; Thomas, Christine; Tilmann, Frederik; Wassermann, Joachim; Weber, Michael; Wéber, Zoltán; Wesztergom, Viktor; Živčić, Mladen

    2018-04-01

    The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.

  20. Ambient Seismic Imaging of Hydraulically Active Fractures at km Depths

    NASA Astrophysics Data System (ADS)

    Malin, P. E.; Sicking, C.

    2017-12-01

    Streaming Depth Images of ambient seismic signals using numerous, densely-distributed, receivers have revealed their connection to hydraulically active fractures at 0.5 to 5 km depths. Key for this type of imaging is very high-fold stacking over both multiple receives and periods of a few hours. Also important is suppression of waveforms from fixed, repeating sources such as pumps, generators, and traffic. A typical surface-based ambient SDI survey would use a 3D seismic receiver grid. It would have 1,000 to 4,000 uniformly distributed receivers at a density of 50/km2over the target. If acquired by borehole receivers buried 100 m deep, the density can be dropped by an order of magnitude. We show examples of the acquisition and signal processing scenarios used to produce the ambient images. (Sicking et al., SEG Interpretation, Nov 2017.) While the fracture-fluid source connection of SDI has been verified by drilling and various types of hydraulic tests, the precise nature of the signal's origin is not clear. At the current level of observation, the signals do not have identifiable phases, but can be focused using P wave velocities. Suggested sources are resonances of pressures fluctuations in the fractures, or small, continuous, slips on fractures surfaces. In either case, it appears that the driving mechanism is tectonic strain in an inherently unstable crust. Solid earth tides may enhance these strains. We illustrate the value of the ambient SDI method in its industrial application by showing case histories from energy industry and carbon-capture-sequestration projects. These include ambient images taken before, during, and after hydraulic treatments in un-conventional reservoirs. The results show not only locations of active fractures, but also their time responses to stimulation and production. Time-lapse ambient imaging can forecast and track events such as well interferences and production changes that can result from nearby treatments.

  1. Seismic imaging using finite-differences and parallel computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.

    1997-12-31

    A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computersmore » can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.« less

  2. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A [Lafayette, CA; Bakulin, Andrey [Houston, TX

    2009-10-13

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  3. Tube-wave seismic imaging

    DOEpatents

    Korneev, Valeri A [LaFayette, CA

    2009-05-05

    The detailed analysis of cross well seismic data for a gas reservoir in Texas revealed two newly detected seismic wave effects, recorded approximately 2000 feet above the reservoir. A tube-wave (150) is initiated in a source well (110) by a source (111), travels in the source well (110), is coupled to a geological feature (140), propagates (151) through the geological feature (140), is coupled back to a tube-wave (152) at a receiver well (120), and is and received by receiver(s) (121) in either the same (110) or a different receiving well (120). The tube-wave has been shown to be extremely sensitive to changes in reservoir characteristics. Tube-waves appear to couple most effectively to reservoirs where the well casing is perforated, allowing direct fluid contact from the interior of a well case to the reservoir.

  4. Scattering images from autocorrelation functions of P-wave seismic velocity images: the case of Tenerife Island (Canary Islands, Spain)

    NASA Astrophysics Data System (ADS)

    García-Yeguas, A.; Sánchez-Alzola, A.; De Siena, L.; Prudencio, J.; Díaz-Moreno, A.; Ibáñez, J. M.

    2018-03-01

    We present a P-wave scattering image of the volcanic structures under Tenerife Island using the autocorrelation functions of P-wave vertical velocity fluctuations. We have applied a cluster analysis to total quality factor attenuation ( {Q}_t^{-1} ) and scattering quality factor attenuation ( {Q}_{PSc}^{-1} ) images to interpret the structures in terms of intrinsic and scattering attenuation variations on a 2D plane, corresponding to a depth of 2000 m, and check the robustness of the scattering imaging. The results show that scattering patterns are similar to total attenuation patterns in the south of the island. There are two main areas where patterns differ: at Cañadas-Teide-Pico Viejo Complex, high total attenuation and average-to-low scattering values are observed. We interpret the difference as induced by intrinsic attenuation. In the Santiago Ridge Zone (SRZ) region, high scattering values correspond to average total attenuation. In our interpretation, the anomaly is induced by an extended scatterer, geometrically related to the surficial traces of Garachico and El Chinyero historical eruptions and the area of highest seismic activity during the 2004-2008 seismic crises.

  5. Capabilities of seismic and georadar 2D/3D imaging of shallow subsurface of transport route using the Seismobile system

    NASA Astrophysics Data System (ADS)

    Pilecki, Zenon; Isakow, Zbigniew; Czarny, Rafał; Pilecka, Elżbieta; Harba, Paulina; Barnaś, Maciej

    2017-08-01

    In this work, the capabilities of the Seismobile system for shallow subsurface imaging of transport routes, such as roads, railways, and airport runways, in different geological conditions were presented. The Seismobile system combines the advantages of seismic profiling using landstreamer and georadar (GPR) profiling. It consists of up to four seismic measuring lines and carriage with a suspended GPR antenna. Shallow subsurface recognition may be achieved to a maximum width of 10.5 m for a distance of 3.5 m between the measurement lines. GPR measurement is performed in the axis of the construction. Seismobile allows the measurement time, labour and costs to be reduced due to easy technique of its installation, remote data transmission from geophones to accompanying measuring modules, automated location of the system based on GPS and a highly automated method of seismic wave excitation. In this paper, the results of field tests carried out in different geological conditions were presented. The methodologies of acquisition, processing and interpretation of seismic and GPR measurements were broadly described. Seismograms and its spectrum registered by Seismobile system were compared to the ones registered by Geode seismograph of Geometrix. Seismic data processing and interpretation software allows for the obtaining of 2D/3D models of P- and S-wave velocities. Combined seismic and GPR results achieved sufficient imaging of shallow subsurface to a depth of over a dozen metres. The obtained geophysical information correlated with geological information from the boreholes with good quality. The results of performed tests proved the efficiency of the Seismobile system in seismic and GPR imaging of a shallow subsurface of transport routes under compound conditions.

  6. Calibrated Seismic Imaging of Eddy-Dominated Warm-Water Transport Across the Bellingshausen Sea, Southern Ocean

    NASA Astrophysics Data System (ADS)

    Gunn, K. L.; White, N. J.; Larter, R. D.; Caulfield, C. P.

    2018-04-01

    Seismic reflection images of thermohaline circulation from the Bellingshausen Sea, adjacent to the West Antarctica Peninsula, were acquired during February 2015. This survey shows that bright reflectivity occurs throughout the upper 300 m. By calibrating these seismic images with coeval hydrographic measurements, intrusion of warm water features onto the continental shelf at Marguerite and Belgica Troughs is identified and characterized. These features have distinctive lens-shaped patterns of reflectivity with lengths of 0.75-11.00 km and thicknesses of 100-150 m, suggesting that they are small mesoscale to submesoscale eddies. Abundant eddies are observed along a transect that crosses Belgica Trough. Near Alexander Island Drift, a large, of order (O)102 km3, bowl-like feature, that may represent an anticyclonic Taylor column, is imaged on a pair of orthogonal images. A modified iterative procedure is used to convert seismic imagery into maps of temperature that enable the number and size of eddies being transported onto the shelf to be quantified. Finally, analysis of prestack shot records suggests that these eddies are advecting southward at speeds of O>(0.1>) m s-1, consistent with limited legacy hydrographic measurements. Concentration of observed eddies south of the Southern Antarctic Circumpolar Current Front implies they represent both a dominant, and a long-lived, mechanism of warm-water transport, especially across Belgica Trough. Our observations suggest that previous estimates of eddy frequency may have been underestimated by up to 1 order of magnitude, which has significant implications for calculations of ice mass loss on the shelf of the West Antarctic Peninsula.

  7. Detailed Image of the Subducting Plate and Upper mantle Seismic Discontinuities in the Mariana Subduction Zone

    NASA Astrophysics Data System (ADS)

    Tibi, R.; Wiens, D. A.; Shiobara, H.; Sugioka, H.; Yuan, X.

    2006-12-01

    We use P-to-S converted teleseismic phases recorded at island and ocean bottom stations in Mariana to image the subducting plate and the upper mantle seismic discontinuities in the Mariana subduction zone. The land and seafloor stations which operated from June 2003 to May 2004, were deployed within the framework of the MARGINS Subduction Factory experiment of the Mariana system. The crust in the sudducting plate is observed at about 80--90 km depth beneath the islands of Saipan, Tinian and Rota. For most of the island stations, a low velocity layer is imaged in the forearc at depth between about 20 and 60 km, with decreasing depths toward the arc. The nature of this feature is not yet clear. We found evidence for double seismic discontinuities at the base of the transition zone near the Mariana slab. A shallower discontinuity is imaged at depths of ~650--715 km, and a deeper interface lies at ~740-- 770 km depth. The amplitudes of the seismic signals suggest that the shear velocity contrasts across the two features are comparable. These characteristics support the interpretation that the discontinuities are the results of the phase transformations in olivine (ringwoodite to post-spinel) and garnet (ilminite to perovskite), respectively, for the pyrolite model of mantle composition.

  8. An image of the Columbia Plateau from inversion of high-resolution seismic data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutter, W.J.; Catchings, R.D.; Jarchow, C.M.

    1994-08-01

    The authors use a method of traveltime inversion of high-resolution seismic data to provide the first reliable images of internal details of the Columbia River Basalt Group (CRBG), the subsurface basalt/sediment interface, and the deeper sediment/basement interface. Velocity structure within the basalts, delineated on the order of 1 km horizontally and 0.2 km vertically, is constrained to within [plus minus]0.1 km/s for most of the seismic profile. Over 5,000 observed traveltimes fit their model with an rms error of 0.018 s. The maximum depth of penetration of the basalt diving waves (truncated by underlying low-velocity sediments) provides a reliable estimatemore » of the depth to the base of the basalt, which agrees with well-log measurements to within 0.05 km (165 ft). The authors use image blurring, calculated from the resolution matrix, to estimate the aspect ratio of images velocity anomaly widths to true widths for velocity features within the basalt. From their calculations of image blurring, they interpret low velocity zones (LVZ) within the basalts at Boylston Mountain and the Whiskey Dick anticline to have widths of 4.5 and 3 km, respectively, within the upper 1.5 km of the model. At greater depth, the widths of these imaged LVZs thin to approximately 2 km or less. They interpret these linear, subparallel, low-velocity zones imaged adjacent to anticlines of the Yakima Fold Belt to be brecciated fault zones. These fault zones dip to the south at angles between 15 to 45 degrees.« less

  9. Homogenization of Electromagnetic and Seismic Wavefields for Joint Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Newman, G. A.; Commer, M.; Petrov, P.; Um, E. S.

    2011-12-01

    A significant obstacle in developing a robust joint imaging technology exploiting seismic and electromagnetic (EM) wave fields is the resolution at which these different geophysical measurements sense the subsurface. Imaging of seismic reflection data is an order of magnitude finer in resolution and scale compared to images produced with EM data. A consistent joint image of the subsurface geophysical attributes (velocity, electrical conductivity) requires/demands the different geophysical data types be similar in their resolution of the subsurface. The superior resolution of seismic data results from the fact that the energy propagates as a wave, while propagation of EM energy is diffusive and attenuates with distance. On the other hand, the complexity of the seismic wave field can be a significant problem due to high reflectivity of the subsurface and the generation of multiple scattering events. While seismic wave fields have been very useful in mapping the subsurface for energy resources, too much scattering and too many reflections can lead to difficulties in imaging and interpreting seismic data. To overcome these obstacles a formulation for joint imaging of seismic and EM wave fields is introduced, where each data type is matched in resolution. In order to accomplish this, seismic data are first transformed into the Laplace-Fourier Domain, which changes the modeling of the seismic wave field from wave propagation to diffusion. Though high frequency information (reflectivity) is lost with this transformation, several benefits follow: (1) seismic and EM data can be easily matched in resolution, governed by the same physics of diffusion, (2) standard least squares inversion works well with diffusive type problems including both transformed seismic and EM, (3) joint imaging of seismic and EM data may produce better starting velocity models critical for successful reverse time migration or full waveform imaging of seismic data (non transformed) and (4

  10. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    NASA Astrophysics Data System (ADS)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  11. Episodic Holocene eruption of the Salton Buttes rhyolites, California, from paleomagnetic, U-Th, and Ar/Ar dating

    USGS Publications Warehouse

    Wright, Heather M.; Vazquez, Jorge A.; Champion, Duane E.; Calvert, Andrew T.; Mangan, Margaret T.; Stelten, Mark E.; Cooper, Kari M.; Herzig, Charles; Schriener Jr., Alexander

    2015-01-01

    In the Salton Trough, CA, five rhyolite domes form the Salton Buttes: Mullet Island, Obsidian Butte, Rock Hill, North and South Red Hill, from oldest to youngest. Results presented here include 40Ar/39Ar anorthoclase ages, 238U-230Th zircon crystallization ages, and comparison of remanent paleomagnetic directions with the secular variation curve, which indicate that all domes are Holocene. 238U-230Th zircon crystallization ages are more precise than but within uncertainty of 40Ar/39Ar anorthoclase ages, suggesting that zircon crystallization proceeded until shortly before eruption in all cases except one. Remanent paleomagnetic directions require three eruption periods: (1) Mullet Island, (2) Obsidian Butte, and (3) Rock Hill, North Red Hill, and South Red Hill. Borehole cuttings logs document up to two shallow tephra layers. North and South Red Hills likely erupted within 100 years of each other, with a combined 238U-230Th zircon isochron age of: 2.83 ± 0.60 ka (2 sigma); paleomagnetic evidence suggests this age predates eruption by hundreds of years (1800 cal BP). Rock Hill erupted closely in time to these eruptions. The Obsidian Butte 238U-230Th isochron age (2.86 ± 0.96 ka) is nearly identical to the combined Red Hill age, but its Virtual Geomagnetic Pole position suggests a slightly older age. The age of aphyric Mullet Island dome is the least well constrained: zircon crystals are resorbed and the paleomagnetic direction is most distinct; possible Mullet Island ages include ca. 2300, 5900, 6900, and 7700 cal BP. Our results constrain the duration of Salton Buttes volcanism to between ca. 5900 and 500 years.

  12. Seismic images and fault relations of the Santa Monica thrust fault, West Los Angeles, California

    USGS Publications Warehouse

    Catchings, R.D.; Gandhok, G.; Goldman, M.R.; Okaya, D.

    2001-01-01

    In May 1997, the US Geological Survey (USGS) and the University of Southern California (USC) acquired high-resolution seismic reflection and refraction images on the grounds of the Wadsworth Veterans Administration Hospital (WVAH) in the city of Los Angeles (Fig. 1a,b). The objective of the seismic survey was to better understand the near-surface geometry and faulting characteristics of the Santa Monica fault zone. In this report, we present seismic images, an interpretation of those images, and a comparison of our results with results from studies by Dolan and Pratt (1997), Pratt et al. (1998) and Gibbs et al. (2000). The Santa Monica fault is one of the several northeast-southwest-trending, north-dipping, reverse faults that extend through the Los Angeles metropolitan area (Fig. 1a). Through much of area, the Santa Monica fault trends subparallel to the Hollywood fault, but the two faults apparently join into a single fault zone to the southwest and to the northeast (Dolan et al., 1995). The Santa Monica and Hollywood faults may be part of a larger fault system that extends from the Pacific Ocean to the Transverse Ranges. Crook et al. (1983) refer to this fault system as the Malibu Coast-Santa Monica-Raymond-Cucamonga fault system. They suggest that these faults have not formed a contiguous zone since the Pleistocene and conclude that each of the faults should be treated as a separate fault with respect to seismic hazards. However, Dolan et al. (1995) suggest that the Hollywood and Santa Monica faults are capable of generating Mw 6.8 and Mw 7.0 earthquakes, respectively. Thus, regardless of whether the overall fault system is connected and capable of rupturing in one event, individually, each of the faults present a sizable earthquake hazard to the Los Angeles metropolitan area. If, however, these faults are connected, and they were to rupture along a continuous fault rupture, the resulting hazard would be even greater. Although the Santa Monica fault represents

  13. High Resolution Seismic Imaging of the Trench Canyon Fault Zone, Mono Lake, Northeastern California

    NASA Astrophysics Data System (ADS)

    Novick, M. W.; Jayko, A. S.; Roeske, S.; McClain, J. S.; Hart, P. E.; Boyle, M.

    2009-12-01

    High resolution seismic imaging of Mono Lake, located in northeastern California, has revealed an approximately northwest striking fault in the area to the west of aerially exposed Negit Volcano. This fault, henceforth referred to as the Trench Canyon Fault (TCF), has also been mapped onshore along a correlating strike as far north as Cedar Hill Volcano, located to the northeast of the lake on the California/Nevada border. Onshore, the TCF was mapped for approximately 10 kilometers using air photos, DEM images, and standard geologic pace and compass mapping techniques. The TCF post- dates the last glacial maximum, evidenced by the cutting of wave cut benches along Cedar Hill Volcano. Relict, non-historic shorelines, left by the steady evaporation of Mono Lake beginning approximately 13k, are also repeatedly cut by the fault. Additional evidence of fault presence includes sag ponds, pressure ridges, tectonically fractured rocks, and normal fault scarps found along strike. Offshore, DEM images show a northeast striking structure to the northwest of Negit Volcano, which is co-linear with the onshore TCF. High resolution seismic imaging of the structure, using an applied acoustic/SIG mini-sparker system, reveals steeply dipping Holocene sediments, as well as volcanic deposits from active vents which have erupted in the last 1000 years, offset by the fault. Detailed structural analysis of the previously unstudied Trench Canyon Fault (TFC) and faults in the Cedar Hill region of northern California, along with seismic studies of sediments beneath Mono Lake not only allow for a better comprehension of this minor fault system, but provide greater understanding of the larger and more complex Walker Lane Shear Zone. Fault analyses, combined and correlated with those from CHV, give a better understanding of how slip is transferred into the complicated Mina defection to the east, from the dextral and normal faults along the Sierra Nevada Range front.

  14. Identifying the Transition Zone Between East and West Dharwar Craton by Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Ashish; Parvez, Imtiyaz A.

    2018-01-01

    The data from 12 temporary broadband seismic stations operated across east-west corridor in Dharwar region of Indian Peninsula along with ten other seismic stations operated by CSIR National Geophysical Research Institute (NGRI) in the region have been analysed that provide high-resolution image of southern Dharwar crust. Crust along the corridor is imaged by receiver function H-k stacking, common conversion point stacking using data from 22 sites in combination with joint inversion modeling of receiver functions and Rayleigh wave group velocity dispersion curves. The velocity image reveals thinner crust (36-38 km) except one site (coinciding with Cuddapah basin on the surface) in East Dharwar Craton (EDC), while crust beneath the West Dharwar Craton (WDC) is thicker (46-50 km). This study also observed a transition zone between EDC and WDC starting west of Closepet granite to the east of Chitradurga Schist Belt (CSB), which shows diffused Moho with a thickness of 40-44 km. Chitradurga Schist Belt is identified as the contact between Mesoarchean (WDC) and Neoarchean (EDC) crustal blocks. The lowermost part of the crust (V_s > 4.0) is thin (2-6 km) beneath EDC, intermediate (6-8 km) beneath transition zone and thicker (14-30 km) beneath WDC across the profile.

  15. Fault Imaging with High-Resolution Seismic Reflection for Earthquake Hazard and Geothermal Resource Assessment in Reno, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frary, Roxanna

    2012-05-05

    The Truckee Meadows basin is situated adjacent to the Sierra Nevada microplate, on the western boundary of the Walker Lane. Being in the transition zone between a range-front normal fault on the west and northwest-striking right-lateral strike slip faults to the east, there is no absence of faulting in this basin. The Reno- Sparks metropolitan area is located in this basin, and with a signi cant population living here, it is important to know where these faults are. High-resolution seismic reflection surveys are used for the imaging of these faults along the Truckee River, across which only one fault wasmore » previously mapped, and in southern Reno near and along Manzanita Lane, where a swarm of short faults has been mapped. The reflection profiles constrain the geometries of these faults, and suggest additional faults not seen before. Used in conjunction with depth to bedrock calculations and gravity measurements, the seismic reflection surveys provide de nitive locations of faults, as well as their orientations. O sets on these faults indicate how active they are, and this in turn has implications for seismic hazard in the area. In addition to seismic hazard, the faults imaged here tell us something about the conduits for geothermal fluid resources in Reno.« less

  16. Near-Surface and High Resolution Seismic Imaging of the Bennett Thrust Fault in the Indio Mountains of West Texas

    NASA Astrophysics Data System (ADS)

    Vennemann, Alan

    My research investigates the structure of the Indio Mountains in southwest Texas, 34 kilometers southwest of Van Horn, at the UTEP (University of Texas at El Paso) Field Station using newly acquired active-source seismic data. The area is underlain by deformed Cretaceous sedimentary rocks that represent a transgressive sequence nearly 2 km in total stratigraphic thickness. The rocks were deposited in mid Cretaceous extensional basins and later contracted into fold-thrust structures during Laramide orogenesis. The stratigraphic sequence is an analog for similar areas that are ideal for pre-salt petroleum reservoirs, such as reservoirs off the coasts of Brazil and Angola (Li, 2014; Fox, 2016; Kattah, 2017). The 1-km-long 2-D shallow seismic reflection survey that I planned and led during May 2016 was the first at the UTEP Field Station, providing critical subsurface information that was previously lacking. The data were processed with Landmark ProMAX seismic processing software to create a seismic reflection image of the Bennett Thrust Fault and additional imbricate faulting not expressed at the surface. Along the 1-km line, reflection data were recorded with 200 4.5 Hz geophones, using 100 150-gram explosive charges and 490 sledge-hammer blows for sources. A seismic reflection profile was produced using the lower frequency explosive dataset, which was used in the identification of the Bennett Thrust Fault and additional faulting and folding in the subsurface. This dataset provides three possible interpretations for the subsurface geometries of the faulting and folding present. However, producing a seismic reflection image with the higher frequency sledge-hammer sourced dataset for interpretation proved more challenging. While there are no petroleum plays in the Indio Mountains region, imaging and understanding subsurface structural and lithological geometries and how that geometry directs potential fluid flow has implications for other regions with petroleum plays.

  17. Extracting physical parameters from marine seismic data: New methods in seismic oceanography and velocity inversion

    NASA Astrophysics Data System (ADS)

    Fortin, Will F. J.

    The utility and meaning of a geophysical dataset is dependent on good interpretation informed by high-quality data, processing, and attribute examination via technical methodologies. Active source marine seismic reflection data contains a great deal of information in the location, phase, and amplitude of both pre- and post-stack seismic reflections. Using pre- and post-stack data, this work has extracted useful information from marine reflection seismic data in novel ways in both the oceanic water column and the sub-seafloor geology. In chapter 1 we develop a new method for estimating oceanic turbulence from a seismic image. This method is tested on synthetic seismic data to show the method's ability to accurately recover both distribution and levels of turbulent diffusivity. Then we apply the method to real data offshore Costa Rica where we observe lee waves. Our results find elevated diffusivities near the seafloor as well as above the lee waves five times greater than surrounding waters and 50 times greater than open ocean diffusivities. Chapter 2 investigates subsurface geology in the Cascadia Subduction Zone and outlines a workflow for using pre-stack waveform inversion to produce highly detailed velocity models and seismic images. Using a newly developed inversion code, we achieve better imaging results as compared to the product of a standard, user-intensive method for building a velocity model. Our results image the subduction interface ~30 km farther landward than previous work and better images faults and sedimentary structures above the oceanic plate as well as in the accretionary prism. The resultant velocity model is highly detailed, inverted every 6.25 m with ~20 m vertical resolution, and will be used to examine the role of fluids in the subduction system. These results help us to better understand the natural hazards risks associated with the Cascadia Subduction Zone. Chapter 3 returns to seismic oceanography and examines the dynamics of nonlinear

  18. Faults dominant structure? -Seismic images of the subsurface structure for the Ilan geothermal field in Taiwan.

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Chun; Shih, Ruey-Chyuan; Wang, Chien-Ying; Kuo, Hsuan-Yu; Chen, Wen-Shan

    2016-04-01

    A prototype deep geothermal power plant is to be constructed at the Ilan plain in northeastern Taiwan. The site will be chosen from one of the two potential areas, one in the west and the other in the eastern side of the plain. The triangle-shaped Ilan plane is bounded by two mountain ranges at the northwest and the south, with argillite and slate outcrops exposed, respectively. The Ilan plane is believed situating in a structure extending area at the southwestern end of the Okinawa Trough. Many studies about subsurface structure of the plain have been conducted for years. The results showed that the thickest sediments, around 900 m, is located at the eastern coast of the plain, at north of the largest river in the plain, the Lanyang river, and then became shallower to the edges of the plain. Since the plane is covered by thick sediments, formations and structures beneath the sediments are barely known. However, the observed high geothermal gradient and the abundant hot spring in the Ilan area indicate that this area is having a high potential of geothermal energy. In order to build up a conceptual model for tracing the possible paths of geothermal water and search for a suitable site for the geothermal well, we used the seismic reflection method to delineate the subsurface structure. The seismic profiles showed a clear unconformity separating the sediments and the metamorphic bedrock, and some events dipping to the east in the bedrock. Seismic images above the unconformity are clear; however, seismic signals in the metamorphic bedrock are sort of ambiguous. There were two models interpreted by using around 10 seismic images that collected by us in the past 3 years by using two mini-vibrators (EnviroVibe) and a 360-channel seismic data acquisition system. In the first model, seismic signals in the bedrock were interpreted as layer boundaries, and a fractured metamorphic layer down the depth of 1200m was thought as the source of geothermal water reservoir. In the

  19. Extending the life of mature basins in the North Sea and imaging sub-basalt and sub-intrusive structures using seismic intensity monitoring.

    NASA Astrophysics Data System (ADS)

    De Siena, Luca; Rawlinson, Nicholas

    2016-04-01

    Non-standard seismic imaging (velocity, attenuation, and scattering tomography) of the North Sea basins by using unexploited seismic intensities from previous passive and active surveys are key for better imaging and monitoring fluid under the subsurface. These intensities provide unique solutions to the problem of locating/tracking gas/fluid movements in the crust and depicting sub-basalt and sub-intrusives in volcanic reservoirs. The proposed techniques have been tested in volcanic Islands (Deception Island) and have been proved effective at monitoring fracture opening, imaging buried fluid-filled bodies, and tracking water/gas interfaces. These novel seismic attributes are modelled in space and time and connected with the lithology of the sampled medium, specifically density and permeability with as key output a novel computational code with strong commercial potential.

  20. Molecular characterization and morphology of the photosynthetic dinoflagellate Bysmatrum caponii from two solar saltons in western Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Hae Jin; Jang, Se Hyeon; Kang, Nam Seon; Yoo, Yeong Du; Kim, Min Jeong; Lee, Kyung Ha; Yoon, Eun Young; Potvin, Éric; Hwang, Yeong Jong; Kim, Jong Im; Seong, Kyeong Ah

    2012-03-01

    Species belonging to the genus Bysmatrum are peridinoid, thecate, photosynthetic dinoflagellates. The plate formula of Bysmatrum spp., arranged in a Kofoidian series, is almost identical to that of Scrippsiella spp. Bysmatrum spp., which were originally classified as Scrippsiella spp., but were transferred to the genus Bysmatrum spp. because of separation of the intercalary plates 2a and 3a by plate 3'. Whether this transfer from Scrippsiella spp. to Bysmatrum spp. is reasonable should be genetically confirmed. Dinoflagellates were isolated from 2 solar saltons located in western Korea in 2009-2010 and 3 clonal cultures from Sooseong solar saltons and 2 clonal cultures from Garolim solar saltons were successfully established. All of these dinoflagellates were identified as Bysmatrum caponii based on morphology analysis by light and electron microscopy. The plates of all Korean strains of B. caponii were arranged in a Kofoidian series of Po, X, 4', 3a, 7″, 6c, 4s, 5‴, 0 (p), and 24'. When properly aligned, the ribosomal DNA (rDNA) sequences of the 3 Sooseong strains of B. caponii were identical, as were those of the 2 Garolim strains. Furthermore, the sequences of the 3 Sooseong strains were 0.01% different from those of the Garolim strains. However, the sequences of SSU rDNA of these Korean B. caponii strains were 9% different from that of Bysmatrum subsalsum and > 10% from that of any other dinoflagellate thus far reported. In the phylogenetic trees generated using SSU and LSU rDNA sequences, these Korean B. caponii strains formed a clade with B. subsalsum which was clearly divergent from the Scrippsiella clade. However, this Bysmatrum clade was phylogenetically close to the Protoperidinium and/or Peridinium clades. The results of the present study suggest that Bysmatrum spp. are markedly different genetically from Scrippsiella spp..

  1. Application of seismic interferometric migration for shallow seismic high precision data processing: A case study in the Shenhu area

    NASA Astrophysics Data System (ADS)

    Wei, Jia; Liu, Huaishan; Xing, Lei; Du, Dong

    2018-02-01

    The stability of submarine geological structures has a crucial influence on the construction of offshore engineering projects and the exploitation of seabed resources. Marine geologists should possess a detailed understanding of common submarine geological hazards. Current marine seismic exploration methods are based on the most effective detection technologies. Therefore, current research focuses on improving the resolution and precision of shallow stratum structure detection methods. In this article, the feasibility of shallow seismic structure imaging is assessed by building a complex model, and differences between the seismic interferometry imaging method and the traditional imaging method are discussed. The imaging effect of the model is better for shallow layers than for deep layers because coherent noise produced by this method can result in an unsatisfactory imaging effect for deep layers. The seismic interference method has certain advantages for geological structural imaging of shallow submarine strata, which indicates continuous horizontal events, a high resolution, a clear fault, and an obvious structure boundary. The effects of the actual data applied to the Shenhu area can fully illustrate the advantages of the method. Thus, this method has the potential to provide new insights for shallow submarine strata imaging in the area.

  2. Seismic Structure of Perth Basin (Australia) and surroundings from Passive Seismic Deployments

    NASA Astrophysics Data System (ADS)

    Issa, N.; Saygin, E.; Lumley, D. E.; Hoskin, T. E.

    2016-12-01

    We image the subsurface structure of Perth Basin, Western Australia and surroundings by using ambient seismic noise data from 14 seismic stations recently deployed by University of Western Australia (UWA) and other available permanent stations from Geoscience Australia seismic network and the Australian Seismometers in Schools program. Each of these 14 UWA seismic stations comprises a broadband sensor and a high fidelity 3-component 10 Hz geophone, recording in tandem at 250 Hz and 1000 Hz. The other stations used in this study are equipped with short period and broadband sensors. In addition, one shallow borehole station is operated with eight 3 component geophones at depths of between 2 and 44 m. The network is deployed to characterize natural seismicity in the basin and to try and identify any microseismic activity across Darling Fault Zone (DFZ), bounding the basin to the east. The DFZ stretches to approximately 1000 km north-south in Western Australia, and is one of the longest fault zones on the earth with a limited number of detected earthquakes. We use seismic noise cross- and auto-correlation methods to map seismic velocity perturbations across the basin and the transition from DFZ to the basin. Retrieved Green's functions are stable and show clear dispersed waveforms. Travel times of the surface wave Green's functions from noise cross-correlations are inverted with a two-step probabilistic framework to map the absolute shear wave velocities as a function of depth. The single station auto-correlations from the seismic noise yields P wave reflectivity under each station, marking the major discontinuities. Resulting images show the shear velocity perturbations across the region. We also quantify the variation of ambient seismic noise at different depths in the near surface using the geophones in the shallow borehole array.

  3. Anatomy of Old Faithful From Subsurface Seismic Imaging of the Yellowstone Upper Geyser Basin

    NASA Astrophysics Data System (ADS)

    Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.

    2017-10-01

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh wave seismic signals between 1 and 10 Hz utilizing nondiffusive seismic waves excited by nearby active hydrothermal features with the following results: (1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, (2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and (3) resolving a relatively shallow (10-60 m) and large reservoir located 100 m southwest of Old Faithful geyser.

  4. Seismic Migration Imaging of the Crust and Upper Mantle Discontinuity Structure beneath Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Liu, Y.-S.; Kuo, B.-Y.

    2009-04-01

    Taiwan is located in the convergent plate boundary zone where the Philippine Sea plate has obliquely collided on the Asian continental margin, initiating the arc-continent collision and subsequent mountain-building in Taiwan. Receiver function has been a powerful tool to image seismic velocity discontinuity structure in the crust and upper mantle which can help illuminate the deep dynamic process of active Taiwan orogeny. In this study, we adopt backprojection migration processing of teleseismic receiver functions to investigate the crust and upper mantle discontinuities beneath southern Taiwan, using the data from Southern Taiwan Transect Seismic Array (STTA), broadband stations of Central Weather Bureau (CWB), Broadband Array in Taiwan for Seismology (BATS), and Taiwan Integrated Geodynamics Research (TAIGER). This composite east-west trending linear array has the aperture of about 150 km with the station spacing of ~5-10 km. Superior to the common midpoint (CMP) stack approach, the migration can properly image the dipping, curved, or laterally-varying topography of discontinuous interfaces which very likely exist under the complicated tectonic setting of Taiwan. We first conduct synthetic experiments to test the depth and lateral resolution of migration images based on the WKBJ synthetic waveforms calculated from available source and receiver distributions. We will next construct the 2-D migration image under the array to reveal the topographic variation of the Moho and lithosphere discontinuities beneath southern Taiwan.

  5. Long-term changes in the phosphorus loading to and trophic state of the Salton Sea, California

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.; Holdren, G.C.

    2008-01-01

    The Salton Sea (Sea) is a eutrophic to hypereutrophic lake characterized by high nutrient concentrations, low water clarity, and high biological productivity. Based on dissolved phosphorus (P) and nitrogen (N) concentrations and N:P ratios, P is typically the limiting nutrient in the Sea and, therefore, should be the primary nutrient of concern when considering management efforts. Flows in the major tributaries to the Sea have been measured since 1965, whereas total P (TP) concentrations were only measured intermittently by various agencies since 1968. These data were used to estimate annual P loading from 1965 to 2002. Annual loads have increased steadily from ???940,000 kg around 1968 to ???1,450,000 kg in 2002 (???55% increase), primarily a result of increased TP concentrations and loads in the New River. Although the eutrophic condition of the Salton Sea is of great concern, only limited nutrient data are available for the Sea. It is difficult to determine whether the eutrophic state of the Sea has degraded or possibly even improved slightly in response to the change in P loading because of variability in the data and changes in the sampling and analytical methodologies. ?? 2008 Springer Science+Business Media B.V.

  6. Neural network analysis of crosshole tomographic images: The seismic signature of gas hydrate bearing sediments in the Mackenzie Delta (NW Canada)

    NASA Astrophysics Data System (ADS)

    Bauer, K.; Pratt, R. G.; Haberland, C.; Weber, M.

    2008-10-01

    Crosshole seismic experiments were conducted to study the in-situ properties of gas hydrate bearing sediments (GHBS) in the Mackenzie Delta (NW Canada). Seismic tomography provided images of P velocity, anisotropy, and attenuation. Self-organizing maps (SOM) are powerful neural network techniques to classify and interpret multi-attribute data sets. The coincident tomographic images are translated to a set of data vectors in order to train a Kohonen layer. The total gradient of the model vectors is determined for the trained SOM and a watershed segmentation algorithm is used to visualize and map the lithological clusters with well-defined seismic signatures. Application to the Mallik data reveals four major litho-types: (1) GHBS, (2) sands, (3) shale/coal interlayering, and (4) silt. The signature of seismic P wave characteristics distinguished for the GHBS (high velocities, strong anisotropy and attenuation) is new and can be used for new exploration strategies to map and quantify gas hydrates.

  7. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    NASA Astrophysics Data System (ADS)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  8. The 2011 Virginia M5.8 earthquake: Insights from seismic reflection imaging into the influence of older structures on eastern U.S. seismicity

    USGS Publications Warehouse

    Pratt, Thomas L.; Horton, J. Wright; Spear, D.B.; Gilmer, A.K.; McNamara, Daniel E.

    2015-01-01

    The Mineral, Virginia (USA), earthquake of 23 August 2011 occurred at 6– 8 km depth within the allochthonous terranes of the Appalachian Piedmont Province, rupturing an ~N36°E striking reverse fault dipping ~50° southeast. This study used the Interstate Highway 64 seismic refl ection profi le acquired ~6 km southwest of the hypocenter to examine the structural setting of the earthquake. The profi le shows that the 2011 earthquake and its aftershocks are almost entirely within the early Paleozoic Chopawamsic volcanic arc terrane, which is bounded by listric thrust faults dipping 30°–40° southeast that sole out into an ~2-km-thick, strongly refl ective zone at 7– 12 km depth. Refl ectors above and below the southward projection of the 2011 earthquake focal plane do not show evidence for large displacement, and the updip projection of the fault plane does not match either the location or trend of a previously mapped fault or lithologic boundary. The 2011 earthquake thus does not appear to be a simple reactivation of a known Paleozoic thrust fault or a major Mesozoic rift basin-boundary fault. The fault that ruptured appears to be a new fault, a fault with only minor displacement, or to not extend the ~3 km from the aftershock zone to the seismic profi le. Although the Paleozoic structures appear to infl uence the general distribution of seismicity in the area, Central Virginia seismic zone earthquakes have yet to be tied directly to specifi c fault systems mapped at the surface or imaged on seismic profiles.

  9. The Virtual Seismic Atlas Project: sharing the interpretation of seismic data

    NASA Astrophysics Data System (ADS)

    Butler, R.; Mortimer, E.; McCaffrey, B.; Stuart, G.; Sizer, M.; Clayton, S.

    2007-12-01

    Through the activities of academic research programs, national institutions and corporations, especially oil and gas companies, there is a substantial volume of seismic reflection data. Although the majority is proprietary and confidential, there are significant volumes of data that are potentially within the public domain and available for research. Yet the community is poorly connected to these data and consequently geological and other research using seismic reflection data is limited to very few groups of researchers. This is about to change. The Virtual Seismic Atlas (VSA) is generating an independent, free-to-use, community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed using not only existing survey and geographical data but also on the geology they portray. By using "Guided Navigation" to search, discover and retrieve images, users are exposed to arrays of geological analogues that provide novel insights and opportunities for research and education. The VSA goes live, with evolving content and functionality, through 2008. There are opportunities for designed integration with other global data programs in the earth sciences.

  10. Thermal and petrologic constraints on the lower crustal melt accumulation in the Salton Sea Geothermal Field

    NASA Astrophysics Data System (ADS)

    Karakas, O.; Dufek, J.; Mangan, M.; Wright, H. M. N.

    2014-12-01

    Heat transfer in active volcanic areas is governed by complex coupling between tectonic and magmatic processes. These two processes provide unique imprints on the petrologic and thermal evolution of magma by controlling the geometry, depth, longevity, composition, and fraction of melt in the crust. The active volcanism, tectonic extension, and significantly high surface heat flow in Salton Sea Geothermal Field, CA, provides information about the dynamic heat transfer processes in its crust. The volcanism in the area is associated with tectonic extension over the last 500 ka, followed by subsidence and sedimentation at the surface level and dike emplacement in the lower crust. Although significant progress has been made describing the tectonic evolution and petrology of the erupted products of the Salton Buttes, their coupled control on the crustal heat transfer and feedback on the melt evolution remain unclear. To address these concepts, we develop a two-dimensional finite volume model and investigate the compositional and thermal evolution of the melt and crust in the Salton Sea Geothermal Field through a one-way coupled thermal model that accounts for tectonic extension, lower crustal magma emplacement, sedimentation, and subsidence. Through our simulations, we give quantitative estimates to the thermal and compositional evolution and longevity of the lower crustal melt source in the crustal section. We further compare the model results with petrologic constraints. Our thermal balance equations show that crustal melting is limited and the melt is dominated by mantle-derived material. Similarly, petrologic work on δ18O isotope ratios suggests fractional crystallization of basalt with minor crustal assimilation. In addition, we suggest scenarios for the melt fraction, composition, enthalpy release, geometry and depth of magma reservoirs, their temporal evolution, and the timescales of magmatic storage and evolution processes. These parameters provide the source

  11. On the validation of seismic imaging methods: Finite frequency or ray theory?

    DOE PAGES

    Maceira, Monica; Larmat, Carene; Porritt, Robert W.; ...

    2015-01-23

    We investigate the merits of the more recently developed finite-frequency approach to tomography against the more traditional and approximate ray theoretical approach for state of the art seismic models developed for western North America. To this end, we employ the spectral element method to assess the agreement between observations on real data and measurements made on synthetic seismograms predicted by the models under consideration. We check for phase delay agreement as well as waveform cross-correlation values. Based on statistical analyses on S wave phase delay measurements, finite frequency shows an improvement over ray theory. Random sampling using cross-correlation values identifiesmore » regions where synthetic seismograms computed with ray theory and finite-frequency models differ the most. Our study suggests that finite-frequency approaches to seismic imaging exhibit measurable improvement for pronounced low-velocity anomalies such as mantle plumes.« less

  12. Total selenium in irrigation drain inflows to the Salton Sea, California, April 2009

    USGS Publications Warehouse

    May, Thomas W.; Walther, Michael J.; Saiki, Michael K.; Brumbaugh, William G.

    2009-01-01

    This report presents the results for the final sampling period (April 2009) of a 4-year monitoring program to characterize selenium concentrations in selected irrigation drains flowing into the Salton Sea, California. Total selenium and total suspended solids were determined in water samples. Total selenium, percent total organic carbon, and particle size were determined in sediments. Mean total selenium concentrations in water ranged from 0.98 to 22.9 micrograms per liter. Total selenium concentrations in sediment ranged from 0.078 to 5.0 micrograms per gram dry weight.

  13. Seismic zonation of Port-Au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, Alan; Hough, Susan E.; Cox, Brady R.; Rathje, Ellen M.; Bachhuber, Jeff; Dulberg, Ranon; Hulslander, David; Christiansen, Lisa; and Abrams, Michael J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, VS30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available VS30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data.

  14. Detailed imaging of the 2007 Pisco co-seismic and post-seismic deformation - implications on the seismogenic behavior of subduction megathrusts

    NASA Astrophysics Data System (ADS)

    Perfettini, H.; Sladen, A.; Avouac, J.; Simons, M.; Nocquet, J.; Bondoux, F.; Kositsky, A.; Chlieh, M.; Tavera, H.; Audin, L.; Konca, A.; Fielding, E. J.; Farber, D.; Ortega, F. H.

    2009-12-01

    In the last couple of decades, advances in the analysis techniques and instrumentation have improved significantly our capability to document the different stages of the seismic cycle, namely the co-, post- and inter-seismic phases. To this respect, the Mw8.0 Pisco, Peru, earthquake of August 2007 is exemplary, with numerous data sets allowing to explore the details of each phase and study their relationship. We derive a kinematic model of the coseismic rupture from the joint non-linear inversion of teleseismic and six Interferometric Synthetic Aperture Radar (InSAR) images. Our preferred model indicates a remarkable anti-correlation between the co-seismic slip distribution and the aftershock distribution determined from the Peruvian seismic network. The proposed source model is compatible with regional run-up measurements and open-ocean tsunami records. In particular, the tsunami observations validate that the rupture did not extend to the trench, and confirm that the Pisco event is not a tsunami earthquake despite its low apparent rupture velocity (< 1.5 km/s). We favor the interpretation that the earthquake consists of 2 subevents, each with a conventional rupture velocity (2-4 km/s). The delay between the 2 subevents might reflect the time for the second shock to nucleate or, alternatively, the time it took for afterslip to increase the stress level on the second asperity to a level necessary for static triggering. The source model predicts uplift offshore and subsidence onland with the pivot line following the changes in curvature of the coastline. This observation set the Pisco earthquake as one of the best examples of a link between the geomorphology of the coastline and the pattern of surface deformation induced by large interplate ruptures. The post-seismic deformation following the mainshock is studied using a local network of continuous GPS stations and the PCAIM inversion method. The inversion indicates that the two patches of co-seismic slip triggered

  15. Optimizing the design of vertical seismic profiling (VSP) for imaging fracture zones over hardrock basement geothermal environments

    NASA Astrophysics Data System (ADS)

    Reiser, Fabienne; Schmelzbach, Cedric; Maurer, Hansruedi; Greenhalgh, Stewart; Hellwig, Olaf

    2017-04-01

    A primary focus of geothermal seismic imaging is to map dipping faults and fracture zones that control rock permeability and fluid flow. Vertical seismic profiling (VSP) is therefore a most valuable means to image the immediate surroundings of an existing borehole to guide, for example, the placing of new boreholes to optimize production from known faults and fractures. We simulated 2D and 3D acoustic synthetic seismic data and processed it through to pre-stack depth migration to optimize VSP survey layouts for mapping moderately to steeply dipping fracture zones within possible basement geothermal reservoirs. Our VSP survey optimization procedure for sequentially selecting source locations to define the area where source points are best located for optimal imaging makes use of a cross-correlation statistic, by which a subset of migrated shot gathers is compared with a target or reference image from a comprehensive set of source gathers. In geothermal exploration at established sites, it is reasonable to assume that sufficient à priori information is available to construct such a target image. We generally obtained good results with a relatively small number of optimally chosen source positions distributed over an ideal source location area for different fracture zone scenarios (different dips, azimuths, and distances from the surveying borehole). Adding further sources outside the optimal source area did not necessarily improve the results, but rather resulted in image distortions. It was found that fracture zones located at borehole-receiver depths and laterally offset from the borehole by 300 m can be imaged reliably for a range of the different dips, but more source positions and large offsets between sources and the borehole are required for imaging steeply dipping interfaces. When such features cross-cut the borehole, they are particularly difficult to image. For fracture zones with different azimuths, 3D effects are observed. Far offset source positions

  16. Geometry and slip rates of active blind thrusts in a reactivated back-arc rift using shallow seismic imaging: Toyama basin, central Japan

    NASA Astrophysics Data System (ADS)

    Ishiyama, Tatsuya; Kato, Naoko; Sato, Hiroshi; Koshiya, Shin; Toda, Shigeru; Kobayashi, Kenta

    2017-10-01

    Active blind thrust faults, which can be a major seismic hazard in urbanized areas, are commonly difficult to image with seismic reflection surveys. To address these challenges in coastal plains, we collected about 8 km-long onshore high-resolution two-dimensional (2D) seismic reflection data using a dense array of 800 geophones across compressionally reactivated normal faults within a failed rift system located along the southwestern extension of the Toyama trough in the Sea of Japan. The processing of the seismic reflection data illuminated their detailed subsurface structures to depths of about 3 km. The interpreted depth-converted section, correlated with nearby Neogene stratigraphy, indicated the presence of and along-strike variation of previously unrecognized complex thrust-related structures composed of active fault-bend folds coupled with pairs of flexural slip faults within the forelimb and newly identified frontal active blind thrusts beneath the alluvial plain. In addition, growth strata and fold scarps that deform lower to upper Pleistocene units record the recent history of their structural growth and fault activity. This case shows that shallow seismic reflection imaging with densely spaced seismic recorders is a useful tool in defining locations, recent fault activity, and complex geometry of otherwise inaccessible active blind thrust faults.

  17. Sub-basalt Imaging of Hydrocarbon-Bearing Mesozoic Sediments Using Ray-Trace Inversion of First-Arrival Seismic Data and Elastic Finite-Difference Full-Wave Modeling Along Sinor-Valod Profile of Deccan Syneclise, India

    NASA Astrophysics Data System (ADS)

    Talukdar, Karabi; Behera, Laxmidhar

    2018-03-01

    Imaging below the basalt for hydrocarbon exploration is a global problem because of poor penetration and significant loss of seismic energy due to scattering, attenuation, absorption and mode-conversion when the seismic waves encounter a highly heterogeneous and rugose basalt layer. The conventional (short offset) seismic data acquisition, processing and modeling techniques adopted by the oil industry generally fails to image hydrocarbon-bearing sub-trappean Mesozoic sediments hidden below the basalt and is considered as a serious problem for hydrocarbon exploration in the world. To overcome this difficulty of sub-basalt imaging, we have generated dense synthetic seismic data with the help of elastic finite-difference full-wave modeling using staggered-grid scheme for the model derived from ray-trace inversion using sparse wide-angle seismic data acquired along Sinor-Valod profile in the Deccan Volcanic Province of India. The full-wave synthetic seismic data generated have been processed and imaged using conventional seismic data processing technique with Kirchhoff pre-stack time and depth migrations. The seismic image obtained correlates with all the structural features of the model obtained through ray-trace inversion of wide-angle seismic data, validating the effectiveness of robust elastic finite-difference full-wave modeling approach for imaging below thick basalts. Using the full-wave modeling also allows us to decipher small-scale heterogeneities imposed in the model as a measure of the rugose basalt interfaces, which could not be dealt with ray-trace inversion. Furthermore, we were able to accurately image thin low-velocity hydrocarbon-bearing Mesozoic sediments sandwiched between and hidden below two thick sequences of high-velocity basalt layers lying above the basement.

  18. Relative Contributions of Geothermal Pumping and Long-Term Earthquake Rate to Seismicity at California Geothermal Fields

    NASA Astrophysics Data System (ADS)

    Weiser, D. A.; Jackson, D. D.

    2015-12-01

    In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.

  19. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle

    NASA Astrophysics Data System (ADS)

    Avouac, Jean-Philippe

    2015-05-01

    Understanding the partitioning of seismic and aseismic fault slip is central to seismotectonics as it ultimately determines the seismic potential of faults. Thanks to advances in tectonic geodesy, it is now possible to develop kinematic models of the spatiotemporal evolution of slip over the seismic cycle and to determine the budget of seismic and aseismic slip. Studies of subduction zones and continental faults have shown that aseismic creep is common and sometimes prevalent within the seismogenic depth range. Interseismic coupling is generally observed to be spatially heterogeneous, defining locked patches of stress accumulation, to be released in future earthquakes or aseismic transients, surrounded by creeping areas. Clay-rich tectonites, high temperature, and elevated pore-fluid pressure seem to be key factors promoting aseismic creep. The generally logarithmic time evolution of afterslip is a distinctive feature of creeping faults that suggests a logarithmic dependency of fault friction on slip rate, as observed in laboratory friction experiments. Most faults can be considered to be paved with interlaced patches where the friction law is either rate-strengthening, inhibiting seismic rupture propagation, or rate-weakening, allowing for earthquake nucleation. The rate-weakening patches act as asperities on which stress builds up in the interseismic period; they might rupture collectively in a variety of ways. The pattern of interseismic coupling can help constrain the return period of the maximum- magnitude earthquake based on the requirement that seismic and aseismic slip sum to match long-term slip. Dynamic models of the seismic cycle based on this conceptual model can be tuned to reproduce geodetic and seismological observations. The promise and pitfalls of using such models to assess seismic hazard are discussed.

  20. Multichannel Seismic Images of Cascadia Forearc Structure at the Oregon Margin

    NASA Astrophysics Data System (ADS)

    Han, S.; Carbotte, S. M.; Carton, H. D.; Canales, J.; Nedimovic, M. R.

    2013-12-01

    We present new Multichannel Seismic (MCS) images of the Cascadia forearc and downgoing Juan de Fuca plate offshore Oregon. The data were collected during the Cascadia Ridge-to-Trench experiment conducted in June-July 2012 aboard the R/V Langseth. 2D processing including geometry definition, filtering and editing, deconvolution, amplitude correction, velocity analysis, CMP stacking, and post-stack time migration, has been conducted. The new images confirm some previous observations on the location of the plate boundary and structure of the forearc and also reveal new features of the Oregon margin. West of the deformation front, the Juan de Fuca Plate has a dip of ~1.5o and sediment thickness is > 3 km. A bright Moho reflection and reflections from faults cutting through the crust are imaged. The subducting oceanic crust can be traced continuously landward at least to 15 km from the deformation front. One major forearc basin and a smaller basin 10 km from its west end are imaged. Sediments in both basins are folded with wavelengths of 4-6 km and several faults are identified in the larger basin. Beneath the major basin, a low-frequency reflection is imaged at 3.7 s TWTT similar to that imaged by Trehu et al (1995) and interpreted as originating from the top of Siletz terrane. About 70-80 km from the deformation front, a shallowly dipping reflection is imaged at 7.3 s, which likely corresponds to the top of the downgoing plate. Based on existing velocity models for the margin, the location of this reflection is approximately coincident with the July 2004 earthquake cluster interpreted to have occurred at the plate boundary. This bright reflection is presumably similar in origin to the 'bright spot' imaged from two prior multichannel and wide-angle seismic reflection surveys lines located 40 km and 60 km north of our line. The brightness of the reflection may reflect high pore fluid pressure at the plate interface. Just 4 km west of this presumed top

  1. Imaging density and seismic velocities in the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Fichtner, A.; Blom, N.; Gokhberg, A.

    2017-12-01

    The Mediterranean domain is a geologically complicated region, a result of its complex tectonic and geodynamic evolution. Our understanding of it draws from surface geology, modeling and imaging of the subsurface. Here, we present a seismic waveform tomography of the Eastern Mediterranean. While computationally more expensive than ray-based imaging methods, the advantage of waveform methods lies in their ability to incorporate in a consistent manner all the information in seismograms - not just the arrivals of certain, specified phases. As a result, body and multimode surface waves, source effects, frequency-dependence, wavefront healing, anisotropy and attenuation are naturally and coherently incorporated. This not only allows us to image P- and S-wave velocity jointly for the crust and mantle, but also makes it possible to put constraints on density that ray tomography cannot provide. This is of special interest because heterogeneities in density drive geodynamics, and the combined knowledge of all parameters can help to distinguish between thermal and compositional effect.Our tomography makes use of a multi-scale approach, initially using only the very lowest frequency signals with periods of 100-150 s. The low-frequency data is not only important in order to avoid local minima in the optimisation, also the recovery of density relies crucially on it. As the model is updated and more of the data is explained by it, higher-frequency data is added and more parts of the seismogram are included. Only those parts are used in which data and synthetics are similar enough to allow for meaningful comparison. Our aim is to go down to periods of 10 s, which corresponds to structures of 15 km size in the crust to 25 km in the mantle. Resolution of the final model is assessed using a resolution analysis strategy developed by Fichtner & van Leeuwen (JGR, 2015). This helps us to evaluate the effects of smearing and heterogeneous ray coverage in a quantitative manner and gives

  2. 3D seismic imaging of voluminous earliest Eocene buried lava fields and coastal escarpments off mid-Norway

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Millett, John M.; Maharjan, Dwarika; Jerram, Dougal A.; Mansour Abdelmalak, Mohamed

    2017-04-01

    Continental breakup between Greenland and NW Europe in the Paleogene was associated with massive basaltic volcanism, forming kilometer-thick sequences of flood basalts along the conjugate rifted margins. This event was temporarily associated with a warm world, the early Eocene greenhouse, and the short-lived Paleocene-Eocene Thermal Maximum (PETM). A 2500 km2 large industry-standard 3D seismic cube has recently been acquired on the Vøring Marginal High offshore mid-Norway to image sub-basalt sedimentary rocks. This cube also provides a unique opportunity for imaging top- and intra-basalt structures. Detailed seismic geomorphological interpretation of the Top basalt horizon reveal new insight into the late-stage development of the lava flow fields and the kilometer high coastal Vøring Escarpment. Subaerial lava flows with compressional ridges and inflated lava lobes cover the marginal high, with comparable structure and size to modern subaerial lava fields. Pitted surfaces, likely formed by lava emplaced in a wet environment, are present in the western part of the study area near the continent-ocean boundary. The prominent Vøring Escarpment formed when eastward-flowing lava reached the coastline. The escarpment morphology is influenced by pre-existing structural highs, and locally these highs are by-passed by the lava flows which are clearly deflected around them. Volcanogenic debris flows are well-imaged on the escarpment horizon along with large-scale slump blocks. Similar features exist in active volcanic environments, e.g. on the south coast of Hawaii. Numerous post-volcanic extensional faults and incised channels cut both into the marginal high and the escarpment, and show that the area was geologically active after the volcanism ceased. In conclusion, igneous seismic geomorphology and seismic volcanostratigraphy are two very powerful methods to understand the volcanic deposits and development of rifted margins, and the association of major volcanic events

  3. Seismic Imaging and Hydrogeologic Characterization of the Potomac Formation in Northern New Castle County, Delaware

    NASA Astrophysics Data System (ADS)

    Velez, C. C.; McLaughlin, P. P.; McGeary, S.

    2008-05-01

    A land streamer system, an alternative to conventional seismic acquisition equipment for collecting large amounts of seismic reflection data in urbanized and semi urbanized areas, is being used to conduct a near surface high-resolution seismic experiment in Northern New Castle County, Delaware. The main goal of this project is to provide continuous data of the subsurface in order to improve our understanding on the connectivity of sand bodies and water flow pathways distribution in ancient fluvial deposits, such as those of the Potomac Formation, that were deposited along passive margin, alluvial plain settings. Such understanding is necessary to create accurate models for groundwater flow and to identify groundwater contaminant pathways. The Potomac Formation was deposited during the Albian to early Cenomanian. In northern Delaware, these sediments are entirely fluvial deposits that are thought to onlap Paleozoic basement, and are truncated by an unconformity. McKenna et al. (2004) recognized five facies for this unit in Delaware: amalgamated sands, thick individual sands, thin sands, interlaminated sands, and mottled silts and clays, and described the sands of the unit as being laterally discontinuous, resulting in a "labyrinth style heterogeneity". Benson's (2006) well-log correlations show the depth of the basement ranging from 115 m to 400 m in the study area of this project. A noise test and a 1.2 km long high-resolution seismic reflection line collected using conventional seismic reflection methods during the preliminary phase of the project indicate that seismic methods can be used in this area to image the subsurface as shallow as 18 m and as deep as 315 m, and suggest that the basement is being imaged. During this project, a 30-km seismic dataset and two continuous cores will be collected. Sonic logs collected at the cores will be used to create synthetic seismograms to create depth sections that will be correlated with existing geophysical logs and

  4. Imaging the West Bohemia Seismic Zone

    NASA Astrophysics Data System (ADS)

    Alexandrakis, C.; Calo, M.; Bouchaala, F.; Vavrycuk, V.

    2013-12-01

    West Bohemia is located at the suture of three mantle lithosphere plates, the Eger Rift, the Cheb basin and is the site of Quaternary volcanism. This complex tectonic setting results in localized, periodic earthquake swarms throughout the region and many CO2 springs and gas exhalation sites. Nový Kostel, the most active swarm area, experiences frequent swarms of several hundreds to thousands of earthquakes over a period of weeks to several months. It is a unique study area, since the swarm region is surrounded by the West Bohemia Seismic Network (WEBNET), providing observations in all directions. Larger swarms, such as those in 1985/1986, 1997, 2000, 2007 and 2008, have been studied in terms of source mechanisms and swarm characteristics (Fischer and Michálek, 2003; Fischer et al., 2010; Vavryčuk, 2011). The seismicity is always located in the same area and depth range (6-15 km), however the active fault planes differ. This indicates changes to the local stress field, and may relate to the complicated tectonic situation and/or migrating fluids. Many studies have examined individual swarms and compared the earthquake episodes, however the mechanisms behind the phenomenon are still not understood. This has motivated many studies, including recent proposals for a reflection seismic profile directly over the swarm area and multidisciplinary monitoring through ICDP. In this study, we image the velocity structure within and around the swarm area using double-difference tomography (Zhang and Thurber, 2003) and Weighted Average Model (WAM) post-processing analysis (Calò et al., 2011). The WAM analysis averages together velocity models calculated with a variety of reasonable starting parameters. The velocities are weighted by the raypath proximity and density at an inversion node. This reduces starting model bias and artifacts, and yields a weighted standard deviation at each grid point. Earthquake locations and WEBNET P and S arrival times for the two most recent large

  5. Understanding Seismic Anisotropy in Hunt Well of Fort McMurray, Canada

    NASA Astrophysics Data System (ADS)

    Malehmir, R.; Schmitt, D. R.; Chan, J.

    2014-12-01

    Seismic imaging plays vital role in geothermal systems as a sustainable energy resource. In this paper, we acquired and processed zero-offset and walk-away VSP and logging as well as surface seismic in Athabasca oil sand area, Alberta. Seismic data were highly processed to make better image geothermal system. Through data processing, properties of natural fractures such as orientation and width were studied and high probable permeable zones were mapped along the deep drilled to the depth of 2363m deep into crystalline basement rocks. In addition to logging data, seismic data were processed to build a reliable image of underground. Velocity analysis in high resolution multi-component walk-away VSP informed us about the elastic anisotropy in place. Study of the natural and induced fracture as well as elastic anisotropy in the seismic data, led us to better map stress regime around the well bore. The seismic image and map of fractures optimizes enhanced geothermal stages through hydraulic stimulation. Keywords: geothermal, anisotropy, VSP, logging, Hunt well, seismic

  6. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella

  7. Seismic Reflection Profiles Image the Rodgers Creek Fault and Cotati Basin Beneath Urban Santa Rosa, California

    NASA Astrophysics Data System (ADS)

    Williams, R. A.; Langenheim, V. E.; McLaughlin, R. J.; Stephenson, W. J.; Odum, J. K.

    2008-12-01

    The USGS in collaboration with the Network for Earthquake Engineering Simulation (NEES) group at the University of Texas, Austin, the Sonoma County Water Agency, the city of Santa Rosa, and with support from NSF, collected 13-km of high-resolution seismic-reflection data in two profiles on the Santa Rosa Plain. The purpose of this survey was to image basin structure and stratigraphy in this seismically-active area and to provide constraints for earthquake hazard assessment. We acquired the data using a 9,990 kg minivib I truck in P-wave mode, which swept from 15 to 120 Hz, along city streets and creek-side roads. The common- midpoint spacing of these data is 2.5 m while nominal fold is 36 traces. The Rodgers Creek fault, a northward extension of the Hayward fault which passes through the city of Santa Rosa, has not been imaged previously by seismic reflection data. The east-west trending Santa Rosa Creek profile images several faults including the steeply dipping Rodgers Creek fault as it passes near Doyle Elementary School. In this vicinity the fault zone appears to consist of at least two strands with a set of arched reflectors between them. West of the Rodgers Creek fault, and in general agreement with preexisting gravity data and geologic mapping, we interpret a sedimentary basin more than 1 km deep that underlies downtown Santa Rosa, which was heavily damaged in the 1906 earthquake. This basin shallows to the west as the profile crosses the southeastern side of Trenton Ridge, a concealed basement high. Reflectors within the basin show a thickening sequence of layered strata and apparent dips of about 10 degrees east in the 400 to 800 m depth range that decrease to about 1 degree at 50 m depth. These new data will help to constrain existing seismic velocity models for this area which currently show only flat-lying basin fill.

  8. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    NASA Astrophysics Data System (ADS)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  9. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California.

    PubMed

    Saiki, Michael K; Martin, Barbara A; May, Thomas W

    2012-09-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98-58.0 μg Se/g; midge larvae, 12.7-50.6 μg Se/g; mosquitofish, 13.2-20.2 μg Se/g; and mollies, 12.8-30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  10. Thermal regime of the State 2-14 well, Salton Sea Scientific Drilling Project

    USGS Publications Warehouse

    Sass, J.H.; Priest, S.S.; Duda, L.E.; Carson, C.C.; Hendricks, J.D.; Robison, L.C.

    1988-01-01

    Temperature logs were made repeatedly during breaks in drilling and both during and after flow tests in the Salton Sea Scientific Drilling Project well (State 2-14). The purpose of these logs was to assist in identifying zones of fluid loss or gain and to characterize reservoir temperatures. At the conclusion of the active phase of the project, a series of logs was begun in an attempt to establish the equilibrium temperature profile. Thermal gradients decrease from about 250 mK m-1 in the upper few hundred meters to just below 200 mK m-1 near the base of the conductive cap. Using one interpretation, thermal conductivities increase with depth (mainly because of decreasing porosity), resulting in component heat flows that agree reasonably well with the mean of about 450 mW m-2. This value agrees well with heat flow data from the shallow wells within the Salton Sea geothermal field. A second interpretation, in which measured temperature coefficients of quartz- and carbonate-rich rocks are used to correct thermal conductivity, results in lower mean conductivities that are roughly constant with depth and, consequently, systematically decreasing heat flux averaging about 350 mW m-2 below 300 m. This interpretation is consistent with the inference (from fluid inclusion studies) that the rocks in this part of the field were once several tens of degrees Celsius hotter than they are now. The age of this possible disturbance is estimated at a few thousand years. -from Authors

  11. Selenium in aquatic biota inhabiting agricultural drains in the Salton Sea Basin, California

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.; May, Thomas W.

    2012-01-01

    Resource managers are concerned that water conservation practices in irrigated farmlands along the southern border of the Salton Sea, Imperial County, California, could increase selenium concentrations in agricultural drainwater and harm the desert pupfish (Cyprinodon macularius), a federally protected endangered species. As part of a broader attempt to address this concern, we conducted a 3-year investigation to collect baseline information on selenium concentrations in seven agricultural drains inhabited by pupfish. We collected water, sediment, selected aquatic food-chain taxa (particulate organic detritus, filamentous algae, net plankton, and midge [Chironomidae] larvae), and two poeciliid fishes (western mosquitofish Gambusia affinis and sailfin molly Poecilia latipinna) for selenium determinations. The two fish species served as ecological surrogates for pupfish, which we were not permitted to sacrifice. Dissolved selenium ranged from 0.70 to 32.8 μg/L, with selenate as the major constituent. Total selenium concentrations in other environmental matrices varied widely among drains, with one drain (Trifolium 18) exhibiting especially high concentrations in detritus, 5.98–58.0 μg Se/g; midge larvae, 12.7–50.6 μg Se/g; mosquitofish, 13.2–20.2 μg Se/g; and mollies, 12.8–30.4 μg Se/g (all tissue concentrations are based on dry weights). Although toxic thresholds for selenium in fishes from the Salton Sea are still poorly understood, available evidence suggests that ambient concentrations of this element may not be sufficiently elevated to adversely affect reproductive success and survival in selenium-tolerant poeciliids and pupfish.

  12. Restoration and recovery of damaged eco-epidemiological systems: application to the Salton Sea, California, USA.

    PubMed

    Upadhyay, Ranjit Kumar; Raw, S N; Roy, P; Rai, Vikas

    2013-04-01

    In this paper, we have proposed and analysed a mathematical model to figure out possible ways to rescue a damaged eco-epidemiological system. Our strategy of rescue is based on the realization of the fact that chaotic dynamics often associated with excursions of system dynamics to extinction-sized densities. Chaotic dynamics of the model is depicted by 2D scans, bifurcation analysis, largest Lyapunov exponent and basin boundary calculations. 2D scan results show that μ, the total death rate of infected prey should be brought down in order to avoid chaotic dynamics. We have carried out linear and nonlinear stability analysis and obtained Hopf-bifurcation and persistence criteria of the proposed model system. The other outcome of this study is a suggestion which involves removal of infected fishes at regular interval of time. The estimation of timing and periodicity of the removal exercises would be decided by the nature of infection more than anything else. If this suggestion is carefully worked out and implemented, it would be most effective in restoring the health of the ecosystem which has immense ecological, economic and aesthetic potential. We discuss the implications of this result to Salton Sea, California, USA. The restoration of the Salton Sea provides a perspective for conservation and management strategy. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. The Effect of a Receding Saline Lake (The Salton Sea) on Airborne Particulate Matter Composition.

    PubMed

    Frie, Alexander L; Dingle, Justin H; Ying, Samantha C; Bahreini, Roya

    2017-08-01

    The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM 10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM 10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM 10 Na. PM 10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.

  14. Selenium concentrations in irrigation drain inflows to the Salton Sea, California, October 2006 and January 2007

    USGS Publications Warehouse

    May, Thomas W.; Walther, Mike W.; Brumbaugh, William G.

    2007-01-01

    This report presents raw data on selenium concentrations in samples of water, sediment, detritus, and selected food-chain matrices collected from selected agricultural drains in the southern portion of the Salton Sea during October 2006 and January 2007. Total selenium and selenium species were determined in water samples, whereas total selenium was determined in sediment, detritus, algae, plankton, midge larvae (Family Chironomidae), and two fish species (western mosquitofish, Gambusia affinis, and sailfin molly, Poecilia latipinna).

  15. Seismic-zonation of Port-au-Prince using pixel- and object-based imaging analysis methods on ASTER GDEM

    USGS Publications Warehouse

    Yong, A.; Hough, S.E.; Cox, B.R.; Rathje, E.M.; Bachhuber, J.; Dulberg, R.; Hulslander, D.; Christiansen, L.; Abrams, M.J.

    2011-01-01

    We report about a preliminary study to evaluate the use of semi-automated imaging analysis of remotely-sensed DEM and field geophysical measurements to develop a seismic-zonation map of Port-au-Prince, Haiti. For in situ data, Vs30 values are derived from the MASW technique deployed in and around the city. For satellite imagery, we use an ASTER GDEM of Hispaniola. We apply both pixel- and object-based imaging methods on the ASTER GDEM to explore local topography (absolute elevation values) and classify terrain types such as mountains, alluvial fans and basins/near-shore regions. We assign NEHRP seismic site class ranges based on available Vs30 values. A comparison of results from imagery-based methods to results from traditional geologic-based approaches reveals good overall correspondence. We conclude that image analysis of RS data provides reliable first-order site characterization results in the absence of local data and can be useful to refine detailed site maps with sparse local data. ?? 2011 American Society for Photogrammetry and Remote Sensing.

  16. Tracking Stress and Hydrothermal Activity Along Oceanic Spreading Centers Using Tomographic Images of Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Dunn, R. A.; Conder, J. A.; Canales, J. P.

    2014-12-01

    Marine controlled-source seismic tomography experiments now utilize 50+ ocean-bottom seismographs and source grids consisting of many tens of seismic lines with <500 m shot spacing. These dense experiments focus on the upper 10 km of the lithosphere over areas approaching 9000 sq-km. Because of the dense sampling and large azimuthal coverage of ray paths (200,000+ travel time measurements possible), it is now feasible to solve for 3-D images of P-wave azimuthal anisotropy with resolving lengths approaching 1km. Recent examples include the L-SCAN and MARINER experiments, performed at the Eastern Lau Spreading Center and Mid-Atlantic Ridge (36N), respectively. In each case, background anisotropy of ~4% is found in the upper 3-4 km of lithosphere and is consistent with pervasive stress-aligned cracks and microcracks. The fast axes are generally oriented parallel to the trend of the spreading center, as expected for cracks that form in association with seafloor spreading. Three-dimensional images of anisotropy magnitude and orientation reveal variations interpreted as arising from changes in the ambient stress field. Near the ends of ridge segments, where the ridge axis jumps from one spreading center to the next, anisotropy is high with orientations that are out of alignment relative to the background trend. This agrees with numerical models and seafloor morphology that suggest tensile stress concentration and brittle crack formation in these areas. Anisotropy also increases in areas along the ridges where the underlying magma supply and hydrothermal output are greater. This is opposite the trend expected if simple tectonic stress models govern anisotropy. Increased hydrothermal activity, due to increased magma supply, can explain higher anisotropy via increased pore pressure and hydrofracturing. These studies provide the first evidence that images of seismic anisotropy can be used to map variations in hydrologic activity along the crests of oceanic spreading centers.

  17. Joint inversion of 3-D seismic, gravimetric and magnetotelluric data for sub-basalt imaging in the Faroe-Shetland Basin

    NASA Astrophysics Data System (ADS)

    Heincke, B.; Moorkamp, M.; Jegen, M.; Hobbs, R. W.

    2012-12-01

    Imaging of sub-basalt sediments with reflection seismic techniques is limited due to absorption, scattering and transmission effects and the presence of peg-leg multiples. Although many of the difficulties facing conventional seismic profiles can be overcome by recording long offset data resolution of sub-basalt sediments in seismic sections is typically still largely restricted. Therefore multi-parametric approaches in general and joint inversion strategies in particular (e.g. Colombo et al., 2008, Jordan et al., 2012) are considered as alternative to gain additional information from sub-basalt structures. Here, we combine in a 3-D joint inversion first-arrival time tomography, FTG gravity and MT data to identify the base basalt and resolve potential sediments underneath. For sub-basalt exploration the three methods complement each other such that the null space is reduced and significantly better resolved models can be obtained than would be possible by the individual methods: The seismic data gives a robust model for the supra-basalt sediments whilst the gravity field is dominated by the high density basalt and basement features. The MT on the other hand is sensitive to the conductivity in both the supra- and sub-basalt sediments. We will present preliminary individual and joint inversion result for a FTG, seismic and MT data set located in the Faroe-Shetland basin. Because the investigated area is rather large (~75 x 40 km) and the individual data sets are relatively huge, we use a joint inversion framework (see Moorkamp et al., 2011) which is designed to handle large amount of data/model parameters. This program has moreover the options to link the individual parameter models either petrophysically using fixed parameter relationships or structurally using the cross-gradient approach. The seismic data set consists of a pattern of 8 intersecting wide-angle seismic profiles with maximum offsets of up to ~24 km. The 3-D gravity data set (size :~ 30 x 30 km) is

  18. High resolution seismic tomography imaging of Ireland with quarry blast data

    NASA Astrophysics Data System (ADS)

    Arroucau, P.; Lebedev, S.; Bean, C. J.; Grannell, J.

    2017-12-01

    Local earthquake tomography is a well established tool to image geological structure at depth. That technique, however, is difficult to apply in slowly deforming regions, where local earthquakes are typically rare and of small magnitude, resulting in sparse data sampling. The natural earthquake seismicity of Ireland is very low. That due to quarry and mining blasts, on the other hand, is high and homogeneously distributed. As a consequence, and thanks to the dense and nearly uniform coverage achieved in the past ten years by temporary and permanent broadband seismological stations, the quarry blasts offer an alternative approach for high resolution seismic imaging of the crust and uppermost mantle beneath Ireland. We detected about 1,500 quarry blasts in Ireland and Northern Ireland between 2011 and 2014, for which we manually picked more than 15,000 P- and 20,000 S-wave first arrival times. The anthropogenic, explosive origin of those events was unambiguously assessed based on location, occurrence time and waveform characteristics. Here, we present a preliminary 3D tomographic model obtained from the inversion of 3,800 P-wave arrival times associated with a subset of 500 events observed in 2011, using FMTOMO tomographic code. Forward modeling is performed with the Fast Marching Method (FMM) and the inverse problem is solved iteratively using a gradient-based subspace inversion scheme after careful selection of damping and smoothing regularization parameters. The results illuminate the geological structure of Ireland from deposit to crustal scale in unprecedented detail, as demonstrated by sensitivity analysis, source relocation with the 3D velocity model and comparisons with surface geology.

  19. Visualization of volumetric seismic data

    NASA Astrophysics Data System (ADS)

    Spickermann, Dela; Böttinger, Michael; Ashfaq Ahmed, Khawar; Gajewski, Dirk

    2015-04-01

    Mostly driven by demands of high quality subsurface imaging, highly specialized tools and methods have been developed to support the processing, visualization and interpretation of seismic data. 3D seismic data acquisition and 4D time-lapse seismic monitoring are well-established techniques in academia and industry, producing large amounts of data to be processed, visualized and interpreted. In this context, interactive 3D visualization methods proved to be valuable for the analysis of 3D seismic data cubes - especially for sedimentary environments with continuous horizons. In crystalline and hard rock environments, where hydraulic stimulation techniques may be applied to produce geothermal energy, interpretation of the seismic data is a more challenging problem. Instead of continuous reflection horizons, the imaging targets are often steep dipping faults, causing a lot of diffractions. Without further preprocessing these geological structures are often hidden behind the noise in the data. In this PICO presentation we will present a workflow consisting of data processing steps, which enhance the signal-to-noise ratio, followed by a visualization step based on the use the commercially available general purpose 3D visualization system Avizo. Specifically, we have used Avizo Earth, an extension to Avizo, which supports the import of seismic data in SEG-Y format and offers easy access to state-of-the-art 3D visualization methods at interactive frame rates, even for large seismic data cubes. In seismic interpretation using visualization, interactivity is a key requirement for understanding complex 3D structures. In order to enable an easy communication of the insights gained during the interactive visualization process, animations of the visualized data were created which support the spatial understanding of the data.

  20. High-resolution shallow reflection seismic image and surface evidence of the Upper Tiber Basin active faults (Northern Apennines, Italy)

    USGS Publications Warehouse

    Donne, D.D.; Plccardi, L.; Odum, J.K.; Stephenson, W.J.; Williams, R.A.

    2007-01-01

    Shallow seismic reflection prospecting has been carried out in order to investigate the faults that bound to the southwest and northeast the Quaternary Upper Tiber Basin (Northern Apennines, Italy). On the northeastern margin of the basin a ??? 1 km long reflection seismic profile images a fault segment and the associated up to 100 meters thick sediment wedge. Across the southwestern margin a 0.5 km-long seismic profile images a 50-55??-dipping extensional fault, that projects to the scarp at the base of the range-front, and against which a 100 m thick syn-tectonic sediment wedge has formed. The integration of surface and sub-surface data allows to estimate at least 190 meters of vertical displacement along the fault and a slip rate around 0.25 m/kyr. Southwestern fault might also be interpreted as the main splay structure of regional Alto Tiberina extensional fault. At last, the 1917 Monterchi earthquake (Imax=X, Boschi et alii, 2000) is correlable with an activation of the southwestern fault, and thus suggesting the seismogenic character of this latter.

  1. High resolution seismic imaging of faults beneath Limón Bay, northern Panama Canal, Republic of Panama

    USGS Publications Warehouse

    Pratt, Thomas L.; Holmes, Mark; Schweig, Eugene S.; Gomberg, Joan S.; Cowan, Hugh A.

    2003-01-01

    High-resolution seismic reflection profiles from Limo??n Bay, Republic of Panama, were acquired as part of a seismic hazard investigation of the northern Panama Canal region. The seismic profiles image gently west and northwest dipping strata of upper Miocene Gatu??n Formation, unconformably overlain by a thin (<20 m) sequence of Holocene muds. Numerous faults, which have northeast trends where they can be correlated between seismic profiles, break the upper Miocene strata. Some of the faults have normal displacement, but on many faults, the amount and type of displacement cannot be determined. The age of displacement is constrained to be Late Miocene or younger, and regional geologic considerations suggest Pliocene movement. The faults may be part of a more extensive set of north- to northeast-trending faults and fractures in the canal region of central Panama. Low topography and the faults in the canal area may be the result of the modern regional stress field, bending of the Isthmus of Panama, shearing in eastern Panama, or minor deformation of the Panama Block above the Caribbean subduction zone. For seismic hazard analysis of the northern canal area, these faults led us to include a source zone of shallow faults proximal to northern canal facilities. ?? 2003 Elsevier B.V. All rights reserved.

  2. Architecture and tectono-stratigraphic evolution of the intramontane Baza Basin (Bétics, SE-Spain): Constraints from seismic imaging

    NASA Astrophysics Data System (ADS)

    Haberland, Christian; Gibert, Luis; Jurado, María José; Stiller, Manfred; Baumann-Wilke, Maria; Scott, Gary; Mertz, Dieter F.

    2017-07-01

    The Baza basin is a large Neogene intramontane basin in the Bétic Cordillera of southern Spain that formed during the Tortonian (late Miocene). The Bétic Cordillera was produced by NW-SE oblique convergence between the Eurasian and African Plates. Three seismic reflection lines (each 18 km long; vibroseis method) were acquired across the Baza basin to reveal the architecture of the sedimentary infill and faulting during basin formation. We applied rather conventional CDP data processing followed by first arrival P-wave tomography to provide complementary structural information and establish velocity models for the post-stack migration. These images show a highly asymmetric structure for the Basin with sediments thickening westward, reaching a maximum observed thickness of > 2200 m near the governing Baza Fault zone (BFZ). Three major seismic units (including several subunits) on top of the acoustic basement could be identified. We use stratigraphic information from the uplifted block of the BFZ and other outcrops at the basin edges together with available information from neighboring Bétic basins to tentatively correlate the seismic units to the known stratigraphy in the area. Until new drilling or surface outcrop data is not available, this interpretation is preliminary. The seismic units could be associated to Tortonian marine deposits, and latest Miocene to Pleistocene continental fluvio-lacustrine sediments. Individual strands of the BFZ truncate the basin sediments. Strong fault reflections imaged in two lines are the product of the large impedance contrast between sedimentary fill and basement. In the central part of the Basin several basement faults document strong deformation related to the early stages of basin formation. Some of these faults can be traced up to the shallowest imaged depth levels indicating activity until recent times.

  3. Structural and Tectonic Map Along the Pacific-North America Plate Boundary in Northern Gulf of California, Sonora Desert and Valle de Mexicali, Mexico, from Seismic Reflection Evidence

    NASA Astrophysics Data System (ADS)

    Gonzalez-Escobar, M.; Suarez-Vidal, F.; Mendoza-Borunda, R.; Martin Barajas, A.; Pacheco-Romero, M.; Arregui-Estrada, S.; Gallardo-Mata, C.; Sanchez-Garcia, C.; Chanes-Martinez, J.

    2012-12-01

    Between 1978 and 1983, Petróleos Mexicanos (PEMEX) carried on an intense exploration program in the northern Gulf of California, the Sonora Desert and the southern part of the Mexicali Valley. This program was supported by a seismic reflection field operation. The collected seismic data was 2D, with travel time of 6 s recording, in 48 channels, and the source energy was: dynamite, vibroseis and air guns. Since 2007 to present time, the existing seismic data has been re-processing and ire-interpreting as part of a collaboration project between the PEMEX's Subdirección de Exploración (PEMEX) and CICESE. The study area is located along a large portion of the Pacific-North America plate boundary in the northern Gulf of California and the Southern part of the Salton Trough tectonic province (Mexicali Valley). We present the result of the processes reflection seismic lines. Many of the previous reported known faults were identify along with the first time described located within the study region. We identified regions with different degree of tectonic activity. In structural map it can see the location of many of these known active faults and their associated seismic activity, as well as other structures with no associated seismicity. Where some faults are mist placed they were deleted or relocated based on new information. We included historical seismicity for the region. We present six reflection lines that cross the aftershocks zone of the El Mayor-Cucapah earthquake of April 4, 2010 (Mw7.2). The epicenter of this earthquake and most of the aftershocks are located in a region where pervious to this earthquake no major earthquakes are been reported. A major result of this study is to demonstrate that there are many buried faults that increase the seismic hazard.

  4. Seismic imaging of a fractured gas hydrate system in the Krishna-Godavari Basin offshore India

    USGS Publications Warehouse

    Riedel, M.; Collett, T.S.; Kumar, P.; Sathe, A.V.; Cook, A.

    2010-01-01

    Gas hydrate was discovered in the Krishna-Godavari (KG) Basin during the India National Gas Hydrate Program (NGHP) Expedition 1 at Site NGHP-01-10 within a fractured clay-dominated sedimentary system. Logging-while-drilling (LWD), coring, and wire-line logging confirmed gas hydrate dominantly in fractures at four borehole sites spanning a 500m transect. Three-dimensional (3D) seismic data were subsequently used to image the fractured system and explain the occurrence of gas hydrate associated with the fractures. A system of two fault-sets was identified, part of a typical passive margin tectonic setting. The LWD-derived fracture network at Hole NGHP-01-10A is to some extent seen in the seismic data and was mapped using seismic coherency attributes. The fractured system around Site NGHP-01-10 extends over a triangular-shaped area of ~2.5 km2 defined using seismic attributes of the seafloor reflection, as well as " seismic sweetness" at the base of the gas hydrate occurrence zone. The triangular shaped area is also showing a polygonal (nearly hexagonal) fault pattern, distinct from other more rectangular fault patterns observed in the study area. The occurrence of gas hydrate at Site NGHP-01-10 is the result of a specific combination of tectonic fault orientations and the abundance of free gas migration from a deeper gas source. The triangular-shaped area of enriched gas hydrate occurrence is bound by two faults acting as migration conduits. Additionally, the fault-associated sediment deformation provides a possible migration pathway for the free gas from the deeper gas source into the gas hydrate stability zone. It is proposed that there are additional locations in the KG Basin with possible gas hydrate accumulation of similar tectonic conditions, and one such location was identified from the 3D seismic data ~6 km NW of Site NGHP-01-10. ?? 2010.

  5. Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging

    USGS Publications Warehouse

    Bleibinhaus, F.; Hole, J.A.; Ryberg, T.; Fuis, G.S.

    2007-01-01

    A seismic reflection and refraction survey across the San Andreas Fault (SAF) near Parkfield provides a detailed characterization of crustal structure across the location of the San Andreas Fault Observatory at Depth (SAFOD). Steep-dip prestack migration and frequency domain acoustic waveform tomography were applied to obtain highly resolved images of the upper 5 km of the crust for 15 km on either side of the SAF. The resulting velocity model constrains the top of the Salinian granite with great detail. Steep-dip reflection seismic images show several strong-amplitude vertical reflectors in the uppermost crust near SAFOD that define an ???2-km-wide zone comprising the main SAF and two or more local faults. Another prominent subvertical reflector at 2-4 km depth ???9 km to the northeast of the SAF marks the boundary between the Franciscan terrane and the Great Valley Sequence. A deep seismic section of low resolution shows several reflectors in the Salinian crust west of the SAF. Two horizontal reflectors around 10 km depth correlate with strains of seismicity observed along-strike of the SAF. They represent midcrustal shear zones partially decoupling the ductile lower crust from the brittle upper crust. The deepest reflections from ???25 km depth are interpreted as crust-mantle boundary. Copyright 2007 by the American Geophysical Union.

  6. Spatial and temporal assessment of environmental contaminants in water, sediments and fish of the Salton Sea and its two primary tributaries, California, USA, from 2002 to 2012.

    PubMed

    Xu, Elvis Genbo; Bui, Cindy; Lamerdin, Cassandra; Schlenk, Daniel

    2016-07-15

    The Salton Sea, the largest inland surface water body in California, has been designated as a sensitive ecological area by federal and state governments. Its two main tributaries, the New River and Alamo River are impacted by urban and agriculture land use wastes. The purpose of this study was to temporally and spatially evaluate the ecological risks of contaminants of concern in water, sediments and fish tissues. A total of 229 semivolatile organic compounds and 12 trace metals were examined. Among them Selenium, DDTs, PAHs, PCBs, chlorpyrifos and some current-use pesticides such as pyrethroids exceeded risk thresholds. From 2002 to 2012, measurements of chlorpyrifos in sediments generally declined and were not observed after 2009 at the river outlets. In contrast, pyrethroid concentrations in sediments rose consistently after 2009. In water samples, the outlets of the two rivers showed relatively higher levels of contamination than the main water body of the Salton Sea. However, sediments of the main water body of the Salton Sea showed relatively higher sediment concentrations of contaminants than the two rivers. This was particularly true for selenium which showed reductions in concentrations from 2002 to 2007, but then gradual increases to 2012. Consistent with water evaluations, contaminant concentrations in fish tissues tended to be higher at the New River boundary and at the drainage sites for the Alamo River compared to sites along each river. The persistent contaminants DDTs, PAHs, chlorpyrifos and several pyrethroid insecticides were associated with the toxicity of sediments and water collected from the rivers. Overall, assessment results suggested potential ecological risk in sediments of the Salton Sea as well as in water and fish from the two rivers. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Seismic imaging and velocity structure around the JFAST drill site in the Japan Trench: low Vp, high Vp/ Vs in the transparent frontal prism

    NASA Astrophysics Data System (ADS)

    Nakamura, Yasuyuki; Kodaira, Shuichi; Cook, Becky J.; Jeppson, Tamara; Kasaya, Takafumi; Yamamoto, Yojiro; Hashimoto, Yoshitaka; Yamaguchi, Mika; Obana, Koichiro; Fujie, Gou

    2014-12-01

    Seismic image and velocity models were obtained from a newly conducted seismic survey around the Integrated Ocean Drilling Program (IODP) Japan Trench Fast Drilling Project (JFAST) drill site in the Japan Trench. Pre-stack depth migration (PSDM) analysis was applied to the multichannel seismic reflection data to produce an accurate depth seismic profile together with a P wave velocity model along a line that crosses the JFAST site location. The seismic profile images the subduction zone at a regional scale. The frontal prism where the drill site is located corresponds to a typically seismically transparent (or chaotic) zone with several landward-dipping semi-continuous reflections. The boundary between the Cretaceous backstop and the frontal prism is marked by a prominent landward-dipping reflection. The P wave velocity model derived from the PSDM analysis shows low velocity in the frontal prism and velocity reversal across the backstop interface. The PSDM velocity model around the drill site is similar to the P wave velocity model calculated from the ocean bottom seismograph (OBS) data and agrees with the P wave velocities measured from the core experiments. The average Vp/ Vs in the hanging wall sediments around the drill site, as derived from OBS data, is significantly larger than that obtained from core sample measurements.

  8. Testing & Validating: 3D Seismic Travel Time Tomography (Detailed Shallow Subsurface Imaging)

    NASA Astrophysics Data System (ADS)

    Marti, David; Marzan, Ignacio; Alvarez-Marron, Joaquina; Carbonell, Ramon

    2016-04-01

    A detailed full 3 dimensional P wave seismic velocity model was constrained by a high-resolution seismic tomography experiment. A regular and dense grid of shots and receivers was use to image a 500x500x200 m volume of the shallow subsurface. 10 GEODE's resulting in a 240 channels recording system and a 250 kg weight drop were used for the acquisition. The recording geometry consisted in 10x20m geophone grid spacing, and a 20x20 m stagered source spacing. A total of 1200 receivers and 676 source points. The study area is located within the Iberian Meseta, in Villar de Cañas (Cuenca, Spain). The lithological/geological target consisted in a Neogen sedimentary sequence formed from bottom to top by a transition from gyspum to silstones. The main objectives consisted in resolving the underground structure: contacts/discontinuities; constrain the 3D geometry of the lithology (possible cavities, faults/fractures). These targets were achieved by mapping the 3D distribution of the physical properties (P-wave velocity). The regularly space dense acquisition grid forced to acquire the survey in different stages and with a variety of weather conditions. Therefore, a careful quality control was required. More than a half million first arrivals were inverted to provide a 3D Vp velocity model that reached depths of 120 m in the areas with the highest ray coverage. An extended borehole campaign, that included borehole geophysical measurements in some wells provided unique tight constraints on the lithology an a validation scheme for the tomographic results. The final image reveals a laterally variable structure consisting of four different lithological units. In this methodological validation test travel-time tomography features a high capacity of imaging in detail the lithological contrasts for complex structures located at very shallow depths.

  9. Combination of surface and borehole seismic data for robust target-oriented imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yi; van der Neut, Joost; Arntsen, Børge; Wapenaar, Kees

    2016-05-01

    A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.

  10. Development of a software for monitoring of seismic activity through the analysis of satellite images

    NASA Astrophysics Data System (ADS)

    Soto-Pinto, C.; Poblete, A.; Arellano-Baeza, A. A.; Sanchez, G.

    2010-12-01

    A software for extraction and analysis of the lineaments has been developed and applied for the tracking of the accumulation/relaxation of stress in the Earth’s crust due to seismic and volcanic activity. A lineament is a straight or a somewhat curved feature in a satellite image, which reflects, at least partially, presence of faults in the crust. The technique of lineament extraction is based on the application of directional filters and Hough transform. The software has been checked for several earthquakes occurred in the Pacific coast of the South America with the magnitude > 4 Mw, analyzing temporal sequences of the ASTER/TERRA multispectral satellite images for the regions around an epicenter. All events were located in the regions with small seasonal variations and limited vegetation to facilitate the tracking of features associated with the seismic activity only. It was found that the number and orientation of lineaments changes significantly about one month before an earthquake approximately, and a few months later the system returns to its initial state. This effect increases with the earthquake magnitude. It also was shown that the behavior of lineaments associated to the volcano seismic activity is opposite to that obtained previously for earthquakes. This discrepancy can be explained assuming that in the last case the main reason of earthquakes is compression and accumulation of strength in the Earth’s crust due to subduction of tectonic plates, whereas in the first case we deal with the inflation of a volcano edifice due to elevation of pressure and magma intrusion.

  11. A feasibility study for the application of seismic interferometry by multidimensional deconvolution for lithospheric-scale imaging

    NASA Astrophysics Data System (ADS)

    Ruigrok, Elmer; van der Neut, Joost; Djikpesse, Hugues; Chen, Chin-Wu; Wapenaar, Kees

    2010-05-01

    Active-source surveys are widely used for the delineation of hydrocarbon accumulations. Most source and receiver configurations are designed to illuminate the first 5 km of the earth. For a deep understanding of the evolution of the crust, much larger depths need to be illuminated. The use of large-scale active surveys is feasible, but rather costly. As an alternative, we use passive acquisition configurations, aiming at detecting responses from distant earthquakes, in combination with seismic interferometry (SI). SI refers to the principle of generating new seismic responses by combining seismic observations at different receiver locations. We apply SI to the earthquake responses to obtain responses as if there was a source at each receiver position in the receiver array. These responses are subsequently migrated to obtain an image of the lithosphere. Conventionally, SI is applied by a crosscorrelation of responses. Recently, an alternative implementation was proposed as SI by multidimensional deconvolution (MDD) (Wapenaar et al. 2008). SI by MDD compensates both for the source-sampling and the source wavelet irregularities. Another advantage is that the MDD relation also holds for media with severe anelastic losses. A severe restriction though for the implementation of MDD was the need to estimate responses without free-surface interaction, from the earthquake responses. To mitigate this restriction, Groenestijn en Verschuur (2009) proposed to introduce the incident wavefield as an additional unknown in the inversion process. As an alternative solution, van der Neut et al. (2010) showed that the required wavefield separation may be implemented after a crosscorrelation step. These last two approaches facilitate the application of MDD for lithospheric-scale imaging. In this work, we study the feasibility for the implementation of MDD when considering teleseismic wavefields. We address specific problems for teleseismic wavefields, such as long and complicated source

  12. Occurrence of west nile virus infection in raptors at the Salton Sea, California.

    PubMed

    Dusek, Robert J; Iko, William M; Hofmeister, Erik K

    2010-07-01

    We investigated the prevalence of West Nile virus (WNV)-neutralizing antibodies and infectious virus, and the occurrence of overwinter transmission in two raptor species during January and March 2006 at the Salton Sea, Imperial County, California. We captured 208 American Kestrels (Falco sparverius) (January, n=100; March, n=108) and 116 Burrowing Owls (Athene cunicularia) (January, n=52; March, n=64). Laboratory analysis revealed that 83% of American Kestrels and 31% of Burrowing Owls were positive for WNV-neutralizing antibodies. Additionally, two seroconversions were detected in Burrowing Owls between January and March. Infectious WNV, consistent with acute infection, was not detected in any bird.

  13. Occurrence of West Nile virus infection in raptors at the Salton Sea, California

    USGS Publications Warehouse

    Dusek, Robert J.; Iko, William M.; Hofmeister, Erik K.

    2010-01-01

    We investigated the prevalence of West Nile virus (WNV)-neutralizing antibodies and infectious virus, and the occurrence of overwinter transmission in two raptor species during January and March 2006 at the Salton Sea, Imperial County, California. We captured 208 American Kestrels (Falco sparverius) (January, n=100; March, n=108) and 116 Burrowing Owls (Athene cunicularia) (January, n=52; March, n=64). Laboratory analysis revealed that 83% of American Kestrels and 31% of Burrowing Owls were positive for WNV-neutralizing antibodies. Additionally, two seroconversions were detected in Burrowing Owls between January and March. Infectious WNV, consistent with acute infection, was not detected in any bird.

  14. Development of Vertical Cable Seismic System

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2011-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. (1) VCS is an efficient high-resolution 3D seismic survey in limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Because of autonomous recording system on sea floor, various types of marine source are applicable with VCS such as sea-surface source (GI gun etc.) , deep-towed or ocean bottom source. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN, in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. Seismic Interferometry technique is also applied. The results give much clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Seismic Interferometry technique is applied to obtain the high resolution image in the very shallow zone. Based on the feasibility study, we have developed the autonomous recording VCS system and carried out the trial experiment in actual ocean at the water depth of about 400m to establish the procedures of deployment/recovery and to examine the VC position or fluctuation at seabottom. The result shows that the VC position is estimated with sufficient accuracy and very little fluctuation is observed. Institute of Industrial Science, the University of Tokyo took the research cruise NT11-02 on JAMSTEC R/V Natsushima in February, 2011. In the cruise NT11-02, JGI carried out the second VCS survey using the autonomous VCS recording system with the deep towed source provided by

  15. Long-term deformation in the Mississippi Embayment (Central USA) imaged by high-resolution seismic reflection data

    NASA Astrophysics Data System (ADS)

    Hao, Yanjun

    southeastern Arkansas along the Alabama-Oklahoma transform zone. Quaternary deformation and prolonged history of activity of the imaged faults is documented at all sites. The results show that Quaternary seismic activity in the Mississippi Embayment is accommodated by faults additional to the NMSZ fault system, and that fault activity is controlled by certain paleotectonic structures inherited from the Proterozoic and Paleozoic history of the North American continent. The identification of Quaternary seismogenic faults outside the footprint of the NMSZ and of the lower crustal anomaly (i.e. "rift pillow") supports seismotectonic models that predict deformation over a large area (e.g. Forte et al., 2007) and calls into questions in models that predict concentration of strain in the NMSZ region (e.g. Pollitz et al., 2001). A comparison between the newly imaged faults and the NMSZ faults shows that the former are indistinguishable from the latter except for the occurrence of instrumental seismicity. Based on the analysis of the location and sense of displacement of Quaternary deformation in the northern Mississippi Embayment, I propose a new fault network to reconcile the wide distribution of Quaternary faults with concentration of instrumental seismicity along the NMSZ. The fault network consists of three distinct trends of faults: ~N45°E right-lateral strike-slip faults, ~N20°W reverse faults, and ~N25°E right-lateral strike-slip faults. Different faults in the fault network appear to have been active at different times across the northern embayment. The available age data suggest a northward migration of the deformation, with the NMSZ representing the latest and youngest fault system.

  16. Final Report (O1-ERD-051) Dynamic InSAR: Imaging Seismic Waves Remotely from Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, P; Rodgers, A; Dodge, D

    2003-02-07

    The purpose of this LDRD project was to determine the feasibility of using InSAR (interferometric synthetic aperture radar) to image seismic waves remotely from space. If shown to be feasible, the long-term goal of this project would be to influence future SAR satellite missions and airborne SAR platforms to include a this new capability. This final report summarizes the accomplishments of the originally-planned 2-year project that was cut short to 1 year plus 2 months due to a funding priority change that occurred in the aftermath of the September 11th tragedy. The LDRD-ER project ''Dynamic InSAR: Imaging Seismic Waves frommore » Space'' (01-ERD-051) began in October, (FY01) and ended in December (FY02). Consequently, most of the results and conclusions for this project are represented in the FY0l Annual Report. Nonetheless, additional conclusions and insights regarding the progress of this work are included in this report. In should be noted that this work was restarted and received additional funding under the NA-22 DOE Nonproliferation Program in FY03.« less

  17. Automated Processing Workflow for Ambient Seismic Recordings

    NASA Astrophysics Data System (ADS)

    Girard, A. J.; Shragge, J.

    2017-12-01

    Structural imaging using body-wave energy present in ambient seismic data remains a challenging task, largely because these wave modes are commonly much weaker than surface wave energy. In a number of situations body-wave energy has been extracted successfully; however, (nearly) all successful body-wave extraction and imaging approaches have focused on cross-correlation processing. While this is useful for interferometric purposes, it can also lead to the inclusion of unwanted noise events that dominate the resulting stack, leaving body-wave energy overpowered by the coherent noise. Conversely, wave-equation imaging can be applied directly on non-correlated ambient data that has been preprocessed to mitigate unwanted energy (i.e., surface waves, burst-like and electromechanical noise) to enhance body-wave arrivals. Following this approach, though, requires a significant preprocessing effort on often Terabytes of ambient seismic data, which is expensive and requires automation to be a feasible approach. In this work we outline an automated processing workflow designed to optimize body wave energy from an ambient seismic data set acquired on a large-N array at a mine site near Lalor Lake, Manitoba, Canada. We show that processing ambient seismic data in the recording domain, rather than the cross-correlation domain, allows us to mitigate energy that is inappropriate for body-wave imaging. We first develop a method for window selection that automatically identifies and removes data contaminated by coherent high-energy bursts. We then apply time- and frequency-domain debursting techniques to mitigate the effects of remaining strong amplitude and/or monochromatic energy without severely degrading the overall waveforms. After each processing step we implement a QC check to investigate improvements in the convergence rates - and the emergence of reflection events - in the cross-correlation plus stack waveforms over hour-long windows. Overall, the QC analyses suggest that

  18. Multi-2D seismic imaging of the Solfatara crater (Campi Flegrei Caldera, southern Italy) from active seismic data

    NASA Astrophysics Data System (ADS)

    Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.

    2017-12-01

    Campi Flegrei is an active caldera characterized by secular, periodic episodes of spatially extended, low-rate ground deformation (bradyseism) accompanied by an intense seismic and geothermal activity. Its inner crater Solfatara is characterized by diffuse surface degassing and continuous fumarole activity. This points out the relevance of fluid and heat transport from depth and prompts for further research to improve the understanding of the hydrothermal system feeding processes and fluid migration to the surface. The experiment Repeated Induced Earthquake and Noise (RICEN) (EU Project MEDSUV), was carried out between September 2013 and November 2014 to investigate the space and time varying properties of the subsoil beneath the crater. The processed dataset consists of records from two 1D orthogonal seismic arrays deployed along WNW-ESE and NNE-SSW directions crossing the 400 m crater surface. To highlight the first P-wave arrivals a bandpass filter and an AGC were applied which allowed the detection of 17894 manually picked arrival times. Starting from a 1D velocity model, we performed a 2D non-linear Bayesian estimation. The method consists in retrieving the velocity model searching for the maximum of the "a posteriori" probability density function. The optimization is performed by the sequential use of the Genetic Algorithm and the Simplex methods. The retrieved images provide evidence for a very low P-velocity layer (Vp<500 m/s) associated with quaternary deposits, a low velocity (Vp=500-1500 m/s) water saturated deep layer at West, contrasted by a high velocity (Vp=2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (from 1500 to 2000 m/s) suggests the possible presence of a gas-rich, accumulation volume. Based on the surface evidence of the gas released by the Bocca Grande and Bocca Nuova fumaroles at the Eastern border of Solfatara and the presence of the central deeper plume, we infer a detailed image for the

  19. Fast principal component analysis for stacking seismic data

    NASA Astrophysics Data System (ADS)

    Wu, Juan; Bai, Min

    2018-04-01

    Stacking seismic data plays an indispensable role in many steps of the seismic data processing and imaging workflow. Optimal stacking of seismic data can help mitigate seismic noise and enhance the principal components to a great extent. Traditional average-based seismic stacking methods cannot obtain optimal performance when the ambient noise is extremely strong. We propose a principal component analysis (PCA) algorithm for stacking seismic data without being sensitive to noise level. Considering the computational bottleneck of the classic PCA algorithm in processing massive seismic data, we propose an efficient PCA algorithm to make the proposed method readily applicable for industrial applications. Two numerically designed examples and one real seismic data are used to demonstrate the performance of the presented method.

  20. Deepwater seismic acquisition technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are somemore » new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.« less

  1. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    USGS Publications Warehouse

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  2. Deep Seismic Imaging of the Hellenic Subduction Zone with New MCS Data of the SISMED Project

    NASA Astrophysics Data System (ADS)

    Becel, A.; Mireille, L.; Hussni, S.; Dessa, J. X.; Schenini, L.; Sachpazi, M.; Vitard, C.

    2016-12-01

    The southwestern segment of the Hellenic subduction zone has generated a M>8 tsunamigenic earthquake in the past (365 AD), the largest event ever reported in Europe, but fundamental questions remain about the deep geometry and characteristics of the interplate fault and connected splay faults in the overriding plate that might be rooted in the megathrust. In the Fall 2012, the ULYSSE seismic program acquired deep penetration multichannel seismic (MCS) and OBS refraction profiles across a 300-km-wide section of the forearc domain. MCS data were acquired with a 4.5 km-long streamer on board the R/V Le Pourquoi Pas? from the French IFREMER facilities. The two 240 km-long seismic reflection dip profiles reveal a large and rough topography of the top of the forearc crust in both the outer and inner domains, including a several km thick forearc basin. Despite the thick Messinian evaporites at shallow depths, the 11000 cu.in airgun source reveal several discontinuous arcward-dipping reflections at 15 km depth beneath the outer forearc domain that could be related to the top of the subducting oceanic crust. Unfortunately, the 4.5 km-long streamer is too short for improving their lateral continuity and getting more detailed constraints on their geometry. In the Fall 2015, we chartered the R/V Marcus Langseth equipped with unmatched seismic facilities in the European academic fleet by means of a strong mobilization of the French and American involved laboratories (Géoazur, LDEO, ISTEP, ENS-Paris, EOST, LDO, Pau Univ.) and their research agencies (CNRS, NSF, OCA, and UCA). During the SISMED survey (Seismic Imaging inveStigation in MEDiterranean Sea for deep seismogenic faults), we collected with the R/V Marcus Langseth a 210 km-long profile coincident with the eastern ULYSSE transect with the 8 km-long streamer and a 6600 cu.in tuned airgun array shot every 50 meters. The source and the streamer were towed at a depth of 12 m to maximize low frequencies and deep imaging. Here

  3. MSNoise: a Python Package for Monitoring Seismic Velocity Changes using Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Lecocq, T.; Caudron, C.; Brenguier, F.

    2013-12-01

    Earthquakes occur every day all around the world and are recorded by thousands of seismic stations. In between earthquakes, stations are recording "noise". In the last 10 years, the understanding of this noise and its potential usage have been increasing rapidly. The method, called "seismic interferometry", uses the principle that seismic waves travel between two recorders and are multiple-scattered in the medium. By cross-correlating the two records, one gets an information on the medium below/between the stations. The cross-correlation function (CCF) is a proxy to the Green Function of the medium. Recent developments of the technique have shown those CCF can be used to image the earth at depth (3D seismic tomography) or study the medium changes with time. We present MSNoise, a complete software suite to compute relative seismic velocity changes under a seismic network, using ambient seismic noise. The whole is written in Python, from the monitoring of data archives, to the production of high quality figures. All steps have been optimized to only compute the necessary steps and to use 'job'-based processing. We present a validation of the software on a dataset acquired during the UnderVolc[1] project on the Piton de la Fournaise Volcano, La Réunion Island, France, for which precursory relative changes of seismic velocity are visible for three eruptions betwee 2009 and 2011.

  4. In-Flight Validation of Mid and Thermal Infrared Remotely Sensed Data Using the Lake Tahoe and Salton Sea Automated Validation Sites

    NASA Technical Reports Server (NTRS)

    Hook, Simon J.

    2008-01-01

    The presentation includes an introduction, Lake Tahoe site layout and measurements, Salton Sea site layout and measurements, field instrument calibration and cross-calculations, data reduction methodology and error budgets, and example results for MODIS. Summary and conclusions are: 1) Lake Tahoe CA/NV automated validation site was established in 1999 to assess radiometric accuracy of satellite and airborne mid and thermal infrared data and products. Water surface temperatures range from 4-25C.2) Salton Sea CA automated validation site was established in 2008 to broaden range of available water surface temperatures and atmospheric water vapor test cases. Water surface temperatures range from 15-35C. 3) Sites provide all information necessary for validation every 2 mins (bulk temperature, skin temperature, air temperature, wind speed, wind direction, net radiation, relative humidity). 4) Sites have been used to validate mid and thermal infrared data and products from: ASTER, AATSR, ATSR2, MODIS-Terra, MODIS-Aqua, Landsat 5, Landsat 7, MTI, TES, MASTER, MAS. 5) Approximately 10 years of data available to help validate AVHRR.

  5. Seismic imaging of gas hydrate reservoir heterogeneities

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Wei

    Natural gas hydrate, a type of inclusion compound or clathrate, are composed of gas molecules trapped within a cage of water molecules. The presence of gas hydrate has been confirmed by core samples recovered from boreholes. Interests in the distribution of natural gas hydrate stem from its potential as a future energy source, geohazard to drilling activities and their possible impact on climate change. However the current geophysical investigations of gas hydrate reservoirs are still too limited to fully resolve the location and the total amount of gas hydrate due to its complex nature of distribution. The goal of this thesis is twofold, i.e., to model (1) the heterogeneous gas hydrate reservoirs and (2) seismic wave propagation in the presence of heterogeneities in order to address the fundamental questions: where are the location and occurrence of gas hydrate and how much is stored in the sediments. Seismic scattering studies predict that certain heterogeneity scales and velocity contrasts will generate strong scattering and wave mode conversion. Vertical Seismic Profile (VSP) techniques can be used to calibrate seismic characterization of gas hydrate expressions on surface seismograms. To further explore the potential of VSP in detecting the heterogeneities, a wave equation based approach for P- and S-wave separation is developed. Tests on synthetic data as well as applications to field data suggest alternative acquisition geometries for VSP to enable wave mode separation. A new reservoir modeling technique based on random medium theory is developed to construct heterogeneous multi-variable models that mimic heterogeneities of hydrate-bearing sediments at the level of detail provided by borehole logging data. Using this new technique, I modeled the density, and P- and S-wave velocities in combination with a modified Biot-Gassmann theory and provided a first order estimate of the in situ volume of gas hydrate near the Mallik 5L-38 borehole. Our results suggest a

  6. Historical Fluxes of Toxic Trace Elements and Associated Implications in the Salton Sea Basin

    NASA Astrophysics Data System (ADS)

    Odigie, K. O.; Hardisty, D. S.; Geraci, J. B.; Lyons, T. W.

    2017-12-01

    The Salton Sea is a polymictic, hypersaline lake that is predominantly sustained by wastewater and agricultural runoff from Mexico and the United States. It is a terminal lake that acts as a net sink for toxicants, which in addition to nutrients and increasing salinity, have dramatically transformed the lake over the past century. However, the impacts of these changes on the cycling and bio-accessibility of toxic elements and compounds and their associated human and environmental health implications are not well understood. This project aims to measure and model the fluxes of toxic elements, including selenium, lead, and mercury, in the lake over temporal and spatial scales by using geochemical data from the analysis of sediment cores, a pervasive salt crust, and the water column. The project also aims to elucidate the bio-accessibility and depositional environments of these elements. Preliminary results highlight two different oxygen concentration regimes in the lake: an increasingly anoxic condition in the bottom of the northern lobe and a seasonally variable oxygen deficiency in the bottom of the southern lobe. The deteriorating conditions at the lake could be exacerbated by a receding shoreline, which has already exposed several square kilometres of lake bed and is expected to continue as future inflows are diverted under the Quantification Settlement Agreement. Continued water conservation by Imperial Valley farmers and the increasing reuse of reclaimed water by Mexico are also expected to contribute to reduced inflows to the lake. Therefore, improved understanding of the cycling of toxic elements and their potential remobilization, including via wind entrainment (dust) associated with lake desiccation, will be valuable in protecting human and environmental health within the Salton Sea basin.

  7. Inferred rheological structure and mantle conditions from postseismic deformation following the 2010 Mw 7.2 El Mayor-Cucapah Earthquake

    NASA Astrophysics Data System (ADS)

    Dickinson-Lovell, Haylee; Huang, Mong-Han; Freed, Andrew M.; Fielding, Eric; Bürgmann, Roland; Andronicos, Christopher

    2018-06-01

    The 2010 Mw7.2 El Mayor-Cucapah earthquake provides a unique target of postseismic study as deformation extends across several distinct geological provinces, including the cold Mesozoic arc crust of the Peninsular Ranges and newly formed, hot, extending lithosphere within the Salton Trough. We use five years of global positioning system measurements to invert for afterslip and constrain a 3-D finite-element model that simulates viscoelastic relaxation. We find that afterslip cannot readily explain far-field displacements (more than 50 km from the epicentre). These displacements are best explained by viscoelastic relaxation of a horizontally and vertically heterogeneous lower crust and upper mantle. Lower viscosities beneath the Salton Trough compared to the Peninsular Ranges and other surrounding regions are consistent with inferred differences in the respective geotherms. Our inferred viscosity structure suggests that the depth of the Lithosphere/Asthenosphere Boundary (LAB) is ˜65 km below the Peninsular Ranges and ˜32 km beneath the Salton Trough. These depths are shallower than the corresponding seismic LAB. This suggests that the onset of partial melting in peridotite may control the depth to the base of the mechanical lithosphere. In contrast, the seismic LAB may correspond to an increase in the partial melt percentage associated with the change from a conductive to an adiabatic geotherm.

  8. Refraction statics and seismic imaging: 2-D versus 3-D solutions in the Western Desert of Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Emam, A.; Nessim, M.

    1994-12-31

    Careful review of old geophysical and geological data from the Western Desert of Egypt led to the decision of shooting a 3-D seismic survey targeted to solve some of the encountered geophysical problems such as difficulty of tracing the very thin pay zone, identifying the stratigraphic plays and the main two problems of the seismic method in the Western Desert which are statics and poor imaging. In a case history form illustrated by examples, the result of the 3-D solutions will be shown. Furthermore, an analytical approach will be undertaken to clarify and highlight the sources of those geophysical problemsmore » and how the 3-D solution helped in resolving them.« less

  9. Tunnel Detection Using Seismic Methods

    NASA Astrophysics Data System (ADS)

    Miller, R.; Park, C. B.; Xia, J.; Ivanov, J.; Steeples, D. W.; Ryden, N.; Ballard, R. F.; Llopis, J. L.; Anderson, T. S.; Moran, M. L.; Ketcham, S. A.

    2006-05-01

    Surface seismic methods have shown great promise for use in detecting clandestine tunnels in areas where unauthorized movement beneath secure boundaries have been or are a matter of concern for authorities. Unauthorized infiltration beneath national borders and into or out of secure facilities is possible at many sites by tunneling. Developments in acquisition, processing, and analysis techniques using multi-channel seismic imaging have opened the door to a vast number of near-surface applications including anomaly detection and delineation, specifically tunnels. Body waves have great potential based on modeling and very preliminary empirical studies trying to capitalize on diffracted energy. A primary limitation of all seismic energy is the natural attenuation of high-frequency energy by earth materials and the difficulty in transmitting a high- amplitude source pulse with a broad spectrum above 500 Hz into the earth. Surface waves have shown great potential since the development of multi-channel analysis methods (e.g., MASW). Both shear-wave velocity and backscatter energy from surface waves have been shown through modeling and empirical studies to have great promise in detecting the presence of anomalies, such as tunnels. Success in developing and evaluating various seismic approaches for detecting tunnels relies on investigations at known tunnel locations, in a variety of geologic settings, employing a wide range of seismic methods, and targeting a range of uniquely different tunnel geometries, characteristics, and host lithologies. Body-wave research at the Moffat tunnels in Winter Park, Colorado, provided well-defined diffraction-looking events that correlated with the subsurface location of the tunnel complex. Natural voids related to karst have been studied in Kansas, Oklahoma, Alabama, and Florida using shear-wave velocity imaging techniques based on the MASW approach. Manmade tunnels, culverts, and crawl spaces have been the target of multi-modal analysis

  10. Seismic Imaging Reveals Deep-Penetrating Fault Planes in the Wharton Basin Oceanic Mantle

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Singh, S. C.; Dyment, J.; Hananto, N. D.; Chauhan, A.

    2011-12-01

    We present images from a deep multi-channel seismic reflection survey acquired in 2006 over the oceanic lithosphere of the Wharton Basin offshore northern Sumatra, NW of Simeulue island. The main ~230-km long seismic profile is roughly parallel to the trench at ~32-66 km distance from the subduction front and crosses (at oblique angles to both flow line and isochron directions) an entire segment of 55-57 my-old fast-spread crust formed at the extinct Wharton spreading center, as well as two bounding ~N5°E trending fracture zones near its extremities; complementary data is provided by the oceanic portions of two margin-crossing profiles on either side shot during the same survey. This high-quality, 12-km streamer dataset acquired for deep reflection imaging (10000 cu in tuned airgun array and 15-m source and streamer depths) reveals the presence of mostly SE-dipping (20 to 40 degrees dip) events cutting across and extending below the oceanic Moho, down to a maximum depth below seafloor of ~37 km, at ~5 km spacing along the trench-parallel profile. Similar dipping mantle events are imaged on the oceanic portion of another long-offset profile acquired in 2009 offshore central Sumatra south of Pagai island, which will also be presented. Such events are unlikely to be imaging artefacts of the 2D acquisition, such as out-of-plane energy originating from sharp, buried basement reliefs trending obliquely to the profile. Due to their geometry, they do not seem to be associated with plate bending at the trench outer-rise, which has a relatively modest expression at the seafloor and within the incoming sedimentary section north of the Simeulue elbow. We propose that these deep-penetrating dipping reflectors are fossil fault planes formed due to compressive stresses at the beginning of the continent-continent collision between India and Eurasia, the early stages of which were responsible for the cessation of seafloor spreading at the Wharton ridge at ca 40 Ma.

  11. Landslide seismic magnitude

    NASA Astrophysics Data System (ADS)

    Lin, C. H.; Jan, J. C.; Pu, H. C.; Tu, Y.; Chen, C. C.; Wu, Y. M.

    2015-11-01

    Landslides have become one of the most deadly natural disasters on earth, not only due to a significant increase in extreme climate change caused by global warming, but also rapid economic development in topographic relief areas. How to detect landslides using a real-time system has become an important question for reducing possible landslide impacts on human society. However, traditional detection of landslides, either through direct surveys in the field or remote sensing images obtained via aircraft or satellites, is highly time consuming. Here we analyze very long period seismic signals (20-50 s) generated by large landslides such as Typhoon Morakot, which passed though Taiwan in August 2009. In addition to successfully locating 109 large landslides, we define landslide seismic magnitude based on an empirical formula: Lm = log ⁡ (A) + 0.55 log ⁡ (Δ) + 2.44, where A is the maximum displacement (μm) recorded at one seismic station and Δ is its distance (km) from the landslide. We conclude that both the location and seismic magnitude of large landslides can be rapidly estimated from broadband seismic networks for both academic and applied purposes, similar to earthquake monitoring. We suggest a real-time algorithm be set up for routine monitoring of landslides in places where they pose a frequent threat.

  12. 2D Seismic Imaging of Elastic Parameters by Frequency Domain Full Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Brossier, R.; Virieux, J.; Operto, S.

    2008-12-01

    Thanks to recent advances in parallel computing, full waveform inversion is today a tractable seismic imaging method to reconstruct physical parameters of the earth interior at different scales ranging from the near- surface to the deep crust. We present a massively parallel 2D frequency-domain full-waveform algorithm for imaging visco-elastic media from multi-component seismic data. The forward problem (i.e. the resolution of the frequency-domain 2D PSV elastodynamics equations) is based on low-order Discontinuous Galerkin (DG) method (P0 and/or P1 interpolations). Thanks to triangular unstructured meshes, the DG method allows accurate modeling of both body waves and surface waves in case of complex topography for a discretization of 10 to 15 cells per shear wavelength. The frequency-domain DG system is solved efficiently for multiple sources with the parallel direct solver MUMPS. The local inversion procedure (i.e. minimization of residuals between observed and computed data) is based on the adjoint-state method which allows to efficiently compute the gradient of the objective function. Applying the inversion hierarchically from the low frequencies to the higher ones defines a multiresolution imaging strategy which helps convergence towards the global minimum. In place of expensive Newton algorithm, the combined use of the diagonal terms of the approximate Hessian matrix and optimization algorithms based on quasi-Newton methods (Conjugate Gradient, LBFGS, ...) allows to improve the convergence of the iterative inversion. The distribution of forward problem solutions over processors driven by a mesh partitioning performed by METIS allows to apply most of the inversion in parallel. We shall present the main features of the parallel modeling/inversion algorithm, assess its scalability and illustrate its performances with realistic synthetic case studies.

  13. Infrasound Generation from the HH Seismic Hammer.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Kyle Richard

    2014-10-01

    The HH Seismic hammer is a large, "weight-drop" source for active source seismic experiments. This system provides a repetitive source that can be stacked for subsurface imaging and exploration studies. Although the seismic hammer was designed for seismological studies it was surmised that it might produce energy in the infrasonic frequency range due to the ground motion generated by the 13 metric ton drop mass. This study demonstrates that the seismic hammer generates a consistent acoustic source that could be used for in-situ sensor characterization, array evaluation and surface-air coupling studies for source characterization.

  14. Sources of subsidence at the Salton Sea Geothermal Field

    USGS Publications Warehouse

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    At the Salton Sea Geothermal Field (SSGF) in Southern California, surface deformation associated with geologic processes including sediment compaction, tectonic strain, and fault slip may be augmented by energy production activities. Separating the relative contributions from natural and anthropogenic sources is especially important at the SSGF, which sits at the apex of a complex tectonic transition zone connecting the southern San Andreas Fault with the Imperial Fault; but this has been a challenging task so far. Here we analyze vertical surface velocities obtained from the persistent scatterer InSAR method and find that two of the largest subsidence anomalies can be represented by a set of volumetric strain nuclei at depths comparable to geothermal well completion zones. In contrast, the rates needed to achieve an adequate fit to the magnitudes of subsidence are almost an order of magnitude greater than rates reported for annual changes in aggregate net-production volume, suggesting that the physical mechanism responsible for subsidence at the SSGF is a complicated interplay between natural and anthropogenic sources.

  15. Seismic Characterization of EGS Reservoirs

    NASA Astrophysics Data System (ADS)

    Templeton, D. C.; Pyle, M. L.; Matzel, E.; Myers, S.; Johannesson, G.

    2014-12-01

    To aid in the seismic characterization of Engineered Geothermal Systems (EGS), we enhance the traditional microearthquake detection and location methodologies at two EGS systems. We apply the Matched Field Processing (MFP) seismic imaging technique to detect new seismic events using known discrete microearthquake sources. Events identified using MFP are typically smaller magnitude events or events that occur within the coda of a larger event. Additionally, we apply a Bayesian multiple-event seismic location algorithm, called MicroBayesLoc, to estimate the 95% probability ellipsoids for events with high signal-to-noise ratios (SNR). Such probability ellipsoid information can provide evidence for determining if a seismic lineation could be real or simply within the anticipated error range. We apply this methodology to the Basel EGS data set and compare it to another EGS dataset. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Imaging Critical Zone Using High Frequency Rayleigh Wave Group Velocity Measurements Extracted from Ambient Seismic Fields Gathered With 2400 Seismic Nodes in Southeastern Wyoming.

    NASA Astrophysics Data System (ADS)

    Keifer, I. S.; Dueker, K. G.

    2016-12-01

    In an effort to characterize critical zone development in varying regions, seismologist conduct seismic surveys to assist in the realization of critical zone properties e.g. porosity and regolith thickness. A limitation of traditional critical zone seismology is that data is normally collected along lines, to generate two dimensional transects of the subsurface seismic velocity, even though the critical zone structure is 3D. Hence, we deployed six seismic 2D arrays in southeastern Wyoming to gather ambient seismic fields so that 3D shear velocity models could be produced. The arrays were made up of nominally 400 seismic stations arranged in a 200-meter square grid layout. Each array produced a half Terabyte data volume, so a premium was placed on computational efficiency throughout this study, to handle the roughly 65 billion samples recorded by each array. The ambient fields were cross-correlated on the Yellowstone Super-Computer using the pSIN code (Chen et al., 2016), which decreased correlation run times by a factor of 300 with respect to workstation computers. Group delay times extracted from cross-correlations using 8 Hz frequency bands from 10 Hz to 100 Hz show frequency dispersion at sites with shallow regolith underlain by granite bedrock. Dimensionally, the group velocity map inversion is overdetermined, even after extensive culling of spurious group delay times. Model Resolution matrices for our six arrays show values > 0.7 for most of the modal domain, approaching unity at the center of the model domain; we are then confident that we have an adequate number of rays covering our array space, and should experience minimal smearing of our resultant model due to application of inverse solution on the data. After inverting for the group velocity maps, a second inversion is performed of the group velocity maps for the 3D shear velocity model. This inversion is underdetermined and a second order Tikhonov regularization is used to obtain stable inverse images

  17. 3D Seismic Imaging over a Potential Collapse Structure

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; O'Connell, Daniel; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    The Middle-East has seen a recent boom in construction including the planning and development of complete new sub-sections of metropolitan areas. Before planning and construction can commence, however, the development areas need to be investigated to determine their suitability for the planned project. Subsurface parameters such as the type of material (soil/rock), thickness of top soil or rock layers, depth and elastic parameters of basement, for example, comprise important information needed before a decision concerning the suitability of the site for construction can be made. A similar problem arises in environmental impact studies, when subsurface parameters are needed to assess the geological heterogeneity of the subsurface. Environmental impact studies are typically required for each construction project, particularly for the scale of the aforementioned building boom in the Middle East. The current study was conducted in Qatar at the location of a future highway interchange to evaluate a suite of 3D seismic techniques in their effectiveness to interrogate the subsurface for the presence of karst-like collapse structures. The survey comprised an area of approximately 10,000 m2 and consisted of 550 source- and 192 receiver locations. The seismic source was an accelerated weight drop while the geophones consisted of 3-component 10 Hz velocity sensors. At present, we analyzed over 100,000 P-wave phase arrivals and performed high-resolution 3-D tomographic imaging of the shallow subsurface. Furthermore, dispersion analysis of recorded surface waves will be performed to obtain S-wave velocity profiles of the subsurface. Both results, in conjunction with density estimates, will be utilized to determine the elastic moduli of the subsurface rock layers.

  18. High-resolution diapycnal mixing map of the Alboran Sea thermocline from seismic reflection images

    NASA Astrophysics Data System (ADS)

    Mojica, Jhon F.; Sallarès, Valentí; Biescas, Berta

    2018-06-01

    The Alboran Sea is a dynamically active region where the salty and warm Mediterranean water first encounters the incoming milder and cooler Atlantic water. The interaction between these two water masses originates a set of sub-mesoscale structures and a complex sequence of processes that entail mixing close to the thermocline. Here we present a high-resolution map of the diapycnal diffusivity around the thermocline depth obtained using acoustic data recorded with a high-resolution multichannel seismic system. The map reveals a patchy thermocline, with spots of strong diapycnal mixing juxtaposed with areas of weaker mixing. The patch size is of a few kilometers in the horizontal scale and of 10-15 m in the vertical one. The comparison of the obtained maps with the original acoustic images shows that mixing tends to concentrate in areas where internal waves, which are ubiquitous in the surveyed area, become unstable and shear instabilities develop, enhancing energy transfer towards the turbulent regime. These results are also compared with others obtained using more conventional oceanographic probes. The values estimated based on the seismic data are within the ranges of values obtained from oceanographic data analysis, and they are also consistent with reference theoretical values. Overall, our results demonstrate that high-resolution seismic systems allow the remote quantification of mixing at the thermocline depth with unprecedented resolution.

  19. Imaging the Ferron Member of the Mancos Shale formation using reprocessed high-resolution 2-D seismic reflection data: Emery County, Utah

    USGS Publications Warehouse

    Taylor, D.J.

    2003-01-01

    Late in 1982 and early in 1983, Arco Exploration contracted with Rocky Mountain Geophysical to acquired four high-resolution 2-D multichannel seismic reflection lines in Emery County, Utah. The primary goal in acquiring this data was an attempt to image the Ferron Member of the Upper Cretaceous Mancos Shale. Design of the high-resolution 2-D seismic reflection data acquisition used both a short geophone group interval and a short sample interval. An explosive energy source was used which provided an input pulse with broad frequency content and higher frequencies than typical non-explosive Vibroseis?? sources. Reflections produced by using this high-frequency energy source when sampled at a short interval are usually able to resolve shallow horizons that are relatively thin compared to those that can be resolved using more typical oil and gas exploration seismic reflection methods.The U.S. Geological Survey-Energy Resources Program, Geophysical Processing Group used the processing sequence originally applied by Arco in 1984 as a guide and experimented with processing steps applied in a different order using slightly different parameters in an effort to improve imaging the Ferron Member horizon. As with the Arco processed data there are sections along all four seismic lines where the data quality cannot be improved upon, and in fact the data quality is so poor that the Ferron horizon cannot be imaged at all.Interpretation of the seismic and core hole data indicates that the Ferron Member in the study area represent a deltaic sequence including delta front, lower delta plain, and upper delta plain environments. Correlating the depositional environments for the Ferron Member as indicated in the core holes with the thickness of Ferron Member suggests the presence of a delta lobe running from the northwest to the southeast through the study area. The presence of a deltaic channel system within the delta lobe complex might prove to be an interesting conventional

  20. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    NASA Astrophysics Data System (ADS)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  1. Imaging Fracture Networks Using Angled Crosshole Seismic Logging and Change Detection Techniques

    NASA Astrophysics Data System (ADS)

    Knox, H. A.; Grubelich, M. C.; Preston, L. A.; Knox, J. M.; King, D. K.

    2015-12-01

    We present results from a SubTER funded series of cross borehole geophysical imaging efforts designed to characterize fracture zones generated with an alternative stimulation method, which is being developed for Enhanced Geothermal Systems (EGS). One important characteristic of this stimulation method is that each detonation will produce multiple fractures without damaging the wellbore. To date, we have collected six full data sets with ~30k source-receiver pairs each for the purposes of high-resolution cross borehole seismic tomographic imaging. The first set of data serves as the baseline measurement (i.e. un-stimulated), three sets evaluate material changes after fracture emplacement and/or enhancement, and two sets are used for evaluation of pick error and seismic velocity changes attributable to changing environmental factors (i.e. saturation due to rain/snowfall in the shallow subsurface). Each of the six datasets has been evaluated for data quality and first arrivals have been picked on nearly 200k waveforms in the target area. Each set of data is then inverted using a Vidale-Hole finite-difference 3-D eikonal solver in two ways: 1) allowing for iterative ray tracing and 2) with fixed ray paths determined from the test performed before the fracture stimulation of interest. Utilizing these two methods allows us to compare and contrast the results from two commonly used change detection techniques. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Wide-angle Marine Seismic Refraction Imaging of Vertical Faults: Pre-Stack Turning Wave Migrations of Synthetic Data and Implications for Survey Design

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Lizarralde, D.; McGuire, J.; Hole, J. A.

    2006-12-01

    We consider methodologies, including survey design and processing algorithms, which are best suited to imaging vertical reflectors in oceanic crust using marine seismic techniques. The ability to image the reflectivity structure of transform faults as a function of depth, for example, may provide new insights into what controls seismicity along these plate boundaries. Turning-wave migration has been used with success to image vertical faults on land. With synthetic datasets we find that this approach has unique difficulties in the deep ocean. The fault-reflected crustal refraction phase (Pg-r) typically used in pre-stack migrations is difficult to isolate in marine seismic data. An "imagable" Pg-r is only observed in a time window between the first arrivals and arrivals from the sediments and the thick, slow water layer at offsets beyond ~25 km. Ocean- bottom seismometers (OBSs), as opposed to a long surface streamer, must be used to acquire data suitable for crustal-scale vertical imaging. The critical distance for Moho reflections (PmP) in oceanic crust is also ~25 km, thus Pg-r and PmP-r are observed with very little separation, and the fault-reflected mantle refraction (Pn-r) arrives prior to Pg-r as the observation window opens with increased OBS-to-fault distance. This situation presents difficulties for "first-arrival" based Kirchoff migration approaches and suggests that wave- equation approaches, which in theory can image all three phases simultaneously, may be more suitable for vertical imaging in oceanic crust. We will present a comparison of these approaches as applied to a synthetic dataset generated from realistic, stochastic velocity models. We will assess their suitability, the migration artifacts unique to the deep ocean, and the ideal instrument layout for such an experiment.

  3. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    NASA Astrophysics Data System (ADS)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  4. Metamorphosed Plio-Pleistocene evaporites and the origins of hypersaline brines in the Salton Sea geothermal system, California: Fluid inclusion evidence

    NASA Astrophysics Data System (ADS)

    McKibben, Michael A.; Williams, Alan E.; Okubo, Susumu

    1988-05-01

    The Salton Sea geothermal system (SSGS) occurs in Plio-Pleistocene deltaic-lacustrine-evaporite sediments deposited in the Salton Trough, an active continental rift zone. Temperatures up to 365°C and hypersaline brines with up to 26 wt.% TDS are encountered at 1-3 km depth in the sediments, which are undergoing active greenschist facies hydrothermal metamorphism. Previous models for the origins of the Na-Ca-K-Cl brines have assumed that the high salinities were derived mainly from the downward percolation of cold, dense brines formed by low-temperature dissolution of shallow non-marine evaporites. New drillcores from the central part of the geothermal field contain metamorphosed, bedded evaporites at 1 km depth consisting largely of hornfelsic anhydrite interbedded with anhydrite-cemented solution-collapse shale breccias. Fluid inclusions trapped within the bedded and breccia-cementing anhydrite homogenize at 300°C (identical to the measured downhole temperature) and contain saline Na-Ca-K-Cl brines. Some of the inclusions contain up to 50 vol.% halite, sylvite and carbonate crystals at room temperature, and some halite crystals persist to above 300°C upon laboratory heating. The data are consistent with the trapping of halite-saturated Na-Ca-K-Cl fluids during hydrothermal metamorphism of the evaporites and accompanying solution collapse of interbedded shales. We conclude that many of the salt crystals in inclusions are the residuum of bedded evaporitic salt that was dissolved during metamorphism by heated connate fluids. Therefore, the high salinities of the Salton Sea geothermal brines are derived in part from the in situ hydrothermal metamorphism and dissolution of halides and CaSO 4 from relatively deeply-buried lacustrine evaporites. This fact places important constraints on modeling fluid-flow in the SSGS, as brines need not have migrated over great distances. The brines have been further modified to their present complex Na-Ca-K-Fe-Mn-Cl compositions by

  5. Distribution of free gas and 3D mirror image structures beneath Sevastopol mud volcano, Black sea, from 3D high resolution wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Krabbenhoeft, A.; Papenberg, C. A.; Klaeschen, D.; Bialas, J.

    2016-12-01

    The goal of this study is to image the sub-seafloor structure beneath the Sevastopol mud volcano (SMV), Sorokin Trough, SE of the Crimean peninsula, Black Sea. The focus lies on structures of/within the feeder channel, the distribution of gas and gas hydrates, and their relation to fluid migration zones in sediments. This study concentrates on a 3D high resolution seismic grid (7 km x 2.5 km) recorded with 13 ocean bottom stations (OBS). The 3D nature of the experiment results from the geometry of 68 densely spaced (25/50 m) profiles, as well as the cubical configuration of the densely spaced receivers on the seafloor ( 300 m station spacing). The seismic profiles are typically longer than 6 km which results in large offsets for the reflections of the OBS. This enables the study of the seismic velocities of the sub-seafloor sediments and additionally large offset incident analysis.The 3D Kirchhoff mirror image time migration, applied to all OBS sections including all shots from all profiles, leads to a spatial image of the sub-seafloor. Here, the migration was applied with the velocity distribution of 1.49 km/s in the water column, 1.5 km/s below the seafloor (bsf) increasing to 2 km/s for the deeper sediments at 2 s bsf. Acoustic blanking occurs beneath the south-easterly located OBS and is associated with the feeder channel of the mud volcano. There, gas from depth can vertically migrate to the seafloor and on its way to the surface horizontally distribute patchily within sediment layers. High amplitude reflections are not observed as continuous reflections, but in a patchy distribution. They are associated with accumulations of gas. Also structures exist within the feeder channel of the SMV.3D mirror imaging proves to be a good tool to seismically image structures compared with 2D streamer seismics, especially steep dipping reflectors and structures which are otherwise obscured by signal scattering, i.e structures associated with fluid migration paths.

  6. Occurrence, distribution and transport of pesticides into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, L.A.; Kuivila, K.M.

    2008-01-01

    The Salton Sea is a hypersaline lake located in southeastern California. Concerns over the ecological impacts of sediment quality and potential human exposure to dust emissions from exposed lakebed sediments resulting from anticipated shrinking of shoreline led to a study of pesticide distribution and transport within the Salton Sea Basin, California, in 2001-2002. Three sampling stations-upriver, river mouth, and offshore-were established along each of the three major rivers that discharge into the Salton Sea. Large-volume water samples were collected for analysis of pesticides in water and suspended sediments at the nine sampling stations. Samples of the bottom sediment were also collected at each site for pesticide analysis. Sampling occurred in October 2001, March-April 2002, and October 2002, coinciding with the regional fall and spring peaks in pesticide use in the heavily agricultural watershed. Fourteen current-use pesticides were detected in water and the majority of dissolved concentrations ranged from the limits of detection to 151 ng/l. Diazinon, EPTC and malathion were detected at much higher concentrations (940-3,830 ng/l) at the New and Alamo River upriver and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and EPTC were higher in the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring, which matched seasonal use patterns of these pesticides. Current-use pesticides were also detected on suspended and bed sediments in concentrations ranging from detection limits to 106 ng/g. Chlorpyrifos, dacthal, EPTC, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number of detections and concentrations of suspended sediment-associated pesticides were often similar for the river upriver and near-shore sites, consistent with downstream transport of pesticides via suspended sediment. While detectable suspended sediment

  7. Characterization of intrabasin faulting and deformation for earthquake hazards in southern Utah Valley, Utah, from high-resolution seismic imaging

    USGS Publications Warehouse

    Stephenson, William J.; Odum, Jack K.; Williams, Robert A.; McBride, John H.; Tomlinson, Iris

    2012-01-01

    We conducted active and passive seismic imaging investigations along a 5.6-km-long, east–west transect ending at the mapped trace of the Wasatch fault in southern Utah Valley. Using two-dimensional (2D) P-wave seismic reflection data, we imaged basin deformation and faulting to a depth of 1.4 km and developed a detailed interval velocity model for prestack depth migration and 2D ground-motion simulations. Passive-source microtremor data acquired at two sites along the seismic reflection transect resolve S-wave velocities of approximately 200 m/s at the surface to about 900 m/s at 160 m depth and confirm a substantial thickening of low-velocity material westward into the valley. From the P-wave reflection profile, we interpret shallow (100–600 m) bedrock deformation extending from the surface trace of the Wasatch fault to roughly 1.5 km west into the valley. The bedrock deformation is caused by multiple interpreted fault splays displacing fault blocks downward to the west of the range front. Further west in the valley, the P-wave data reveal subhorizontal horizons from approximately 90 to 900 m depth that vary in thickness and whose dip increases with depth eastward toward the Wasatch fault. Another inferred fault about 4 km west of the mapped Wasatch fault displaces horizons within the valley to as shallow as 100 m depth. The overall deformational pattern imaged in our data is consistent with the Wasatch fault migrating eastward through time and with the abandonment of earlier synextensional faults, as part of the evolution of an inferred 20-km-wide half-graben structure within Utah Valley. Finite-difference 2D modeling suggests the imaged subsurface basin geometry can cause fourfold variation in peak ground velocity over distances of 300 m.

  8. Broadband seismic : case study modeling and data processing

    NASA Astrophysics Data System (ADS)

    Cahyaningtyas, M. B.; Bahar, A.

    2018-03-01

    Seismic data with wide range of frequency is needed due to its close relation to resolution and the depth of the target. Low frequency provides deeper penetration for the imaging of deep target. In addition, the wider the frequency bandwidth, the sharper the wavelet. Sharp wavelet is responsible for high-resolution imaging and is very helpful to resolve thin bed. As a result, the demand for broadband seismic data is rising and it spurs the technology development of broadband seismic in oil and gas industry. An obstacle that is frequently found on marine seismic data is the existence of ghost that affects the frequency bandwidth contained on the seismic data. Ghost alters bandwidth to bandlimited. To reduce ghost effect and to acquire broadband seismic data, lots of attempts are used, both on the acquisition and on the processing of seismic data. One of the acquisition technique applied is the multi-level streamer, where some streamers are towed on some levels of depth. Multi-level streamer will yield data with varied ghost notch shown on frequency domain. If the ghost notches are not overlapping, the summation of multi-level streamer data will reduce the ghost effect. The result of the multi-level streamer data processing shows that reduction of ghost notch on frequency domain indeed takes place.

  9. Shallow seismic imaging of folds above the Puente Hills blind-thrust fault, Los Angeles, California

    USGS Publications Warehouse

    Pratt, T.L.; Shaw, J.H.; Dolan, J.F.; Christofferson, S.A.; Williams, R.A.; Odum, J.K.; Plesch, A.

    2002-01-01

    High-resolution seismic reflection profiles image discrete folds in the shallow subsurface (<600 m) above two segments of the Puente Hills blind-thrust fault system, Los Angeles basin, California. The profiles demonstrate late Quaternary activity at the fault tip, precisely locate the axial surfaces of folds within the upper 100 m, and constrain the geometry and kinematics of recent folding. The Santa Fe Springs segment of the Puente Hills fault zone shows an upward-narrowing kink band with an active anticlinal axial surface, consistent with fault-bend folding above an active thrust ramp. The Coyote Hills segment shows an active synclinal axial surface that coincides with the base of a 9-m-high scarp, consistent with tip-line folding or the presence of a backthrust. The seismic profiles pinpoint targets for future geologic work to constrain slip rates and ages of past events on this important fault system.

  10. UW Imaging of Seismic-Physical-Models in Air Using Fiber-Optic Fabry-Perot Interferometer.

    PubMed

    Rong, Qiangzhou; Hao, Yongxin; Zhou, Ruixiang; Yin, Xunli; Shao, Zhihua; Liang, Lei; Qiao, Xueguang

    2017-02-17

    A fiber-optic Fabry-Perot interferometer (FPI) has been proposed and demonstrated for the ultrasound wave (UW) imaging of seismic-physical models. The sensor probe comprises a single mode fiber (SMF) that is inserted into a ceramic tube terminated by an ultra-thin gold film. The probe performs with an excellent UW sensitivity thanks to the nanolayer gold film, and thus is capable of detecting a weak UW in air medium. Furthermore, the compact sensor is a symmetrical structure so that it presents a good directionality in the UW detection. The spectral band-side filter technique is used for UW interrogation. After scanning the models using the sensing probe in air, the two-dimensional (2D) images of four physical models are reconstructed.

  11. Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.

    2002-01-01

    Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip

  12. Investigations of a large scale eared grebe (Podiceps nigricollis) die-off at the Salton Sea, California in 1992

    USGS Publications Warehouse

    Meteyer, C.U.; Audet, D.J.; Rocke, T.E.; Radke, W.; Creekmore, L.H.; Duncan, R.

    2004-01-01

    An estimated 150,000 Eared Grebes (Podiceps nigricollis) died at the Salton Sea between 16 December 1991 and 21 April 1992. This represented the largest documented mortality event of Eared Grebes at the time and approximately 6% of the North American population. During the die-off, grebes exhibited several uncharacteristic behaviors, such as congregating at freshwater tributaries, repeatedly gulping freshwater, preening excessively, moving onto land, and allowing close approach and/or capture. Avian cholera was diagnosed in Eared Grebes collected along the north and west shoreline of the Sea late in the die-off but not from the majority of the Eared Grebes dying along the south shore. Gross and histological examinations and diagnostic testing for viruses, bacteria, and parasites did not identify the cause of mortality in the majority of Eared Grebes examined from the south shore of the Sea. Liver concentrations of arsenic, chromium, DDE, mercury, selenium, and zinc were elevated in some Eared Grebes, but none of those contaminants exceeded known thresholds for independent lethality. Poisoning by heavy metals, organochlorine, organophosphorus, or carbamate pesticides, avian botulism, and salt were ruled out as the cause of mortality. Hypotheses for the die-off are interactive effects of contaminants, immunosuppression, a yet unidentified biotoxin or pathogen present in the Salton Sea, impairment of feather waterproofing leading to hypothermia, or a unique manifestation of avian cholera that evades laboratory detection.

  13. Imaging the Iceland Hotspot Track Beneath Greenland with Seismic Noise Correlations

    NASA Astrophysics Data System (ADS)

    Mordret, A.

    2017-12-01

    During the past 65 million years, the Greenland craton drifted over the Iceland hotspot; however, uncertainties in geodynamic modeling and a lack of geophysical evidence prevent an accurate reconstruction of the hotspot track. I image the Greenland lithosphere down to 300 km depth with seismic noise tomography. The hotspot track is observed as a linear high-velocity anomaly in the middle crust associated with magmatic intrusions. In the upper mantle, the remnant thermal signature of the hotspot manifests as low velocity and low viscosity bodies. This new detailed picture of the Greenland lithosphere will drive more accurate geodynamic reconstructions of tectonic plate motions and prediction of Greenland heat flow, which in turn will enable more precise estimations of the Greenland ice-sheet mass balance.

  14. Dissolved pesticides in the Alamo River and the Salton Sea, California, 1996-97

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Kuivila, Kathryn; Bergamaschi, Brian A.

    2002-01-01

    Water samples were collected from the Alamo River and the Salton Sea, California, in autumn 1996 and late winter/early spring 1997 and analyzed for dissolved pesticides. The two seasons chosen for sampling were during pesticide application periods in the Imperial Valley. Pesticide concentrations were measured in filtered water samples using solid-phase extraction and analyzed by gas chromatography/mass spectrometry. Generally, the highest concentrations were measured in the Alamo River. The concentrations of carbaryl, chlorpyrifos, cycloate, dacthal, diazinon, and eptam were highest in samples collected in autumn 1996. In contrast, the concentrations of atrazine, carbofuran, and malathion were highest in samples collected in late winter/early spring 1997. The highest concentrations measured of atrazine, carbofuran, dacthal, eptam, and malathion all exceeded 1,000 nanograms per liter.

  15. Hydrogen sulfide production and volatilization in a polymictic eutrophic saline lake, Salton Sea, California.

    PubMed

    Reese, Brandi Kiel; Anderson, Michael A; Amrhein, Christopher

    2008-11-15

    The Salton Sea is a large shallow saline lake located in southern California that is noted for high sulfate concentrations, substantial algal productivity, and very warm water column temperatures. These conditions are well-suited for sulfide production, and sulfide has been implicated in summer fish kills, although no studies have been conducted to specifically understand hydrogen sulfide production and volatilization there. Despite polymictic mixing patterns and relatively short accumulation periods, the amount of sulfide produced is comparable to meromictic lakes. Sulfide levels in the Salton Sea reached concentrations of 1.2 mmol L(-1) of total free sulfide in the hypolimnion and 5.6 mmol L(-1) in the sediment pore water. Strong winds in late July mixed H2S into the surface water, where it depleted the entire water column of dissolved oxygen and reached a concentration of 0.1 mmol L(-1). Sulfide concentrations exceeded the toxicity threshold of tilapia (Oreochromis mossambicus) and combined with strong anoxia throughout the water column, resulted in a massive fish kill. The mixing of sulfide into the surface waters also increased atmospheric H2S concentrations, reaching 1.0 micromol m(-3). The flux of sulfide from the sediment into the water column was estimated to range from 2-3 mmol m(-2) day(-1) during the winter and up to 8 mmol m(-2) day(-1) during the summer. Application of the two-layer model for volatilization indicates that up to 19 mmol m(-2) day(-1) volatilized from the surface during the mixing event. We estimate that as much as 3400 Mg year(-1) or approximately 26% of sulfide that diffused into the water column from the deepest sediments may have been volatilized to the atmosphere.

  16. High-resolution image of Calaveras fault seismicity

    USGS Publications Warehouse

    Schaff, D.P.; Bokelmann, G.H.R.; Beroza, G.C.; Waldhauser, F.; Ellsworth, W.L.

    2002-01-01

    By measuring relative earthquake arrival times using waveform cross correlation and locating earthquakes using the double difference technique, we are able to reduce hypocentral errors by 1 to 2 orders of magnitude over routine locations for nearly 8000 events along a 35-km section of the Calaveras Fault. This represents ~92% of all seismicity since 1984 and includes the rupture zone of the M 6.2 1984 Morgan Hill, California, earthquake. The relocated seismicity forms highly organized structures that were previously obscured by location errors. There are abundant repeating earthquake sequences as well as linear clusters of earthquakes. Large voids in seismicity appear with dimensions of kilometers that have been aseismic over the 30-year time interval, suggesting that these portions of the fault are either locked or creeping. The area of greatest slip in the Morgan Hill main shock coincides with the most prominent of these voids, suggesting that this part of the fault may be locked between large earthquakes. We find that the Calaveras Fault at depth is extremely thin, with an average upper bound on fault zone width of 75 m. Given the location error, however, this width is not resolvably different from zero. The relocations reveal active secondary faults, which we use to solve for the stress field in the immediate vicinity of the Calaveras Fault. We find that the maximum compressive stress is at a high angle, only 13 from the fault normal, supporting previous interpretations that this fault is weak.

  17. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, David S.; Catchings, Rufus D.; Goldman, Mark R.; Gohn, Gregory S.; Horton, J. Wright; Edwards, Lucy E.; Rymer, Michael J.; Gandhok, Gini

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (~5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientific Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderate-amplitude, discontinuous, dipping reflections below ~527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ~527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fill sediments and postimpact Eocene to Pleistocene sediments. Reflections with ~20-30 m of relief in the uppermost part of the crater-fill and lowermost part of the postimpact section suggest differential compaction of the crater-fill materials during early postimpact time. The top of the crater-fill section also shows ~20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostrati-graphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the first possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postim-pact section unrelated to structures in the crater fill indicates postimpact sediment compaction.

  18. Imaging of 2-D multichannel land seismic data using an iterative inversion-migration scheme, Naga Thrust and Fold Belt, Assam, India

    NASA Astrophysics Data System (ADS)

    Jaiswal, Priyank; Dasgupta, Rahul

    2010-05-01

    We demonstrate that imaging of 2-D multichannel land seismic data can be effectively accomplished by a combination of reflection traveltime tomography and pre-stack depth migration (PSDM); we refer to the combined process as "the unified imaging". The unified imaging comprises cyclic runs of joint reflection and direct arrival inversion and pre-stack depth migration. From one cycle to another, both the inversion and the migration provide mutual feedbacks that are guided by the geological interpretation. The unified imaging is implemented in two broad stages. The first stage is similar to the conventional imaging except that it involves a significant use of velocity model from the inversion of the direct arrivals for both datuming and stacking velocity analysis. The first stage ends with an initial interval velocity model (from the stacking velocity analysis) and a corresponding depth migrated image. The second stage updates the velocity model and the depth image from the first stage in a cyclic manner; a single cycle comprises a single run of reflection traveltime inversion followed by PSDM. Interfaces used in the inversion are interpretations of the PSDM image in the previous cycle and the velocity model used in PSDM is from the joint inversion in the current cycle. Additionally in every cycle interpreted horizons in the stacked data are inverted as zero-offset reflections for constraining the interfaces; the velocity model is maintained stationary for the zero-offset inversion. A congruency factor, j, which measures the discrepancy between interfaces from the interpretation of the PSDM image and their corresponding counterparts from the inversion of the zero-offset reflections within assigned uncertainties, is computed in every cycle. A value of unity for jindicates that images from both the inversion and the migration are equivalent; at this point the unified imaging is said to have converged and is halted. We apply the unified imaging to 2-D multichannel

  19. Earthquake dynamics. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops.

    PubMed

    Brenguier, F; Campillo, M; Takeda, T; Aoki, Y; Shapiro, N M; Briand, X; Emoto, K; Miyake, H

    2014-07-04

    Volcanic eruptions are caused by the release of pressure that has accumulated due to hot volcanic fluids at depth. Here, we show that the extent of the regions affected by pressurized fluids can be imaged through the measurement of their response to transient stress perturbations. We used records of seismic noise from the Japanese Hi-net seismic network to measure the crustal seismic velocity changes below volcanic regions caused by the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake. We interpret coseismic crustal seismic velocity reductions as related to the mechanical weakening of the pressurized crust by the dynamic stress associated with the seismic waves. We suggest, therefore, that mapping seismic velocity susceptibility to dynamic stress perturbations can be used for the imaging and characterization of volcanic systems. Copyright © 2014, American Association for the Advancement of Science.

  20. A Dream of a Mission: Stellar Imager and Seismic Probe

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Schrijver, Carolus J.; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The Stellar Imager and Seismic Probe (SISP) is a mission to understand the various effects of magnetic fields of stars, the dynamos that generate them, and the internal structure and dynamics of the stars in which they exist. The ultimate goal is to achieve the best-possible forecasting of solar activity on times scales ranging up to decades, and an understanding of the impact of stellar magnetic activity on astrobiology and life in the Universe. The road to that goal will revolutionize our understanding of stars and stellar systems, the building blocks of the Universe. SISP will zoom in on what today - with few exceptions - we only know as point sources, revealing processes never before seen, thus providing a tool to astrophysics as fundamental as the microscope is to the study of life on Earth. SISP is an ultraviolet aperture-synthesis imager with 8-10 telescopes with meter-class apertures, and a central hub with focal-plane instrumentation that allows spectrophotometry in passbands as narrow as a few Angstroms up to hundreds of Angstroms. SISP will image stars and binaries with one hundred to one thousand resolution elements on their surface, and sound their interiors through asteroseismology to image internal structure, differential rotation, and large-scale circulations; this will provide accurate knowledge of stellar structure and evolution and complex transport processes, and will impact numerous branches of (astro)physics ranging from the Big Bang to the future of the Universe. Fitting naturally within the NASA long-term time line, SISP complements defined missions, and with them will show us entire other solar systems, from the central star to their orbiting planets.

  1. COMPARISON OF SEISMIC SIGNATURES OF FLARES OBTAINED BY SOHO/MICHELSON DOPPLER IMAGER AND GONG INSTRUMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zharkov, S.; Matthews, S. A.; Zharkova, V. V.

    2011-10-01

    The first observations of seismic responses to solar flares were carried out using time-distance (TD) and holography techniques applied to SOHO/Michelson Doppler Imager (MDI) Dopplergrams obtained from space and unaffected by terrestrial atmospheric disturbances. However, the ground-based network GONG is potentially a very valuable source of sunquake observations, especially in cases where space observations are unavailable. In this paper, we present an updated technique for pre-processing of GONG observations for the application of subjacent vantage holography. Using this method and TD diagrams, we investigate several sunquakes observed in association with M- and X-class solar flares and compare the outcomes withmore » those reported earlier using MDI data. In both GONG and MDI data sets, for the first time, we also detect the TD ridge associated with the 2001 September 9 flare. Our results show reassuringly positive identification of sunquakes from GONG data that can provide further information about the physics of seismic processes associated with solar flares.« less

  2. Surface-seismic imaging for nehrp soil profile classifications and earthquake hazards in urban areas

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Odum, J.K.

    1998-01-01

    We acquired high-resolution seismic-refraction data on the ground surface in selected areas of the San Fernando Valley (SFV) to help explain the earthquake damage patterns and the variation in ground motion caused by the 17 January 1994 magnitude 6.7 Northridge earthquake. We used these data to determine the compressional- and shear-wave velocities (Vp and Vs) at 20 aftershock recording sites to 30-m depth ( V??s30, and V??p30). Two other sites, located next to boreholes with downhole Vp and Vs data, show that we imaged very similar seismic-vefocity structures in the upper 40 m. Overall, high site response appears to be associated with tow Vs in the near surface, but there can be a wide rangepf site amplifications for a given NEHRP soil type. The data suggest that for the SFV, if the V??s30 is known, we can determine whether the earthquake ground motion will be amplified above a factor of 2 relative to a local rock site.

  3. Near-vertical seismic reflection image using a novel acquisition technique across the Vrancea Zone and Foscani Basin, south-eastern Carpathians (Romania)

    NASA Astrophysics Data System (ADS)

    Panea, I.; Stephenson, R.; Knapp, C.; Mocanu, V.; Drijkoningen, G.; Matenco, L.; Knapp, J.; Prodehl, K.

    2005-12-01

    The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August-September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW-ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as "Texans"), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (˜10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10-25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons

  4. Seismic signature of crustal magma and fluid from deep seismic sounding data across Tengchong volcanic area

    NASA Astrophysics Data System (ADS)

    Bai, Z. M.; Zhang, Z. Z.; Wang, C. Y.; Klemperer, S. L.

    2012-04-01

    The weakened lithosphere around eastern syntax of Tibet plateau has been revealed by the Average Pn and Sn velocities, the 3D upper mantle velocity variations of P wave and S wave, and the iimaging results of magnetotelluric data. Tengchong volcanic area is neighboring to core of eastern syntax and famous for its springs, volcanic-geothermal activities and remarkable seismicity in mainland China. To probe the deep environment for the Tengchong volcanic-geothermal activity a deep seismic sounding (DSS) project was carried out across the this area in 1999. In this paper the seismic signature of crustal magma and fluid is explored from the DSS data with the seismic attribute fusion (SAF) technique, hence four possible positions for magma generation together with some locations for porous and fractured fluid beneath the Tengchong volcanic area were disclosed from the final fusion image of multi seismic attributes. The adopted attributes include the Vp, Vs and Vp/Vs results derived from a new inversion method based on the No-Ray-Tomography technique, and the migrated instantaneous attributes of central frequency, bandwidth and high frequency energy of pressure wave. Moreover, the back-projected ones which are mainly consisted by the attenuation factor Qp , the delay-time of shear wave splitting, and the amplitude ratio between S wave and P wave + S wave were also considered in this fusion process. Our fusion image indicates such a mechanism for the surface springs: a large amount of heat and the fluid released by the crystallization of magma were transmitted upward into the fluid-filled rock, and the fluid upwells along some pipeline since the high pressure in deep, thus the widespread springs of Tengchong volcanic area were developed. Moreover, the fusion image, regional volcanic and geothermal activities, and the seismicity suggest that the main risk of volcanic eruption was concentrated to the south of Tengchong city, especially around the shot point (SP) Tuantian

  5. Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow.

    PubMed

    McKenna, J; Sherlock, D; Evans, B

    2001-12-01

    This paper presents a physical modelling study outlining a technique whereby buoyant contaminant flow within water-saturated unconsolidated sand was remotely monitored utilizing the time-lapse 3-D (TL3-D) seismic response. The controlled temperature and pressure conditions, along with the high level of acquisition repeatability attainable using sandbox physical models, allow the TL3-D seismic response to pore fluid movement to be distinguished from all other effects. TL3-D seismic techniques are currently being developed to monitor hydrocarbon reserves within producing reservoirs in an endeavour to improve overall recovery. However, in many ways, sandbox models under atmospheric conditions more accurately simulate the shallow subsurface than petroleum reservoirs. For this reason, perhaps the greatest application for analogue sandbox modelling is to improve our understanding of shallow groundwater and environmental flow mechanisms. Two fluid flow simulations were conducted whereby air and kerosene were injected into separate water-saturated unconsolidated sand models. In both experiments, a base 3-D seismic volume was recorded and compared with six later monitor surveys recorded while the injection program was conducted. Normal incidence amplitude and P-wave velocity information were extracted from the TL3-D seismic data to provide visualization of contaminant migration. Reflection amplitudes displayed qualitative areal distribution of fluids when a suitable impedance contrast existed between pore fluids. TL3-D seismic reflection tomography can potentially monitor the change in areal distribution of fluid contaminants over time, indicating flow patterns. However, other research and this current work have not established a quantifiable relationship between either normal reflection amplitudes and attenuation and fluid saturation. Generally, different pore fluids will have unique seismic velocities due to differences in compressibility and density. The predictable

  6. Integrating passive seismicity with Web-Based GIS for a new perspective on volcano imaging and monitoring: the case study of Mt. Etna

    NASA Astrophysics Data System (ADS)

    Guardo, Roberto; De Siena, Luca

    2017-04-01

    The timely estimation of short- and long-term volcanic hazard relies on the existence of detailed 3D geophysical images of volcanic structures. High-resolution seismic models of the absorbing uppermost conduit systems and highly-heterogeneous shallowest volcanic layers, while particularly challenging to obtain, provide important data to locate feasible eruptive centers and forecast flank collapses and lava ascending paths. Here, we model the volcanic structures of Mt. Etna (Sicily, Italy) and its outskirts using the Horizontal to Vertical Spectral Ratio method, generally applied to industrial and engineering settings. The integration of this technique with Web-based Geographic Information System improves precision during the acquisition phase. It also integrates geological and geophysical visualization of 3D surface and subsurface structures in a queryable environment representing their exact three-dimensional geographic position, enhancing interpretation. The results show high-resolution 3D images of the shallowest volcanic and feeding systems, which complement (1) deeper seismic tomography imaging and (2) the results of recent remote sensing imaging. The main novelty with respect to previous model is the presence of a vertical structure that divides the pre-existing volcanic complexes of Ellittico and Cuvigghiuni. This could be interpreted as a transitional phase between the two systems. A comparison with recent remote sensing and geological results, however, shows clear connections between the anomaly and dynamic active during the last 15 years. We infer that seismic noise measurements from miniaturized instruments, when combined with remote sensing techniques, represent an important resource when monitoring volcanic media and eruptions, reducing the risk of loss of human lives and instrumentation.

  7. The Caucasus Seismic Network (CNET): Seismic Structure of the Greater and Lesser Caucasus

    NASA Astrophysics Data System (ADS)

    Sandvol, E. A.; Mackey, K. G.; Nabelek, J.; Yetermishli, G.; Godoladze, T.; Babayan, H.; Malovichko, A.

    2017-12-01

    The Greater Caucasus are a portion of the Alpine-Himalayan mountain belt that has undergone rapid uplift in the past 5 million years, thus serving as a unique natural laboratory to study the early stages of orogenesis. Relatively lower resolution seismic velocity models of this region show contradictory lateral variability. Furthermore, recent waveform modeling of seismograms has clearly demonstrated the presence of deep earthquakes (with a maximum hypocentral depth of 175 km) below the Greater Caucasus. The region has been largely unexplored in terms of the detailed uppermost mantle and crustal seismic structure due in part to the disparate data sets that have not yet been merged as well as key portions being sparsely instrumented. We have established collaborative agreements across the region. Building on these agreements we recently deployed a major multi-national seismic array across the Greater Caucasus to address fundamental questions about the nature of continental deformation in this poorly understood region. Our seismic array has two components: (1) a grid of stations spanning the entire Caucasus and (2) two seismic transects consisting of stations spaced at distances of less than 10 km that cross the Greater Caucasus. In addition to the temporary stations, we are working to integrate data from the national networks to produce high resolution images of the seismic structure. Using data from over 106 new seismic stations in Azerbaijan, Armenia, Russia, and Georgia, we hope to gain a better understanding of the recent uplift ( 5 Ma) of the Greater Caucasus and the nature of seismogenic deformation in the region.

  8. Using Near Surface P and S Wave Velocities and Seismic Reflection Images to Detect the Westerly Extension of the Active Meishan Fault in Southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Putriani, E.; Huang, W. H.; Shih, R. C.

    2017-12-01

    The Southwestern Taiwan has higher potential seismic risks among the island. In 1906 the Meishan earthquake of magnitude 7.1 caused very severe damages. The associated Meishan fault was believed extended from Meishan westerly to Hsingang area for 23 km long; however, only the eastern part of the fault could be traces on the surface. The western part of the Meishan fault was simply proposed from the observed lineation of sand blow from the middle of the fault, the Minhsiung area westerly to the Hsingang area. The purpose of this paper is hope to prove the extension of this fault by using near surface P wave and S wave velocities and the seismic reflection images acquired across the suspicious fault location. Totally, we have conducted 20 seismic velocity survey lines, which were deployed in six areas with and without liquefaction observed, and 2 seismic reflection lines. The P and S wave velocities variations were used to analyze depth of the water table, the elastic modulus, soil porosity and the safety factor for soil liquefaction assessment. Preliminary result of the seismic velocity distribution was effective within 17 m deep from surface and showed no particular difference at the sites of liquefaction observed or no liquefaction. The results could indicate that the sand blow observed in 1906 were not site dependent, but more likely related to activity of the Meishan fault. In order to detect the detailed fault trace, the seismic reflection images will be combined for interpreting the buried Meishan fault in the final result.

  9. Seismic velocity estimation from time migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, Maria Kourkina

    2007-01-01

    This is concerned with imaging and wave propagation in nonhomogeneous media, and includes a collection of computational techniques, such as level set methods with material transport, Dijkstra-like Hamilton-Jacobi solvers for first arrival Eikonal equations and techniques for data smoothing. The theoretical components include aspects of seismic ray theory, and the results rely on careful comparison with experiment and incorporation as input into large production-style geophysical processing codes. Producing an accurate image of the Earth's interior is a challenging aspect of oil recovery and earthquake analysis. The ultimate computational goal, which is to accurately produce a detailed interior map of themore » Earth's makeup on the basis of external soundings and measurements, is currently out of reach for several reasons. First, although vast amounts of data have been obtained in some regions, this has not been done uniformly, and the data contain noise and artifacts. Simply sifting through the data is a massive computational job. Second, the fundamental inverse problem, namely to deduce the local sound speeds of the earth that give rise to measured reacted signals, is exceedingly difficult: shadow zones and complex structures can make for ill-posed problems, and require vast computational resources. Nonetheless, seismic imaging is a crucial part of the oil and gas industry. Typically, one makes assumptions about the earth's substructure (such as laterally homogeneous layering), and then uses this model as input to an iterative procedure to build perturbations that more closely satisfy the measured data. Such models often break down when the material substructure is significantly complex: not surprisingly, this is often where the most interesting geological features lie. Data often come in a particular, somewhat non-physical coordinate system, known as time migration coordinates. The construction of substructure models from these data is less and less reliable

  10. Surface Deformation and Source Model at Semisopochnoi Volcano from InSAR and Seismic Analysis During the 2014 and 2015 Seismic Swarms

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K.; Pesicek, J. D.; Lu, Z.

    2016-12-01

    During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi volcano in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs differential SAR techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The interferograms created from the SAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in a Mogi model in order to define the three-dimensional location and volume change required for a source at Semisopochnoi to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. While no direct conclusions as to the relationship of these seismic events and the observed surface deformation can be made at this time, these techniques are both complimentary and efficient forms of remotely monitoring volcanic activity that provide much deeper insights into the processes involved without having to risk hazardous or costly field work.

  11. The ICDP Hotspot Scientific Drilling Program: Overview of geophysical logging and seismic imaging through basaltic and rhyolitic volcanic deposits

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Liberty, L. M.; Kessler, J. A.; Kueck, J.; Kofman, R. S.; Bishop, R. A.; Shervais, J. W.; Evans, J. P.; Champion, D. E.

    2012-12-01

    The recently completed ICDP Hotspot drilling program consisted of drilling of three scientific drill holes each to at least 1800 m depth across the Snake River Plain of Idaho. The three boreholes include i) Kimama: thick sequences of basalt flows with sediment interbeds; ii) Kimberley: near surface basalt flows overlying rhyolite deposits, and iii) Mountain Home: geothermally altered basalts overlain by lacustrine sediments. The program consisted of high resolution 2D surface tied to vertical and walk-a-way borehole seismic profiles and an extensive suite of full waveform sonic, ultrasonic televiewer, electrical resistivity, magnetic susceptibility, and hydrogen index neutron logging. There are a number of highlights out of this work. First, seismic imaging beneath basalt flows is a classic problem in reflection seismology and has long been believed to be due to rapid attenuation of the downgoing seismic pulse. Here, however, we observed strong arrivals at all depths suggesting that seismic energy is penetrating such formations and that issues in imaging may be a result of the heterogeneous nature of the formations. Second, the neutron log responses correlate well with the structure of individual basalt flows. High and low backscattered neutron counts correspond to massive low porosity basalt rock and with the higher porosity and sediment filled flow tops, respectively. Third, the ultrasonic borehole televiewer information is being used to orient the nearly complete sets of core in order to obtain information on the azimuths of natural and drilling induced core fractures. This together with examination of borehole breakouts and drilling induced tensile fractures on the wellbore wall will allow for semi-quantitative stress estimates across the Snake River Plain. Finally, the Mountain Home borehole provides an unique opportunity to study the geothermally altered basalts. There are a number of correlations between, for example, the sonic and electrical logs that must

  12. Probing dynamic hydrologic system of slowly-creeping landslides with passive seismic imaging: A comprehensive landslide monitoring site at Lantai, Ilan area in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, H. H.; Hsu, Y. J.; Kuo, C. Y.; Chen, C. C.; Kuo, L. W.; Chen, R. F.; Lin, C. R.; Lin, P. P.; Lin, C. W.; Lin, M. L.; Wang, K. L.

    2017-12-01

    A unique landslide monitoring project integrating multidisciplinary geophysics experiments such as GPS, inclinometer, piezometer, and spontaneous potential log has been established at Lantai, Ilan area to investigating the possible detachment depth range and the physical mechanism of a slowly creeping landslide. In parallel with this, a lately deployed local seismic network also lends an opportunity to employ the passive seismic imaging technique to detect the time-lapse changes of seismic velocity in and around the landslide area. Such technique that retrieves Green's functions by cross-correlation of continuous ambient noise has opened new opportunities to seismologically monitoring the environmental and tectonic events such as ground water variation, magma intrusion under volcanos, and co-seismic medium damage in recent years. Integrating these geophysical observations, we explore the primary controls of derived seismic velocity changes and especially the hydrological response of the landslide to the passage of Megi typhoon in the last September 2016, which could potentially further our understanding of the dynamic system of landslides and in turn help the hazard mitigation.

  13. Effects of the symmetry axis orientation of a TI overburden on seismic images

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Hsiung; Chang, Young-Fo; Tseng, Cheng-Wei

    2017-07-01

    In active tectonic regions, the primary formations are often tilted and subjected to the processes of folding and/or faulting. Dipping formations may be categorised as tilted transverse isotropy (TTI). While carrying out hydrocarbon exploration in areas of orogenic structures, mispositioning and defocusing effects in apparent reflections are often caused by the tilted transverse isotropy of the overburden. In this study, scaled physical modelling was carried out to demonstrate the behaviours of seismic wave propagation and imaging problems incurred by transverse isotropic (TI) overburdens that possess different orientations of the symmetry axis. To facilitate our objectives, zero-offset reflections were acquired from four stratum-fault models to image the same structures that were overlain by a TI (phenolite) slab. The symmetry axis of the TI slab was vertical, tilted or horizontal. In response to the symmetry axis orientations, spatial shifts and asymmetrical diffraction patterns in apparent reflections were observed in the acquired profiles. Given the different orientations of the symmetry axis, numerical manipulations showed that the imaged events could be well described by theoretical ray paths computed by the trial-and-error ray method and Fermat's principle (TERF) method. In addition, outputs of image restoration show that the imaging problems, i.e. spatial shift in the apparent reflections, can be properly handled by the ray-based anisotropic 2D Kirchhoff time migration (RAKTM) method.

  14. Occurrence, distribution, and transport of pesticides, trace elements, and selected inorganic constituents into the Salton Sea Basin, California, 2001-2002

    USGS Publications Warehouse

    LeBlanc, Lawrence A.; Schroeder, Roy A.; Orlando, James L.; Kuivila, Kathyrn M.

    2004-01-01

    A study of pesticide distribution and transport within the Salton Sea Basin, California, was conducted from September 2001 to October 2002. Sampling for the study was done along transects for the three major rivers that flow into the Salton Sea Basin: the New and Alamo Rivers at the southern end of the basin and the Whitewater River at the northern end. Three stations were established on each river: an outlet station approximately 1 mile upstream of the river discharge, a near-shore station in the river delta, and off-shore station in the Salton Sea. Water and suspended and bed sediments were collected at each station in October 2001, March-April 2002, and September 2002, coinciding with peak pesticide applications in the fall and spring. Fourteen current-use pesticides were detected in the water column. Concentrations of dissolved pesticides typically decreased from the outlets to the sea in all three rivers, consistent with the off-shore transport of pesticides from the rivers to the sea. Dissolved concentrations ranged from the limits of detection to 151 nanograms per liter (ng/L); however, diazinon, eptam (EPTC), and malathion were detected at much higher concentrations (940?3,830 ng/L) at the New and Alamo River outlet and near-shore stations. Concentrations of carbaryl, dacthal, diazinon, and eptam were higher during the two fall sampling periods, whereas concentrations of atrazine, carbofuran, and trifluralin were higher during the spring. Current-use pesticides also were detected on suspended and bed sediments in concentrations ranging from method detection limits to 106 ng/g (nanograms per gram). Chlorpyrifos, dacthal, eptam, trifluralin, and DDE were the most frequently detected pesticides on sediments from all three rivers. The number and concentrations of pesticides associated with suspended sediments frequently were similar for the river outlet and near-shore sites, consistent with the downstream transport of sediment-associated pesticides out of the

  15. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    USGS Publications Warehouse

    Dawson, Phillip B.; Chouet, Bernard A.; Pitt, Andrew M.

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ∼2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10−3 to 7.9 × 10−3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10−4 to 3.4 × 10−3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day−1, the reservoir could supply the emission of CO2 for ∼25–1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  16. Tomographic image of a seismically active volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip; Chouet, Bernard; Pitt, Andrew

    2016-01-01

    High-resolution tomographic P wave, S wave, and VP/VS velocity structure models are derived for Mammoth Mountain, California, using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (5.1 × 109 to 5.9 × 1010m3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is due to the presence of CO2 distributed in oblate spheroid pores with mean aspect ratio α = 1.6 × 10-3 to 7.9 × 10-3 (crack-like pores) and mean gas volume fraction ϕ = 8.1 × 10-4 to 3.4 × 10-3. The pore density parameter κ = 3ϕ/(4πα) = na3=0.11, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to be 4.6 × 109 to 1.9 × 1011 kg. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 500 tons day-1, the reservoir could supply the emission of CO2 for ˜25-1040 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  17. High-resolution seismic-reflection images across the ICDP-USGS Eyreville deep drilling site, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Powars, D.S.; Catchings, R.D.; Goldman, M.R.; Gohn, G.S.; Horton, J. Wright; Edwards, L.E.; Rymer, M.J.; Gandhok, G.

    2009-01-01

    The U.S. Geological Survey (USGS) acquired two 1.4-km-long, high-resolution (??5 m vertical resolution) seismic-reflection lines in 2006 that cross near the International Continental Scientifi c Drilling Program (ICDP)-USGS Eyreville deep drilling site located above the late Eocene Chesapeake Bay impact structure in Virginia, USA. Five-meter spacing of seismic sources and geophones produced high-resolution images of the subsurface adjacent to the 1766-m-depth Eyreville core holes. Analysis of these lines, in the context of the core hole stratigraphy, shows that moderateamplitude, discontinuous, dipping reflections below ??527 m correlate with a variety of Chesapeake Bay impact structure sediment and rock breccias recovered in the cores. High-amplitude, continuous, subhorizontal reflections above ??527 m depth correlate with the uppermost part of the Chesapeake Bay impact structure crater-fi ll sediments and postimpact Eocene to Pleistocene sediments. Refl ections with ??20-30 m of relief in the uppermost part of the crater-fi ll and lowermost part of the postimpact section suggest differential compaction of the crater-fi ll materials during early postimpact time. The top of the crater-fi ll section also shows ??20 m of relief that appears to represent an original synimpact surface. Truncation surfaces, locally dipping reflections, and depth variations in reflection amplitudes generally correlate with the lithostratigraphic and sequence-stratigraphic units and contacts in the core. Seismic images show apparent postimpact paleochannels that include the fi rst possible Miocene paleochannels in the Mid-Atlantic Coastal Plain. Broad downwarping in the postimpact section unrelated to structures in the crater fi ll indicates postimpact sediment compaction. ?? 2009 The Geological Society of America.

  18. Using 3D Simulation of Elastic Wave Propagation in Laplace Domain for Electromagnetic-Seismic Inverse Modeling

    NASA Astrophysics Data System (ADS)

    Petrov, P.; Newman, G. A.

    2010-12-01

    Quantitative imaging of the subsurface objects is essential part of modern geophysical technology important in oil and gas exploration and wide-range engineering applications. A significant advancement in developing a robust, high resolution imaging technology is concerned with using the different geophysical measurements (gravity, EM and seismic) sense the subsurface structure. A joint image of the subsurface geophysical attributes (velocity, electrical conductivity and density) requires the consistent treatment of the different geophysical data (electromagnetic and seismic) due to their differing physical nature - diffusive and attenuated propagation of electromagnetic energy and nonlinear, multiple scattering wave propagation of seismic energy. Recent progress has been reported in the solution of this problem by reducing the complexity of seismic wave field. Works formed by Shin and Cha (2009 and 2008) suggests that low-pass filtering the seismic trace via Laplace-Fourier transformation can be an effective approach for obtaining seismic data that has similar spatial resolution to EM data. The effect of Laplace- Fourier transformation on the low-pass filtered trace changes the modeling of the seismic wave field from multi-wave propagation to diffusion. The key benefit of transformation is that diffusive wave-field inversion works well for both data sets seismic (Shin and Cha, 2008) and electromagnetic (Commer and Newman 2008, Newman et al., 2010). Moreover the different data sets can also be matched for similar and consistent resolution. Finally, the low pass seismic image is also an excellent choice for a starting model when analyzing the entire seismic waveform to recover the high spatial frequency components of the seismic image; its reflectivity (Shin and Cha, 2009). Without a good starting model full waveform seismic imaging and migration can encounter serious difficulties. To produce seismic wave fields consistent for joint imaging in the Laplace

  19. Reconstructing the Seismic Wavefield using Curvelets and Distributed Acoustic Sensing

    NASA Astrophysics Data System (ADS)

    Muir, J. B.; Zhan, Z.

    2017-12-01

    Distributed Acoustic Sensing (DAS) offers an opportunity to produce cost effective and uniquely dense images of the surface seismic wavefield - DAS also produces extremely large data volumes that require innovative methods of data reduction and seismic parameter inversion to handle efficiently. We leverage DAS and the super-Nyquist sampling enabled by compressed sensing of the wavefield in the curvelet domain to produce accurate images of the horizontal velocity within a target region, using only short ( 1-10 minutes) records of either active seismic sources or ambient seismic signals. Once the wavefield has been fully described, modern "tomographic" techniques, such as Helmholtz tomography or Wavefield Gradiometry, can be employed to determine seismic parameters of interest such as phase velocity. An additional practical benefit of employing a wavefield reconstruction step is that multiple heterogeneous forms of instrumentation can be naturally combined - therefore in this study we also explore the addition of three component nodal seismic data into the reconstructed wavefield. We illustrate these techniques using both synthetic examples and data taken from the Brady Geothermal Field in Nevada during the PoroTomo (U. Wisconsin Madison) experiment of 2016.

  20. Seismic interferometry of railroad induced ground motions: body and surface wave imaging

    NASA Astrophysics Data System (ADS)

    Quiros, Diego A.; Brown, Larry D.; Kim, Doyeon

    2016-04-01

    Seismic interferometry applied to 120 hr of railroad traffic recorded by an array of vertical component seismographs along a railway within the Rio Grande rift has recovered surface and body waves characteristic of the geology beneath the railway. Linear and hyperbolic arrivals are retrieved that agree with surface (Rayleigh), direct and reflected P waves observed by nearby conventional seismic surveys. Train-generated Rayleigh waves span a range of frequencies significantly higher than those recovered from typical ambient noise interferometry studies. Direct P-wave arrivals have apparent velocities appropriate for the shallow geology of the survey area. Significant reflected P-wave energy is also present at relatively large offsets. A common midpoint stack produces a reflection image consistent with nearby conventional reflection data. We suggest that for sources at the free surface (e.g. trains) increasing the aperture of the array to record wide angle reflections, in addition to longer recording intervals, might allow the recovery of deeper geological structure from railroad traffic. Frequency-wavenumber analyses of these recordings indicate that the train source is symmetrical (i.e. approaching and receding) and that deeper refracted energy is present although not evident in the time-offset domain. These results confirm that train-generated vibrations represent a practical source of high-resolution subsurface information, with particular relevance to geotechnical and environmental applications.

  1. Wave equation datuming applied to S-wave reflection seismic data

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Giustiniani, M.; Nicolich, R.

    2018-05-01

    S-wave high-resolution reflection seismic data was processed using Wave Equation Datuming technique in order to improve signal/noise ratio, attenuating coherent noise, and seismic resolution and to solve static corrections problems. The application of this algorithm allowed obtaining a good image of the shallow subsurface geological features. Wave Equation Datuming moves shots and receivers from a surface to another datum (the datum plane), removing time shifts originated by elevation variation and/or velocity changes in the shallow subsoil. This algorithm has been developed and currently applied to P wave, but it reveals the capacity to highlight S-waves images when used to resolve thin layers in high-resolution prospecting. A good S-wave image facilitates correlation with well stratigraphies, optimizing cost/benefit ratio of any drilling. The application of Wave Equation Datuming requires a reliable velocity field, so refraction tomography was adopted. The new seismic image highlights the details of the subsoil reflectors and allows an easier integration with borehole information and geological surveys than the seismic section obtained by conventional CMP reflection processing. In conclusion, the analysis of S-wave let to characterize the shallow subsurface recognizing levels with limited thickness once we have clearly attenuated ground roll, wind and environmental noise.

  2. Imaging the seismic structure beneath oceanic spreading centers using ocean bottom geophysical techniques

    NASA Astrophysics Data System (ADS)

    Zha, Yang

    This dissertation focuses on imaging the crustal and upper mantle seismic velocity structure beneath oceanic spreading centers. The goals are to provide a better understanding of the crustal magmatic system and the relationship between mantle melting processes, crustal architecture and ridge characteristics. To address these questions I have analyzed ocean bottom geophysical data collected from the fast-spreading East Pacific Rise and the back-arc Eastern Lau Spreading Center using a combination of ambient noise tomography and seafloor compliance analysis. To characterize the crustal melt distribution at fast spreading ridges, I analyze seafloor compliance - the deformation under long period ocean wave forcing - measured during multiple expeditions between 1994 and 2007 at the East Pacific Rise 9º - 10ºN segment. A 3D numerical modeling technique is developed and used to estimate the effects of low shear velocity zones on compliance measurements. The forward modeling suggests strong variations of lower crustal shear velocity along the ridge axis, with zones of possible high melt fractions beneath certain segments. Analysis of repeated compliance measurements at 9º48'N indicates a decrease of crustal melt fraction following the 2005 - 2006 eruption. This temporal variability provides direct evidence for short-term variations of the magmatic system at a fast spreading ridge. To understand the relationship between mantle melting processes and crustal properties, I apply ambient noise tomography of ocean bottom seismograph (OBS) data to image the upper mantle seismic structure beneath the Eastern Lau Spreading Center (ELSC). The seismic images reveal an asymmetric upper mantle low velocity zone (LVZ) beneath the ELSC, representing a zone of partial melt. As the ridge migrates away from the volcanic arc, the LVZ becomes increasingly offset and separated from the sub-arc low velocity zone. The separation of the ridge and arc low velocity zones is spatially coincident

  3. Quantifying uncertainties of seismic Bayesian inversion of Northern Great Plains

    NASA Astrophysics Data System (ADS)

    Gao, C.; Lekic, V.

    2017-12-01

    Elastic waves excited by earthquakes are the fundamental observations of the seismological studies. Seismologists measure information such as travel time, amplitude, and polarization to infer the properties of earthquake source, seismic wave propagation, and subsurface structure. Across numerous applications, seismic imaging has been able to take advantage of complimentary seismic observables to constrain profiles and lateral variations of Earth's elastic properties. Moreover, seismic imaging plays a unique role in multidisciplinary studies of geoscience by providing direct constraints on the unreachable interior of the Earth. Accurate quantification of uncertainties of inferences made from seismic observations is of paramount importance for interpreting seismic images and testing geological hypotheses. However, such quantification remains challenging and subjective due to the non-linearity and non-uniqueness of geophysical inverse problem. In this project, we apply a reverse jump Markov chain Monte Carlo (rjMcMC) algorithm for a transdimensional Bayesian inversion of continental lithosphere structure. Such inversion allows us to quantify the uncertainties of inversion results by inverting for an ensemble solution. It also yields an adaptive parameterization that enables simultaneous inversion of different elastic properties without imposing strong prior information on the relationship between them. We present retrieved profiles of shear velocity (Vs) and radial anisotropy in Northern Great Plains using measurements from USArray stations. We use both seismic surface wave dispersion and receiver function data due to their complementary constraints of lithosphere structure. Furthermore, we analyze the uncertainties of both individual and joint inversion of those two data types to quantify the benefit of doing joint inversion. As an application, we infer the variation of Moho depths and crustal layering across the northern Great Plains.

  4. Three-dimensional seismic reflection images of axial melt lens and seismic layer 2A between 9°42'N and 9°57'N on the East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Carton, H. D.; Carbotte, S. M.; Mutter, J. C.; Canales, J.; Nedimovic, M. R.; Aghaei, O.; Marjanovic, M.; Newman, K. R.

    2010-12-01

    We present results from 3D time-domain processing of the dual-source, four-streamer seismic dataset acquired in 2008 by R/V Langseth at the 9°50’N Integrated Study Site (ISS) on the East Pacific Rise. The survey was designed with a main goal to determine the fine-scale geometry of the magmatic system across three fourth-order ridge axis discontinuities (at 9°45.2’N, 9°48.7’N, and 9°51.5’N), and to study relationships with the hydrothermal system and eruptive/intrusive processes, in particular related to the 2005-06 eruption. Seismic processing included flexible binning to regularize the fold coverage, CMP stacking within 6.25m x 37.5m bins using velocity functions derived from constant-velocity stack analyses, post-stack interpolation to 6.25m x 18.75m bin size, and 3D post-stack time migration, resulting in a fully migrated area of 18km across-axis by 27km along-axis. The axial melt lens is ~500-600m wide at 9°50’N beneath the northern vent cluster, and up to 1km wide beneath the southern vent cluster. The fourth-order segment boundaries, as defined from seafloor morphology and structure of the axial summit trough (AST), coincide with geometrically complex regions of the magmatic system, with cross-axis views showing two separate magma bodies distant by up to a few hundreds of meters. Discontinuities in the axial magma lens thus appear like mini-overlap basins encircled by north and south lens segments, which may trend at a slightly oblique angle to the average ridge axis direction. A deeper magma body, likely also part of the axial system, is imaged near 9°51’N at ~125m from the western edge of the axial melt lens, while near 9°47.5’N a bright near-axis magma body is imaged at ~1360m from the eastern edge of the axial melt lens, at a shorter travel time below seafloor. Seismic layer 2A is imaged both as a basal reflection-refraction event, spatially continuous but variable in brightness, and through shallow layering (reflections at ~30ms i

  5. Noise-based body-wave seismic tomography in an active underground mine.

    NASA Astrophysics Data System (ADS)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( < 1 Hz) and not usable for imaging smaller structures associated with mining or oil and gas applications. The seismic noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from

  6. Mini-Sosie high-resolution seismic method aids hazards studies

    USGS Publications Warehouse

    Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.

    1992-01-01

    The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors

  7. Imaging Seismic Zones and Magma beneath Mount St. Helens with the iMUSH Broadband Array

    NASA Astrophysics Data System (ADS)

    Ulberg, C. W.; Creager, K.; Moran, S. C.; Abers, G. A.; Crosbie, K.; Crosson, R. S.; Denlinger, R. P.; Thelen, W. A.; Kiser, E.; Levander, A.; Bachmann, O.

    2017-12-01

    We deployed 70 broadband seismometers from 2014 to 2016 to image the seismic velocity structure beneath Mount St. Helens (MSH), Washington, as part of the collaborative imaging Magma Under St. Helens (iMUSH) project. The broadband array had a 100 km diameter centered on MSH with an average station spacing of 10 km, augmented by dozens of permanent stations. We picked P- and S-wave arrival times and also incorporated picks from the permanent network. More than 400 local events M>0.5 occurred during the deployment, providing over 12,000 P-wave and 6,000 S-wave arrival times. In addition, we incorporated 23 explosions that were part of the active-source component of iMUSH. We used the program struct3DP to invert travel times to obtain a 3-D seismic velocity model and relocated hypocenters, with travel times computed using a 3-D eikonal-equation solver. Principal features of our 3-D model include: (1) Low P- and S-wave velocities along the St. Helens seismic Zone (SHZ), striking NNW-SSE north of MSH from near the surface to where we lose resolution at 15-20 km depth. This anomaly corresponds to high conductivity as imaged by iMUSH magnetotelluric studies. The SHZ also coincides with a sharp boundary in continental Moho reflectivity that has been interpreted as the eastern boundary of a serpentinized mantle wedge (Hansen et al, 2016). We speculate that the SHZ and low velocities are related to fluids rising from the eastern boundary of the wedge; (2) A 4-5% negative P- and S-wave velocity anomaly beneath MSH at depths of 6-15 km with a quasi-cylindrical geometry and a diameter of 5 km, probably indicating a magma storage region. Based on resolution testing of similar-sized features, it is possible that the velocity anomaly we see underneath MSH is narrower and higher (i.e., more negative) amplitude; (3) A broad, high-amplitude, low P-wave velocity region below 10-km depth extending between Mount Adams and Mount Rainier along and to the east of the main Cascade arc

  8. Accessing seismic data through geological interpretation: Challenges and solutions

    NASA Astrophysics Data System (ADS)

    Butler, R. W.; Clayton, S.; McCaffrey, B.

    2008-12-01

    Between them, the world's research programs, national institutions and corporations, especially oil and gas companies, have acquired substantial volumes of seismic reflection data. Although the vast majority are proprietary and confidential, significant data are released and available for research, including those in public data libraries. The challenge now is to maximise use of these data, by providing routes to seismic not simply on the basis of acquisition or processing attributes but via the geology they image. The Virtual Seismic Atlas (VSA: www.seismicatlas.org) meets this challenge by providing an independent, free-to-use community based internet resource that captures and shares the geological interpretation of seismic data globally. Images and associated documents are explicitly indexed by extensive metadata trees, using not only existing survey and geographical data but also the geology they portray. The solution uses a Documentum database interrogated through Endeca Guided Navigation, to search, discover and retrieve images. The VSA allows users to compare contrasting interpretations of clean data thereby exploring the ranges of uncertainty in the geometric interpretation of subsurface structure. The metadata structures can be used to link reports and published research together with other data types such as wells. And the VSA can link to existing data libraries. Searches can take different paths, revealing arrays of geological analogues, new datasets while providing entirely novel insights and genuine surprises. This can then drive new creative opportunities for research and training, and expose the contents of seismic data libraries to the world.

  9. High-resolution seismic imaging of the Kevitsa mafic-ultramafic Cu-Ni-PGE hosted intrusion, northern Finland

    NASA Astrophysics Data System (ADS)

    Malehmir, Alireza; Koivisto, Emilia; Wjins, Chris; Tryggvason, Ari; Juhlin, Christopher

    2014-05-01

    Kevitsa, in northern Finland, is a large nickel/copper ore body hosted by a massive mafic-ultramafic intrusion with measured and indicated resources of 240 million tons (cutoff 0.1%) grading 0.30% Ni and 0.41% Cu. Mining started in 2012 with an open pit that will extend down to about 550-600 m depth. The expected mine life is more than 20 years. Numerous boreholes are available in the area, but the majority of them are shallow and do not provide a comprehensive understanding of the dimensions of the intrusion. However, a number of boreholes do penetrate the basal contact of the intrusion. Most of these are also shallow and concentrated at the edge of the intrusion. A better knowledge of the geometry of the intrusion would provide a framework for near-mine and deep exploration in the area, but also a better understanding of the geology. Exact mapping of the basal contact of the intrusion would also provide an exploration target for the contact-type mineralization that is often more massive and richer in Ni-Cu than the disseminated mineralization away from the contact. With the objective of better characterizing the intrusion, a series of 2D profiles were acquired followed by a 3D reflection survey that covered an area of about 3 km by 3 km. Even though the geology is complex and the seismic P-wave velocity ranges between 5 to 8 km/s, conventional processing results show gently- to steeply-dipping reflections from depths of approximately 2 km to as shallow as 100 m. Many of these reflections are interpreted to originate from either fault systems or internal magmatic layering within the Kevitsa main intrusion. Correlations between the 3D surface seismic data and VSP data, based upon time shifts or phase changes along the reflections, support the interpretation that numerous faults are imaged in the volume. Some of these faults cross the planned open-pit mine at depths of about 300-500 m, and it is, therefore, critical to map them for mine planning. The seismic 3D

  10. Seismic Forecasting of Solar Activity

    NASA Technical Reports Server (NTRS)

    Braun, Douglas; Lindsey, Charles

    2001-01-01

    We have developed and improved helioseismic imaging techniques of the far-side of the Sun as part of a synoptic monitor of solar activity. In collaboration with the MIDI team at Stanford University we are routinely applying our analysis to images within 24 hours of their acquisition by SOHO. For the first time, real-time seismic maps of large active regions on the Sun's far surface are publicly available. The synoptic images show examples of active regions persisting for one or more solar rotations, as well as those initially detected forming on the solar far side. Until recently, imaging the far surface of the Sun has been essentially blind to active regions more than about 50 degrees from the antipode of disk center. In a paper recently accepted for publication, we have demonstrated how acoustic travel-time perturbations may be mapped over the entire hemisphere of the Sun facing away from the Earth, including the polar regions. In addition to offering significant improvements to ongoing space weather forecasting efforts, the procedure offers the possibility of local seismic monitoring of both the temporal and spatial variations in the acoustic properties of the Sun over the entire far surface.

  11. Triple seismic source, double research ship, single ambitious goal: integrated imaging of young oceanic crust in the Panama Basin

    NASA Astrophysics Data System (ADS)

    Wilson, Dean; Peirce, Christine; Hobbs, Richard; Gregory, Emma

    2016-04-01

    Understanding geothermal heat and mass fluxes through the seafloor is fundamental to the study of the Earth's energy budget. Using geophysical, geological and physical oceanography data we are exploring the interaction between the young oceanic crust and the ocean in the Panama Basin. We acquired a unique geophysical dataset that will allow us to build a comprehensive model of young oceanic crust from the Costa Rica Ridge axis to ODP borehole 504B. Data were collected over two 35 x 35 km2 3D grid areas, one each at the ridge axis and the borehole, and along three 330 km long 2D profiles orientated in the spreading direction, connecting the two grids. In addition to the 4.5 km long multichannel streamer and 75 ocean-bottom seismographs (OBS), we also deployed 12 magnetotelluric (MT) stations and collected underway swath bathymetry, gravity and magnetic data. For the long 2D profiles we used two research vessels operating synchronously. The RRS James Cook towed a high frequency GI-gun array (120 Hz) to image the sediments, and a medium frequency Bolt-gun array (50 Hz) for shallow-to-mid-crustal imaging. The R/V Sonne followed the Cook, 9 km astern and towed a third seismic source; a low frequency, large volume G-gun array (30 Hz) for whole crustal and upper mantle imaging at large offsets. Two bespoke vertical hydrophone arrays recorded real far field signatures that have enabled us to develop inverse source filters and match filters. Here we present the seismic reflection image, forward and inverse velocity-depth models and a density model along the primary 330 km north-south profile, from ridge axis to 6 Ma crust. By incorporating wide-angle streamer data from our two-ship, synthetic aperture acquisition together with traditional wide-angle OBS data we are able to constrain the structure of the upper oceanic crust. The results show a long-wavelength trend of increasing seismic velocity and density with age, and a correlation between velocity structure and basement

  12. Illuminating Asset Value through New Seismic Technology

    NASA Astrophysics Data System (ADS)

    Brandsberg-Dahl, S.

    2007-05-01

    The ability to reduce risk and uncertainty across the full life cycle of an asset is directly correlated to creating an accurate subsurface image that enhances our understanding of the geology. This presentation focuses on this objective in areas of complex overburden in deepwater. Marine 3D seismic surveys have been acquired in essentially the same way for the past decade. This configuration of towed streamer acquisition, where the boat acquires data in one azimuth has been very effective in imaging areas in fairly benign geologic settings. As the industry has moved into more complicated geologic settings these surveys no longer meet the imaging objectives for risk reduction in exploration through production. In shallow water, we have seen increasing use of ocean bottom cables to meet this challenge. For deepwater, new breakthroughs in technology were required. This will be highlighted through examples of imaging below large salt bodies in the deep water Gulf of Mexico. GoM - Mad Dog: The Mad Dog field is located approximately 140 miles south of the Louisiana coastline in the southern Green Canyon area in water depths between 4100 feet to 6000 feet. The complex salt canopy overlying a large portion of the field results in generally poor seismic data quality. Advanced processing techniques improved the image, but gaps still remained even after several years of effort. We concluded that wide azimuth acquisition was required to illuminate the field in a new way. Results from the Wide Azimuth Towed Streamer (WATS) survey deployed at Mad Dog demonstrated the anticipated improvement in the subsalt image. GoM - Atlantis Field: An alternative approach to wide azimuth acquisition, ocean bottom seismic (OBS) node technology, was developed and tested. In 2001 deepwater practical experience was limited to a few nodes owned by academic institutions and there were no commercial solutions either available or in development. BP embarked on a program of sea trials designed to both

  13. Seismic images of the Brooks Range fold and thrust belt, Arctic Alaska, from an integrated seismic reflection/refraction experiment

    USGS Publications Warehouse

    Levander, A.; Fuis, G.S.; Wissinger, E.S.; Lutter, W.J.; Oldow, J.S.; Moore, Thomas E.

    1994-01-01

    We describe results of an integrated seismic reflection/refraction experiment across the Brooks Range and flanking geologic provinces in Arctic Alaska. The seismic acquisition was unusual in that reflection and refraction data were collected simultaneously with a 700 channel seismograph system deployed numerous times along a 315 km profile. Shot records show continuous Moho reflections from 0-180 km offset, as well as numerous upper- and mid-crustal wide-angle events. Single and low-fold near-vertical incidence common midpoint (CMP) reflection images show complex upper- and middle-crustal structure across the range from the unmetamorphosed Endicott Mountains allochthon (EMA) in the north, to the metamorphic belts in the south. Lower-crustal and Moho reflections are visible across the entire reflection profile. Travel-time inversion of PmP arrivals shows that the Moho, at 33 km depth beneath the North Slope foothills, deepens abruptly beneath the EMA to a maximum of 46 km, and then shallows southward to 35 km at the southern edge of the range. Two zones of upper- and middle-crustal reflections underlie the northern Brooks Range above ~ 12-15 km depth. The upper zone, interpreted as the base of the EMA, lies at a maximum depth of 6 km and extends over 50 km from the range front to the north central Brooks Range where the base of the EMA outcrops above the metasedimentary rocks exposed in the Doonerak window. We interpret the base of the lower zone, at ~ 12 km depth, to be from carbonate rocks above the master detachment upon which the Brooks Range formed. The seismic data suggest that the master detachment is connected to the faults in the EMA by several ramps. In the highly metamorphosed terranes south of the Doonerak window, the CMP section shows numerous south-dipping events which we interpret as a crustal scale duplex involving the Doonerak window rocks. The basal detachment reflections can be traced approximately 100 km, and dip southward from about 10-12 km

  14. Integration of P- and SH-wave high-resolution seismic reflection and micro-gravity techniques to improve interpretation of shallow subsurface structure: New Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Ravat, D.; Biswas, S.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.; Fillerup, M.A.; Tingey, B.E.; Wald, L.; Northcott, M.L.; South, J.V.; Okure, M.S.; Chandler, M.R.

    2006-01-01

    Shallow high-resolution seismic reflection surveys have traditionally been restricted to either compressional (P) or horizontally polarized shear (SH) waves in order to produce 2-D images of subsurface structure. The northernmost Mississippi embayment and coincident New Madrid seismic zone (NMSZ) provide an ideal laboratory to study the experimental use of integrating P- and SH-wave seismic profiles, integrated, where practicable, with micro-gravity data. In this area, the relation between "deeper" deformation of Paleozoic bedrock associated with the formation of the Reelfoot rift and NMSZ seismicity and "shallower" deformation of overlying sediments has remained elusive, but could be revealed using integrated P- and SH-wave reflection. Surface expressions of deformation are almost non-existent in this region, which makes seismic reflection surveying the only means of detecting structures that are possibly pertinent to seismic hazard assessment. Since P- and SH-waves respond differently to the rock and fluid properties and travel at dissimilar speeds, the resulting seismic profiles provide complementary views of the subsurface based on different levels of resolution and imaging capability. P-wave profiles acquired in southwestern Illinois and western Kentucky (USA) detect faulting of deep, Paleozoic bedrock and Cretaceous reflectors while coincident SH-wave surveys show that this deformation propagates higher into overlying Tertiary and Quaternary strata. Forward modeling of micro-gravity data acquired along one of the seismic profiles further supports an interpretation of faulting of bedrock and Cretaceous strata. The integration of the two seismic and the micro-gravity methods therefore increases the scope for investigating the relation between the older and younger deformation in an area of critical seismic hazard. ?? 2006 Elsevier B.V. All rights reserved.

  15. Near Surface Structure of the Frijoles Strand of the San Gregorio Fault, Point Año Nuevo, San Mateo County, California, from Seismic Imaging

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Catchings, R. D.; Rymer, M. J.; Goldman, M.; Weber, G. E.

    2012-12-01

    The San Gregorio Fault Zone (SGFZ) is one of the major faults of the San Andreas Fault (SAF) system in the San Francisco Bay region of California. The SGFZ is nearly 200 km long, trends subparallel to the SAF, and is located primarily offshore with two exceptions- between Point Año Nuevo and San Gregorio Beach and between Pillar Point and Moss Beach. It has a total width of 2 to 3 km and is comprised of seven known fault strands with Quaternary activity, five of which also demonstrate late Holocene activity. The fault is clearly a potential source of significant earthquakes and has been assigned a maximum likely magnitude of 7.3. To better understand the structure, geometry, and shallow-depth P-wave velocities associated with the SGFZ, we acquired a 585-m-long, high-resolution, combined seismic reflection and refraction profile across the Frijoles strand of the SGFZ at Point Año Nuevo State Park. Both P- and S-wave data were acquired, but here we present only the P-wave data. We used two 60-channel Geometrics RX60 seismographs and 120 40-Hz single-element geophones connected via cable to record Betsy Seisgun seismic sources (shots). Both shots and geophones were approximately co-located and spaced at 5-m intervals along the profile, with the shots offset laterally from the geophones by 1 m. We measured first-arrival refractions from all shots and geophones to develop a seismic refraction tomography velocity model of the upper 70 m. P-wave velocities range from about 600 m/s near the surface to more than 2400 m/s at 70 m depth. We used the refraction tomography image to infer the depth to the top of the groundwater table on the basis of the 1500 m/s velocity contour. The image suggests that the depth, along the profile, to the top of groundwater varies by about 18 m, with greater depth on the west side of the fault. At about 46 m depth, a 60- to 80-m-wide, low-velocity zone, which is consistent with faulting, is observed southwest of the Frijoles strand of the

  16. Seismic imaging of a mid-lithospheric discontinuity beneath Ontong Java Plateau

    NASA Astrophysics Data System (ADS)

    Tharimena, Saikiran; Rychert, Catherine A.; Harmon, Nicholas

    2016-09-01

    Ontong Java Plateau (OJP) is a huge, completely submerged volcanic edifice that is hypothesized to have formed during large plume melting events ∼90 and 120 My ago. It is currently resisting subduction into the North Solomon trench. The size and buoyancy of the plateau along with its history of plume melting and current interaction with a subduction zone are all similar to the characteristics and hypothesized mechanisms of continent formation. However, the plateau is remote, and enigmatic, and its proto-continent potential is debated. We use SS precursors to image seismic discontinuity structure beneath Ontong Java Plateau. We image a velocity increase with depth at 28 ± 4 km consistent with the Moho. In addition, we image velocity decreases at 80 ± 5 km and 282 ± 7 km depth. Discontinuities at 60-100 km depth are frequently observed both beneath the oceans and the continents. However, the discontinuity at 282 km is anomalous in comparison to surrounding oceanic regions; in the context of previous results it may suggest a thick viscous root beneath OJP. If such a root exists, then the discontinuity at 80 km bears some similarity to the mid-lithospheric discontinuities (MLDs) observed beneath continents. One possibility is that plume melting events, similar to that which formed OJP, may cause discontinuities in the MLD depth range. Plume-plate interaction could be a mechanism for MLD formation in some continents in the Archean prior to the onset of subduction.

  17. Seismic reflection evidence for a northeast-dipping Hayward fault near Fremont, California: Implications for seismic hazard

    USGS Publications Warehouse

    Williams, R.A.; Simpson, R.W.; Jachens, R.C.; Stephenson, W.J.; Odum, J.K.; Ponce, D.A.

    2005-01-01

    A 1.6-km-long seismic reflection profile across the creeping trace of the southern Hayward fault near Fremont, California, images the fault to a depth of 650 m. Reflector truncations define a fault dip of about 70 degrees east in the 100 to 650 m depth range that projects upward to the creeping surface trace, and is inconsistent with a nearly vertical fault in this vicinity as previously believed. This fault projects to the Mission seismicity trend located at 4-10 km depth about 2 km east of the surface trace and suggests that the southern end of the fault is as seismically active as the part north of San Leandro. The seismic hazard implication is that the Hayward fault may have a more direct connection at depth with the Calaveras fault, affecting estimates of potential event magnitudes that could occur on the combined fault surfaces, thus affecting hazard assessments for the south San Francisco Bay region.

  18. High-resolution 3D seismic imaging of a pull-apart basin in the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Crutchley, G.; Berndt, C.; Klaeschen, D.; Gutscher, M.

    2009-12-01

    In 2006, high-resolution 3D seismic data were acquired in the Gulf of Cadiz and the Mediterranean Sea aboard the RRS Charles Darwin as part of the HERMES (Hotspot Ecosystem Research on the Margins of European Seas) project. The P-Cable system, a cost-efficient set-up for fast acquisition of 3D seismic data on 12 single-channel streamers, was utilized to acquire seismic cubes at four different targets. Here, we present results from the second target - a WNW-ESE-oriented pull-apart basin in the southeastern Gulf of Cadiz. Initial processing has included: 1) spatial positioning of each recording channel from GPS data acquired on the outer two channels, 2) improved positioning of shot points and channels from the inversion of first arrival times, 3) application of a swell filter to improve reflection coherency, 4) CDP binning and stacking and 5) migration. The new data confirm that the southeastern Gulf of Cadiz north of the Rharb submarine valley is structurally controlled by numerous strike slip faults that were active until quite recently (within the resolution of the data). Given the location of this basin, between the extensional domain on the upper slope and the compressional toe of the accretionary wedge, we interpret the origin to be gravitational sliding on a detachment layer, possibly containing salt, but at this stage not imaged by our profiles.

  19. Final Project Report: Imaging Fault Zones Using a Novel Elastic Reverse-Time Migration Imaging Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Lianjie; Chen, Ting; Tan, Sirui

    Imaging fault zones and fractures is crucial for geothermal operators, providing important information for reservoir evaluation and management strategies. However, there are no existing techniques available for directly and clearly imaging fault zones, particularly for steeply dipping faults and fracture zones. In this project, we developed novel acoustic- and elastic-waveform inversion methods for high-resolution velocity model building. In addition, we developed acoustic and elastic reverse-time migration methods for high-resolution subsurface imaging of complex subsurface structures and steeply-dipping fault/fracture zones. We first evaluated and verified the improved capabilities of our newly developed seismic inversion and migration imaging methods using synthetic seismicmore » data. Our numerical tests verified that our new methods directly image subsurface fracture/fault zones using surface seismic reflection data. We then applied our novel seismic inversion and migration imaging methods to a field 3D surface seismic dataset acquired at the Soda Lake geothermal field using Vibroseis sources. Our migration images of the Soda Lake geothermal field obtained using our seismic inversion and migration imaging algorithms revealed several possible fault/fracture zones. AltaRock Energy, Inc. is working with Cyrq Energy, Inc. to refine the geologic interpretation at the Soda Lake geothermal field. Trenton Cladouhos, Senior Vice President R&D of AltaRock, was very interested in our imaging results of 3D surface seismic data from the Soda Lake geothermal field. He planed to perform detailed interpretation of our images in collaboration with James Faulds and Holly McLachlan of University of Nevada at Reno. Using our high-resolution seismic inversion and migration imaging results can help determine the optimal locations to drill wells for geothermal energy production and reduce the risk of geothermal exploration.« less

  20. Seismic imaging of Q structures by a trans-dimensional coda-wave analysis

    NASA Astrophysics Data System (ADS)

    Takahashi, Tsutomu

    2017-04-01

    Wave scattering and intrinsic attenuation are important processes to describe incoherent and complex wave trains of high frequency seismic wave (>1Hz). The multiple lapse time window analysis (MLTWA) has been used to estimate scattering and intrinsic Q values by assuming constant Q in a study area (e.g., Hoshiba 1993). This study generalizes this MLTWA to estimate lateral variations of Q values under the Bayesian framework in dimension variable space. Study area is partitioned into small areas by means of the Voronoi tessellation. Scattering and intrinsic Q in each small area are constant. We define a misfit function for spatiotemporal variations of wave energy as with the original MLTWA, and maximize the posterior probability with changing not only Q values but the number and spatial layout of the Voronoi cells. This maximization is conducted by means of the reversible jump Markov chain Monte Carlo (rjMCMC) (Green 1995) since the number of unknown parameters (i.e., dimension of posterior probability) is variable. After a convergence to the maximum posterior, we estimate Q structures from the ensemble averages of MCMC samples around the maximum posterior probability. Synthetic tests showed stable reconstructions of input structures with reasonable error distributions. We applied this method for seismic waveform data recorded by ocean bottom seismograms at the outer-rise area off Tohoku, and estimated Q values at 4-8Hz, 8-16Hz and 16-32Hz. Intrinsic Q are nearly constant at all frequency bands, and scattering Q shows two distinct strong scattering regions at petit spot area and high seismicity area. These strong scattering are probably related to magma inclusions and fractured structure, respectively. Difference between these two areas becomes clear at high frequencies. It means that scale dependences of inhomogeneities or smaller scale inhomogeneity is important to discuss medium property and origins of structural variations. While the generalized MLTWA is based on

  1. The critical angle in seismic interferometry

    USGS Publications Warehouse

    Van Wijk, K.; Calvert, A.; Haney, M.; Mikesell, D.; Snieder, R.

    2008-01-01

    Limitations with respect to the characteristics and distribution of sources are inherent to any field seismic experiment, but in seismic interferometry these lead to spurious waves. Instead of trying to eliminate, filter or otherwise suppress spurious waves, crosscorrelation of receivers in a refraction experiment indicate we can take advantage of spurious events for near-surface parameter extraction for static corrections or near-surface imaging. We illustrate this with numerical examples and a field experiment from the CSM/Boise State University Geophysics Field Camp.

  2. Seismic reflection images of the accretionary wedge of Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, T.H.; Stoffa, P.L.; McIntosh, K.

    The large-scale structure of modern accretionary wedges is known almost entirely from seismic reflection investigations using single or grids of two-dimensional profiles. The authors will report on the first three-dimensional seismic reflection data volume collected of a wedge. This data set covers a 9-km-wide {times} 22-km-long {times} 6-km-thick volume of the accretionary wedge just arcward of the Middle America Trench off Costa Rica. The three-dimensional processing has improved the imaging ability of the multichannel data, and the data volume allows mapping of structures from a few hundred meters to kilometers in size. These data illustrate the relationships between the basement,more » the wedge shape, and overlying slope sedimentary deposits. Reflections from within the wedge define the gross structural features and tectonic processes active along this particular convergent margin. So far, the analysis shows that the subdued basement relief (horst and graben structures seldom have relief of more than a few hundred meters off Costa Rica) does affect the larger scale through going structural features within the wedge. The distribution of mud volcanoes and amplitude anomalies associated with the large-scale wedge structures suggests that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region at a distance of 50-100 km. Offscraping of the uppermost (about 45 m) sediment occurs within 4 km of the trench, creating a small pile of sediments near the trench lower slope. Underplating of parts of the 400-m-thick subducted sedimentary section begins at a very shallow structural level, 4-10 km arcward of the trench. Volumetrically, the most important accretionary process is underplating.« less

  3. Tomographic Image of a Seismically Active Volcano: Mammoth Mountain, California

    NASA Astrophysics Data System (ADS)

    Dawson, P. B.; Chouet, B. A.; Pitt, A. M.

    2015-12-01

    High-resolution tomographic P wave, S wave, and VP /VS velocity structure models are derived for Mammoth Mountain, California using phase data from the Northern California Seismic Network and a temporary deployment of broadband seismometers. An anomalous volume (˜50 km3) of low P and low S wave velocities is imaged beneath Mammoth Mountain, extending from near the surface to a depth of ˜2 km below sea level. We infer that the reduction in seismic wave velocities is primarily due to the presence of CO2 distributed in oblate-spheroid pores with mean aspect ratio α ˜8 x 10-4 (crack-like pores) and gas volume fraction φ ˜4 x 10-4. The pore density parameter κ = 3φ / (4πα) = na3 = 0.12, where n is the number of pores per cubic meter and a is the mean pore equatorial radius. The total mass of CO2 is estimated to range up to ˜1.6 x 1010 kg if the pores exclusively contain CO2, although he presence of an aqueous phase may lower this estimate by up to one order of magnitude. The local geological structure indicates that the CO2 contained in the pores is delivered to the surface through fractures controlled by faults and remnant foliation of the bedrock beneath Mammoth Mountain. The total volume of CO2 contained in the reservoir suggests that given an emission rate of 5 x 105 kg day-1, the reservoir could supply the emission of CO2 for ˜8 to ˜90 years before depletion. Continued supply of CO2 from an underlying magmatic system would significantly prolong the existence of the reservoir.

  4. Two-dimensional Co-Seismic Surface Displacements Field of the Chi-Chi Earthquake Inferred from SAR Image Matching.

    PubMed

    Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun

    2008-10-21

    The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the

  5. Seismic probing of continental subduction zones

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Xu, Xiaobing; Malusà, Marco G.

    2017-09-01

    High-resolution images of Earth's interior provide pivotal information for the understanding of a range of geodynamic processes, including continental subduction and exhumation of ultrahigh-pressure (UHP) metamorphic rocks. Here we present a synthesis of available global seismic observations on continental subduction zones, and selected examples of seismic probing from the European Alps, the Himalaya-Tibet and the Qinling-Dabie orogenic belts. Our synthesis and examples show that slabs recognized beneath exhumed continental UHP terranes generally have shallow dip angles (<45°) at depths <100 km, to become much steeper at depths >100 km. Slabs underlined by a clear high velocity anomaly from Earth's surface to the mantle are generally Cenozoic in age. Some of these slabs are continuous, whereas other continental subduction zones are located above discontinuous high velocity anomalies possibly suggesting slab breakoff. The density of seismic stations and the quality of recordings are of primary importance to get high-resolution images of the upper mantle to be used as a starting point to provide reliable geodynamic interpretations. In some cases, areas previously indicated as possible site of slab breakoff, such as the European Alps, have been later proven to be located above a continuous slab by using higher quality travel time data from denser seismic arrays. Discriminating between oceanic and continental slabs can be challenging, but valuable information can be provided by combining teleseismic tomography and receiver function analysis. The upper mantle beneath most continental UHP terranes generally shows complex seismic anisotropy patterns that are potentially preserved even in pre-Cenozoic subduction zones. These patterns can be used to provide information on continental slabs that are no longer highlighted by a clear high-velocity anomaly.

  6. Regional seismic lines reprocessed using post-stack processing techniques; National Petroleum Reserve, Alaska

    USGS Publications Warehouse

    Miller, John J.; Agena, W.F.; Lee, M.W.; Zihlman, F.N.; Grow, J.A.; Taylor, D.J.; Killgore, Michele; Oliver, H.L.

    2000-01-01

    This CD-ROM contains stacked, migrated, 2-Dimensional seismic reflection data and associated support information for 22 regional seismic lines (3,470 line-miles) recorded in the National Petroleum Reserve ? Alaska (NPRA) from 1974 through 1981. Together, these lines constitute about one-quarter of the seismic data collected as part of the Federal Government?s program to evaluate the petroleum potential of the Reserve. The regional lines, which form a grid covering the entire NPRA, were created by combining various individual lines recorded in different years using different recording parameters. These data were reprocessed by the USGS using modern, post-stack processing techniques, to create a data set suitable for interpretation on interactive seismic interpretation computer workstations. Reprocessing was done in support of ongoing petroleum resource studies by the USGS Energy Program. The CD-ROM contains the following files: 1) 22 files containing the digital seismic data in standard, SEG-Y format; 2) 1 file containing navigation data for the 22 lines in standard SEG-P1 format; 3) 22 small scale graphic images of each seismic line in Adobe Acrobat? PDF format; 4) a graphic image of the location map, generated from the navigation file, with hyperlinks to the graphic images of the seismic lines; 5) an ASCII text file with cross-reference information for relating the sequential trace numbers on each regional line to the line number and shotpoint number of the original component lines; and 6) an explanation of the processing used to create the final seismic sections (this document). The SEG-Y format seismic files and SEG-P1 format navigation file contain all the information necessary for loading the data onto a seismic interpretation workstation.

  7. Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions

    NASA Astrophysics Data System (ADS)

    Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.

    2016-10-01

    Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability

  8. Ultrahigh-Resolution 3-Dimensional Seismic Imaging of Seeps from the Continental Slope of the Northern Gulf of Mexico: Subsurface, Seafloor and Into the Water Column

    NASA Astrophysics Data System (ADS)

    Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.

    2016-02-01

    Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.

  9. Seismicity and seismic hazard in Sabah, East Malaysia from earthquake and geodetic data

    NASA Astrophysics Data System (ADS)

    Gilligan, A.; Rawlinson, N.; Tongkul, F.; Stephenson, R.

    2017-12-01

    While the levels of seismicity are low in most of Malaysia, the state of Sabah in northern Borneo has moderate levels of seismicity. Notable earthquakes in the region include the 1976 M6.2 Lahad Datu earthquake and the 2015 M6 Ranau earthquake. The recent Ranau earthquake resulted in the deaths of 18 people on Mt Kinabalu, an estimated 100 million RM ( US$23 million) damage to buildings, roads, and infrastructure from shaking, and flooding, reduced water quality, and damage to farms from landslides. Over the last 40 years the population of Sabah has increased to over four times what it was in 1976, yet seismic hazard in Sabah remains poorly understood. Using seismic and geodetic data we hope to better quantify the hazards posed by earthquakes in Sabah, and thus help to minimize risk. In order to do this we need to know about the locations of earthquakes, types of earthquakes that occur, and faults that are generating them. We use data from 15 MetMalaysia seismic stations currently operating in Sabah to develop a region-specific velocity model from receiver functions and a pre-existing surface wave model. We use this new velocity model to (re)locate earthquakes that occurred in Sabah from 2005-2016, including a large number of aftershocks from the 2015 Ranau earthquake. We use a probabilistic nonlinear earthquake location program to locate the earthquakes and then refine their relative locations using a double difference method. The recorded waveforms are further used to obtain moment tensor solutions for these earthquakes. Earthquake locations and moment tensor solutions are then compared with the locations of faults throughout Sabah. Faults are identified from high-resolution IFSAR images and subsequent fieldwork, with a particular focus on the Lahad Datau and Ranau areas. Used together, these seismic and geodetic data can help us to develop a new seismic hazard model for Sabah, as well as aiding in the delivery of outreach activities regarding seismic hazard

  10. Seismic reflection images of shallow faulting, northernmost Mississippi embayment, north of the New Madrid seismic zone

    USGS Publications Warehouse

    McBride, J.H.; Nelson, W.J.

    2001-01-01

    High-resolution seismic reflection surveys document tectonic faults that displace Pleistocene and older strata just beyond the northeast termination of the New Madrid seismic zone, at the northernmost extent of the Mississippi embayment. These faults, which are part of the Fluorspar Area fault complex in southeastern Illinois, are directly in line with the northeast-trending seismic zone. The reflection data were acquired using an elastic weight-drop source recorded to 500 msec by a 48-geophone array (24-fold) with a 10-ft (??3.0m) station interval. Recognizable reflections were recorded to about 200 msec (100-150 m). The effects of multiple reflections, numerous diffractions, low apparent velocity (i.e., steeply dipping) noise, and the relatively low-frequency content of the recorded signal provided challenges for data processing and interpreting subtle fault offsets. Data processing steps that were critical to the detection of faults included residual statics, post-stack migration, deconvolution, and noise-reduction filtering. Seismic migration was crucial for detecting and mitigating complex fault-related diffraction patterns, which produced an apparent 'folding' of reflectors on unmigrated sections. Detected individual offsets of shallow reflectors range from 5 to 10 m for the top of Paleozoic bedrock and younger strata. The migrated sections generally indicate vertical to steeply dipping normal and reverse faults, which in places outline small horsts and/or grabens. Tilting or folding of stratal reflectors associated with faulting is also locally observed. At one site, the observed faulting is superimposed over a prominent antiformal structure, which may itself be a product of the Quaternary deformation that produced the steep normal and reverse faults. Our results suggest that faulting of the Paleozoic bedrock and younger sediments of the northern Mississippi embayment is more pervasive and less localized than previously thought.

  11. Ultrasonic imaging of seismic physical models using a fringe visibility enhanced fiber-optic Fabry-Perot interferometric sensor.

    PubMed

    Zhang, Wenlu; Chen, Fengyi; Ma, Wenwen; Rong, Qiangzhou; Qiao, Xueguang; Wang, Ruohui

    2018-04-16

    A fringe visibility enhanced fiber-optic Fabry-Perot interferometer based ultrasonic sensor is proposed and experimentally demonstrated for seismic physical model imaging. The sensor consists of a graded index multimode fiber collimator and a PTFE (polytetrafluoroethylene) diaphragm to form a Fabry-Perot interferometer. Owing to the increase of the sensor's spectral sideband slope and the smaller Young's modulus of the PTFE diaphragm, a high response to both continuous and pulsed ultrasound with a high SNR of 42.92 dB in 300 kHz is achieved when the spectral sideband filter technique is used to interrogate the sensor. The ultrasonic reconstructed images can clearly differentiate the shape of models with a high resolution.

  12. High-resolution seismic reflection surveying with a land streamer

    NASA Astrophysics Data System (ADS)

    Cengiz Tapırdamaz, Mustafa; Cankurtaranlar, Ali; Ergintav, Semih; Kurt, Levent

    2013-04-01

    In this study, newly designed seismic reflection data acquisition array (land streamer) is utilized to image the shallow subsurface. Our acquisition system consist of 24 geophones screwed on iron plates with 2 m spacing, moving on the surface of the earth which are connected with fire hose. Completely original, 4.5 Kg weight iron plates provides satisfactory coupling. This land-streamer system enables rapid and cost effective acquisition of seismic reflection data due to its operational facilities. First test studies were performed using various seismic sources such as a mini-vibro truck, buffalo-gun and hammer. The final fieldwork was performed on a landslide area which was studied before. Data acquisition was carried out on the line that was previously measured by the seismic survey using 5 m geophone and shot spacing. This line was chosen in order to re-image known reflection patterns obtained from the previous field study. Taking penetration depth into consideration, a six-cartridge buffalo-gun was selected as a seismic source to achieve high vertical resolution. Each shot-point drilled 50 cm for gunshots to obtain high resolution source signature. In order to avoid surface waves, the offset distance between the source and the first channel was chosen to be 50 m and the shot spacing was 2 m. These acquisition parameters provided 12 folds at each CDP points. Spatial sampling interval was 1 m at the surface. The processing steps included standard stages such as gain recovery, editing, frequency filtering, CDP sorting, NMO correction, static correction and stacking. Furthermore, surface consistent residual static corrections were applied recursively to improve image quality. 2D F-K filter application was performed to suppress air and surface waves at relatively deep part of the seismic section. Results show that, this newly designed, high-resolution land seismic data acquisition equipment (land-streamer) can be successfully used to image subsurface. Likewise

  13. Quaternary extensional growth folding beneath Reno, Nevada, imaged by urban seismic profiling

    USGS Publications Warehouse

    Stephenson, William J.; Frary, Roxy N.; Louie, John; Odum, Jackson K.

    2013-01-01

    We characterize shallow subsurface faulting and basin structure along a transect through heavily urbanized Reno, Nevada, with high‐resolution seismic reflection imaging. The 6.8 km of P‐wave data image the subsurface to approximately 800 m depth and delineate two subbasins and basin uplift that are consistent with structure previously inferred from gravity modeling in this region of the northern Walker Lane. We interpret two primary faults that bound the uplift and deform Quaternary deposits. The dip of Quaternary and Tertiary strata in the western subbasin increases with greater depth to the east, suggesting recurrent fault motion across the westernmost of these faults. Deformation in the Quaternary section of the western subbasin is likely evidence of extensional growth folding at the edge of the Truckee River through Reno. This deformation is north of, and on trend with, previously mapped Quaternary fault strands of the Mt. Rose fault zone. In addition to corroborating the existence of previously inferred intrabasin structure, these data provide evidence for an active extensional Quaternary fault at a previously unknown location within the Truckee Meadows basin that furthers our understanding of both the seismotectonic framework and earthquake hazards in this urbanized region.

  14. Three-Dimensional Seismic Image of a Geothermal Prospect: Tinguiririca, Central Andes, Chile

    NASA Astrophysics Data System (ADS)

    Lira, E.; Comte, D.; Giavelli, A.; Clavero, J. E.; Pineda, G.

    2010-12-01

    Seismic monitoring has been widely used by the oil and gas industry, as a valuable input for the reservoir characterization. This tool has also been used in geothermal productive systems, particularly to understand permeability controls usually associated to shallow crustal fault systems that are seismically actives. Faults can be considered either “migration path” or “seals” in Petroleum Systems, depending on their activity story (they are carriers while actives and seals when the activity cease due to diagenetic processes in the fault plain). On the other hand, is well known that seismic velocities are strongly related to rock properties, in particular Vp/Vs and VpVs relationship has been successfully used to emphasize the variations in the physical rock properties due to fluid content and porosity. In geothermal systems, P and S-wave velocities are expected to be noticeably affected by massive hydrothermal alteration and/or to the presence of hot water in the fault related fractures of the rocks. In this job, the results of three months of seismic monitoring and a seismic velocity tomography are presented. Sixteen short period continuous recording, three components seismic stations were deployed in an area of approximately 20x10 Km2, and a large 8.8 magnitude earthquake took place during the recording period. The study area corresponds to the Tinguiririca volcanic complex (70°21''W, 35°48''S), in the high mountain of the Central Andes near the Chile-Argentina border. These preliminary results are complemented with some MT profiles, delineating potentially interesting geothermal features.

  15. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.

  16. Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queen, John H.

    2016-05-09

    Executive Summary The overall objective of this work was the development of surface and borehole seismic methodologies using both compressional and shear waves for characterizing faults and fractures in Enhanced Geothermal Systems. We used both surface seismic and vertical seismic profile (VSP) methods. We adapted these methods to the unique conditions encountered in Enhanced Geothermal Systems (EGS) creation. These conditions include geological environments with volcanic cover, highly altered rocks, severe structure, extreme near surface velocity contrasts and lack of distinct velocity contrasts at depth. One of the objectives was the development of methods for identifying more appropriate seismic acquisition parametersmore » for overcoming problems associated with these geological factors. Because temperatures up to 300º C are often encountered in these systems, another objective was the testing of VSP borehole tools capable of operating at depths in excess of 1,000 m and at temperatures in excess of 200º C. A final objective was the development of new processing and interpretation techniques based on scattering and time-frequency analysis, as well as the application of modern seismic migration imaging algorithms to seismic data acquired over geothermal areas. The use of surface seismic reflection data at Brady's Hot Springs was found useful in building a geological model, but only when combined with other extensive geological and geophysical data. The use of fine source and geophone spacing was critical in producing useful images. The surface seismic reflection data gave no information about the internal structure (extent, thickness and filling) of faults and fractures, and modeling suggests that they are unlikely to do so. Time-frequency analysis was applied to these data, but was not found to be significantly useful in their interpretation. Modeling does indicate that VSP and other seismic methods with sensors located at depth in wells will be the most

  17. Seismic Imaging of Circumpolar Deep Water Exchange across the Shelf Break of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Gunn, K.; White, N.; Larter, R. D.; Falder, M.; Caulfield, C. C. P.

    2016-02-01

    The western Antarctic Peninsula is an area of recent extreme atmospheric warming. In the adjacent ocean, there is particular interest in on-shelf movement of Circumpolar Deep Water as a possible link to changing climate by affecting ice shelf processes. Here, we investigate on-shelf intrusions using two-dimensional seismic imaging of the water column which has vertical and horizontal resolutions of 10 m. 8 seismic profiles were acquired in February 2015 using the RRS James Clark Ross. These profiles traverse the shelf break and cross two bathymetric features, the Marguerite and Biscoe troughs, which may play a role in water exchange processes. Seismic data were acquired using two Generator-Injector air guns fired every 10 s with a pressure of 2000 psi. Reflections were recorded on a 2.4 km streamer of 192 receivers spaced every 12.5 m. Observed reflections in the processed records are caused by rapid changes of temperature ( 80%) and salinity ( 20%), delineating water masses of different properties. 13 XCTDs and XBTs plus a 38 kHz echo-sounder profile were simultaneously acquired along seismic profiles and used for calibration. Preliminary results show the top of the Winter Water layer as a bright reflection at 50-120 m depth across the entire survey, corresponding to temperatures ≤ -1°C. Curved, discontinuous, eddy-like reflections, also seen on echo-sounder profiles, are attributed to modified Upper Circumpolar Deep Water with temperatures ≥ 1.34°C. A warm core eddy, 11 km long and 220 m high, is visible 2 km inland of the shelf break. Pure Upper Circumpolar Deep Water of temperatures ≥ 1.80°C is aligned with weak but discernible, lens-shaped reflections. Eddy-like structures and the overall reflective morphology yield useful insights into shelf exchange processes, suggestive of three potential mechanisms: (i) topography controlled flow; (ii) an 'ice-pump' mechanism; and (iii) mesoscale eddies.

  18. Seismic image of a CO2 reservoir beneath a seismically active volcano

    USGS Publications Warehouse

    Julian, B.R.; Pitt, A.M.; Foulger, G.R.

    1998-01-01

    Mammoth Mountain is a seismically active volcano 200 000 to 50 000 years old, situated on the southwestern rim of Long Valley caldera, California. Since 1989 it has shown evidence of unrest in the form of earthquake swarms (Hill et al. 1990), volcanic 'long-period' earthquakes (Pitt and Hill 1994), increased output of magmatic 3He (Sorey et al. 1993) and the emission of about 500 tonnes day-1 of CO2 (Farrar et al. 1995; Hill 1996; M. Sorey, personal communication, 1997) which has killed trees and poses a threat to human safety. Local-earthquake tomography shows that in mid-1989 areas of subsequent tree-kill were underlain by extensive regions where the ratio of the compressional and shear elastic-wave speeds Vp/VS was about 9% lower than in the surrounding rocks. Theory (Mavko and Mukerji 1995), experiment (Ito, DeVilbiss and Nur 1979) and experience at other geothermal/volcanic areas (Julian et al. 1996) and at petroleum reservoirs (Harris et al. 1996) indicate that Vp/VS is sensitive to pore-fluid compressibility, through its effect on Vp. The observed Vp/VS anomaly is probably caused directly by CO2, and seismic Vp/VS tomography is thus a promising tool for monitoring gas concentration and movement in volcanoes, which may in turn be related to volcanic activity.

  19. Hear it, See it, Explore it: Visualizations and Sonifications of Seismic Signals

    NASA Astrophysics Data System (ADS)

    Fisher, M.; Peng, Z.; Simpson, D. W.; Kilb, D. L.

    2010-12-01

    Sonification of seismic data is an innovative way to represent seismic data in the audible range (Simpson, 2005). Seismic waves with different frequency and temporal characteristics, such as those from teleseismic earthquakes, deep “non-volcanic” tremor and local earthquakes, can be easily discriminated when time-compressed to the audio range. Hence, sonification is particularly useful for presenting complicated seismic signals with multiple sources, such as aftershocks within the coda of large earthquakes, and remote triggering of earthquakes and tremor by large teleseismic earthquakes. Previous studies mostly focused on converting the seismic data into audible files by simple time compression or frequency modulation (Simpson et al., 2009). Here we generate animations of the seismic data together with the sounds. We first read seismic data in the SAC format into Matlab, and generate a sequence of image files and an associated WAV sound file. Next, we use a third party video editor, such as the QuickTime Pro, to combine the image sequences and the sound file into an animation. We have applied this simple procedure to generate animations of remotely triggered earthquakes, tremor and low-frequency earthquakes in California, and mainshock-aftershock sequences in Japan and California. These animations clearly demonstrate the interactions of earthquake sequences and the richness of the seismic data. The tool developed in this study can be easily adapted for use in other research applications and to create sonification/animation of seismic data for education and outreach purpose.

  20. Seismic imaging and hydrogeologic characterization of the Potomac Formation in northern New Castle County, Delaware

    NASA Astrophysics Data System (ADS)

    Zullo, Claudia Cristina

    Water supply demands of a growing population in the Coastal Plain of Delaware make detailed understanding of aquifers increasingly important. Previous studies indicate that the stratigraphy of the non-marine Potomac Formation, which includes the most important confined aquifers in the area, is complex and lithologically heterogeneous, making sands difficult to correlate. This study aimed to delineate the stratigraphic architecture of these sediments with a focus on the sand bodies that provide significant volumes of groundwater to northern Delaware. This project utilized an unconventional seismic system, a land streamer system, for collecting near-surface, high-resolution seismic reflection data on unpaved and paved public roadways. To calibrate the 20 km of seismic data to lithologies, a corehole and wireline geophysical logs were obtained. Six lithofacies (paleosols, lake, frequently flooded lake/abandoned channel, splay/levee, splay channel, fluvial channel) and their respective geophysical log patterns were identified and then correlated with the seismic data to relate seismic facies to these environments. Using seismic attribute analysis, seismic facies that correspond to four of the lithofacies were identified: fluvial channel seismic facies, paleosol seismic facies, splay/levee seismic facies, and a frequently flooded lake/abandoned channel and splay/levee combined seismic facies. Correlations for eleven horizons identified in the seismic sections and cross sections show local changes in thickness and erosional relief. The analysis of seismic facies sections provides a two-dimensional basis for detailed understanding of the stratigraphy of the Potomac Formation, and suggests an anastomosing fluvial style with poorly connected winding channel sands encased in fine-grained overbank sediments that produced a complex, labyrinth-style heterogeneity. The results indicate that the 2D lateral connectivity of the sand bodies of the Potomac Formation is limited to

  1. Active normal fault network of the Apulian Ridge (Eastern Mediterranean Sea) imaged by multibeam bathymetry and seismic data

    NASA Astrophysics Data System (ADS)

    Pellegrini, Claudio; Marchese, Fabio; Savini, Alessandra; Bistacchi, Andrea

    2016-04-01

    The Apulian ridge (North-eastern Ionian margin - Mediterranean Sea) is formed by thick cretaceous carbonatic sequences and discontinuous tertiary deposits crosscut by a NNW-SSE penetrative normal fault system and is part of the present foreland system of both the Apennine to the west and the Hellenic arc to the east. The geometry, age, architecture and kinematics of the fault network were investigated integrating data of heterogeneous sources, provided by previous studies: regional scale 2D seismics and three wells collected by oil companies from the '60s to the '80s, more recent seismics collected during research projects in the '90s, very high resolution seismic (VHRS - Sparker and Chirp-sonar data), multi-beam echosounder bathymetry and results from sedimentological and geo-chronological analysis of sediment samples collected on the seabed. Multibeam bathymetric data allowed in particular assessing the 3D continuity of structures imaged in 2D seismics, thanks to the occurrence of continuous fault scarps on the seabed (only partly reworked by currents and covered by landslides), revealing the vertical extent and finite displacement associated to fault scarps. A penetrative network of relatively small faults, always showing a high dip angle, composes the NNW-SSE normal fault system, resulting in frequent relay zones, which are particularly well imaged by seafloor geomorphology. In addition, numerous fault scarps appear to be roughly coeval with quaternary submarine mass-wasting deposits colonised by Cold-Water Corals (CWC). Coral colonies, yielding ages between 11 and 14 kA, develop immediately on top of late Pleistocene mass-wasting deposits. Mutual cross-cutting relationships have been recognized between fault scarps and landslides, indicating that, at least in places, these features may be coeval. We suppose that fault activity lasted at least as far as the Holocene-Pleistocene boundary and that the NNW-SSW normal fault network in the Apulian Plateau can be

  2. Field, Laboratory and Imaging spectroscopic Analysis of Landslide, Debris Flow and Flood Hazards in Lacustrine, Aeolian and Alluvial Fan Deposits Surrounding the Salton Sea, Southern California

    NASA Astrophysics Data System (ADS)

    Hubbard, B. E.; Hooper, D. M.; Mars, J. C.

    2015-12-01

    High resolution satellite imagery, field spectral measurements using a portable ASD spectrometer, and 2013 hyperspectral AVIRIS imagery were used to evaluate the age of the Martinez Mountain Landslide (MML) near the Salton Sea, in order to determine the relative ages of adjacent alluvial fan surfaces and the potential for additional landslides, debris flows, and floods. The Salton Sea (SS) occupies a pluvial lake basin, with ancient shorelines ranging from 81 meters to 113 meters above the modern lake level. The highest shoreline overlaps the toe of the 0.24 - 0.38 km3 MML deposit derived from hydrothermally altered granites exposed near the summit of Martinez Mountain. The MML was originally believed to be of early Holocene age. However, AVIRIS mineral maps show abundant desert varnish on the top and toe of the landslide. Desert varnish can provide a means of relative dating of alluvial fan (AF) or landslide surfaces, as it accumulates at determinable rates over time. Based on the 1) highest levels of desert varnish accumulation mapped within the basin, 2) abundant evaporite playa minerals on top of the toe of the landslide, and 3) the highest shoreline of the ancestral lake overtopping the toe of the landslide with gastropod and bivalve shells, we conclude that the MML predates the oldest alluvial fan terraces and lake sediments exposed in the Coachella and Imperial valleys and must be older than early Holocene (i.e. Late Pleistocene?). Thus, the MML landslide has the potential to be used as a spectral endmember for desert varnish thickness and thus proxy for age discrimination of active AF washes versus desert pavements. Given the older age of the MML landslide and low water levels in the modern SS, the risk from future rockslides of this size and related seiches is rather low. However, catastrophic floods and debris flows do occur along the most active AF channels; and the aftermath of such flows can be identified spectrally by montmorillonite crusts forming in

  3. High-Frequency Fiber-Optic Ultrasonic Sensor Using Air Micro-Bubble for Imaging of Seismic Physical Models.

    PubMed

    Gang, Tingting; Hu, Manli; Rong, Qiangzhou; Qiao, Xueguang; Liang, Lei; Liu, Nan; Tong, Rongxin; Liu, Xiaobo; Bian, Ce

    2016-12-14

    A micro-fiber-optic Fabry-Perot interferometer (FPI) is proposed and demonstrated experimentally for ultrasonic imaging of seismic physical models. The device consists of a micro-bubble followed by the end of a single-mode fiber (SMF). The micro-structure is formed by the discharging operation on a short segment of hollow-core fiber (HCF) that is spliced to the SMF. This micro FPI is sensitive to ultrasonic waves (UWs), especially to the high-frequency (up to 10 MHz) UW, thanks to its ultra-thin cavity wall and micro-diameter. A side-band filter technology is employed for the UW interrogation, and then the high signal-to-noise ratio (SNR) UW signal is achieved. Eventually the sensor is used for lateral imaging of the physical model by scanning UW detection and two-dimensional signal reconstruction.

  4. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    USGS Publications Warehouse

    Clement, C.R.; Pratt, T.L.; Holmes, M.L.; Sherrod, B.L.

    2010-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ???350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ???2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ???3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  5. High-resolution seismic reflection imaging of growth folding and shallow faults beneath the Southern Puget Lowland, Washington State

    USGS Publications Warehouse

    Odum, Jackson K.; Stephenson, William J.; Pratt, Thomas L.; Blakely, Richard J.

    2016-01-01

    Marine seismic reflection data from southern Puget Sound, Washington, were collected to investigate the nature of shallow structures associated with the Tacoma fault zone and the Olympia structure. Growth folding and probable Holocene surface deformation were imaged within the Tacoma fault zone beneath Case and Carr Inlets. Shallow faults near potential field anomalies associated with the Olympia structure were imaged beneath Budd and Eld Inlets. Beneath Case Inlet, the Tacoma fault zone includes an ∼350-m wide section of south-dipping strata forming the upper part of a fold (kink band) coincident with the southern edge of an uplifted shoreline terrace. An ∼2 m change in the depth of the water bottom, onlapping postglacial sediments, and increasing stratal dips with increasing depth are consistent with late Pleistocene to Holocene postglacial growth folding above a blind fault. Geologic data across a topographic lineament on nearby land indicate recent uplift of late Holocene age. Profiles acquired in Carr Inlet 10 km to the east of Case Inlet showed late Pleistocene or Holocene faulting at one location with ∼3 to 4 m of vertical displacement, south side up. North of this fault the data show several other disruptions and reflector terminations that could mark faults within the broad Tacoma fault zone. Seismic reflection profiles across part of the Olympia structure beneath southern Puget Sound show two apparent faults about 160 m apart having 1 to 2 m of displacement of subhorizontal bedding. Directly beneath one of these faults, a dipping reflector that may mark the base of a glacial channel shows the opposite sense of throw, suggesting strike-slip motion. Deeper seismic reflection profiles show disrupted strata beneath these faults but little apparent vertical offset, consistent with strike-slip faulting. These faults and folds indicate that the Tacoma fault and Olympia structure include active structures with probable postglacial motion.

  6. Time reversal seismic imaging using laterally reflected surface waves in southern California

    NASA Astrophysics Data System (ADS)

    Tape, C.; Liu, Q.; Tromp, J.; Plesch, A.; Shaw, J. H.

    2010-12-01

    We use observed post-surface-wave seismic waveforms to image shallow (upper 10 km) lateral reflectors in southern California. Our imaging technique employs the 3D crustal model m16 of Tape et al. (2009), which is accurate for most local earthquakes over the period range 2-30 s. Model m16 captures the resonance of the major sedimentary basins in southern California, as well as some lateral surface wave reflections associated with these basins. We apply a 3D Gaussian smoothing function (12 km horizontal, 2 km vertical) to model m16. This smoothing has the effect of suppressing synthetic waveforms within the period range of interest (3-10 s) that are associated with reflections (single and multiple) from these basins. The smoothed 3D model serves as the background model within which we propagate an ``adjoint wavefield'' comprised of time-reversed windows of post-surface-wave coda waveforms that are initiated at the respective station locations. This adjoint wavefield constructively interferes with the regular wavefield in the locations of potential reflectors. The potential reflectors are revealed in an ``event kernel,'' which is the time-integrated volumetric field for each earthquake. By summing (or ``stacking'') the event kernels from 28 well-recorded earthquakes, we identify several reflectors using this imaging procedure. The most prominent lateral reflectors occur in proximity to: the southernmost San Joaquin basin, the Los Angeles basin, the San Pedro basin, the Ventura basin, the Manix basin, the San Clemente--Santa Cruz--Santa Barbara ridge, and isolated segments of the San Jacinto and San Andreas faults. The correspondence between observed coherent coda waveforms and the imaged reflectors provides a solid basis for interpreting the kernel features as material contrasts. The 3D spatial extent and amplitude of the kernel features provide constraints on the geometry and material contrast of the imaged reflectors.

  7. Seismic images of an extensional basin, generated at the hangingwall of a low-angle normal fault: The case of the Sansepolcro basin (Central Italy)

    NASA Astrophysics Data System (ADS)

    Barchi, Massimiliano R.; Ciaccio, Maria Grazia

    2009-12-01

    The study of syntectonic basins, generated at the hangingwall of regional low-angle detachments, can help to gain a better knowledge of these important and mechanically controversial extensional structures, constraining their kinematics and timing of activity. Seismic reflection images constrain the geometry and internal structure of the Sansepolcro Basin (the northernmost portion of the High Tiber Valley). This basin was generated at the hangingwall of the Altotiberina Fault (AtF), an E-dipping low-angle normal fault, active at least since Late Pliocene, affecting the upper crust of this portion of the Northern Apennines. The dataset analysed consists of 5 seismic reflection lines acquired in the 80s' by ENI-Agip for oil exploration and a portion of the NVR deep CROP03 profile. The interpretation of the seismic profiles provides a 3-D reconstruction of the basin's shape and of the sedimentary succession infilling the basin. This consisting of up to 1200 m of fluvial and lacustrine sediments: this succession is much thicker and possibly older than previously hypothesised. The seismic data also image the geometry at depth of the faults driving the basin onset and evolution. The western flank is bordered by a set of E-dipping normal faults, producing the uplifting and tilting of Early to Middle Pleistocene succession along the Anghiari ridge. Along the eastern flank, the sediments are markedly dragged along the SW-dipping Sansepolcro fault. Both NE- and SW-dipping faults splay out from the NE-dipping, low-angle Altotiberina fault. Both AtF and its high-angle splays are still active, as suggested by combined geological and geomorphological evidences: the historical seismicity of the area can be reasonably associated to these faults, however the available data do not constrain an unambiguous association between the single structural elements and the major earthquakes.

  8. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, R.; Gorriz, E.; Danobeitia, J.; Barba, D. C., Sr.; Martí, D.; L Cameselle, A.; Nuñez-Cornu, F. J.; Bandy, W. L.; Mortera, C.; Nunez, D.; Alonso, J. L.; Castellon, A.; Prada, M.

    2016-12-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014 Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a Bottom Simulating Reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  9. Multichannel Seismic Imaging of the Rivera Plate Subduction at the Seismogenic Jalisco Block Area (Western Mexican Margin)

    NASA Astrophysics Data System (ADS)

    Bartolome, Rafael; Górriz, Estefanía; Dañobeitia, Juanjo; Cordoba, Diego; Martí, David; Cameselle, Alejandra L.; Núñez-Cornú, Francisco; Bandy, William L.; Mortera-Gutiérrez, Carlos A.; Nuñez, Diana; Castellón, Arturo; Alonso, Jose Luis

    2016-10-01

    During the TSUJAL marine geophysical survey, conducted in February and March 2014, Spanish, Mexican and British scientists and technicians explored the western margin of Mexico, considered one of the most active seismic zones in America. This work aims to characterize the internal structure of the subduction zone of the Rivera plate beneath the North American plate in the offshore part of the Jalisco Block, to link the geodynamic and the recent tectonic deformation occurring there with the possible generation of tsunamis and earthquakes. For this purpose, it has been carried out acquisition, processing and geological interpretation of a multichannel seismic reflection profile running perpendicular to the margin. Crustal images show an oceanic domain, dominated by subduction-accretion along the lower slope of the margin with a subparallel sediment thickness of up to 1.6 s two-way travel time (approx. 2 km) in the Middle American Trench. Further, from these data the region appears to be prone to giant earthquake production. The top of the oceanic crust (intraplate reflector) is very well imaged. It is almost continuous along the profile with a gentle dip (<10°); however, it is disrupted by normal faulting resulting from the bending of the plate during subduction. The continental crust presents a well-developed accretionary prism consisting of highly deformed sediments with prominent slumping towards the trench that may be the result of past tsunamis. Also, a bottom simulating reflector (BSR) is identified in the first half a second (twtt) of the section. High amplitude reflections at around 7-8 s twtt clearly image a discontinuous Moho, defining a very gentle dipping subduction plane.

  10. Micro-seismicity in the Gulf of Cadiz: Is there a link between micro-seismicity, high magnitude earthquakes and active faults?

    NASA Astrophysics Data System (ADS)

    Silva, Sónia; Terrinha, Pedro; Matias, Luis; Duarte, João C.; Roque, Cristina; Ranero, César R.; Geissler, Wolfram H.; Zitellini, Nevio

    2017-10-01

    The Gulf of Cadiz seismicity is characterized by persistent low to intermediate magnitude earthquakes, occasionally punctuated by high magnitude events such as the M 8.7 1755 Great Lisbon earthquake and the M = 7.9 event of February 28th, 1969. Micro-seismicity was recorded during 11 months by a temporary network of 25 ocean bottom seismometers (OBSs) in an area of high seismic activity, encompassing the potential source areas of the mentioned large magnitude earthquakes. We combined micro-seismicity analysis with processing and interpretation of deep crustal seismic reflection profiles and available refraction data to investigate the possible tectonic control of the seismicity in the Gulf of Cadiz area. Three controlling mechanisms are explored: i) active tectonic structures, ii) transitions between different lithospheric domains and inherited Mesozoic structures, and iii) fault weakening mechanisms. Our results show that micro-seismicity is mostly located in the upper mantle and is associated with tectonic inversion of extensional rift structures and to the transition between different lithospheric/rheological domains. Even though the crustal structure is well imaged in the seismic profiles and in the bathymetry, crustal faults show low to negligible seismic activity. A possible explanation for this is that the crustal thrusts are thin-skinned structures rooting in relatively shallow sub-horizontal décollements associated with (aseismic) serpentinization levels at the top of the lithospheric mantle. Therefore, co-seismic slip along crustal thrusts may only occur during large magnitude events, while for most of the inter-seismic cycle these thrusts remain locked, or slip aseismically. We further speculate that high magnitude earthquake's ruptures may only nucleate in the lithospheric mantle and then propagate into the crust across the serpentinized layers.

  11. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: An empirical modeling approach

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.

    2008-01-01

    Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25-50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17-63% and increase Secchi depths (SD) by 38-97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70-90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. ?? 2008 Springer Science+Business Media B.V.

  12. Structure and Deformation in the Transpressive Zone of Southern California Inferred from Seismicity, Velocity, and Qp Models

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Shearer, P.

    2004-12-01

    We synthesize relocated regional seismicity and 3D velocity and Qp models to infer structure and deformation in the transpressive zone of southern California. These models provide a comprehensive synthesis of the tectonic fabric of the upper to middle crust, and the brittle ductile transition zone that in some cases extends into the lower crust. The regional seismicity patterns in southern California are brought into focus when the hypocenters are relocated using the double difference method. In detail, often the spatial correlation between background seismicity and late Quaternary faults is improved as the hypocenters become more clustered, and the spatial patterns are more sharply defined. Along some of the strike-slip faults the seismicity clusters decrease in width and form alignments implying that in many cases the clusters are associated with a single fault. In contrast, the Los Angeles Basin seismicity remains mostly scattered, reflecting a 3D distribution of the tectonic compression. We present the results of relocating 327,000 southern California earthquakes that occurred between 1984 and 2002. In particular, the depth distribution is improved and less affected by layer boundaries in velocity models or other similar artifacts, and thus improves the definition of the brittle ductile transition zone. The 3D VP and VP/VS models confirm existing tectonic interpretations and provide new insights into the configuration of the geological structures in southern California. The models extend from the US-Mexico border in the south to the Coast Ranges and Sierra Nevada in the north, and have 15 km horizontal grid spacing and an average vertical grid spacing of 4 km, down to 22 km depth. The heterogeneity of the crustal structure as imaged in both the VP and VP/VS models is larger within the Pacific than the North America plate, reflecting regional asymmetric variations in the crustal composition and past tectonic processes. Similarly, the relocated seismicity is

  13. Comparison of Amplitudes and Frequencies of Explosive vs. Hammer Seismic Sources for a 1-km Seismic Line in West Texas

    NASA Astrophysics Data System (ADS)

    Kaip, G.; Harder, S. H.; Karplus, M. S.; Vennemann, A.

    2016-12-01

    In May 2016, the National Seismic Source Facility (NSSF) located at the University of Texas at El Paso (UTEP) Department of Geological Sciences collected seismic data at the Indio Ranch located 30 km southwest of Van Horn, Texas. Both hammer on an aluminum plate and explosive sources were used. The project objective was to image subsurface structures at the ranch, owned by UTEP. Selecting the appropriate seismic source is important to reach project objectives. We compare seismic sources between explosions and hammer on plate, focusing on amplitude and frequency. The seismic line was 1 km long, trending WSW to ENE, with 200 4.5 Hz geophones at 5m spacing and shot locations at 10m spacing. Clay slurry was used in shot holes to increase shot coupling around booster. Trojan Spartan cast boosters (150g) were used in explosive sources in each shot hole (1 hole per station). The end of line shots had 5 shot holes instead of 1 (750g total). The hammer source utilized a 5.5 kg hammer and an aluminum plate. Five hammer blows were stacked at each location to improve signal-to-noise ratio. Explosive sources yield higher amplitude, but lower frequency content. The explosions exhibit a higher signal-to-noise ratio, allowing us to recognize seismic energy deeper and farther from the source. Hammer sources yield higher frequencies, allowing better resolution at shallower depths but have a lower signal-to-noise ratio and lower amplitudes, even with source stacking. We analyze the details of the shot spectra from the different types of sources. A combination of source types can improve data resolution and amplitude, thereby improving imaging potential. However, cost, logistics, and complexities also have a large influence on source selection.

  14. Host selection patterns of Culex tarsalis (Diptera: Culicidae) at wetlands near the Salton Sea, Coachella Valley, California, 1998-2002.

    PubMed

    Reisen, William K; Lothrop, Hugh D; Thiemann, Tara

    2013-09-01

    The bloodmeal hosts used by Culex tarsalis Coquillett collected along the Salton Sea in Coachella Valley, CA, during 1998-2002 were identified using sequences of the cytochrome c oxidase I gene identified from Barcode of Life database. Overall, 265 (83.3%) of 318 bloodmeals were identified, of which 76.6% fed on birds, 18.1% on mammals, and 5.3% on reptiles. Forty-seven different hosts were identified, none of which comprised > 12.5% of the total. Although Cx. tarsalis exhibits specific host-seeking flight patterns, bloodmeals seemed to be acquired opportunistically, thereby limiting potential arbovirus transmission efficiency in species-rich environments.

  15. Experimental evaluation of atmospheric effects on radiometric measurements using the EREP of Skylab. [Salton Sea and Great Salt Lake

    NASA Technical Reports Server (NTRS)

    Chang, D. T. (Principal Investigator); Isaacs, R. G.

    1975-01-01

    The author has identified the following significant results. Test sites were located near the Great Salt Lake and the Salton Sea. Calculations were performed for a set of atmospheric models corresponding to the test sites, in addition to standard models for summer and winter midlatitude atmospheres with respective integrated water vapor amount of 2.4 g/sq cm and 0.9 g/sq cm. Each atmosphere was found to contain an average amount of continental aerosol. Computations were valid for high solar elevation angles. Atmospheric attenuation quantities were computed in addition to simulated EREP S192 radiances.

  16. Seismicity of Afghanistan and vicinity

    USGS Publications Warehouse

    Dewey, James W.

    2006-01-01

    This publication describes the seismicity of Afghanistan and vicinity and is intended for use in seismic hazard studies of that nation. Included are digital files with information on earthquakes that have been recorded in Afghanistan and vicinity through mid-December 2004. Chapter A provides an overview of the seismicity and tectonics of Afghanistan and defines the earthquake parameters included in the 'Summary Catalog' and the 'Summary of Macroseismic Effects.' Chapter B summarizes compilation of the 'Master Catalog' and 'Sub-Threshold Catalog' and documents their formats. The 'Summary Catalog' itself is presented as a comma-delimited ASCII file, the 'Summary of Macroseismic Effects' is presented as an html file, and the 'Master Catalog' and 'Sub-Threshold Catalog' are presented as flat ASCII files. Finally, this report includes as separate plates a digital image of a map of epicenters of earthquakes occurring since 1964 (Plate 1) and a representation of areas of damage or strong shaking from selected past earthquakes in Afghanistan and vicinity (Plate 2).

  17. High Resolution Near Surface 3D Seismic Experiments: A Carbonate Platform vs. a Siliciclastic Sequence

    NASA Astrophysics Data System (ADS)

    Filippidou, N.; Drijkoningen, G.; Braaksma, H.; Verwer, K.; Kenter, J.

    2005-05-01

    Interest in high-resolution 3D seismic experiments for imaging shallow targets has increased over the past years. Many case studies presented, show that producing clear seismic images with this non-evasive method, is still a challenge. We use two test-sites where nearby outcrops are present so that an accurate geological model can be built and the seismic result validated. The first so-called natural field laboratory is located in Boulonnais (N. France). It is an upper Jurassic siliciclastic sequence; age equivalent of the source rock of N. Sea. The second one is located in Cap Blanc,to the southwest of the Mallorca island(Spain); depicting an excellent example of Miocene prograding reef platform (Llucmajor Platform); it is a textbook analog for carbonate reservoirs. In both cases, the multidisciplinary experiment included the use of multicomponent and quasi- or 3D seismic recordings. The target depth does not exceed 120m. Vertical and shear portable vibrators were used as source. In the center of the setups, boreholes were drilled and Vertical Seismic Profiles were shot, along with core and borehole measurements both in situ and in the laboratory. These two geologically different sites, with different seismic stratigraphy have provided us with exceptionally high resolution seismic images. In general seismic data was processed more or less following standard procedures, a few innovative techniques on the Mallorca data, as rotation of horizontal components, 3D F-K filter and addition of parallel profiles, have improved the seismic image. In this paper we discuss the basic differences as seen on the seismic sections. The Boulonnais data present highly continuous reflection patterns of extremenly high resolution. This facilitated a high resolution stratigraphic description. Results from the VSP showed substantial wave energy attenuation. However, the high-fold (330 traces ) Mallorca seismic experiment returned a rather discontinuous pattern of possible reflectors

  18. Past seismic slip-to-the-trench recorded in Central America megathrust

    NASA Astrophysics Data System (ADS)

    Vannucchi, Paola; Spagnuolo, Elena; Aretusini, Stefano; Di Toro, Giulio; Ujiie, Kohtaro; Tsutsumi, Akito; Nielsen, Stefan

    2017-12-01

    The 2011 Tōhoku-Oki earthquake revealed that co-seismic displacement along the plate boundary megathrust can propagate to the trench. Co-seismic slip to the trench amplifies hazards at subduction zones, so its historical occurrence should also be investigated globally. Here we combine structural and experimental analyses of core samples taken offshore from southeastern Costa Rica as part of the Integrated Ocean Drilling Program (IODP) Expedition 344, with three-dimensional seismic reflection images of the subduction zone. We document a geologic record of past co-seismic slip to the trench. The core passed through a less than 1.9-million-year-old megathrust frontal ramp that superimposes older Miocene biogenic oozes onto late Miocene-Pleistocene silty clays. This, together with our stratigraphic analyses and geophysical images, constrains the position of the basal decollement to lie within the biogenic oozes. Our friction experiments show that, when wet, silty clays and biogenic oozes are both slip-weakening at sub-seismic and seismic slip velocities. Oozes are stronger than silty clays at slip velocities of less than or equal to 0.01 m s-1, and wet oozes become as weak as silty clays only at a slip velocity of 1 m s-1. We therefore suggest that the geological structures found offshore from Costa Rica were deformed during seismic slip-to-the-trench events. During slower aseismic creep, deformation would have preferentially localized within the silty clays.

  19. Improved images of crustal structures in the Bergslagen, central Sweden, through seismic reprocessing of BABEL lines 1, 6 and 7

    NASA Astrophysics Data System (ADS)

    Buntin, Sebastian; Malehmir, Alireza; Malinowski, Michał; Högdahl, Karin; Juhlin, Christopher; Buske, Stefan

    2017-04-01

    In a joint effort through the BABEL project, geoscientists from five countries acquired marine seismic data in the Baltic Sea with a total length of 2268 km in the year 1989. These consisted of near-vertical reflection and wide-angle refraction seismic data, providing insights into the subsurface down to the Moho and suggesting the existence of plate tectonics already during the Paleoproterozoic. The seismic data were acquired using a receiver group interval of 50 m and a total cable length of 3 km. In total, 60 groups of 64 hydrophones at 15 m depth were used. An airgun array consisting of six equal subarrays towed at 7.5 m depth was used to generate the seismic signal. The shot interval and the corresponding record lengths were different among the lines. A record length of 25 s and 75 m shot spacing for lines 1 and 7, respectively and 23 s and 62.5 m for line 6, respectively was used. The sampling rate was 4 ms for all three profiles. Lines 1, 6 and 7 are located at the boundary to the world-class and historical Bergslagen mineral district, and are being revisited in this study. Improved images can be used to refine previous interpretations, particularly at shallower depths (< 5 km). About 27 years after the acquisition, these data have been processed again in our study. Aside from the original processing steps, like spherical divergence correction, deconvolution and NMO corrections, additional processing steps such as DMO corrections or pre- and post-stack deconvolutions and coherency enhancements were applied. The reprocessing revealed reflections in the shallow part of the profiles, likely from major deformation (multi-phase) zones extending down to the lower crust, which were not present in the previous images. Also the images of the reflections in the deeper parts are remarkably improved. This also includes a few sub-Moho reflections. The three reprocessed profiles help constrain the nature of the northern boundary of Bergslagen and associated crustal

  20. High resolution, multi-2D seismic imaging of Solfatara crater (Campi Flegrei Caldera, southern Italy) from active seismic data

    NASA Astrophysics Data System (ADS)

    Gammaldi, S.; Amoroso, O.; D'Auria, L.; Zollo, A.

    2018-05-01

    A multi-2D imaging of the Solfatara Crater inside the Campi Flegrei Caldera, was obtained by the joint interpretation of geophysical evidences and the new active seismic dataset acquired during the RICEN experiment (EU project MEDSUV) in 2014. We used a total of 17,894 first P-wave arrival times manually picked on pre-processed waveforms, recorded along two 1D profiles criss-crossing the inner Solfatara crater, and performed a tomographic inversion based on a multi-scale strategy and a Bayesian estimation of velocity parameters. The resulting tomographic images provide evidence for a low velocity (500-1500 m/s) water saturated deeper layer at West near the outcropping evidence of the Fangaia, contrasted by a high velocity (2000-3200 m/s) layer correlated with a consolidated tephra deposit. The transition velocity range (1500-2000 m/s) layer suggests a possible presence of a gas-rich, accumulation volume. Thanks to the mutual P-wave velocity model, we infer a detailed image for the gas migration path to the Earth surface. The gasses coming from the deep hydrothermal plume accumulate in the central and most depressed area of the Solfatara being trapped by the meteoric water saturated layer. Therefore, the gasses are transmitted through the buried fault toward the east part of the crater, where the ring faults facilitate the release as confirmed by the fumaroles. Starting from the eastern surface evidence of the gas releasing in the Bocca Grande and Bocca Nuova fumaroles, and the presence of the central deeper plume we suggest a fault situated in the central part of the crater which seems to represent the main buried conduit among them plays a key role.

  1. A Community Seismic Experiment in the ENAM Primary Site

    NASA Astrophysics Data System (ADS)

    Van Avendonk, H. J.

    2012-12-01

    Eastern North America (ENAM) was chosen as a GeoPRISMS Rift Initiation and Evolution primary site because it represents a mature continental margin with onshore and offshore rift basins in which the record of extension and continental break-up is preserved. The degree to which syn-rift magmatism and preexisting lithospheric weaknesses controlled the evolution of the margin can be further investigated if we image its 3-D structure at small and large length scales with active-source and earthquake seismic imaging. In the Summer of 2012 we submitted a proposal to the US National Science Foundation for an ambitious plan for data acquisition on a 400 km wide section of the mid-Atlantic East Coast margin around Cape Hatteras, from unextended continental lithosphere onshore to mature oceanic lithosphere offshore. This area includes an important along-strike transition in the morphology of the margin from the Carolina Trough to the Baltimore Canyon Trough, and two major fracture zones that are associated with significant offsets at the modern Mid-Atlantic Ridge. The study area also covers several features representing the post-rift modification of the margin by slope instability and fluid flow. As the Earthscope Transportable Array reaches the East Coast of the US in 2013 and 2014, we will have an unprecedented opportunity to image the detailed structure of the rifted margin. To make effective use of the research infrastructure, including the seismic vessel R/V Marcus Langseth, the Earthscope seismic instrumentation, and US OBS Instrument Pool, we propose to collect a suite of seismic data at the mid-Atlantic margin in the context of a community-driven experiment with completely open data access. This multi-faceted seismic experiment offers an immense opportunity for education of young scientists. We propose an integrated education effort during and after acquisition. The science and field parties for data acquisition will largely consist of young scientists, who will be

  2. Imaging the Western Iberia Seismic Structure from the Crust to the Upper Mantle from Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Silveira, Graça; Kiselev, Sergey; Stutzmann, Eleonore; Schimmel, Martin; Haned, Abderrahmane; Dias, Nuno; Morais, Iolanda; Custódio, Susana

    2015-04-01

    Ambient Noise Tomography (ANT) is now widely used to image the subsurface seismic structure, with a resolution mainly dependent on the seismic network coverage. Most of these studies are limited to Rayleigh waves for periods shorter than 40/45 s and, as a consequence, they can image only the crust or, at most, the uppermost mantle. Recently, some studies successfully showed that this analysis could be extended to longer periods, thus allowing a deeper probing. In this work we present the combination of two complementary datasets. The first was obtained from the analysis of ambient noise in the period range 5-50 sec, for Western Iberia, using a dense temporary seismic network that operated between 2010 and 2012. The second one was computed for a global study, in the period range 30-250 sec, from analysis of 150 stations of the global networks GEOSCOPE and GSN. In both datasets, the Empirical Green Functions are computed by phase cross-correlation. The ambient noise phase cross-correlations are stacked using the time-frequency domain phase weighted stack (Schimmel et al. 2011, Geoph. J. Int., 184, 494-506). A bootstrap approach is used to measure the group velocities between pairs of stations and to estimate the corresponding error. We observed a good agreement between the dispersion measurements on both short period and long period datasets for most of the grid nodes. They are then inverted to obtain the 3D S-wave model from the crust to the upper mantle, using a bayesian approach. A simulated annealing method is applied, in which the number of splines that describes the model is adapted within the inversion. We compare the S-wave velocity model at some selected profiles with the S-wave velocity models gathered from Ps and Sp receiver functions joint inversion. Both results, issued from ambient noise tomography and body wave's analysis for the crust and upper mantle are consistent. This work is supported by project AQUAREL (PTDC/CTEGIX/116819/2010) and is a

  3. Applying the seismic interferometry method to vertical seismic profile data using tunnel excavation noise as source

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose; Teixido, Teresa; Martin, Elena; Segarra, Miguel; Segura, Carlos

    2013-04-01

    In the frame of the research conducted to develop efficient strategies for investigation of rock properties and fluids ahead of tunnel excavations the seismic interferometry method was applied to analyze the data acquired in boreholes instrumented with geophone strings. The results obtained confirmed that seismic interferometry provided an improved resolution of petrophysical properties to identify heterogeneities and geological structures ahead of the excavation. These features are beyond the resolution of other conventional geophysical methods but can be the cause severe problems in the excavation of tunnels. Geophone strings were used to record different types of seismic noise generated at the tunnel head during excavation with a tunnelling machine and also during the placement of the rings covering the tunnel excavation. In this study we show how tunnel construction activities have been characterized as source of seismic signal and used in our research as the seismic source signal for generating a 3D reflection seismic survey. The data was recorded in vertical water filled borehole with a borehole seismic string at a distance of 60 m from the tunnel trace. A reference pilot signal was obtained from seismograms acquired close the tunnel face excavation in order to obtain best signal-to-noise ratio to be used in the interferometry processing (Poletto et al., 2010). The seismic interferometry method (Claerbout 1968) was successfully applied to image the subsurface geological structure using the seismic wave field generated by tunneling (tunnelling machine and construction activities) recorded with geophone strings. This technique was applied simulating virtual shot records related to the number of receivers in the borehole with the seismic transmitted events, and processing the data as a reflection seismic survey. The pseudo reflective wave field was obtained by cross-correlation of the transmitted wave data. We applied the relationship between the transmission

  4. Seismic images of the sliver strike-slip fault and back thrust in the Andaman-Nicobar region

    NASA Astrophysics Data System (ADS)

    Singh, Satish C.; Moeremans, Raphaele; McArdle, Jo; Johansen, Kjell

    2013-10-01

    sliver strike-slip Great Sumatra Fault (GSF) traverses mainland Sumatra from the Sunda Strait in the southeast to Banda Aceh in the northwest, and defines the present day plate boundary between the Sunda Plate in the north and the Burmese Sliver Plate in the south. It has been well studied on mainland Sumatra but poorly north of Banda Aceh in the Andaman Sea. Here we present deep seismic reflection images along the northward extension of the GSF over 700 km until it joins the Andaman Sea Spreading Centre, and we interpret these images in the light of earthquake, gravity, and bathymetry data. We find that the GSF has two strands between Banda Aceh and Nicobar Island: a transpression in the south and a deep narrow active rift system in the north, dotted with volcanoes in the center, suggesting that the volcanic arc is coincident with rifting. Farther north of Nicobar Island, an active strike-slip fault, the Andaman-Nicobar Fault, cuts through a rifted deep basin until its intersection with the Andaman Sea Spreading Centre. The volcanic arc lies just east of the rift basin. The western margin of this basin seems to be a rifted continental margin, tilted westward, and flooring the Andaman-Nicobar fore-arc basin. The Andaman-Nicobar fore-arc basin is bounded in the west by back thrusts similar to the West Andaman and Mentawai faults. The cluster of seismicity after the 2004 great Andaman-Sumatra earthquake just north of Nicobar Island coincides with the intersection of two strike-slip fault systems.

  5. Looking inside the microseismic cloud using seismic interferometry

    NASA Astrophysics Data System (ADS)

    Matzel, E.; Rhode, A.; Morency, C.; Templeton, D. C.; Pyle, M. L.

    2015-12-01

    Microseismicity provides a direct means of measuring the physical characteristics of active tectonic features such as fault zones. Thousands of microquakes are often associated with an active site. This cloud of microseismicity helps define the tectonically active region. When processed using novel geophysical techniques, we can isolate the energy sensitive to the faulting region, itself. The virtual seismometer method (VSM) is a technique of seismic interferometry that provides precise estimates of the GF between earthquakes. In many ways the converse of ambient noise correlation, it is very sensitive to the source parameters (location, mechanism and magnitude) and to the Earth structure in the source region. In a region with 1000 microseisms, we can calculate roughly 500,000 waveforms sampling the active zone. At the same time, VSM collapses the computation domain down to the size of the cloud of microseismicity, often by 2-3 orders of magnitude. In simple terms VSM involves correlating the waveforms from a pair of events recorded at an individual station and then stacking the results over all stations to obtain the final result. In the far-field, when most of the stations in a network fall along a line between the two events, the result is an estimate of the GF between the two, modified by the source terms. In this geometry each earthquake is effectively a virtual seismometer recording all the others. When applied to microquakes, this alignment is often not met, and we also need to address the effects of the geometry between the two microquakes relative to each seismometer. Nonetheless, the technique is quite robust, and highly sensitive to the microseismic cloud. Using data from the Salton Sea geothermal region, we demonstrate the power of the technique, illustrating our ability to scale the technique from the far-field, where sources are well separated, to the near field where their locations fall within each other's uncertainty ellipse. VSM provides better

  6. Full Waveform Modelling for Subsurface Characterization with Converted-Wave Seismic Reflection

    NASA Astrophysics Data System (ADS)

    Triyoso, Wahyu; Oktariena, Madaniya; Sinaga, Edycakra; Syaifuddin, Firman

    2017-04-01

    While a large number of reservoirs have been explored using P-waves seismic data, P-wave seismic survey ceases to provide adequate result in seismically and geologically challenging areas, like gas cloud, shallow drilling hazards, strong multiples, highly fractured, anisotropy. Most of these reservoir problems can be addressed using P and PS seismic data combination. Multicomponent seismic survey records both P-wave and S-wave unlike conventional survey that only records compressional P-wave. Under certain conditions, conventional energy source can be used to record P and PS data using the fact that compressional wave energy partly converts into shear waves at the reflector. Shear component can be recorded using down going P-wave and upcoming S-wave by placing a horizontal component geophone on the ocean floor. A synthetic model is created based on real data to analyze the effect of gas cloud existence to PP and PS wave reflections which has a similar characteristic to Sub-Volcanic imaging. The challenge within the multicomponent seismic is the different travel time between P-wave and S-wave, therefore the converted-wave seismic data should be processed with different approach. This research will provide a method to determine an optimum converted point known as Common Conversion Point (CCP) that can solve the Asymmetrical Conversion Point of PS data. The value of γ (Vp/Vs) is essential to estimate the right CCP that will be used in converted-wave seismic processing. This research will also continue to the advanced processing method of converted-wave seismic by applying Joint Inversion to PP&PS seismic. Joint Inversion is a simultaneous model-based inversion that estimates the P&S-wave impedance which are consistent with the PP&PS amplitude data. The result reveals a more complex structure mirrored in PS data below the gas cloud area. Through estimated γ section resulted from Joint Inversion, we receive a better imaging improvement below gas cloud area tribute to

  7. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Salton Sea area, California, 1988-90

    USGS Publications Warehouse

    Setmire, J.G.; Schroeder, R.A.; Densmore, J.N.; Goodbred, S.O.; Audet, D.J.; Radke, W.R.

    1993-01-01

    Results of a detailed study by the National Irrigation Water-Quality Program (NIWQP), U.S. Department of the Interior, indicate that factors controlling contaminant concentrations in subsurface irrigation drainwater in the Imperial Valley are soil characteristics, hydrology, and agricultural practices. Higher contaminant concentrations commonly were associated with clayey soils, which retard the movement of irrigation water and thus increase the degree of evaporative concentration. Regression of hydrogen- and oxygen-isotope ratios in samples collected from sumps yields a linear drainwater evaporation line that extrapolates through the isotopic composition of Colorado River water, thus demonstrating that Colorado River water is the sole source of subsurface drainwater in the Imperial Valley. Ratios of selenium to chloride indicate that selenium present in subsurface drainwater throughout the Imperial Valley originates from the Colorado River. The selenium load discharged to the Salton Sea from the Alamo River, the largest contributor, is about 6.5 tons/yr. Biological sampling and analysis showed that drainwater contaminants, including selenium, boron, and DDE, are accumulating in tissues of migratory and resident birds that use food sources in the Imperial Valley and the Salton Sea. Selenium concentration in fish-eating birds, shorebirds, and the endangered Yuma clapper rail were at levels that could affect reproduction. Boron concentrations in migratory waterfowl and resident shorebirds were at levels that potentially could cause reduced growth in young. As a result of DDE contamination of food sources, waterfowl and fish-eating birds in the Imperial Valley may be experiencing reproductive impairment.

  8. First images of the crustal structure across the eastern Algerian margin, from deep penetrating seismic data.

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, Boualem; Abtout, Abdeslam; Sage, Françoise; Klingelhoeffer, Frauke; Collot, Jean-yves; Yelles-chaouche, Abdelkarim; Marok, Abbas; Djellit, Hamou; Galves, Audrey; Bracène, Rabah; Schnurle, Philippe; Graindorge, David; party, Scientific

    2013-04-01

    The Algerian continental margin North Africa presents one of only a few examples of a passive continental margin formed in a back-arc environment, which undergoes current compression and is proposed to be reactivated today. In the framework of the Algerian - French SPIRAL research program (Sismique Profonde et Investigation Regionale du nord de l'ALgérie), a seismic cruise was conducted on the R/V Atalante from September to November 2009. During the cruise, deep penetrating low frequency multichannel and wide-angle seismic data were acquired in order to study the deep structure of the Algerian margin. In this work, we present the preliminary results from wide-angle modeling of the North-east Algerian margin in the region of Annaba along a N-S transect using a data set of 42 OBS (ocean bottom seismometers) along a profile extending 117km, and 13 broadband seismological stations along a profile of 80 km length. Travel-time tomography and forward modeling were undertaken to model the velocity structure in this region. The resulting velocity models image the thickness of the sedimentary layers, which varies between a few hundred meters on the continental margin of more than 4 km in the basin. The crust is about 6 km thick in the basin, and thickens to 7-8 km between 40 and 60km distance from the margin toe. Crustal thickness increases to about 22 km at the continental slope over a distance of ~ 90 km. The nature of the crust was determined to be thin oceanic with abnormal velocity gradient in the basin, and thinned continental from around 30 km distance from the coast landward. Integration of the wide-angle seismic data with multichannel seismic, gravity and magnetic data will help to better understand the structure of the Algerian margin and the adjacent oceanic basin in the Annaba region, and to discuss the numerous cinematic models proposed in literature regarding the formation of the north-Algerian basin.

  9. Ambient Seismic Noise Interferometry on the Island of Hawai`i

    NASA Astrophysics Data System (ADS)

    Ballmer, Silke

    Ambient seismic noise interferometry has been successfully applied in a variety of tectonic settings to gain information about the subsurface. As a passive seismic technique, it extracts the coherent part of ambient seismic noise in-between pairs of seismic receivers. Measurements of subtle temporal changes in seismic velocities, and high-resolution tomographic imaging are then possible - two applications of particular interest for volcano monitoring. Promising results from other volcanic settings motivate its application in Hawai'i, with this work being the first to explore its potential. The dataset used for this purpose was recorded by the Hawaiian Volcano Observatory's permanent seismic network on the Island of Hawai'i. It spans 2.5 years from 5/2007 to 12/2009 and covers two distinct sources of volcanic tremor. After applying standard processing for ambient seismic noise interferometry, we find that volcanic tremor strongly affects the extracted noise information not only close to the tremor source, but unexpectedly, throughout the island-wide network. Besides demonstrating how this long-range observability of volcanic tremor can be used to monitor volcanic activity in the absence of a dense seismic array, our results suggest that care must be taken when applying ambient seismic noise interferometry in volcanic settings. In a second step, we thus exclude days that show signs of volcanic tremor, reducing the dataset to three months, and perform ambient seismic noise tomography. The resulting two-dimensional Rayleigh wave group velocity maps for 0.1 - 0.9 Hz compare very well with images from previous travel time tomography, both, for the main volcanic structures at low frequencies as well as for smaller features at mid-to-high frequencies - a remarkable observation for the temporally truncated dataset. These robust results suggest that ambient seismic noise tomography in Hawai'i is suitable 1) to provide a three-dimensional S-wave model for the volcanoes and 2

  10. Source properties of earthquakes near the Salton Sea triggered by the 16 October 1999 M 7.1 Hector Mine, California, earthquake

    USGS Publications Warehouse

    Hough, S.E.; Kanamori, H.

    2002-01-01

    We analyze the source properties of a sequence of triggered earthquakes that occurred near the Salton Sea in southern California in the immediate aftermath of the M 7.1 Hector Mine earthquake of 16 October 1999. The sequence produced a number of early events that were not initially located by the regional network, including two moderate earthquakes: the first within 30 sec of the P-wave arrival and a second approximately 10 minutes after the mainshock. We use available amplitude and waveform data from these events to estimate magnitudes to be approximately 4.7 and 4.4, respectively, and to obtain crude estimates of their locations. The sequence of small events following the initial M 4.7 earthquake is clustered and suggestive of a local aftershock sequence. Using both broadband TriNet data and analog data from the Southern California Seismic Network (SCSN), we also investigate the spectral characteristics of the M 4.4 event and other triggered earthquakes using empirical Green's function (EGF) analysis. We find that the source spectra of the events are consistent with expectations for tectonic (brittle shear failure) earthquakes, and infer stress drop values of 0.1 to 6 MPa for six M 2.1 to M 4.4 events. The estimated stress drop values are within the range observed for tectonic earthquakes elsewhere. They are relatively low compared to typically observed stress drop values, which is consistent with expectations for faulting in an extensional, high heat flow regime. The results therefore suggest that, at least in this case, triggered earthquakes are associated with a brittle shear failure mechanism. This further suggests that triggered earthquakes may tend to occur in geothermal-volcanic regions because shear failure occurs at, and can be triggered by, relatively low stresses in extensional regimes.

  11. Bayesian identification of multiple seismic change points and varying seismic rates caused by induced seismicity

    NASA Astrophysics Data System (ADS)

    Montoya-Noguera, Silvana; Wang, Yu

    2017-04-01

    The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.

  12. Long Term Seismic Observation in Mariana by OBSs : Double Seismic Zone and Upper Mantle Structure

    NASA Astrophysics Data System (ADS)

    Shiobara, H.; Sugioka, H.; Mochizuki, K.; Oki, S.; Kanazawa, T.; Fukao, Y.; Suyehiro, K.

    2005-12-01

    In order to obtain the deep arc structural image of Mariana, a large-scale seismic observation by using 58 long-term ocean bottom seismometers (LTOBS) had been performed from June 2003 until April 2004, which is a part of the MARGINS program funded by the NSF. Prior to this observation, a pilot long-term seismic array observation was conducted in the same area by using 10 LTOBSs from Oct. 2001 until Feb. 2003. At that time, 8 LTOBSs were recovered but one had no data. Recently, 2 LTOBSs, had troubles in the releasing, were recovered by the manned submersible (Shinkai 6500, Jamstec) for the research of the malfunction in July 2005. By using all 9 LTOBS's data, those are about 11 months long, hypocenter determination was performed and more than 3000 local events were found. Even with the 1D velocity structure based on the iasp91 model, double seismic zones and a systematic shift of epicenters between the PDE and this study were observed. To investigate the detail of hypocenter distribution and the 3D velocity structure, the DD inversion (tomoDD: Zhang and Thurber, 2003) was applied for this data set with the 1D structure initial model except for the crust, which has been surveyed by using a dense airgun-OBS system (Takahashi et al., 2003). The result of relocated hypocenters shows clear double seismic zones until about 200 km depth, a high activity area around the fore-arc serpentine sea-mount, the Big Blue, and a lined focuses along the current ridge axis in the back-arc basin, and the result of the tomography shows a image of subducting slab and a low-Vs region below the same sea-mount mentioned. The wedge mantle structure was not clearly resolved due to the inadequate source-receiver coverage, which will be done in the recent experiment.

  13. InSAR Surface Deformation and Source Modelling at Semisopochnoi Island During the 2014 and 2015 Seismic Swarms with Constraints from Geochemical and Seismic Analysis

    NASA Astrophysics Data System (ADS)

    DeGrandpre, K.; Pesicek, J. D.; Lu, Z.

    2017-12-01

    During the summer of 2014 and the early spring of 2015 two notable increases in seismic activity at Semisopochnoi Island in the western Aleutian islands were recorded on AVO seismometers on Semisopochnoi and neighboring islands. These seismic swarms did not lead to an eruption. This study employs interferometric synthetic aperture radar (InSAR) techniques using TerraSAR-X images in conjunction with more accurately relocating the recorded seismic events through simultaneous inversion of event travel times and a three-dimensional velocity model using tomoDD. The InSAR images exhibit surprising coherence and an island wide spatial distribution of inflation that is then used in Mogi, Okada, spheroid, and ellipsoid source models in order to define the three-dimensional location and volume change required for a source at the volcano to produce the observed surface deformation. The tomoDD relocations provide a more accurate and realistic three-dimensional velocity model as well as a tighter clustering of events for both swarms that clearly outline a linear seismic void within the larger group of shallow (<10 km) seismicity. The source models are fit to this void and pressure estimates from geochemical analysis are used to verify the storage depth of magmas at Semisopochnoi. Comparisons of calculated source cavity, magma injection, and surface deformation volumes are made in order to assess the reality behind the various modelling estimates. Incorporating geochemical and seismic data to provide constraints on surface deformation source inversions provides an interdisciplinary approach that can be used to make more accurate interpretations of dynamic observations.

  14. Seismic images of a tectonic subdivision of the Greenville Orogen beneath lakes Ontario and Erie

    USGS Publications Warehouse

    Forsyth, D. A.; Milkereit, B.; Davidson, A.; Hanmer, S.; Hutchinson, Deborah R.; Hinze, W. J.; Mereu, R.F.

    1994-01-01

    New seismic data from marine air-gun and Vibroseis profiles in Lake Ontario and Lake Erie provide images of subhorizontal Phanerozoic sediments underlain by a remarkable series of easterly dipping reflections that extends from the crystalline basement to the lower crust. These reflections are interpreted as structural features of crustal-scale subdivisions within the Grenville Orogen. Broadly deformed, imbricated, and overlapping thrust sheets within the western Central Metasedimentary Belt are succeeded to the west by a complex zone of easterly dipping, apparent thrust faults that are interpreted as a southwest subsurface extension of the boundary zone between the Central Metasedimentary Belt and the Central Gneiss Belt. The interpreted Central Metasedimentary Belt boundary zone has a characteristic magnetic anomaly that provides a link from the adjacent ends of lakes Ontario and Erie to structures exposed 150 km to the north. Less reflective, west-dipping events are interpreted as structures within the eastern Central Gneiss Belt. The seismic interpretation augments current tectonic models that suggest the exposed ductile structures formed at depth as a result of crustal shortening along northwest-verging thrust faults. Relatively shallow reflections across the boundary region suggest local, Late Proterozoic extensional troughs containing post-Grenville sediments, preserved possibly as a result of pre-Paleozoic reactivation of basement structures.

  15. Seismic imaging of mantle transition zone discontinuities beneath the northern Red Sea and adjacent areas

    NASA Astrophysics Data System (ADS)

    Mohamed, A. A.; Gao, S. S.; Elsheikh, A. A.; Liu, K. H.; Yu, Y.; Fat-Helbary, R. E.

    2014-11-01

    The dramatic asymmetry in terms of surface elevation, Cenozoic volcanisms and earthquake activity across the Red Sea is an enigmatic issue in global tectonics, partially due to the unavailability of broad-band seismic data on the African Plate adjacent to the Red Sea. Here, we report the first comprehensive image of the mantle transition zone (MTZ) discontinuities using data from the Egyptian National Seismic Network, and compare the resulting depths of the 410 and 660-km discontinuities with those observed on the Arabian side. Our results show that when a standard earth model is used for time-to-depth conversion, the resulting depth of the discontinuities increases systematically towards the axis of the Afro-Arabian Dome (AAD) from both the west and east. Relative to the westernmost area, the maximum depression of the 410-km discontinuity is about 30 km, and that of the 660-km discontinuity is about 45 km. The observed systematic variations can best be explained by a model involving a hydrated MTZ and an upper-mantle low-velocity zone beneath the AAD. Models invoking one or more mantle plumes originated from the MTZ or the lower-mantle beneath the study area are not consistent with the observations.

  16. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    USGS Publications Warehouse

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  17. High-resolution seismic-reflection imaging 25 years of change in I-70 sinkhole, Russell County, Kansas

    USGS Publications Warehouse

    Miller, R.D.; Steeples, D.W.; Lambrecht, J.L.; Croxton, N.

    2006-01-01

    Time-lapse seismic reflection imaging improved our understanding of the consistent, gradual surface subsidence ongoing at two sinkholes in the Gorham Oilfield discovered beneath a stretch of Interstate Highway 70 through Russell and Ellis Counties in Kansas in 1966. With subsidence occurring at a rate of around 10 cm per year since discovery, monitoring has been beneficial to ensure public safety and optimize maintenance. A miniSOSIE reflection survey conducted in 1980 delineated the affected subsurface and successfully predicted development of a third sinkhole at this site. In 2004 and 2005 a high-resolution vibroseis survey was completed to ascertain current conditions of the subsurface, rate and pattern of growth since 1980, and potential for continued growth. With time and improved understanding of the salt dissolution affected subsurface in this area it appears that these features represent little risk to the public from catastrophic failure. However, from an operational perspective the Kansas Department of Transportation should expect continued subsidence, with future increases in surface area likely at a slightly reduced vertical rate. Seismic characteristics appear empirically consistent with gradual earth material compaction/settling. ?? 2005 Society of Exploration Geophysicists.

  18. Seismic Imaging of a Nascent Batholith in the Central Andes

    NASA Astrophysics Data System (ADS)

    Ward, K. M.; Zandt, G.; Beck, S. L.; Christensen, D. H.; Mcfarlin, H. L.

    2013-12-01

    Cordilleran mountain belts, such as the modern central Andes and Mesozoic western North American Cordillera formed in regions of significant upper plate compression and were punctuated by high flux magmatic events that coalesced into large composite batholiths. Unlike the North American Cordillera, compressive mountain building is still active in the central Andes and any large modern batholith still at depth must be inferred from surface volcanics and geophysical data. In the Andes it has been suggested that a modern batholith exists beneath the Altiplano-Puna Volcanic Complex (APVC), the location of a 11-1 Ma ignimbrite flare-up, however, the magmatic underpinnings has only been geophysically investigated in a few widely spaced locations and a migmatite zone of crustal melt with minimal mantle input remains a viable competing interpretation. We present new high-resolution 3-D seismic images of the APVC crust based on a joint inversion of ambient noise surface-wave dispersion data and receiver functions from broadband stations and identify a shallow (<20 km depth) low-velocity body that we interpret as a magmatic mush zone, the Altiplano-Puna Mush Body (APMB). Below the APMB, we observe near-vertical zones of low velocity that bifurcate near the base of the crust with one arm of low velocity migrating under the main volcanic arc and a second separate arm of low velocity below the voluminous backarc volcanism. Previous attenuation tomography studies have traced these zones through the mantle where they intersect the top of the subducting Nazca slab at locations with elevated seismic activity, providing strong evidence that the deeper near-vertical zones of low velocity we are imaging are related to dewatering of the slab and associated mantle-sourced melt pathways. Based on these considerations, we suggest the ~200 km diameter and ~20 km thick body is a nascent silicic batholith compatible with the magma mush model of batholith formation. The direct imaging of this

  19. Seismic Structure of the Antarctic Upper Mantle and Transition Zone Unearthed by Full Waveform Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Lloyd, A. J.; Wiens, D.; Zhu, H.; Tromp, J.; Nyblade, A.; Anandakrishnan, S.; Aster, R. C.; Huerta, A. D.; Winberry, J. P.; Wilson, T. J.; Dalziel, I. W. D.; Hansen, S. E.; Shore, P.

    2017-12-01

    The upper mantle and transition zone beneath Antarctica and the surrounding ocean are among the poorest seismically imaged regions of the Earth's interior. Over the last 1.5 decades researchers have deployed several large temporary broadband seismic arrays focusing on major tectonic features in the Antarctic. The broader international community has also facilitated further instrumentation of the continent, often operating stations in additional regions. As of 2016, waveforms are available from almost 300 unique station locations. Using these stations along with 26 southern mid-latitude seismic stations we have imaged the seismic structure of the upper mantle and transition zone using full waveform adjoint techniques. The full waveform adjoint inversion assimilates phase observations from 3-component seismograms containing P, S, Rayleigh, and Love waves, including reflections and overtones, from 270 earthquakes (5.5 ≤ Mw ≤ 7.0) that occurred between 2001-2003 and 2007-2016. We present the major results of the full waveform adjoint inversion following 20 iterations, resulting in a continental-scale seismic model (ANT_20) with regional-scale resolution. Within East Antarctica, ANT_20 reveals internal seismic heterogeneity and differences in lithospheric thickness. For example, fast seismic velocities extending to 200-300 km depth are imaged beneath both Wilkes Land and the Gamburtsev Subglacial Mountains, whereas fast velocities only extend to 100-200 km depth beneath the Lambert Graben and Enderby Land. Furthermore, fast velocities are not found beneath portions of Dronning Maud Land, suggesting old cratonic lithosphere may be absent. Beneath West Antarctica slow upper mantle seismic velocities are imaged extending from the Balleny Island southward along the Transantarctic Mountains front, and broaden beneath the southern and northern portion of the mountain range. In addition, slow upper mantle velocities are imaged beneath the West Antarctic coast extending

  20. Linearized inversion of multiple scattering seismic energy

    NASA Astrophysics Data System (ADS)

    Aldawood, Ali; Hoteit, Ibrahim; Zuberi, Mohammad

    2014-05-01

    Internal multiples deteriorate the quality of the migrated image obtained conventionally by imaging single scattering energy. So, imaging seismic data with the single-scattering assumption does not locate multiple bounces events in their actual subsurface positions. However, imaging internal multiples properly has the potential to enhance the migrated image because they illuminate zones in the subsurface that are poorly illuminated by single scattering energy such as nearly vertical faults. Standard migration of these multiples provides subsurface reflectivity distributions with low spatial resolution and migration artifacts due to the limited recording aperture, coarse sources and receivers sampling, and the band-limited nature of the source wavelet. The resultant image obtained by the adjoint operator is a smoothed depiction of the true subsurface reflectivity model and is heavily masked by migration artifacts and the source wavelet fingerprint that needs to be properly deconvolved. Hence, we proposed a linearized least-square inversion scheme to mitigate the effect of the migration artifacts, enhance the spatial resolution, and provide more accurate amplitude information when imaging internal multiples. The proposed algorithm uses the least-square image based on single-scattering assumption as a constraint to invert for the part of the image that is illuminated by internal scattering energy. Then, we posed the problem of imaging double-scattering energy as a least-square minimization problem that requires solving the normal equation of the following form: GTGv = GTd, (1) where G is a linearized forward modeling operator that predicts double-scattered seismic data. Also, GT is a linearized adjoint operator that image double-scattered seismic data. Gradient-based optimization algorithms solve this linear system. Hence, we used a quasi-Newton optimization technique to find the least-square minimizer. In this approach, an estimate of the Hessian matrix that contains

  1. Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California

    NASA Astrophysics Data System (ADS)

    Martínez-Garzón, P.; Zaliapin, I. V.; Ben-Zion, Y.; Kwiatek, G.; Bohnhoff, M.

    2017-12-01

    We investigate earthquake clustering properties from three geothermal reservoirs to clarify how earthquake patterns respond to hydraulic activities. We process ≈ 9 years from four datasets corresponding to the Geysers (both the entire field and a local subset), Coso and Salton Sea geothermal fields, California. For each, the completeness magnitude, b-value and fractal dimension are calculated and used to identify seismicity clusters using the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b]. Estimations of temporal evolution of different clustering properties in relation to hydraulic parameters point to different responses of earthquake dynamics to hydraulic operations in each case study. The clustering at the Geysers at local scale and Salton Sea are most and least affected by hydraulic activities, respectively. The response of the earthquake clustering from different datasets to the hydraulic activities may reflect the regional seismo-tectonic complexity as well as the dimension of the geothermal activities performed (e.g. number of active wells and superposition of injection + production activities).Two clustering properties significantly respond to hydraulic changes across all datasets: the background rates and the proportion of clusters consisting of a single event. Background rates are larger at the Geysers and Coso during high injection-production periods, while the opposite holds for the Salton Sea. This possibly reflects the different physical mechanisms controlling seismicity at each geothermal field. Additionally, a lower proportion of singles is found during time periods with higher injection-production rates. This may reflect decreasing effective stress in areas subjected to higher pore pressure and larger earthquake triggering by stress transfer.

  2. Multi-Channel Seismic Images of the Mariana Forearc: EW0202 Initial Results

    NASA Astrophysics Data System (ADS)

    Oakley, A. J.; Goodliffe, A. M.; Taylor, B.; Moore, G. F.; Fryer, P.

    2002-12-01

    During the Spring of 2002, the Mariana Subduction Factory was surveyed using multi-channel seismics (MCS) as the first major phase of a US-Japanese collaborative NSF-MARGINS funded project. The resulting geophysical transects extend from the Pacific Plate to the West Mariana remnant arc. For details of this survey, including the results from the back-arc, refer to Taylor et al. (this session). The incoming Pacific Plate and its accompanying seamounts are deformed by plate flexure, resulting in extension of the upper crust as it enters the subduction zone. The resultant trench parallel faults dominate the bathymetry and MCS data. Beneath the forearc, in the southern transects near Saipan, the subducting slab is imaged to a distance of 50-60 km arcward. In addition to ubiquitous trench parallel normal faulting, a N-S transect of the forearc clearly shows normal faults perpendicular to the trench resulting from N-S extension. On the east side of the Mariana Ridge, thick sediment packages extend into the forearc. Directly east of Saipan and Tinian, a large, deeply scouring slide mass is imaged. Several serpentine mud volcanoes (Big Blue, Turquoise and Celestial) were imaged on the Mariana Forearc. Deep horizontal reflectors (likely original forearc crust) are imaged under the flanks of some of these seamounts. A possible "throat" reflector is resolved on multiple profiles at the summit of Big Blue, the northern-most seamount in the study area. The flanks of Turquoise seamount terminate in toe thrusts that represent uplift and rotation of surrounding sediments as the volcano grows outward. These thrusts form a basal ridge around the seamount similar to that previously noted encircling Conical Seamount. Furthermore, MCS data has revealed that some forearc highs previously thought to be fault blocks are in actuality mud volcanoes.

  3. Retrieval of P wave Basin Response from Autocorrelation of Seismic Noise-Jakarta, Indonesia

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Cummins, P. R.; Lumley, D. E.

    2016-12-01

    Indonesia's capital city, Jakarta, is home to a very large (over 10 million), vulnerable population and is proximate to known active faults, as well as to the subduction of Australian plate, which has a megathrust at abut 300 km distance, as well as intraslab seismicity extending to directly beneath the city. It is also located in a basin filled with a thick layer of unconsolidated and poorly consolidated sediment, which increases the seismic hazard the city is facing. Therefore, the information on the seismic velocity structure of the basin is crucial for increasing our knowledge of the seismic risk. We undertook a passive deployment of broadband seismographs throughout the city over a 3-month interval in 2013-2014, recording ambient seismic noise at over 90 sites for intervals of 1 month or more. Here we consider autocorrelations of the vertical component of the continuously recorded seismic wavefield across this dense network to image the shallow P wave velocity structure of Jakarta, Indonesia. Unlike the surface wave Green's functions used in ambient noise tomography, the vertical-component autocorrelograms are dominated by body wave energy that is potentially sensitive to sharp velocity contrasts, which makes them useful in seismic imaging. Results show autocorrelograms at different seismic stations with travel time variations that largely reflect changes in sediment thickness across the basin. We also confirm the validity our interpretation of the observed autocorrelation waveforms by conducting 2D finite difference full waveform numerical modeling for randomly distributed seismic sources to retrieve the reflection response through autocorrelation.

  4. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea.

    PubMed

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-06-20

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1-2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs.

  5. Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frary, R.; Louie, J.; Pullammanappallil, S.

    Roxanna Frary, John N. Louie, Sathish Pullammanappallil, Amy Eisses, 2011, Preliminary 3d depth migration of a network of 2d seismic lines for fault imaging at a Pyramid Lake, Nevada geothermal prospect: presented at American Geophysical Union Fall Meeting, San Francisco, Dec. 5-9, abstract T13G-07.

  6. High-resolution seismic-reflection data offshore of Dana Point, southern California borderland

    USGS Publications Warehouse

    Sliter, Ray W.; Ryan, Holly F.; Triezenberg, Peter J.

    2010-01-01

    The U.S. Geological Survey collected high-resolution shallow seismic-reflection profiles in September 2006 in the offshore area between Dana Point and San Mateo Point in southern Orange and northern San Diego Counties, California. Reflection profiles were located to image folds and reverse faults associated with the San Mateo fault zone and high-angle strike-slip faults near the shelf break (the Newport-Inglewood fault zone) and at the base of the slope. Interpretations of these data were used to update the USGS Quaternary fault database and in shaking hazard models for the State of California developed by the Working Group for California Earthquake Probabilities. This cruise was funded by the U.S. Geological Survey Coastal and Marine Catastrophic Hazards project. Seismic-reflection data were acquired aboard the R/V Sea Explorer, which is operated by the Ocean Institute at Dana Point. A SIG ELC820 minisparker seismic source and a SIG single-channel streamer were used. More than 420 km of seismic-reflection data were collected. This report includes maps of the seismic-survey sections, linked to Google Earth? software, and digital data files showing images of each transect in SEG-Y, JPEG, and TIFF formats.

  7. The Mohorovičić discontinuity beneath the continental crust: An overview of seismic constraints

    NASA Astrophysics Data System (ADS)

    Carbonell, Ramon; Levander, Alan; Kind, Rainer

    2013-12-01

    The seismic signature of the Moho from which geologic and tectonic evolution hypotheses are derived is to a large degree a result of the seismic methodology which has been used to obtain the image. Seismic data of different types, passive source (earthquake) broad-band recordings, and controlled source seismic refraction, densely recorded wide-angle deep seismic reflection, and normal incidence reflection (using VibroseisTM, explosives, or airguns), have contributed to the description of the Moho as a relatively complex transition zone. Of critical importance for the quality and resolution of the seismic image are the acquisition parameters, used in the imaging experiments. A variety of signatures have been obtained for the Moho at different scales generally dependent upon bandwidth of the seismic source. This variety prevents the development of a single universally applicable interpretation. In this way source frequency content, and source and sensor spacing determine the vertical and lateral resolution of the images, respectively. In most cases the different seismic probes provide complementary data that gives a fuller picture of the physical structure of the Moho, and its relationship to a petrologic crust-mantle transition. In regional seismic studies carried out using passive source recordings the Moho is a relatively well defined structure with marked lateral continuity. The characteristics of this boundary change depending on the geology and tectonic evolution of the targeted area. Refraction and wide-angle studies suggest the Moho to be often a relatively sharp velocity contrast, whereas the Moho in coincident high quality seismic reflection images is often seen as the abrupt downward decrease in seismic reflectivity. The origin of the Moho and its relation to the crust-mantle boundary is probably better constrained by careful analysis of its internal details, which can be complex and geographically varied. Unlike the oceanic Moho which is formed in a

  8. Regional Characterization of Tokyo Metoropolitan area using a highly-dense seismic netwok(MeSO-net)

    NASA Astrophysics Data System (ADS)

    Hirata, N.; Nakagawa, S.; Sakai, S.; Panayotopoulos, Y.; Ishikawa, M.; Ishibe, T.; Kimura, H.; Honda, R.

    2014-12-01

    We have developed a dense seismic network, MeSO-net (Metropolitan Seismic Observation network), since 2007 in the greater Tokyo urban region under the Special Project for Earthquake Disaster Mitigation in Tokyo Metropolitan Area (FY2007-FY2011) and Special Project for Reducing Vulnerability for Urban Mega Earthquake Disasters (FY2012-FY2016)( Hirata et al., 2009). So far we have acquired more than 120TB continuous seismic data form MeSO-net which consists of about 300 seismic stations. Using MeSO-net data, we obtain clear P- and S- wave velocity tomograms (Nakagawa et al., 2010) and Qp, Qs tomograms (Panayotopoulos et al., 2014) which show a clear image of Philippine Sea Plate (PSP) and PAcific Plate (PAP). A depth to the top of PSP, 20 to 30 km beneath northern part of Tokyo bay, is about 10 km shallower than previous estimates based on the distribution of seismicity (Ishida, 1992). This shallower plate geometry changes estimations of strong ground motion for seismic hazards analysis within the Tokyo region. Based on elastic wave velocities of rocks and minerals, we interpreted the tomographic images as petrologic images. Tomographic images revealed the presence of two stepwise velocity increase of the top layer of the subducting PSP slab. Because strength of the serpentinized peridotite is not large enough for brittle fracture, if the area is smaller than previously estimated, a possible area of the large thrust fault on the upper surface of PSP can be larger than previously thought. Change of seismicity rate after the 2011 Tohoku-oki earthquake suggests change of stressing rate in greater Tokyo. Quantitative analysis of MeSO-net data shows significant increase of rate of earthquakes that have a fault orientation favorable to increasing Coulomb stress after the Tohoku-oki event.

  9. Nonlinear 1D and 2D waveform inversions of SS precursors and their applications in mantle seismic imaging

    NASA Astrophysics Data System (ADS)

    Dokht, R.; Gu, Y. J.; Sacchi, M. D.

    2016-12-01

    Seismic velocities and the topography of mantle discontinuities are crucial for the understanding of mantle structure, dynamics and mineralogy. While these two observables are closely linked, the vast majority of high-resolution seismic images are retrieved under the assumption of horizontally stratified mantle interfaces. This conventional correction-based process could lead to considerable errors due to the inherent trade-off between velocity and discontinuity depth. In this study, we introduce a nonlinear joint waveform inversion method that simultaneously recovers discontinuity depths and seismic velocities using the waveforms of SS precursors. Our target region is the upper mantle and transition zone beneath Northeast Asia. In this region, the inversion outcomes clearly delineate a westward dipping high-velocity structure in association with the subducting Pacific plate. Above the flat part of the slab west of the Japan sea, our results show a shear wave velocity reduction of 1.5% in the upper mantle and 10-15 km depression of the 410 km discontinuity beneath the Changbaishan volcanic field. We also identify the maximum correlation between shear velocity and transition zone thickness at an approximate slab dip of 30 degrees, which is consistent with previously reported values in this region.To validate the results of the 1D waveform inversion of SS precursors, we discretize the mantle beneath the study region and conduct a 2D waveform tomographic survey using the same nonlinear approach. The problem is simplified by adopting the discontinuity depths from the 1D inversion and solving only for perturbations in shear velocities. The resulting models obtained from the 1D and 2D approaches are self-consistent. Low-velocities beneath the Changbai intraplate volcano likely persist to a depth of 500 km. Collectively, our seismic observations suggest that the active volcanoes in eastern China may be fueled by a hot thermal anomaly originating from the mantle transition

  10. Gabor Deconvolution as Preliminary Method to Reduce Pitfall in Deeper Target Seismic Data

    NASA Astrophysics Data System (ADS)

    Oktariena, M.; Triyoso, W.

    2018-03-01

    Anelastic attenuation process during seismic wave propagation is the trigger of seismic non-stationary characteristic. An absorption and a scattering of energy are causing the seismic energy loss as the depth increasing. A series of thin reservoir layers found in the study area is located within Talang Akar Fm. Level, showing an indication of interpretation pitfall due to attenuation effect commonly occurred in deeper level seismic data. Attenuation effect greatly influences the seismic images of deeper target level, creating pitfalls in several aspect. Seismic amplitude in deeper target level often could not represent its real subsurface character due to a low amplitude value or a chaotic event nearing the Basement. Frequency wise, the decaying could be seen as the frequency content diminishing in deeper target. Meanwhile, seismic amplitude is the simple tool to point out Direct Hydrocarbon Indicator (DHI) in preliminary Geophysical study before a further advanced interpretation method applied. A quick-look of Post-Stack Seismic Data shows the reservoir associated with a bright spot DHI while another bigger bright spot body detected in the North East area near the field edge. A horizon slice confirms a possibility that the other bright spot zone has smaller delineation; an interpretation pitfall commonly occurs in deeper level of seismic. We evaluates this pitfall by applying Gabor Deconvolution to address the attenuation problem. Gabor Deconvolution forms a Partition of Unity to factorize the trace into smaller convolution window that could be processed as stationary packets. Gabor Deconvolution estimates both the magnitudes of source signature alongside its attenuation function. The enhanced seismic shows a better imaging in the pitfall area that previously detected as a vast bright spot zone. When the enhanced seismic is used for further advanced reprocessing process, the Seismic Impedance and Vp/Vs Ratio slices show a better reservoir delineation, in which the

  11. High-resolution shear-wave seismic reflection as a tool to image near-surface subrosion structures - a case study in Bad Frankenhausen, Germany

    NASA Astrophysics Data System (ADS)

    Wadas, Sonja H.; Polom, Ulrich; Krawczyk, Charlotte M.

    2016-10-01

    Subrosion is the subsurface leaching of soluble rocks that results in the formation of depression and collapse structures. This global phenomenon is a geohazard in urban areas. To study near-surface subrosion structures, four shear-wave seismic reflection profiles, with a total length of ca. 332 m, were carried out around the famous leaning church tower of Bad Frankenhausen in northern Thuringia, Germany, which shows an inclination of 4.93° from the vertical. Most of the geological underground of Thuringia is characterized by soluble Permian deposits, and the Kyffhäuser Southern Margin Fault is assumed to be a main pathway for water to leach the evaporite. The seismic profiles were acquired with the horizontal micro-vibrator ELVIS, developed at Leibniz Institute for Applied Geophysics (LIAG), and a 72 m long landstreamer equipped with 72 horizontal geophones. The high-resolution seismic sections show subrosion-induced structures to a depth of ca. 100 m and reveal five features associated with the leaching of Permian deposits: (1) lateral and vertical varying reflection patterns caused by strongly heterogeneous strata, (2) discontinuous reflectors, small offsets, and faults, which show the underground is heavily fractured, (3) formation of depression structures in the near-surface, (4) diffractions in the unmigrated seismic sections that indicate increased scattering of the seismic waves, and (5) varying seismic velocities and low-velocity zones that are presumably caused by fractures and upward-migrating cavities. A previously undiscovered southward-dipping listric normal fault was also found, to the north of the church. It probably serves as a pathway for water to leach the Permian formations below the church and causes the tilting of the church tower. This case study shows the potential of horizontal shear-wave seismic reflection to image near-surface subrosion structures in an urban environment with a horizontal resolution of less than 1 m in the uppermost 10

  12. Crustal Structure of Indonesia from Seismic Ambient Noise Tomography

    NASA Astrophysics Data System (ADS)

    Saygin, E.; Cummins, P. R.; Suhardjono, S.; Nishida, K.

    2012-12-01

    We image a region spanning from south Vietnam to north Australia using over 300 seismic stations by using ambient seismic noise cross-correlations. The backbone of the network is formed by using the broadband seismograph network of Indonesia with over 160 stations serving as mid-tie point in the region. The retrieved Green's functions from the cross-correlation of continuously recorded seismic ambient noise at the stations are used to perform surface wave dispersion analysis. We apply a multiple filter approach to measure the phase and group velocity dispersion of Rayleigh wave component of Green's functions. The traveltime information derived from the dispersion is then used in a nonlinear tomographic approach to map the velocity perturbation of the region. The forward problem for the tomographic imaging can accurately track the evolution of a wavefront in highly heterogeneous media. Therefore the highly complex velocity distribution of the region is accurately reflected into the forward calculations used in the inversion. In general, accretionary prisms in the region are marked with quite low group and phase velocities with perturbations up to 50%. Active volcanoes in Sumatra and Java islands are also marked with low velocities. Rajang delta in north-west Kalimantan and thick sediments in South China Sea are imaged with low velocities.

  13. Design and development of digital seismic amplifier recorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samsidar, Siti Alaa; Afuar, Waldy; Handayani, Gunawan, E-mail: gunawanhandayani@gmail.com

    2015-04-16

    A digital seismic recording is a recording technique of seismic data in digital systems. This method is more convenient because it is more accurate than other methods of seismic recorders. To improve the quality of the results of seismic measurements, the signal needs to be amplified to obtain better subsurface images. The purpose of this study is to improve the accuracy of measurement by amplifying the input signal. We use seismic sensors/geophones with a frequency of 4.5 Hz. The signal is amplified by means of 12 units of non-inverting amplifier. The non-inverting amplifier using IC 741 with the resistor values 1KΩmore » and 1MΩ. The amplification results were 1,000 times. The results of signal amplification converted into digital by using the Analog Digital Converter (ADC). Quantitative analysis in this study was performed using the software Lab VIEW 8.6. The Lab VIEW 8.6 program was used to control the ADC. The results of qualitative analysis showed that the seismic conditioning can produce a large output, so that the data obtained is better than conventional data. This application can be used for geophysical methods that have low input voltage such as microtremor application.« less

  14. Virtual Seismic Observation (VSO) with Sparsity-Promotion Inversion

    NASA Astrophysics Data System (ADS)

    Tiezhao, B.; Ning, J.; Jianwei, M.

    2017-12-01

    Large station interval leads to low resolution images, sometimes prevents people from obtaining images in concerned regions. Sparsity-promotion inversion, a useful method to recover missing data in industrial field acquisition, can be lent to interpolate seismic data on none-sampled sites, forming Virtual Seismic Observation (VSO). Traditional sparsity-promotion inversion suffers when coming up with large time difference in adjacent sites, which we concern most and use shift method to improve it. The procedure of the interpolation is that we first employ low-pass filter to get long wavelength waveform data and shift the waveforms of the same wave in different seismograms to nearly same arrival time. Then we use wavelet-transform-based sparsity-promotion inversion to interpolate waveform data on none-sampled sites and filling a phase in each missing trace. Finally, we shift back the waveforms to their original arrival times. We call our method FSIS (Filtering, Shift, Interpolation, Shift) interpolation. By this way, we can insert different virtually observed seismic phases into none-sampled sites and get dense seismic observation data. For testing our method, we randomly hide the real data in a site and use the rest to interpolate the observation on that site, using direct interpolation or FSIS method. Compared with directly interpolated data, interpolated data with FSIS can keep amplitude better. Results also show that the arrival times and waveforms of those VSOs well express the real data, which convince us that our method to form VSOs are applicable. In this way, we can provide needed data for some advanced seismic technique like RTM to illuminate shallow structures.

  15. On the use of a laser ablation as a laboratory seismic source

    NASA Astrophysics Data System (ADS)

    Shen, Chengyi; Brito, Daniel; Diaz, Julien; Zhang, Deyuan; Poydenot, Valier; Bordes, Clarisse; Garambois, Stéphane

    2017-04-01

    Mimic near-surface seismic imaging conducted in well-controlled laboratory conditions is potentially a powerful tool to study large scale wave propagations in geological media by means of upscaling. Laboratory measurements are indeed particularly suited for tests of theoretical modellings and comparisons with numerical approaches. We have developed an automated Laser Doppler Vibrometer (LDV) platform, which is able to detect and register broadband nano-scale displacements on the surface of various materials. This laboratory equipment has already been validated in experiments where piezoelectric transducers were used as seismic sources. We are currently exploring a new seismic source in our experiments, a laser ablation, in order to compensate some drawbacks encountered with piezoelectric sources. The laser ablation source is considered to be an interesting ultrasound wave generator since the 1960s. It was believed to have numerous potential applications such as the Non-Destructive Testing (NDT) and the measurements of velocities and attenuations in solid samples. We aim at adapting and developing this technique into geophysical experimental investigations in order to produce and explore complete micro-seismic data sets in the laboratory. We will first present the laser characteristics including its mechanism, stability, reproducibility, and will evaluate in particular the directivity patterns of such a seismic source. We have started by applying the laser ablation source on the surfaces of multi-scale homogeneous aluminum samples and are now testing it on heterogeneous and fractured limestone cores. Some other results of data processing will also be shown, especially the 2D-slice V P and V S tomographic images obtained in limestone samples. Apart from the experimental records, numerical simulations will be carried out for both the laser source modelling and the wave propagation in different media. First attempts will be done to compare quantitatively the

  16. Global Seismic Imaging Based on Adjoint Tomography

    NASA Astrophysics Data System (ADS)

    Bozdag, E.; Lefebvre, M.; Lei, W.; Peter, D. B.; Smith, J. A.; Zhu, H.; Komatitsch, D.; Tromp, J.

    2013-12-01

    Our aim is to perform adjoint tomography at the scale of globe to image the entire planet. We have started elastic inversions with a global data set of 253 CMT earthquakes with moment magnitudes in the range 5.8 ≤ Mw ≤ 7 and used GSN stations as well as some local networks such as USArray, European stations, etc. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Global adjoint tomography has so far remained a challenge mainly due to computational limitations. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations with higher-resolution (T > 9 s) and longer-duration (200 min) simulations to accommodate high-frequency body waves and major-arc surface waves, respectively, which help improve data coverage. The remaining challenge is the heavy I/O traffic caused by the numerous files generated during the forward/adjoint simulations and the pre- and post-processing stages of our workflow. We improve the global adjoint tomography workflow by adopting the ADIOS file format for our seismic data as well as models, kernels, etc., to improve efficiency on high-performance clusters. Our ultimate aim is to use data from all available networks and earthquakes within the magnitude range of our interest (5.5 ≤ Mw ≤ 7) which requires a solid framework to manage big data in our global adjoint tomography workflow. We discuss the current status and future of global adjoint tomography based on our initial results as well as practical issues such as handling big data in inversions and on high-performance computing systems.

  17. Physical Accuracy of Q Models of Seismic Attenuation

    NASA Astrophysics Data System (ADS)

    Morozov, I. B.

    2016-12-01

    Accuracy of theoretical models is a required prerequisite for any type of seismic imaging and interpretation. Among all geophysical disciplines, the theory of seismic and tidal attenuation is the least developed, and most practical studies use viscoelastic models based on empirical Q factors. To simplify imaging and inversions, the Qs are often approximated as frequency-independent or following a power law with frequency. However, simplicity of inversion should not outweigh the problematic physical accuracy of such models. Typical images of spatially-variable crustal and mantle Qs are "apparent," analogously to pseudo-depth, apparent-resistivity images in electrical imaging. Problems with Q models can be seen from controversial general observations present in many studies; for example: 1) In global Q models, bulk attenuation is much lower than the shear one throughout the whole Earth. This is considered a fundamental relation for the Earth; nevertheless, it is also very peculiar physically and suggests a negative Q for the Lamé modulus. This relation is also not supported by most first-principle models of materials and laboratory studies. 2) The Q parameterization requires that the entire outer core of the Earth is assigned zero attenuation, despite its large volume, presence of viscosity and shear deformation in free oscillations. 3) In laboratory and surface-wave studies, the bulk and shear Qs can be different for different wave modes, different sample sizes boundary conditions on the surface. Similarly, the Qs measured from body-S, Love, Lg, or ScS waves may not equal each other. 4) In seismic coda studies, the Q is often found to be linearly (or even faster) increasing with frequency. Such character of energy dissipation is controversial physically, but can be readily explained as an artifact of inaccurately-known geometrical spreading. To overcome the physical inaccuracies and apparent character of seismic attenuation models, mechanical theories of materials

  18. Precisely relocated seismicity using 3-D seismic velocity model by double-difference tomography method and orogenic processes in central and southern Taiwan

    NASA Astrophysics Data System (ADS)

    Nagai, S.; Wu, Y.; Suppe, J.; Hirata, N.

    2009-12-01

    The island of Taiwan is located in the site of ongoing arc-continent collision zone between the Philippine Sea Plate and the Eurasian Plate. Numerous geophysical and geological studies are done in and around Taiwan to develop various models to explain the tectonic processes in the Taiwan region. The active and young tectonics and the associated high seismicity in Taiwan provide us with unique opportunity to explore and understand the processes in the region related to the arc-continent collision. Nagai et al. [2009] imaged eastward dipping alternate high- and low-velocity bodies at depths of 5 to 25 km from the western side of the Central Mountain Range to the eastern part of Taiwan, by double-difference tomography [Zhang and Thurber, 2003] using three temporary seismic networks with the Central Weather Bureau Seismic Network(CWBSN). These three temporary networks are the aftershock observation after the 1999 Chi-Chi Taiwan earthquake and two dense linear array observations; one is across central Taiwan in 2001, another is across southern Taiwan in 2005, respectively. We proposed a new orogenic model, ’Upper Crustal Stacking Model’ inferred from our tomographic images. To understand the detailed seismic structure more, we carry on relocating earthquakes more precisely in central and southern Taiwan, using three-dimensional velocity model [Nagai et al., 2009] and P- and S-wave arrival times both from the CWBSN and three temporary networks. We use the double-difference tomography method to improve relative and absolute location accuracy simultaneously. The relocated seismicity is concentrated and limited along the parts of boundaries between low- and high-velocity bodies. Especially, earthquakes occurred beneath the Eastern Central Range, triggered by 1999 Chi-Chi earthquake, delineate subsurface structural boundaries, compared with profiles of estimated seismic velocity. The relocated catalog and 3-D seismic velocity model give us some constraints to reconstruct

  19. Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments

    USGS Publications Warehouse

    Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.

    2000-01-01

    The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core

  20. Seismic, satellite, and site observations of internal solitary waves in the NE South China Sea

    PubMed Central

    Tang, Qunshu; Wang, Caixia; Wang, Dongxiao; Pawlowicz, Rich

    2014-01-01

    Internal solitary waves (ISWs) in the NE South China Sea (SCS) are tidally generated at the Luzon Strait. Their propagation, evolution, and dissipation processes involve numerous issues still poorly understood. Here, a novel method of seismic oceanography capable of capturing oceanic finescale structures is used to study ISWs in the slope region of the NE SCS. Near-simultaneous observations of two ISWs were acquired using seismic and satellite imaging, and water column measurements. The vertical and horizontal length scales of the seismic observed ISWs are around 50 m and 1–2 km, respectively. Wave phase speeds calculated from seismic observations, satellite images, and water column data are consistent with each other. Observed waveforms and vertical velocities also correspond well with those estimated using KdV theory. These results suggest that the seismic method, a new option to oceanographers, can be further applied to resolve other important issues related to ISWs. PMID:24948180

  1. Imaging the Seismic Cycle in the Central Andean Subduction Zone from Geodetic Observations

    NASA Astrophysics Data System (ADS)

    Ortega-Culaciati, F.; Becerra-Carreño, V. C.; Socquet, A.; Jara, J.; Carrizo, D.; Norabuena, E. O.; Simons, M.; Vigny, C.; Bataille, K. D.; Moreno, M.; Baez, J. C.; Comte, D.; Contreras-Reyes, E.; Delorme, A.; Genrich, J. F.; Klein, E.; Ortega, I.; Valderas, M. C.

    2015-12-01

    We aim to quantify spatial and temporal evolution of fault slip behavior during all stages of the seismic cycle in subduction megathrusts, with the eventual goal of improving our understanding of the mechanical behavior of the subduction system and its implications for earthquake and tsunami hazards. In this work, we analyze the portion of the Nazca-SouthAmerican plates subduction zone affected by the 1868 southern Peru and 1877 northern Chile mega-earthquakes. The 1868 and 1878 events defined a seismic gap that did not experience a large earthquake for over 124 years. Only recently, the 1995 Mw 8.1 Antofagasta, 2001 Mw 8.4 Arequipa, 2007 Mw 7.7 Tocopilla, and 2014 Mw 8.2 Pisagua earthquakes released only a small fraction of the potential slip budget, thereby raising concerns about continued seismic and tsunami hazard. We use over a decade of observations from continuous and campaign GPS networks to analyze inter-seismic strain accumulation, as well as co-seimic deformation associated to the more recent earthquakes in the in the Central Andean region. We obtain inferences of slip (and back-slip) behavior using a consistent and robust inversion framework that accounts for the spatial variability of the constraint provided by the observations on slip across the subduction megathrust. We present an updated inter-seismic coupling model and estimates of pre-, co- and post- seismic slip behavior associated with the most recent 2014 Mw 8.2 Pisagua earthquake. We analyze our results, along with published information on the recent and historical large earthquakes, to characterize the regions of the megathrust that tend to behave aseismically, and those that are capable to accumulate a slip budget (ultimately leading to the generation of large earthquakes), to what extent such regions may overlap, and discuss the potential for large earthquakes in the region.

  2. 2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach

    EPA Science Inventory

    We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...

  3. New seismic images of the crust across the Rivera Plate and Jalisco Block (Mexico)

    NASA Astrophysics Data System (ADS)

    Cordoba, Diego; Núñez-Cornú, Francisco Javier; Bartolomé, Rafael; José Dañobeitia, Juan; Bandy, William Lee; Núñez, Diana; Prada, Manel; Escudero-Ayala, Christian; Espíndola, Juan Manuel; Zamora, Araceli; Gómez, Adán; Ortiz, Modesto; Tsujal Working Group

    2015-04-01

    During the spring and summer of 2014, we achieved an extensive offshore geophysical experiment at West Coast of México entitled "Crustal characterization of the Rivera Plate-Jalisco Block boundary and its implications for seismic and tsunami hazard assessment (TSUJAL)". The project is the result of continuous scientific collaboration between institutions in Mexico and Spain, whose main objective is to study the lithospheric structure at the collision zone between Rivera, North America Plates and the Jalisco Block, and identifying submarine structures which can potentially be tsunamigenic sources The active phase of this project carried out in February and March of 2014, we acquired around 5200 km of Multichannel Seismic Reflection (MCS) together with multibeam bathymetry and potential fields (gravity and magnetism) data. Moreover, a wide angle experiment was performed, deploying 16 OBS in 32 locations in Jalisco and Nayarit offshore regions, also recorded on a terrestrial network of 100 portable seismic stations in 240 locations across 5 seismic profiles of 200-300 km in length combined with the Seismological Network of the State of Jalisco (SisVOc). In addition, 8 land seismic stations were installed in Marías Islands and Isabel Island. These instruments registered, in continuous mode, the airgun shots generated by airgun array of 5800 ci, shooting every 120 s. The UK vessel RRS James Cook participated in this project as a part of the exchange program between Spanish and English scientific vessels, she was responsible of marine seismic experiment (MCS & WA) using a 6 km length streamer and a high capacity airgun array. Furthermore, the ARM Holzinger and RV El Puma participated in this project and were provided by the Mexican Navy and UNAM, respectively. The second phase of this project was achieved in June 2014, where 100 short period seismic stations were installed along a 200 km seismic profile from La Caldera de la Primavera (Guadalajara) to Barra de Navidad

  4. The 1946 Unimak Tsunami Earthquake Area: revised tectonic structure in reprocessed seismic images and a suspect near field tsunami source

    USGS Publications Warehouse

    Miller, John J.; von Huene, Roland E.; Ryan, Holly F.

    2014-01-01

    In 1946 at Unimak Pass, Alaska, a tsunami destroyed the lighthouse at Scotch Cap, Unimak Island, took 159 lives on the Hawaiian Islands, damaged island coastal facilities across the south Pacific, and destroyed a hut in Antarctica. The tsunami magnitude of 9.3 is comparable to the magnitude 9.1 tsunami that devastated the Tohoku coast of Japan in 2011. Both causative earthquake epicenters occurred in shallow reaches of the subduction zone. Contractile tectonism along the Alaska margin presumably generated the far-field tsunami by producing a seafloor elevation change. However, the Scotch Cap lighthouse was destroyed by a near-field tsunami that was probably generated by a coeval large undersea landslide, yet bathymetric surveys showed no fresh large landslide scar. We investigated this problem by reprocessing five seismic lines, presented here as high-resolution graphic images, both uninterpreted and interpreted, and available for the reader to download. In addition, the processed seismic data for each line are available for download as seismic industry-standard SEG-Y files. One line, processed through prestack depth migration, crosses a 10 × 15 kilometer and 800-meter-high hill presumed previously to be basement, but that instead is composed of stratified rock superimposed on the slope sediment. This image and multibeam bathymetry illustrate a slide block that could have sourced the 1946 near-field tsunami because it is positioned within a distance determined by the time between earthquake shaking and the tsunami arrival at Scotch Cap and is consistent with the local extent of high runup of 42 meters along the adjacent Alaskan coast. The Unimak/Scotch Cap margin is structurally similar to the 2011 Tohoku tsunamigenic margin where a large landslide at the trench, coeval with the Tohoku earthquake, has been documented. Further study can improve our understanding of tsunami sources along Alaska’s erosional margins.

  5. Imaging the midcontinent rift beneath Lake Superior using large aperture seismic data

    USGS Publications Warehouse

    Tréhu, Anne M.; Morel-a-l'Huissier, Patrick; Meyer, R.; Hajnal, Z.; Karl, J.; Mereu, R.F.; Sexton, John L.; Shay, J.; Chan, W. K.; Epili, D.; Jefferson, T.; Shih, X. R.; Wendling, S.; Milkereit, B.; Green, A.; Hutchinson, Deborah R.

    1991-01-01

    We present a detailed velocity model across the 1.1 billion year old Midcontinent Rift System (MRS) in central Lake Superior. The model was derived primarily from onshore-offshore large-aperture seismic and gravity data. High velocities obtained within a highly reflective half-graben that was imaged on coincident seismic reflection data demonstrate the dominantly mafic composition of the graben fill and constrain its total thickness to be at least 30km. Strong wide-angle reflections are observed from the lower crust and Moho, indicating that the crust is thickest (55–60km) beneath the axis of the graben. The total crustal thickness decreases rapidly to about 40 km beneath the south shore of the lake and decreases more gradually to the north. Above the Moho is a high-velocity lower crust interpreted to result from syn-rift basaltic intrusion into and/or underplating beneath the Archean lower crust. The lower crust is thickest beneath the axis of the main rift half-graben. A second region of thick lower crust is found approximately 100km north of the axis of the rift beneath a smaller half graben that is interpreted to reflect an earlier stage of rifting. The crustal model presented here resembles recent models of some passive continental margins and is in marked contrast to many models of both active and extinct Phanerozoic continental rift zones. It demonstrates that the Moho is a dynamic feature, since the pre-rift Moho is probably within or above the high-velocity lower crust, whereas the post-rift Moho is defined as the base of this layer. In the absence of major tectonic activity, however, the Moho is very stable, since the large, abrupt variations in crustal thickness beneath the MRS have been preserved for at least a billion years.

  6. Recovering Total Megathrust Slip Across the Seismic Cycle: Results from Two Decades of Study at the Nicoya Seismic Cycle Observatory (NSCO)

    NASA Astrophysics Data System (ADS)

    Newman, A. V.; Kyriakopoulos, C.

    2015-12-01

    Unlike most subduction environments that exist mostly or entirely offshore, the Nicoya Peninsula's location allows for unique land-based observations of the entire down-dip extent of coupling and failure along the seismogenic megathrust. Because of this geometry and approximately 50-year repeat cycle of mid-magnitude 7 earthquakes there, numerous geophysical studies were focused on the peninsula. Most notably of these are the dense seismic and GPS networks cooperatively operated by UC Santa Cruz, Georgia Tech, U. South Florida, and OVSICORI, collectively called the Nicoya Seismic Cycle Observatory (NSCO). The megathrust environment beneath Nicoya is additionally characterized by strong along-strike transitions in oceanic crust origin and geometries, including massive subducted seamounts, and a substantial crustal suture well documented in recent work by Kyriakopoulos et al. [JGR, 2015]. Using GPS data collected from campaign and continuous sites going back approximately 20 years, a number of studies have imaged components of the seismic cycle, including late-interseismic coupling, frequent slow-slip events, coseismic rupture of a moment magnitude 7.6 earthquake in 2012, and early postseismic response. The derived images of interface locking and slip behavior published for each of these episodes use different model geometries, different weighting schemes, and modeling algorithms limiting their use for fully characterizing the transitions between zones. Here, we report the first unified analysis of the full continuum of slip using the new locally defined 3D plate interface model. We focus on evaluating how transitions in plate geometry control observed locking, slip, and quantifying how well pre-seismic images of megathrust locking and slow-slip events dictate coseismic and postseismic behavior. Without the long-term and continuous geodetic observations made by the NSCO, this work would not have been possible.

  7. New seismic images of the cascadia subduction zone from cruise SO 108-ORWELL

    USGS Publications Warehouse

    Flueh, E.R.; Fisher, M.A.; Bialas, J.; Childs, J. R.; Klaeschen, D.; Kukowski, Nina; Parsons, T.; Scholl, D. W.; ten Brink, Uri S.; Trehu, A.M.; Vidal, N.

    1998-01-01

    In April and May 1996, a geophysical study of the Cascadia continental margin off Oregon and Washington was conducted aboard the German R/V Sonne. This cooperative experiment by GEOMAR and the USGS acquired wide-angle reflection and refraction seismic data, using ocean-bottom seismometers (OBS) and hydrophones (OBH), and multichannel seismic reflection (MCS) data. The main goal of this experiment was to investigate the internal structure and associated earthquake hazard of the Cascadia subduction zone and to image the downgoing plate. Coincident MCS and wide-angle profiles along two tracks are presented here. The plate boundary has been imaged precisely beneath the wide accretionary wedge close to shore at c13km depth. Thus, the downgoing plate dips more shallowly than previously assumed. The dip of the plate changes from 2?? to 4?? at the eastern boundary of the wedge on the northern profile, whereas approximately 3km of sediment is entering the subduction zone. On the southern profile, where the incoming sedimentary section is about 2.2km thick, the plate dips about 0.5?? to 1.5?? near the deformation front and increases to 3.5?? further landwards. On both profiles, the deformation of the accretionary wedge has produced six ridges on the seafloor, three of which represent active faulting, as indicated by growth folding. The ridges are bordered by landward verging faults which reach as deep as the top of the oceanic basement. Thus, the entire incoming sediment package is being accreted. At least two phases of accretion are evident, and the rocks of the older accretionary phase(s) forms the backstop for the younger phase, which started around 1.5 Ma ago. This documents that the 30 to 50km wide frontal part of the accretionary wedge, which is characterized by landward vergent thrusts, is a Pleistocene feature which was formed in response to the high input of sediment building the fans during glacial periods. Velocities increase quite rapidly within the wedge, both

  8. Global seismic attenuation imaging using full-waveform inversion: a comparative assessment of different choices of misfit functionals

    NASA Astrophysics Data System (ADS)

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-02-01

    We present the results of synthetic tests that aim at evaluating the relative performance of three different definitions of misfit functionals in the context of 3-D imaging of shear wave attenuation in the earth's upper mantle at the global scale, using long-period full-waveform data. The synthetic tests are conducted with simple hypothetical upper-mantle models that contain Qμ anomalies centred at different depths and locations, with or without additional seismic velocity anomalies. To build synthetic waveform data sets, we performed simulations of 50 events in the hypothetical (target) models, using the spectral element method, filtered in the period range 60-400 s. The selected events are chosen among 273 events used in the development of radially anisotropic model SEMUCB-WM1 and recorded at 495 stations worldwide. The synthetic Z-component waveforms correspond to paths and time intervals (fundamental mode and overtone Rayleigh waves) that exist in the real waveform data set. The inversions for shear attenuation structure are carried out using a Gauss-Newton optimization scheme in which the gradient and Hessian are computed using normal mode perturbation theory. The three different misfit functionals considered are based on time domain waveform (WF) and waveform envelope (E-WF) differences, as well as spectral amplitude ratios (SA), between observed and predicted waveforms. We evaluate the performance of the three misfit functional definitions in the presence of seismic noise and unresolved S-wave velocity heterogeneity and discuss the relative importance of physical dispersion effects due to 3-D Qμ structure. We observed that the performance of WF is poorer than the other two misfit functionals in recovering attenuation structure, unless anelastic dispersion effects are taken into account in the calculation of partial derivatives. WF also turns out to be more sensitive to seismic noise than E-WF and SA. Overall, SA performs best for attenuation imaging. Our

  9. Seismic Ecology

    NASA Astrophysics Data System (ADS)

    Seleznev, V. S.; Soloviev, V. M.; Emanov, A. F.

    The paper is devoted to researches of influence of seismic actions for industrial and civil buildings and people. The seismic actions bring influence directly on the people (vibration actions, force shocks at earthquakes) or indirectly through various build- ings and the constructions and can be strong (be felt by people) and weak (be fixed by sensing devices). The great number of work is devoted to influence of violent seismic actions (first of all of earthquakes) on people and various constructions. This work is devoted to study weak, but long seismic actions on various buildings and people. There is a need to take into account seismic oscillations, acting on the territory, at construction of various buildings on urbanized territories. Essential influence, except for violent earthquakes, man-caused seismic actions: the explosions, seismic noise, emitted by plant facilities and moving transport, radiation from high-rise buildings and constructions under action of a wind, etc. can exert. Materials on increase of man- caused seismicity in a number of regions in Russia, which earlier were not seismic, are presented in the paper. Along with maps of seismic microzoning maps to be built indicating a variation of amplitude spectra of seismic noise within day, months, years. The presence of an information about amplitudes and frequencies of oscillations from possible earthquakes and man-caused oscillations in concrete regions allows carry- ing out soundly designing and construction of industrial and civil housing projects. The construction of buildings even in not seismically dangerous regions, which have one from resonance frequencies coincident on magnitude to frequency of oscillations, emitted in this place by man-caused objects, can end in failure of these buildings and heaviest consequences for the people. The practical examples of detail of engineering- seismological investigation of large industrial and civil housing projects of Siberia territory (hydro power

  10. Optimized suppression of coherent noise from seismic data using the Karhunen-Loève transform

    NASA Astrophysics Data System (ADS)

    Montagne, Raúl; Vasconcelos, Giovani L.

    2006-07-01

    Signals obtained in land seismic surveys are usually contaminated with coherent noise, among which the ground roll (Rayleigh surface waves) is of major concern for it can severely degrade the quality of the information obtained from the seismic record. This paper presents an optimized filter based on the Karhunen-Loève transform for processing seismic images contaminated with ground roll. In this method, the contaminated region of the seismic record, to be processed by the filter, is selected in such way as to correspond to the maximum of a properly defined coherence index. The main advantages of the method are that the ground roll is suppressed with negligible distortion of the remnant reflection signals and that the filtering procedure can be automated. The image processing technique described in this study should also be relevant for other applications where coherent structures embedded in a complex spatiotemporal pattern need to be identified in a more refined way. In particular, it is argued that the method is appropriate for processing optical coherence tomography images whose quality is often degraded by coherent noise (speckle).

  11. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    PubMed

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  12. The Olmsted fault zone, southernmost Illinois: A key to understanding seismic hazard in the northern new Madrid seismic zone

    USGS Publications Warehouse

    Bexfield, C.E.; McBride, J.H.; Pugin, Andre J.M.; Nelson, W.J.; Larson, T.H.; Sargent, S.L.

    2005-01-01

    Geological deformation in the northern New Madrid seismic zone, near Olmsted, Illinois (USA), is analyzed using integrated compressional-wave (P) and horizontally polarized-wave (SH) seismic reflection and regional and dedicated borehole information. Seismic hazards are of special concern because of strategic facilities (e.g., lock and dam sites and chemical plants on the Ohio River near its confluence with the Mississippi River) and because of alluvial soils subject to high amplification of earthquake shock. We use an integrated approach starting with lower resolution, but deeper penetration, P-wave reflection profiles to identify displacement of Paleozoic bedrock. Higher resolution, but shallower penetration, SH-wave images show deformation that has propagated upward from bedrock faults into Pleistocene loess. We have mapped an intricate zone more than 8 km wide of high-angle faults in Mississippi embayment sediments localized over Paleozoic bedrock faults that trend north to northeast, parallel to the Ohio River. These faults align with the pattern of epicenters in the New Madrid seismic zone. Normal and reverse offsets along with positive flower structures imply a component of strike-slip; the current stress regime favors right-lateral slip on northeast-trending faults. The largest fault, the Olmsted fault, underwent principal displacement near the end of the Cretaceous Period 65 to 70 million years ago. Strata of this age (dated via fossil pollen) thicken greatly on the downthrown side of the Olmsted fault into a locally subsiding basin. Small offsets of Tertiary and Quaternary strata are evident on high-resolution SH-wave seismic profiles. Our results imply recent reactivation and possible future seismic activity in a critical area of the New Madrid seismic zone. This integrated approach provides a strategy for evaluating shallow seismic hazard-related targets for engineering concerns. ?? 2005 Elsevier B.V. All rights reserved.

  13. High-resolution multi-channel seismic images of the Queen Charlotte Fault system offshore southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Miller, N. C.; Brothers, D. S.; Kluesner, J.; Balster-Gee, A.; Ten Brink, U. S.; Andrews, B. D.; Haeussler, P. J.; Watt, J. T.; Dartnell, P.; East, A. E.

    2016-12-01

    We present high-resolution multi-channel seismic (MCS) images of fault structure and sedimentary stratigraphy along the southeastern Alaska margin, where the northern Queen Charlotte Fault (QCF) cuts the shelf-edge and slope. The QCF is a dominantly strike slip system that forms the boundary between the Pacific (PA) and North American (NA) plates offshore western Canada and southeastern Alaska. The data were collected using a 64 channel, 200 m digital streamer and a 0.75-3 kJ sparker source aboard the R/V Norseman in August 2016. The survey was designed to cross a seafloor fault trace recently imaged by multibeam sonar (see adjacent poster by Brothers et al.) and to extend the subsurface information landward and seaward from the fault. Analysis of these MCS and multibeam data focus on addressing key questions that have significant implications for the kinematic and geodynamic history of the fault, including: Is the imaged surface fault in multibeam sonar the only recently-active fault trace? What is the shallow fault zone width and structure, is the internal structure of the recently-discovered pull-apart basin a dynamically developing structure? How does sediment thickness vary along the margin and how does this variation affect the fault expression? Can previous glacial sequences be identified in the stratigraphy?

  14. The North Tanzania Rift seen from multi geophysical tools: link between seismicity and resistivity

    NASA Astrophysics Data System (ADS)

    Gautier, S.; Plasman, M.; Tarits, P.; Hautot, S.; Tiberi, C.; Albaric, J.; Le Gall, B.; Deverchere, J.; Ebinger, C. J.; Roecker, S. W.; Ferdinand, R.; Muzuka, A.; Msabi, M.; Khalfan, M.; Gama, R.; Mulibo, G. D.

    2016-12-01

    The North Tanzania part of the East African Rift is the place of an incipient break up of the lithosphere. In this region, seismicity and volcanism seem strongly linked to the inherited structures, magmatic intrusion, and tectonic. Natron Lake is characterized by a shallow seismicity and present volcanic activity, whereas Manyara area is the location of a deeper seismicity and sparse volcanism. It is thus of prime interest to image the structure of this area to fully understand the role of each factor on the localisation of the current deformation at the surface. Since 2007 different multidisciplinary projects have taken place in this area to address this question. We present here a work based on a collaborative work between French, American and Tanzanian institutes that started in 2013. We have analysed more than a hundred teleseismic events and local seismicity to compute receiver function and local tomography. We combine this information with two MT profiles in order to image crustal and upper mantle structures. The resistivity deduced from the MT observations confirms the seismic results with a great difference within the crust and upper mantle between Natron and Manyara. The MT profiles evidence crustal structures such as major volcanic edifices, main tectonic units and interfaces. We discuss our combined images in terms of rift-craton interaction and magmatic intrusions.

  15. Anatomy of Old Faithful hydrothermal system from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

    NASA Astrophysics Data System (ADS)

    Wu, S. M.; Lin, F. C.; Farrell, J.; Ward, K. M.; Karplus, M. S.; Smith, R. B.

    2017-12-01

    The Upper Geyser Basin (UGB) in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful Geyser (OFG). Although this system has been the focus of many geological, geochemical, and geophysical studies, the shallow (<200 m) subsurface structure and the hydrothermal tremor behavior remain poorly characterized. To probe the detailed structure that relates to the hydrothermal plumbing of the UGB, we deployed dense arrays of 3-C 5-Hz geophones in both November of 2015 and 2016, composed of 133 stations with 50 m spacing, and 519 station locations, with an 20 m spacing, respectively. By applying seismic interferometry techniques, we extracted Rayleigh-wave signals between 1-10 Hz via seismic signals excited by nearby hydrothermal features (e.g. geysers and pools). We observe a clear lateral velocity boundary at 3.3 Hz frequency that delineates a higher phase velocity of 1.6 km/sec in the NE and a lower phase velocity of 1.0 km/sec in the SW corresponding to the local geologic formation of rhyolitic and glacial deposits, respectively. We also image a relatively shallow (20-60 m deep) large reservoir with an estimated porosity 30% located 100 meters southwest of the OFG from the significant spatial-dependent waveform distortions and delays between 5-10 Hz frequency. This reservoir is likely controlled by the local geology with a rhyolitic deposit in the NE acting as a relatively impermeable barrier to vertical fluid ascent. To understand the pre-eruption tremor signals from OFG, we first study the seismic waveforms recorded at the closest station to the OFG cone. Many highly repetitive seismic pulses associated with bubble collapse, which compose the tremor signal, can be identified. Using a reference event template and the cross-correlation method, we can determine the onset of each individual bubbling event using a cross-correlation coefficient threshold of 0.8. Based on the detected timing

  16. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    NASA Astrophysics Data System (ADS)

    Lestari, Titik; Nugraha, Andri Dian

    2015-04-01

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA's) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 - April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vs and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.

  17. Imaging of 3-D seismic velocity structure of Southern Sumatra region using double difference tomographic method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lestari, Titik, E-mail: t2klestari@gmail.com; Faculty of Earth Science and Technology, Bandung Institute of Technology, Jalan Ganesa No.10, Bandung 40132; Nugraha, Andri Dian, E-mail: nugraha@gf.itb.ac.id

    2015-04-24

    Southern Sumatra region has a high level of seismicity due to the influence of the subduction system, Sumatra fault, Mentawai fault and stretching zone activities. The seismic activities of Southern Sumatra region are recorded by Meteorological Climatological and Geophysical Agency (MCGA’s) Seismograph network. In this study, we used earthquake data catalog compiled by MCGA for 3013 events from 10 seismic stations around Southern Sumatra region for time periods of April 2009 – April 2014 in order to invert for the 3-D seismic velocities structure (Vp, Vs, and Vp/Vs ratio). We applied double-difference seismic tomography method (tomoDD) to determine Vp, Vsmore » and Vp/Vs ratio with hypocenter adjustment. For the inversion procedure, we started from the initial 1-D seismic velocity model of AK135 and constant Vp/Vs of 1.73. The synthetic travel time from source to receiver was calculated using ray pseudo-bending technique, while the main tomographic inversion was applied using LSQR method. The resolution model was evaluated using checkerboard test and Derivative Weigh Sum (DWS). Our preliminary results show low Vp and Vs anomalies region along Bukit Barisan which is may be associated with weak zone of Sumatran fault and migration of partial melted material. Low velocity anomalies at 30-50 km depth in the fore arc region may indicated the hydrous material circulation because the slab dehydration. We detected low seismic seismicity in the fore arc region that may be indicated as seismic gap. It is coincides contact zone of high and low velocity anomalies. And two large earthquakes (Jambi and Mentawai) also occurred at the contact of contrast velocity.« less

  18. Promoting Diversity in Undergraduate Research in Robotics-Based Seismic

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Arthur, C. L.; Carmichael, B. L.; Webber, G. K.; Agah, A.

    2006-12-01

    The motivation for this research was to investigate forming evenly-spaced grid patterns with a team of mobile robots for future use in seismic imaging in polar environments. A team of robots was incrementally designed and simulated by incorporating sensors and altering each robot's controller. Challenges, design issues, and efficiency were also addressed. This research project incorporated the efforts of two undergraduate REU students from Elizabeth City State University (ECSU) in North Carolina, and the research staff at the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas. ECSU is a historically black university. Mentoring these two minority students in scientific research, seismic, robotics, and simulation will hopefully encourage them to pursue graduate degrees in science-related or engineering fields. The goals for this 10-week internship during summer 2006 were to educate the students in the fields of seismology, robotics, and virtual prototyping and simulation. Incrementally designing a robot platform for future enhancement and evaluation was central to this research, and involved simulation of several robots working together to change seismic grid shape and spacing. This process gave these undergraduate students experience and knowledge in an actual research project for a real-world application. The two undergraduate students gained valuable research experience and advanced their knowledge of seismic imaging, robotics, sensors, and simulation. They learned that seismic sensors can be used in an array to gather 2D and 3D images of the subsurface. They also learned that robotics can support dangerous or difficult human activities, such as those in a harsh polar environment, by increasing automation, robustness, and precision. Simulating robot designs also gave them experience in programming behaviors for mobile robots. Thus far, one academic paper has resulted from their research. This paper received third place at the 2006

  19. Preliminary report on geophysical well-logging activity on the Salton Sea Scientific Drilling Project, Imperial Valley, California

    USGS Publications Warehouse

    Paillet, Frederick L.; Morin, R.H.; Hodges, H.E.

    1986-01-01

    The Salton Sea Scientific Drilling Project has culminated in a 10,564-ft deep test well, State 2-14 well, in the Imperial Valley of southern California. A comprehensive scientific program of drilling, coring, and downhole measurements, which was conducted for about 5 months, has obtained much scientific information concerning the physical and chemical processes associated with an active hydrothermal system. This report primarily focuses on the geophysical logging activities at the State 2-14 well and provides early dissemination of geophysical data to other investigators working on complementary studies. Geophysical-log data were obtained by a commercial logging company and by the U.S. Geological Survey (USGS). Most of the commercial logs were obtained during three visits to the site; only one commercial log was obtained below a depth of 6,000 ft. The commercial logs obtained were dual induction, natural gamma, compensated neutron formation density, caliper and sonic. The USGS logging effort consisted of four primary periods, with many logs extending below a depth of 6,000 ft. The USGS logs obtained were temperature, caliper, natural gamma, gamma spectral, epithermal neutron, acoustic velocity, full-waveform, and acoustic televiewer. Various problems occurred throughout the drilling phase of the Salton Sea Scientific Drilling Project that made successful logging difficult: (1) borehole constrictions, possibly resulting from mud coagulation, (2) maximum temperatures of about 300 C, and (3) borehole conditions unfavorable for logging because of numerous zones of fluid loss, cement plugs, and damage caused by repeated trips in and out of the hole. These factors hampered and compromised logging quality at several open-hole intervals. The quality of the logs was dependent on the degree of probe sophistication and sensitivity to borehole-wall conditions. Digitized logs presented were processed on site and are presented in increments of 1,000 ft. A summary of the numerous

  20. Scenarios for local seismic effects of Tulcea (Romania) crustal earthquakes, preliminary approach for the seismic microzoning of Tulcea city

    NASA Astrophysics Data System (ADS)

    Florin Bǎlan, Å.žTefan; Apostol, Bogdan; Chitea, F.; Anghelache, Mirela Adriana; Cioflan, Carmen O.; Serban, A.

    2010-05-01

    nonlinear variations of shear modulus and damping function with state of strain during the earthquakes are expected in superficial soil deposits. Also, the epicenter distributions, the isobats map and 3D image of focal distribution surface will be presented together with the focal mechanisms of the most significant earthquakes which had affected the zone. All these give us a very complete image of the crustal seismic hazard of the Tulcea zone. This study proposes itself to take in consideration only the local effects of the crustal seismic hazard from Tulcea zone, like a preliminary step for the seismic microzoning of Tulcea city. The latter is a broader research which implies the interdisciplinary work between specialists from different fields of research. Finally, by comparing the seismic microzoning map with the vulnerability distribution mapping for each building type and damage distribution maps, the general aspect of the real earthquake effects over the city is figured out. Acknowledgements: The research was performed with financial support from the CNMP within 31036/ 2007 scientific project.

  1. Hazard Monitoring of Growing Lava Flow Fields Using Seismic Tremor

    NASA Astrophysics Data System (ADS)

    Eibl, E. P. S.; Bean, C. J.; Jónsdottir, I.; Hoskuldsson, A.; Thordarson, T.; Coppola, D.; Witt, T.; Walter, T. R.

    2017-12-01

    An effusive eruption in 2014/15 created a 85 km2 large lava flow field in a remote location in the Icelandic highlands. The lava flows did not threaten any settlements or paved roads but they were nevertheless interdisciplinarily monitored in detail. Images from satellites and aircraft, ground based video monitoring, GPS and seismic recordings allowed the monitoring and reconstruction of a detailed time series of the growing lava flow field. While the use of satellite images and probabilistic modelling of lava flows are quite common tools to monitor the current and forecast the future growth direction, here we show that seismic recordings can be of use too. We installed a cluster of seismometers at 15 km from the vents and recorded the ground vibrations associated with the eruption. This seismic tremor was not only generated below the vents, but also at the edges of the growing lava flow field and indicated the parts of the lava flow field that were most actively growing. Whilst the time resolution is in the range of days for satellites, seismic stations easily sample continuously at 100 Hz and could therefore provide a much better resolution and estimate of the lava flow hazard in real-time.

  2. Chemistry and geothermometry of brine produced from the Salton Sea Scientific drill hole, Imperial Valley, California

    USGS Publications Warehouse

    Thompson, J.M.; Fournier, R.O.

    1988-01-01

    The December 29-30, 1985, flow test of the State 2-14 well, also known as the Salton Sea Scientific drill hole, produced fluid from a depth of 1865-1877 m at a reservoir temperature of 305????5??C. Samples were collected at five different flashing pressures. The brines are Na-Ca-K-Cl-type waters with very high metal and low SO4 and HCO3 contents. Compositions of the flashed brines were normalized relative to the 25??C densities of the solutions, and an ionic charge balance was achieved by adjusting the Na concentration. Calculated Na/K geothermometer temperatures, using equations suggested by different investigators, range from 326?? to 364??C. The Mg/K2 method gives a temperature of about 350??C, Mg/Li2 about 282??, and Na/Li 395??-418??C. -from Authors

  3. An automated multi-scale network-based scheme for detection and location of seismic sources

    NASA Astrophysics Data System (ADS)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  4. Seismicity in South Carolina

    USGS Publications Warehouse

    Shedlock, K.M.

    1988-01-01

    The largest historical earthquake in South Carolina, and in the southeastern US, occurred in the Coastal Plain province, probably northwest of Charleston, in 1886. Locations for aftershocks associated with this earthquake, estimated using intensities based on newspaper accounts, defined a northwest trending zone about 250 km long that was at least 100 km wide in the Coastal Plain but widened to a northeast trending zone in the Piedmont. The subsequent historical and instrumentally recorded seismicity in South Carolina images the 1886 aftershock zone. Instrumentally recorded seismicity in the Coastal Plain province occurs in 3 seismic zones or clusters: Middleton Place-Summervile (MPSSZ), Adams Run (ARC), and Bowman (BSZ). Approximately 68% of the Coastal Plain earthquakes occur in the MPSSZ, a north trending zone about 22 km long and 12 km wide, lying about 20 km northwest of Charleston. The hypocenters of MPSSZ earthquakes range in depth from near the surface to almost 12 km. Thrust, strike-slip, and some normal faulting are indicated by the fault plane solutions for Coastal Plain earthquakes. The maximum horizontal compressive stress, inferred from the P-axes of the fault plane solutions, is oriented NE-SW in the shallow crust (<9 km deep) but appears to be diffusely E-W between 9 to 12 km deep. -from Author

  5. LAND STREAMER SEISMIC DATA FROM NORTHERN DELAWARE: A VIABLE ALTERNATIVE FOR IMAGING AQUIFERS IN SUBURBAN AREAS

    NASA Astrophysics Data System (ADS)

    Velez, C. C.; McLaughlin, P. P.; McGeary, S. E.; Sargent, S. L.

    2009-12-01

    The Potomac Formation includes the most important confined aquifers in the Coastal Plain of northern Delaware. Development and a growing suburban population are increasing demand for groundwater in the area, making accurate assessment of groundwater water supply increasingly important. Previous studies of subsurface geology indicate that the Potomac Formation is characterized by laterally discontinuous fluvial sand bodies, making it difficult to precisely delineate the distribution and geometry of the aquifer facies based on well correlations alone. A 20-km high-resolution seismic reflection dataset was collected using a land-streamer system in 2008 to constrain subsurface stratigraphy between disparate well locations. The data were collected along roadways in an area of mixed development that includes suburban housing tracts, farmlands, and large industry. A 152-m-deep continuous-cored test hole was drilled in the summer of 2009 adjacent to one of the lines and a full suite of borehole geophysical logs obtained. The land-streamer data are compared to a 3-km dataset collected also in 2008 using conventional methods on farmland in the northern part of the study area. The land streamer system proved to be more effective than conventional seismic reflection methods in this area. Several advantages are evident for the land streamer: 1) overall, the conventional dataset has a higher S/N, 2) on average, collecting data with the land streamer system is four times faster, and 3) the land streamer lines can be longer and therefore more continuous than the conventional lines in a developed area. The land-streamer system has minor disadvantages: traffic control, traffic noise, and in some cases a need for larger crews. Regardless, the land streamer dataset is easier to process, of higher quality, and more cost effective. The final depth images from the land streamer data indicate that the minimum and maximum depths imaged are ~18 m and ~ 268m, with a resolution of ~4 m. This

  6. In-situ Planetary Subsurface Imaging System

    NASA Astrophysics Data System (ADS)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  7. Co- and post-seismic shallow fault physics from near-field geodesy, seismic tomography, and mechanical modeling

    NASA Astrophysics Data System (ADS)

    Nevitt, J.; Brooks, B. A.; Catchings, R.; Goldman, M.; Criley, C.; Chan, J. H.; Glennie, C. L.; Ericksen, T. L.; Madugo, C. M.

    2017-12-01

    The physics governing near-surface fault slip and deformation are largely unknown, introducing significant uncertainty into seismic hazard models. Here we combine near-field measurements of surface deformation from the 2014 M6.0 South Napa earthquake with high-resolution seismic imaging and finite element models to investigate the effects of rupture speed, elastic heterogeneities, and plasticity on shallow faulting. We focus on two sites that experienced either predominantly co-seismic or post-seismic slip. We measured surface deformation with mobile laser scanning of deformed vine rows within 300 m of the fault at 1 week and 1 month after the event. Shear strain profiles for the co- and post-seismic sites are similar, with maxima of 0.012 and 0.013 and values exceeding 0.002 occurring within 26 m- and 18 m-wide zones, respectively. That the rupture remained buried at the two sites and produced similar deformation fields suggests that permanent deformation due to dynamic stresses did not differ significantly from the quasi-static case, which might be expected if the rupture decelerated as it approached the surface. Active-source seismic surveys, 120 m in length with 1 m geophone/shot spacing, reveal shallow compliant zones of reduced shear modulus. For the co- and post-seismic sites, the tomographic anomaly (Vp/Vs > 5) at 20 m depth has a width of 80 m and 50 m, respectively, much wider than the observed surface displacement fields. We investigate this discrepancy with a suite of finite element models in which a planar fault is buried 5 m below the surface. The model continuum is defined by either homogeneous or heterogeneous elastic properties, with or without Drucker-Prager plastic yielding, with properties derived from lab testing of similar near-surface materials. We find that plastic yielding can greatly narrow the surface displacement zone, but that the width of this zone is largely insensitive to changes in the elastic structure (i.e., the presence of a

  8. Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array

    NASA Astrophysics Data System (ADS)

    Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.

  9. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California

    USGS Publications Warehouse

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2012-01-01

    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide

  10. P-Cable: New High-Resolution 3D Seismic Acquisition Technology

    NASA Astrophysics Data System (ADS)

    Planke, Sverre; Berndt, Christian; Mienert, Jürgen; Bünz, Stefan; Eriksen, Frode N.; Eriksen, Ola K.

    2010-05-01

    We have developed a new cost-efficient technology for acquisition of high-resolution 3D seismic data: the P-Cable system. This technology is very well suited for deep water exploration, site surveys, and studies of shallow gas and fluid migration associated with gas hydrates or leaking reservoirs. It delivers unparalleled 3D seismic images of subsurface sediment architectures. The P-Cable system consists of a seismic cable towed perpendicular to a vessel's steaming direction. This configuration allows us to image an up to 150 m wide swath of the sub-surface for each sail line. Conventional 3D seismic technology relies on several very long streamers (up to 10 km long streamers are common), large sources, and costly operations. In contrast, the P-Cable system is light-weight and fast to deploy from small vessels. Only a small source is required as the system is made for relatively shallow imaging, typically above the first water-bottom multiple. The P-Cable system is particularly useful for acquisition of small 3D cubes, 10-50 km2, in focus areas, rather than extensive mapping of large regions. The rapid deployment and recovery of the system makes it possible to acquire several small cubes (10 to 30 km2) with high-resolution (50-250 Hz) seismic data in during one cruise. The first development of the P-Cable system was a cooperative project achieved by Volcanic Basin Petroleum Research (VBPR), University of Tromsø, National Oceanography Centre, Southampton, and industry partners. Field trials using a 12-streamer system were conducted on sites with active fluid-leakage systems on the Norwegian-Barents-Svalbard margin, the Gulf of Cadiz, and the Mediterranean. The second phase of the development introduced digital streamers. The new P-Cable2 system also includes integrated tow and cross cables for power and data transmission and improved doors to spread the larger cross cable. This digital system has been successfully used during six cruises by the University of Troms

  11. New High-Resolution Multibeam Mapping and Seismic Reflection Imaging of Mudflows on the Mississippi River Delta Front

    NASA Astrophysics Data System (ADS)

    Chaytor, J. D.; Baldwin, W. E.; Danforth, W. W.; Bentley, S. J.; Miner, M. D.; Damour, M.

    2017-12-01

    Mudflows (channelized and unconfined debris flows) on the Mississippi River Delta Front (MRDF) are a recognized hazard to oil and gas infrastructure in the shallow Gulf of Mexico. Preconditioning of the seafloor for failure results from high sedimentation rates coupled with slope over-steepening, under-consolidation, and abundant biogenic gas production. Cyclical loading of the seafloor by waves from passing major storms appears to be a primary trigger, but the role of smaller (more frequent) storms and background oceanographic processes are largely unconstrained. A pilot high-resolution seafloor mapping and seismic imaging study was carried out across portions of the MRDF aboard the R/V Point Sur from May 19-26, 2017, as part of a multi-agency/university effort to characterize mudflow hazards in the area. The primary objective of the cruise was to assess the suitability of seafloor mapping and shallow sub-surface imaging tools in the challenging environmental conditions found across delta fronts (e.g., variably-distributed water column stratification and wide-spread biogenic gas in the shallow sub-surface). More than 600 km of multibeam bathymetry/backscatter/water column data, 425 km of towed chirp data, and > 500 km of multi-channel seismic data (boomer/mini-sparker sources, 32-channel streamer) were collected. Varied mudflow (gully, lobe), pro-delta morphologies, and structural features, some of which have been surveyed more than once, were imaged in selected survey areas from Pass a Loutre to Southwest Pass. The present location of the SS Virginia, which has been moving with one of the mudflow lobes since it was sunk in 1942, was determined and found to be 60 m SW of its 2006 position, suggesting movement not linked to hurricane-induced wave triggering of mudflows. Preliminary versions these data were used to identify sediment sampling sites visited on a cruise in early June 2017 led by scientists from LSU and other university/agency partners.

  12. Tools for educational access to seismic data

    NASA Astrophysics Data System (ADS)

    Taber, J. J.; Welti, R.; Bravo, T. K.; Hubenthal, M.; Frechette, K.

    2017-12-01

    curves, triangulate event epicenters on a globe, estimate event magnitudes, and generate images showing seismograms and corresponding calculations. All three tools access seismic databases curated by IRIS Data Services. In addition, jAmaseis also can access data from non-IRIS sources.

  13. Inferred Rheology and Petrology of Southern California and Northwest Mexico Mantle from Postseismic Deformation following the 2010 El Mayor-Cucapah Earthquake

    NASA Astrophysics Data System (ADS)

    Freed, A. M.; Dickinson, H.; Huang, M. H.; Fielding, E. J.; Burgmann, R.; Andronicos, C.

    2015-12-01

    The Mw 7.2 El Mayor-Cucapah (EMC) earthquake ruptured a ~120 km long series of faults striking northwest from the Gulf of California to the Sierra Cucapah. Five years after the EMC event, a dense network of GPS stations in southern California and a sparse array of sites installed after the earthquake in northern Mexico measure ongoing surface deformation as coseismic stresses relax. We use 3D finite element models of seismically inferred crustal and mantle structure with earthquake slip constrained by GPS, InSAR range change and SAR and SPOT image sub-pixel offset measurements to infer the rheologic structure of the region. Model complexity, including 3D Moho structure and distinct geologic regions such as the Peninsular Ranges and Salton Trough, enable us to explore vertical and lateral heterogeneities of crustal and mantle rheology. We find that postseismic displacements can be explained by relaxation of a laterally varying, stratified rheologic structure controlled by temperature and crustal thickness. In the Salton Trough region, particularly large postseismic displacements require a relatively weak mantle column that weakens with depth, consistent with a strong but thin (22 km thick) crust and high regional temperatures. In contrast, beneath the neighboring Peninsular Ranges a strong, thick (up to 35 km) crust and cooler temperatures lead to a rheologically stronger mantle column. Thus, we find that the inferred rheologic structure corresponds with observed seismic structure and thermal variations. Significant afterslip is not required to explain postseismic displacements, but cannot be ruled out. Combined with isochemical phase diagrams, our results enable us to go beyond rheologic structure and infer some basic properties about the regional mantle, including composition, water content, and the degree of partial melting.

  14. The Larderello-Travale geothermal field (Tuscany, central Italy): seismic imaging as a tool for the analysis and assessment of the reservoir

    NASA Astrophysics Data System (ADS)

    Anselmi, M.; Piccinini, D.; Casini, M.; Spinelli, E.; Ciuffi, S.; De Gori, P.; Saccorotti, G.; chiarabba, C.

    2013-12-01

    The Larderello-Travale is a geothermal field with steam-dominated reservoirs (1300 kg/s of steam and running capacity of 700 MWatt), which is exploited by Enel Green Power, the electric company involved in the renewable energy and resources. The area is located in the pre-Apennine belt of southern Tuscany and has been characterized by extensional tectonics and sporadic events of compression. The result of these tectonic phases is a block-faulting structure with NW-SE trending horsts and basins. Small post-orogenic granitic stocks were emplaced along the main axes of the uplifted structures, causing the anomalous heat flow that marks the area. Results from seismic reflection lines crossing the study area show the presence of the top of a discontinuous reflector in the 3-8 km depth range and with thickness up to ~1 km, referred to as the ';K-horizon'. In this framework we present the results obtained by the processing of a high-quality local earthquake dataset, recorded during the 1977-2005 time interval by the seismic network managed by Enel Green Power. The geothermal target volume was parameterized using a 3-D grid for both Vp (P-wave velocities) and Qp (quality factor of P-waves). Grid nodes are spaced by 5 and 2 km along the two horizontal and vertical directions, respectively. The tomographic Vp images show an overall velocity increase with depth down to the K-horizon. Conversely, some characteristic features are observed in the distribution of Qp anomalies, with high Qp values in the 300-600 range located just below the K-horizon. The relationship between K-horizon and the seismicity distribution doesn't show a clear and homogeneous coupling: the bulk of re-located earthquakes are placed either above or below the top of the K-horizon in the shallower 8 km depth, with an abrupt cut-off at depth greater than 10 km. We then present the preliminary result from the G.A.P.S.S. (Geothermal Area Passive Seismic Sources) experiment, a project that the Istituto

  15. Reassessment of the Seismicity and seismic hazards of Libya

    NASA Astrophysics Data System (ADS)

    Ben Suleman, A.; Elmeladi, A.

    2009-04-01

    The tectonic evolution of Libya, located at the northern extreme of the African continent, has yielded a complex crustal structure that is composed of a series of basins and uplifts. The present day deformation of Libya is the result of the Eurasia-Africa continental collision. At the end of the year 2005, The Libyan National Seismological Network was established to monitor local, regional and teleseismic activities, as well as to provide high quality data for research projects both locally and on the regional and global scale. This study aims to discuss the seismicity of Libya by using the new data from the Libyan national seismological network and to focus on the seismic hazards. At first glance the seismic activity map shows dominant trends of seismicity with most of the seismic activity concentrated along the northern coastal areas. Four major seismic trends were quite noticeable. A first trend is a NW-SE direction coinciding with the eastern boarder of the Hun Graben. A second trend is also a NW-SE direction in the offshore area and might be a continuation of this trend. The other two trends were located in the western Gulf of Sirt and Cyrenaica platform. The rest of seismicity is diffuse either offshore or in land, with no good correlation with well-mapped faults. Detailed investigations of the Libyan seismicity indicates that the Libya has experienced earthquakes of varying magnitudes and that there is definitely a certain amount of seismic risk involved in engineering projects, particularly in the northern regions. Detailed investigation of the distribution of the Libyan earthquakes in space and time along with all other geological considerations suggested the classification of the country into four seismic zones with the Hun graben zone being the most seismically active zone.

  16. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisses, A.; Kell, A.; Kent, G.

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: Geothermal Resources Council Transactions, 35, 7 pp. Preprint at http://crack.seismo.unr.edu/geothermal/Eisses-GRCpaper-sm.pdf The Pyramid Lake fault zone lies within a vitally important area of the northern Walker Lane where not only can transtension can be studied through a complex arrangement of strike-slip and normal faults but also geothermal activity can be examined in the extensional regime for productivity. This study used advanced and economical seismic methodsmore » in attempt to develop the Paiute Tribe’s geothermal reservoir and to expand upon the tectonics and earthquake hazard knowledge of the area. 500 line-kilometers of marine CHIRP data were collected on Pyramid Lake combined with 27 kilometers of vibrator seismic on-land data from the northwest side of the basin were collected in 2010 that highlighted two distinct phases of faulting. Preliminary results suggest that the geothermal fluids in the area are controlled by the late Pleistoceneto Holocene-aged faults and not through the mid-Miocene-aged conduits as originally hypothesized.« less

  17. Seismic Reflection Imaging of the Tucson Basin and Subsurface Relations Between the Catalina Detachment System and the Santa Rita Fault, SE Arizona

    NASA Astrophysics Data System (ADS)

    Wagner, F. T.; Johnson, R. A.

    2003-12-01

    Industry seismic reflection data collected in SE Arizona in the 1970's imaged the structure of the Tucson basin, the low-angle Catalina detachment fault, and the Santa Rita fault. Recent reprocessing of these data, including detailed near-surface statics compensation and modern event-migration techniques, have served to better focus the subsurface images. The Tucson basin occupies an area of approximately 2600 km2 and is bounded to the northeast by the Catalina-Rincon metamorphic core complex and to the south by the Santa Rita Mountains. The basin is characterized by an apparent half-graben structure down dropped along the eastern side and filled with up to 3700 m of Oligocene to recent volcanic and sedimentary rocks. In the northern portion of the basin, the gently-dipping ( ˜30 degrees) Catalina detachment fault is imaged from the western flank of the core complex dipping to the southwest beneath the Tucson basin. The detachment surface is evident to several seconds two-way-time in the seismic data and is characterized by broad corrugations parallel to extension with wavelengths of tens of kilometers. In the southern portion of the basin, the Santa Rita fault is imaged at the northwest side of the Santa Rita Mountains and dips ˜20 degrees to the northwest beneath the Tucson basin. Large, rotated hanging-wall blocks are also imaged above both the Catalina detachment and Santa Rita faults. While the Catalina detachment fault is no longer active, geomorphic analysis of fault scarps along the western flank of the Santa Rita Mountains supports recent (60-100 ka) movement on the Santa Rita fault. Preliminary results indicate that the Santa Rita fault terminates against the Catalina detachment fault beneath the central basin, suggesting that the recent movement observed on this fault may be, in part, a reactivation of the older fault surface.

  18. Faulting apparently related to the 1994 Northridge, California, earthquake and possible co-seismic origin of surface cracks in Potrero Canyon, Los Angeles County, California

    USGS Publications Warehouse

    Catchings, R.D.; Goldman, M.R.; Lee, W.H.K.; Rymer, M.J.; Ponti, D.J.

    1998-01-01

    Apparent southward-dipping, reverse-fault zones are imaged to depths of about 1.5 km beneath Potrero Canyon, Los Angeles County, California. Based on their orientation and projection to the surface, we suggest that the imaged fault zones are extensions of the Oak Ridge fault. Geologic mapping by others and correlations with seismicity studies suggest that the Oak Ridge fault is the causative fault of the 17 January 1994 Northridge earthquake (Northridge fault). Our seismically imaged faults may be among several faults that collectively comprise the Northridge thrust fault system. Unusually strong shaking in Potrero Canyon during the Northridge earthquake may have resulted from focusing of seismic energy or co-seismic movement along existing, related shallow-depth faults. The strong shaking produced ground-surface cracks and sand blows distributed along the length of the canyon. Seismic reflection and refraction images show that shallow-depth faults may underlie some of the observed surface cracks. The relationship between observed surface cracks and imaged faults indicates that some of the surface cracks may have developed from nontectonic alluvial movement, but others may be fault related. Immediately beneath the surface cracks, P-wave velocities are unusually low (<400 m/sec), and there are velocity anomalies consistent with a seismic reflection image of shallow faulting to depths of at least 100 m. On the basis of velocity data, we suggest that unconsolidated soils (<800 m/sec) extend to depths of about 15 to 20 m beneath our datum (<25 m below ground surface). The underlying rocks range in velocity from about 1000 to 5000 m/sec in the upper 100 m. This study illustrates the utility of high-resolution seismic imaging in assessing local and regional seismic hazards.

  19. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    NASA Astrophysics Data System (ADS)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  20. Seismic reflection characteristics of naturally-induced subsidence affecting transportation

    USGS Publications Warehouse

    Miller, R.D.; Xia, J.; Steeples, D.W.

    2009-01-01

    High-resolution seismic reflections have been used effectively to investigate sinkholes formed from the dissolution of a bedded salt unit found throughout most of Central Kansas. Surface subsidence can have devastating effects on transportation structures. Roads, rails, bridges, and pipelines can even be dramatically affected by minor ground instability. Areas susceptible to surface subsidence can put public safety at risk. Subsurface expressions significantly larger than surface depressions are consistently observed on seismic images recorded over sinkholes in Kansas. Until subsidence reaches the ground surface, failure appears to be controlled by compressional forces evidenced by faults with reverse orientation. Once a surface depression forms or dissolution of the salt slows or stops, subsidence structures are consistent with a tensional stress environment with prevalent normal faults. Detecting areas of rapid subsidence potential, prior to surface failure, is the ultimate goal of any geotechnical survey where the ground surface is susceptible to settling. Seismic reflection images have helped correlate active subsidence to dormant paleofeatures, project horizontal growth of active sinkholes based on subsurface structures, and appraise the risk of catastrophic failure. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.