Science.gov

Sample records for salts pyrochemical process

  1. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  2. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOEpatents

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  3. Disposition of salt-waste from pyrochemical nuclear fuel processing

    SciTech Connect

    Vance, E.R.

    2007-07-01

    Waste salts from pyrochemical processing of nuclear fuel can be immobilised in sodalite if consolidated by hot isostatic pressing (HIP) at {approx}750 deg. C/100 MPa in thick stainless steel 316 cans. Other canning materials for this purpose also look possible. Spodiosite-based waste forms do not look promising in terms of leach resistance and their incorporation of alkali ions and compatibility with other phases which could potentially accommodate fission products, such as NaZr{sub 2}(PO{sub 4}){sub 3} or alumino-phosphate glass. Chloro- or fluor-apatite-based waste forms however have been reported to successfully accommodate fission products and alkalis which would be derived from either chloride- or fluoride-based waste pyro-processing salts. The presence of 10 or 20 wt% of additional Whitlockite, Ca{sub 3}(PO{sub 4}){sub 2}, should allow chemical flexibility to maintain the same qualitative phase assemblage when there are variations in the waste feed and in the waste/precursor ratios. Experimental verification of incorporation of the full complement of waste salts and fission products is not yet complete however. Apatite-rich samples could likely be HIPed in Inconel 600 cans. Other candidate HIP canning materials such as Alloy 22 or Inconel 625 are under study by encapsulating them in the candidate waste form and studying their interaction or otherwise with the waste form. (author)

  4. Application of molten salts in pyrochemical processing of reactive metals

    SciTech Connect

    Mishra, B.; Olson, D.L. . Kroll Inst. for Extractive Metallurgy); Averill, W.A. . Rocky Flats Plant)

    1992-01-01

    Various mixes of chloride and fluoride salts are used as the media for conducting pyrochemical processes in the production and purification of reactive metals. These processes generate a significant amount of contaminated waste that has to be treated for recycling or disposal. Molten calcium chloride based salt systems have been used in this work to electrolytically regenerate calcium metal from calcium oxide for the in situ reduction of reactive metal oxides. The recovery of calcium is characterized by the process efficiency to overcome back reactions in the electrowinning cell. A thermodynamic analysis, based on fundamental rate theory, has been performed to understand the process parameters controlling the metal deposition, rate, behavior of the ceramic anode-sheath and influence of the back-reactions. It has been observed that the deposition of calcium is dependent on the ionic diffusion through the sheath. It has also been evidenced that the recovered calcium is completely lost through the back-reactions in the absence of a sheath. A practical scenario has also been presented where the electrowon metal can be used in situ as a reductant to reduce another reactive metal oxide.

  5. Study on a regeneration process of LiCl-KCl eutectic based waste salt generated from the pyrochemical process

    SciTech Connect

    Eun, H.C.; Cho, Y.Z.; Choi, J.H.; Kim, J.H.; Lee, T.K.; Park, H.S.; Kim, I.T.; Park, G.I.

    2013-07-01

    A regeneration process of LiCl-KCl eutectic waste salt generated from the pyrochemical process of spent nuclear fuel has been studied. This regeneration process is composed of a chemical conversion process and a vacuum distillation process. Through the regeneration process, a high efficiency of renewable salt recovery can be obtained from the waste salt and rare earth nuclides in the waste salt can be separated as oxide or phosphate forms. Thus, the regeneration process can contribute greatly to a reduction of the waste volume and a creation of durable final waste forms. (authors)

  6. Conditioning matrices from high level waste resulting from pyrochemical processing in fluorine salt

    SciTech Connect

    Grandjean, Agnes; Advocat, Thierry; Bousquet, Nicolas; Jegou, Christophe

    2007-07-01

    Separating the actinides from the fission products through reductive extraction by aluminium in a LiF/AlF{sub 3} medium is a process investigated for pyrometallurgical reprocessing of spent fuel. The process involves separation by reductive salt-metal extraction. After dissolving the fuel or the transmutation target in a salt bath, the noble metal fission products are first extracted by contacting them with a slightly reducing metal. After extracting the metal fission products, then the actinides are selectively separated from the remaining fission products. In this hypothesis, all the unrecoverable fission products would be conditioned as fluorides. Therefore, this process will generate first a metallic waste containing the 'reducible' fission products (Pd, Mo, Ru, Rh, Tc, etc.) and a fluorine waste containing alkali-metal, alkaline-earth and rare earth fission products. Immobilization of these wastes in classical borosilicate glasses is not feasible due to the very low solubility of noble metals, and of fluoride in these hosts. Alternative candidates have therefore been developed including silicate glass/ceramic system for fluoride fission products and metallic ones for noble metal fission products. These waste-forms were evaluated for their confinement properties like homogeneity, waste loading, volatility during the elaboration process, chemical durability, etc. using appropriate techniques. (authors)

  7. Facilities for pyrochemical process studies at ENEA

    SciTech Connect

    De Angelis, G.; Fedeli, C.; Tiranti, G.; Baicchi, E.

    2013-07-01

    Some facilities have successfully been installed at ENEA laboratories for pyrochemical process studies under inactive conditions. PYREL III, MECRYP and OGATA plants allow to perform experiments about electrorefining and electroreduction of simulated fuel, melt crystallization of lithium chloride containing impurities from electroreduction campaigns, and trapping of volatile and semi-volatile fission products. Moreover, an argon-atmosphere glove-box is used for conditioning of chloride salt wastes with sodalite or SAP (SiO{sub 2}-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}) matrix.

  8. TGS measurements of pyrochemical salts at Rocky Flats

    SciTech Connect

    Mercer, D. J.; Hansen, J. S.; Lestone, J. P.; Prettyman, T. H.

    2001-01-01

    A new skid-mounted tomographic gamma scanner (TGS) was designed to assist in the decommissioning of Rocky Flats Building 37 1, This instrument was used to assay pyrochemical salts as a prerequisite for disposal at the Waste Isolation Pilot Plant (WIPP). The following paper discusses measurement challenges and results from the first year of operation of the instrument.

  9. Literature on fabrication of tungsten for application in pyrochemical processing of spent nuclear fuels

    SciTech Connect

    Edstrom, C.M.; Phillips, A.G.; Johnson, L.D.; Corle, R.R.

    1980-10-11

    The pyrochemical processing of nuclear fuels requires crucibles, stirrers, and transfer tubing that will withstand the temperature and the chemical attack from molten salts and metals used in the process. This report summarizes the literature that pertains to fabrication (joining, chemical vapor deposition, plasma spraying, forming, and spinning) is the main theme. This report also summarizes a sampling of literature on molbdenum and the work previously performed at Argonne National Laboratory on other container materials used for pyrochemical processing of spent nuclear fuels.

  10. Role of pyro-chemical processes in advanced fuel cycles

    NASA Astrophysics Data System (ADS)

    Nawada, Hosadu Parameswara; Fukuda, Kosaku

    2005-02-01

    Partitioning and Transmutation (P&T) of Minor Actinides (MAs) and Long-Lived Fission Products (LLFP) arising out of the back-end of the fuel cycle would be one of the key-steps in any future sustainable nuclear fuel cycle. Pyro-chemical separation methods would form a critical stage of P&T by recovering long-lived elements and thus reducing the environmental impact by the back-end of the fuel-cycle. This paper attempts to overview global developments of pyro-chemical process that are envisaged in advanced nuclear fuel cycles. Research and development needs for molten-salt electro-refining as well as molten salt extraction process that are foreseen as partitioning methods for spent nuclear fuels such as oxide, metal and nitride fuels from thermal or fast reactors; high level liquid waste from back-end fuel cycle as well as targets from sub-critical Accelerator Driven Sub-critical reactors would be addressed. The role of high temperature thermodynamic data of minor actinides in defining efficiency of recovery or separation of minor actinides from other fission products such as lanthanides will also be illustrated. In addition, the necessity for determination of accurate high temperature thermodynamic data of minor actinides would be discussed.

  11. Transportation of pyrochemical salts from Rocky Flats to Los Alamos

    SciTech Connect

    Schreiber, S.B.

    1997-02-01

    Radioactive legacy wastes or residues are currently being stored on numerous Sites around the former Department of Energy`s (DOE) Nuclear Weapons Complex. Since most of the operating facilities were shut down and have not operated since before the declared end to the Cold War in 1993, the historical method for treating these residues no longer exists. The risk associated with continued storage of these residues will dramatically increase with time. Thus, the DOE was directed by the Defense Nuclear Facility Safety Board in its Recommendation 94-1 to address and stabilize these residues and established an eight year time frame for doing so. There are only two options available to respond to this requirement: (1) restart existing facilities to treat and package the residues for disposal or (2) transport the residues to another operating facility within the Complex where they can be treated and packaged for disposal. This paper focuses on one such residue type, pyrochemical salts, produced at one Complex site, the Rocky Flats Plant located northwest of Denver, Colorado. One option for treating the salts is their shipment to Los Alamos, New Mexico, for handling at the Plutonium Facility. The safe transportation of these salts can be accomplished at present with several shipping containers including a DOT 6M, a DOE 9968, Type A or Type B quantity 55-gallon drum overpacks, or even the TRUPACT II. The tradeoffs between each container is examined with the conclusion that none of the available shipping containers is fully satisfactory. Thus, the advantageous aspects of each container must be utilized in an integrated and efficient way to effectively manage the risk involved. 1 fig.

  12. Dose estimates of alternative plutonium pyrochemical processes.

    SciTech Connect

    Kornreich, D. E.; Jackson, J. W.; Boerigter, S. T.; Averill, W. A.; Fasel, J. H.

    2002-01-01

    We have coupled our dose calculation tool Pandemonium with a discrete-event, object-oriented, process-modeling system ProMosO to analyze a set of alternatives for plutonium purification operations. The results follow expected trends and indicate, from a dose perspective, that an experimental flowsheet may warrant further research to see if it can be scaled to industrial levels. Flowsheets that include fluoride processes resulted in the largest doses.

  13. The thermodynamics of pyrochemical processes for liquid metal reactor fuel cycles

    SciTech Connect

    Johnson, I.

    1987-01-01

    The thermodynamic basis for pyrochemical processes for the recovery and purification of fuel for the liquid metal reactor fuel cycle is described. These processes involve the transport of the uranium and plutonium from one liquid alloy to another through a molten salt. The processes discussed use liquid alloys of cadmium, zinc, and magnesium and molten chloride salts. The oxidation-reduction steps are done either chemically by the use of an auxiliary redox couple or electrochemically by the use of an external electrical supply. The same basic thermodynamics apply to both the salt transport and the electrotransport processes. Large deviations from ideal solution behavior of the actinides and lanthanides in the liquid alloys have a major influence on the solubilities and the performance of both the salt transport and electrotransport processes. Separation of plutonium and uranium from each other and decontamination from the more noble fission product elements can be achieved using both transport processes. The thermodynamic analysis is used to make process design computations for different process conditions.

  14. Evaluation of alkali bromide salts for potential pyrochemical applications

    SciTech Connect

    Tripathy, P.K.; Gutknecht, T.Y.; Herrmann, S.D.; Fredrickson, G.L.; Lister, T.E.

    2013-07-01

    Transient techniques were employed to study the electrochemical behavior, reduction mechanism and transport properties of REBr{sub 3} (RE - La, Nd and Gd) in pure LiBr, LiBr-KBr (eutectic) and LiBr-KBr-CsBr (eutectic) melts. Gd(III) showed a reversible single step soluble-insoluble exchange phenomenon in LiBr melt at 973 K. Although La (III), Nd(III) and Gd(III) ions showed reversible behavior in eutectic LiBr-KBr melts, these ions showed a combination of temperature dependent reversible and pseudo-reversible behavior. While both La(III) and Gd(III) showed one step reduction, the reduction of Nd(III) was observed to be a two step process. La metal could be electrodeposited from the ternary electrolyte at a temperature of 673 K. Various electrochemical measurements suggest that both binary and ternary bromide melts can potentially be used to electro-deposit high purity RE metals at comparatively lower operating temperatures. (authors)

  15. Evaluation of Alkali Bromide Salts for Potential Pyrochemical Applications

    SciTech Connect

    Prabhat K. Tripathy; Steven D. Herrmann; Guy L. Fredrickson; Tedd E. Lister; Toni Y. Gutknecht

    2013-10-01

    Transient techniques were employed to study the electrochemical behavior, reduction mechanism and transport properties of REBr3 (RE - La, Nd and Gd) in pure LiBr, LiBr-KBr (eutectic) and LiBr-KBr-CsBr (eutectic) melts. Gd(III) showed a reversible single step soluble-insoluble exchange phenomenon in LiBr melt at 973K. Although La (III), Nd(III) and Gd(III) ions showed reversible behavior in eutectic LiBr-KBr melts, these ions showed a combination of temperature dependent reversible and pseudo-reversible behavior. While both La(III) and Gd(III) showed one step reduction, the reduction of Nd(III) was observed to be a two step process. La metal could be electrodeposited from the ternary electrolyte at a temperature of 673K. Various electrochemical measurements suggest that both binary and ternary bromide melts can potentially be used to electrodeposit high purity RE metals at comparatively lower operating temperatures.

  16. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  17. Zone Freezing Study for Pyrochemical Process Waste Minimization

    SciTech Connect

    Ammon Williams

    2012-05-01

    Pyroprocessing technology is a non-aqueous separation process for treatment of used nuclear fuel. At the heart of pyroprocessing lies the electrorefiner, which electrochemically dissolves uranium from the used fuel at the anode and deposits it onto a cathode. During this operation, sodium, transuranics, and fission product chlorides accumulate in the electrolyte salt (LiCl-KCl). These contaminates change the characteristics of the salt overtime and as a result, large volumes of contaminated salt are being removed, reprocessed and stored as radioactive waste. To reduce the storage volumes and improve recycling process for cost minimization, a salt purification method called zone freezing has been proposed at Korea Atomic Energy Research Institute (KAERI). Zone freezing is melt crystallization process similar to the vertical Bridgeman method. In this process, the eutectic salt is slowly cooled axially from top to bottom. As solidification occurs, the fission products are rejected from the solid interface and forced into the liquid phase. The resulting product is a grown crystal with the bulk of the fission products near the bottom of the salt ingot, where they can be easily be sectioned and removed. Despite successful feasibility report from KAERI on this process, there were many unexplored parameters to help understanding and improving its operational routines. Thus, this becomes the main motivation of this proposed study. The majority of this work has been focused on the CsCl-LiCl-KCl ternary salt. CeCl3-LiCl-KCl was also investigated to check whether or not this process is feasible for the trivalent species—surrogate for rare-earths and transuranics. For the main part of the work, several parameters were varied, they are: (1) the retort advancement rate—1.8, 3.2, and 5.0 mm/hr, (2) the crucible lid configurations—lid versus no-lid, (3) the amount or size of mixture—50 and 400 g, (4) the composition of CsCl in the salt—1, 3, and 5 wt%, and (5) the

  18. Corrosion resistance of ceramic materials in pyrochemical reprocessing condition by using molten salt for spent nuclear oxide fuel

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Kato, T.; Hanada, K.; Koizumi, T.; Aose, S.

    2005-02-01

    The corrosion resistance of ceramic materials in pyrochemical reprocessing using molten salts was discussed through the thermodynamic calculation and corrosion test. The corrosion test was basically carried out in alkali molten salt under chlorine gas. In addition, the effects of oxygen, carbon and main fission product's chlorides on ceramics corrosion were evaluated in that condition. Most of ceramic oxides showed good chemical stability on chlorine, oxygen and uranyl chloride from thermodynamic calculation results. On the other hand, from corrosion test result, silicon nitride, mullite (Al6Si2O13) and cordierite (Mg2Al3(AlSi5O18)) have a good corrosion resistance which is corresponding to 0.1 mm/y or less. No cracks on the materials were observed and flexural strength did not drop remarkably after 480 h corrosion testing in molten salt under Cl2 O2 atmosphere.

  19. Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media

    SciTech Connect

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-09-01

    For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

  20. Interrelation of technologies for RW preparation and sites for final isolation of the wastes from pyrochemical processing of SNF

    SciTech Connect

    Gupalo, V.S.; Chistyakov, V.N.; Kormilitsyn, M.V.; Kormilitsyna, L.A.

    2013-07-01

    For the justification of engineering solutions and practical testing of the radiochemical component of the perspective nuclear power complex with on-site variant of nuclear fuel cycle (NFC), it is planned to establish a multi-functional research-development complex (MFCRC) for radiochemical processing of spent nuclear fuels (SNF) from fast reactors. MFCRC is being established at the NIIAR site, it comprises technological process lines, where innovation pyro-electrochemical and hydrometallurgical technologies are realized, with an option for closing the inter-chain material flows for testing the combined radiochemically converted materials. The technological flowchart for processing at the MFCRC is subdivided into 3 segments: -) complex of the lead operations for dismantling the fuel elements (FE) and fuel assemblies (FA), -) pyrochemical extraction flowchart for processing SNF, and -) hydrometallurgical flowchart for processing SNF. The engineered solutions for the management and disposition of the radioactive wastes from MFCRC are reviewed.

  1. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  2. Applications of molten salts in reactive metals processing

    SciTech Connect

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1993-12-31

    Pyrochemical processes using molten salts provide a unique opportunity for the extraction and refining of many reactive and valuable metals either directly from the beneficiated ore or from other process effluent that contain reactive metal compounds. This research program is aimed at developing a process for the production and recovery of reactive and valuable metals, such as zinc, tin, lead, bismuth and silver, in a hybrid reactor combining electrolytic production of the calcium reductant and in-situ utilization of this reductant for pyrochemical reduction of the metal compounds, such as halide or oxides. The process is equally suitable for producing other low melting metals, such as cadmium and antimony. The cell is typically operated below 1000C temperature. Attempts have been made to produce silver, lead, bismuth, tin and cerium by calciothermic reduction in a molten salt media. In a separate effort, calcium has been produced by an electrolytic dissociation of lime in a calcium chloride medium. The most important characteristic of the hybrid technology is its ability to produce metals under ``zero-waste`` conditions.

  3. Distillation and condensation of LiCl-KCl eutectic salts for a separation of pure salts from salt wastes from an electrorefining process

    NASA Astrophysics Data System (ADS)

    Eun, Hee Chul; Yang, Hee Chul; Lee, Han Soo; Kim, In Tae

    2009-12-01

    Salt separation and recovery from the salt wastes generated from a pyrochemical process is necessary to minimize the high-level waste volumes and to stabilize a final waste form. In this study, the thermal behavior of the LiCl-KCl eutectic salts containing rare earth oxychlorides or oxides was investigated during a vacuum distillation and condensation process. LiCl was more easily vaporized than the other salts (KCl and LiCl-KCl eutectic salt). Vaporization characteristics of LiCl-KCl eutectic salts were similar to that of KCl. The temperature to obtain the vaporization flux (0.1 g min -1 cm -2) was decreased by much as 150 °C by a reduction of the ambient pressure from 5 Torr to 0.5 Torr. Condensation behavior of the salt vapors was different with the ambient pressure. Almost all of the salt vapors were condensed and were formed into salt lumps during a salt distillation at the ambient pressure of 0.5 Torr and they were collected in the condensed salt storage. However, fine salt particles were formed when the salt distillation was performed at 10 Torr and it is difficult for them to be recovered. Therefore, it is thought that a salt vacuum distillation and condensation should be performed to recover almost all of the vaporized salts at a pressure below 0.5 Torr.

  4. Development of pyro-processing technology for thorium-fuelled molten salt reactor

    SciTech Connect

    Uhlir, J.; Straka, M.; Szatmary, L.

    2012-07-01

    The Molten Salt Reactor (MSR) is classified as the non-classical nuclear reactor type based on the specific features coming out from the use of liquid fuel circulating in the MSR primary circuit. Other uniqueness of the reactor type is based on the fact that the primary circuit of the reactor is directly connected with the on-line reprocessing technology, necessary for keeping the reactor in operation for a long run. MSR is the only reactor system, which can be effectively operated within the {sup 232}Th- {sup 233}U fuel cycle as thorium breeder with the breeding factor significantly higher than one. The fuel cycle technologies proposed as ford the fresh thorium fuel processing as for the primary circuit fuel reprocessing are pyrochemical and mainly fluoride. Although these pyrochemical processes were never previously fully verified, the present-day development anticipates an assumption for the successful future deployment of the thorium-fuelled MSR technology. (authors)

  5. Technical-and-economic analysis and optimization of the full flow charts of processing of radioactive wastes on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of fast reactors

    NASA Astrophysics Data System (ADS)

    Gupalo, V. S.; Chistyakov, V. N.; Kormilitsyn, M. V.; Kormilitsyna, L. A.; Osipenko, A. G.

    2015-12-01

    When considering the full flow charts of processing of radioactive wastes (RAW) on a polyfunctional plant of pyrochemical processing of the spent nuclear fuel of NIIAR fast reactors, we corroborate optimum technical solutions for the preparation of RAW for burial from a standpoint of heat release, dose formation, and technological storage time with allowance for technical-and-economic and ecological indices during the implementation of the analyzed technologies and equipment for processing of all RAW fluxes.

  6. Pyrochemical processes for the recovery of weapons grade plutonium either as a metal or as PuO{sub 2} for use in mixed oxide reactor fuel pellets

    SciTech Connect

    Colmenares, C.A.; Ebbinghaus, B.B.; Bronson, M.C.

    1995-11-03

    The authors have developed two processes for the recovery of weapons grade Pu, as either Pu metal or PuO{sub 2}, that are strictly pyrochemical and do not produce any liquid waste. Large amounts of Pu metal (up to 4 kg.), in various geometric shapes, have been recovered by a hydride/dehydride/casting process (HYDEC) to produce metal ingots of any desired shape. The three processing steps are carried out in a single compact apparatus. The experimental technique and results obtained will be described. The authors have prepared PuO{sub 2} powders from weapons grade Pu by a process that hydrides the Pu metal followed by the oxidation of the hydride (HYDOX process). Experimental details of the best way to carry out this process will be presented, as well as the characterization of both hydride and oxide powders produced.

  7. Immobilization of chloride-rich radioactive wastes produced by pyrochemical operations

    SciTech Connect

    McDaniel, E.W.; Terry, J.W.

    1997-08-01

    A a result of its former role as a producer of nuclear weapons components, the Rocky Flats Environmental Technology Site (RFETS), Golden, Colorado accumulated a variety of plutonium-contaminated materials. When the level of contamination exceeded a predetermined level (the economic discard limit), the materials were classified as residues rather than waste and were stored for later recovery of the plutonium. Although large quantities of residues were processed, others, primarily those more difficult to process, remain in storage at the site. It is planned for the residues with lower concentrations of plutonium to be disposed of as wastes at an appropriate disposal facility, probably the Waste Isolation Pilot Plant (WIPP). Because the plutonium concentration is too high or because the physical or chemical form would be difficult to get into a form acceptable to WIPP, it may not be possible to dispose of a portion of the residues at WIPP. The pyrochemical salts are among the residues that are difficult to dispose of. For a large percentage of the pyrochemical salts, safeguards controls are required, but WIPP was not designed to accommodate safeguards controls. A potential solution would be to immobilize the salts. These immobilized salts would contain substantially higher plutonium concentrations than is currently permissible but would be suitable for disposal at WIPP. This document presents the results of a review of three immobilization technologies to determine if mature technologies exist that would be suitable to immobilize pyrochemical salts: cement-based stabilization, low-temperature vitrification, and polymer encapsulation. The authors recommend that flow sheets and life-cycle costs be developed for cement-based and low-temperature glass immobilization.

  8. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  9. Integrated Electrorefining Efficiency Test for Pyrochemical Fuel Cycle

    SciTech Connect

    S. X. Li; T. A. Johnson; R. W. Benedict; D. Vaden; B. R. Westphal

    2006-11-01

    Pyrochemical processing plays an important role in the development of next generation nuclear reactors and closed nuclear fuel cycle technology. The Idaho National Laboratory (INL) has implemented a pyrochemical process for the treatment of sodium-bonded spent fuel from the Experimental Breeder Reactor-II (EBR-II). A successful demonstration of the technology was performed from 1996 to 1999 for the Department of Energy (DOE) [1]. Processing of the spent fuel and associated research and development activities have been integrated into DOE’s Advanced Fuel Cycle Initiatives (AFCI) program since 2003. Electrorefining can be considered to be the signature or central technology for pyrochemical processing. In order to assess the efficiencies involved in the electrorefining process, an integrated electrorefining efficiency test was performed in the Mk-IV electrorefiner. This paper summarizes the observations and results obtained from the test. EXPERIMENT AND RESULTS The primary goal of the integrated processing efficiency test is to demonstrate the integrated actinide dissolution and recovery efficiencies typical for the fixed operating parameters that have been applied to Mk-IV electrorefiner (ER) and cathode processor (CP) to treat spent EBR-II driver fuel during the last three years. The findings are of importance for scaling-up the pyroprocess to recover and recycle valuable actinides from spent nuclear fuel. The test was performed in the Mk-IV electrorefiner. The ER is located in the hot cell of the Fuel Conditioning Facility at the Materials and Fuels Complex. Descriptions of the major components of the ER and the process in general have been provided elsewhere [2]. Salt and cadmium levels were measured, and multiple samples were obtained prior to performing the integrated test to establish an ER baseline for assessing the test results. The test consisted of four electrorefining batches of spent driver fuel with approximately 50 kg heavy metal. Typically, three to

  10. Clean salt process final report

    SciTech Connect

    Herting, D.L.

    1996-09-30

    A process has been demonstrated in the laboratory for separating clean, virtually non-radioactive sodium nitrate from Hanford tank waste using fractional crystallization. The name of the process is the Clean Salt Process. Flowsheet modeling has shown that the process is capable of reducing the volume of vitrified low activity waste (LAW) by 80 to 90 %. Construction of the Clean Salt processing plant would cost less than $1 10 million, and would eliminate the need for building a $2.2 billion large scale vitrification plant planned for Privatization Phase 11. Disposal costs for the vitrified LAW would also be reduced by an estimated $240 million. This report provides a summary of five years of laboratory and engineering development activities, beginning in fiscal year 1992. Topics covered include laboratory testing of a variety of processing options; proof-of-principle demonstrations with actual waste samples from Hanford tanks 241-U-110 (U-110), 241-SY-101 (101-SY), and 241-AN-102 (102-AN); descriptions of the primary solubility phase diagrams that govem the process; a review of environmental regulations governing disposition of the reclaimed salt and an assessment of the potential beneficial uses of the reclaimed salt; preliminary plant design and construction cost estimates. A detailed description is given for the large scale laboratory demonstration of the process using waste from tank 241-AW-101 (101-AW), a candidate waste for 0044vitrification during Phase I Privatization.

  11. Continuous extraction of molten chloride salts with liquid cadmium alloys

    SciTech Connect

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1993-09-01

    A pyrochemical method is being developed at Argonne National Laboratory (ANL) to provide contnuous multistage extractions between molten chloride salts and liquid cadmium alloys at 500{degrees}C. The extraction method will be used to recover transuranic (TRU) elements from the process salt in the electroretiner used in the pyrochemical reprocessing of spent fuel from the Integral Fast Reactor (IFR). The IFR is one of the Department of Energy`s advanced power reactor concepts. The recovered TRU elements are returned to the electrorefiner. The extracted salt undergoes further processing to remove rare earths and other fission products so that most of the purified salt can also be returned to the electrorefiner, thereby extending the useful life of the process salt many times.

  12. Cleanup of plutonium oxide reduction black salts

    SciTech Connect

    Giebel, R.E.; Wing, R.O.

    1986-12-17

    This work describes pyrochemical processes employed to convert direc oxide reduction (DOR) black salts into discardable white salt and plutonium metal. The DOR process utilizes calcium metal as the reductant in a molten calcium chloride solvent salt to convert plutonium oxide to plutonium metal. An insoluble plutonium-rich dispersion called black salt sometimes forms between the metal phase and the salt phase. Black salts accumulated for processing were treated by one of two methods. One method utilized a scrub alloy of 70 wt % magnesium/30 wt % zinc. The other method utilized a pool of plutonium metal to agglomerate the metal phase. The two processes were similar in that calcium metal reductant and calcium chloride solvent salt were used in both cases. Four runs were performed by each method, and each method produced greater than 93% conversion of the black salt.

  13. A reactive distillation process for the treatment of LiCl-KCl eutectic waste salt containing rare earth chlorides

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Choi, J. H.; Kim, N. Y.; Lee, T. K.; Han, S. Y.; Lee, K. R.; Park, H. S.; Ahn, D. H.

    2016-11-01

    The pyrochemical process, which recovers useful resources (U/TRU metals) from used nuclear fuel using an electrochemical method, generates LiCl-KCl eutectic waste salt containing radioactive rare earth chlorides (RECl3). It is necessary to develop a simple process for the treatment of LiCl-KCl eutectic waste salt in a hot-cell facility. For this reason, a reactive distillation process using a chemical agent was achieved as a method to separate rare earths from the LiCl-KCl waste salt. Before conducting the reactive distillation, thermodynamic equilibrium behaviors of the reactions between rare earth (Nd, La, Ce, Pr) chlorides and the chemical agent (K2CO3) were predicted using software. The addition of the chemical agent was determined to separate the rare earth chlorides into an oxide form using these equilibrium results. In the reactive distillation test, the rare earth chlorides in LiCl-KCl eutectic salt were decontaminated at a decontamination factor (DF) of more than 5000, and were mainly converted into oxide (Nd2O3, CeO2, La2O3, Pr2O3) or oxychloride (LaOCl, PrOCl) forms. The LiCl-KCl was purified into a form with a very low concentration (<1 ppm) for the rare earth chlorides.

  14. Electrorefining Experience For Pyrochemical Reprocessing of Spent EBR-II Driver Fuel

    SciTech Connect

    S. X. Li; T. A. Johnson; B. R. Westphal; K. M. Goff; R. W. Benedict

    2005-10-01

    Pyrochemical processing has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor-II (EBR-II) at Idaho National Laboratory since 1996. This report summarizes technical advancements made in electrorefining of spent EBR-II driver fuel in the Mk-IV electrorefiner since the pyrochemical processing was integrated into the AFCI program in 2002. The significant advancements include improving uranium dissolution and noble metal retention from chopped fuel segments, increasing cathode current efficiency, and achieving co-collection of zirconium along with uranium from the cadmium pool.

  15. Interfacing solvent extraction in the recovery of pyrochemical residues at the Savannah River Plant

    SciTech Connect

    Gray, L.W.; Holcomb, H.P.

    1986-10-07

    The traditional feedstock for plutonium recovery at the Savannah River Plant (SRP) has been spent reactor fuel elements and irradiated targets. Feed sources have included both onsite reactors and a wide variety of domestic and foreign reactors. For the past few years, a growing and increasingly varied mix of unirradiated plutonium residues has been purified through SRP aqueous-based processes. Recently, plutonium residues generated in various chloride salt melts have become a significant offsite source of feed for SRP recovery operations. Impure plutonium metal and plutonium alloys have also been processed. A broader range of molten salt and other high temperature residues is anticipated for the future. The major advantage of solvent extraction for scrap purification is the versatility of the solvent extraction system which allows numerous contaminants to be removed by routine operations. Major concerns are nuclear safety control, corrosion of equipment, and control of releases to the environment. SRP's past, present, and future interfacing of solvent extraction in processing pyrochemical and other plutonium-containing residues is reviewed.

  16. High-temperature vacuum distillation separation of plutonium waste salts

    SciTech Connect

    Garcia, E.

    1996-10-01

    In this task, high-temperature vacuum distillation separation is being developed for residue sodium chloride-potassium chloride salts resulting from past pyrochemical processing of plutonium. This process has the potential of providing clean separation of the salt and the actinides with minimal amounts of secondary waste generation. The process could produce chloride salt that could be discarded as low-level waste (LLW) or low actinide content transuranic (TRU) waste, and a concentrated actinide oxide powder that would meet long-term storage standards (DOE-DTD-3013-94) until a final disposition option for all surplus plutonium is chosen.

  17. Chloride anion exchange coprocessing for recovery of plutonium from pyrochemical residues and Cs sub 2 PuCl sub 6 filtrate

    SciTech Connect

    Muscatello, A.C.; Killion, M.E.

    1990-12-07

    Continuing studies of plutonium recovery from direct oxide reduction (DOR) and electrorefining (ER) pyrochemical process residues show that chloride anion exchange coprocessing is useful and effective. Coprocessing utilizes DOR residue salt as a reagent to supply the bulk of chloride ion needed for the chloride anion exchange process and to improve ER residue salt solubility. ER residue salt and ER scrapeout can be successfully treated, either alone or together, using coprocessing. In addition, chloride anion exchange at 2.0M acidity results in improved process performance by greatly reducing disproportionation of plutonium(IV), eliminating restrictions on oxidation time compared to operation at 1.0M acidity. Laboratory-scale experiments show that below-discard effluent plutonium losses are obtained. Resin capacity was 30 g Pu/{ell} or greater. Furthermore, it is feasible to perform chloride anion exchange recovery of plutonium from filtrate resulting from precipitation of dicesium hexachloroplutonate (Cs{sub 2}PuCl{sub 6}, an oxidant salt to be used in the molten salt extraction process) and integration of its preparation with recovery of DOR salts. 10 refs., 9 figs., 10 tabs.

  18. Testing of pyrochemical centrifugal contactors

    SciTech Connect

    Chow, L.S.; Carls, E.L.; Basco, J.K.; Johnson, T.R.

    1996-08-01

    A centrifugal contactor that performs oxidation and reduction exchange reactions between molten metals and salts at 500 degrees Centigrade has been tested successfully at Argonne National Laboratory (ANL). The design is based on contactors for aqueous- organic systems operation near room temperature. In tests to demonstrate the performance of the pyrocontactor, cadmium and LICl- KCl eutectic salt were the immiscible solvent phases, and rare earths were the distributing solutes. The tests showed that the pyrocontactor mixed and separated the phases well, with stage efficiencies approaching 99% at rotor speeds near 2700 rpm. The contactor ran smoothly and reliably over the entire range of speeds that was tested.

  19. Organic waste processing using molten salt oxidation

    SciTech Connect

    Adamson, M. G., LLNL

    1998-03-01

    Molten Salt Oxidation (MSO) is a thermal means of oxidizing (destroying) the organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. The U. S. Department of Energy`s Office of Environmental Management (DOE/EM) is currently funding research that will identify alternatives to incineration for the treatment of organic-based mixed wastes. (Mixed wastes are defined as waste streams which have both hazardous and radioactive properties.) One such project is Lawrence Livermore National Laboratory`s Expedited Technology Demonstration of Molten Salt Oxidation (MSO). The goal of this project is to conduct an integrated demonstration of MSO, including off-gas and spent salt treatment, and the preparation of robust solid final forms. Livermore National Laboratory (LLNL) has constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are presently being performed under carefully controlled (experimental) conditions. The system consists of a MSO process vessel with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. In this paper we describe the integrated system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is to identify the most suitable waste streams and waste types for MSO treatment.

  20. SEPARATION PROCESS FOR THORIUM SALTS

    DOEpatents

    Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

    1957-12-01

    A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

  1. Molten salt applications in materials processing

    NASA Astrophysics Data System (ADS)

    Mishra, Brajendra; Olson, David L.

    2005-02-01

    The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.

  2. Processing of effluent salt from the direct oxide reduction process

    SciTech Connect

    Mishra, B.; Olson, D.L. . Kroll Inst. for Extractive Metallurgy); Averill, W.A. )

    1992-01-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon.

  3. Processing of effluent salt from the direct oxide reduction process

    SciTech Connect

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1992-05-01

    The production of reactive metals by Direct Oxide Reduction (DOR) process using calcium in a molten calcium salt system generates significant amount of contaminated waste as calcium oxide saturated calcium chloride salt mix with calcium oxide content of up to 15 wt. pct. Fused salt electrolysis of a simulated salt mix has been carried out to electrowin calcium, which can be recycled to the DOR reactor along with the calcium chloride salt or may be used in-situ in a combined DOR and electrowinning process. Many reactive metal oxides could thus be reduced in a one-step process without generating a significant amount of waste. The process has been optimized in terms of the calcium solubility, cell temperature, current density and the cell design to maximize the current efficiency. Based on the information available regarding the solubility of calcium in calcium chloride salt in the presence of calcium oxide, and the back reactions occurring in-situ between the electrowon calcium and other components present in the cell, e.g. carbon, oxygen, carbon dioxide and calcium oxide, it is difficult to recover elemental calcium within the system. However, a liquid cathode or a rising cathode has been used in the past to recover calcium. The solubility has also been found to depend on the use of graphite as the anode material as evidenced by the presence of calcium carbonate in the final salt. The rate of recovery for metallic calcium has to be enhanced to levels that overcome the back reactions in a system where quick removal of anodic gases is achieved. Calcium has been detected by the hydrogen evolution technique and the amount of calcia has been determined by titration. A porous ceramic sheath has been used in the cell to prevent the chemical reaction of electrowon calcium to produce oxide or carbonate and to prevent the contamination of salt by the anodic carbon.

  4. Highlights of the Salt Extraction Process

    NASA Astrophysics Data System (ADS)

    Abbasalizadeh, Aida; Seetharaman, Seshadri; Teng, Lidong; Sridhar, Seetharaman; Grinder, Olle; Izumi, Yukari; Barati, Mansoor

    2013-11-01

    This article presents the salient features of a new process for the recovery of metal values from secondary sources and waste materials such as slag and flue dusts. It is also feasible in extracting metals such as nickel and cobalt from ores that normally are difficult to enrich and process metallurgically. The salt extraction process is based on extraction of the metals from the raw materials by a molten salt bath consisting of NaCl, LiCl, and KCl corresponding to the eutectic composition with AlCl3 as the chlorinating agent. The process is operated in the temperature range 973 K (700°C) to 1173 K (900°C). The process was shown to be successful in extracting Cr and Fe from electric arc furnace (EAF) slag. Electrolytic copper could be produced from copper concentrate based on chalcopyrite in a single step. Conducting the process in oxygen-free atmosphere, sulfur could be captured in the elemental form. The method proved to be successful in extracting lead from spent cathode ray tubes. In order to prevent the loss of AlCl3 in the vapor form and also chlorine gas emission at the cathode during the electrolysis, liquid aluminum was used. The process was shown to be successful in extracting Nd and Dy from magnetic scrap. The method is a highly promising process route for the recovery of strategic metals. It also has the added advantage of being environmentally friendly.

  5. [Arsenic (V) removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process].

    PubMed

    Li, Xiao-bo; Wu, Shui-bo; Gu, Ping

    2007-10-01

    Two lab-scale coagulation/microfiltration membrane reactors were used to compare the arsenic removal from drinking water by ferric salt and aluminum salt coagulation/microfiltration process. FeCl3 and Al2(SO4)3 were appointed as the coagulants. The results show that the arsenic removal efficiency of the two processes are almost equal. Arsenic concentration can be lowered from about 100 microg/L to below 10 microg/L and the lowest is 1.68 microg x L(-1). All of the turbidity of the treated water is less than 0.1 NTU. The concentrations of ferric, aluminum and SO4(2-) of the treated water are entirely satisfied the standard of drinking water. After treated by ferric salt process, pH value of the treated water is increased about 0.5. However, aluminum salt process does not change pH of the drinking water. The concentration ratio of the ferric salt process is 1,791 which is about 2.54 times of the aluminum salt process. Arsenic concentration of the sludge of ferric salt process is also higher greatly than that of the aluminum salt process. Therefore, the volume of the sludge produced by the ferric salt process is smaller than that of the aluminum salt process when equal amount of drinking water was treated. Accordingly, ferric salt process should be used when only high concentration arsenic existed in drinking water. On the other hand, fluoride also can be removed simultaneously while arsenic was removed by aluminum salt process. The amount of coagulant needed is the amount of coagulant required to remove fluoride separately. Fluoride can not be removed from drinking water by the ferric salt process. It was concluded that aluminum salt process should be used to remove arsenic and fluoride simultaneously from high arsenic and high fluoride coexisted drinking water.

  6. Development of fluoride reprocessing technologies devoted to molten-salt reactor systems

    SciTech Connect

    Uhlir, Jan; Marecek, Martin; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2007-07-01

    Main fuel processing and reprocessing technologies proposed for Molten Salt Reactor fuel cycle are pyrochemical or pyrometallurgical, majority of them are fluoride technologies. It is based on the fact that Molten Salt Reactor fuel is in the chemical form of molten fluorides and the reprocessing technology is needed to be an 'on-line' process. The corresponding pyrochemical separation processes proposed for MSR fuel processing and reprocessing are mainly fluoride volatilization processes, molten salt / liquid metal extraction processes, electrochemical separation processes from the molten salt media and gas extraction from the molten salt medium. Techniques based on fluoride volatilization and on electrochemical separation from fluoride molten salt media are under development in the Czech Republic. Whereas the Fluoride Volatility Method is proposed to be the main 'Front-end' technology of the MSR used as the actinide burner (transmuter), the electro-separation methods should be dedicated to the 'on-line' reprocessing of the circulating MSR fuel and should be used as for MSR incinerating transuranium fuel as for MSR working within the {sup 232}Th - {sup 233}U fuel cycle. (authors)

  7. Salt processed food and gastric cancer in a Chinese population.

    PubMed

    Lin, Si-Hao; Li, Yuan-Hang; Leung, Kayee; Huang, Cheng-Yu; Wang, Xiao-Rong

    2014-01-01

    To investigate the association between salt processed food and gastric cancer, a hospital based case-control study was conducted in a high risk area of China. One hundred and seven newly diagnosed cases with histological confirmation of gastric cancer and 209 controls were recruited. Information on dietary intake was collected with a validated food frequency questionnaire. Unconditional logistic regression was applied to estimate the odds ratios with adjustment for other potential confounders. Comparing the high intake group with never consumption of salt processed foods, salted meat, pickled vegetables and preserved vegetables were significantly associated with increased risk of gastric cancer. Meanwhile, salt taste preference in diet showed a dose-response relationship with gastric cancer. Our results suggest that consumption of salted meat, pickled and preserved vegetables, are positively associated with gastric cancer. Reduction of salt and salt processed food in diets might be one practical measure to preventing gastric cancer.

  8. [Food processing industry--the salt shock to the consumers].

    PubMed

    Doko Jelinić, Jagoda; Nola, Iskra Alexandra; Andabaka, Damir

    2010-05-01

    Industrial food production and processing is necessarily connected with the use of salt. Salt or sodium chloride is used as a preservative, spice, agent for color maintenance, texture, and to regulate fermentation by stopping the growth of bacteria, yeast and mold. Besides kitchen salt, other types of salt that also contain sodium are used in various technological processes in food preparing industry. Most of the "hidden" salt, 70%-75%, can be brought to the body by using industrial food, which, unfortunately, has been increasingly used due to the modern way of life. Bread and bakery products, meat products, various sauces, dried fish, various types of cheese, fast food, conserved vegetables, ready-made soups and food additives are the most common industrial foods rich in sodium. Many actions have been taken all over the world to restrict salt consumption. The World Health Organization recommends the upper limit of salt input of 5 g per day. These actions appeal to food industry to reduce the proportion of salt in their products. Besides lower salt addition during manufacture, food industry can use salt substitutes, in particular potassium chloride (KCl), in combination with additives that can mask the absence of salt, and flavor intensifiers that also enhance the product salinity. However, food industry is still quite resistant to reducing salt in their products for fear from losing profits.

  9. Cadmium transport through molten salts in the reprocessing of spent fuel for the integral fast reactor

    SciTech Connect

    Goff, K.M.; Schneider, A. ); Battles, J.E. )

    1993-06-01

    The reprocessing of spent fuel from the Integral Fast Reactor is to be accomplished with a pyrochemical process employing molten LiCl-KCl salt covering a pool of cadmium. An examination of this system demonstrates that cadmium metal is soluble to a small extent in this salt and that it diffuses through the salt covering and vaporizes at the surface. The cadmium is soluble in the salt because of either chemical or physical solubility, both of which are dependent on the salt's surface tension. Mixing increases the vaporization rate of the cadmium by increasing its transport to the salt surface. The cadmium vapors can therefore be reduced by decreasing the mixing conditions, by choosing a salt with a higher surface tension so that the cadmium is less soluble, or by decreasing the temperature of the system, thereby lowering the vapor pressure of the cadmium.

  10. ADR salt pill design and crystal growth process for hydrated magnetic salts

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J. (Inventor); DiPirro, Michael J. (Inventor); Canavan, Edgar R. (Inventor)

    2013-01-01

    A process is provided for producing a salt pill for use in very low temperature adiabatic demagnetization refrigerators (ADRs). The method can include providing a thermal bus in a housing. The thermal bus can include an array of thermally conductive metal conductors. A hydrated salt can be grown on the array of thermally conductive metal conductors. Thermal conductance can be provided to the hydrated salt.

  11. Comparative Toxicities of Salts on Microbial Processes in Soil

    PubMed Central

    Maheshwari, Arpita; Bengtson, Per; Rousk, Johannes

    2016-01-01

    Soil salinization is a growing threat to global agriculture and carbon sequestration, but to date it remains unclear how microbial processes will respond. We studied the acute response to salt exposure of a range of anabolic and catabolic microbial processes, including bacterial (leucine incorporation) and fungal (acetate incorporation into ergosterol) growth rates, respiration, and gross N mineralization and nitrification rates. To distinguish effects of specific ions from those of overall ionic strength, we compared the addition of four salts frequently associated with soil salinization (NaCl, KCl, Na2SO4, and K2SO4) to a nonsaline soil. To compare the tolerance of different microbial processes to salt and to interrelate the toxicity of different salts, concentration-response relationships were established. Growth-based measurements revealed that fungi were more resistant to salt exposure than bacteria. Effects by salt on C and N mineralization were indistinguishable, and in contrast to previous studies, nitrification was not found to be more sensitive to salt exposure than other microbial processes. The ion-specific toxicity of certain salts could be observed only for respiration, which was less inhibited by salts containing SO42− than Cl− salts, in contrast to the microbial growth assessments. This suggested that the inhibition of microbial growth was explained solely by total ionic strength, while ion-specific toxicity also should be considered for effects on microbial decomposition. This difference resulted in an apparent reduction of microbial growth efficiency in response to exposure to SO42− salts but not to Cl− salts; no evidence was found to distinguish K+ and Na+ salts. PMID:26801570

  12. Comparative Toxicities of Salts on Microbial Processes in Soil.

    PubMed

    Rath, Kristin M; Maheshwari, Arpita; Bengtson, Per; Rousk, Johannes

    2016-01-22

    Soil salinization is a growing threat to global agriculture and carbon sequestration, but to date it remains unclear how microbial processes will respond. We studied the acute response to salt exposure of a range of anabolic and catabolic microbial processes, including bacterial (leucine incorporation) and fungal (acetate incorporation into ergosterol) growth rates, respiration, and gross N mineralization and nitrification rates. To distinguish effects of specific ions from those of overall ionic strength, we compared the addition of four salts frequently associated with soil salinization (NaCl, KCl, Na2SO4, and K2SO4) to a nonsaline soil. To compare the tolerance of different microbial processes to salt and to interrelate the toxicity of different salts, concentration-response relationships were established. Growth-based measurements revealed that fungi were more resistant to salt exposure than bacteria. Effects by salt on C and N mineralization were indistinguishable, and in contrast to previous studies, nitrification was not found to be more sensitive to salt exposure than other microbial processes. The ion-specific toxicity of certain salts could be observed only for respiration, which was less inhibited by salts containing SO4(2-) than Cl(-) salts, in contrast to the microbial growth assessments. This suggested that the inhibition of microbial growth was explained solely by total ionic strength, while ion-specific toxicity also should be considered for effects on microbial decomposition. This difference resulted in an apparent reduction of microbial growth efficiency in response to exposure to SO4(2-) salts but not to Cl(-) salts; no evidence was found to distinguish K(+) and Na(+) salts.

  13. MSO spent salt clean-up recovery process

    SciTech Connect

    Adamson, M G; Brummond, W A; Hipple, D L; Hsu, P C; Summers, L J; Von Holtz, E H; Wang, F T

    1997-02-01

    An effective process has been developed to separate metals, mineral residues, and radionuclides from spent salt, a secondary waste generated by Molten Salt Oxidation (MSO). This process includes salt dissolution, pH adjustment, chemical reduction and/or sulfiding, filtration, ion exchange, and drying. The process uses dithionite to reduce soluble chromate and/or sulfiding agent to suppress solubilities of metal compounds in water. This process is capable of reducing the secondary waste to less than 5% of its original weight. It is a low temperature, aqueous process and has been demonstrated in the laboratory [1].

  14. Application of lithium in molten-salt reduction processes.

    SciTech Connect

    Gourishankar, K. V.

    1998-11-11

    Metallothermic reductions have been extensively studied in the field of extractive metallurgy. At Argonne National Laboratory (ANL), we have developed a molten-salt based reduction process using lithium. This process was originally developed to reduce actinide oxides present in spent nuclear fuel. Preliminary thermodynamic considerations indicate that this process has the potential to be adapted for the extraction of other metals. The reduction is carried out at 650 C in a molten-salt (LiCl) medium. Lithium oxide (Li{sub 2}O), produced during the reduction of the actinide oxides, dissolves in the molten salt. At the end of the reduction step, the lithium is regenerated from the salt by an electrowinning process. The lithium and the salt from the electrowinning are then reused for reduction of the next batch of oxide fuel. The process cycle has been successfully demonstrated on an engineering scale in a specially designed pyroprocessing facility. This paper discusses the applicability of lithium in molten-salt reduction processes with specific reference to our process. Results are presented from our work on actinide oxides to highlight the role of lithium and its effect on process variables in these molten-salt based reduction processes.

  15. Secondary Aluminum Processing Waste: Salt Cake Characterization and Reactivity

    EPA Science Inventory

    Thirty-nine salt cake samples were collected from 10 SAP facilities across the U.S. The facilities were identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the percent metal leached from the salt cake was relatively low, the leac...

  16. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  17. Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Akinobu; Kido, Hideki; Ukita, Yoshiaki; Kishihara, Mitsuyoshi; Utsumi, Yuichi

    2016-02-01

    We developed a process for micromachining polytetrafluoroethylene (PTFE): anisotropic pyrochemical microetching induced by synchrotron X-ray irradiation. X-ray irradiation was performed at room temperature. Upon heating, the irradiated PTFE substrates exhibited high-precision features. Both the X-ray diffraction peak and Raman signal from the irradiated areas of the substrate decreased with increasing irradiation dose. The etching mechanism is speculated as follows: X-ray irradiation caused chain scission, which decreased the number-average degree of polymerization. The melting temperature of irradiated PTFE decreased as the polymer chain length decreased, enabling the treated regions to melt at a lower temperature. The anisotropic pyrochemical etching process enabled the fabrication of PTFE microstructures with higher precision than simultaneously heating and irradiating the sample.

  18. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  19. Test of Actinide-Lanthanide Separation in an Aluminum-Based Pyrochemical System

    SciTech Connect

    Rault, Laurence; Heusch, Murielle; Allibert, Michel; Lemort, Florent; Deschane, Xavier; Boen, Roger

    2002-08-15

    The investigation of the actinide and lanthanide distribution between a liquid metal and a molten fluoride salt shows a significant increase of the separation coefficient by using an aluminum-based pyrochemical system instead of a zinc-based system. The obtained values partly depend on the LiF/AlF{sub 3} ratio and can reach more than 30 000 when AlF{sub 3} is in excess with regard to the formation of the cryolite (Li{sub 3} AlF{sub 6}). Furthermore, in the metal phase, the aluminum interacts with the lanthanides to a lesser extent than in other usual metallic solvents. This opens a new way to explore the feasibility of the separation of actinides and lanthanides in the field of nuclear fuel reprocessing.

  20. Processes of Salt Transport in Disturbed Streams

    NASA Astrophysics Data System (ADS)

    Chitrakar, S.; Miller, S. N.; Caffrey, P. A.; Stern, J.

    2013-12-01

    The extraction of coal bed methane natural gas involves removal of large amount of ground/Coal Bed Methane (CBM) water which is commonly discharged to surface-water drainages or constructed reservoirs. The extraction of large volume of water and its disposal on soil surface not only lowers the water table but also potentially accelerate soil erosions, contaminate surface water resources, and alter the natural flows. Due to the difference in quality and quantity between the surface discharge and disposed CBM water, this management strategy potentially poses threats to quality of surface water and soil. CBM discharge water typically contains high concentrations of sodium and low concentrations of calcium and magnesium, resulting in high sodium adsorption ratio (SAR). Similarly, it also contains high concentration of other ions which could results in increasing salt concentrations. Our study area is in the Atlantic Rim development area of the Muddy Creek, SE of Wyoming, a tributary to Colorado River, where significant development of CBM wells is ongoing. Since Muddy Creek is part of the Upper Colorado River, the greatest concern is its potential to contribute to surface water quality (primarily salinity) impairment downstream. However, very few studies have made efforts to assess the water quality in this particular region. The alteration of stream water quality in this region is still not fully understood if it due to CBM water discharge or via soil/water interactions, erosion, and sediment transport. Efforts are being made to identify crucial water quality parameters such as SAR and EC along with the quantification of solute/salt loadings at both CBM discharge fed streams and natural streams at different seasons to distinguish effect of CBM discharge on water quality. We have been continuously monitoring water quality on monthly basis and discharge measurement on daily basis at sampling sites that are placed to discriminate CBM fed streams and natural streams. The

  1. Pyrochemical separation of radioactive components from inert materials in ICPP high-level calcined waste

    SciTech Connect

    Del Debbio, J.A.; Nelson, L.O.; Todd, T.A.

    1995-05-01

    Since 1963, calcination of aqueous wastes from reprocessing of DOE-owned spent nuclear fuels has resulted in the accumulation of approximately 3800 m{sup 3} of high-level waste (HLW) at the Idaho Chemical Processing Plant (ICPP). The waste is in the form of a granular solid called calcine and is stored on site in stainless steel bins which are encased in concrete. Due to the leachability of {sup 137}Cs and {sup 90}Sr and possibly other radioactive components, the calcine is not suitable for final disposal. Hence, a process to immobilize calcine in glass is being developed. Since radioactive components represent less than 1 wt % of the calcine, separation of actinides and fission products from inert components is being considered to reduce the volume of HLW requiring final disposal. Current estimates indicate that compared to direct vitrification, a volume reduction factor of 10 could result in significant cost savings. Aqueous processes, which involve calcine dissolution in nitric acid followed by separation of actinide and fission products by solvent extraction and ion exchange methods, are being developed. Pyrochemical separation methods, which generate small volumes of aqueous wastes and do not require calcine dissolution, have been evaluated as alternatives to aqueous processes. This report describes three proposed pyrochemical flowsheets and presents the results of experimental studies conducted to evaluate their feasibility. The information presented is a consolidation of three reports, which should be consulted for experimental details.

  2. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going.

  3. Novel waste printed circuit board recycling process with molten salt

    PubMed Central

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. • The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. • This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. • The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  4. Novel waste printed circuit board recycling process with molten salt.

    PubMed

    Riedewald, Frank; Sousa-Gallagher, Maria

    2015-01-01

    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450-470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl-KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. •The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept.•This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L.•The treated PCBs can be removed via leg B while the process is on-going. PMID:26150977

  5. Characteristics of salt-fermented sauces from shrimp processing byproducts.

    PubMed

    Kim, Jin-Soo; Shahidi, Fereidoon; Heu, Min-Soo

    2003-01-29

    A salt-fermented sauce from shrimp processing byproducts (heads, shells, and tails) was prepared and characterized. Three types of sauces were prepared; sauce C, with 30 g of salt/100 g of byproduct (high salt); sauce E, with 30 g of salt and 0.2 g of sodium erythorbate (high salt); and sauce L, with 20 g of salt, 0.2 g of sodium erythorbate, 6 g of sorbitol, 0.5 mL of lactic acid, and 5 mL of ethanol (low salt). Sauces C and E showed higher exopeptidase activities than sauce L, whereas sauce L showed the highest endopeptidase activity. After 3 months of fermentation, the amino N content of sauce increased from 150-200 to 500-600 mg/100 g and the nonprotein nitrogen content increased from 300 to 950-1050 mg/100 g. Volatile basic nitrogen content increased significantly from 18 to 60 mg/100 g. The total carotenoids retained in sauces C, E, and L were 26.3, 76.2, and 73%, respectively, thus indicating that the addition of sodium erythorbate to sauces E and L retarded oxidation. Water activities of sauces C, E, and L were 0.753, 0.751, and 0.773, respectively. According to the omission test, the taste of sauces was influenced by the content of free amino acids, mainly glutamic acid and aspartic acid. All three sauces examined showed a 35% higher total amino acid content than commercial salt-fermented shrimp sauces. Therefore, shrimp processing byproducts may lend themselves to the preparation of high-quality salt-fermented sauces.

  6. CRITICALITY SAFETY OF PROCESSING SALT SOLUTION AT SRS

    SciTech Connect

    Stephens, K; Davoud Eghbali, D; Michelle Abney, M

    2008-01-15

    High level radioactive liquid waste generated as a result of the production of nuclear material for the United States defense program at the Savannah River Site has been stored as 36 million gallons in underground tanks. About ten percent of the waste volume is sludge, composed of insoluble metal hydroxides primarily hydroxides of Mn, Fe, Al, Hg, and most radionuclides including fission products. The remaining ninety percent of the waste volume is saltcake, composed of primarily sodium (nitrites, nitrates, and aluminates) and hydroxides. Saltcakes account for 30% of the radioactivity while the sludge accounts for 70% of the radioactivity. A pilot plant salt disposition processing system has been designed at the Savannah River Site for interim processing of salt solution and is composed of two facilities: the Actinide Removal Process Facility (ARPF) and the Modular Caustic Side Solvent Extraction Unit (MCU). Data from the pilot plant salt processing system will be used for future processing salt at a much higher rate in a new salt processing facility. Saltcake contains significant amounts of actinides, and other long-lived radioactive nuclides such as strontium and cesium that must be extracted prior to disposal as low level waste. The extracted radioactive nuclides will be mixed with the sludge from waste tanks and vitrified in another facility. Because of the presence of highly enriched uranium in the saltcake, there is a criticality concern associated with concentration and/or accumulation of fissionable material in the ARP and MCU.

  7. Pyrochemical Glovebox Line Replacement and Modernization Effort at Los Alamos National Laboratory Plutonium Facility.

    SciTech Connect

    Dennison, D. K.; McNeese, James A.; Cantrell, W. S.; Garcia, R. E.

    2002-01-01

    Los Alamos National Laboratory (LANL), as part of the stockpile stewardship mission, is developing the capability to manufacture replacement pits for the United States nuclear weapon stockpile. Part of this effort requires that the various manufacturing activities formerly performed at the Rocky Flats be reconstructed at LANL, modernized to improve operation, and re-certified for pit production. Part of this effort requires that new pyrochemical metal production facilities be installed in TA-55 to replace existing outdated equipment. The purpose of this effort is design, build/procure, assemble, cold test, and support installation activities for ten pyrochemical processing gloveboxes and processing support equipment for insertion into a selected PF-4 laboratory. Eight of the gloveboxes will be connected to a common trolley tunnel with a state-of-the-art automated transport system that can access each glovebox. Five of those gloveboxes will be designed to accommodate standard water-cooled pyrochemical processing furnaces with appropriate lift mechanisms for handling the furnace products and processing hardware. Another glovebox will be designed to accommodate an improved breaking press that will be designed/procured to break alpha metal up to a thickness of l-inch, eliminate introduction of hydraulic oil to the glovebox environment, provide appropriate shielding for prevention of glovebox damage due to shrapnel projectiles, and use interchangeable impact tools in order to be able to process both contaminated and clean metals with the same machine. In addition, a storage glovebox and a distillation glovebox (already developed) will be attached to the transport system. Two other gloveboxes, one accommodating two casting furnaces and another storage glovebox, will be installed in the laboratory independent of the transport system. A transfer system (trolley) will be incorporated to handle material flow between the pyrochemical furnace gloveboxes, the press glovebox

  8. Feasibility study of a plant for LWR used fuel reprocessing by pyrochemical methods

    SciTech Connect

    Bychkov, A.V.; Kormilitsyn, M.V.; Savotchkin, Yu.P.; Sokolovsky, Yu.S.; Baganz, Catherine; Lopoukhine, Serge; Maurin, Guy; Medzadourian, Michel

    2007-07-01

    In 2005, experts from AREVA and RIAR performed a joint research work on the feasibility study of a plant reprocessing 1000 t/y of LWR spent nuclear fuel by the gas-fluoride and pyro-electrochemical techniques developed at RIAR. This work was based on the RIAR experience in development of pyrochemical processes and AREVA experience in designing UNF reprocessing plants. UNF reprocessing pyrochemical processes have been developed at RIAR at laboratory scale and technology for granulated MOX fuel fabrication and manufacturing of vibro-packed fuel rods is developed at pilot scale. The research work resulted in a preliminary feasibility assessment of the reprocessing plant according to the norms and standards applied in France. The study results interpretation must integrate the fact that the different technology steps are at very different stage of development. It appears clearly however that in its present state of development, pyro-electrochemical technology is not adapted to the treatment of an important material flow issuing from thermal reactors. There is probably an economic optimum to be studied for the choice of hydrometallurgical or pyro-electrochemical technology, depending on the area of application. This work is an example of successful and fruitful collaboration between French and Russian specialists. (authors)

  9. Corrosion study of a highly durable electrolyzer based on cold crucible technique for pyrochemical reprocessing of spent nuclear oxide fuel

    NASA Astrophysics Data System (ADS)

    Takeuchi, M.; Arai, Y.; Kase, T.; Nakajima, Y.

    2013-01-01

    The application of the cold crucible technique to a pyrochemical electrolyzer used in the oxide-electrowinning method, which is a method for the pyrochemical reprocessing of spent nuclear oxide fuel, is proposed as a means for improving corrosion resistance. The electrolyzer suffers from a severe corrosion environment consisting of molten salt and corrosive gas. In this study, corrosion tests for several metals in molten 2CsCl-NaCl at 923 K with purging chlorine gas were conducted under controlled material temperature conditions. The results revealed that the corrosion rates of several materials were significantly decreased by the material cooling effect. In particular, Hastelloy C-22 showed excellent corrosion resistance with a corrosion rate of just under 0.01 mm/y in both molten salt and vapor phases by controlling the material surface at 473 K. Finally, an engineering-scale crucible composed of Hastelloy C-22 was manufactured to demonstrate the basic function of the cold crucible. The cold crucible induction melting system with the new concept Hastelloy crucible showed good compatibility with respect to its heating and cooling performances.

  10. Molten salt processing of mixed wastes with offgas condensation

    SciTech Connect

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. ); Gay, R.L.; Stewart, A.; Yosim, S. . Energy Systems Group)

    1991-05-13

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

  11. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  12. Pyrochemical separations technologies envisioned for the U. S. accelerator transmutation of waste system

    SciTech Connect

    Laidler, J. J.

    2000-02-17

    A program has been initiated for the purpose of developing the chemical separations technologies necessary to support a large Accelerator Transmutation of Waste (ATW) system capable of dealing with the projected inventory of spent fuel from the commercial nuclear power stations in the United States. The baseline process selected combines aqueous and pyrochemical processes to enable the efficient separation of uranium, technetium, iodine, and the transuranic elements from LWR spent fuel. The diversity of processing methods was chosen for both technical and economic factors. A six-year technology evaluation and development program is foreseen, by the end of which an informed decision can be made on proceeding with demonstration of the ATW system.

  13. Preconceptual design of a salt splitting process using ceramic membranes

    SciTech Connect

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  14. Process Heat Exchanger Options for Fluoride Salt High Temperature Reactor

    SciTech Connect

    Piyush Sabharwall; Eung Soo Kim; Michael McKellar; Nolan Anderson

    2011-04-01

    The work reported herein is a significant intermediate step in reaching the final goal of commercial-scale deployment and usage of molten salt as the heat transport medium for process heat applications. The primary purpose of this study is to aid in the development and selection of the required heat exchanger for power production and process heat application, which would support large-scale deployment.

  15. Pilot-scale equipment development for pyrochemical treatment of spent oxide fuel.

    SciTech Connect

    Herrmann, S. D.

    1999-06-08

    Fundamental objectives regarding spent nuclear fuel treatment technologies include, first, the effective distribution of spent fuel constituents among product and stable waste forms and, second, the minimization and standardization of waste form types and volumes. Argonne National Laboratory (ANL) has developed and is presently demonstrating the electrometallurgical treatment of sodium-bonded metal fuel from Experimental Breeder Reactor II, resulting in an uranium product and two stable waste forms, i.e. ceramic and metallic. Engineering efforts are underway at ANL to develop pilot-scale equipment which would precondition irradiated oxide fuel via pyrochemical processing and subsequently allow for electrometallurgical treatment of such non-metallic fuels into standard product and waste forms. This paper highlights the integration of proposed spent oxide fuel treatment with existing electrometallurgical processes. System designs and technical bases for development of pilot-scale oxide reduction equipment are also described.

  16. Properties of TiN and TiN deposited by CVD on graphite for pyrochemical applications.

    SciTech Connect

    Maiya, P. S.; Moon, B. M.

    1997-12-17

    High-density TiN (>98% of theoretical) has been prepared by hot pressing TiN powder with 2-4 wt.% Li{sub 2}C0{sub 3} at temperatures between 1150-1550 C and pressures of {approx}40-50 MPa. The Li{sub 2}C0{sub 3} served as a fugitive sintering aid, enabling attainment of high density at low temperatures without adversely affecting the inherently good properties. Variation in processing variables and TiN powder characteristics resulted in material with various porosities. Measurement of mechanical properties such as flexural strength and fracture toughness showed that the high-density material has mechanical properties that are superior to those of several oxide ceramics. We have also quantified the effects of porosity on mechanical properties. In addition, adhesion and chemical stability tests were used to investigate graphite coated with TiN by chemical vapor deposition (CVD). Pin-pull tests were used to determine coating adhesion and failure stresses were analyzed by Weibull statistics. All pin-pull tests resulted in fracture of the graphite substrate, rather than separation at the TiN/graphite interface. The data showed a good fit to the two-parameter Weibull expression, with a failure strength of 16.4 MPa and Weibull modulus of 9.3. Both the high-density TiN and the TiN coating on the graphite were exposed to a corrosive molten salt CaCl{sub 2}-7 wt.% CaO and a liquid metal alloy (Zn-10 wt.% Mg) at 800 C for 168 h to determine chemical interactions. No reaction was detected by scanning electron microscopy (SEM) or energy-dispersive X-ray (EDX) analysis. Thus, graphite coated with TiN by CVD combines the thermodynamic stability of TiN when exposed to reactive molten metals and salts, with the excellent machinability of graphite, and hence is promising for use in container vessels for pyrochemical processing of certain rare-earth and nuclear metals, where chemical inertness and good matching of thermal expansion coefficients are required.

  17. CO2 decomposition using electrochemical process in molten salts

    NASA Astrophysics Data System (ADS)

    Otake, Koya; Kinoshita, Hiroshi; Kikuchi, Tatsuya; Suzuki, Ryosuke O.

    2012-08-01

    The electrochemical decomposition of CO2 gas to carbon and oxygen gas in LiCl-Li2O and CaCl2-CaO molten salts was studied. This process consists of electrochemical reduction of Li2O and CaO, as well as the thermal reduction of CO2 gas by the respective metallic Li and Ca. Two kinds of ZrO2 solid electrolytes were tested as an oxygen ion conductor, and the electrolytes removed oxygen ions from the molten salts to the outside of the reactor. After electrolysis in both salts, the aggregations of nanometer-scale amorphous carbon and rod-like graphite crystals were observed by transmission electron microscopy. When 9.7 %CO2-Ar mixed gas was blown into LiCl-Li2O and CaCl2-CaO molten salts, the current efficiency was evaluated to be 89.7 % and 78.5 %, respectively, by the exhaust gas analysis and the supplied charge. When a solid electrolyte with higher ionic conductivity was used, the current and carbon production became larger. It was found that the rate determining step is the diffusion of oxygen ions into the ZrO2 solid electrolyte.

  18. Advances toward industrialization of novel molten salt electrochemical processes.

    PubMed

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles.

  19. Advances toward industrialization of novel molten salt electrochemical processes.

    PubMed

    Ito, Yasuhiko; Nishikiori, Tokujiro; Tsujimura, Hiroyuki

    2016-08-15

    We have invented various novel molten salt electrochemical processes, that can be put to practical use in the fields of energy and materials. These processes are promising from both technological and commercial viewpoints, and they are currently under development for industrial application. To showcase current developments in work toward industrialization, we focus here on three of these processes: (1) electrolytic synthesis of ammonia from water and nitrogen under atmospheric pressure, (2) electrochemical formation of carbon film, and (3) plasma-induced discharge electrolysis to produce nanoparticles. PMID:27265244

  20. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  1. Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-18

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 aboveground UNS, and 79 candidate belowground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  2. Engineering Options Assessment Report. Nitrate Salt Waste Stream Processing

    SciTech Connect

    Anast, Kurt Roy

    2015-11-13

    This report examines and assesses the available systems and facilities considered for carrying out remediation activities on remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The assessment includes a review of the waste streams consisting of 60 RNS, 29 above-ground UNS, and 79 candidate below-ground UNS containers that may need remediation. The waste stream characteristics were examined along with the proposed treatment options identified in the Options Assessment Report . Two primary approaches were identified in the five candidate treatment options discussed in the Options Assessment Report: zeolite blending and cementation. Systems that could be used at LANL were examined for housing processing operations to remediate the RNS and UNS containers and for their viability to provide repackaging support for remaining LANL legacy waste.

  3. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect

    S. X. Li; D. Vaden; R. W. Benedict; T. A. Johnson; B. R. Westphal; Guy L. Frederickson

    2007-09-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processes under the fixed operating parameters that have been developed for this equipment based on over a decade’s worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test.

  4. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  5. Memory processes in the development of reduced-salt foods.

    PubMed

    Herbert, Vanessa; Bertenshaw, Emma J; Zandstra, Elizabeth H; Brunstrom, Jeffrey M

    2014-12-01

    Acceptance of a reduced-salt food is likely to be influenced by a mismatch between the sensory characteristics of a reformulated product and a memory for a previously-encountered formulation. In two initial pilot studies we established the reliability of a new measure of memory for saltiness, based on a method of constant stimuli. We then used this technique to explore the effects of different patterns of repeated exposure on memory for the taste of a reduced-salt soup. Participants (N = 135) were assigned to one of four exposure patterns: (1) reduced-salt, (2) no salt reduction, i.e. regular-salt, (3) reduced- and regular-salt, in an alternating pattern, and (4) gradually declining salt concentration. In the final session, all participants received an identical reduced-salt soup. Memory for the saltiness of this sample was assessed, together with its expected liking. Our results indicate that different interactions with the test soup had little effect on taste memory. Nevertheless, (1) participants remembered the final exposure soup as saltier than the reduced-salt formulation that they had received and (2) remembered salt concentrations correlated with individual ideal salt concentrations. These findings are consistent with contemporary models of reconstructive memory and they illustrate the importance of understanding 'memory for saltiness' in the acceptance of reduced-salt formulations.

  6. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  7. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOEpatents

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  8. Characterization of the effects of continuous salt processing on the performance of molten salt fusion breeder blankets

    NASA Astrophysics Data System (ADS)

    Patterson-Hine, F. A.; Davidson, J. W.; Klein, D. E.; Lee, J. D.

    1985-12-01

    Several continuous salt processing options are available for use in molten salt fusion breeder blanket designs: fluorination only, fluorination plus reductive extraction, and fluorination, plus reductive extraction, plus metal transfer. The effects of processing on blanket performance have been assessed for these three levels of processing and various equilibrium uranium concentrations in the salt. A one-dimensional model of the blanket was used in the neutronics analysis, which incorporated transport calculations with time-dependent isotope generation and depletion calculations. The method of salt processing was found to have little affect on the level of radioactivity, toxicity, or the thermal behavior of the salt during operation of the reactor. The processing rates necessary to maintain the desired uranium concentrations in the suppressed-fission environment were quite low, which permitted only long-lived species to be removed from the salt. The effects of the processing therefore became apparent only after the radioactivity due to the short-lived species diminished. The effects of the additional processing (reductive extraction and metal transfer) could be seen after approximately 1 year of decay, but were not significant at times closer to shutdown. The reduced radioactivity and corresponding heat deposition were thus of no consequence in accident or maintenance situations. Net fissile production in the Be/MS blanket concept at a fusion power level of 3000 MW at 70% capacity ranged from 5100 kg/year to 5170 kg/year for uranium concentrations of 0.11% and 1.0%233U in thorium, respectively, with fluorination-only processing. The addition of processing by reductive extraction resulted in 5125 kg/year for the 0.11%233U case and 5225 kg/year for the 1.0%233U case.

  9. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  10. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  11. OCCUPATIONAL ALLERGY AND ASTHMA AMONG SALT WATER FISH PROCESSING WORKERS

    PubMed Central

    Jeebhay, Mohamed F; Robins, Thomas G; Miller, Mary E; Bateman, Eric; Smuts, Marius; Baatjies, Roslynn; Lopata, Andreas L

    2010-01-01

    Background Fish processing is a common economic activity in Southern Africa. The aim of this study was to determine the prevalence and host determinants of allergic symptoms, allergic sensitization, bronchial hyper-responsiveness and asthma among workers processing saltwater fish. Methods A cross-sectional study was conducted on 594 currently employed workers in two processing plants involved in pilchard canning and fishmeal processing. A modified European Community Respiratory Health Survey (ECRHS) questionnaire was used. Skin prick tests (SPT) used extracts of common airborne allergens, fresh fish (pilchard, anchovy, maasbanker, mackerel, red eye) and fishmeal. Spirometry and methacholine challenge tests (tidal breathing method) used ATS guidelines. Results Work-related ocular-nasal symptoms (26%) were more common than asthma symptoms (16%). The prevalence of atopy was 36%, while 7% were sensitized to fish species and 26% had NSBH (PC20 ≤ 8 mg/ml or ≥12% increase in FEV1 post bronchodilator). The prevalence of probable occupational asthma was 1.8% and fish allergic rhino-conjunctivitis 2.6%. Women were more likely to report work-related asthma symptoms (OR=1.94) and have NSBH (OR=3.09), while men were more likely to be sensitized to fish (OR=2.06) and have airway obstruction (OR=4.17). Atopy (OR=3.16) and current smoking (OR=2.37), but not habitual seafood consumption were associated with sensitization to fish. Conclusions Based on comparison with previous published studies, the prevalence of occupational asthma to salt water fish is lower than due to shellfish. The gendered distribution of work and exposures in fish processing operations together with atopy and cigarette smoking are important determinants of occupational allergy and asthma. PMID:18726880

  12. Removal of uranium from spent salt from the moltensalt oxidation process

    SciTech Connect

    Summers, L.; Hsu, P. C.; Holtz, E. V.; Hipple, D.; Wang, F.; Adamson, M.

    1997-03-01

    Molten salt oxidation (MSO) is a thermal process that has the capability of destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials. In this process, combustible waste and air are introduced into the molten sodium carbonate salt. The organic constituents of the waste materials are oxidized to carbon dioxide and water, while most of the inorganic constituents, including toxic metals, minerals, and radioisotopes, are retained in the molten salt bath. As these impurities accumulate in the salt, the process efficiency drops and the salt must be replaced. An efficient process is needed to separate these toxic metals, minerals, and radioisotopes from the spent carbonate to avoid generating a large volume of secondary waste. Toxic metals such as cadmium, chromium, lead, and zinc etc. are removed by a method described elsewhere. This paper describes a separation strategy developed for radioisotope removal from the mixed spent salt, as well as experimental results, as part of the spent salt cleanup. As the MSO system operates, inorganic products resulting from the reaction of halides, sulfides, phosphates, metals and radionuclides with carbonate accumulate in the salt bath. These must be removed to prevent complete conversion of the sodium carbonate, which would result in eventual losses of destruction efficiency and acid scrubbing capability. There are two operational modes for salt removal: (1) during reactor operation a slip-stream of molten salt is continuously withdrawn with continuous replacement by carbonate, or (2) the spent salt melt is discharged completely and the reactor then refilled with carbonate in batch mode. Because many of the metals and/or radionuclides captured in the salt are hazardous and/or radioactive, spent salt removed from the reactor would create a large secondary waste stream without further treatment. A spent salt clean up/recovery system is necessary to segregate these materials and minimize the amount of

  13. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    SciTech Connect

    Kwon, K.C.

    2001-09-18

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  14. FDA Renews Call to Reduce Salt in Processed Foods

    MedlinePlus

    ... consume more salt than recommended, the FDA pointed out. The problem is widespread in children and teens, too. Foods that are often high in sodium include pizza, sandwiches, deli meats, pasta dishes, snacks, salad dressings, soups and cheese. The ...

  15. Influence of salt content and processing time on sensory characteristics of cooked "lacón".

    PubMed

    Purriños, Laura; Bermúdez, Roberto; Temperán, Sara; Franco, Daniel; Carballo, Javier; Lorenzo, José M

    2011-04-01

    The influence of salt content and processing time on the sensory properties of cooked "lacón" were determined. "Lacón" is a traditional dry-cured and ripened meat product made in the north-west of Spain from the fore leg of the pig, following a similar process to that of dry-cured ham. Six batches of "lacón" were salted with different amounts of salt (LS (3 days of salting), MS (4 days of salting) and HS (5 days of salting)) and ripened during two times (56 and 84 days of dry-ripening). Cured odour in all batches studied, red colour and rancid odour in MS and HS batches, flavour intensity in MS batch and fat yellowness, rancid flavour and hardness in the HS batch were significantly different with respect to the time of processing. Appearance, odour, flavour and texture were not significantly affected by the salt content (P>0.05). However, the saltiness score showed significant differences with respect to the salt levels in all studied batches (56 and 84 days of process). The principal component analysis showed that physicochemical traits were the most important ones concerning the quality of dry-cured "lacón" and offered a good separation of the mean samples according to the dry ripening days and salt level. PMID:21168978

  16. Nutritional modelling: distributions of salt intake from processed foods in New Zealand.

    PubMed

    Thomson, Barbara M

    2009-09-01

    The salt content of processed foods is important because of the high intake of Na by most New Zealanders. A database of Na concentrations in fifty-eight processed foods was compiled from existing and new data and combined with 24 h diet recall data from two national nutrition surveys (5771 respondents) to derive salt intakes for seven population groups. Mean salt intakes from processed foods ranged from 6.9 g/d for young males aged 19-24 years to 3.5 g/d for children aged 5-6 years. A total of > or = 50 % of children aged 5-6 years, boys aged 11-14 years and young males aged 19-24 years had salt intakes that exceeded the upper limit for Na, calculated as salt (3.2-5.3 g/d), from processed foods only. Bread accounted for the greatest contribution to salt intake for each population group (35-43 % of total salt intake). Other foods that contributed 2 % or more and common across most age groups were sausage, meat pies, pizza, instant noodles and cheese. The Na concentrations of key foods have changed little over the 16-year period from 1987 to 2003 except for corned beef and whole milk that have decreased by 34 and 50 % respectively. Bread is an obvious target for salt reduction but the implication on iodine intake needs consideration as salt is used as a vehicle for iodine fortification of bread.

  17. Materials Science and Technology (MST) Division, Nuclear Materials Process Technology Group (MST-12), chemical process research and development report

    SciTech Connect

    Clifton, D.G.

    1984-04-01

    A process for the recovery of plutonium and americium from molten salt extraction (MSE) salt residues has been demonstrated. It is based upon a new chloride anion-exchange process at low acidity that eliminates corrosive HCl fumes. The Los Alamos americium oxide production line has been improved to give more product with a concurrent lowering of personnel radiation exposure. A cost study has been made for the disposal of americium-contaminated calcium metal buttons that were obtained by pyrochemical recovery of plutonium from MSE salts. The waste form used in the study conforms to WIPP-Facility standards and current state-of-the-art radioactive waste disposal. The cost estimate is approx. $300/g /sup 241/Am. Plutonium decontamination factors of approx. 300 have been obtained from lead-platinum alloy dissolution experiments carried out in alumina crucibles using lead oxide slag to getter the plutonium.

  18. Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility

    SciTech Connect

    H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

    2003-02-26

    The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

  19. Management of Salt Waste from Electrochemical Processing of Used Nuclear Fuel

    SciTech Connect

    Michael F. Simpson; Michael N. Patterson; Joon Lee; Yifeng Wang; Joshua Versey; Ammon Williams; Supathorn Phongikaroon; James Allensworth; Man-Sung Yim

    2013-10-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electrorefiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form.

  20. Sensory characteristics of Iberian ham: Influence of salt content and processing conditions.

    PubMed

    Andrés, A I; Cava, R; Ventanas, J; Thovar, V; Ruiz, J

    2004-09-01

    Sensory characteristics of Semimembranosus and Biceps femoris muscles from 24 dry-cured Iberian hams were assessed. Hams were salted with different amounts of salt (6% and 3% w/w) and then ripened at different temperature conditions (traditional processing vs. modified processing). Hams manufactured using modified processing showed higher scores for dryness (P<0.05), hardness (P<0.05) and rancid flavour (P<0.001) in the Semimembranosus muscle than those processed in a traditional way. The Biceps femoris muscle of hams salted with 6% of salt was drier (P<0.05), harder (P<0.05) and more fibrous (P<0.01) than in hams salted with 3% salt. Salty taste was more intense in the Semimembranosus and Biceps femoris from hams with a higher level of salt (P<0.01 and P<0.001, respectively). A more intense rancidity in hams ripened in modified processing could affect the overall aroma. A decrease in salt content produces less salty hams, but the changes in texture traits should be also considered.

  1. Management of salt waste from electrochemical processing of used nuclear fuel

    SciTech Connect

    Simpson, M.F.; Patterson, M.N.; Lee, J.; Wang, Y.; Versey, J.; Phongikaroon, S.

    2013-07-01

    Electrochemical processing of used nuclear fuel involves operation of one or more cells containing molten salt electrolyte. Processing of the fuel results in contamination of the salt via accumulation of fission products and transuranic (TRU) actinides. Upon reaching contamination limits, the salt must be removed and either disposed or treated to remove the contaminants and recycled back to the process. During development of the Experimental Breeder Reactor-II spent fuel treatment process, waste salt from the electro-refiner was to be stabilized in a ceramic waste form and disposed of in a high-level waste repository. With the cancellation of the Yucca Mountain high-level waste repository, other options are now being considered. One approach that involves direct disposal of the salt in a geologic salt formation has been evaluated. While waste forms such as the ceramic provide near-term resistance to corrosion, they may not be necessary to ensure adequate performance of the repository. To improve the feasibility of direct disposal, recycling a substantial fraction of the useful salt back to the process equipment could minimize the volume of the waste. Experiments have been run in which a cold finger is used for this purpose to crystallize LiCl from LiCl/CsCl. If it is found to be unsuitable for transportation, the salt waste could also be immobilized in zeolite without conversion to the ceramic waste form. (authors)

  2. Artisanal salt production in Aveiro/Portugal - an ecofriendly process.

    PubMed

    Rodrigues, Carolina M; Bio, Ana; Amat, Francisco; Vieira, Natividade

    2011-01-01

    Solar salinas are man-made systems exploited for the extraction of salt, by solar and wind evaporation of seawater. Salt production achieved by traditional methods is associated with landscapes and environmental and patrimonial values generated throughout history. Since the mid-twentieth century, this activity has been facing a marked decline in Portugal, with most salinas either abandoned or subjected to destruction, making it necessary to find a strategy to reverse this trend.It is, however, possible to generate revenue from salinas at several levels, not merely in terms of good quality salt production, but also by obtaining other products that can be commercialized, or by exploring their potential for tourism, and as research facilities, among others. Furthermore, with an adequate management, biodiversity can be restored to abandoned salinas, which constitute important feeding and breeding grounds for resident and migratory aquatic birds, many of which are protected by European Community Directives.The aims of this manuscript are to present a brief overview on the current state of sea salt exploitation in Portugal and to stress the importance of recovering these salinas for the conservation of this particular environment, for the regional economy, the scientific community and the general public. The Aveiro salina complex is presented in detail, to exemplify salina structure and functioning, as well as current problems and potential solutions for artisanal salinas. PMID:22053788

  3. Artisanal salt production in Aveiro/Portugal - an ecofriendly process

    PubMed Central

    2011-01-01

    Solar salinas are man-made systems exploited for the extraction of salt, by solar and wind evaporation of seawater. Salt production achieved by traditional methods is associated with landscapes and environmental and patrimonial values generated throughout history. Since the mid-twentieth century, this activity has been facing a marked decline in Portugal, with most salinas either abandoned or subjected to destruction, making it necessary to find a strategy to reverse this trend. It is, however, possible to generate revenue from salinas at several levels, not merely in terms of good quality salt production, but also by obtaining other products that can be commercialized, or by exploring their potential for tourism, and as research facilities, among others. Furthermore, with an adequate management, biodiversity can be restored to abandoned salinas, which constitute important feeding and breeding grounds for resident and migratory aquatic birds, many of which are protected by European Community Directives. The aims of this manuscript are to present a brief overview on the current state of sea salt exploitation in Portugal and to stress the importance of recovering these salinas for the conservation of this particular environment, for the regional economy, the scientific community and the general public. The Aveiro salina complex is presented in detail, to exemplify salina structure and functioning, as well as current problems and potential solutions for artisanal salinas. PMID:22053788

  4. Study of salt transport processes in Delaware Bay

    USGS Publications Warehouse

    Walters, Roy

    1992-01-01

    The study described here is a subset of a broader climate-related study, and is focused primarily on salinity intrusion into Delaware Bay and River. Given changes in freshwater discharge into the Delaware River as determined from the larger study, and given probable sea level rise estimates, the purpose here is to calculate the distribution of salinity within Delaware Bay and River. The approach adopted for this study is composed of two parts: an analysis of existing physical data in order to derive a basic understanding of the salt dynamics, and numerical simulation of future conditions based on this analysis. There are two important constraints in the model used: it must resolve the spatial scales important to the salt dynamics, and it must be sufficiently efficient to allow extensive sensitivity studies. This has led to the development of a 3D model that uses harmonic decomposition in time and irregular finite elements in space. All nonlinear terms are retained in the governing equations, including quadratic bottom stress, advection, and wave transport (continuity nonlinearity). These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. Although this study is still in progress, the model has reproduced sea level variations and the 3D structure of tidal and residual currents very well. In addition, the study has addressed the effects of a 1-meter rise in mean sea level on hydrodynamics of the study area. Current work is focused on salt dynamics.

  5. Artisanal salt production in Aveiro/Portugal - an ecofriendly process.

    PubMed

    Rodrigues, Carolina M; Bio, Ana; Amat, Francisco; Vieira, Natividade

    2011-11-04

    Solar salinas are man-made systems exploited for the extraction of salt, by solar and wind evaporation of seawater. Salt production achieved by traditional methods is associated with landscapes and environmental and patrimonial values generated throughout history. Since the mid-twentieth century, this activity has been facing a marked decline in Portugal, with most salinas either abandoned or subjected to destruction, making it necessary to find a strategy to reverse this trend.It is, however, possible to generate revenue from salinas at several levels, not merely in terms of good quality salt production, but also by obtaining other products that can be commercialized, or by exploring their potential for tourism, and as research facilities, among others. Furthermore, with an adequate management, biodiversity can be restored to abandoned salinas, which constitute important feeding and breeding grounds for resident and migratory aquatic birds, many of which are protected by European Community Directives.The aims of this manuscript are to present a brief overview on the current state of sea salt exploitation in Portugal and to stress the importance of recovering these salinas for the conservation of this particular environment, for the regional economy, the scientific community and the general public. The Aveiro salina complex is presented in detail, to exemplify salina structure and functioning, as well as current problems and potential solutions for artisanal salinas.

  6. Assessment of the microbial contribution to the processing of salted salmon roe (Sujiko).

    PubMed

    Miyaji, Tatsuro; Nakagawa, Tomoyuki; Tomizuka, Noboru

    2007-09-01

    As the microbial contributions to the processing of salted foods have been little investigated, there remains a possibility that excess sterilization of raw materials for salted foods leads to deterioration in food quality and safety. At a salmon roe (sujiko) processing company, we investigated salted sujiko made identically to commercial products, but that had been processed with or without antibiotics. The antibiotics caused no significant difference in the content of free amino acids, lactic acid or acetic acid. These results show that general aerobic bacteria have no impact on the formation of these flavor compounds. PMID:17927051

  7. Advances in electroanalysis, sensing and monitoring in molten salts.

    PubMed

    Corrigan, Damion K; Elliott, Justin P; Blair, Ewen O; Reeves, Simon J; Schmüser, Ilka; Walton, Anthony J; Mount, Andrew R

    2016-08-15

    Microelectrodes have a number of advantages over macroelectrodes for quantitative electroanalysis and monitoring, including reduced iR drop, a high signal-to-noise ratio and reduced sensitivity to convection. Their use in molten salts has been generally precluded by the combined materials challenges of stresses associated with thermal cycling and physical and corrosive chemical degradation at the relatively high temperatures involved. We have shown that microfabrication, employing high precision photolithographic patterning in combination with the controlled deposition of materials, can be used to successfully address these challenges. The resulting molten salt compatible microelectrodes (MSMs) enable prolonged quantitative microelectrode measurements in molten salts (MSs). This paper reports the fabrication of novel MSM disc electrodes, chosen because they have an established ambient analytical response. It includes a detailed set of electrochemical characterisation studies which demonstrate both their enhanced capability over macroelectrodes and over commercial glass pulled microelectrodes, and their ability to extract quantitative electroanalytical information from MS systems. MSM measurements are then used to demonstrate their potential for shedding new light on the fundamental properties of, and processes in, MSs, such as mass transport, charge transfer reaction rates and the selective plating/stripping and alloying reactions of liquid Bi and other metals; this will underpin the development of enhanced MS industrial processes, including pyrochemical spent nuclear fuel reprocessing.

  8. Advances in electroanalysis, sensing and monitoring in molten salts.

    PubMed

    Corrigan, Damion K; Elliott, Justin P; Blair, Ewen O; Reeves, Simon J; Schmüser, Ilka; Walton, Anthony J; Mount, Andrew R

    2016-08-15

    Microelectrodes have a number of advantages over macroelectrodes for quantitative electroanalysis and monitoring, including reduced iR drop, a high signal-to-noise ratio and reduced sensitivity to convection. Their use in molten salts has been generally precluded by the combined materials challenges of stresses associated with thermal cycling and physical and corrosive chemical degradation at the relatively high temperatures involved. We have shown that microfabrication, employing high precision photolithographic patterning in combination with the controlled deposition of materials, can be used to successfully address these challenges. The resulting molten salt compatible microelectrodes (MSMs) enable prolonged quantitative microelectrode measurements in molten salts (MSs). This paper reports the fabrication of novel MSM disc electrodes, chosen because they have an established ambient analytical response. It includes a detailed set of electrochemical characterisation studies which demonstrate both their enhanced capability over macroelectrodes and over commercial glass pulled microelectrodes, and their ability to extract quantitative electroanalytical information from MS systems. MSM measurements are then used to demonstrate their potential for shedding new light on the fundamental properties of, and processes in, MSs, such as mass transport, charge transfer reaction rates and the selective plating/stripping and alloying reactions of liquid Bi and other metals; this will underpin the development of enhanced MS industrial processes, including pyrochemical spent nuclear fuel reprocessing. PMID:27252128

  9. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. PMID:23871020

  10. Use of ion conductors in the pyrochemical reduction of oxides

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-02-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.

  11. Use of ion conductors in the pyrochemical reduction of oxides

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO.sub.2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a .beta.-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca.degree. used for reducing UO.sub.2 and PuO.sub.2 to U and Pu.

  12. Densification of salt-occluded zeolite a powders to a leach-resistant monolith

    SciTech Connect

    Lewis, M.A.; Fischer, D.F.; Murhpy, C.D.

    1993-10-01

    Pyrochemical processing of spent fuel from the Integral Fast Reactor (IFR) yields a salt waste of LiCl-KCl that contains approximately 6 wt% fission products, primarily as CsCl and SrCl{sub 2}. Past work has shown that zeolite A will preferentially sorb cesium and strontium and will encapsulate the salt waste in a leach-resistant, radiation-resistant aluminosilicate matrix. However, a method is sill needed to convert the salt-occluded zeolite powders into a form suitable for geologic disposal. We are thus investigating a method that forms bonded zeolite by hot pressing a mixture of glass frit and salt-occluded zeolite powders at 990 K (717{degree}C) and 28 MPa. The leach resistance of the bonded zeolite was measured in static leach tests run for 28 days in 363 K (90{degree}C) deionized water. Normalized release rates of all elements in the bonded zeolite were low, <1 g/m{sup 2} d. Thus, the bonded zeolite may be a suitable waste form for IFR salt waste.

  13. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    SciTech Connect

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-07-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  14. Effect of emulsifying salts on the physicochemical properties of processed cheese made from Mozzarella.

    PubMed

    Chen, L; Liu, H

    2012-09-01

    The aim of this study was to investigate the effect of different types and concentrations of emulsifying salts (trisodium citrate, tetrasodium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, and disodium orthophosphate) on the physicochemical properties of processed cheese. The physicochemical composition, texture profile, degree of casein dissociation, fat particle size, color, and nuclear magnetic resonance profile (NMR) of processed cheese were determined. Hardness, degree of casein dissociation, and pH increased as the concentration of emulsifying salts increased. The fat particle size of processed cheese was significantly influenced by the type of emulsifying salts, with processed cheese made with sodium hexametaphosphate having larger particles (4.68 µm) than cheeses made with the other salts (from 2.71 to 3.30 µm). The processed cheese prepared with trisodium citrate was whiter than those prepared with the other emulsifying salts. The NMR analysis showed that the relaxation time of processed cheese of 10 to 100 ms accounted for a major proportion, indicating that the moisture in processed cheese was mainly bound water combined with the fat globule and hydrated casein.

  15. Separation of actinides from LWR spent fuel using morten-salt based electrochemical processes.

    SciTech Connect

    Karell, E. J.; Gourishankar, K. V.; Smith, J. L.; Chow, L. S.; Redey, L. R.; Chemical Engineering

    2001-12-01

    Results are presented of work done at Argonne National Laboratory to develop a molten-salt-based electrochemical technology for extracting uranium and transuranic elements from spent light water reactor fuel. In this process, the actinide oxides in the spent fuel are reduced using lithium at 650{sup o}C in the presence of molten LiCl, yielding the corresponding actinides and Li{sub 2}O. The actinides are then extracted from the reduction product by means of electrorefining. Associated with the reduction step is an ancillary salt-recovery step designed to electrochemically reduce the Li{sub 2}O concentration of the salt and recover the lithium metal.Experiments were performed at the laboratory scale (50 to 150 g of fuel and 0.5 to 3.5 l of salt) and engineering scale (3.7 to 5.2 kg of fuel and 50 l of salt). Laboratory-scale experiments were designed to obtain information on the fundamental factors affecting process rates. Engineering-scale experiments were conducted to verify that the parameters controlling process scaleup are sufficiently understood, and to test equipment and operating concepts at or near full scale. All indications are that the electrochemical-based process should be workable at practical plant sizes.

  16. Separation of Actinides from LWR Spent Fuel Using Molten-Salt-Based Electrochemical Processes

    SciTech Connect

    Karell, Eric J.; Gourishankar, Karthick V.; Smith, James L.; Chow, Lorac S.; Redey, Laszlo

    2001-12-15

    Results are presented of work done at Argonne National Laboratory to develop a molten-salt-based electrochemical technology for extracting uranium and transuranic elements from spent light water reactor fuel. In this process, the actinide oxides in the spent fuel are reduced using lithium at 650 deg. C in the presence of molten LiCl, yielding the corresponding actinides and Li{sub 2}O. The actinides are then extracted from the reduction product by means of electrorefining. Associated with the reduction step is an ancillary salt-recovery step designed to electrochemically reduce the Li{sub 2}O concentration of the salt and recover the lithium metal.Experiments were performed at the laboratory scale (50 to 150 g of fuel and 0.5 to 3.5 l of salt) and engineering scale (3.7 to 5.2 kg of fuel and 50 l of salt). Laboratory-scale experiments were designed to obtain information on the fundamental factors affecting process rates. Engineering-scale experiments were conducted to verify that the parameters controlling process scaleup are sufficiently understood, and to test equipment and operating concepts at or near full scale. All indications are that the electrochemical-based process should be workable at practical plant sizes.

  17. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Sridharan, Kumar; Allen, Todd; Anderson, Mark; Simpson, Mike

    2012-11-30

    This project addresses both practical and fundamental scientific issues of direct relevance to operational challenges of the molten LiCl-KCl salt pyrochemical process, while providing avenues for improvements in the process. In order to understand the effects of the continually changing composition of the molten salt bath during the process, the project team will systematically vary the concentrations of rare earth surrogate elements, lanthanum, cerium, praseodymium, and neodymium, which will be added to the molten LiCl-KCl salt. They will also perform a limited number of focused experiments by the dissolution of depleted uranium. All experiments will be performed at 500 deg C. The project consists of the following tasks. Researchers will measure density of the molten salts using an instrument specifically designed for this purpose, and will determine the melting points with a differential scanning calorimeter. Knowledge of these properties is essential for salt mass accounting and taking the necessary steps to prevent melt freezing. The team will use cyclic voltammetry studies to determine redox potentials of the rare earth cations, as well as their diffusion coefficients and activities in the molten LiCl-KCl salt. In addition, the team will perform anodic stripping voltammetry to determine the concentration of the rare earth elements and their solubilities, and to develop the scientific basis for an on-line diagnostic system for in situ monitoring of the cation species concentration (rare earths in this case). Solubility and activity of the cation species are critically important for the prediction of the salt's useful lifetime and disposal.

  18. Superimpose signal processing method for micro-scale thermal imaging of solar salts at high temperature

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko; Zamengo, Massimiliano; Kato, Yukitaka

    2016-05-01

    The global interest in energy applications activates the advanced study about the molten salts in the usage of fluids in the power cycle, such as for transport and heat storage in solar power facilities. However, the basic properties of molten salts show a general scattering in characterization especially in thermal properties. It is suggested that new studies are required on the measurement of thermal properties of solar salts using recent technologies. In this study, micro-scale heat transfer and phase change in molten salts are presented using our originally developed device: the micro-bolometer Infrared focal plane arrays (IR FPA) measuring system is a portable type instrument, which is re-designed to measure the thermal phenomena in high temperature up to 700 °C or higher. The superimpose system is newly setup adjusted to the signal processing in high temperature to realize the quantitative thermal imaging, simultaneously. The portable type apparatus for a quantitative micro-scale thermography using a micro-bolometer has been proposed based on an achromatic lens design to capture a micro-scale image in the long-wave infrared, a video signal superimposing for the real time emissivity correction, and a pseudo acceleration of a timeframe. Combined with the superimpose technique, the micro-scale thermal imaging in high temperature is achieved and the molten flows of the solar salts, sodium nitrate, and potassium nitrate are successfully observed. The solar salt, the mixture of sodium nitrate and potassium nitrate, shows a different shape of exothermic heat front morphology in the lower phase transition (solidification) temperature than the nitrates on cooling. The proposed measuring technique will be utilized to accelerate the screening step to determine the phase diagram and the eutectics of the multiple mixtures of candidate molten salts, which may be used as heat transport medium from the concentrated solar power to a processing plant for thermal energy

  19. PROCESS OF FORMING PLUOTONIUM SALTS FROM PLUTONIUM EXALATES

    DOEpatents

    Garner, C.S.

    1959-02-24

    A process is presented for converting plutonium oxalate to other plutonium compounds by a dry conversion method. According to the process, lower valence plutonium oxalate is heated in the presence of a vapor of a volatile non- oxygenated monobasic acid, such as HCl or HF. For example, in order to produce plutonium chloride, the pure plutonium oxalate is heated to about 700 deg C in a slow stream of hydrogen plus HCl. By the proper selection of an oxidizing or reducing atmosphere, the plutonium halide product can be obtained in either the plus 3 or plus 4 valence state.

  20. Targets and timelines for reducing salt in processed food in the Americas.

    PubMed

    Campbell, Norm; Legowski, Barbara; Legetic, Branka; Ferrante, Daniel; Nilson, Eduardo; Campbell, Christine; L'Abbé, Mary

    2014-09-01

    Reducing dietary salt is one of the most effective interventions to lessen the burden of premature death and disability. In high-income countries and those in nutrition transition, processed foods are a significant if not the main source of dietary salt. Reformulating these products to reduce their salt content is recommended as a best buy to prevent chronic diseases across populations. In the Americas, there are targets and timelines for reduced salt content of processed foods in 8 countries--Argentina, Brazil, Canada, Chile, Ecuador, Mexico, and the National Salt Reduction Initiative in the United States and Paraguay. While there are common elements across the countries, there are notable differences in their approaches: 4 countries have exclusively voluntary targets, 2 countries have combined voluntary and regulated components, and 1 country has only regulations. The countries have set different types of targets and in some cases combined them: averages, sales-weighted averages, upper limits, and percentage reductions. The foods to which the targets apply vary from single categories to comprehensive categories accounting for all processed products. The most accessible and transparent targets are upper limits per food category. Most likely to have a substantive and sustained impact on salt intake across whole populations is the combination of sales-weighted averages and upper limits. To assist all countries with policies to improve the overall nutritional value of processed foods, the authors call for food companies to supply food composition data and product sales volume data to transparent and open-access platforms and for global companies to supply the products that meet the strictest targets to all markets. Countries participating in common markets at the subregional level can consider harmonizing targets, nutrition labels, and warning labels.

  1. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    SciTech Connect

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  2. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan, Rev. 1

    SciTech Connect

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-12-10

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report.

  3. FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS

    DOEpatents

    Moore, R.H.

    1960-08-01

    A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.

  4. Significant Modules and Biological Processes between Active Components of Salvia miltiorrhiza Depside Salt and Aspirin

    PubMed Central

    Xie, Yanming; Wang, Lianxin; Zhang, Yingying; Gu, Hao; Chai, Yan

    2016-01-01

    The aim of this study is to examine and compare the similarities and differences between active components of S. miltiorrhiza depside salt and aspirin using perspective of pharmacological molecular networks. Active components of S. miltiorrhiza depside salt and aspirin's related genes were identified via the STITCH4.0 and GeneCards Database. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to construct network and divide modules, respectively. Finally, 32, 2, and 28 overlapping genes, modules, and pathways were identified between active components of S. miltiorrhiza depside salt and aspirin. A multidimensional framework of drug network showed that two networks reflected commonly in human aortic endothelial cells and atherosclerosis process. Aspirin plays a more important role in metabolism, such as the well-known AA metabolism pathway and other lipid or carbohydrate metabolism pathways. S. miltiorrhiza depside salt still plays a regulatory role in type II diabetes mellitus, insulin resistance, and adipocytokine signaling pathway. Therefore, this study suggests that aspirin combined with S. miltiorrhiza depside salt may be more efficient in treatment of CHD patients, especially those with diabetes mellitus or hyperlipidemia. Further clinical trials to confirm this hypothesis are still needed. PMID:27069488

  5. EXAMINE AND EVALUATE A PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LIQUEFIED NATURAL GAS

    SciTech Connect

    Michael M. McCall; William M. Bishop; D. Braxton Scherz

    2003-04-24

    The goal of the U.S. Department of Energy cooperative research project is to define, describe, and validate, a process to utilize salt caverns to receive and store the cargoes of LNG ships. The project defines the process as receiving LNG from a ship, pumping the LNG up to cavern injection pressures, warming it to cavern compatible temperatures, injecting the warmed vapor directly into salt caverns for storage, and distribution to the pipeline network. The performance of work under this agreement is based on U.S. Patent 5,511,905, and other U.S. and Foreign pending patent applications. The cost sharing participants in the research are The National Energy Technology Laboratory (U.S. Department of Energy), BP America Production Company, Bluewater Offshore Production Systems (U.S.A.), Inc., and HNG Storage, L.P. Initial results indicate that a salt cavern based receiving terminal could be built at about half the capital cost, less than half the operating costs and would have significantly higher delivery capacity, shorter construction time, and be much more secure than a conventional liquid tank based terminal. There is a significant body of knowledge and practice concerning natural gas storage in salt caverns, and there is a considerable body of knowledge and practice in handling LNG, but there has never been any attempt to develop a process whereby the two technologies can be combined. Salt cavern storage is infinitely more secure than surface storage tanks, far less susceptible to accidents or terrorist acts, and much more acceptable to the community. The project team developed conceptual designs of two salt cavern based LNG terminals, one with caverns located in Calcasieu Parish Louisiana, and the second in Vermilion block 179 about 50 miles offshore Louisiana. These conceptual designs were compared to conventional tank based LNG terminals and demonstrate superior security, economy and capacity. The potential for the development of LNG receiving terminals

  6. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  7. Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof

    DOEpatents

    Hollingsworth, Rawle I.

    1994-01-01

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  8. Process For The Preparation Of 3,4-Dihyd Roxybutanoic Acid And Salts Thereof

    DOEpatents

    Hollingsworth, Rawle I.

    1994-06-07

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  9. Separation and Fixation of Toxic Components in Salt Brines Using a Water-Based Process

    SciTech Connect

    Franks, C.; Quach, A.; Birnie III, D.; Ela, W.; Saez, A.E.; Zelinski, B.; Smith, H.; Smith, G.

    2004-01-01

    Efforts to implement new water quality standards, increase water reuse and reclamation, and minimize the cost of waste storage motivate the development of new processes for stabilizing wastewater residuals that minimize waste volume, water content and the long-term environmental risk from related by-products. This work explores the use of an aqueous-based emulsion process to create an epoxy/rubber matrix for separating and encapsulating waste components from salt laden, arsenic contaminated, amorphous iron hydrate sludges. Such sludges are generated from conventional water purification precipitation/adsorption processes, used to convert aqueous brine streams to semi-solid waste streams, such as ion exchange/membrane separation, and from other precipitative heavy metal removal operations. In this study, epoxy and polystyrene butadiene (PSB) rubber emulsions are mixed together and then combined with a surrogate sludge. The surrogate sludge consists of amorphous iron hydrate with 1 part arsenic fixed to the surface of the hydrate per 10 parts iron mixed with sodium nitrate and chloride salts and water. The resulting emulsion is cured and dried at 80 °C to remove water. Microstructure characterization by electron microscopy confirms that the epoxy/PSB matrix surrounds and encapsulates the arsenic laden amorphous iron hydrate phase while allowing the salt to migrate to internal and external surfaces of the sample. Salt extraction studies indicate that the porous nature of the resulting matrix promotes the separation and removal of as much as 90% of the original salt content in only one hour. Long term leaching studies based on the use of the infinite slab diffusion model reveal no evidence of iron migration or, by inference, arsenic migration, and demonstrate that the diffusion coefficients of the unextracted salt yield leachability indices within regulations for non-hazardous landfill disposal. Because salt is the most mobile species, it is inferred that arsenic

  10. Treatment of waste by the Molten Salt Oxidation process at the Oak Ridge National Laboratory

    SciTech Connect

    Crosley, S.M.; Lorenzo, D.K.; Van Cleve, J.E.; Gay, R.L.; Barclay, K.M.; Newcomb, J.C.; Yosim, S.J.

    1993-03-01

    The Molten Salt Oxidation (MSO) process has been under development by the Energy Technology Engineering Center (ETEC) to treat hazardous, radioactive, and mixed waste. Testing of the system was done on a number of wastes to demonstrate the technical feasibility of the process. This testing included simulated intermediate level waste (ILW) from the Oak Ridge National Laboratory. The intermediate level waste stream consisted of a slurry of concentrated aqueous solutions of sodium hydroxide and sodium nitrate, with a small amount of miscellaneous combustible components (PVC, TBP, kerosene, and ion exchange resins). The purpose of these tests was to evaluate the destruction of the organics, evaporation of the water, and conversion of the hazardous salts (hydroxide and nitrate) to non-hazardous sodium carbonate. Results of the tests are discussed and analyzed, and the possibilities of applying the MSO process to different waste streams at ORNL in the future are explored.

  11. A NOVEL PROCESS TO USE SALT CAVERNS TO RECEIVE SHIP BORNE LNG

    SciTech Connect

    Michael M. McCall; William M. Bishop; Marcus Krekel; James F. Davis; D. Braxton Scherz

    2005-05-31

    This cooperative research project validates use of man made salt caverns to receive and store the cargoes of LNG ships in lieu of large liquid LNG tanks. Salt caverns will not tolerate direct injection of LNG because it is a cryogenic liquid, too cold for contact with salt. This research confirmed the technical processes and the economic benefits of pressuring the LNG up to dense phase, warming it to salt compatible temperatures and then directly injecting the dense phase gas into salt caverns for storage. The use of salt caverns to store natural gas sourced from LNG imports, particularly when located offshore, provides a highly secure, large scale and lower cost import facility as an alternative to tank based LNG import terminals. This design can unload a ship in the same time as unloading at a tank based terminal. The Strategic Petroleum Reserve uses man made salt caverns to securely store large quantities of crude oil. Similarly, this project describes a novel application of salt cavern gas storage technologies used for the first time in conjunction with LNG receiving. The energy industry uses man made salt caverns to store an array of gases and liquids but has never used man made salt caverns directly in the importation of LNG. This project has adapted and expanded the field of salt cavern storage technology and combined it with novel equipment and processes to accommodate LNG importation. The salt cavern based LNG receiving terminal described in the project can be located onshore or offshore, but the focus of the design and cost estimates has been on an offshore location, away from congested channels and ports. The salt cavern based terminal can provide large volumes of gas storage, high deliverability from storage, and is simplified in operation compared to tank based LNG terminals. Phase I of this project included mathematical modeling that proved a salt cavern based receiving terminal could be built at lower capital cost, and would have significantly higher

  12. Phase Equilibrium Studies of Savannah River Tanks and Feed Streams for the Salt Waste Processing Facility

    SciTech Connect

    Weber, C.F.

    2001-06-19

    A chemical equilibrium model is developed and used to evaluate supersaturation of tanks and proposed feed streams to the Salt Waste Processing Facility. The model uses Pitzer's model for activity coefficients and is validated by comparison with a variety of thermodynamic data. The model assesses the supersaturation of 13 tanks at the Savannah River Site (SRS), indicating that small amounts of gibbsite and or aluminosilicate may form. The model is also used to evaluate proposed feed streams to the Salt Waste Processing Facility for 13 years of operation. Results indicate that dilutions using 3-4 M NaOH (about 0.3-0.4 L caustic per kg feed solution) should avoid precipitation and reduce the Na{sup +} ion concentration to 5.6 M.

  13. Study on LiCl waste salt treatment process by layer melt crystallization

    SciTech Connect

    Cho, Yung-Zun; Lee, Tae-Kyo; Choi, Jung-Hoon; Eun, Hee-Chul; Park, Hwan-Seo; Kim, In-Tae; Park, Geun-Il

    2013-07-01

    Layer melt crystallization operated in a static mode has been applied to separate Group I and II chlorides from surrogate LiCl waste salt. The effects of operating conditions such as crystal growing rate(or flux) and initial impurity concentration on separation (or concentration) of cesium, strontium and barium involved in a LiCl melts were analyzed. In a layer crystallization process, separation was impaired by occlusion of impurities and by residual melt adhering to LiCl crystal after at the end of the process. The crystal growth rate strongly affects the crystal structure, therefore the separation efficiency, while the effect of the initial Cs and Sr concentration in LiCl molten salt was nearly negligible. (authors)

  14. Geologic processes and Cenozoic history related to salt dissolution in southeastern New Mexico

    USGS Publications Warehouse

    Bachman, George Odell

    1974-01-01

    Salt of Permian age in the subsurface of an area near The Divide, east of Carlsbad, N. Mex., is being considered for a nuclear waste repository. The geologic history of the region indicates that dissolution of salt has occurred in the past during at least three distinct epochs: (1) after Triassic but before middle Pleistocene time; (2) during middle Pleistocene; and (3) during late Pleistocene. Thus, destructive geologic processes have been intermittent through more than I00 million years. Nash Draw, near The Divide, formed during late Pleistocene time by the coalescing of collapse sinks. The rate of its subsidence is estimated to have been about 10 cm (0.33 foot) per thousand years. The immediate area of The Divide adjacent to Nash Draw has not undergone stress by geologic processes during Pleistocene time and there are no present indications that this geologic environment will change drastically within the period of concern for the repository.

  15. [Monitoring of water and salt transport in silt and sandy soil during the leaching process].

    PubMed

    Fu, Teng-Fei; Jia, Yong-Gang; Guo, Lei; Liu, Xiao-Lei

    2012-11-01

    Water and salt transport in soil and its mechanism is the key point of the saline soil research. The dynamic rule of water and transport in soil during the leaching process is the theoretical basis of formation, flush, drainage and improvement of saline soil. In this study, a vertical infiltration experiment was conducted to monitor the variation in the resistivity of silt and sandy soil during the leaching process by the self-designed automatic monitoring device. The experimental results showed that the peaks in the resistivity of the two soils went down and faded away in the course of leaching. It took about 30 minutes for sandy soil to reach the water-salt balance, whereas the silt took about 70 minutes. With the increasing leaching times, the desalination depth remained basically the same, being 35 cm for sandy soil and 10 cm for the silt from the top to bottom of soil column. Therefore, 3 and 7 leaching processes were required respectively for the complete desalination of the soil column. The temporal and spatial resolution of this monitoring device can be adjusted according to the practical demand. This device can not only achieve the remote, in situ and dynamic monitoring data of water and salt transport, but also provide an effective method in monitoring, assessment and early warning of salinization.

  16. The impact of the reduction of sodium content in processed foods in salt intake in Brazil.

    PubMed

    Souza, Amanda de Moura; Souza, Bárbara da Silva Nalin de; Bezerra, Ilana Nogueira; Sichieri, Rosely

    2016-02-01

    This study aimed at assessing the potential impact of the reduction of sodium content in processed foods in the average salt intake in the Brazilian population. A total of 32,900 participants of the first National Dietary Survey (NDS 2008-2009), age 10 years and older who provided information about food intake over two days were evaluated. The sodium reduction targets established by the Brazilian Ministry of Health in 2010 and 2013 were used as the reference to determine the maximum content of sodium in 21 groups of processed food. The results show that sodium reduction targets in processed food have small impact in mean Brazilian population intake of salt. For 2017, the expected mean reduction is of 1.5%, the average sodium intake being still above the recommended 2,000mg/day maximum. Therefore, it will hardly be possible to reach the necessary reduction in salt intake in Brazil from volunteer agreements like the ones made so far.

  17. Molten salt coal gasification process development unit. Phase 1. Volume 2. Commercial plant study. Final report

    SciTech Connect

    Kohl, Arthur L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit (PDU). This process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of the salt. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  18. The effect of iodine salts on lipid oxidation and changes in nutritive value of protein in stored processed meats.

    PubMed

    Hęś, Marzanna; Waszkowiak, Katarzyna; Szymandera-Buszka, Krystyna

    2012-10-01

    The aim was to assess the effect of iodine salts (KI or KIO(3)) on lipid oxidation as well as changes in the availability of lysine and methionine and protein digestibility in frozen-stored processed meats. Three types of iodine salt carriers were used: table salt, wheat fiber and soy protein isolate. The results showed no catalytic effect of iodine salts on lipid oxidation in stored processed meats. The application of a protein isolate and wheat fiber resulted in the inhibition of lipid oxidation in meatballs. During storage of meat products the contents of available lysine and methionine as well as protein digestibility were decreased. The utilization of wheat fiber as an iodine salt carrier had a significant effect on the reduction of lysine losses. No protective properties were found for the wheat fiber or soy protein isolate towards methionine.

  19. Glovebox design requirements for molten salt oxidation processing of transuranic waste

    SciTech Connect

    Ramsey, K.B.; Acosta, S.V.; Wernly, K.D.

    1998-12-31

    This paper presents an overview of potential technologies for stabilization of {sup 238}Pu-contaminated combustible waste. Molten salt oxidation (MSO) provides a method for removing greater than 99.999% of the organic matrix from combustible waste. Implementation of MSO processing at the Los Alamos National Laboratory (LANL) Plutonium Facility will eliminate the combustible matrix from {sup 238}Pu-contaminated waste and consequently reduce the cost of TRU waste disposal operations at LANL. The glovebox design requirements for unit operations including size reduction and MSO processing will be presented.

  20. The source term and waste optimization of molten salt reactors with processing

    SciTech Connect

    Gat, U.; Dodds, H.L.

    1993-07-01

    The source term of a molten salt reactor (MSR) with fuel processing is reduced by the ratio of processing time to refueling time as compared to solid fuel reactors. The reduction, which can be one to two orders of magnitude, is due to removal of the long-lived fission products. The waste from MSRs can be optimized with respect to its chemical composition, concentration, mixture, shape, and size. The actinides and long-lived isotopes can be separated out and returned to the reactor for transmutation. These features make MSRs more acceptable and simpler in operation and handling.

  1. Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof

    DOEpatents

    Hollingsworth, Rawle I.

    1994-01-01

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-1inked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  2. Simplified Reference Electrode for Electrorefining of Spent Nuclear Fuel in High Temperature Molten Salt

    SciTech Connect

    Kim Davies; Shelly X Li

    2007-09-01

    Pyrochemical processing plays an important role in development of proliferation- resistant nuclear fuel cycles. At the Idaho National Laboratory (INL), a pyrochemical process has been implemented for the treatment of spent fuel from the Experimental Breeder Reactor II (EBR-II) in the last decade. Electrorefining in a high temperature molten salt is considered a signature or central technology in pyroprocessing fuel cycles. Separation of actinides from fission products is being demonstrated by electrorefining the spent fuel in a molten UCl3-LiCl-KCl electrolyte in two engineering scale electrorefiners (ERs). The electrorefining process is current controlled. The reference electrode provides process information through monitoring of the voltage difference between the reference and the anode and cathode electrodes. This information is essential for monitoring the reactions occurring at the electrodes, investigating separation efficiency, controlling the process rate, and determining the process end-point. The original reference electrode has provided good life expectancy and signal stability, but is not easily replaceable. The reference electrode used a vycor-glass ion-permeable membrane containing a high purity silver wire with one end positioned in ~2 grams of LiCl/KCl salt electrolyte with a low concentration (~1%) AgCl. It was, however, a complex assembly requiring specialized skill and talent to fabricate. The construction involved multiple small pieces, glass joints, ceramic to glass joints, and ceramic to metal joints all assembled in a high purity inert gas environment. As original electrodes reached end-of-life it was uncertain if the skills and knowledge were readily available to successfully fabricate replacements. Experimental work has been conducted to identify a simpler electrode design while retaining the needed long life and signal stability. This improved design, based on an ion-permeable membrane of mullite has been completed. Use of the silver wire

  3. Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)

    SciTech Connect

    CHANG, ROBERT

    2006-02-02

    All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

  4. Destruction of XM-46 (aka LGP-1846) using the Molten Salt Destruction Process

    SciTech Connect

    Upadhye, R.S.; Watkins, B.E.

    1994-03-01

    The experimental work done on the destruction of the liquid gun propellant XM-46 (or LGP-1846) using the Molten Salt Destruction (MSD) Process at the Lawrence Livermore National Laboratory (LLNL) for the US Army is described in this report. The current methods of disposal of large quantities of high explosives (HE), propellants and wastes containing energetic materials by open burning or open detonation (OB/OD), or by incineration, are becoming undesirable. LLNL is developing MSD as an alternative to OB/OD and incineration of energetic materials. A series of 18 continuous experimental runs were made wherein a solution of XM-46 and water was injected into a bed of molten salt comprising the carbonates of sodium, potassium and lithium, along with air. The results from these experiments, described in detail in the main body of this report, show that: XM-46 can be safely and completely destroyed in a bed of molten salt at temperatures well below those needed for incineration. Under optimum operating conditions, less than 1% of the chemically bound nitrogen in the XM-46 is converted to NO{sub x}, and less than 1% carbon is converted to CO. There exist, however, a number of technical uncertainties: We need to understand better why nitrates build up in the salt bath, and what we can do to reduce this amount. We need to understand the mechanism of XM-46 oxidation and ways to minimize the formation of CO and NO{sub x}. In addition, we would like to find out ways by which a more concentrated solution of XM-46 can be introduced into the reactor, so as to increase the throughputs.

  5. OPERATIONS REVIEW OF THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS - 11327

    SciTech Connect

    Peters, T.; Poirier, M.; Fondeur, F.; Fink, S.; Brown, S.; Geeting, M.

    2011-02-07

    The Savannah River Site (SRS) is removing liquid radioactive waste from its Tank Farm. To treat waste streams that are low in Cs-137, Sr-90, and actinides, SRS developed the Actinide Removal Process and implemented the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). The Actinide Removal Process contacts salt solution with monosodium titanate to sorb strontium and select actinides. After monosodium titanate contact, the resulting slurry is filtered to remove the monosodium titanate (and sorbed strontium and actinides) and entrained sludge. The filtrate is transferred to the MCU for further treatment to remove cesium. The solid particulates removed by the filter are concentrated to {approx} 5 wt %, washed to reduce the sodium concentration, and transferred to the Defense Waste Processing Facility for vitrification. The CSSX process extracts the cesium from the radioactive waste using a customized solvent to produce a Decontaminated Salt Solution (DSS), and strips and concentrates the cesium from the solvent with dilute nitric acid. The DSS is incorporated in grout while the strip acid solution is transferred to the Defense Waste Processing Facility for vitrification. The facilities began radiological processing in April 2008 and started processing of the third campaign ('MarcoBatch 3') of waste in June 2010. Campaigns to date have processed {approx}1.2 million gallons of dissolved saltcake. Savannah River National Laboratory (SRNL) personnel performed tests using actual radioactive samples for each waste batch prior to processing. Testing included monosodium titanate sorption of strontium and actinides followed by CSSX batch contact tests to verify expected cesium mass transfer. This paper describes the tests conducted and compares results from facility operations. The results include strontium, plutonium, and cesium removal, cesium concentration, and organic entrainment and recovery data. Additionally, the poster describes lessons learned during operation

  6. Completion report for the UMTRA project Vitro processing site, Salt Lake City, Utah

    SciTech Connect

    1996-08-01

    This completion report provides evidence that the final Salt Lake City, Utah, processing site property conditions are in accordance with the approval design and that all U.S. Environmental Protection Agency (EPA) standards have been satisfied. Included as appendixes to support the stated conclusions are the record drawings; a summary of grid test results; contract specifications and construction drawing and the EPA standards; the audit, inspection, and surveillance summary; the permit information; and project photographs. The principal objectives of remedial action at Salt Lake City were to remove the tailings from the former processing site, render the site free of contamination to EPA standards, and restore the site to the final design grade elevations. The final remedial action plan, which is approved by the U.S. Department of Energy and concurred upon by the U.S. Nuclear Regulator Commission and the state of Utah, contains the conceptual design used to develop the final approved design. During remedial action construction operations, conditions were encountered that required design features that differed form the conceptual design. These conditions and the associated design changes are noted in the record drawings. All remedial action activities were completed in conformance with the specifications and drawings. In the opinion of the state of Utah, the record drawings accurately reflect existing property conditions at the processing site.

  7. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect

    Harmon, Harry D.

    2000-11-30

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA) to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  8. Tanks Focus Area Alternative Salt Processing Research and Development Program Plan

    SciTech Connect

    Harmon, Harry D.

    2000-05-15

    In March 2000, DOE-Headquarters (HQ) requested the Tanks Focus Area (TFA)to assume management responsibility for the Salt Processing Project technology development program at Savannah River Site. The TFA was requested to conduct several activities, including review and revision of the technology development roadmaps, development of down-selection criteria, and preparation of a comprehensive Research and Development (R&D) Program Plan for three candidate cesium removal technologies, as well as the Alpha and strontium removal processes that must also be carried out. The three cesium removal candidate technologies are Crystalline Silicotitanate (CST) Non-Elutable Ion Exchange, Caustic Side Solvent Extraction (CSSX), and Small Tank Tetraphenylborate Precipitation (STTP). This plan describes the technology development needs for each process that must be satisfied in order to reach a down-selection decision, as well as continuing technology development required to support conceptual design activities.

  9. Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157:H7.

    PubMed

    Harris, Shaun M; Yue, Wan-Fu; Olsen, Sarena A; Hu, Jia; Means, Warrie J; McCormick, Richard J; Du, Min; Zhu, Mei-Jun

    2012-10-15

    Escherichia coli (E. coli) O157:H7 remains a major food safety concern associated with meat, especially beef products. Shiga toxins (Stx) are key virulence factors produced by E. coli O157:H7 that are responsible for hemorrhagic colitis and Hemolytic Uremic Syndrome. Stx are heat stable and can be absorbed after oral ingestion. Despite the extensive study of E. coli O157:H7 survival during meat processing, little attention is paid to the production of Stx during meat processing. The objective of this study was to elucidate the effect of salt, an essential additive to processed meat, at concentrations relevant to meat processing (0%, 1%, 2%, 3%, W/V) on Stx2 production and Stx2 prophage induction by E. coli O157:H7 strains. For both E. coli O157:H7 86-24 and EDL933 strains, including 2% salt in LB broth decreased (P<0.05) E. coli O157:H7 population, but increased (P<0.05) Stx2 production (as measured relative to Log(10)CFU) compared to that of the control (1% salt). Supplementing 3% salt decreased (P<0.05) both E. coli O157:H7 number and Stx2 production. Quantitative RT-PCR indicated that stx2 mRNA expression in culture media containing 2% salt was greatly increased (P<0.05) compared to other salt concentrations. Consistent with enhanced Stx2 production and stx2 expression, the 2% salt group had highest lambdoid phage titer and stx2 prophage induction among all salt treatments. RecA is a key mediator of bacterial response to stress, which mediates prophage activation. Quantitative RT-PCR further indicated that recA mRNA expression was higher in both 2% and 3% salt than that of 0% and 1% salt treatments, indicating that stress was involved in enhanced Stx2 production. In conclusion, salt at the concentration used for meat processing enhances Stx production, a process linked to bacterial stress response and lambdoid prophage induction.

  10. Pyrochemical processing of Idaho Chemical Processing Plant (ICPP) High Level Waste (HLW) calcine

    SciTech Connect

    Bronson, M.C.; Ebbinghaus, B.B.; Riley, D.C.; Nelson, L.; Del Debbio, J.

    1994-11-15

    Inertial force damping control by micromanipulator modulation is proposed to suppress the vibrations of a micro/macro-manipulator system. The proposed controller, developed using classical control theory, is added to the existing control system. The proposed controller uses real-time measurements of macro-manipulator flexibility to adjust the motion of the micro manipulator to counteract structural vibrations. Experimental studies using an existing micro/macro flexible link manipulator testbed demonstrate the effectiveness of the proposed approach to suppression of vibrations in the macro/micro-manipulator system using micromanipulator-based inertial active damping control.

  11. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process.

    PubMed

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M; Shao, Zhifeng

    2016-01-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition. PMID:27527905

  12. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    NASA Astrophysics Data System (ADS)

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-08-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition.

  13. Nanoscopic characterization of the water vapor-salt interfacial layer reveals a unique biphasic adsorption process

    PubMed Central

    Yang, Liu; He, Jianfeng; Shen, Yi; Li, Xiaowei; Sun, Jielin; Czajkowsky, Daniel M.; Shao, Zhifeng

    2016-01-01

    Our quantitative understanding of water adsorption onto salt surfaces under ambient conditions is presently quite poor owing to the difficulties in directly characterizing this interfacial layer under these conditions. Here we determine the thickness of the interfacial layer on NaCl at different relative humidities (RH) based on a novel application of atomic force spectroscopy and capillary condensation theory. In particular, we take advantage of the microsecond-timescale of the capillary condensation process to directly resolve the magnitude of its contribution in the tip-sample interaction, from which the interfacial water thickness is determined. Further, to correlate this thickness with salt dissolution, we also measure surface conductance under similar conditions. We find that below 30% RH, there is essentially only the deposition of water molecules onto this surface, typical of conventional adsorption onto solid surfaces. However, above 30% RH, adsorption is simultaneous with the dissolution of ions, unlike conventional adsorption, leading to a rapid increase of surface conductance. Thus, water adsorption on NaCl is an unconventional biphasic process in which the interfacial layer not only exhibits quantitative differences in thickness but also qualitative differences in composition. PMID:27527905

  14. [Analysis on component difference in Citrus reticulata before and after being processed with salt by UPLC-Q-TOF/MS].

    PubMed

    Zeng, Rui; Fu, Juan; Wu, La-Bin; Huang, Lin-Fang

    2013-07-01

    To analyze components of Citrus reticulata and salt-processed C. reticulata by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS), and compared the changes in components before and after being processed with salt. Principal component analysis (PCA) and partial least squares discriminant analysis (OPLS-DA) were adopted to analyze the difference in fingerprint between crude and processed C. reticulata, showing increased content of eriocitrin, limonin, nomilin and obacunone increase in salt-processed C. reticulata. Potential chemical markers were identified as limonin, obacunone and nomilin, which could be used for distinguishing index components of crude and processed C. reticulata. PMID:24199563

  15. Caustic Recycle from Hanford Tank Waste Using NaSICON Ceramic Membrane Salt Splitting Process

    SciTech Connect

    Fountain, Matthew S.; Kurath, Dean E.; Sevigny, Gary J.; Poloski, Adam P.; Pendleton, J.; Balagopal, S.; Quist, M.; Clay, D.

    2009-02-20

    A family of inorganic ceramic materials, called sodium (Na) Super Ion Conductors (NaSICON), has been studied at Pacific Northwest National Laboratory (PNNL) to investigate their ability to separate sodium from radioactively contaminated sodium salt solutions for treating U.S. Department of Energy (DOE) tank wastes. Ceramatec Inc. developed and fabricated a membrane containing a proprietary NAS-GY material formulation that was electrochemically tested in a bench-scale apparatus with both a simulant and a radioactive tank-waste solution to determine the membrane performance when removing sodium from DOE tank wastes. Implementing this sodium separation process can result in significant cost savings by reducing the disposal volume of low-activity wastes and by producing a NaOH feedstock product for recycle into waste treatment processes such as sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes.

  16. Hydrogeologic Processes Impacting Storage, Fate, and Transport of Chloride from Road Salt in Urban Riparian Aquifers.

    PubMed

    Ledford, Sarah H; Lautz, Laura K; Stella, John C

    2016-05-17

    Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting.

  17. Hydrogeologic Processes Impacting Storage, Fate, and Transport of Chloride from Road Salt in Urban Riparian Aquifers.

    PubMed

    Ledford, Sarah H; Lautz, Laura K; Stella, John C

    2016-05-17

    Detrimental effects of road salt runoff on urban streams are compounded by its facilitated routing via storm drains, ditches, and flood channels. Elevated in-stream salinity may also result from seasonal storage and discharge of chloride in groundwater, and previous work has hypothesized that groundwater discharge to streams may have the effect of diluting stream chloride concentrations in winter and enriching them in summer. However, the hydrogeological processes controlling these patterns have not been thoroughly investigated. Our research focuses on an urban stream and floodplain system in Syracuse, NY, to understand how groundwater and surface water exchange impacts chloride storage, fate, and transport. We created a 3D groundwater flow and solute transport model of the floodplain, calibrated to the distributions of floodplain hydraulic heads and groundwater fluxes to the stream throughout the reach. We used a sensitivity analysis to calibrate and evaluate the influence of model parameters, and compared model outputs to field observations. The main source mechanism of chloride to the floodplain aquifer was high-concentration, overbank flood events in winter that directly recharged groundwater. The modeled residence time and storage capacity of the aquifer indicate that restoration projects designed to promote floodplain reconnection and the frequency of overbank flooding in winter have the potential to temporarily store chloride in groundwater, buffer surface water concentrations, and reduce stream concentrations following periods of road salting. PMID:27077530

  18. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    NASA Technical Reports Server (NTRS)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  19. Effect of a beating process, as a means of reducing salt content in Chinese-style meatballs (kung-wan): a dynamic rheological and Raman spectroscopy study.

    PubMed

    Kang, Zhuang-Li; Wang, Peng; Xu, Xing-Lian; Zhu, Chao-Zhi; Zou, Yu-Feng; Li, Ke; Zhou, Guang-Hong

    2014-02-01

    Chopping and beating processes were used as meat-cutting methods in preparing kung-wan to produce low-salt products while retaining or improving the emulsion stability, sensory evaluation, and physico-chemical properties of the standard high-salt formulation. Increased salt content improved emulsion stability and dynamic rheology. However, 3% salt content decreased the overall acceptance of kung-wan. Compared with the chopping process, beating resulted in higher emulsion stability, overall acceptance, and β-sheet content (P<0.05). Additionally, the beating process formed more compact and continuous structures at the same salt content. Kung-wan produced by beating with 1% and 2% salt had similar emulsion stabilities, sensory evaluation, and secondary structures (P>0.05). Therefore, this process allows reduction of salt content, suggesting that the kung-wan produced in this manner is healthier and has better texture. PMID:24200556

  20. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    SciTech Connect

    Donald, Ian W.; Metcalfe, Brian; Fong, Shirley K.; Gerrard, Lee A.; Strachan, Denis M.; Scheele, Randall D.

    2007-03-31

    The presence of halide anions in four types of wastes arising from the pyrochemical reprocessing of plutonium required an immobilization process to be developed in which not only the actinide cations but also the halide anions were immobilized in a durable waste form. At AWE, we have developed such a process using Ca3(PO4)2 as the host material. Successful trials of the process with actinide- and Cl-bearing Type I waste were carried out at PNNL where the immobilization of the waste in a form resistant to aqueous leaching was confirmed. Normalized mass losses determined at 40°C and 28 days were 12 x 10-6 g∙m-2 and 2.7 x 10-3 g∙m-2 for Pu and Cl, respectively. Accelerated radiation-induced damage effects are being determined with specimens containing 238Pu. No changes in the crystalline lattice have been detected with XRD after the 239Pu equivalent of 400 years ageing. Confirmation of the process for Type II waste (a oxyhydroxide-based waste) is currently underway at PNNL. Differences in the ionic state of Pu in the four types of waste have required different surrogates to be used. Samarium chloride was used successfully as a surrogate for both Pu(III) and Am(III) chlorides. Initial investigations into the use of HfO2 as the surrogate for Pu(IV) oxide in Type II waste indicated no significant differences.

  1. Leaching Process Investigation of Secondary Aluminum Dross: The Effect of CO2 on Leaching Process of Salt Cake from Aluminum Remelting Process

    NASA Astrophysics Data System (ADS)

    Li, Peng; Guo, Min; Zhang, Mei; Teng, Lidong; Seetharaman, Seshadri

    2012-10-01

    For the recycling/disposal of aluminum dross/salt cake from aluminum remelting, aqueous leaching offers an interesting economic process route. One major obstacle is the reaction between the AlN present in the dross and the aqueous phase, which can lead to the emission of NH3 gas, posing a serious environmental problem. In the current work, a leaching process using CO2-saturated water is attempted with a view to absorb the ammonia formed in situ. The current results show that at a solid-to-liquid ratio of 1:20 and 3 hours at 291 K (18 °C), the extraction of Na and K from the dross could be kept as high as 95.6 pct and 95.9 pct respectively. At the same time, with continuous CO2 bubbling, the mass of escaping NH3 gas decreased from 0.25 mg in pure water down to <0.006 mg, indicating effective absorption of ammonia by carbonized water. Furthermore, the results in the case of the leaching experiments with synthetic AlN show that the introduction of CO2 causes hindrance to the hydrolysis of AlN. The plausible mechanisms for the observed phenomena are discussed. The concept of the leaching of the salt cake by carbonated water and the consequent retention of AlN in the leach residue opens up a promising route toward an environment-friendly recycling process for the salt cake viz. recovery of the salts, utilization of CO2, and further processing of the dross residue, toward the synthesis of AlON from the leach residues.

  2. Stability High Salt Content Waste Using Sol Gel Process. Mixed Waste Focus Area. OST Reference Number 0236

    SciTech Connect

    None, None

    1999-09-01

    Mixed waste sludges, soils, and homogeneous solids containing high levels of salt ( ~ greater than 15% by weight ) have proven to be difficult to stabilize due to the soluble nature of the salts. The current stabilization technique for high salt waste, grouting with Portland cement, is limited to low waste loadings. The presence of salts interfere with the hydration and curing of the cement, cause waste form deteriorating mineral expansions, or result in an undesirable separate phase altogether. Improved technologies for the stabilization of salt waste must be able to accommodate higher salt loadings, while maintaining structural integrity, chemical durability, and leach resistance. In a joint collaboration supported by the Department of Energy’s (DOE’s) Mixed Waste Focus Area (MWFA), the Pacific Northwest National Laboratory (PNNL) and the Arizona Materials Laboratory (AML) at the University of Arizona have developed a sol-gel (wet-chemical) based, low-temperature-processing route for the stabilization of salt-containing mixed wastes. By blending and reacting liquid precursors at room temperature with salt waste, strong, impermeable “polyceram” matrices have been formed that encapsulate the environmentally hazardous waste components. As depicted by Figure 1, polycerams are hybrid organic/inorganic materials with unique properties derived from the chemical combination of polymer (organic) and ceramic (inorganic) components. For this application, the stabilizing polyceram matrices contain polybutadiene-based polymer components and silicon dioxide (SiO2) as the inorganic component. Polybutadiene (PBD) is a strong, tough, waterresistant plastic and its use in the polyceram promotes these same characteristics in the waste form. The PBD polymer component is modified to increase its reactivity with the SiO2 precursor during sol-gel processing. When combined, the polymer and SiO2 precursors react, gel, solidify, and encapsulate the

  3. Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cao, Ya-Nan; Wang, Gui-Shi; Tan, Tu; Cai, Ting-Dong; Liu, Kun; Wang, Lei; Zhu, Gong-Dong; Mei, Jiao-Xu

    2016-10-01

    Quantitative analysis of ammonium salts in the process of coking industrial liquid waste treatment is successfully performed based on a compact Raman spectrometer combined with partial least square (PLS) method. Two main components (NH4SCN and (NH4)2S2O3) of the industrial mixture are investigated. During the data preprocessing, wavelet denoising and an internal standard normalization method are employed to improve the predicting ability of PLS models. Moreover, the PLS models with different characteristic bands for each component are studied to choose a best resolution. The internal and external calibration results of the validated model show a mass percentage error below 1% for both components. Finally, the repeatabilities and reproducibilities of Raman and reference titration measurements are also discussed. Project supported by the National Natural Science Foundation of China (Grant Nos. 41405022 and 61475068).

  4. Selective Separation of Cs and Sr from LiCl-Based Salt for Electrochemical Processing of Oxide Spent Nuclear Fuel

    SciTech Connect

    P Sachdev

    2008-07-01

    Electrochemical processing technology is currently being used for the treatment of metallic spent fuel from the Experimental Breeder Reactor-II at Idaho National Laboratory. The treatment of oxide-based spent nuclear fuel via electrochemical processing is possible provided there is a front-end oxide reduction step. During this reduction process, certain fission products, including Cs and Sr, partition into the salt phase and form chlorides. Both solid state and molten LiCl-zeolite-A ion exchange tests were conducted for selectively removing Cs and Sr from LiCl-based salt. The solid-state tests produced in excess of 99% removal of Cs and Sr. The molten state tests failed due to phase transformation of the zeolite structure when in contact with the molten LiCl salt.

  5. Casein peptization, functional properties, and sensory acceptance of processed cheese spreads made with different emulsifying salts.

    PubMed

    Cunha, Clarissa R; Viotto, Walkiria H

    2010-01-01

    "Requeijão cremoso" is a traditional Brazilian processed cheese spread, showing ample acceptance on the national market. Emulsifying salts (ES) are an important factor influencing the characteristics of processed cheeses, but the literature presents conflicting results about their action on cheese functionality. Requeijão cremoso obtained from anhydrous ingredients allows the study of the influence of each type of ES on the cheese properties, since it can be treated as a model system where the variables are limited and well known. The objective of this study was to evaluate the effect of different types of ES (TSC-sodium citrate, SHMP-sodium hexametaphosphate, STPP-sodium tripolyphosphate, and TSPP-tetrasodium pyrophosphate) on the sensory and functional characteristics of requeijão cremoso-processed cheeses obtained from anhydrous ingredients. The physicochemical composition, degree of casein dissociation, fat particle size, melting index, color, texture profile, and sensory acceptance of the cheeses were determined. The functional behavior of processed cheeses was strongly influenced by the type of ES and its physicochemical properties including its ability to bind Ca, the casein dispersion during cooking, and the possible creation of cross-links with casein during cooling. The cheese made with SHMP was the one most differentiated from the others, presenting lower melting index, whiter color, and higher values for hardness, gumminess, and adhesiveness. The differences in texture had an impact on sensory acceptance: with the exception of the sample manufactured with sodium hexametaphosphate, all the samples presented good sensory acceptance.

  6. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes

    NASA Astrophysics Data System (ADS)

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-06-01

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4–16%) based on the low-level scenario, with greater losses (6–25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3–6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary.

  7. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes.

    PubMed

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-06-23

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4-16%) based on the low-level scenario, with greater losses (6-25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3-6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary.

  8. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes.

    PubMed

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-01-01

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4-16%) based on the low-level scenario, with greater losses (6-25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3-6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary. PMID:27334452

  9. Effects of a Pre-Filter and Electrolysis Systems on the Reuse of Brine in the Chinese Cabbage Salting Process

    PubMed Central

    Kim, Dong-Ho; Yoo, Jae Yeol; Jang, Keum-Il

    2016-01-01

    In this study, the effects of a pre-filter system and electrolysis system on the safe and efficient reuse of brine in the cabbage salting process were investigated. First, sediment filter-electrolyzed brine (SF-EB) was selected as brine for reuse. Then, we evaluated the quality and microbiological properties of SF-EB and Chinese cabbage salted with SF-EB. The salinity (9.4%) and pH (4.63) of SF-EB were similar to those of control brine (CB). SF-EB turbidity was decreased (from 0.112 to 0.062) and SF-EB residual chlorine (15.86 ppm) was higher than CB residual chlorine (0.31 ppm), and bacteria were not detected. Salinity (2.0%), pH (6.21), residual chlorine (0.39 ppm), chromaticity, hardness, and chewiness of cabbage salted with SF-EB were similar to those of cabbage salted with CB. The total bacterial count in cabbage salted with CB was increased as the number of reuses increased (from 6.55 to 8.30 log CFU/g), whereas bacteria in cabbage salted with SF-EB was decreased (from 6.55 to 5.21 log CFU/g). These results show that SF-EB improved the reusability of brine by removing contaminated materials and by sterilization. PMID:27390732

  10. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes

    PubMed Central

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-01-01

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4–16%) based on the low-level scenario, with greater losses (6–25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3–6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary. PMID:27334452

  11. Molten salt coal gasification process development unit. Phase 1. Volume 1. PDU operations. Final report

    SciTech Connect

    Kohl, A.L.

    1980-05-01

    This report summarizes the results of a test program conducted on the Molten Salt Coal Gasification Process, which included the design, construction, and operation of a Process Development Unit. In this process, coal is gasified by contacting it with air in a turbulent pool of molten sodium carbonate. Sulfur and ash are retained in the melt, and a small stream is continuously removed from the gasifier for regeneration of sodium carbonate, removal of sulfur, and disposal of the ash. The process can handle a wide variety of feed materials, including highly caking coals, and produces a gas relatively free from tars and other impurities. The gasification step is carried out at approximately 1800/sup 0/F. The PDU was designed to process 1 ton per hour of coal at pressures up to 20 atm. It is a completely integrated facility including systems for feeding solids to the gasifier, regenerating sodium carbonate for reuse, and removing sulfur and ash in forms suitable for disposal. Five extended test runs were made. The observed product gas composition was quite close to that predicted on the basis of earlier small-scale tests and thermodynamic considerations. All plant systems were operated in an integrated manner during one of the runs. The principal problem encountered during the five test runs was maintaining a continuous flow of melt from the gasifier to the quench tank. Test data and discussions regarding plant equipment and process performance are presented. The program also included a commercial plant study which showed the process to be attractive for use in a combined-cycle, electric power plant. The report is presented in two volumes, Volume 1, PDU Operations, and Volume 2, Commercial Plant Study.

  12. Process for improving the energy density of feedstocks using formate salts

    SciTech Connect

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  13. Arsenophilic Bacterial Processes in Searles Lake: A Salt-saturated, Arsenic-rich, Alkaline Soda Lake.

    NASA Astrophysics Data System (ADS)

    Oremland, R. S.; Kulp, T. R.; Hoeft, S. E.; Miller, L. G.; Swizer Blum, J.; Stolz, J. F.

    2005-12-01

    Searles Lake, located in the Mojave Desert of California, is essentially a chemically-similar, concentrated version of Mono Lake, but having a much higher salinity (e.g., 340 vs. 90 g/L) and a greater dissolved inorganic arsenic content in its brine (e.g., 3.9 vs. 0.2 mM). The source of all this arsenic ultimately comes from hydrothermal spring inputs, thereby underscoring the importance of volcanic and fluvial processes in transporting this toxic element into these closed basin lakes. Nonetheless, the presence of microbial activities with regard to respiration of arsenate oxyanions under anaerobic conditions and the oxidation of arsenite oxyanions under aerobic conditions can be inferred from porewater profiles taken from handcores retrieved beneath Searles Lake's salt crust. Sediment slurry incubations confirmed biological arsenate respiration and arsenite oxidation, with the former processes notably enhanced by provision of the inorganic electron donor sulfide or H2. Hence, arsenic-linked chemo-autotrophy appears to be an important means of carbon fixation in this system. Subsequent efforts using 73As-arsenate as radiotracer detected dissimilatory arsenate reduction activity down the length of the core, but we were unable to detect any evidence for sulfate-reduction using 35S-sulfate. An extremely halophilic anaerobic bacterium of the order Haloanaerobiales [strain SLAS-1] was isolated from the sediments that grew via arsenate respiration using lactate or sulfide as its electron donors. These results show that, unlike sulfate-reduction, arsenic metabolism (i.e., both oxidation of arsenite and dissimilatory reduction of arsenate) is operative and even vigorous under the extreme conditions of salt-saturation and high pH. The occurrence of arsenophilic microbial processes in Searles Lake is relevant to the search for extant or extinct microbial life on Mars. It is evident from surface imagery that Mars had past episodes of volcanism, fluvial transport, and most

  14. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal

    NASA Astrophysics Data System (ADS)

    Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D.

    2007-03-01

    Chloride-containing radioactive wastes are generated during the pyrochemical reprocessing of Pu metal. Immobilization of these wastes in borosilicate glass or Synroc-type ceramics is not feasible due to the very low solubility of chlorides in these hosts. Alternative candidates have therefore been sought including phosphate-based glasses, crystalline ceramics and hybrid glass/ceramic systems. These studies have shown that high losses of chloride or evolution of chlorine gas from the melt make vitrification an unacceptable solution unless suitable off-gas treatment facilities capable of dealing with these corrosive by-products are available. On the other hand, both sodium aluminosilicate and calcium phosphate ceramics are capable of retaining chloride in stable mineral phases, which include sodalite, Na 8(AlSiO 4) 6Cl 2, chlorapatite, Ca 5(PO 4) 3Cl, and spodiosite, Ca 2(PO 4)Cl. The immobilization process developed in this study involves a solid state process in which waste and precursor powders are mixed and reacted in air at temperatures in the range 700-800 °C. The ceramic products are non-hygroscopic free-flowing powders that only require encapsulation in a relatively low melting temperature phosphate-based glass to produce a monolithic wasteform suitable for storage and ultimate disposal.

  15. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    SciTech Connect

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials have been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA

  16. Commercial biopreservatives combined with salt and sugar to control Listeria monocytogenes during smoked salmon processing.

    PubMed

    Montiel, Raquel; Bravo, Daniel; Medina, Margarita

    2013-08-01

    Three commercial antimicrobials, applied during the salting stage in the preparation of cold-smoked salmon, were investigated for their effect on the behavior of Listeria monocytogenes. Fresh salmon inoculated with L. monocytogenes INIA 2530 was treated with three bacteriocin-based commercial biopreservatives, which were applied in combination with a salt-sugar mix. The product was kept at 8°C for 7 days. L. monocytogenes grew by approximately 3 log CFU/g in control salmon (without the salt-sugar mix or biopreservatives). Pathogen levels were reduced by the three biopreservatives investigated. After 7 days at 8°C, L. monocytogenes counts in salmon treated with biopreservatives combined with the salt-sugar mix were significantly lower than those observed in salmon treated with only salt and sugar. At the end of storage, salmon treated with biopreservative derived from Pediococcus acidilactici had pathogen levels 3.6 log CFU/g lower than in control salmon (without the salt-sugar mix) and 1.5 log CFU/g lower than in the samples treated with only salt and sugar. The application of commercial biopreservatives to fresh salmon during the dry-salting stage might help control L. monocytogenes growth, thus enhancing the safety of cold-smoked salmon during refrigerated storage.

  17. Liquid Salts as Media for Process Heat Transfer from VHTR's: Forced Convective Channel Flow Thermal Hydraulics, Materials, and Coating

    SciTech Connect

    Sridharan, Kumar; Anderson, Mark; Allen, Todd; Corradini, Michael

    2012-01-30

    The goal of this NERI project was to perform research on high temperature fluoride and chloride molten salts towards the long-term goal of using these salts for transferring process heat from high temperature nuclear reactor to operation of hydrogen production and chemical plants. Specifically, the research focuses on corrosion of materials in molten salts, which continues to be one of the most significant challenges in molten salts systems. Based on the earlier work performed at ORNL on salt properties for heat transfer applications, a eutectic fluoride salt FLiNaK (46.5% LiF-11.5%NaF-42.0%KF, mol.%) and a eutectic chloride salt (32%MgCl2-68%KCl, mole %) were selected for this study. Several high temperature candidate Fe-Ni-Cr and Ni-Cr alloys: Hastelloy-N, Hastelloy-X, Haynes-230, Inconel-617, and Incoloy-800H, were exposed to molten FLiNaK with the goal of understanding corrosion mechanisms and ranking these alloys for their suitability for molten fluoride salt heat exchanger and thermal storage applications. The tests were performed at 850C for 500 h in sealed graphite crucibles under an argon cover gas. Corrosion was noted to occur predominantly from dealloying of Cr from the alloys, an effect that was particularly pronounced at the grain boundaries Alloy weight-loss due to molten fluoride salt exposure correlated with the initial Cr-content of the alloys, and was consistent with the Cr-content measured in the salts after corrosion tests. The alloys weight-loss was also found to correlate to the concentration of carbon present for the nominally 20% Cr containing alloys, due to the formation of chromium carbide phases at the grain boundaries. Experiments involving molten salt exposures of Incoloy-800H in Incoloy-800H crucibles under an argon cover gas showed a significantly lower corrosion for this alloy than when tested in a graphite crucible. Graphite significantly accelerated alloy corrosion due to the reduction of Cr from solution by graphite and formation

  18. Characteristics of wasteform composing of phosphate and silicate to immobilize radioactive waste salts.

    PubMed

    Park, Hwan-Seo; Cho, In-Hak; Eun, Hee Chul; Kim, In-Tae; Cho, Yong Zun; Lee, Han-Soo

    2011-03-01

    In the radioactive waste management, metal chloride wastes from a pyrochemical process is one of problematic wastes not directly applicable to a conventional solidification process. Different from a use of minerals or a specific phosphate glass for immobilizing radioactive waste salts, our research group applied an inorganic composite, SAP (SiO(2)-Al(2)O(3)-P(2)O(5)), to stabilize them by dechlorination. From this method, a unique wasteform composing of phosphate and silicate could be fabricated. This study described the characteristic of the wasteform on the morphology, chemical durability, and some physical properties. The wasteform has a unique "domain-matrix" structure which would be attributed to the incompatibility between silicate and phosphate glass. At higher amounts of chemical binder, "P-rich phase encapsulated by Si-rich phase" was a dominant morphology, but it was changed to be Si-rich phase encapsulated by P-rich phase at a lower amount of binder. The domain and subdomain size in the wasteform was about 0.5-2 μm and hundreds of nm, respectively. The chemical durability of wasteform was confirmed by various leaching test methods (PCT-A, ISO dynamic leaching test, and MCC-1). From the leaching tests, it was found that the P-rich phase had ten times lower leach-resistance than the Si-rich phase. The leach rates of Cs and Sr in the wasteform were about 10(-3)g/m(2)· day, and the leached fractions of them were about 0.04% and 0.06% at 357 days, respectively. Using this method, we could stabilize and solidify the waste salt to form a monolithic wasteform with good leach-resistance. Also, the decrease of waste volume by the dechlorination approach would be beneficial in the final disposal cost, compared with the present immobilization methods for waste salt.

  19. Polyethylene encapsulatin of nitrate salt wastes: Waste form stability, process scale-up, and economics

    SciTech Connect

    Kalb, P.D.; Heiser, J.H. III; Colombo, P.

    1991-07-01

    A polyethylene encapsulation system for treatment of low-level radioactive, hazardous, and mixed wastes has been developed at Brookhaven National Laboratory. Polyethylene has several advantages compared with conventional solidification/stabilization materials such as hydraulic cements. Waste can be encapsulated with greater efficiency and with better waste form performance than is possible with hydraulic cement. The properties of polyethylene relevant to its long-term durability in storage and disposal environments are reviewed. Response to specific potential failure mechanisms including biodegradation, radiation, chemical attack, flammability, environmental stress cracking, and photodegradation are examined. These data are supported by results from extensive waste form performance testing including compressive yield strength, water immersion, thermal cycling, leachability of radioactive and hazardous species, irradiation, biodegradation, and flammability. The bench-scale process has been successfully tested for application with a number of specific problem'' waste streams. Quality assurance and performance testing of the resulting waste form confirmed scale-up feasibility. Use of this system at Rocky Flats Plant can result in over 70% fewer drums processed and shipped for disposal, compared with optimal cement formulations. Based on the current Rocky Flats production of nitrate salt per year, polyethylene encapsulation can yield an estimated annual savings between $1.5 million and $2.7 million, compared with conventional hydraulic cement systems. 72 refs., 23 figs., 16 tabs.

  20. Implications of sedimentological and hydrological processes on the distribution of radionuclides in a salt marsh near Sellafield, Cumbria

    SciTech Connect

    Carr, A.P.; Blackley, M.W.L.

    1985-01-01

    The report examines sedimentological and hydrological processes affecting a salt marsh in the Ravenglass estuary, which is situated south of the Sellafield nuclear-fuel-reprocessing plant. The results are discussed in the context of the distribution of low-level radioactive effluent at the site.

  1. Effect of salt, smoke compound and temperature on the survival of Listeria monocytogenes in salmon during simulated smoking processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In smoked fish processes, smoking is the only step that is capable of inactivating pathogens, such as Listeria monocytogenes, that contaminate the raw fish. The objectives of this study were to examine and develop a model to describe the survival of L. monocytogenes in salmon as affected by salt, s...

  2. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  3. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOEpatents

    Maroni, Victor A.; von Winbush, Samuel

    1988-01-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  4. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOEpatents

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  5. Toxicity in lead salt spiked soils to plants, invertebrates and microbial processes: Unraveling effects of acidification, salt stress and ageing reactions.

    PubMed

    Smolders, Erik; Oorts, Koen; Peeters, Sofie; Lanno, Roman; Cheyns, Karlien

    2015-12-01

    The fate and effects of toxic trace metals in soil freshly spiked soluble metal salts do not mimic those of metals in the field. This study was set up to test the magnitude of effects of salinity, acidification, and ageing on toxicity of lead (Pb) to plants, invertebrates and soil microbial processes. Three soils were spiked with Pb2+ salts up to a concentration of 8000 mg Pb/kg and were tested either after spiking, after soil leaching followed by pH correction, or after a 5-year outdoor ageing period with free drainage followed by pH correction. Soil solution ionic strength exceeded 150 mmol/L in soils tested directly after spiking and this decreased partially after leaching and returned back to background values after 5-year outdoor equilibration. Chronic toxicity to two plants, two invertebrates, and three microbial endpoints was consistently found in all spiked soils that were not leached. This toxicity significantly decreased or became absent after 5 years of ageing in 19 of the 20 toxicity tests by a factor 8 (median factor; range: 1.4->50), measured by the factor increase of total soil Pb dose required to induce 10% inhibition. The toxicity of Pb in leached soils was intermediate between the other two treatments. The lowest detectable chronic thresholds (EC10) in aged soils ranged 350-5300 mg Pb/kg. Correlation analysis, including data of Pb2+ speciation in soil solution, suggests that reduced ionic strength rather than acidification or true ageing is the main factor explaining the soil treatment effects after spiking. It is suggested that future toxicity studies should test fine PbO powder as a relevant source for Pb in soils to exclude the confounding salt effects.

  6. Growth of single crystals of organic salts with large second-order optical nonlinearities by solution processes for devices

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1995-01-01

    Data obtained from the electric field induced second harmonic generation (EFISH) and Kurtz Powder Methods will be provided to MSFC for further refinement of their method. A theoretical model for predicting the second-order nonlinearities of organic salts is being worked on. Another task is the synthesis of a number of salts with various counterions. Several salts with promising SHG activities and new salts will be tested for the presence of two crystalline forms. The materials will be recrystallized from dry and wet solvents and compared for SHG efficiency. Salts that have a high SHG efficiency and no tendency to form hydrates will be documented. The synthesis of these materials are included in this report. A third task involves method to aid in the growth of large, high quality single crystals by solution processes. These crystals will be characterized for their applicability in the fabrication of devices that will be incorporated into optical computers in future programs. Single crystals of optimum quality may be obtained by crystal growth in low-gravity. The final task is the design of a temperature lowering single crystal growth apparatus for ground based work. At least one prototype will be built.

  7. The on-line removal of non-regenerable salts from amine solutions using the UCARSEP{reg_sign} Process

    SciTech Connect

    Burns, D.; Gregory, R.A.

    1995-11-01

    Amine unit contamination with non-regenerable salts, whether as a result of acid or inorganic salt incursion, or solvent degradation, is a common industry problem. In MEA systems this is usually addressed by the use of a reclaimer but this is not a practical solution for DEA, MDEA or formulated solvents. Similarly, the old approach of purging solvent is no longer economically or environmentally justifiable. Neutralization of amine salts with a strong base can significantly prolong the useful life of the amine solution but eventually some of the salt may have to be removed, especially if mechanical losses are low. Electrodialysis (ED) has recently been applied to this problem and has been found to overcome many of the disadvantages of vacuum distillation and ion exchange technologies, both of which have been used in recent years for solvent clean-up. Union Carbide adapted ED technology to the unique conditions encountered in an amine system and developed the UCARSEP{reg_sign} Process. A mobile UCARSEP{reg_sign} unit has been built to achieve on-line salt removal rates of 40 lbmol/day (about 3,300 lb/day). This has been successfully used to clean up UCARSOL{reg_sign} solvents as well as DEA. Case studies are presented and the relative merits of this and other clean-up options are discussed.

  8. Laboratory measurements of seismic velocity anisotropy of salt diapirs: Implications for wellbore stability and seismic processing

    NASA Astrophysics Data System (ADS)

    Vargas-Meleza, Liliana; Healy, David

    2013-04-01

    A set of ten evaporite samples collected from outcrops in a single diapiric province in Cape Breton Island (Canada) have been tested for seismic velocity anisotropy using three methods: 1) conventional ultrasonic pulse transmission method, where velocities are found from the travel times and the known dimensions of the samples. In order to obtain the entire suite of elastic constants, both P- and S-wave velocity measurements were taken in three different directions of cuboid rock samples. Velocities have been measured under dry, ambient conditions of temperature and pressure in halite-, gypsum- and anhydrite-dominated samples; 2) optical microscopy and scanning electron microscopy on thin sections to define the spatial distribution of minerals, their crystallographic preferred orientations (CPO); and 3) a numerical 'rock-recipe' approach based on Tatham et al. (2008) to calculate seismic velocity anisotropy using arbitrary composites of evaporite minerals and different CPOs. These three methods are then compared to understand the controlling factors of the anisotropic elastic properties. The elasticity data are used to guide geomechanical modeling for wellbore stability and to provide insights for the seismic data processing and seismic imaging of salt diapirs. Reference Tatham, D.J., Lloyd, G.E., Butler, R.W.H. and Casey, M, 2008, Amphibole and lower crustal seismic properties: Earth and Planetary Science Letters, 267, 118-128.

  9. Zr electrorefining process for the treatment of cladding hull waste in LiCl-KCl molten salts

    SciTech Connect

    Lee, Chang Hwa; Lee, You Lee; Jeon, Min Ku; Kang, Kweon Ho; Choi, Yong Taek; Park, Geun Il

    2013-07-01

    Zr electrorefining for the treatment of Zircaloy-4 cladding hull waste is demonstrated in LiCl-KCl-ZrCl{sub 4} molten salts. Although a Zr oxide layer thicker than 5 μm strongly inhibits the Zr dissolution process, pre-treatment processes increases the dissolution kinetics. For 10 g-scale experiments, the purities of the recovered Zr were 99.54 wt.% and 99.74 wt.% for fresh and oxidized cladding tubes, respectively, with no electrical contact issue. The optimal condition for Zr electrorefining has been found to improve the morphological feature of the recovered Zr, which reduces the salt incorporation by examining the effect of the process parameters such as the ZrCl{sub 4} concentration and the applied potential.

  10. Insights to caving processes from localization of microseismic swarms induced by salt solution mining

    NASA Astrophysics Data System (ADS)

    Lennart Kinscher, Jannes; Bernard, Pascal; Contrucci, Isabelle; Mangeney, Anne; Piguet, Jack Pierre; Bigarre, Pascal

    2014-05-01

    In order to improve our understanding of hazardous ground failures, caving processes, and collapses of large natural or man-made underground cavities, we studied microseismicity induced by the development and collapse of a salt solution mining cavity with a diameter of ~ 200 m at Cerville-Buissoncourt in Lorraine, France. Microseismicity was recorded as part of a large geophysical, multi-parameter monitoring research project (GISOS) by a local, high resolution, triggered 40 Hz geophone monitoring system consisting of five one-component and four three-component borehole stations located around and in the center of the cavity. The recorded microseismic events are very numerous (~ 50.000 recorded event files) where the major portion (~ 80 %) appear in unusual swarming sequences constituted by complex clusters of superimposed microseismic events. Body wave phase based routine tools for microseismic event detection and localization face strong limitations in the treatment of these signals. To overcome these shortcomings, we developed two probabilistic methods being able to assess the spatio-temporal characteristics in a semi-automatic manner. The first localization approach uses simple signal amplitude estimates on different frequency bands, and an attenuation model to constrain hypocenter source location. The second approach was designed to identify significantly polarized P wave energies and the associated polarization angles. Both approaches and its probabilistic conjunction were applied to the data of a two months lasting microseismic crisis occurring one year before the final collapse that was related to caving processes leading to a maximal growth of ~ 50 m of the cavity roof. The obtained epicenter locations show systematic spatio-temporal migration trends observed for different time scales. During three phases of major swarming activity, epicenter migration trends appear in the order of several seconds to minutes, are spatially constrained, and show partially a

  11. Hazard analysis of Listeria monocytogenes contaminations in processing of salted roe from walleye pollock (Theragra chalcogramma) in Hokkaido, Japan.

    PubMed

    Takeshi, Koichi; Kitagawa, Masahiko; Kadohira, Mutsuyo; Igimi, Shizunobu; Makino, Sou-Ichi

    2009-01-01

    Hazard analysis of Listeria monocytogenes contamination during processing of salted walleye pollock (Theragra chalcogramma) roe was performed for a seafood plant in Japan from December 2005 to February 2006. As a result, L. monocytogenes number was detected on the pallet used for transport of barrels in the salting process and one of the rollers of the roller conveyor, which rotates while in contact with the bottoms of the barrels, but was not detected in any raw materials, interim products or final products. Thus, we believe that the pallet contamination initially occurred because of insufficient washing, that it was passed on to the bottoms of the barrels and that it was then passed on the roller of the roller conveyor by cross-contamination. Therefore, it is possible that interim and final products may become contaminated by processing devices and machinery. In addition, we conducted an inoculation study designed at the 1/20 actual factory scale using interim products with or without artificial color and seeded with L. monocytogenes to observe changes in its growth. In the inoculation study, multiplication of L. monocytogenes during the salting process was not confirmed in the samples with artificial color.

  12. Hazard analysis of Listeria monocytogenes contaminations in processing of salted roe from walleye pollock (Theragra chalcogramma) in Hokkaido, Japan.

    PubMed

    Takeshi, Koichi; Kitagawa, Masahiko; Kadohira, Mutsuyo; Igimi, Shizunobu; Makino, Sou-Ichi

    2009-01-01

    Hazard analysis of Listeria monocytogenes contamination during processing of salted walleye pollock (Theragra chalcogramma) roe was performed for a seafood plant in Japan from December 2005 to February 2006. As a result, L. monocytogenes number was detected on the pallet used for transport of barrels in the salting process and one of the rollers of the roller conveyor, which rotates while in contact with the bottoms of the barrels, but was not detected in any raw materials, interim products or final products. Thus, we believe that the pallet contamination initially occurred because of insufficient washing, that it was passed on to the bottoms of the barrels and that it was then passed on the roller of the roller conveyor by cross-contamination. Therefore, it is possible that interim and final products may become contaminated by processing devices and machinery. In addition, we conducted an inoculation study designed at the 1/20 actual factory scale using interim products with or without artificial color and seeded with L. monocytogenes to observe changes in its growth. In the inoculation study, multiplication of L. monocytogenes during the salting process was not confirmed in the samples with artificial color. PMID:19194081

  13. Low-salt diet

    MedlinePlus

    ... away from foods that are always high in salt. Some common ones are: Processed foods, such as cured or smoked meats, bacon, hot dogs, sausage, bologna, ham, and salami ... salt with other seasonings. Pepper, garlic, herbs, and lemon ...

  14. The fluids in salt.

    USGS Publications Warehouse

    Roedder, E.

    1984-01-01

    The characteristics of fluid inclusions in salt, the geological processes through which these fluids evolve, and the possible problems such inclusions pose for nuclear waste disposal in salt beds or domes are reviewed.-J.A.Z.

  15. Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes

    NASA Astrophysics Data System (ADS)

    Lang, Jörg; Hampel, Andrea; Brandes, Christian; Winsemann, Jutta

    2014-10-01

    During the past decades the effect of glacioisostatic adjustment has received much attention. However, the response of salt structures to ice-sheet loading and unloading is poorly understood. Our study aims to test conceptual models of the interaction between ice-sheet loading and salt structures by finite-element modelling. The results are discussed with regard to their implications for ice-marginal and subglacial processes. Our models consist of 2D plane-strain cross-sections, which represent simplified geological cross-sections from the Central European Basin System. The model layers represent (i) sedimentary rocks of elastoplastic rheology, (ii) a viscoelastic diapir and layer of salt and (iii) an elastoplastic basement. On top of the model, a temporarily variable pressure simulates the advance and retreat of an ice sheet. The durations of the individual loading phases were defined to resemble the durations of the Pleistocene ice advances in northern central Europe. The geometry and rheology of the model layers and the magnitude, spatial distribution and timing of ice-sheet loading were systematically varied to detect the controlling factors. All simulations indicate that salt structures respond to ice-sheet loading. An ice advance towards the diapir causes salt flow from the source layer below the ice sheet towards the diapir, resulting in an uplift of up to +4 m. The diapir continues to rise as long as the load is applied to the source layer but not to the crest of the diapir. When the diapir is transgressed by the ice sheet the diapir is pushed down (up to -36 m) as long as load is applied to the crest of the diapir. During and after ice unloading large parts of the displacement are compensated by a reversal of the salt flow. Plastic deformation of the overburden is restricted to the area immediately above the salt diapir. The displacements after unloading range between -3.1 and +2.7 m. Larger displacements are observed in models with deep-rooted diapirs

  16. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    PubMed

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits.

  17. Influence of reaction period on a new packing SBBR process treating high-salt and phosphorus deficiency

    NASA Astrophysics Data System (ADS)

    Fu, J. X.; Zhou, M. J.; Yu, P. F.; Sun, M.; Ji, X. Q.; Zhang, J.

    2016-08-01

    In order to solve the problem of high-salt ballast wastewater treatment, Sequencing Biofilm Batch Reactor of new packing activated sludge process used to simulate an experimental study. When Chloride ion concentration is 20±2g/L, the impacts of reaction period and anoxic time (Ta) / aerobic time (To) on the effect of the treatment process and sludge activity were investigated. The results show the salt acclimation SBBR process can effectively remove organic contaminants; when the reaction period was 49h, the removal rates of Chemical Oxygen Demand (COD) reached more than 91.0%, and the removal rate of NH+ 4 -N was 83.3%, the removal rate of Total Nitrogen (TN) was 67.7%, and the effluent concentration of COD, NH+ 4 -N and TN were respectively 45.7mg/L, 7.8mg/L and 18.6mg/L. At this time, TF reached 43.6pg/ml. With the Ta / To increase, the degree of denitrification increased and the nitrification rate reduced. When Ta/To 1:3, the optimal nitrogen removal appeared, ammonia removal efficiency was 83.8%, the effluent concentration was 7.8mg / L, TN removal rate was 67.7%, and the effluent concentration was 18.6mg / L, to reach effluent standards. Technical support was also provided to solve the problem of coastal salt waste low phosphorus wastewater.

  18. Recovery of soluble chloride salts from the wastewater generated during the washing process of municipal solid wastes incineration fly ash.

    PubMed

    Tang, Hailong; Erzat, Aris; Liu, Yangsheng

    2014-01-01

    Water washing is widely used as the pretreatment method to treat municipal solid waste incineration fly ash, which facilitates the further solidification/stabilization treatment or resource recovery of the fly ash. The wastewater generated during the washing process is a kind of hydrosaline solution, usually containing high concentrations of alkali chlorides and sulphates, which cause serious pollution to environment. However, these salts can be recycled as resources instead of discharge. This paper explored an effective and practical recovery method to separate sodium chloride, potassium chloride, and calcium chloride salts individually from the hydrosaline water. In laboratory experiments, a simulating hydrosaline solution was prepared according to composition of the waste washing water. First, in the three-step evaporation-crystallization process, pure sodium chloride and solid mixture of sodium and potassium chlorides were obtained separately, and the remaining solution contained potassium and calcium chlorides (solution A). And then, the solid mixture was fully dissolved into water (solution B obtained). Finally, ethanol was added into solutions A and B to change the solubility of sodium, potassium, and calcium chlorides within the mixed solvent of water and ethanol. During the ethanol-adding precipitation process, each salt was separated individually, and the purity of the raw production in laboratory experiments reached about 90%. The ethanol can be recycled by distillation and reused as the solvent. Therefore, this technology may bring both environmental and economic benefits. PMID:25176491

  19. An investigation into the electrochemical recovery of rare earth ions in a CsCl-based molten salt.

    PubMed

    Jiao, Shuqiang; Zhu, Hongmin

    2011-05-30

    A CsCl-based melt, was used as a supporting electrolyte for a fuel cycle in pyrochemical separation, as it has a high solubility for lanthanide oxide. Cyclic voltammetry and square wave voltammetry were carried out to investigate the cathodic reduction of those rare earth ions. The results prove that the cathodic process of La(III) ions dissolved in a CsCl-based melt, with a one-step reduction La(3+)+3e(-)=La, and is similar to those of other reports which have utilised LiCl-KCl or CaCl(2)-KCl molten salt systems. However, for the Ce(III) ions that dissolved in a CsCl-based melt, there is a significant difference when compared with published literature as there are two reduction steps instead of the reported single step Ce(3+)+e(-)=Ce(2+) and Ce(2+)+2e(-)=Ce. In order to explain the novel result, a detailed investigation was focused on the cathodic process of Ce(III) in a CsCl-based melt. The identification of the M-O (M=La, Ce) compounds that are stable in the electrolyte, as well as the determination of their solubility products, were carried out by potentiometric titration using an oxide ion sensor. Furthermore, the E-pO(2-) (potential-oxide ion) diagram for the M-O stable compound was constructed by combining both theoretical and experimental data.

  20. Estimating rangeland runoff, soil erosion, and salt mobility and transport processes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 55% of sediment and salts entering the Colorado River are derived from accelerated soil erosion from federal rangelands with damages estimated to be $385 million per year. About 55% of the loading is derived from rangelands. This suggests a significant potential to reduce dissolved-solids loa...

  1. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes.

    PubMed

    Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina

    2013-01-15

    A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium-vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi(2)O(5) is converted to NaCl-type structure of Na(2)TiO(3), and M(3)O(5) (M=Ti, Mg, Fe) is converted to α-NaFeO(2)-type structure of NaMO(2), respectively. Roasting temperature and NaOH-slag mass ratio played a considerable role in the conversion of titanium in the rich titanium-vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH-slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na(+) was exchanged with H(+), Na(2)TiO(3) is converted to undefined structure of H(2)TiO(3), and NaMO(2) is converted to α-NaFeO(2)-type structure of HMO(2). Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out.

  2. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.

  3. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater. PMID:26177408

  4. Dissipation behavior of organophosphorus pesticides during the cabbage pickling process: residue changes with salt and vinegar content of pickling solution.

    PubMed

    Lu, Yuele; Yang, Zhonghua; Shen, Luyao; Liu, Zhenmin; Zhou, Zhiqiang; Diao, Jinling

    2013-03-01

    In this experiment, the behavior of 10 pesticides in three different cabbage pickling treatments has been studied. The brine used for pickling was made up with different salt and vinegar contents to determine the influence of different pickling solutions on pesticide dissipation and distribution. A modified QuECHERS and SPE method was established for the analysis of the pesticides in the cabbage and brine. It was found that different pesticides showed different dissipation patterns and finally represented dissimilar residue levels in the cabbage and brine. Statistical analysis was performed to compare the distinctions of these pesticides between each treatment and proved that salt content and pH value had certain influence on the dissipation and distribution of these pesticides during the pickling process. The data from this experiment would help to control pesticide residues in pickled cabbage and prevent potential risk to human health and environmental safety. PMID:23402557

  5. A view of treatment process of melted nuclear fuel on a severe accident plant using a molten salt system

    SciTech Connect

    Fujita, R.; Takahashi, Y.; Nakamura, H.; Mizuguchi, K.; Oomori, T.

    2013-07-01

    At severe accident such as Fukushima Daiichi Nuclear Power Plant Accident, the nuclear fuels in the reactor would melt and form debris which contains stable UO2-ZrO2 mixture corium and parts of vessel such as zircaloy and iron component. The requirements for solution of issues are below; -) the reasonable treatment process of the debris should be simple and in-situ in Fukushima Daiichi power plant, -) the desirable treatment process is to take out UO{sub 2} and PuO{sub 2} or metallic U and TRU metal, and dispose other fission products as high level radioactive waste; and -) the candidate of treatment process should generate the smallest secondary waste. Pyro-process has advantages to treat the debris because of the high solubility of the debris and its total process feasibility. Toshiba proposes a new pyro-process in molten salts using electrolysing Zr before debris fuel being treated.

  6. Studies on Dyeing Process Variables for Salt Free Reactive Dyeing of Glycine Modified Cationized Cotton Muslin Fabric

    NASA Astrophysics Data System (ADS)

    Samanta, Ashis Kumar; Kar, Tapas Ranjan; Mukhopadhyay, Asis; Shome, Debashis; Konar, Adwaita

    2015-04-01

    Bleached cotton muslin fabric with or without pre-oxidized with NaIO4 (oxy-cotton) was chemically modified with glycine (amino acid) by pad dry calendar process to investigate the changes in textile properties and its dyeability with reactive dye. This glycine modified cotton incorporates new functional groups producing -NH3 + or -C=NH+ -ion (cationic groups) in acid bath to obtain cationized cotton making it amenable to a newer route of salt free reactive dyeing in acid bath. In the present work the process variables of reactive dyeing in the salt free acid bath for dyeing of amine (glycine) modified cationized cotton were studied and optimized. The present study also includes thorough investigation of changes in important textile related properties and dyeability with reactive dye after such chemical modifications. Between oxidized and unoxidized cotton muslin fabric, unoxidized cotton fabric shows better reactive dye uptake in both conventional alkaline bath dyeing and nonconventional salt free acid bath dyeing particularly for high exhaustion class of reactive dye with acceptable level of colour fastness and overall balance of other textile related properties. Moreover, application of dye fixing agent further improves surface colour depth (K/S) of the glycine treated cotton fabric for HE brand of reactive dyes. Corresponding reaction mechanisms for such modifications were supported by FTIR spectroscopy. Finally unoxidized cotton and pre-oxidized cotton further treated with glycine (amino acid) provide a new route of acid bath salt free reactive dyeing showing much higher dye uptake and higher degree of surface cover with amino acid residue anchored to modified cotton.

  7. Methods for predicting properties and tailoring salt solutions for industrial processes

    NASA Technical Reports Server (NTRS)

    Ally, Moonis R.

    1993-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.

  8. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    PubMed

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P₂ peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities.

  9. High pressure processing alters water distribution enabling the production of reduced-fat and reduced-salt pork sausages.

    PubMed

    Yang, Huijuan; Han, Minyi; Bai, Yun; Han, Yanqing; Xu, Xinglian; Zhou, Guanghong

    2015-04-01

    High pressure processing (HPP) was used to explore novel methods for modifying the textural properties of pork sausages with reduced-salt, reduced-fat and no fat replacement additions. A 2×7 factorial design was set up, incorporating two pressure levels (0.1 or 200 MPa) and seven fat levels (0, 5, 10, 15, 20, 25 and 30%). Sausages treated at 200 MPa exhibited improved tenderness at all fat levels compared with 0.1 MPa treated samples, and the shear force of sausages treated at 200 MPa with 15 or 20% fat content was similar to the 0.1 MPa treated sausages with 30% fat. HPP significantly changed the P₂ peak ratio of the four water components in raw sausages, resulting in improved textural properties of emulsion-type sausages with reduced-fat and reduced-salt. Significant correlations were found between pH, color, shear force and water proportions. The scanning and transmission micrographs revealed the formation of smaller fat globules and an improved network structure in the pressure treated sausages. In conclusion, there is potential to manufacture sausages with reduced-fat and reduced-salt by using HPP to maintain textural qualities. PMID:25553411

  10. Integration of ion-exchange and nanofiltration processes for recovering Cr(III) salts from synthetic tannery wastewater.

    PubMed

    Gando-Ferreira, Licínio M; Marques, Joana C; Quina, Margarida J

    2015-01-01

    This study aims to investigate the possibility of integrating both ion-exchange (IX) and nanofiltration (NF) processes for the recovery of Cr(III) salts from a synthetic solution prepared with concentrations of Cr(III), [Formula: see text] and Cl(-) in the range of industrial effluents of tanneries. Ion exchange should be used as a pre-treatment for uptaking Cl(-) ions from the effluent, and thereafter the treated solution is fed to an NF unit to recover chromium sulphate salt for reuse in the tanning bath. The strong anionic resin Diaion PA316 was selected for evaluating chloride-sulphate ion-exchange equilibrium, with respect to mass of resin, NaCl concentration, temperature and ratio [Formula: see text]. It was observed that the separation factor, [Formula: see text], depends on the total electrolyte concentration and the ratio [Formula: see text] plays a role as well. Moreover, it was determined that the resin prefers sulphate over chloride since [Formula: see text] is less than 1. The performance of the NF process is dependent on [Formula: see text] and the rejection of Cr(III) may decrease from 90% to 70% as the ratio increases from 0.5 to 2. Regarding the integration of both IX and NF, the feed solution after treatement with the resin was fed to NF where the ratio of [Formula: see text] led to the best operating conditions for this process (90% of Cr(III) rejection and up to 77% for [Formula: see text] ions). This strategy may be considered as a sustainable approach since it permits to obtain a solution enriched in Cr(III) salt for reuse in the tanning process, thus contributing to environmental protection.

  11. Properties of solid dispersions of selected magnesium salts and the absorption process of Mg2+ ions in vitro

    NASA Astrophysics Data System (ADS)

    Marcoin, Waclawa; Duda, Henryk; Chrobak, Dariusz

    2011-01-01

    The paper presents an application of phosphatidylcholine 45% (PC 45) and polyvinylpyrrolidone (PVP) in formulations of magnesium salts such as Mg(VitB6) and Mg(VitB6Arg) prepared by solid dispersion (SD) techniques. The evaluation of influence of the selected carriers on some physicochemical properties of solid dispersions and on the absorption process of Mg +2 ions in vitro were made. An infrared (IR) spectra study suggested creation of a hydrogen bond between the carriers and the examined magnesium salts. The results of the following thermal analysis: differential thermal analysis (DTA), thermogravimetry (TG), and differential scanning calorimetry (DSC) showed that application of PVP into SD lower the temperature of the decomposition process. However, in the case of PC 45 into SD the characteristic thermal effects of higher temperatures were observed. Moreover, values of the enthalpy SD of decomposition process were decreased. The results of these studies on absorption process of Mg2+ ions in vitro showed the positive influence of the applied carriers on the partition coefficient values (log P) in the examined formulation.

  12. SY 09-4 PUBLIC POLICIES TO REDUCE SALT IN PROCESSED FOODS: HOW THEY MAY CORRELATE WITH IMPROVEMENT IN BLOOD PRESSURE CONTROL AND REDUCED CARDIOVASCULAR MORTALITY.

    PubMed

    Campbell, Norm

    2016-09-01

    Hypertension is the second leading global risk for death and disability after unhealthy diets. Amongst dietary risks, excess dietary salt (sodium) is the leading risk. As dietary sodium increases, blood pressure increases linearly. In meta-analyses of higher quality cohort studies and in a meta-analysis of randomized controlled trials, higher dietary sodium is linearly associated with increased cardiovascular disease. There are an estimated xxxx deaths and xxx DALYs in 2013 from excess dietary sodium. The World Health Organization has a recommended sodium (salt) intake of less than 2000 mg (5 g)/day with the World Health Assembly setting a voluntary target of a 30% reduction by 2025. In high income countries, the vast majority of dietary salt comes from additives during commercial food processing. In low income countries the vast majority of salt is 'discretionary' being added at home in cooking and at the table, often as condiments (e.g. soya/fish sauce or bouillon). Many highly populated countries are in nutritional transition and have the highest salt intakes with both commercial and discretionary sources. Notably diets of natural foods without added salt contain 500-800 mg sodium/day. Policies to reduce commercial sources of salt have had demonstrated efficacy at reducing salt intake, blood pressure and cardiovascular disease. Use of salt replacers (potassium partly replacing sodium) hold promise to reduce discretionary salt and in randomized controlled trials reduce blood pressure. There is renewed 'scientific' controversy about reducing dietary salt. The controversy is largely based on a small number of individuals many of whom have had associations with the food and salt industry and/or have conducted research using methods highly prone to erroneous findings. Sadly several of those dissenting have made false or misleading statements about the science supporting salt reduction, altered scientific formula to make their controversial data appear more

  13. SY 09-4 PUBLIC POLICIES TO REDUCE SALT IN PROCESSED FOODS: HOW THEY MAY CORRELATE WITH IMPROVEMENT IN BLOOD PRESSURE CONTROL AND REDUCED CARDIOVASCULAR MORTALITY.

    PubMed

    Campbell, Norm

    2016-09-01

    Hypertension is the second leading global risk for death and disability after unhealthy diets. Amongst dietary risks, excess dietary salt (sodium) is the leading risk. As dietary sodium increases, blood pressure increases linearly. In meta-analyses of higher quality cohort studies and in a meta-analysis of randomized controlled trials, higher dietary sodium is linearly associated with increased cardiovascular disease. There are an estimated xxxx deaths and xxx DALYs in 2013 from excess dietary sodium. The World Health Organization has a recommended sodium (salt) intake of less than 2000 mg (5 g)/day with the World Health Assembly setting a voluntary target of a 30% reduction by 2025. In high income countries, the vast majority of dietary salt comes from additives during commercial food processing. In low income countries the vast majority of salt is 'discretionary' being added at home in cooking and at the table, often as condiments (e.g. soya/fish sauce or bouillon). Many highly populated countries are in nutritional transition and have the highest salt intakes with both commercial and discretionary sources. Notably diets of natural foods without added salt contain 500-800 mg sodium/day. Policies to reduce commercial sources of salt have had demonstrated efficacy at reducing salt intake, blood pressure and cardiovascular disease. Use of salt replacers (potassium partly replacing sodium) hold promise to reduce discretionary salt and in randomized controlled trials reduce blood pressure. There is renewed 'scientific' controversy about reducing dietary salt. The controversy is largely based on a small number of individuals many of whom have had associations with the food and salt industry and/or have conducted research using methods highly prone to erroneous findings. Sadly several of those dissenting have made false or misleading statements about the science supporting salt reduction, altered scientific formula to make their controversial data appear more

  14. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis.

    PubMed

    Pan, Ya-Jie; Liu, Ling; Lin, Ying-Chao; Zu, Yuan-Gang; Li, Lei-Peng; Tang, Zhong-Hua

    2016-01-01

    The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan's blue detection were measured by compared to the control or salt-stressed seedlings. Secondly, the protoplasts isolated from plant leaves and dyed with Annexin V-FITC were subjected to flow cytometric (FCM) assay. Our results showed that ethylene works effectively in seedling protoplasts, antagonizing salt-included root retardation and restraining cell death both in seedlings or protoplasts. Due to salinity, the entire or partial insensitivity of ethylene signaling resulted in an elevated levels of cell death in ein2-5 and ein3-1 plants and the event were amended in ctr1-1 plants after salt treatment. The subsequent experiment with exogenous ACC further corroborated that ethylene could modulate salt-induced PCD process actively. Plant Bcl-2-associated athanogene (BAG) family genes are recently identified to play an extensive role in plant PCD processes ranging from growth, development to stress responses and even cell death. Our result showed that salinity alone significantly suppressed the transcripts of BAG6, BAG7 and addition of ACC in the saline solution could obviously re-activate BAG6 and BAG7 expressions, which might play a key role to inhibit the salt-induced cell death. In summary, our research implies that ethylene and salinity antagonistically control BAG family-, ethylene-, and senescence-related genes to alleviate the salt-induced cell death. PMID:27242886

  15. Ethylene Antagonizes Salt-Induced Growth Retardation and Cell Death Process via Transcriptional Controlling of Ethylene-, BAG- and Senescence-Associated Genes in Arabidopsis

    PubMed Central

    Pan, Ya-Jie; Liu, Ling; Lin, Ying-Chao; Zu, Yuan-Gang; Li, Lei-Peng; Tang, Zhong-Hua

    2016-01-01

    The existing question whether ethylene is involved in the modulation of salt-induced cell death to mediate plant salt tolerance is important for understanding the salt tolerance mechanisms. Here, we employed Arabidopsis plants to study the possible role of ethylene in salt-induced growth inhibition and programmed cell death (PCD) profiles. The root length, DNA ladder and cell death indicated by Evan's blue detection were measured by compared to the control or salt-stressed seedlings. Secondly, the protoplasts isolated from plant leaves and dyed with Annexin V-FITC were subjected to flow cytometric (FCM) assay. Our results showed that ethylene works effectively in seedling protoplasts, antagonizing salt-included root retardation and restraining cell death both in seedlings or protoplasts. Due to salinity, the entire or partial insensitivity of ethylene signaling resulted in an elevated levels of cell death in ein2-5 and ein3-1 plants and the event were amended in ctr1-1 plants after salt treatment. The subsequent experiment with exogenous ACC further corroborated that ethylene could modulate salt-induced PCD process actively. Plant Bcl-2-associated athanogene (BAG) family genes are recently identified to play an extensive role in plant PCD processes ranging from growth, development to stress responses and even cell death. Our result showed that salinity alone significantly suppressed the transcripts of BAG6, BAG7 and addition of ACC in the saline solution could obviously re-activate BAG6 and BAG7 expressions, which might play a key role to inhibit the salt-induced cell death. In summary, our research implies that ethylene and salinity antagonistically control BAG family-, ethylene-, and senescence-related genes to alleviate the salt-induced cell death. PMID:27242886

  16. Multiplicative jump processes and applications to leaching of salt and contaminants in the soil.

    PubMed

    Mau, Yair; Feng, Xue; Porporato, Amilcare

    2014-11-01

    We consider simple systems driven multiplicatively by white shot noise, which appear in the modeling of the dynamics of soil nutrients and contaminants. The dynamics of these systems is analyzed in two ways: solving a hierarchy of linear ordinary differential equations for the moments, which gives a time scale of convergence of the stationary probability density function; and characterizing the crossing properties, such as the mean first-passage time and the mean frequency of level crossing. These results are readily applicable to the study of geophysical systems, such as the problem of accumulation of salt in the root zone, i.e., soil salinization.

  17. Interactions between salt marsh plants and Cu nanoparticles - Effects on metal uptake and phytoremediation processes.

    PubMed

    Andreotti, Federico; Mucha, Ana Paula; Caetano, Cátia; Rodrigues, Paula; Rocha Gomes, Carlos; Almeida, C Marisa R

    2015-10-01

    The increased use of metallic nanoparticles (NPs) raises the probability of finding NPs in the environment. A lot of information exists already regarding interactions between plants and metals, but information regarding interactions between metallic NPs and plants, including salt marsh plants, is still lacking. This work aimed to study interactions between CuO NPs and the salt marsh plants Halimione portulacoides and Phragmites australis. In addition, the potential of these plants for phytoremediation of Cu NPs was evaluated. Plants were exposed for 8 days to sediment elutriate solution doped either with CuO or with ionic Cu. Afterwards, total metal concentrations were determined in plant tissues. Both plants accumulated Cu in their roots, but this accumulation was 4 to 10 times lower when the metal was added in NP form. For P. australis, metal translocation occurred when the metal was added either in ionic or in NP form, but for H. portulacoides no metal translocation was observed when NPs were added to the medium. Therefore, interactions between plants and NPs differ with the plant species. These facts should be taken in consideration when applying these plants for phytoremediation of contaminated sediments in estuaries, as the environmental management of these very important ecological areas can be affected.

  18. Salt Processing Through Ion Exchange at the Savannah River Site Selection of Exchange Media and Column Configuration - 9198

    SciTech Connect

    Spires, Renee; Punch, Timothy; McCabe, Daniel

    2009-02-11

    The Department of Energy (DOE) has developed, modeled, and tested several different ion exchange media and column designs for cesium removal. One elutable resin and one non-elutable resin were considered for this salt processing application. Deployment of non-elutable Crystalline Silicotitanate and elutable Resorcinol Formaldehyde in several different column configurations were assessed in a formal Systems Engineering Evaluation (SEE). Salt solutions were selected that would allow a grouping of non-compliant tanks to be closed. Tests were run with the elutable resin to determine compatibility with the resin configuration required for an in-tank ion exchange system. Models were run to estimate the ion exchange cycles required with the two resins in several column configurations. Material balance calculations were performed to estimate the impact on the High Level Waste (HLW) system at the Savannah River Site (SRS). Conceptual process diagrams were used to support the hazard analysis. Data from the hazard analysis was used to determine the relative impact on safety. This report will discuss the technical inputs, SEE methods, results and path forward to complete the technical maturation of ion exchange.

  19. Dynamics of prolonged salt movement in the Glückstadt Graben (NW Germany) driven by tectonic and sedimentary processes

    NASA Astrophysics Data System (ADS)

    Warsitzka, Michael; Kley, Jonas; Jähne-Klingberg, Fabian; Kukowski, Nina

    2016-02-01

    The formation of salt structures exerted a major influence on the evolution of subsidence and sedimentation patterns in the Glückstadt Graben, which is part of the Central European Basin System and comprises a post-Permian sediment thickness of up to 11 km. Driven by regional tectonics and differential loading, large salt diapirs, salt walls and salt pillows developed. The resulting salt flow significantly influenced sediment distribution in the peripheral sinks adjacent to the salt structures and overprinted the regional subsidence patterns. In this study, we investigate the geometric and temporal evolution of salt structures and subsidence patterns in the central Glückstadt Graben. Along a key geological cross section, the post-Permian strata were sequentially decompacted and restored in order to reconstruct the subsidence history of minibasins between the salt structures. The structural restoration reveals that subsidence of peripheral sinks and salt structure growth were initiated in Early to Middle Triassic time. From the Late Triassic to the Middle Jurassic, salt movement and salt structure growth never ceased, but were faster during periods of crustal extension. Following a phase from Late Jurassic to the end of the early Late Cretaceous, in which minor salt flow occurred, salt movement was renewed, particularly in the marginal parts of the Glückstadt Graben. Subsidence rates and tectonic subsidence derived from backstripping of 1D profiles reveal that especially the Early Triassic and Middle Keuper times were periods of regional extension. Three specific types of salt structures and adjacent peripheral sinks could be identified: (1) Graben centre salt walls possessing deep secondary peripheral sinks on the sides facing away from the basin centre, (2) platform salt walls, whose main peripheral sinks switched multiple times from one side of the salt wall to the other, and (3) Graben edge pillows, which show only one peripheral sink facing the basin centre.

  20. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    SciTech Connect

    Forsberg, Charles; Hu, Lin-wen; Peterson, Per; Sridharan, Kumar

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  1. Quality characteristics of a dry-cured lamb leg as affected by tumbling after dry-salting and processing time.

    PubMed

    Villalobos-Delgado, Luz H; Caro, Irma; Blanco, Carolina; Morán, Lara; Prieto, Nuria; Bodas, Raul; Giráldez, Francisco J; Mateo, Javier

    2014-05-01

    The aim of this study was to evaluate selected quality characteristics of a dry-cured lamb leg with different tumbling treatments after salting. The characteristics were measured at different processing times. Three batches of dry-cured lamb legs (nine legs per batch) were prepared with no-, short- and long-tumbling treatments, and microbial counts, NaCl, aw, proximate composition, pH, free fatty acids, water soluble nitrogen, volatile compounds, texture and colour were evaluated at days 1, 22 and 71 of processing. Furthermore, a descriptive sensory analysis (flavour and texture) was performed in the final product (day 71). Time-related changes were observed for most of the characteristics studied. The effect of tumbling was only observed for the sensory attribute pastiness that was higher in tumbled legs. Methyl-branched butanal was only detected in tumbled legs. PMID:24553493

  2. Quality characteristics of a dry-cured lamb leg as affected by tumbling after dry-salting and processing time.

    PubMed

    Villalobos-Delgado, Luz H; Caro, Irma; Blanco, Carolina; Morán, Lara; Prieto, Nuria; Bodas, Raul; Giráldez, Francisco J; Mateo, Javier

    2014-05-01

    The aim of this study was to evaluate selected quality characteristics of a dry-cured lamb leg with different tumbling treatments after salting. The characteristics were measured at different processing times. Three batches of dry-cured lamb legs (nine legs per batch) were prepared with no-, short- and long-tumbling treatments, and microbial counts, NaCl, aw, proximate composition, pH, free fatty acids, water soluble nitrogen, volatile compounds, texture and colour were evaluated at days 1, 22 and 71 of processing. Furthermore, a descriptive sensory analysis (flavour and texture) was performed in the final product (day 71). Time-related changes were observed for most of the characteristics studied. The effect of tumbling was only observed for the sensory attribute pastiness that was higher in tumbled legs. Methyl-branched butanal was only detected in tumbled legs.

  3. Faraday Discussion 160 Introductory Lecture: Interpreting and Predicting Hofmeister Salt Ion and Solute Effects on Biopolymer and Model Processes Using the Solute Partitioning Model

    PubMed Central

    Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients

  4. Geohydromechanical Processes in the Excavation Damaged Zone in Crystalline Rock, Rock Salt, and Indurated and Plastic Clays

    SciTech Connect

    Tsang, Chin-Fu; Bernier, Frederic; Davies, Christophe

    2004-06-20

    The creation of an excavation disturbed zone or excavation damaged zone is expected around all man-made openings in geologic formations. Macro- and micro-fracturing, and in general a redistribution of in situ stresses and rearrangement of rock structures, will occur in this zone, resulting in drastic changes of permeability to flow, mainly through the fractures and cracks induced by excavation. Such an EDZ may have significant implications for the operation and long-term performance of an underground nuclear waste repository. Various issues of concern need to be evaluated, such as processes creating fractures in the excavation damaged zone, the degree of permeability increase, and the potential for sealing or healing (with permeability reduction) in the zone. In recent years, efforts along these lines have been made for a potential repository in four rock types-crystalline rock, salt, indurated clay, and plastic clay-and these efforts have involved field, laboratory, and theoretical studies. The present work involves a synthesis of the ideas and issues that emerged from presentations and discussions on EDZ in these four rock types at a CLUSTER Conference and Workshop held in Luxembourg in November, 2003. First, definitions of excavation disturbed and excavation damaged zones are proposed. Then, an approach is suggested for the synthesis and intercomparison of geohydromechanical processes in the EDZ for the four rock types (crystalline rock, salt, indurated clay, and plastic clay). Comparison tables of relevant processes, associated factors, and modeling and testing techniques are developed. A discussion of the general state-of-the-art and outstanding issues are also presented. A substantial bibliography of relevant papers on the subject is supplied at the end of the paper.

  5. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  6. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, Vitro Processing Site. Revision 0

    SciTech Connect

    1996-03-01

    Ground water elevations of the shallow unconfined aquifer have been monitored at the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing site, Salt Lake City, Utah, for the purposes of characterizing ground water flow conditions and evaluating the effects of irrigation of the golf driving range. Data collected, to date, show that the water table reached its highest level for the year during March and April 1995. From May through July 1995, the water table elevations decreased in most monitor wells due to less precipitation and higher evapotranspiration. Review and evaluation of collected data suggest that irrigation of the golf driving range will have negligible effects on water levels and ground water flow patterns if rates of irrigation do not significantly exceed future rates of evapotranspiration.

  7. Magnetic separation as a plutonium residue enrichment process

    SciTech Connect

    Avens, L.R.; McFarlan, J.T.; Gallegos, U.F.

    1989-01-01

    We have subjected several plutonium contaminated residues to Open Gradient Magnetic Separation (OGMS) on an experimental scale. Separation of graphite, bomb reduction sand, and bomb reduction sand, and bomb reduction sand, slag, and crucible, resulted in a plutonium rich fraction and a plutonium lean fraction. The lean fraction varied between about 20% to 85% of the feed bulk. The plutonium content of the lean fraction can be reduced from about 2% in the feed to the 0.1% to 0.5% range dependent on the portion of the feed rejected to this lean fraction. These values are low enough in plutonium to meet economic discard limits and be considered for direct discard. Magnetic separation of direct oxide reduction and electrorefining pyrochemical salts gave less favorable results. While a fraction very rich in plutonium could be obtained, the plutonium content of the lean fraction was to high for direct discard. This may still have chemical processing applications. OGMS experiments at low magnetic field strength on incinerator ash did give two fractions but the plutonium content of each fraction was essentially identical. Thus, no chemical processing advantage was identified for magnetic separation of this residue. The detailed results of these experiments and the implications for OGMS use in recycle plutonium processing are discussed. 4 refs., 3 figs., 9 tabs.

  8. X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Shoji; Ohashi, Fumihiko; Kameyama, Tetsuya

    2005-11-01

    Inorganic-organic intercalation compounds comprised of montmorillonite (MMT) and aniline salts with different counter anions were prepared by a mechanochemical processing. The intercalation process and the formed structure of intercalation compounds were investigated via X-ray diffraction analysis. The amounts of intercalated species were very likely dependent on the types of counter anions and increased with decreasing the size of counter anions during the mechanochemical processing. Very interestingly, much larger interlayer expansions of 1.51 nm was observed for aniline hydrofluoride AnF- and aniline hydrochloride AnCl-MMT systems in higher intercalates loading levels, suggesting that neutral guest molecules also introduce within the interlayer regions together with anilinium cations by van der Waals interactions. Judging from the larger interlayer expansions and the size of guest molecules, intercalated species are expected to prefer a tri-molecular layer arrangement with their aromatic rings perpendicular to the silicate sheets. In contrast, for aniline hydrobromide AnBr-MMT, the interlayer expansion was ca. 0.52 nm, which reveals that only anilinium cations are introduced by ion exchange and they probably adopt a vertical orientation in the interlayers. It is inferred that aniline hydroiodide AnI-MMT compounds have a heterogeneous structure containing both anilinium and sodium cations in the interlayers. Different intercalation behaviors during the mechanochemical processing strongly suggest the smaller the size of counter anions, the more guest molecules can be intercalated into the confined clay interlayers in highly ordered arrangements.

  9. THE HYDROTHERMAL REACTIONS OF MONOSODIUM TITANATE, CRYSTALLINE SILICOTITANATE AND SLUDGE IN THE MODULAR SALT PROCESS: A LITERATURE SURVEY

    SciTech Connect

    Fondeur, F.; Pennebaker, F.; Fink, S.

    2010-11-11

    The use of crystalline silicotitanate (CST) is proposed for an at-tank process to treat High Level Waste at the Savannah River Site. The proposed configuration includes deployment of ion exchange columns suspended in the risers of existing tanks to process salt waste without building a new facility. The CST is available in an engineered form, designated as IE-911-CW, from UOP. Prior data indicates CST has a proclivity to agglomerate from deposits of silica rich compounds present in the alkaline waste solutions. This report documents the prior literature and provides guidance for the design and operations that include CST to mitigate that risk. The proposed operation will also add monosodium titanate (MST) to the supernate of the tank prior to the ion exchange operation to remove strontium and select alpha-emitting actinides. The cesium loaded CST is ground and then passed forward to the sludge washing tank as feed to the Defense Waste Processing Facility (DWPF). Similarly, the MST will be transferred to the sludge washing tank. Sludge processing includes the potential to leach aluminum from the solids at elevated temperature (e.g., 65 C) using concentrated (3M) sodium hydroxide solutions. Prior literature indicates that both CST and MST will agglomerate and form higher yield stress slurries with exposure to elevated temperatures. This report assessed that data and provides guidance on minimizing the impact of CST and MST on sludge transfer and aluminum leaching sludge.

  10. Studies of Quaternary saline lakes-III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    USGS Publications Warehouse

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-01-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallizations and transformations, and they documented the sources and temperatures of waters involved in the reactions. Salts first crystallized as floating rafts on the lake surface. Natron and mirabilite, salts whose solubilities decrease greatly with lowering temperatures, crystallized late at night in winter, when surface-water temperatures reached their minima; trona, nahcolite, burkeite, and halite, salts with solubilities less sensitive to temperature, crystallized during the afternoon in summer, when surface salinities reached their maxima. However, different temperatures were generally associated with crystallization (at the surface) and accumulation (on the lake floor) because short-term temperature changes were transmitted to surface and bottom waters at different rates. Consequently, even when solubilities were exceeded at the surface, salts were preserved or not as a function of bottom-water temperatures. Halite, a nearly temperature-insensitive salt, was always preserved. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 ?? 106 tons of CO2 was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After

  11. Biogeochemical and hydrologic processes controlling mercury cycling in Great Salt Lake, Utah

    NASA Astrophysics Data System (ADS)

    Naftz, D.; Kenney, T.; Angeroth, C.; Waddell, B.; Darnall, N.; Perschon, C.; Johnson, W. P.

    2006-12-01

    Great Salt Lake (GSL), in the Western United States, is a terminal lake with a highly variable surface area that can exceed 5,100 km2. The open water and adjacent wetlands of the GSL ecosystem support millions of migratory waterfowl and shorebirds from throughout the Western Hemisphere, as well as a brine shrimp industry with annual revenues exceeding 70 million dollars. Despite the ecologic and economic significance of GSL, little is known about the biogeochemical cycling of mercury (Hg) and no water-quality standards currently exist for this system. Whole water samples collected since 2000 were determined to contain elevated concentrations of total Hg (100 ng/L) and methyl Hg (33 ng/L). The elevated levels of methyl Hg are likely the result of high rates of SO4 reduction and associated Hg methylation in persistently anoxic areas of the lake at depths greater than 6.5 m below the water surface. Hydroacoustic equipment deployed in this anoxic layer indicates a "conveyor belt" flow system that can distribute methyl Hg in a predominantly southerly direction throughout the southern half of GSL (fig. 1, URL: http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs- AUG06.pdf). Periodic and sustained wind events on GSL may result in transport of the methyl Hg-rich anoxic water and bottom sediments into the oxic and biologically active regions. Sediment traps positioned above the anoxic brine interface have captured up to 6 mm of bottom sediment during cumulative wind-driven resuspension events (fig. 2, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Vertical velocity data collected with hydroacoustic equipment indicates upward flow > 1.5 cm/sec during transient wind events (fig. 3, URL:http://users.o2wire.com/dnaftz/Dave/AGU-abs-figs-AUG06.pdf). Transport of methyl Hg into the oxic regions of GSL is supported by biota samples. The median Hg concentration (wet weight) in brine shrimp increased seasonally from the spring to fall time period and is likely a

  12. Modeling the Effects of Changes to Physical, Hydrological, and Biological Processes on Porewater Salinity Distributions in a Southeastern Salt Marsh

    NASA Astrophysics Data System (ADS)

    Miklesh, D.; Meile, C. D.

    2014-12-01

    Coastal wetlands provide many important ecosystem services, which include carbon and nitrogen sequestration and transformations, the provision of habitats, and the reduction of erosion by the vegetation. Coastal wetlands will be affected by projected climate change and sea level rise and may fail to provide such services, prompting a need to understand the environmental controls on marsh and vegetation distribution. Therefore, as part of the Georgia Coastal Ecosystems Long Term Ecological Research project, an integrated modeling approach is being developed to simulate how changes in salinity and inundation may change marsh ecosystem services, by coupling a hydrodynamic with a soil and a plant model. In coastal marsh ecosystems, porewater salinity strongly determines vegetation distribution and productivity. We will present the development of the soil model, which is based on mass conservation for water and salt and links physical, hydrological, and biological processes that determine porewater salinity, including precipitation, evapotranspiration, salt exchange between surface and subsurface, drainage, groundwater exchange, tidal inundation, and surface runoff, with the lateral exchange controlled by marsh topography. The model is applied to the Duplin River marsh, Sapelo Island, Georgia. Model validation is performed by comparing model-estimated salinities to porewater salinity measurements taken in different vegetation classes and over a range of marsh elevations. Modeled variability in porewater salinities will be presented over spring-neap, seasonal, and annual time scales. To discuss potential impacts of climate change and sea level rise, a sensitivity analysis will be presented that demonstrates the effect precipitation intensity, evapotranspiration, permeability, and marsh elevation have on porewater salinities.

  13. Recommendation for Using Smaller (0.1 micro sign) Pore-Size Media for Filtration in Salt Waste Processing Project

    SciTech Connect

    Poirier, M.R.

    2003-05-02

    Based on experimental studies with simulated and actual wastes, we recommend adopting the use of 0.1-micron pore-size, sintered stainless-steel filter elements within the design of the Salt Waste Processing Facility. Furthermore, adopting the smaller pore size elements for the Actinide Removal Process would result in a significant risk to the start-up schedule due to delays for buying, installing, and testing new equipment. The existing 0.5-micron pore-size filters will provide nearly equivalent service with no additional capital investment. Unless the planned filter test at Building 512-S fails to meet specifications, the project should proceed with the existing equipment, including spares. When the existing equipment reaches the end of the service life, management can consider replacement with the smaller pore-size elements. The laboratory studies indicate that use of the smaller pore size equipment will result in greater protection against particulate fines passing to downstream facilities while giving equivalent or superior processing rates than provided by the 0.5-micron elements.

  14. Fused salt processing of impure plutonium dioxide to high-purity plutonium metal

    SciTech Connect

    Mullins, L.J.; Christensen, D.C.; Babcock, B.R.

    1982-01-01

    A process for converting impure plutonium dioxide (approx. 96% pure) to high-purity plutonium metal (>99.9%) was developed. The process consists of reducing the oxide to an impure plutonium metal intermediate with calcium metal in molten calcium chloride. The impure intermediate metal is cast into an anode and electrorefined to produce high-purity plutonium metal. The oxide reduction step is being done now on a 0.6-kg scale with the resulting yield being >99.5%. The electrorefining is being done on a 4.0-kg scale with the resulting yield being 80 to 85%. The purity of the product, which averages 99.98%, is essentially insensitive to the purity of the feed metal. The yield, however, is directly dependent on the chemical composition of the feed. To date, approximately 250 kg of impure oxide has been converted to pure metal by this processing sequence. The availability of impure plutonium dioxide, together with the need for pure plutonium metal, makes this sequence a valuable plutonium processing tool.

  15. On the importance of coupled THM processes to predict the long-term response of a generic salt repository for high-level nuclear waste

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Birkholzer, J. T.

    2013-12-01

    Salt is a potential medium for the underground disposal of nuclear waste because it has several assets, in particular its ability to creep and heal fractures generated by excavation and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste (such as spent fuel) and we consider a generic salt repository with in-drift emplacement of waste packages and subsequent backfill of the drifts with run-of-mine crushed salt. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created. In order to evaluate the integrity of the natural and engineered barriers over the long-term, it is important to consider the coupled effects of the thermal, hydraulic and mechanical processes that take place. In particular, the results obtained so far show how the porosity reduction of the crushed salt affects the saturation and pore pressure evolution throughout the repository, both in time and space. Such compaction is induced by the stress and temperature regime within the natural salt. Also, transport properties of the host rock are modified not only by thermo-mechanically and hydraulically-induced damaged processes, but also by healing/sealing of existing fractures. In addition, the THM properties of the backfill evolve towards those of the natural salt during the compaction process. All these changes are based on dedicated laboratory experiments and on theoretical considerations [1-3]. Different scenarios are modeled and compared to evaluate the relevance of different processes from the perspective of effective nuclear waste repositories. The sensitivity of the results to some parameters, such as capillarity, is also addressed. The simulations are conducted using an updated version of the TOUGH2-FLAC3D simulator, which is based on a sequential explicit method to couple flow and geomechanics [4]. A new capability for large strains and creep

  16. Illinois Institute of Technology Report: IITB52 Antifoamer for Alternative Salt Processes

    SciTech Connect

    Lambert, D.P.

    2001-06-27

    The attached report is a summary of the work performed by Dr. Darsh Wasan, Dr. Alex Nikolov, and their researchers at the Illinois Institute of Technology (IIT) during FY01. IIT developed the IITB52 antifoam for SRTC in FY00 to minimize the foam produced during precipitation, washing and concentration of cesium and potassium tetraphenyl borate precipitate. The IITB52 antifoam has been very successful during continuous processing (prototypical of plant operation). However, there were several key issues where SRTC needed the experience and knowledge of IIT to resolve. As a result a subcontract was set up with Dr. Wasan and Dr. Alex Nikolov during FY01. This subcontract requested IIT to perform the basic research necessary to understand the foaming mechanism and explain the effectiveness of the IITB52 antifoam agent in the Small Tank Tetraphenylborate Process (STTP).

  17. Influence Learning Tour on Salted Fish Processing Behavior in Product Development in Karangantu Nusantara Fishing Port (NFP)

    ERIC Educational Resources Information Center

    Hudaya, Yaya

    2015-01-01

    In an effort to increase revenue, salted fish processors in Karangantu NFP should be able to change the behavior of production from quantity to quality orientation. The increase in revenue will be difficult to achieve if the salted fish products produced still monotonous and traditional and only sold in sacks or cardboard. Development of a quality…

  18. Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing

    NASA Astrophysics Data System (ADS)

    Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.

    2014-02-01

    Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud processing by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud processing, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud processing, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward air mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised sea salts: mainly Na with some S and/or Cl. Of those, in two cases, sea-salt-containing particles with Cl were found in below-cloud samples, although sea-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the sea salt was displaced by other cloud components. In the other two cases, sea-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the sea-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to sea-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of sea-salt-containing particles. The estimation revealed that size changes by in

  19. RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE

    SciTech Connect

    Peters, T.; Washington, A.; Fink, S.

    2012-01-09

    The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under

  20. Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link.

    PubMed

    Tikhomirova, N A; Ushakova, S A; Kovaleva, N P; Gribovskaya, I V; Tikhomirov, A A

    2005-01-01

    Use of halophytes (salt-tolerant vegetation), in a particular vegetable Salicornia europaea plants which are capable of utilizing NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of bioregenerative life support systems. In preliminary experiments it was shown that S. europaea plants, basically, could grow on urine pretreated with physicochemical processing and urease-enzyme decomposing of urea with the subsequent ammonia distillation. But at the same time inhibition of the growth process of the plants was observed. The purpose of the given work was to find out the influence of excessive quantities of some mineral elements contained in products of physicochemical processing of urine on the production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human liquid wastes (urine) changed within certain limits, two variants of experimental solutions were examined. In the first variant, the concentration of mineral salts was equivalent to the minimum salt content in the urine and was: K - 1.5 g/l, P - 0.5 g/l, S - 0.5 g/l, Mg - 0.07 g/l, Ca - 0.2 g/l. In the second experimental variant, the content of mineral salts corresponded to the maximum salt content in urine and was the following: K - 3.0 g/l, P - 0.7 g/l, S - 1.2 g/l, Mg - 0.2 g/l, Ca - 0.97 g/l. As the control, the Tokarev nutrient solution containing nitrogen in the form of a urea, and the Knop nutrient solution with nitrogen in the nitrate form were used. N quantity in all four variants made up 177 mg/l. Air temperature was 24 degrees C, illumination was continuous. Light intensity was 690 micromoles/m2s of photosynthetically active radiation. NaCl concentration in solutions was 1%. Our researches showed that the dry aboveground biomass of an average plant of the first variant practically did not differ from the control and totaled 11 g. In the second variant, S. europaea productivity decreased and the dry aboveground

  1. Turbulent Processes and Sediment Transport in a Salt Marsh Tidal Channel

    NASA Astrophysics Data System (ADS)

    Meyers, S. T.; Voulgaris, G.

    2001-05-01

    important role in the means by which sediment is transported in this tidal channel. A single hysteresis curve of velocity vs. sediment concentration for the entire tidal cycle implies that greater velocities during the ebb tide break aggregates of sediment that re-aggregate throughout slack tides and the flood tide. This processes can have significant implications on the state that sediment enters and leaves the system during a complete tidal cycle.

  2. Linking the distribution of microbial deposits from the Great Salt Lake (Utah, USA) to tectonic and climatic processes

    NASA Astrophysics Data System (ADS)

    Bouton, Anthony; Vennin, Emmanuelle; Boulle, Julien; Pace, Aurélie; Bourillot, Raphaël; Thomazo, Christophe; Brayard, Arnaud; Désaubliaux, Guy; Goslar, Tomasz; Yokoyama, Yusuke; Dupraz, Christophe; Visscher, Pieter T.

    2016-10-01

    The Great Salt Lake is a modern hypersaline lake, in which an extended modern and ancient microbial sedimentary system has developed. Detailed mapping based on aerial images and field observations can be used to identify non-random distribution patterns of microbial deposits, such as paleoshorelines associated with extensive polygons or fault-parallel alignments. Although it has been inferred that climatic changes controlling the lake level fluctuations explain the distribution of paleoshorelines and polygons, straight microbial deposit alignments may underline a normal fault system parallel to the Wasatch Front. This study is based on observations over a decimetre to kilometre spatial range, resulting in an integrated conceptual model for the controls on the distribution of the microbial deposits. The morphology, size and distribution of these deposits result mainly from environmental changes (i.e. seasonal to long-term water level fluctuations, particular geomorphological heritage, fault-induced processes, groundwater seepage) and have the potential to bring further insights into the reconstruction of paleoenvironments and paleoclimatic changes through time. New radiocarbon ages obtained on each microbial macrofabric described in this study improve the chronological framework and question the lake level variations that are commonly assumed.

  3. Molten Salt Coal Gasification Process Development Unit. Phase 2. Quarterly technical progress report No. 2, October-December 1980

    SciTech Connect

    Slater, M. H.

    1981-01-20

    This represents the second quarterly progress report on Phase 2 of the Molten Salt Coal Gasification Process Development Unit (PDU) Program. Phase 1 of this program started in March 1976 and included the design, construction, and initial operation of the PDU. On June 25, 1980, Phase 2 of the program was initiated. It covers a 1-year operations program utilizing the existing PDU and is planned to include five runs with a targeted total operating time of 9 weeks. During this report period, Run 6, the initial run of the Phase 2 program was completed. The gasification system was operated for a total of 95 h at pressures up to 10 atm. Average product gas HHV values of 100 Btu/scf were recorded during 10-atm operation, while gasifying coal at a rate of 1100 lb/h. The run was terminated when the melt overflow system plugged after 60 continuous hours of overflow. Following this run, melt withdrawal system revisions were made, basically by changing the orifice materials from Monofrax to an 80 Cobalt-20 Chromium alloy. By the end of the report period, the PDU was being prepared for Run 7.

  4. Fission Product Separation from Pyrochemical Electrolyte by Cold Finger Melt Crystallization

    SciTech Connect

    Versey, Joshua R.

    2013-08-01

    This work contributes to the development of pyroprocessing technology as an economically viable means of separating used nuclear fuel from fission products and cladding materials. Electrolytic oxide reduction is used as a head-end step before electrorefining to reduce oxide fuel to metallic form. The electrolytic medium used in this technique is molten LiCl-Li2O. Groups I and II fission products, such as cesium (Cs) and strontium (Sr), have been shown to partition from the fuel into the molten LiCl-Li2O. Various approaches of separating these fission products from the salt have been investigated by different research groups. One promising approach is based on a layer crystallization method studied at the Korea Atomic Energy Research Institute (KAERI). Despite successful demonstration of this basic approach, there are questions that remain, especially concerning the development of economical and scalable operating parameters based on a comprehensive understanding of heat and mass transfer. This research explores these parameters through a series of experiments in which LiCl is purified, by concentrating CsCl in a liquid phase as purified LiCl is crystallized and removed via an argon-cooled cold finger.

  5. Integrated Salt Studies

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2015-04-01

    The growing importance of salt in the energy, subsurface storage, and chemical and food industries also increases the challenges with prediction of geometries, kinematics, stress and transport in salt. This requires an approach, which integrates a broader range of knowledge than is traditionally available in the different scientific and engineering disciplines. We aim to provide a starting point for a more integrated understanding of salt, by presenting an overview of the state of the art in a wide range of salt-related topics, from (i) the formation and metamorphism of evaporites, (ii) rheology and transport properties, (iii) salt tectonics and basin evolution, (iv) internal structure of evaporites, (v) fluid flow through salt, to (vi) salt engineering. With selected case studies we show how integration of these domains of knowledge can bring better predictions of (i) sediment architecture and reservoir distribution, (ii) internal structure of salt for optimized drilling and better cavern design, (iii) reliable long-term predictions of deformations and fluid flow in subsurface storage. A fully integrated workflow is based on geomechanical models, which include all laboratory and natural observations and links macro- and micro-scale studies. We present emerging concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and deformation of the evaporites by brittle and ductile processes, (iii) the coupling of processes in evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution.

  6. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change.

    PubMed

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2015-05-01

    Soil salinization affects 1-10 billion ha worldwide, threatening the agricultural production needed to feed the ever increasing world population. Phytoremediation may be a cost-effective option for the remediation of these soils. This review analyzes the viability of using phytoremediation for salt-affected soils and explores the remedial mechanisms involved. In addition, it specifically addresses the debate over plant indirect (via soil cation exchange enhancement) or direct (via uptake) role in salt remediation. Analysis of experimental data for electrical conductivity (ECe) + sodium adsorption ratio (SAR) reduction and plant salt uptake showed a similar removal efficiency between salt phytoremediation and other treatment options, with the added potential for phytoextraction under non-leaching conditions. A focus is also given on recent studies that indicate potential pathways for increased salt phytoextraction, co-treatment with other contaminants, and phytoremediation applicability for salt flow control. Finally, this work also details the predicted effects of climate change on soil salinization and on treatment options. The synergetic effects of extreme climate events and salinization are a challenging obstacle for future phytoremediation applications, which will require additional and multi-disciplinary research efforts.

  7. Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change.

    PubMed

    Jesus, João M; Danko, Anthony S; Fiúza, António; Borges, Maria-Teresa

    2015-05-01

    Soil salinization affects 1-10 billion ha worldwide, threatening the agricultural production needed to feed the ever increasing world population. Phytoremediation may be a cost-effective option for the remediation of these soils. This review analyzes the viability of using phytoremediation for salt-affected soils and explores the remedial mechanisms involved. In addition, it specifically addresses the debate over plant indirect (via soil cation exchange enhancement) or direct (via uptake) role in salt remediation. Analysis of experimental data for electrical conductivity (ECe) + sodium adsorption ratio (SAR) reduction and plant salt uptake showed a similar removal efficiency between salt phytoremediation and other treatment options, with the added potential for phytoextraction under non-leaching conditions. A focus is also given on recent studies that indicate potential pathways for increased salt phytoextraction, co-treatment with other contaminants, and phytoremediation applicability for salt flow control. Finally, this work also details the predicted effects of climate change on soil salinization and on treatment options. The synergetic effects of extreme climate events and salinization are a challenging obstacle for future phytoremediation applications, which will require additional and multi-disciplinary research efforts. PMID:25854203

  8. Studies of quaternary saline lakes. III. Mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, California, 1969-1971

    SciTech Connect

    Smith, G.I.; Friedman, I.; McLaughlin, R.J.

    1987-04-01

    As a consequence of the 1969-1970 flooding of normally dry Owens Lake, a 2.4-m-deep lake formed and 20% of the 2-m-thick salt bed dissolved in it. Its desiccation began August 1969, and salts started crystallizing September 1970, ending August 1971. Mineralogic, brine-composition, and stable-isotope data plus field observations showed that while the evolving brine composition established the general crystallization timetable and range of primary and secondary mineral assemblages, it was the daily, monthly, and seasonal temperature changes that controlled the details of timing and mineralogy during this depositional process. Deuterium analyses of lake brine, interstitial brine, and hydrated saline phases helped confirm the sequence of mineral crystallization and transformations, and they documented the sources and temperatures of waters involved in the reactions. Monitoring the lake-brine chemistry and mineralogy of the accumulating salts shows: (1) An estimated 0.9 x 10/sup 6/ tons of CO/sub 2/ was released to the atmosphere or consumed by the lake's biomass prior to most salt crystallization. (2) After deposition, some salts reacted in situ to form other minerals in less than one month, and all salts (except halite) decomposed or recrystallized at least once in response to seasons. (3) Warming in early 1971 caused solution of all the mirabilite and some of the natron deposited a few months earlier, a deepening of the lake (thought the lake-surface lowered), and an increase in dissolved solids. (4) Phase and solubility-index data suggest that at the close of desiccation, Na/sub 2/CO/sub 3/ x 7H/sub 2/O, never reported as a mineral, could have been the next phase to crystallize.

  9. Forcing functions governing salt transport processes in coastal navigation canals and connectivity to surrounding marshes in South Louisiana using Houma Navigation Canal as a surrogate

    USGS Publications Warehouse

    Snedden, Gregg

    2014-01-01

    Understanding how circulation and mixing processes in coastal navigation canals influence the exchange of salt between marshes and coastal ocean, and how those processes are modulated by external physical processes, is critical to anticipating effects of future actions and circumstance. Examples of such circumstances include deepening the channel, placement of locks in the channel, changes in freshwater discharge down the channel, changes in outer continental shelf (OCS) vessel traffic volume, and sea level rise. The study builds on previous BOEM-funded studies by investigating salt flux variability through the Houma Navigation Canal (HNC). It examines how external physical factors, such as buoyancy forcing and mixing from tidal stirring and OCS vessel wakes, influence dispersive and advective fluxes through the HNC and the impact of this salt flux on salinity in nearby marshes. This study quantifies salt transport processes and salinity variability in the HNC and surrounding Terrebonne marshes. Data collected for this study include time-series data of salinity and velocity in the HNC, monthly salinity-depth profiles along the length of the channel, hourly vertical profiles of velocity and salinity over multiple tidal cycles, and salinity time series data at three locations in the surrounding marshes along a transect of increasing distance from the HNC. Two modes of vertical current structure were identified. The first mode, making up 90% of the total flow field variability, strongly resembled a barotropic current structure and was coherent with alongshelf wind stress over the coastal Gulf of Mexico. The second mode was indicative of gravitational circulation and was linked to variability in tidal stirring and the longitudinal salinity gradients along the channel’s length. Diffusive process were dominant drivers of upestuary salt transport, except during periods of minimal tidal stirring when gravitational circulation became more important. Salinity in the

  10. The Difference of Chemical Components and Biological Activities of the Crude Products and the Salt-Processed Product from Semen Cuscutae

    PubMed Central

    Yang, Song; Xu, Hefang; Zhao, Baosheng; Li, Shasha; Li, Tingting; Xu, Xinfang; Zhang, Tianjiao; Lin, Ruichao

    2016-01-01

    Semen Cuscutae is a well-known Chinese medicine which has been used to nourish kidney in China for thousands of years. The crude product of semen Cuscutae (CP) and its salt-processed product (SPP) are separately used in clinic for their different effects. The study was designed to investigate the influence of processing from semen Cuscutae on chemical components and biological effects. The principal component analysis and quantitative analysis were used to study the differences of the chemical components. The effects of nourishing kidney were detected to compare the differences between the CP and SPP. The PCA results showed that the obvious separation was achieved in the CP and SPP samples. The results of quantitative analysis showed that quercetin and total flavonoids had significantly increased after salt processing while hyperoside had decreased. The comparison of CP and SPP on biological activities showed that both of them could ameliorate the kidney-yang deficiency syndrome by restoring the level of sex hormone, improving the immune function and antioxidant effect. However, SPP was better in increasing the level of T and the viscera weight of testicle and epididymis, improving the antioxidant effect. The results suggested that salt processing changed its chemical profile, which in turn enhanced its biological activities. PMID:27610186

  11. The Difference of Chemical Components and Biological Activities of the Crude Products and the Salt-Processed Product from Semen Cuscutae

    PubMed Central

    Yang, Song; Xu, Hefang; Zhao, Baosheng; Li, Shasha; Li, Tingting; Xu, Xinfang; Zhang, Tianjiao; Lin, Ruichao

    2016-01-01

    Semen Cuscutae is a well-known Chinese medicine which has been used to nourish kidney in China for thousands of years. The crude product of semen Cuscutae (CP) and its salt-processed product (SPP) are separately used in clinic for their different effects. The study was designed to investigate the influence of processing from semen Cuscutae on chemical components and biological effects. The principal component analysis and quantitative analysis were used to study the differences of the chemical components. The effects of nourishing kidney were detected to compare the differences between the CP and SPP. The PCA results showed that the obvious separation was achieved in the CP and SPP samples. The results of quantitative analysis showed that quercetin and total flavonoids had significantly increased after salt processing while hyperoside had decreased. The comparison of CP and SPP on biological activities showed that both of them could ameliorate the kidney-yang deficiency syndrome by restoring the level of sex hormone, improving the immune function and antioxidant effect. However, SPP was better in increasing the level of T and the viscera weight of testicle and epididymis, improving the antioxidant effect. The results suggested that salt processing changed its chemical profile, which in turn enhanced its biological activities.

  12. The Difference of Chemical Components and Biological Activities of the Crude Products and the Salt-Processed Product from Semen Cuscutae.

    PubMed

    Yang, Song; Xu, Hefang; Zhao, Baosheng; Li, Shasha; Li, Tingting; Xu, Xinfang; Zhang, Tianjiao; Lin, Ruichao; Li, Jian; Li, Xiangri

    2016-01-01

    Semen Cuscutae is a well-known Chinese medicine which has been used to nourish kidney in China for thousands of years. The crude product of semen Cuscutae (CP) and its salt-processed product (SPP) are separately used in clinic for their different effects. The study was designed to investigate the influence of processing from semen Cuscutae on chemical components and biological effects. The principal component analysis and quantitative analysis were used to study the differences of the chemical components. The effects of nourishing kidney were detected to compare the differences between the CP and SPP. The PCA results showed that the obvious separation was achieved in the CP and SPP samples. The results of quantitative analysis showed that quercetin and total flavonoids had significantly increased after salt processing while hyperoside had decreased. The comparison of CP and SPP on biological activities showed that both of them could ameliorate the kidney-yang deficiency syndrome by restoring the level of sex hormone, improving the immune function and antioxidant effect. However, SPP was better in increasing the level of T and the viscera weight of testicle and epididymis, improving the antioxidant effect. The results suggested that salt processing changed its chemical profile, which in turn enhanced its biological activities. PMID:27610186

  13. Hydrodynamical properties of recombinant spider silk proteins: Effects of pH, salts and shear, and implications for the spinning process.

    PubMed

    Leclerc, Jérémie; Lefèvre, Thierry; Gauthier, Martin; Gagné, Stéphane M; Auger, Michèle

    2013-09-01

    We have investigated the effect of pH, salts and shear on the hydrodynamical diameter of recombinant major ampullate (MA) rMaSpI silk proteins in solution as a function of time using (1) H solution NMR spectroscopy. The results indicate that the silk proteins in solution are composed of two diffusing populations, a high proportion of "native" solubilized proteins and a small amount of high molecular weight oligomers. Similar results are observed with the MA gland content. Salts help maintaining the proteins in a compact form in solution over time and inhibit aggregation, the absence of salts triggering protein assembly leading to a gel state. Moreover, the aggregation kinetics of rMaSpI at low salt concentration accelerates as the pH is close to the isoelectric point of the proteins, suggesting that the pH decrease tends to slow down aggregation. The data also support the strong impact of shear on the spinning process and suggest that the assembly is driven by a nucleation conformational conversion mechanism. Thus, the adjustment of the physicochemical conditions in the ampulla seems to promote a stable, long term storage. In addition, the optimization of protein conformation as well as their unfolding and aggregation propensity in the duct leads to a specifically organized structure.

  14. Difluoromethyltrialkylammonium salts--their expeditious synthesis from chlorodifluoromethane and tertiary amines in the presence of concentrated aqueous sodium hydroxide. The catalytic process.

    PubMed

    Nawrot, Ewelina; Joñczyk, Andrzej

    2007-12-21

    We found that difluorocarbene generated from chlorodifluoromethane with 50% aqueous sodium hydroxide reacts with lipophilic tertiary amines 1a-g giving difluoromethyltrialkylammonium chlorides 2a-g in high yields. Similarly, difluoromethyltrialkylammonium iodides 3h-l, nitrates 4h-k, or isothiocyanates 5i,j were synthesized from hydrophilic tertiary amines 1h-l and the corresponding sodium or potassium salts. The process is catalytic with respect to the base used.

  15. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    NASA Astrophysics Data System (ADS)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  16. Effect of iron salt counter ion in dose-response curves for inactivation of Fusarium solani in water through solar driven Fenton-like processes

    NASA Astrophysics Data System (ADS)

    Aurioles-López, Verónica; Polo-López, M. Inmaculada; Fernández-Ibáñez, Pilar; López-Malo, Aurelio; Bandala, Erick R.

    2016-02-01

    The inactivation of Fusarium solani in water was assessed by solar driven Fenton-like processes using three different iron salts: ferric acetylacetonate (Fe(acac)3), ferric chloride (FeCl3) and ferrous sulfate (FeSO4). The experimental conditions tested were [Fe] ≈ 5 mg L-1, [H2O2] ≈ 10 mg L-1 and [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1 mild and high, respectively, and pH 3.0 and 5.0, under solar radiation. The highest inactivation rates were observed at high reaction conditions for the three iron salts tested at pH 5.0 with less than 3.0 kJ L-1 of accumulate energy (QUV) to achieve over 99.9% of F. solani inactivation. Fe(acac)3 was the best iron salt to accomplishing F. solani inactivation. The modified Fermi equation was used to fix the experimental inactivation, data showed it was helpful for modeling the process, adequately describing dose-response curves. Inactivation process using FeSO4 at pH 3.0 was modeled fairly with r2 = 0.98 and 0.99 (mild and high concentration, respectively). Fe(acac)3, FeCl3 and FeSO4 at high concentration (i.e. [Fe] ≈ 10 mg L-1; [H2O2] ≈ 20 mg L-1) and pH 5.0 showed the highest fitting values (r2 = 0.99). Iron salt type showed a remarkable influence on the Fenton-like inactivation process.

  17. Recovery of 238PuO2 by Molten Salt Oxidation Processing of 238PuO2 Contaminated Combustibles (Part II)

    NASA Astrophysics Data System (ADS)

    Remerowski, Mary Lynn; Dozhier, C.; Krenek, K.; VanPelt, C. E.; Reimus, M. A.; Spengler, D.; Matonic, J.; Garcia, L.; Rios, E.; Sandoval, F.; Herman, D.; Hart, R.; Ewing, B.; Lovato, M.; Romero, J. P.

    2005-02-01

    Pu-238 heat sources are used to fuel radioisotope thermoelectric generators (RTG) used in space missions. The demand for this fuel is increasing, yet there are currently no domestic sources of this material. Much of the fuel is material reprocessed from other sources. One rich source of Pu-238 residual material is that from contaminated combustible materials, such as cheesecloth, ion exchange resins and plastics. From both waste minimization and production efficiency standpoints, the best solution is to recover this material. One way to accomplish separation of the organic component from these residues is a flameless oxidation process using molten salt as the matrix for the breakdown of the organic to carbon dioxide and water. The plutonium is retained in the salt, and can be recovered by dissolution of the carbonate salt in an aqueous solution, leaving the insoluble oxide behind. Further aqueous scrap recovery processing is used to purify the plutonium oxide. Recovery of the plutonium from contaminated combustibles achieves two important goals. First, it increases the inventory of Pu-238 available for heat source fabrication. Second, it is a significant waste minimization process. Because of its thermal activity (0.567 W per gram), combustibles must be packaged for disposition with much lower amounts of Pu-238 per drum than other waste types. Specifically, cheesecloth residues in the form of pyrolyzed ash (for stabilization) are being stored for eventual recovery of the plutonium.

  18. Molten salt electrochemistry

    SciTech Connect

    Gallegos, U.F.; Williamson, M.A.

    1997-12-31

    The objective of this work is to develop preparation and clean-up processes for the fuel and carrier salt used in the Los Alamos Accelerator-Driven Transmutation Technology molten salt nuclear system. The front-end or fuel preparation process focuses on the removal of fission products, uranium, and zirconium from spent nuclear fuel by utilizing electrochemical methods. The same method provide the separation of the transition metal fission products at the back end of the fuel cycle. Molten salts provide a natural medium for the separation of actinides and fission products from one another because they are robust, radiation resistant solvents that can be recycled. The presentation will describe the design of the electrochemistry system, the method used for salt purification, and results of preliminary experiments.

  19. A Hypermedia Environment To Explore and Negotiate Students' Conceptions: Animation of the Solution Process of Table Salt.

    ERIC Educational Resources Information Center

    Ebenezer, Jazlin V.

    2001-01-01

    Describes the characteristics and values of hypermedia for learning chemistry. Reports on how a hypermedia environment was used to explore a group of 11th grade chemistry students' conceptions of table salt dissolving in water. Indicates that a hypermedia environment can be used to explore, negotiate, and assess students' conceptions of…

  20. Influence of high concentrations of mineral salts on production process and NaCl accumulation by Salicornia europaea plants as a constituent of the LSS phototroph link

    NASA Astrophysics Data System (ADS)

    Tikhomirova, N. A.; Ushakova, S. A.; Kovaleva, N. P.; Gribovskaya, I. V.; Tikhomirov, A. A.

    Use of halophytes, in particular vegetable Salicornia europaea plants which are capable to utilize NaCl in rather high concentrations, is one of possible means of NaCl incorporation into mass exchange of biological life support systems (BLSS). In preliminary experiments it was shown, that S.europaea plants, basically, can grow on urine subjected to physicochemical processing and urease-fermentative decomposing of urea with the subsequent ammonia distillation, but for all that oppression of plants growth process was observed. In this connection, the purpose of the given work was to find out the influence of excessive quantity of some mineral elements contained in products of physicochemical processing of urine on production process and NaCl accumulation by S. europaea plants. As the content of mineral salts in the human's fluid excretions changed within certain limits two variants of modeling solutions were prepared. In the first variant concentration of mineral salts was equivalent to minimum salt content in the human's fluid excretions and compounded: K - 1,5 g/l, P - 0,5 g/l, S - 0,5 g/l, Mg - 0,07 g/l, Ca - 0,2 g/l. In the second variant the content of mineral salts corresponded to maximum salt content in the human's fluid excretions and was the following: K - 3,0 g/l, P - 0,7g/l, S - 1,2 g/l, Mg - 0,2 g/l, Ca - 0,97 g/l. As the control the modified solution under B.I.Tokarev's formulation containing nitrogen in the form of a urea, and Knop's solution with nitrogen in the nitrate form were used. N quantity in all 4 variants made up 177 mg/l. Air temperature was 24°, illumination was continuous. Light intensity was 150 W/m2 PAR. NaCl concentration in solutions compounded 1 %. The researches conducted showed that the dry above-ground biomass of an average plant of the first variant practically did not differ from the control and compounded 11,2 g. In the second variant S.europaea productivity decreased, and the dry above-ground biomass of an average plant

  1. DC electrophoresis and viscosity of realistic salt-free concentrated suspensions: non-equilibrium dissociation-association processes.

    PubMed

    Ruiz-Reina, Emilio; Carrique, Félix; Lechuga, Luis

    2014-03-01

    Most of the suspensions usually found in industrial applications are concentrated, aqueous and in contact with the atmospheric CO2. The case of suspensions with a high concentration of added salt is relatively well understood and has been considered in many studies. In this work we are concerned with the case of concentrated suspensions that have no ions different than: (1) those stemming from the charged colloidal particles (the added counterions, that counterbalance their surface charge); (2) the H(+) and OH(-) ions from water dissociation, and (3) the ions generated by the atmospheric CO2 contamination. We call this kind of systems "realistic salt-free suspensions". We show some theoretical results about the electrophoretic mobility of a colloidal particle and the electroviscous effect of realistic salt-free concentrated suspensions. The theoretical framework is based on a cell model that accounts for particle-particle interactions in concentrated suspensions, which has been successfully applied to many different phenomena in concentrated suspensions. On the other hand, the water dissociation and CO2 contamination can be described following two different levels of approximation: (a) by local equilibrium mass-action equations, because it is supposed that the reactions are so fast that chemical equilibrium is attained everywhere in the suspension, or (b) by non-equilibrium dissociation-association kinetic equations, because it is considered that some reactions are not rapid enough to ensure local chemical equilibrium. Both approaches give rise to different results in the range from dilute to semidilute suspensions, causing possible discrepancies when comparing standard theories and experiments concerning transport properties of realistic salt-free suspensions.

  2. DC electrophoresis and viscosity of realistic salt-free concentrated suspensions: non-equilibrium dissociation-association processes.

    PubMed

    Ruiz-Reina, Emilio; Carrique, Félix; Lechuga, Luis

    2014-03-01

    Most of the suspensions usually found in industrial applications are concentrated, aqueous and in contact with the atmospheric CO2. The case of suspensions with a high concentration of added salt is relatively well understood and has been considered in many studies. In this work we are concerned with the case of concentrated suspensions that have no ions different than: (1) those stemming from the charged colloidal particles (the added counterions, that counterbalance their surface charge); (2) the H(+) and OH(-) ions from water dissociation, and (3) the ions generated by the atmospheric CO2 contamination. We call this kind of systems "realistic salt-free suspensions". We show some theoretical results about the electrophoretic mobility of a colloidal particle and the electroviscous effect of realistic salt-free concentrated suspensions. The theoretical framework is based on a cell model that accounts for particle-particle interactions in concentrated suspensions, which has been successfully applied to many different phenomena in concentrated suspensions. On the other hand, the water dissociation and CO2 contamination can be described following two different levels of approximation: (a) by local equilibrium mass-action equations, because it is supposed that the reactions are so fast that chemical equilibrium is attained everywhere in the suspension, or (b) by non-equilibrium dissociation-association kinetic equations, because it is considered that some reactions are not rapid enough to ensure local chemical equilibrium. Both approaches give rise to different results in the range from dilute to semidilute suspensions, causing possible discrepancies when comparing standard theories and experiments concerning transport properties of realistic salt-free suspensions. PMID:24407659

  3. Guest-dependent complexation of triptycene-based macrotricyclic host with paraquat derivatives and secondary ammonium salts: a chemically controlled complexation process.

    PubMed

    Zhao, Jian-Min; Zong, Qian-Shou; Han, Tao; Xiang, Jun-Feng; Chen, Chuan-Feng

    2008-09-01

    The triptycene-based macrotricyclic host containing two dibenzo-[24]-crown-8 moieties has been found to form stable 1:1 or 1:2 complexes in different complexation modes with different functional paraquat derivatives and secondary ammonium salts in solution and in the solid state. Consequently, the alkyl-substituted paraquat derivatives thread the lateral crown cavities of the host to form 1:1 complexes. It was interestingly found that the paraquat derivatives containing two beta-hydroxyethyl or gamma-hydroxypropyl groups form 1:2 complexes, in which two guests thread the central cavity of the host. Other paraquat derivatives containing terminal hydroxy, methoxy, 9-anthracylmethyl, and amide groups were included in the cavity of the host to form 1:1 complexes. Moreover, the host also forms a 1:2 complex with two 9-anthracylmethylbenzylammonium salts, in which the 9-anthracyl groups were selectively positioned outside the lateral crown cavities. The competition complexation process between the host and two different guests (the propyl-substituted paraquat derivative and a dibenzylammonium salt) could be chemically controlled. PMID:18672935

  4. Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility

    SciTech Connect

    Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

    2013-07-31

    The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

  5. PEG-salt aqueous two-phase systems: an attractive and versatile liquid-liquid extraction technology for the downstream processing of proteins and enzymes.

    PubMed

    Glyk, Anna; Scheper, Thomas; Beutel, Sascha

    2015-08-01

    Nowadays, there is an increasing demand to establish new feasible, efficient downstream processing (DSP) techniques in biotechnology and related fields. Although several conventional DSP technologies have been widely employed, they are usually expensive and time-consuming and often provide only low recovery yields. Hence, the DSP is one major bottleneck for the commercialization of biological products. In this context, polyethylene glycol (PEG)-salt aqueous two-phase systems (ATPS) represent a promising, efficient liquid-liquid extraction technology for the DSP of various biomolecules, such as proteins and enzymes. Furthermore, ATPS can overcome the limitations of traditional DSP techniques and have gained importance for applications in several fields of biotechnology due to versatile advantages over conventional DSP methods, such as biocompatibility, technical simplicity, and easy scale-up potential. In the present review, various practical applications of PEG-salt ATPS are presented to highlight their feasibility to operate as an attractive and versatile liquid-liquid extraction technology for the DSP of proteins and enzymes, thus facilitating the approach of new researchers to this technique. Thereby, single- and multi-stage extraction, several process integration methods, as well as large-scale extraction and purification of proteins regarding technical aspects, scale-up, recycling of process chemicals, and economic aspects are discussed.

  6. Implications of sedimentological and hydrological processes on the distribution of radionuclides: The example of a salt marsh near Ravenglass, Cumbria

    NASA Astrophysics Data System (ADS)

    Carr, A. P.; Blackley, M. W. L.

    1986-05-01

    This paper summarizes sedimentological and hydrological studies at a salt marsh site on the north bank of the River Esk near Ravenglass which have a bearing on the fate of the low-level radioactive effluent from the reprocessing facility at Sellafield, Cumbria. A range of techniques has been used including electromagnetic distance measurement (EDM) and pore water pressure studies. The results show that: (a) Over a two-year period there were no significant net changes in salt marsh creek level, although shorter-term (probably seasonal) fluctuations, of the order of 2 cm, occurred. These were attributed to expansion of clay particles during the winter months. Nearby, however, there were vertical changes of the order of 1 m due to erosion. (b) Pore water pressures indicated a dynamic situation with very rapid responses both to tidal fluctuations and to rainfall. During neap tides there was clear evidence for water seeping upwards from the underlying clay/sand interface. Shortlived radionuclides ( 95Zr/95Nb and 106Ru) were detected in this zone. (c) Soil polygons, once initiated by desiccation, thereafter provide preferential routes for water (and radionuclides) to the sub-surface sediment. These, and other results, are discussed in the context of previous studies. It is concluded that the complexity of the estuarine environment results in most data being site specific.

  7. Microbial community of salt crystals processed from Mediterranean seawater based on 16S rRNA analysis.

    PubMed

    Baati, Houda; Guermazi, Sonda; Gharsallah, Neji; Sghir, Abdelghani; Ammar, Emna

    2010-01-01

    Phylogenetic analysis of 16S rRNA was used to investigate for the first time the structure of the microbial community that inhabits salt crystals retrieved from the bottom of a solar saltern, located in the coastal area of the Mediterranean Sea (Sfax, Tunisia). This community lives in an extremely salty environment of 250-310 g/L total dissolved salt. A total of 78 bacterial 16S rRNA clone sequences making up to 21 operational taxonomic units (OTUs), determined by the DOTUR program to 97% sequence similarity, was analyzed. These OTUs were affiliated to Bacteroidetes (71.4% of OTUs), and gamma-Proteobacteria and alpha-Proteobacteria (equally represented by 14.2% of the OTUs observed). The archaeal community composition appeared more diverse with 68 clones, resulting in 44 OTUs, all affiliated with the Euryarchaeota phylum. Of the bacterial and archaeal clones showing <97% 16S rRNA sequence identity with sequences in public databases, 47.6% and 84.1% respectively were novel clones. Both rarefaction curves and diversity measurements (Simpson, Shannon-Weaver, Chao) showed a more diverse archaeal than bacterial community at the Tunisian solar saltern pond. The analysis of an increasing clone's number may reveal additional local diversity. PMID:20130693

  8. Structural and stratigraphic evolution of the central Mississippi Canyon area: Interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards

    NASA Astrophysics Data System (ADS)

    Brand, John Richard

    Approximately 720 square miles of digital 3-dimensional seismic data covering the eastern Mississippi Canyon area, Gulf of Mexico, continental shelf was used to examine the structural and stratigraphic evolution of the geology in the study area. The analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model for the study area and its potential impact on engineering and geologic hazards. Salt in the study area was found to be established structural end-members derived from shallow-emplaced salt sheets. The transition from regional to local salt tectonics was identified through structural deformation of the stratigraphic section on the seismic data and occurred no later than ˜450,000 years ago. From ˜450,000 years to present, slope depositional processes have become the dominant geologic process in the study area. Six stratigraphic sequences (I-VI) were identified in the study area and found to correlate with sequences previously defined for the Eastern Mississippi Fan. Condensed sections were the key to the correlation. The sequence stratigraphy for the Eastern Mississippi Fan can be extended ˜28 miles west, adding another ˜720 square miles to the interpreted Fan. A previously defined channel within the Eastern Fan was identified in the study area and extended the channel ˜28 miles west. Previous work on the Eastern Fan identified the source of the Fan to be the Mobile River; however, extending the channel west suggests the sediment source to be from the Mississippi River, not the Mobile River. Further evidence for this was found in ponded turbidites whose source has been previously established as the Mississippi River. Ages of the stratigraphic sequences were compared to changes in eustatic sea level. The formation stratigraphic sequences appear decoupled from sea level change with "pseudo-highstands" forming condensed sections during pronounced Pleistocene sea level lowstands. Miocene and Pleistocene depositional analogues

  9. Phosphate salts

    MedlinePlus

    ... taken by mouth or used as enemas. Indigestion. Aluminum phosphate and calcium phosphate are FDA-permitted ingredients ... Phosphate salts containing sodium, potassium, aluminum, or calcium are LIKELY SAFE for most people when taken by mouth short-term, when sodium phosphate is inserted into the ...

  10. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    PubMed

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-01

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.

  11. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.

    PubMed

    Xu, Y; Wang, C; Tam, K C; Li, L

    2004-02-01

    The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed. PMID:15773087

  12. Salting-out homogeneous liquid-liquid extraction approach applied in sample pre-processing for the quantitative determination of entecavir in human plasma by LC-MS.

    PubMed

    Zhao, Feng-Juan; Tang, Hong; Zhang, Qing-Hua; Yang, Jin; Davey, Andrew K; Wang, Ji-Ping

    2012-01-15

    A convenient, robust, economical and selective sample preparation method for the quantitative determination of entecavir in human plasma by LC-MS was developed and validated. Entecavir and the internal standard of acyclovir were extracted from 500 μL of human plasma by a salting-out homogeneous liquid-liquid extraction approach (SHLLE) with acetonitrile as the organic extractant and magnesium sulfate as the salting-out reagent. They were analyzed on a Hanbon® Lichrospher RP C18 HPLC column (150 mm×2.0 mm; 5 μm) with gradient elution. The mobile phase comprised 0.1% acetic acid-0.2 mmol ammonium acetate in water (mobile phase A) and acetonitrile (mobile phase B). The flow rate is 0.2 mL/min. The analytes were detected by a LC-MS 2010 single quadrupole mass spectrometer instrument equipped with an electrospray ionization interface using selective ion monitoring positive mode. A "post cut" column switch technique was incorporated into the method to remove interferences of earlier and later eluting matrix components than entecavir and internal standard, including salting-out reagent used in sample pre-processing. The method was validated over the concentration range of 0.05-20 ng/mL. The intra-day and inter-day precision of the assay, as measured by the coefficient of variation (%CV), was within 3.59%, and the intra-day assay accuracy was found to be within 4.88%. The average recovery of entecavir was about 50% and the ion suppression was approximately 44% over the standard curve. Comparison of matrix effect between SHLLE and SPE by continuous post column infusion showed that these two methods got similar, slight ion suppression. The SHLLE method has been successfully utilized for the analysis of entecavir in post-dose samples from a clinical study.

  13. Dalapon, sodium salt

    Integrated Risk Information System (IRIS)

    Dalapon , sodium salt ; CASRN 75 - 99 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinoge

  14. Uranium, soluble salts

    Integrated Risk Information System (IRIS)

    Uranium , soluble salts ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  15. Thallium (I), soluble salts

    Integrated Risk Information System (IRIS)

    Thallium ( I ) , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  16. Nickel, soluble salts

    Integrated Risk Information System (IRIS)

    Nickel , soluble salts ; CASRN Various Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. Chlorite (sodium salt)

    Integrated Risk Information System (IRIS)

    Chlorite ( sodium salt ) ; CASRN 7758 - 19 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarc

  18. Robot development for nuclear material processing

    SciTech Connect

    Pedrotti, L.R.; Armantrout, G.A.; Allen, D.C.; Sievers, R.H. Sr.

    1991-07-01

    The Department of Energy is seeking to modernize its special nuclear material (SNM) production facilities and concurrently reduce radiation exposures and process and incidental radioactive waste generated. As part of this program, Lawrence Livermore National Laboratory (LLNL) lead team is developing and adapting generic and specific applications of commercial robotic technologies to SNM pyrochemical processing and other operations. A working gantry robot within a sealed processing glove box and a telerobot control test bed are manifestations of this effort. This paper describes the development challenges and progress in adapting processing, robotic, and nuclear safety technologies to the application. 3 figs.

  19. Production of chlorine from chloride salts

    DOEpatents

    Rohrmann, Charles A.

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  20. Fundamental Properties of Salts

    SciTech Connect

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  1. Metal and alloy nanoparticles by amine-borane reduction of metal salts by solid-phase synthesis: atom economy and green process.

    PubMed

    Sanyal, Udishnu; Jagirdar, Balaji R

    2012-12-01

    A new solid state synthetic route has been developed toward metal and bimetallic alloy nanoparticles from metal salts employing amine-boranes as the reducing agent. During the reduction, amine-borane plays a dual role: acts as a reducing agent and reduces the metal salts to their elemental form and simultaneously generates a stabilizing agent in situ which controls the growth of the particles and stabilizes them in the nanosize regime. Employing different amine-boranes with differing reducing ability (ammonia borane (AB), dimethylamine borane (DMAB), and triethylamine borane (TMAB)) was found to have a profound effect on the particle size and the size distribution. Usage of AB as the reducing agent provided the smallest possible size with best size distribution. Employment of TMAB also afforded similar results; however, when DMAB was used as the reducing agent it resulted in larger sized nanoparticles that are polydisperse too. In the AB mediated reduction, BNH(x) polymer generated in situ acts as a capping agent whereas, the complexing amine of the other amine-boranes (DMAB and TMAB) play the same role. Employing the solid state route described herein, monometallic Au, Ag, Cu, Pd, and Ir and bimetallic CuAg and CuAu alloy nanoparticles of <10 nm were successfully prepared. Nucleation and growth processes that control the size and the size distribution of the resulting nanoparticles have been elucidated in these systems.

  2. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge.

    PubMed

    Abbott, Timothy; Eskicioglu, Cigdem

    2015-12-01

    Anaerobic digestion (AD) is an effective way to recover energy and nutrients from organic waste; however, several issues including the solubilization of bound nutrients and the production of corrosive, highly odorous and toxic volatile sulfur compounds (VSCs) in AD biogas can limit its wider adoption. This study explored the effects of adding two different doses of ferric chloride, aluminum sulfate and magnesium hydroxide directly to the feed of complete mix semi-continuously fed mesophilic ADs on eight of the most odorous VSCs in AD biogas at three different organic loading rates (OLR). Ferric chloride was shown to be extremely effective in reducing VSCs by up to 87%, aluminum sulfate had the opposite effect and increased VSC levels by up to 920%, while magnesium hydroxide was not shown to have any significant impact. Ferric chloride, aluminum sulfate and magnesium hydroxide were effective in reducing the concentration of orthophosphate in AD effluent although both levels of alum addition caused digester failure at elevated OLRs. Extensive foaming was observed within the magnesium hydroxide dosed digesters, particularly at higher doses and high OLRs. Certain metal salt additions may be a valuable tool in overcoming barriers to AD and to meet regulatory targets. PMID:26260964

  3. Position paper on the applicability of supplemental standards to the uppermost aquifer at the Uranium Mill Tailings Vitro Processing Site, Salt Lake City, Utah

    SciTech Connect

    1996-03-01

    This report documents the results of the evaluation of the potential applicability of supplemental standards to the uppermost aquifer underlying the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing Site, Salt Lake City, Utah. There are two goals for this evaluation: provide the landowner with information to make an early qualitative decision on the possible use of the Vitro property, and evaluate the proposed application of supplemental standards as the ground water compliance strategy at the site. Justification of supplemental standards is based on the contention that the uppermost aquifer is of limited use due to wide-spread ambient contamination not related to the previous site processing activities. In support of the above, this report discusses the site conceptual model for the uppermost aquifer and related hydrogeological systems and establishes regional and local background water quality. This information is used to determine the extent of site-related and ambient contamination. A risk-based evaluation of the contaminants` effects on current and projected land uses is also provided. Reports of regional and local studies and U.S. Department of Energy (DOE) site investigations provided the basis for the conceptual model and established background ground water quality. In addition, a limited field effort (4 through 28 March 1996) was conducted to supplement existing data, particularly addressing the extent of contamination in the northwestern portion of the Vitro site and site background ground water quality. Results of the field investigation were particularly useful in refining the conceptual site model. This was important in light of the varied ground water quality within the uppermost aquifer. Finally, this report provides a critical evaluation, along with the related uncertainties, of the applicability of supplemental standards to the uppermost aquifer at the Salt Lake City Vitro processing site.

  4. The economics of salt cake recycling

    SciTech Connect

    Graziano, D.; Hryn, J.N.; Daniels, E.J.

    1996-03-01

    The Process Evaluation Section at Argonne National Laboratory (ANL) has a major program aimed at developing cost-effective technologies for salt cake recycling. This paper addresses the economic feasibility of technologies for the recovery of aluminum, salt, and residue-oxide fractions from salt cake. Four processes were assessed for salt recovery from salt cake: (1) base case: leaching in water at 25{degree}C, with evaporation to crystallize salts; (2) high-temperature case: leaching in water at 250{degree}C, with flash crystallization to precipitate salts; (3) solventlantisolvent case: leaching in water at 25{degree}C, concentrating by evaporation, and reacting with acetone to precipitate salts; and (4) electrodialysis: leaching in water at 25{degree}C, with concentration and recovery of salts by electrodialysis. All test cases for salt recovery had a negative present value, given current pricing structure and 20% return on investment. Although manufacturing costs (variable plus fixed) could reasonably be recovered in the sales price of the salt product, capital costs cannot. The economics for the recycling processes are improved, however, if the residueoxide can be sold instead of landfilled. For example, the base case process would be profitable at a wet oxide value of $220/metric ton. The economics of alternative scenarios were also considered, including aluminum recovery with landfilling of salts and oxides.

  5. Effect of the type of emulsifying salt on microstructure and rheological properties of "requeijão cremoso" processed cheese spreads.

    PubMed

    da Cunha, Clarissa R; Alcântara, Maria Regina; Viotto, Walkiria H

    2012-08-01

    The role of different types of emulsifying salts-sodium citrate (TSC), sodium hexametaphosphate (SHMP), sodium tripolyphosphate (STPP) and tetrasodium pyrophosphate (TSPP)-on microstructure and rheology of "requeijão cremoso" processed cheese was determined. The cheeses manufactured with TSC, TSPP, and STPP behaved like concentrated solutions, while the cheese manufactured with SHMP exhibited weak gel behavior and the lowest values for the phase angle (G"/G'). This means that SHMP cheese had the protein network with the largest amount of molecular interactions, which can be explained by its highest degree of fat emulsification. Rotational viscometry indicated that all the spreadable cheeses behaved like pseudoplastic fluids. The cheeses made with SHMP and TSPP presented low values for the flow behavior index, meaning that viscosity was more dependent on shear rate. Regarding the consistency index, TSPP cheese showed the highest value, which could be attributed to the combined effect of its high pH and homogeneous fat particle size distribution.

  6. Evaluation of climate and land use changes on hydrologic processes in the Salt River Basin, Missouri, United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The impact of climate and land use changes on hydrologic processes at the watershed scale is needed by land managers and policy makers to properly assess potential adaptation strategies. While numerous studies have been conducted on hydrologic processes in the Midwest, only a few have analyzed the l...

  7. An experimental study for Li recycling in an electrolytic reduction process for UO2 with a Li2O-LiCl molten salt

    NASA Astrophysics Data System (ADS)

    Park, Wooshin; Hur, Jin-Mok; Hong, Sun-Seok; Choi, Eun-Young; Im, Hun Suk; Oh, Seung-Chul; Lee, Jae-Won

    2013-10-01

    If Li is excessively produced in an electrolytic reduction process for UO2 with a Li2O-LiCl molten salt, a part of Li2O will be lost in the form of Li as deposited on the cathode, and the Li can cause negative effects on a post process. To solve these problems, a method for Li recycling was investigated in this study. A series of experiments were carried out consisting of four runs. In the first run, UO2 fragments were electrochemically reduced at 3.2 V of cell voltage. The excess Li was then recovered by transferring to another electrode at 0.3 V of cell voltage. The recovered Li was then utilized as the source for the reduction of fresh UO2 fragments. Finally, the remaining UO2 was electrochemically reduced at 3.2 V of cell voltage. The concentration of Li2O was reasonably maintained as a result of the Li recycling without a significant loss. Consequently, the potential problems by Li could be disregarded using the recycling method. The electrolytic reduction process for UO2 will be more efficient and sustainable by combining the technology for Li recycling and the conventional electrolytic reduction process.

  8. Separation of CsCl and SrCl2 from a ternary CsCl-SrCl2-LiCl via a zone refining process for waste salt minimization of pyroprocessing

    NASA Astrophysics Data System (ADS)

    Shim, Moonsoo; Choi, Ho Gil; Yi, Kyung Woo; Hwang, Il Soon; Lee, Jong Hyeon

    2016-11-01

    The purification of LiCl salt mixture has traditionally been carried out by a melt crystallization process. To improve the throughput of zone refining, three heaters were installed in the zone refiner. The zone refining method was used to grow pure LiCl salt ingots from LiCl-CsCl-SrCl2 salt mixture. The main investigated parameters were the heater speed and the number of passes. A change in the LiCl crystal grain size was observed according to the horizontal direction. From each zone refined salt ingot, samples were collected horizontally. To analyze the concentrations of Sr and Cs, an inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer were used, respectively. The experimental results show that Sr and Cs concentrations at the initial region of the ingot were low and reached their peak at the final freezing region of the salt ingot. Concentration results of zone refined salt were compared with theoretical results yielded by the proposed model to validate its predictions. The keff of Sr and Cs were 0.13 and 0.11, respectively. The decontamination factors of Sr and Cs were 450 and 1650, respectively.

  9. Materials processing in space

    NASA Technical Reports Server (NTRS)

    Waldron, R. D.; Criswell, D. R.

    1982-01-01

    Processing-refining of raw materials from extraterrestrial sources is detailed for a space materials handling facility. The discussion is constrained to those steps necessary to separate desired components from raw or altered input ores, semi-purified feedstocks, or process scrap and convert the material into elements, alloys, and consumables. The materials are regarded as originating from dead satellites and boosters, lunar materials, and asteroids. Strong attention will be given to recycling reagent substances to avoid the necessity of transporting replacements. It is assumed that since no aqueous processes exist on the moon, the distribution of minerals will be homogeneous. The processing-refining scenario will include hydrochemical, pyrochemical, electrochemical, and physical techniques selected for the output mass rate/unit plant mass ratio. Flow charts of the various materials processing operations which could be performed with lunar materials are provided, noting the necessity of delivering several alloying elements from the earth due to scarcities on the moon.

  10. EFFECT OF NUTRIENT LOADING ON BIOGEOCHEMICAL AND MICROBIAL PROCESSES IN A NEW ENGLAND HIGH SALT MARSH, SPARTINA PATNES, (AITON MUHL)

    EPA Science Inventory

    Coastal marshes represent an important transitional zone between uplands and estuaries and can assimilate nutrient inputs from uplands. We examined the effects of nitrogen (N) and phosphorus (P) fertilization on biogeochemical and microbial processes during the summer growing sea...

  11. Phase equilibria in the system H{sub 2}O-NaCl-KCl-MgCl{sub 2} relevant to salt cake processing

    SciTech Connect

    Bodnar, R.J.; Vityk, M.O.; Hryn, J.N.; Mavrogenes, J.

    1997-02-01

    One waste product in recycling of Al is salt cake, a mixture of Al, salts, and residue oxides. Several methods have been proposed to recycle salt cake, one involving high-temperature leaching of salts from the salt cake. The salt composition can be approximated as a mixture predominantly of NaCl and KCl salts, with lesser amounts of Mg chloride. In order to better assess the feasibility of recycling salt cake, an experimental study was conducted of phase equilibria in the system H{sub 2}O-NaCl-KCl-MgCl{sub 2} at pressure (P), temperature (T), and composition conditions appropriate for high- temperature salt cake recycling. These experiments were designed to evaluate the effect of small amounts (2-10 wt%) of MgCl{sub 2} on solubilities of halite (NaCl) and sylvite (KCl) in saturated solutions (30-50 wt% NaCl+KCl; NaCl:KCl = 1:1 and 3:1) at elevated P and T.

  12. Ultrasonic characterization of pork meat salting

    NASA Astrophysics Data System (ADS)

    García-Pérez, J. V.; De Prados, M.; Pérez-Muelas, N.; Cárcel, J. A.; Benedito, J.

    2012-12-01

    Salting process plays a key role in the preservation and quality of dry-cured meat products. Therefore, an adequate monitoring of salt content during salting is necessary to reach high quality products. Thus, the main objective of this work was to test the ability of low intensity ultrasound to monitor the salting process of pork meat. Cylindrical samples (diameter 36 mm, height 60±10 mm) of Biceps femoris were salted (brine 20% NaCl, w/w) at 2 °C for 1, 2, 4 and 7 days. During salting and at each experimental time, three cylinders were taken in order to measure the ultrasonic velocity at 2 °C. Afterwards, the cylinders were split in three sections (height 20 mm), measuring again the ultrasonic velocity and determining the salt and the moisture content by AOAC standards. In the whole cylinders, moisture content was reduced from 763 (g/kg sample) in fresh samples to 723 (g/kg sample) in samples salted for 7 days, while the maximum salt gain was 37.3 (g/kg sample). Although, moisture and salt contents up to 673 and 118 (g/kg sample) were reached in the sections of meat cylinders, respectively. During salting, the ultrasonic velocity increased due to salt gain and water loss. Thus, significant (p<0.05) linear relationships were found between the ultrasonic velocity and the salt (R2 = 0.975) and moisture (R2 = 0.863) contents. In addition, the change of the ultrasonic velocity with the increase of the salt content showed a good agreement with the Kinsler equation. Therefore, low intensity ultrasound emerges as a potential technique to monitor, in a non destructive way, the meat salting processes carried out in the food industry.

  13. Report of ground water monitoring for expansion of the golf course, Salt Lake City, Utah, vitro processing site

    SciTech Connect

    1995-06-01

    To determine the potential impacts of the proposed golf course expansion on the south side of the Vitro site, ground water data from the UMTRA Vitro processing site were evaluated in response to the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office request. Golf in the Round, Inc., has proposed an expansion of the present driving range to include a 9-hole golf course on the UMTRA Vitro processing site, which is owned by the Central Valley Water Reclamation Facility (CVWRF). An expanded golf course would increase irrigation and increase the amount of water that could infiltrate the soil, recharging the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in the shallow ground water could then migrate off the site or discharge to surface water in the area. Dewatering of the unconfined aquifer on CVWRF property could also impact site contaminant migration; a significant amount of ground water extraction at CVWRF could reduce the amount of contaminant migration off the site. Since 1978, data have been collected at the site to determine the distribution of tailings materials (removed from the site from 1985 to 1987) and to characterize the presence and migration of contaminants in sediments, soils, surface water, and ground water at the former Vitro processing site. Available data suggest that irrigating an expanded golf course may cause contamination to spread more rapidly within the unconfined aquifer. The public is not at risk from current Vitro processing site activities, nor is risk expected due to golf course expansion. However, ecological risk could increase with increased surface water contamination and the development of ground water seeps.

  14. Selective Methane Oxidation Catalyzed by Platinum Salts in Oleum at Turnover Frequencies of Large-Scale Industrial Processes.

    PubMed

    Zimmermann, Tobias; Soorholtz, Mario; Bilke, Marius; Schüth, Ferdi

    2016-09-28

    Direct catalytic methane functionalization, a "dream reaction", is typically characterized by relatively low catalyst activities. This also holds for the η(2)-(2,2'-bipyrimidyl)dichloroplatinum(II) [(bpym)PtCl2, 1] catalyst which oxidizes methane to methyl bisulfate in sulfuric acid. Nevertheless, it is arguably still one of the best systems for the partial oxidation of methane reported so far. Detailed studies of the dependence of activity on the SO3 concentration and the interplay with the solubility of different platinum compounds revealed potassium tetrachloroplatinate (K2PtCl4) as an extremely active, selective, and stable catalyst, reaching turnover frequencies (TOFs) of more than 25,000 h(-1) in 20% oleum with selectivities above 98%. The TOFs are more than 3 orders of magnitude higher compared to the original report on (bpym)PtCl2 and easily reach or exceed those realized in commercial industrial processes, such as the Cativa process for the carbonylation of methanol. Also space-time-yields are on the order of large-scale commercialized processes. PMID:27592637

  15. Start-up of a combined anaerobic/partial nitritation/anammox process for high-salt mustard wastewater treatment.

    PubMed

    Chen, You-Peng; Ma, Teng-Fei; Hu, Xiao; Fang, Fang; Shen, Yu; Yang, Ji-Xiang; Guo, Jin-Song; Bao, Zhen-Guo; Yan, Peng

    2015-01-01

    To treat high salinity wastewater from the mustard pickling industry, a combined anaerobic, partial nitritation (PN), and anammox process was employed using three connected reactors: an anaerobic sequencing batch biofilm reactor (ASBBR) for anaerobic treatment, a sequencing batch reactor (SBR) for PN, and an upflow anaerobic sludge blanket (UASB) for anammox. The start-up of the three individual reactors was investigated. Results showed that each reactor started up successfully, notwithstanding the stepwise increase of influent salinity to about 16.1 g NaCl/L. In the ASBBR, 89.7 % of chemical oxygen demand in the influent was removed and organic nitrogen was converted to ammonium (NH4 (+)-N). The SBR performed well with NO3 (-)-N concentration of 4.9 mg/L and ratio of NO2 (-)-N to NH4 (+)-N at the range of 1.0 to 1.3 in the effluent, which favored the anammox process. After the start-up of the UASB, the anammox process also showed stability and efficiency with a high total nitrogen removal efficiency of 86.2 % under high salinity of 12.0 g NaCl/L and nitrogen loading rate of 258 mg/(L · day).

  16. Start-up of a combined anaerobic/partial nitritation/anammox process for high-salt mustard wastewater treatment.

    PubMed

    Chen, You-Peng; Ma, Teng-Fei; Hu, Xiao; Fang, Fang; Shen, Yu; Yang, Ji-Xiang; Guo, Jin-Song; Bao, Zhen-Guo; Yan, Peng

    2015-01-01

    To treat high salinity wastewater from the mustard pickling industry, a combined anaerobic, partial nitritation (PN), and anammox process was employed using three connected reactors: an anaerobic sequencing batch biofilm reactor (ASBBR) for anaerobic treatment, a sequencing batch reactor (SBR) for PN, and an upflow anaerobic sludge blanket (UASB) for anammox. The start-up of the three individual reactors was investigated. Results showed that each reactor started up successfully, notwithstanding the stepwise increase of influent salinity to about 16.1 g NaCl/L. In the ASBBR, 89.7 % of chemical oxygen demand in the influent was removed and organic nitrogen was converted to ammonium (NH4 (+)-N). The SBR performed well with NO3 (-)-N concentration of 4.9 mg/L and ratio of NO2 (-)-N to NH4 (+)-N at the range of 1.0 to 1.3 in the effluent, which favored the anammox process. After the start-up of the UASB, the anammox process also showed stability and efficiency with a high total nitrogen removal efficiency of 86.2 % under high salinity of 12.0 g NaCl/L and nitrogen loading rate of 258 mg/(L · day). PMID:25240848

  17. Selective Methane Oxidation Catalyzed by Platinum Salts in Oleum at Turnover Frequencies of Large-Scale Industrial Processes.

    PubMed

    Zimmermann, Tobias; Soorholtz, Mario; Bilke, Marius; Schüth, Ferdi

    2016-09-28

    Direct catalytic methane functionalization, a "dream reaction", is typically characterized by relatively low catalyst activities. This also holds for the η(2)-(2,2'-bipyrimidyl)dichloroplatinum(II) [(bpym)PtCl2, 1] catalyst which oxidizes methane to methyl bisulfate in sulfuric acid. Nevertheless, it is arguably still one of the best systems for the partial oxidation of methane reported so far. Detailed studies of the dependence of activity on the SO3 concentration and the interplay with the solubility of different platinum compounds revealed potassium tetrachloroplatinate (K2PtCl4) as an extremely active, selective, and stable catalyst, reaching turnover frequencies (TOFs) of more than 25,000 h(-1) in 20% oleum with selectivities above 98%. The TOFs are more than 3 orders of magnitude higher compared to the original report on (bpym)PtCl2 and easily reach or exceed those realized in commercial industrial processes, such as the Cativa process for the carbonylation of methanol. Also space-time-yields are on the order of large-scale commercialized processes.

  18. Tuning upconversion luminescence of LiYF4:Yb3+,Er3+/Tm3+/Ho3+ microcrystals synthesized through a molten salt process.

    PubMed

    Niu, Na; He, Fei; Wang, Liuzhen; Wang, Lin; Wang, Yan; Gai, Shili; Yang, Piaoping

    2014-05-01

    In this paper, well-defined tetragonal-phase LiYF4:Yb3+,Er3+/Tm3+/Ho3+ micro-crystals with octahedral morphology were successfully prepared through a surfactant-free molten salt process for the first time. By gradually increasing the LiF content in the NaNO3-KNO3 reaction medium, the crystal phase transforms from a mixture of YF3 and LiYF4 to pure tetragonal-phase LiYF4. The possible formation process for the phase and morphology evolution is also presented. Moreover, upon 980 nm laser diode (LD) excitation, the lanthanide ions (Yb3+, Er3+/Tm3+/Ho3+) doped LiYF4 crystals exhibit intense upconversion emission lights. By tuning the sensitizer concentrations of Yb3+ ions in LiYF4:Yb3+,Er3+, the relative intensities of green and red emissions can be precisely adjusted under single wavelength excitation. Consequently, multicolor upconversion emissions can be obtained. On the other hand, UC mechanisms were also given based on the emission spectra and the plot of luminescence intensity to pump power.

  19. Recycling of aluminum salt cake

    SciTech Connect

    Jody, B.J.; Daniels, E.J.; Bonsignore, P.V.; Karvelas, D.E.

    1991-12-01

    The secondary aluminum industry generates more than 110 {times} 10{sup 3} tons of salt-cake waste every year. This waste stream contains about 3--5% aluminum, 15--30% aluminum oxide, 30--40% sodium chloride, and 20--30% potassium chloride. As much as 50% of the content of this waste is combined salt (sodium and potassium chlorides). Salt-cake waste is currently disposed of in conventional landfills. In addition, over 50 {times} 10{sup 3} tons of black dross that is not economical to reprocess a rotary furnace for aluminum recovery ends up in landfills. The composition of the dross is similar to that of salt cake, except that it contains higher concentrations of aluminum (up to 20%) and correspondingly lower amounts of salts. Because of the high solubility of the salts in water, these residues, when put in landfills, represent a potential source of pollution to surface-water and groundwater supplies. The increasing number of environmental regulations on the generation and disposal of industrial wastes are likely to restrict the disposal of these salt-containing wastes in conventional landfills. Processes exist that employ the dissolution and recovery of the salts from the waste stream. These wet-processing methods are economical only when the aluminum concentration in that waste exceeds about 10%. Argonne National Laboratory (ANL) conducted a study in which existing technologies were reviewed and new concepts that are potentially more cost-effective than existing processes were developed and evaluated. These include freeze crystallization, solvent/antisolvent extraction, common-ion effect, high-pressure/high-temperature process, and capillary-effect systems. This paper presents some of the technical and economic results of the aforementioned ANL study.

  20. Ground water elevation monitoring at the Uranium Mill Tailings Remedial Action Salt Lake City, Utah, Vitro processing site

    SciTech Connect

    1995-04-01

    In February 1994, a ground water level monitoring program was begun at the Vitro processing site. The purpose of the program was to evaluate how irrigating the new golf driving range affected ground water elevations in the unconfined aquifer. The program also evaluated potential impacts of a 9-hole golf course planned as an expansion of the driving range. The planned golf course expansion would increase the area to be irrigated and, thus, the water that could infiltrate the processing site soil to recharge the unconfined aquifer. Increased water levels in the aquifer could alter the ground water flow regime; contaminants in ground water could migrate off the site or could discharge to bodies of surface water in the area. The potential effects of expanding the golf course have been evaluated, and a report is being prepared. Water level data obtained during this monitoring program indicate that minor seasonal mounding may be occurring in response to irrigation of the driving range. However, the effects of irrigation appear small in comparison to the effects of precipitation. There are no monitor wells in the area that irrigation would affect most; that data limitation makes interpretations of water levels and the possibility of ground water mounding uncertain. Limitations of available data are discussed in the conclusion.

  1. Structure and Properties of a Non-processive, Salt-requiring, and Acidophilic Pectin Methylesterase from Aspergillus niger Provide Insights into the Key Determinants of Processivity Control.

    PubMed

    Kent, Lisa M; Loo, Trevor S; Melton, Laurence D; Mercadante, Davide; Williams, Martin A K; Jameson, Geoffrey B

    2016-01-15

    Many pectin methylesterases (PMEs) are expressed in plants to modify plant cell-wall pectins for various physiological roles. These pectins are also attacked by PMEs from phytopathogens and phytophagous insects. The de-methylesterification by PMEs of the O6-methyl ester groups of the homogalacturonan component of pectin, exposing galacturonic acids, can occur processively or non-processively, respectively, describing sequential versus single de-methylesterification events occurring before enzyme-substrate dissociation. The high resolution x-ray structures of a PME from Aspergillus niger in deglycosylated and Asn-linked N-acetylglucosamine-stub forms reveal a 10⅔-turn parallel β-helix (similar to but with less extensive loops than bacterial, plant, and insect PMEs). Capillary electrophoresis shows that this PME is non-processive, halophilic, and acidophilic. Molecular dynamics simulations and electrostatic potential calculations reveal very different behavior and properties compared with processive PMEs. Specifically, uncorrelated rotations are observed about the glycosidic bonds of a partially de-methyl-esterified decasaccharide model substrate, in sharp contrast to the correlated rotations of processive PMEs, and the substrate-binding groove is negatively not positively charged.

  2. Precipitation of jarosite-type double salts from spent acid solutions from a chemical coal cleaning process

    SciTech Connect

    Norton, G.

    1990-09-21

    The precipitation of jarosite compounds to remove Na, K, Fe, and SO{sub 4}{sup 2{minus}} impurities from spent acid solutions from a chemical coal cleaning process was studied. Simple heating of model solutions containing Fe{sub 2}(SO{sub 4}){sub 3}, Na{sub 2}SO{sub 4}, and K{sub 2}SO{sub 4} caused jarosite (KFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) to form preferentially to natrojarosite (NaFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}). Virtually all of the K, about 90% of the Fe, and about 30% of the SO{sub 4}{sup 2{minus}} could be precipitated from those solutions at 95{degree}C, while little or no Na was removed. However, simple heating of model solutions containing only Fe{sub 2}(SO{sub 4}){sub 3} and Na{sub 2}SO{sub 4} up to 95{degree}C for {le}12 hours produced low yields of jarosite compounds, and the Fe concentration in the solution had to be increased to avoid the formation of undesirable Fe compounds. Precipitate yields could be increased dramatically in model solutions of Na{sub 2}SO{sub 4}/Fe{sub 2}(SO{sub 4}){sub 3} containing excess Fe by using either CaCO{sub 3}, Ca(OH){sub 2}, or ZnO to neutralize H{sub 2}SO{sub 4} released during hydrolysis of the Fe{sub 2}(SO{sub 4}){sub 3} and during the precipitation reactions. Results obtained from the studies with model solutions were applied to spent acids produced during laboratory countercurrent washing of coal which had been leached with a molten NaOH/KOH mixture. Results indicated that jarosite compounds can be precipitated effectively from spent acid solutions by heating for 6 hours at 80{degree}C while maintaining a pH of about 1.5 using CaCO{sub 3}.

  3. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process.

    PubMed

    Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen

    2016-03-01

    The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques.

  4. Self-Assembling Diblock Polypeptide Hydrogels: Effects of Salt and Cell-Growth Media on the Self-assembly Process and Material Properties

    NASA Astrophysics Data System (ADS)

    Pakstis, Lisa; Ozbas, Bulent; Pochan, Darrin; Nowak, Andrew; Deming, Timothy

    2003-03-01

    Self-assembling peptide based hydrogels having a unique nano- and microscopic morphology are being studied for potential use as tissue engineering scaffolds. Low molecular weight ( 20 kg/mol), amphiphilic, diblock polypeptides of hydrophilic, polyelectrolyte cationic lysine (K) or anionic glutamic acid (E) and hydrophobic leucine (L) or valine (V) form hydrogels in aqueous solution at neutral pH and at very low volume fraction of polymer (vol. fraction polypeptide less than 0.5 wtbeen characterized using laser confocal microscopy (LCM), ultra-small angle neutron scattering (SANS), and cryogenic transmission electron microscopy (cryoTEM) imaging. Studies of the self-assembly process with and without significant ionic solution strength (i.e. in the presence of salt and cell growth medium) will be discussed. Interactions of the hydrogels with bacterial and mammalian cells reveal that these materials are non-cytotoxic and biocompatible. Hence, the chemistry of the assembled diblock polypeptides allows for cellular proliferation whereas the same chemistry in the homopolymeric form is cytotoxic. Proper molecular design for optimal cell viability and gel integrity in the presence of high ionic strength aqueous solution will be discussed.

  5. Effect of high pressure processing on the gel properties of salt-soluble meat protein containing CaCl2 and κ-carrageenan.

    PubMed

    Ma, Fei; Chen, Conggui; Zheng, Lei; Zhou, Cunliu; Cai, Kezhou; Han, Zhuo

    2013-09-01

    The effects of high pressure processing (HPP) on the water-binding capacity and texture profile (TPA) of salt-soluble meat protein (SSMP) containing 0.2% CaCl2 and 0.6% κ-carrageenan (SSMP-CK) gels were investigated. The results showed that 300-400 MPa improved water-binding capacity and decreased TPA parameters of SSMP-CK gels (P<0.05), while 100 MPa could increase hardness and chewiness of the gels. The thermal transition temperature peak for the myosin head (Tpeak1) of SSMP disappeared on addition of CaCl2 and κ-carrageenan. 300 MPa produced a new peak, and caused a shift of the NH-stretching left peak and amide I and the disappearance of NH-stretching right peak. The destruction of network structure and the weakening of molecular interaction within the pressurized gels could result in the decrease of TPA parameters. Thus gelling properties could be modified by HPP, κ-carrageenan and Ca(2+). It is of interest to develop low-fat and sodium-reduced meat products. PMID:23644049

  6. Screening and optimization of some inorganic salts for the production of ergot alkaloids from Penicillium species using surface culture fermentation process.

    PubMed

    Shahid, Memuna Ghafoor; Nadeem, Muhammad; Baig, Shahjehan; Cheema, Tanzeem Akbar; Atta, Saira; Ghafoor, Gul Zareen

    2016-03-01

    The present study deals with the production of ergot alkaloids from Penicillium commune and Penicillium citrinum, using surface culture fermentation process. Impact of various inorganic salts was tested on the production of ergot alkaloids during the optimization studies of fermentation medium such as impact of various concentration levels of succinic acid, ammonium chloride, MgSO4, FeSO4, ZnSO4, pH and the effect of various incubation time periods was also determined on the production of ergot alkaloids from Penicillium commune and Penicillium citrinum. Highest yield of ergot alkaloids was obtained when Penicillium commune and Penicillium citrinum that were grown on optimum levels of ingredients such as 2 g succinic acid, 1.5 and 2 g NH4Cl, 1.5 g MgSO4, 1 g FeSO4, 1 and 1.5 g ZnSO4 after 21 days of incubation time period using pH 5 at 25(°)C incubation temperature in the fermentation medium. Ergot alkaloids were determined using Spectrophotometry and Thin Layer Chromatography (TLC) techniques. PMID:27087069

  7. Molten salt chemistry: An introduction and selected applications

    SciTech Connect

    Mamantov, G.; Marassi, R.

    1987-01-01

    The major fundamental topics covered are the structure of melts, thermodynamics of molten salt mixtures, theoretical and experimental studies of transport processes, metal-metal salt solutions, solvent properties of melt systems, acid-base effects in molten salt chemistry, electronic absorption, vibrational and nuclear magnetic resonance spectroscopy of melt systems, electrochemistry and electroanalytical chemistry in molten salts, and organic chemistry in molten salts. The applied aspects include the chemistry of aluminium production, electrodeposition using molten salts, and molten salt batteries and fuel cells.

  8. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  9. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  10. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1995-11-28

    Electrolyte salts are disclosed for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts. 2 figs.

  11. Electrolyte salts for power sources

    DOEpatents

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  12. Community solar salt production in Goa, India.

    PubMed

    Mani, Kabilan; Salgaonkar, Bhakti B; Das, Deepthi; Bragança, Judith M

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa's riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans.Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1-2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested.Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced.The aim of this review is to describe salt farming in Goa's history, importance of salt production as a community activity, traditional method of salt production and the biota

  13. Community solar salt production in Goa, India

    PubMed Central

    2012-01-01

    Traditional salt farming in Goa, India has been practised for the past 1,500 years by a few communities. Goa’s riverine estuaries, easy access to sea water and favourable climatic conditions makes salt production attractive during summer. Salt produced through this natural evaporation process also played an important role in the economy of Goa even during the Portuguese rule as salt was the chief export commodity. In the past there were 36 villages involved in salt production, which is now reduced to 9. Low income, lack of skilled labour, competition from industrially produced salt, losses incurred on the yearly damage of embankments are the major reasons responsible for the reduction in the number of salt pans. Salt pans (Mithagar or Mithache agor) form a part of the reclaimed waterlogged khazan lands, which are also utilised for aquaculture, pisciculture and agriculture. Salt pans in Goa experience three phases namely, the ceased phase during monsoon period of June to October, preparatory phase from December to January, and salt harvesting phase, from February to June. After the monsoons, the salt pans are prepared manually for salt production. During high tide, an influx of sea water occurs, which enters the reservoir pans through sluice gates. The sea water after 1–2 days on attaining a salinity of approximately 5ºBé, is released into the evaporator pans and kept till it attains a salinity of 23 - 25ºBé. The brine is then released to crystallizer pans, where the salt crystallises out 25 - 27ºBé and is then harvested. Salt pans form a unique ecosystem where succession of different organisms with varying environmental conditions occurs. Organisms ranging from bacteria, archaea to fungi, algae, etc., are known to colonise salt pans and may influence the quality of salt produced. The aim of this review is to describe salt farming in Goa’s history, importance of salt production as a community activity, traditional method of salt production and the

  14. The effects of pre-salting methods on salt and water distribution of heavily salted cod, as analyzed by (1)H and (23)Na MRI, (23)Na NMR, low-field NMR and physicochemical analysis.

    PubMed

    Gudjónsdóttir, María; Traoré, Amidou; Jónsson, Ásbjörn; Karlsdóttir, Magnea Gudrún; Arason, Sigurjón

    2015-12-01

    The effect of different pre-salting methods (brine injection with salt with/without polyphosphates, brining and pickling) on the water and salt distribution in dry salted Atlantic cod (Gadus morhua) fillets was studied with proton and sodium NMR and MRI methods, supported by physicochemical analysis of salt and water content as well as water holding capacity. The study indicated that double head brine injection with salt and phosphates lead to the least heterogeneous water distribution, while pickle salting had the least heterogeneous salt distribution. Fillets from all treatments contained spots with unsaturated brine, increasing the risk of microbial denaturation of the fillets during storage. Since a homogeneous water and salt distribution was not achieved with the studied pre-salting methods, further optimizations of the salting process, including the pre-salting and dry salting steps, must be made in the future. PMID:26041245

  15. Effects of pH on the textural properties and meltability of pasteurized process cheese made with different types of emulsifying salts.

    PubMed

    Lu, Y; Shirashoji, N; Lucey, J A

    2008-10-01

    Functional properties of pasteurized process cheese (PPC) made with different types of emulsifying salts (ES) (2%, wt/wt) were investigated as a function of different pH values (from 5.3 to approximately 5.9). The ES investigated were trisodium citrate (TSC), disodium phosphate (DSP), sodium hexametaphosphate (SHMP), and tetrasodium pyrophosphate (TSPP). Meltability and textural properties were determined using UW-MeltProfiler and uniaxial compression, respectively. All PPC samples exhibited an increase in degree of flow (DOF) determined at 45 degrees C when the pH was increased from 5.3 to 5.6, presumably reflecting greater Ca binding by the ES, increased charge repulsion and therefore greater casein dispersion. When the pH of PPC was increased from 5.6 to approximately 5.9, 2 types of ES (DSP and SHMP) exhibited no further increase in DOF at 45 degrees C; while DOF increased in 1 type of PPC (made with TSC) but decreased in another (made with TSPP). TSPP is able to form crosslinks with casein especially in the vicinity of pH 6, which likely restricted melt; in contrast TSC does not crosslink caseins and the increase in pH helped cause greater casein dispersion. Low pH samples (5.3) were not significantly harder than higher pH samples for all ES types but exhibited fracture. The PPC with the highest hardness values at pHs 5.3 and 5.6 were made with TSPP and TSC, respectively. The pH-dependent functional behavior of PPC was strongly influenced by the type of ES and its physicochemical properties including its ability to bind Ca, the possible creation of crosslinks with casein and casein dispersion during cooking.

  16. Investigation of Salt Loss from the Bonneville Salt Flats, Northwestern Utah

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1997-01-01

    The Bonneville Salt Flats study area is located in the western part of the Great Salt Lake Desert in northwestern Utah, about 110 miles west of Salt Lake City. The salt crust covers about 50 square miles, but the extent varies yearly as a result of salt being dissolved by the formation and movement of surface ponds during the winter and redeposited with the evaporation of these ponds during the summer. A decrease in thickness and extent of the salt crust on the Bonneville Salt Flats has been documented during 1960-88 (S. Brooks, Bureau of Land Management, written commun., 1989). Maximum salt-crust thickness was 7 feet in 1960 and 5.5 feet in 1988. No definitive data are available to identify and quantify the processes that cause salt loss. More than 55 million tons of salt are estimated to have been lost from the salt crust during the 28-year period. The Bureau of Land Management needs to know the causes of salt loss to make appropriate management decisions.

  17. Production of carboxylic acid and salt co-products

    SciTech Connect

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  18. Rheological contrasts in salt and their effects on flow in salt

    NASA Astrophysics Data System (ADS)

    Urai, Janos L.; Kukla, Peter A.

    2014-05-01

    The majority of numerical and analogue models of salt tectonics assume homogeneous rheological models, and consequently produce simple internal structures. This is in contrast to observations in salt mines and 3D seismic, showing complex folding at a wide range of scales, in combination with boudinage and fracturing, which point to large rheological contrasts in salt bodies. The rheology of rock salt during slow deformation can be both Newtonian and Power law. Dislocation creep and dissolution-precipitation processes, such as solution-precipitation creep and dynamic recrystallisation, both play a significant role and grain boundary healing in deforming salt may result in cyclic softening and hardening behaviour. The switch between these processes can cause major changes in rock salt rheology, at time scales both relevant to geologic evolution and subsurface operations. In the dislocation creep field, a compilation of laboratory data show that different rock salts can creep at four orders of magnitude different strain rates under otherwise the same conditions. Potassium - Magnesium salts are in turn much weaker, and Anhydrite much stronger than rock salt. Anhydrite - carbonate inclusions embedded in deforming salt bodies respond to the movements of the salt in a variety of ways including boudinage and folding. New methods of microstructure analysis integrated with paleorheology indicators observed in natural laboratories allows an integration of these data and the development of a unified model for salt creep for both underground cavities and natural deformation, including the effect of high fluid pressures in salt which lead to a dramatic increases in permeability. For example, modeling of anhydrite stringer sinking is an important way to obtain the long term rheology of the halite, indicating that the rheology of Zechstein salt during the Tertiary was dominated by dislocation creep. These form the basis of a new generation of mechanical models to predict the

  19. Chemistry and technology of Molten Salt Reactors - history and perspectives

    NASA Astrophysics Data System (ADS)

    Uhlíř, Jan

    2007-01-01

    Molten Salt Reactors represent one of promising future nuclear reactor concept included also in the Generation IV reactors family. This reactor type is distinguished by an extraordinarily close connection between the reactor physics and chemical technology, which is given by the specific features of the chemical form of fuel, representing by molten fluoride salt and circulating through the reactor core and also by the requirements of continuous 'on-line' reprocessing of the spent fuel. The history of Molten Salt Reactors reaches the period of fifties and sixties, when the first experimental Molten Salt Reactors were constructed and tested in ORNL (US). Several molten salt techniques dedicated to fresh molten salt fuel processing and spent fuel reprocessing were studied and developed in those days. Today, after nearly thirty years of discontinuance, a renewed interest in the Molten Salt Reactor technology is observed. Current experimental R&D activities in the area of Molten Salt Reactor technology are realized by a relatively small number of research institutions mainly in the EU, Russia and USA. The main effort is directed primarily to the development of separation processes suitable for the molten salt fuel processing and reprocessing technology. The techniques under development are molten salt/liquid metal extraction processes, electrochemical separation processes from the molten salt media, fused salt volatilization techniques and gas extraction from the molten salt medium.

  20. Salt splitting with ceramic membranes

    SciTech Connect

    Kurath, D.

    1996-10-01

    The purpose of this task is to develop ceramic membrane technologies for salt splitting of radioactively contaminated sodium salt solutions. This technology has the potential to reduce the low-level waste (LLW) disposal volume, the pH and sodium hydroxide content for subsequent processing steps, the sodium content of interstitial liquid in high-level waste (HLW) sludges, and provide sodium hydroxide free of aluminum for recycle within processing plants at the DOE complex. Potential deployment sites include Hanford, Savannah River, and Idaho National Engineering Laboratory (INEL). The technical approach consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON). As the name implies, sodium ions are transported rapidly through these ceramic crystals even at room temperatures.

  1. Long-Term Modeling of Coupled Processes in a Generic Salt Repository for Heat-Generating Nuclear Waste: Analysis of the Impacts of Halite Solubility Constraints

    NASA Astrophysics Data System (ADS)

    Blanco Martin, L.; Rutqvist, J.; Battistelli, A.; Birkholzer, J. T.

    2015-12-01

    Rock salt is a potential medium for the underground disposal of nuclear waste because it has several assets, such as its ability to creep and heal fractures and its water and gas tightness in the undisturbed state. In this research, we focus on disposal of heat-generating nuclear waste and we consider a generic salt repository with in-drift emplacement of waste packages and crushed salt backfill. As the natural salt creeps, the crushed salt backfill gets progressively compacted and an engineered barrier system is subsequently created [1]. The safety requirements for such a repository impose that long time scales be considered, during which the integrity of the natural and engineered barriers have to be demonstrated. In order to evaluate this long-term integrity, we perform numerical modeling based on state-of-the-art knowledge. Here, we analyze the impacts of halite dissolution and precipitation within the backfill and the host rock. For this purpose, we use an enhanced equation-of-state module of TOUGH2 that properly includes temperature-dependent solubility constraints [2]. We perform coupled thermal-hydraulic-mechanical modeling and we investigate the influence of the mentioned impacts. The TOUGH-FLAC simulator, adapted for large strains and creep, is used [3]. In order to quantify the importance of salt dissolution and precipitation on the effective porosity, permeability, pore pressure, temperature and stress field, we compare numerical results that include or disregard fluids of variable salinity. The sensitivity of the results to some parameters, such as the initial saturation within the backfill, is also addressed. References: [1] Bechthold, W. et al. Backfilling and Sealing of Underground Repositories for Radioactive Waste in Salt (BAMBUS II Project). Report EUR20621 EN: European Atomic Energy Community, 2004. [2] Battistelli A. Improving the treatment of saline brines in EWASG for the simulation of hydrothermal systems. Proceedings, TOUGH Symposium 2012

  2. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.

    PubMed

    Carrique, Félix; Ruiz-Reina, Emilio; Lechuga, Luis; Arroyo, Francisco J; Delgado, Ángel V

    2013-12-01

    Electrokinetic investigations in nanoparticle suspensions in aqueous media are most often performed assuming that the liquid medium is a strong electrolyte solution with specified concentration. The role of the ions produced by the process of charging the surfaces of the particles is often neglected or, at most, the concentrations of such ions are estimated in some way and added to the concentrations of the ions in the externally prepared solution. The situation here considered is quite different: no electrolyte is dissolved in the medium, and ideally only the counterions stemming from the particle charging are assumed to be in solution. This is the case of so-called salt-free systems. With the aim of making a model for such kind of dispersions as close to real situations as possible, it was previously found to consider the unavoidable presence of H(+) and OH(-) coming from water dissociation, as well as the (almost unavoidable) ions stemming from the dissolution of atmospheric CO2. In this work, we extend such approach by considering that the chemical reactions involved in dissociation and recombination of the (weak) electrolytes in solution must not necessarily be in equilibrium conditions (equal rates of forward and backward reactions). To that aim, we calculate the frequency spectra of the electric permittivity and dynamic electrophoretic mobility of salt-free suspensions considering realistic non-equilibrium conditions, using literature values for the rate constants of the reactions. Four species are linked by such reactions, namely H(+) (from water, from the--assumed acidic--groups on the particle surfaces, and from CO2 dissolution), OH(-) (from water), HCO3(-) and H2CO3 (again from CO2). A cell model is used for the calculations, which are extended to arbitrary values of the surface charge, the particle size, and particle volume fraction, in a wide range of the field frequency ω. Both approaches predict a high frequency relaxation of the counterion

  3. Effects of non-equilibrium association-dissociation processes in the dynamic electrophoretic mobility and dielectric response of realistic salt-free concentrated suspensions.

    PubMed

    Carrique, Félix; Ruiz-Reina, Emilio; Lechuga, Luis; Arroyo, Francisco J; Delgado, Ángel V

    2013-12-01

    Electrokinetic investigations in nanoparticle suspensions in aqueous media are most often performed assuming that the liquid medium is a strong electrolyte solution with specified concentration. The role of the ions produced by the process of charging the surfaces of the particles is often neglected or, at most, the concentrations of such ions are estimated in some way and added to the concentrations of the ions in the externally prepared solution. The situation here considered is quite different: no electrolyte is dissolved in the medium, and ideally only the counterions stemming from the particle charging are assumed to be in solution. This is the case of so-called salt-free systems. With the aim of making a model for such kind of dispersions as close to real situations as possible, it was previously found to consider the unavoidable presence of H(+) and OH(-) coming from water dissociation, as well as the (almost unavoidable) ions stemming from the dissolution of atmospheric CO2. In this work, we extend such approach by considering that the chemical reactions involved in dissociation and recombination of the (weak) electrolytes in solution must not necessarily be in equilibrium conditions (equal rates of forward and backward reactions). To that aim, we calculate the frequency spectra of the electric permittivity and dynamic electrophoretic mobility of salt-free suspensions considering realistic non-equilibrium conditions, using literature values for the rate constants of the reactions. Four species are linked by such reactions, namely H(+) (from water, from the--assumed acidic--groups on the particle surfaces, and from CO2 dissolution), OH(-) (from water), HCO3(-) and H2CO3 (again from CO2). A cell model is used for the calculations, which are extended to arbitrary values of the surface charge, the particle size, and particle volume fraction, in a wide range of the field frequency ω. Both approaches predict a high frequency relaxation of the counterion

  4. International Nuclear Energy Research Initiative Development of Computational Models for Pyrochemical Electrorefiners of Nuclear Waste Transmutation Systems

    SciTech Connect

    M.F. Simpson; K.-R. Kim

    2010-12-01

    In support of closing the nuclear fuel cycle using non-aqueous separations technology, this project aims to develop computational models of electrorefiners based on fundamental chemical and physical processes. Spent driver fuel from Experimental Breeder Reactor-II (EBR-II) is currently being electrorefined in the Fuel Conditioning Facility (FCF) at Idaho National Laboratory (INL). And Korea Atomic Energy Research Institute (KAERI) is developing electrorefining technology for future application to spent fuel treatment and management in the Republic of Korea (ROK). Electrorefining is a critical component of pyroprocessing, a non-aqueous chemical process which separates spent fuel into four streams: (1) uranium metal, (2) U/TRU metal, (3) metallic high-level waste containing cladding hulls and noble metal fission products, and (4) ceramic high-level waste containing sodium and active metal fission products. Having rigorous yet flexible electrorefiner models will facilitate process optimization and assist in trouble-shooting as necessary. To attain such models, INL/UI has focused on approaches to develop a computationally-light and portable two-dimensional (2D) model, while KAERI/SNU has investigated approaches to develop a computationally intensive three-dimensional (3D) model for detailed and fine-tuned simulation.

  5. Alkali Metal Salts with Designable Aryltrifluoroborate Anions.

    PubMed

    Iwasaki, Kazuki; Yoshii, Kazuki; Tsuzuki, Seiji; Matsumoto, Hajime; Tsuda, Tetsuya; Kuwabata, Susumu

    2016-09-01

    Aryltrifluoroborate ([ArBF3](-)) has a designable basic anion structure. Various [ArBF3](-)-based anions were synthesized to create novel alkali metal salts using a simple and safe process. Nearly 40 novel alkali metal salts were successfully obtained, and their physicochemical characteristics, particularly their thermal properties, were elucidated. These salts have lower melting points than those of simple inorganic alkali halide salts, such as KCl and LiCl, because of the weaker interactions between the alkali metal cations and the [ArBF3](-) anions and the anions' larger entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium (meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings contribute substantially to furthering molten salt chemistry, ionic liquid chemistry, and electrochemistry. PMID:27510799

  6. Salt tectonics on Venus

    SciTech Connect

    Wood, C.A.; Amsbury, D.

    1986-05-01

    The discovery of a surprisingly high deuterium/hydrogen ratio on Venus immediately led to the speculation that Venus may have once had a volume of surface water comparable to that of the terrestrial oceans. The authors propose that the evaporation of this putative ocean may have yielded residual salt deposits that formed various terrain features depicted in Venera 15 and 16 radar images. By analogy with models for the total evaporation of the terrestrial oceans, evaporite deposits on Venus should be at least tens to hundreds of meters thick. From photogeologic evidence and in-situ chemical analyses, it appears that the salt plains were later buried by lava flows. On Earth, salt diapirism leads to the formation of salt domes, anticlines, and elongated salt intrusions - features having dimensions of roughly 1 to 100 km. Due to the rapid erosion of salt by water, surface evaporite landforms are only common in dry regions such as the Zagros Mountains of Iran, where salt plugs and glaciers exist. Venus is far drier than Iran; extruded salt should be preserved, although the high surface temperature (470/sup 0/C) would probably stimulate rapid salt flow. Venus possesses a variety of circular landforms, tens to hundreds of kilometers wide, which could be either megasalt domes or salt intrusions colonizing impact craters. Additionally, arcurate bands seen in the Maxwell area of Venus could be salt intrusions formed in a region of tectonic stress. These large structures may not be salt features; nonetheless, salt features should exist on Venus.

  7. Use of agar diffusion assay to measure bactericidal activity of alkaline salts of fatty acids against bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine antibacterial activity of alkaline salts of caproic, caprylic, capric, lauric, and myristic acids. A 0.5M concentration of each fatty acid was dissolved in 1.0 M potassium hydroxide (KOH), and pH of the mixtures was adjusted to 10.5 with citric acid. Solu...

  8. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  9. PySALT: SALT science pipeline

    NASA Astrophysics Data System (ADS)

    Crawford, S. M.; Still, M.; Schellart, P.; Balona, L.; Buckley, D. A. H.; Gulbis, A. A. S.; Kniazev, A.; Kotze, M.; Loaring, N.; Nordsieck, K. H.; Pickering, T. E.; Potter, S.; Romero Colmenero, E.; Vaisanen, P.; Wiliams, T.; Zietsman, E.

    2012-07-01

    The PySALT user package contains the primary reduction and analysis software tools for the SALT telescope. Currently, these tools include basic data reductions for RSS and SALTICAM in both imaging, spectroscopic, and slot modes. Basic analysis software for slot mode data is also provided. These tools are primarily written in python/PyRAF with some additional IRAF code.

  10. Chromium(III), insoluble salts

    Integrated Risk Information System (IRIS)

    Chromium ( III ) , insoluble salts ; CASRN 16065 - 83 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments

  11. What Are Bath Salts?

    MedlinePlus

    ... Are bath salts becoming more popular? Marsha Lopez Hi, Lauren. Nope! Actually quite the opposite! This family ... and how dangerous for your body? Michelle Rankin Hi ParkerPanella - Bath salts are drugs known as synthetic ...

  12. Utah: Salt Lake Region

    Atmospheric Science Data Center

    2014-05-15

    article title:  Winter and Summer Views of the Salt Lake Region     View Larger Image Magnificent views of the region surrounding Salt Lake City, Utah are captured in these winter and summer images from the ...

  13. Molten salt electrolyte separator

    DOEpatents

    Kaun, Thomas D.

    1996-01-01

    A molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication.

  14. Fracture and Healing of Rock Salt Related to Salt Caverns

    SciTech Connect

    Chan, K.S.; Fossum, A.F.; Munson, D.E.

    1999-03-01

    In recent years, serious investigations of potential extension of the useful life of older caverns or of the use of abandoned caverns for waste disposal have been of interest to the technical community. All of the potential applications depend upon understanding the reamer in which older caverns and sealing systems can fail. Such an understanding will require a more detailed knowledge of the fracture of salt than has been necessary to date. Fortunately, the knowledge of the fracture and healing of salt has made significant advances in the last decade, and is in a position to yield meaningful insights to older cavern behavior. In particular, micromechanical mechanisms of fracture and the concept of a fracture mechanism map have been essential guides, as has the utilization of continuum damage mechanics. The Multimechanism Deformation Coupled Fracture (MDCF) model, which is summarized extensively in this work was developed specifically to treat both the creep and fracture of salt, and was later extended to incorporate the fracture healing process known to occur in rock salt. Fracture in salt is based on the formation and evolution of microfractures, which may take the form of wing tip cracks, either in the body or the boundary of the grain. This type of crack deforms under shear to produce a strain, and furthermore, the opening of the wing cracks produce volume strain or dilatancy. In the presence of a confining pressure, microcrack formation may be suppressed, as is often the case for triaxial compression tests or natural underground stress situations. However, if the confining pressure is insufficient to suppress fracture, then the fractures will evolve with time to give the characteristic tertiary creep response. Two first order kinetics processes, closure of cracks and healing of cracks, control the healing process. Significantly, volume strain produced by microfractures may lead to changes in the permeability of the salt, which can become a major concern in

  15. Molten salt technology

    SciTech Connect

    Lovering, D.G.

    1982-01-01

    In this volume, the historical background, scope, problems, economics, and future applications of molten salt technologies are discussed. Topics presented include molten salts in primary production of aluminum, general principles and handling and safety of the alkali metals, first-row transition metals, group VIII metals and B-group elements, solution electrochemistry, transport phenomena, corrosion in different molten salts, cells with molten salt electrolytes and reactants, fuel cell design, hydrocracking and liquefaction, heat storage in phase change materials, and nuclear technologies.

  16. Retrospective salt tectonics

    SciTech Connect

    Jackson, M.P.A.

    1996-12-31

    The conceptual breakthroughs in understanding salt tectonics can be recognized by reviewing the history of salt tectonics, which divides naturally into three parts: the pioneering era, the fluid era, and the brittle era. The pioneering era (1856-1933) featured the search for a general hypothesis of salt diapirism, initially dominated by bizarre, erroneous notions of igneous activity, residual islands, in situ crystallization, osmotic pressures, and expansive crystallization. Gradually data from oil exploration constrained speculation. The effects of buoyancy versus orogeny were debated, contact relations were characterized, salt glaciers were discovered, and the concepts of downbuilding and differential loading were proposed as diapiric mechanisms. The fluid era (1933-{approximately}1989) was dominated by the view that salt tectonics resulted from Rayleigh-Taylor instabilities in which a dense fluid overburden having negligible yield strength sinks into a less dense fluid salt layer, displacing it upward. Density contrasts, viscosity contrasts, and dominant wavelengths were emphasized, whereas strength and faulting of the overburden were ignored. During this era, palinspastic reconstructions were attempted; salt upwelling below thin overburdens was recognized; internal structures of mined diapirs were discovered; peripheral sinks, turtle structures, and diapir families were comprehended; flow laws for dry salt were formulated; and contractional belts on divergent margins and allochthonous salt sheets were recognized. The 1970s revealed the basic driving force of salt allochthons, intrasalt minibasins, finite strains in diapirs, the possibility of thermal convection in salt, direct measurement of salt glacial flow stimulated by rainfall, and the internal structure of convecting evaporites and salt glaciers. The 1980`s revealed salt rollers, subtle traps, flow laws for damp salt, salt canopies, and mushroom diapirs.

  17. Combustion efficiency and pyrochemical properties of micron-sized metal particles as the components of modified double-base propellant

    NASA Astrophysics Data System (ADS)

    Wu, Xiong-Gang; Yan, Qi-Long; Guo, Xin; Qi, Xiao-Fei; Li, Xiao-Jiang; Wang, Ke-Qiang

    2011-04-01

    The combustion efficiency of metallized propellants are investigated and compared to the corresponding blank propellant in order to evaluate the actual effect of the metals in solid rocket applications. The image analysis coupled with energy dispersive spectrometry (EDS) analysis on a scanning electron microscope (SEM) and quantitative X-ray diffraction analysis were applied to the characterization of the original metal particles such as aluminum (Al), magnesium (Mg), boron (B), nickel (Ni), and Mg-Al alloy (Mg/Al) and their condensed combustion products. Under the explored operating conditions, the results confirm that the metallized propellants show heterogeneous diffusing flame, with significant change in pressure sensitivity, and larger aggregation/agglomeration phenomena in combustion products than that of the blank propellant. Besides, the chemical reactions in condensed phase and gas phase which control the burning process and combustion efficiency of the double-base propellant containing different metal particles were systematically investigated and descriptions of the detailed reaction mechanisms from solid phase to liquid phase or to gas phase are also included. It was indicated that the combustion efficiency is favored by the activity and melting points of the metals.

  18. Subsidence and collapse at Texas Salt Domes

    SciTech Connect

    Mullican, W.F.

    1989-01-01

    This book provides a description of the mechanisms and extent of natural and man-induced subsidence and collapse at Texas salt domes. In the Houston diapir province, Frasch mining has caused subsidence bowls and collapse sinkholes at 12 of the 14 sulfur-productive domes. Understanding the structural and hydrologic instability that results at the surface and subsurface is crucial in evaluating the suitability of salt domes as repositories for waste disposal. Part of the Bureau's Coastal Salt Dome Program, this study used aerial photographs, remote-sensing methods, historical and modern topographic maps, and field checks to detect subsidence and collapse associated with natural salt diapiric processes and commercial resource recovery and to determine which processes are likely to reduce the stability and integrity of hydrologic and structural barriers around salt diapirs. Figures and tables illustrating the extent and evolution of subsidence and collapse, along with photographs showing their effects, highlight the text discussion of the salt domes detailed in this study-Boling, Orchard, Moss Bluff, Spindletop, Hoskins Mound, Fannett, Long Point, Nash, High Island, Bryan Mound, Clemens, and Gulf. The author concludes that Frasch sulfur mining from cap rocks causes the most catastrophic subsidence and collapse and that subsidence over salt domes includes processes ranging from trough subsidence to various types of subsurface caving. He concludes that salt domes characterized by subsidence and collapse are unfavorable sites for storage/disposal of hazardous wastes.

  19. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  20. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  1. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  2. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  3. 21 CFR 100.155 - Salt and iodized salt.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Salt and iodized salt. 100.155 Section 100.155... FOR HUMAN CONSUMPTION GENERAL Specific Administrative Rulings and Decisions § 100.155 Salt and iodized salt. (a) For the purposes of this section, the term iodized salt or iodized table salt is...

  4. The influence of salt formation on electrostatic and compression properties of flurbiprofen salts.

    PubMed

    Supuk, Enes; Ghori, Muhammad U; Asare-Addo, Kofi; Laity, Peter R; Panchmatia, Pooja M; Conway, Barbara R

    2013-12-15

    Salt formation is an effective method of improving physicochemical properties of acidic and basic drugs. The selection of a salt form most suitable for drug development requires a well-designed screening strategy to ensure various issues are addressed in the early development stages. Triboelectrification of pharmaceutical powders may cause problems during processing such as segregation of components due to the effects of particle adhesion. However, very little work has been done on the effect of salt formation on triboelectrification properties. In this paper, salts of flurbiprofen were prepared by combining the drug with a selection of closely related amine counter ions. The aim of the work was to investigate the impact of the counter ion on electrostatic charge of the resultant salts to inform the salt selection process. The experimental results show the magnitude of charge and polarity of the flurbiprofen salts to be highly dependent on the type of counter ion selected for the salt formation. Furthermore, particle adhesion to the stainless steel surface of the shaking container and the salts' compression properties were measured. The formed salts had lower electrostatic charges, improved tabletability, and resulted in reduced adhesion of these powders compared with the parent drug.

  5. Interior cavern conditions and salt fall potential

    SciTech Connect

    Munson, D.E.; Molecke, M.A.; Myers, R.E.

    1998-03-01

    A relatively large number of salt caverns are used for fluid hydrocarbon storage, including an extensive set of facilities in the Gulf Coast salt domes for the Strategic Petroleum Reserve (SPR) Program. Attention is focused on the SPR caverns because of available histories that detail events involving loss and damage of the hanging string casing. The total number of events is limited, making the database statistically sparse. The occurrence of the events is not evenly distributed, with some facilities, and some caverns, more susceptible than others. While not all of these events could be attributed to impacts from salt falls, many did show the evidence of such impacts. As a result, a study has been completed to analyze the potential for salt falls in the SPR storage caverns. In this process, it was also possible to deduce some of the cavern interior conditions. Storage caverns are very large systems in which many factors could possibly play a part in casing damage. In this study, all of the potentially important factors such as salt dome geology, operational details, and material characteristics were considered, with all being logically evaluated and most being determined as secondary in nature. As a result of the study, it appears that a principal factor in determining a propensity for casing damage from salt falls is the creep and fracture characteristics of salt in individual caverns. In addition the fracture depends strongly upon the concentration of impurity particles in the salt. Although direct observation of cavern conditions is not possible, the average impurity concentration and the accumulation of salt fall material can be determined. When this is done, there is a reasonable correlation between the propensity for a cavern to show casing damage events and accumulation of salt fall material. The accumulation volumes of salt fall material can be extremely large, indicating that only a few of the salt falls are large enough to cause impact damage.

  6. V5 AND V10 CONTACTOR TESTING WITH THE NEXT GENERATION (CSSX) SOLVENT FOR THE SAVANNAH RIVER SITE INTEGRATED SALT DISPOSITION PROCESS

    SciTech Connect

    Restivo, M.; Peters, T.; Pierce, R.; Fondeur, F.; Steeper, T.; Williams, M.; Giddings, B.; Hickman, B.; Fink, S.

    2012-01-17

    A solvent extraction system for removal of cesium (Cs) from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A Modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive, called a suppressor, is used to improve stripping performance. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008. Subsequent development efforts by ORNL identified an improved solvent system that can raise the expected decontamination factor (DF) in MCU from {approx}200 to more than 40,000. The improved DF is attributed to an improved distribution ratio for cesium [D(Cs)] in extraction from {approx}15 to {approx}60, an increased solubility of the calixarene in the solvent from 0.007 M to >0.050 M, and use of boric acid (H{sub 3}BO{sub 3}) stripping that also yields improved D(Cs) values. Additionally, the changes incorporated into the Next Generation CSSX Solvent (NGS) are intended to reduce solvent entrainment by virtue of more favorable physical properties. The MCU and Salt Waste Processing Facility (SWPF) facilities are actively pursuing the changeover from the current CSSX solvent to the NGS solvent. To support this integration of the NGS into the MCU and SWPF facilities, the Savannah River Remediation (SRR)/ARP/MCU Life Extension Project requested that the Savannah River National Laboratory (SRNL) perform testing of the new solvent for the removal of Cs from the liquid salt waste stream. Additionally, SRNL was tasked with characterizing both strip (20-in long, 10 micron pore size) and extraction (40-in long, 20 micron pore size) coalescers. SRNL designed a pilot-scale experimental

  7. Stress Evolution in Sediments Around a Rising Salt Diapir

    NASA Astrophysics Data System (ADS)

    Nikolinakou, M. A.; Flemings, P. B.; Hudec, M. R.

    2014-12-01

    We model the evolution of a salt diapir during sedimentation and study how deposition and salt movement affect stresses within the sedimentary wall rocks. We model the salt as a solid visco-plastic material and the sediments as a poro-elastoplastic materials, using a generalized Modified Cam Clay model. The salt flows because ongoing sedimentation increases the average density within the overburden sediments, pressurizing the salt. Stresses rotate within the sediments, such that the maximum principal stress is perpendicular to the contact with the salt. The minimum principal stress is in the circumferential direction, and drops near the salt. The mean stress increases near the upper parts of the diapir, leading to a porosity that is lower than predicted for uniaxial burial at the same depth. We built this axisymmetric model within the large-strain finite-element program Elfen. Because we simulate sedimentation simultaneously with the movement of the salt, our study offers two major achievements distinct from previous work on salt-diapir and sediment interaction: the salt is not kinematically prescribed and the stresses within the basin develop as a function of both the depositional process and the loading from the salt. Our results highlight the fact that forward modeling can provide a detailed understanding of the stress history of sediments close to salt diapirs; this is critical for predicting stress, porosity, and pore pressure in the wall rocks and more generally understanding earth processes related to salt systems.

  8. Method for preparing salt solutions having desired properties

    DOEpatents

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  9. Protective coating for salt-bath brazing

    NASA Technical Reports Server (NTRS)

    Francisco, A. C.; Gyorgak, C. A.

    1971-01-01

    Ceramic coating, consisting of graphite, enameler's clay, and algin binder, applied to materials prior to salt bath brazing facilitates brazing process and results in superior joints. Alternate coating materials and their various proportions are given.

  10. Preparation of iodized salt for goitre prophylaxis

    PubMed Central

    Holman, J. C. M.

    1953-01-01

    The methods employed for iodizing free-running salts are discussed. They are not suitable for the iodization of coarse crystalline salts and a new process has been devised by the Chilean Iodine Educational Bureau of London for the iodization of open-pan and solar evaporated salts. This process is described and illustrated by photographs of suitable plants. Attention is drawn to the advantages of potassium iodate as an iodizing agent. ImagesFIG. 1FIG. 3FIG. 4FIG. 5 PMID:13094511

  11. Biogeomorphically driven salt pan formation in Sarcocornia-dominated salt-marshes

    NASA Astrophysics Data System (ADS)

    Escapa, Mauricio; Perillo, Gerardo M. E.; Iribarne, Oscar

    2015-01-01

    Salt-marshes are under increasing threat, particularly from sea-level rise and increased wave action associated with climate change. The development and stability of these valuable habitats largely depend on complex interactions between biotic and abiotic processes operating at different scales. Also, interactions between biotic and abiotic processes drive internal morphological change in salt-marshes. In this paper we used a biogeomorphological approach to assess the impact of biological activities and interactions on salt pan formation in Sarcocornia-dominated salt marshes. Salt pans represent a key physiographic feature of salt-marshes and recent studies hypothesized that biogeomorphic processes could be related to salt pan formation in SW Atlantic salt-marshes. The glasswort Sarcocornia perennis is one of the dominant plants in the salt-marshes of the Bahía Blanca Estuary (Argentina) where they form patches up to 8 m in diameter. These salt-marshes are also inhabited in great densities by the burrowing crab Neohelice (Chasmagnathus) granulata whose bioturbation rates are among the highest reported for salt-marshes worldwide. A set of biological interactions between N. granulata and S. perennis appears to be responsible for salt pan development in these areas which has not been described elsewhere. The main objective of this work was to determine the ecological interactions occurring between plants and crabs that lead to salt pan formation by using field-based sampling and manipulative experiments. Our results showed that S. perennis facilitated crab colonization of the salt-marsh by buffering otherwise stressful physical conditions (e.g., temperature, desiccation). Crabs preferred to construct burrows underneath plants and, once they reach high densities (up to 40 burrows m- 2), the sediment reworking caused plant die-off in the central area of patches. At this state, the patches lose elevation and become depressed due to the continuous bioturbation by crabs

  12. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  13. Recovery of transuranics from process residues

    SciTech Connect

    Gray, J.H.; Gray, L.W.

    1987-01-01

    Process residues are generated at both the Rocky Flats Plant (RFP) and the Savannah River Plant (SRP) during aqueous chemical and pyrochemical operations. Frequently, process operations will result in either impure products or produce residues sufficiently contaminated with transuranics to be nondiscardable as waste. Purification and recovery flowsheets for process residues have been developed to generate solutions compatible with subsequent Purex operations and either solid or liquid waste suitable for disposal. The ''scrub alloy'' and the ''anode heel alloy'' are examples of materials generated at RFP which have been processed at SRP using the developed recovery flowsheets. Examples of process residues being generated at SRP for which flowsheets are under development include LECO crucibles and alpha-contaminated hydraulic oil.

  14. Salt Acclimation of Cyanobacteria and Their Application in Biotechnology

    PubMed Central

    Pade, Nadin; Hagemann, Martin

    2014-01-01

    The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants. PMID:25551682

  15. Organic ionic salt draw solutions for osmotic membrane bioreactors.

    PubMed

    Bowden, Katie S; Achilli, Andrea; Childress, Amy E

    2012-10-01

    This investigation evaluates the use of organic ionic salt solutions as draw solutions for specific use in osmotic membrane bioreactors. Also, this investigation presents a simple method for determining the diffusion coefficient of ionic salt solutions using only a characterized membrane. A selection of organic ionic draw solutions underwent a desktop screening process before being tested in the laboratory and evaluated for performance using specific salt flux (reverse salt flux per unit water flux), biodegradation potential, and replenishment cost. Two of the salts were found to have specific salt fluxes three to six times lower than two commonly used inorganic draw solutions, NaCl and MgCl(2). All of the salts tested have organic anions with the potential to degrade in the bioreactor as a carbon source and aid in nutrient removal. Results demonstrate the potential benefits of organic ionic salt draw solutions over currently implemented inorganics in osmotic membrane bioreactor systems. PMID:22771022

  16. Photochemistry of triarylsulfonium salts

    SciTech Connect

    Dektar, J.L.; Hacker, N.P. )

    1990-08-01

    The photolysis of triphenylsulfonium, tris(4-methylphenyl)sulfonium, tris(4-chlorophenyl)sulfonium, several monosubstituted (4-F, 4-Cl, 4-Me, 4-MeO, 4-PhS, and 4-PhCO), and disubstituted (4,4{prime}-Me{sub 2} and 4,4{prime}-(MeO){sub 2}) triphenylsulfonium salts was examined in solution. It was found that direct irradiation of triphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts produced new rearrangement products, phenylthiobiphenyls, along with diphenyl sulfide, which had been previously reported. Similarly, the triarylsulfonium salts, with the exception of the (4-(phenylthio)phenyl)diphenylsulfonium salts, gave the new rearrangement products. The mechanism for direct photolysis is proposed to occur from the singlet excited states to give a predominant heterolytic cleavage along with some homolytic cleavage.

  17. A history of salt.

    PubMed

    Cirillo, M; Capasso, G; Di Leo, V A; De Santo, N G

    1994-01-01

    The medical history of salt begins in ancient times and is closely related to different aspects of human history. Salt may be extracted from sea water, mineral deposits, surface encrustations, saline lakes and brine springs. In many inland areas, wood was used as a fuel source for evaporation of brine and this practice led to major deafforestation in central Europe. Salt played a central role in the economies of many regions, and is often reflected in place names. Salt was also used as a basis for population censuses and taxation, and salt monopolies were practised in many states. Salt was sometimes implicated in the outbreak of conflict, e.g. the French Revolution and the Indian War of Independence. Salt has also been invested with many cultural and religious meanings, from the ancient Egyptians to the Middle Ages. Man's innate appetite for salt may be related to his evolution from predominantly vegetarian anthropoids, and it is noteworthy that those people who live mainly on protein and milk or who drink salty water do not generally salt their food, whereas those who live mainly on vegetables, rice and cereals use much more salt. Medicinal use tended to emphasize the positive aspects of salt, e.g. prevention of putrefaction, reduction of tissue swelling, treatment of diarrhea. Evidence was also available to ancient peoples of its relationship to fertility, particularly in domestic animals. The history of salt thus represents a unique example for studying the impact of a widely used dietary substance on different important aspects of man's life, including medical philosophy.

  18. Iodised salt is safe.

    PubMed

    Ranganathan, S

    1995-01-01

    Iodine deficiency disorders are prevalent in all the States and Union Territories in India. Under the National Iodine Deficiency Disorders control programme, the Government of India has adopted a strategy to iodisation of all edible salt in the country which is a long term and sustainable preventive solution to eliminate iodine deficiency disorders. The benefits to be derived from universal salt iodisation are more to the population. Iodised salt is safe and does not cause any side effect. PMID:8690505

  19. Dosimetry using silver salts

    DOEpatents

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  20. Vitrified magnesia dissolution and its impact on plutonium residue processing

    SciTech Connect

    Keith W. Fife; Jennifer L. Alwin; Coleman A. Smith; Michael D. Mayne; David A. Rockstraw

    2000-03-01

    Aqueous chloride operations at the Los Alamos Plutonium Facility cannot directly dispose of acidic waste solutions because of compatibility problems with existing disposal lines. Consequently, all hydrochloric acid must be neutralized and filtered prior to exiting the facility. From a waste minimization standpoint, the use of spent magnesia pyrochemical crucibles as the acid neutralization agent is attractive since this process would take a stream destined for transuranic waste and use it as a reagent in routine plutonium residue processing. Since Los Alamos National Laboratory has several years of experience using magnesium hydroxide as a neutralizing agent for waste acid from plutonium processing activities, the use of spent magnesia pyrochemical crucibles appeared to be an attractive extension of this activity. In order to be competitive with magnesium hydroxide, however, size reduction of crucible shards had to be performed effectively within the constraints of glovebox operations, and acid neutralization time using crucible shards had to be comparable to neutralization times observed when using reagent-grade magnesium hydroxide. The study utilized non-plutonium-contaminated crucibles for equipment evaluation and selection and used nonradioactive acid solutions for completing the neutralization experiments. This paper discusses experience in defining appropriate size reduction equipment and presents results from using the magnesia crucibles for hydrochloric acid neutralization, a logical precursor to introduction into glovebox enclosures.

  1. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  2. Molten salt destruction of energetic waste materials

    DOEpatents

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  3. Progress in Studying Salt Secretion from the Salt Glands in Recretohalophytes: How Do Plants Secrete Salt?

    PubMed Central

    Yuan, Fang; Leng, Bingying; Wang, Baoshan

    2016-01-01

    To survive in a saline environment, halophytes have evolved many strategies to resist salt stress. The salt glands of recretohalophytes are exceptional features for directly secreting salt out of a plant. Knowledge of the pathway(s) of salt secretion in relation to the function of salt glands may help us to change the salt-tolerance of crops and to cultivate the extensive saline lands that are available. Recently, ultrastructural studies of salt glands and the mechanism of salt secretion, particularly the candidate genes involved in salt secretion, have been illustrated in detail. In this review, we summarize current researches on salt gland structure, salt secretion mechanism and candidate genes involved, and provide an overview of the salt secretion pathway and the asymmetric ion transport of the salt gland. A new model recretohalophyte is also proposed. PMID:27446195

  4. SALT for Language Acquisition.

    ERIC Educational Resources Information Center

    Bancroft, W. Jane

    1996-01-01

    Discusses Schuster's Suggestive-Accelerative Learning Techniques (SALT) Method, which combines Lozanov's Suggestopedia with such American methods as Asher's Total Physical Response and Galyean's Confluent Education. The article argues that students trained with the SALT Method have higher achievement scores and better attitudes than others. (14…

  5. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  6. Utah: Salt Lake City

    Atmospheric Science Data Center

    2014-05-15

    ... backdrops for the 2002 Winter Olympics, to be held in Salt Lake City, Utah. The mountains surrounding Salt Lake City are renowned for ... western edge of the Rocky Mountains and eastern rim of the Great Basin. This early-winter image pair was acquired by the Multi-angle ...

  7. Molten salt electrolyte separator

    DOEpatents

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  8. [Salt and cancer].

    PubMed

    Strnad, Marija

    2010-05-01

    Besides cardiovascular disease, a high salt intake causes other adverse health effects, i.e., gastric and some other cancers, obesity (risk factor for many cancer sites), Meniere's disease, worsening of renal disease, triggering an asthma attack, osteoporosis, exacerbation of fluid retention, renal calculi, etc. Diets containing high amounts of food preserved by salting and pickling are associated with an increased risk of cancers of the stomach, nose and throat. Because gastric cancer is still the most common cancer in some countries (especially in Japan), its prevention is one of the most important aspects of cancer control strategy. Observations among Japanese immigrants in the U.S.A. and Brazil based on the geographic differences, the trend in cancer incidence with time, and change in the incidence patterns indicate that gastric cancer is closely associated with dietary factors such as the intake of salt and salted food. The findings of many epidemiological studies suggest that high dietary salt intake is a significant risk factor for gastric cancer and this association was found to be strong in the presence of Helicobacter (H.) pylori infection with atrophic gastritis. A high-salt intake strips the lining of the stomach and may make infection with H. pylori more likely or may exacerbate the infection. Salting, pickling and smoking are traditionally popular ways of preparing food in Japan and some parts of Asia. In addition to salt intake, cigarette smoking and low consumption of fruit and vegetables increase the risk of stomach cancer. However, it is not known whether it is specifically the salt in these foods or a combination of salt and other chemicals that can cause cancer. One study identified a mutagen in nitrite-treated Japanese salted fish, and chemical structure of this mutagen suggests that it is derived from methionine and that salt and nitrite are precursors for its formation. Working under conditions of heat stress greatly increased the workers

  9. Water purification using organic salts

    DOEpatents

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  10. Crushed Salt Constitutive Model

    SciTech Connect

    Callahan, G.D.

    1999-02-01

    The constitutive model used to describe the deformation of crushed salt is presented in this report. Two mechanisms -- dislocation creep and grain boundary diffusional pressure solution -- are combined to form the basis for the constitutive model governing the deformation of crushed salt. The constitutive model is generalized to represent three-dimensional states of stress. Upon complete consolidation, the crushed-salt model reproduces the Multimechanism Deformation (M-D) model typically used for the Waste Isolation Pilot Plant (WIPP) host geological formation salt. New shear consolidation tests are combined with an existing database that includes hydrostatic consolidation and shear consolidation tests conducted on WIPP and southeastern New Mexico salt. Nonlinear least-squares model fitting to the database produced two sets of material parameter values for the model -- one for the shear consolidation tests and one for a combination of the shear and hydrostatic consolidation tests. Using the parameter values determined from the fitted database, the constitutive model is validated against constant strain-rate tests. Shaft seal problems are analyzed to demonstrate model-predicted consolidation of the shaft seal crushed-salt component. Based on the fitting statistics, the ability of the model to predict the test data, and the ability of the model to predict load paths and test data outside of the fitted database, the model appears to capture the creep consolidation behavior of crushed salt reasonably well.

  11. Migration of salt bands through a porous medium

    NASA Astrophysics Data System (ADS)

    Gitelman, E. M.; Dragila, M. I.

    2010-12-01

    In order to improve agricultural conditions in saline and sodic soils, we must better understand salt precipitation dynamics and the limiting kinetic mechanisms associated with the salinization process. We used laboratory techniques to monitor salt crystal formation in porous media cells under highly controlled conditions to examine the temporal evolution of salt crystallization. We found that salt crusts first precipitate on the surface and then move down through the porous media towards the water source forming bands collinear with equipotential moisture planes. We compare the kinetic data with a salt crystal formation and transport model and conclude that salt band formation and transport occurs via a cycle of vapor transport, osmotic deposition and deliquescence in the moving front, followed by evaporation and recrystallization in the receding front. Vapor density gradients and deliquescence kinetics controls the transport rate of salt bands through porous media.

  12. Can volatile organic compounds be markers of sea salt?

    PubMed

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt. PMID:25236204

  13. Can volatile organic compounds be markers of sea salt?

    PubMed

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt.

  14. Molten fluoride fuel salt chemistry

    NASA Astrophysics Data System (ADS)

    Toth, L. M.; Del Cul, G. D.; Dai, S.; Metcalf, D. H.

    1995-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  15. Molten fluoride fuel salt chemistry

    SciTech Connect

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1994-09-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Fission product behavior is described along with processing experience. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior, processing and recycle of the fuel components is a necessary factor if future systems are to be established.

  16. Analytical chemistry of aluminum salt cake

    SciTech Connect

    Graczyk, D.G.; Essling, A.M.; Huff, E.A.; Smith, F.P.; Snyder, C.T.

    1997-02-01

    Component phases of Al salt cake or products from processing salt cake, resist dissolution, a key first step in most analysis procedures. In this work (analysis support to a study of conversion of salt cake fines to value-added oxide products), analysis methods were adapted or devised for determining leachable salt, total halides (Cl and F), Al metal, and elemental composition. Leaching of salt cake fines was by ultrasonic agitation with deionized water. The leachate was analyzed for anions by ion chromatography and for cations by ICP-atomic emission spectroscopy. Only chloride could be measured in the anions, and charge balances between cations and chloride were near unity, indicating that all major dissolved species were chloride salts. For total halides, the chloride and fluorides components were first decomposed by KOH fusion, and the dissolved chloride and fluoride were measured by ion chromatography. Al metal in the fines was determined by a hydrogen evolution procedure adapted for submilligram quantities of metallic Al: the Al was reacted with HCl in a closed system containing a measured amount of high-purity He. After reaction, the H/He ratio was measured by mass spectroscopy. Recoveries of Al metal standards (about 30mg) averaged 93%. Comparison of the acid evolution with caustic reaction of the Al metal showed virtually identical results, but reaction was faster in the acid medium. Decomposition of the salt cake with mineral acids left residues that had to be dissolved by fusion with Na carbonate. Better dissolution was obtained by fusing the salt cake with Li tetraborate; the resulting solution could be used for accurate Al assay of salt cake materials by classical 8-hydroxyquinolate gravimetry.

  17. Microscopic evidence of grain boundary moisture during granular salt reconsolidation

    NASA Astrophysics Data System (ADS)

    Mills, M. M.; Hansen, F.; Bauer, S. J.; Stormont, J.

    2015-12-01

    Very low permeability is a principal reason salt formations are considered viable hosts for disposal of nuclear waste and spent nuclear fuel. Granular salt is likely to be used as back-fill material and a seal system component. Salt formation pressures will promote reconsolidation of granular salt, eventually resulting in low permeabilities, comparable to native salt. Understanding the consolidation processes, dependent on the stress state, moisture availability and temperature, is important for demonstrating sealing functions and long-term repository performance. As granular salt consolidates, initial void reduction is achieved by brittle processes of grain rearrangement and cataclastic flow. At porosities less than 10%, grain boundary processes and crystal-plastic mechanisms govern further porosity reduction. When present, fluid assists in grain boundary processes and recrystallization. Fluid inclusions are typically found in abundance within bedded salt crystal structure and along grain boundaries, but are rarely observed internal to domal salt grains. We have observed fluid canals and evidence of moisture along grain boundaries in domal salt. In this research, we investigate grain boundary moisture in granular salt that has been reconsolidated under high temperatures to relatively low porosity. Mine-run salt from the Waste Isolation Pilot Plant and Avery Island was used to create cylindrical samples, vented and unvented, which were reconsolidated at 250°C and stresses to 20 MPa. Unvented reconsolidation retains essentially all the grain boundary moisture as found ubiquitously on scanning electron photomicrographs of consolidated samples which revealed an inhomogeneous distribution of canals from residual moisture. This contrasts significantly with the vented samples, which had virtually no grain boundary moisture after consolidation. Microstructural techniques include scanning electron, stereo-dynascopic, and optical microscopy. The observations will be used

  18. Kinematics and dynamics of salt tectonics driven by progradation

    SciTech Connect

    Ge, Hongxing; Jackson, M.P.A.; Vendeville, B.C.

    1997-03-01

    Scaled physical models illustrate the importance of progradation as a trigger for salt tectonics and formation of allochthonous sheets. Regional extension and contraction were excluded in the models. In our experiments, prograding wedges above a tabular, buoyant salt layer with a flat base expelled the salt basinward, forming the following structures proximally to distally: (1) sigmoidally distorted initially planar wedges, (2) relict salt pillows and salt welds, (3) basinward-dipping expulsion rollover and crestal graben, (4) rollover syncline, (5) landward-facing salt-cored monocline, and (6) distal inflated salt layer. This deformation zone amplified and advanced basinward during progradation; however, no diapiric salt structures formed. Over a buoyant salt layer whose basement had steps facing landward, progradation initially formed a broad anticline where salt flow was restricted across each basement step. Distal aggradation pinned the anticline and enhanced differential loading. The anticline actively pierced its crest, which had been thinned by faulting and erosion. Thereafter, the diapir grew passively, locally sourcing allochthonous salt sheets. This deformation cycle repeated over each basement step so that the age, amplitude, complexity, and maturity of salt-related structures decreased basinward. As each allochthonous salt sheet was buried and evacuated by sediment loading, arcuate peripheral normal faults formed along the sheet`s trailing edge, detached wrench faults formed along its lateral edges, and active piercement at its leading edge allowed the sheet to break out and climb stratigraphic levels. This process formed a multitiered complex of salt sheets that migrated basin-ward with time. Restorations of examples from various salt tectonic provinces support our model results.

  19. Reducing salt intake to prevent hypertension and cardiovascular disease.

    PubMed

    He, Feng J; Campbell, Norm R C; MacGregor, Graham A

    2012-10-01

    There is compelling evidence that dietary salt intake is the major cause of raised blood pressure (BP) and that a reduction in salt intake from the current level of ≈ 9 - 12 g/day in most countries to the recommended level of < 5 g/day lowers BP. A further reduction to 3 - 4 g/day has a greater effect and there needs to be ongoing consideration of lower targets for population salt intake. Cohort studies and outcome trials have demonstrated that a lower salt intake is related to a reduced risk of cardiovascular disease. Salt reduction is one of the most cost-effective measures to improve public health worldwide. In the Americas, a salt intake of > 9 g/day is highly prevalent. Sources of salt in the diet vary hugely among countries; in developed countries, 75% of salt comes from processed foods, whereas in developing countries such as parts of Brazil, 70% comes from salt added during cooking or at the table. To reduce population salt intake, the food industry needs to implement a gradual and sustained reduction in the amount of salt added to foods in developed countries. In developing countries, a public health campaign plays a more important role in encouraging consumers to use less salt coupled with widespread replacement of salt with substitutes that are low in sodium and high in potassium. Numerous countries in the Americas have started salt reduction programs. The challenge now is to engage other countries. A reduction in population salt intake will result in a major improvement in public health along with major health-related cost savings.

  20. Development of the Process for the Recovery and Conversion of {sup 233}UF{sub 6} Chemisorbed in NaF Traps from the Molten Salt Reactor Remediation Project

    SciTech Connect

    Cul, Guillermo D. del; Icenhour, Alan S.; Simmons, Darrell W.

    2001-10-15

    The Molten Salt Reactor Experiment (MSRE) site at Oak Ridge National Laboratory is being cleaned up and remediated. The removal of {approx}37 kg of fissile {sup 233}U is the main activity. Of that inventory, {approx}23 kg has already been removed as UF{sub 6} from the piping system and chemisorbed in 25 NaF traps. This material is in temporary storage while it awaits conversion to a stable oxide. The planned recovery of {approx}11 kg of uranium from the fuel salt will generate another 15 to 19 NaF traps. The remaining 2 to 3 kg of uranium are present in activated charcoal beds, which are also scheduled to be removed from the reactor site. Since all of these materials (NaF traps and the uranium-laden charcoal) are not suitable for long-term storage, they will be converted to a uranium oxide (U{sub 3}O{sub 8}), which is suitable for long-term storage.The conversion of the MSRE material into an oxide presents unique problems, such as criticality concerns, a large radiation field caused by the daughters of {sup 232}U (an impurity isotope in the {sup 233}U), and the possible spread of the high-radiation field from the release of {sup 220}Rn gas. To overcome these problems, a novel process was conceived and developed. This process was specially tailored for providing remote operations inside a hot cell while maintaining full containment at all times to avoid the spread of contamination. This process satisfies criticality concerns, maximizes the recovery of uranium, minimizes any radiation exposure to operators, and keeps waste disposal to a minimum.

  1. Salt finger signatures in microstructure measurements

    NASA Astrophysics Data System (ADS)

    Hamilton, J. M.; Oakey, N. S.; Kelley, D. E.

    1993-02-01

    By measuring the "scaled dissipation ratio" Γ, which is the relative magnitude of the dissipation of thermal variance compared with the dissipation of turbulent kinetic energy, one can distinguish between salt fingering and nonfingering regimes. This is illustrated by comparing data from three test cases to predictions from (1) a mixing model which considers turbulence only and (2) a model which describes salt fingers as the sole mixing process. In a turbulent, nondouble-diffusive surface layer we find that measurements of Γ are very close to the value predicted by the turbulent mixing model. A contrasting case is provided by a thermohaline staircase located at 1200- to 1330-m depth. There the salt finger model provides a better description of the mixing than does the turbulent mixing model. The third case study is of measurements between 150 and 400 m where the water column is characterized by low density ratios and "intermittent steppiness" in temperature and salinity profiles. Here, values of Γ are inconsistent with a model containing only salt finger or turbulent mixing; instead, the observations suggest that both processes are important. Using the observed values of Γ in a combined model suggests that 24% of the observed turbulent kinetic energy dissipation is due to salt fingers. A corresponding estimate of the vertical eddy diffusivity of salt (and nutrients) is 2 times larger than that computed from the turbulence-only mixing model and 50% larger than the vertical eddy diffusivity for heat as determined by the Osborn-Cox relation.

  2. Salt and miscarriage: Is there a link?

    PubMed

    Abdoli, Amir

    2016-04-01

    Salt is a major mineral element that plays fundamental roles in health and disease. Excessive salt intake is a major cause of hypertension, cardiovascular disease and stroke. Miscarriage and preeclampsia are the most common pregnancy complications with multiple etiological factors, including inflammatory and autoimmune conditions. More recently, different studies indicated that excessive salt intake is involved in the development of inflammatory processes through induction of T helper-17 pathway and their inflammatory cytokines. On the other hand, several studies indicated the pivotal role of inflammation in the etiology of miscarriage, preeclampsia and adverse pregnancy outcome. Here, it is hypothesized that excessive salt intake around the time of conception or during pregnancy can trigger inflammatory processes, which consequently associated with increased risk of miscarriage, preeclampsia or adverse pregnancy outcome. Thus, this hypothesis suggests that low salt intake around the time of conception or during pregnancy can decrease the risk of miscarriage or adverse pregnancy outcome. This hypothesis also offers new insights about the role of salt in the etiology of miscarriage and preeclampsia.

  3. Salt splitting using ceramic membranes

    SciTech Connect

    Kurath, D.E.

    1997-10-01

    Many radioactive aqueous wastes in the DOE complex have high concentrations of sodium that can negatively affect waste treatment and disposal operations. Sodium can decrease the durability of waste forms such as glass and is the primary contributor to large disposal volumes. Waste treatment processes such as cesium ion exchange, sludge washing, and calcination are made less efficient and more expensive because of the high sodium concentrations. Pacific Northwest National Laboratory (PNNL) and Ceramatec Inc. (Salt Lake City UT) are developing an electrochemical salt splitting process based on inorganic ceramic sodium (Na), super-ionic conductor (NaSICON) membranes that shows promise for mitigating the impact of sodium. In this process, the waste is added to the anode compartment, and an electrical potential is applied to the cell. This drives sodium ions through the membrane, but the membrane rejects most other cations (e.g., Sr{sup +2}, Cs{sup +}). The charge balance in the anode compartment is maintained by generating H{sup +} from the electrolysis of water. The charge balance in the cathode is maintained by generating OH{sup {minus}}, either from the electrolysis of water or from oxygen and water using an oxygen cathode. The normal gaseous products of the electrolysis of water are oxygen at the anode and hydrogen at the cathode. Potentially flammable gas mixtures can be prevented by providing adequate volumes of a sweep gas, using an alternative reductant or destruction of the hydrogen as it is generated. As H{sup +} is generated in the anode compartment, the pH drops. The process may be operated with either an alkaline (pH>12) or an acidic anolyte (pH <1). The benefits of salt splitting using ceramic membranes are (1) waste volume reduction and reduced chemical procurement costs by recycling of NaOH; and (2) direct reduction of sodium in process streams, which enhances subsequent operations such as cesium ion exchange, calcination, and vitrification.

  4. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  5. Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys

    NASA Technical Reports Server (NTRS)

    Bennett, G. A.; Burris, L., Jr.; Kyle, M. L.; Nelson, P. A.

    1966-01-01

    Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents.

  6. Cooking without salt

    MedlinePlus

    ... flavor and nutrition. Plant-based foods -- carrots, spinach, apples, and peaches -- are naturally salt-free. Sun-dried ... types of pepper, including black, white, green, and red. Experiment with vinegars (white and red wine, rice ...

  7. Shaking the Salt Habit

    MedlinePlus

    ... use the pepper shaker or mill. Add fresh lemon juice instead of salt to season fish and ... soups, salads, vegetables, tomatoes, potatoes Ginger: Chicken, fruits Lemon juice: Lean meats, fish, poultry, salads, vegetables Mace: ...

  8. Amine salts of nitroazoles

    DOEpatents

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  9. Mass transport in bedded salt and salt interbeds

    SciTech Connect

    Hwang, Y.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-08-01

    Salt is the proposed host rock for geologic repositories of nuclear waste in several nations because it is nearly dry and probably impermeable. Although experiments and experience at potential salt sites indicate that salt may contain brine, the low porosity, creep, and permeability of salt make it still a good choice for geologic isolation. In this paper we summarize several mass-transfer and transport analyses of salt repositories. The mathematical details are given in our technical reports.

  10. Linking external and internal salt geometries - a key to understanding salt dynamics

    NASA Astrophysics Data System (ADS)

    Kukla, Peter; Urai, Janos

    2014-05-01

    Considering the growing importance of salt in the energy, food and waste disposal industries, this paper reviews the status quo and major developments in salt research over the last decade. As a way forward in order to close identified gaps in knowledge, an integrated salt basin evaluation concept is proposed appreciating both external and internal geometries and properties. Examples of key studies in the Central European Basin and the South Oman Salt basin show that such a model may improve our understanding of the multi-scale processes operating in salt terrains. The workflow proposed allows to better asses (i) the initiation and maintenance of salt dynamics, (ii) the evolution of the internal structure of evaporites during halokinesis in salt giants, (iii) the coupling of processes in the evaporites and the salt's under- and overburden. It will lead to a better integration of the different data sets and resulting models, which will provide new insights into the structural evolution of salt giants. Finally it will also stimulate new concepts for (i) the initiation dynamics of halokinesis, (ii) the rheology and mechanics of the evaporites by brittle and ductile processes, (iii) the coupling of processes in the evaporites and the under- and overburden, and (iv) the impact of the layered evaporite rheology on the structural evolution. As an outlook for future research to be initiated in salt terrains we still need to improve our database on evaporite rocks especially the ones which take changes of properties in time into account. This includes for example the dependencies of thermal and mechanical properties on changes in strain, pressure and temperature or external and internal geometry changes relating to slow geological processes. Also geomechanical modelling efforts can be significantly improved by making full use of the data available on the effects of water, and some of the discrepancies seen in experimental data on different salts can probably be explained in

  11. Salt stains from evaporating droplets.

    PubMed

    Shahidzadeh, Noushine; Schut, Marthe F L; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  12. Salt stains from evaporating droplets

    PubMed Central

    Shahidzadeh, Noushine; Schut, Marthe F. L.; Desarnaud, Julie; Prat, Marc; Bonn, Daniel

    2015-01-01

    The study of the behavior of sessile droplets on solid substrates is not only associated with common everyday phenomena, such as the coffee stain effect, limescale deposits on our bathroom walls , but also very important in many applications such as purification of pharmaceuticals, de-icing of airplanes, inkjet printing and coating applications. In many of these processes, a phase change happens within the drop because of solvent evaporation, temperature changes or chemical reactions, which consequently lead to liquid to solid transitions in the droplets. Here we show that crystallization patterns of evaporating of water drops containing dissolved salts are different from the stains reported for evaporating colloidal suspensions. This happens because during the solvent evaporation, the salts crystallize and grow during the drying. Our results show that the patterns of the resulting salt crystal stains are mainly governed by wetting properties of the emerging crystal as well as the pathway of nucleation and growth, and are independent of the evaporation rate and thermal conductivity of the substrates. PMID:26012481

  13. Improved Design and Fabrication of Hydrated-Salt Pills

    NASA Technical Reports Server (NTRS)

    Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.

    2011-01-01

    A high-performance design, and fabrication and growth processes to implement the design, have been devised for encapsulating a hydrated salt in a container that both protects the salt and provides thermal conductance between the salt and the environment surrounding the container. The unitary salt/container structure is known in the art as a salt pill. In the original application of the present design and processes, the salt is, more specifically, a hydrated paramagnetic salt, for use as a refrigerant in a very-low-temperature adiabatic demagnetization refrigerator (ADR). The design and process can also be applied, with modifications, to other hydrated salts. Hydrated paramagnetic salts have long been used in ADRs because they have the desired magnetic properties at low temperatures. They also have some properties, disadvantageous for ADRs, that dictate the kind of enclosures in which they must be housed: Being hydrated, they lose water if exposed to less than 100-percent relative humidity. Because any dehydration compromises their magnetic properties, salts used in ADRs must be sealed in hermetic containers. Because they have relatively poor thermal conductivities in the temperature range of interest (<0.1 K), integral thermal buses are needed as means of efficiently transferring heat to and from the salts during refrigeration cycles. A thermal bus is typically made from a high-thermal-conductivity met al (such as copper or gold), and the salt is configured to make intimate thermal contact with the metal. Commonly in current practice (and in the present design), the thermal bus includes a matrix of wires or rods, and the salt is grown onto this matrix. The density and spacing of the conductors depend on the heat fluxes that must be accommodated during operation.

  14. Salt Lake City, Utah

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Salt Lake City, Utah, will host the 2002 Winter Olympic Games. The city is located on the southeastern shore of the Great Salt Lake and sits to the west of the Wasatch Mountains, which rise more than 3,500 meters (10,000 feet) above sea level. The city was first settled in 1847 by pioneers seeking relief from religious persecution. Today Salt Lake City, the capital of Utah, is home to more than 170,000 residents. This true-color image of Salt Lake City was acquired by the Enhanced Thematic Mapper Plus (ETM+), flying aboard Landsat 7, on May 26, 2000. The southeastern tip of the Great Salt Lake is visible in the upper left of the image. The furrowed green and brown landscape running north-south is a portion of the Wasatch Mountains, some of which are snow-capped (white pixels). The greyish pixels in the center of the image show the developed areas of the city. A number of water reservoirs can be seen east of the mountain range. Salt Lake City International Airport is visible on the northwestern edge of the city. About 20 miles south of the airport is the Bingham Canyon Copper Mine (tan pixels), the world's largest open pit excavation. See also this MODIS image of Utah. Image courtesy NASA Landsat7 Science Team and USGS Eros Data Center

  15. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  16. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - Part I

    NASA Astrophysics Data System (ADS)

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-01

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca2+ ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca2+ ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  17. More Research Cites Salt's Potential Health Risks

    MedlinePlus

    ... of the sodium we consume is found in processed food," Cook said. "The FDA [U.S. Food and Drug ... diet is loaded with prepared, frozen, junky, highly processed, poor-quality foods, laden with added salt, Heller said. "These kinds ...

  18. Brine flow in heated geologic salt.

    SciTech Connect

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  19. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  20. Immobilization of IFR salt wastes in mortar

    SciTech Connect

    Fischer, D.F.; Johnson, T.R.

    1988-01-01

    Portland cement-base mortars are being considered for immobilizing chloride salt wastes produced by the fuel cycles of Integral Fast Reactors (IFR). The IFR is a sodium-cooled fast reactor with metal alloy fuels. It has a close-coupled fuel cycle in which fission products are separated from the actinides in an electrochemical cell operating at 500/degree/C. This cell has a liquid cadmium anode in which the fuels are dissolved and a liquid salt electrolyte. The salt will be a mixture of either lithium, potassium, and sodium chlorides or lithium, calcium, barium, and sodium chlorides. One method being considered for immobilizing the treated nontransuranic salt waste is to disperse the salt in a portland cement-base mortar that will be sealed in corrosion-resistant containers. For this application, the grout must be sufficiently fluid that it can be pumped into canister-molds where it will solidify into a strong, leach-resistant material. The set times must be longer than a few hours to allow sufficient time for processing, and the mortar must reach a reasonable compressive strength (/approximately/7 MPa) within three days to permit handling. Because fission product heating will be high, about 0.6 W/kg for a mortar containing 10% waste salt, the effects of elevated temperatures during curing and storage on mortar properties must be considered.

  1. Thermal Characterization of Molten Salt Systems

    SciTech Connect

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  2. Plant salt tolerance: adaptations in halophytes

    PubMed Central

    Flowers, Timothy J.; Colmer, Timothy D.

    2015-01-01

    Background Most of the water on Earth is seawater, each kilogram of which contains about 35 g of salts, and yet most plants cannot grow in this solution; less than 0·2 % of species can develop and reproduce with repeated exposure to seawater. These ‘extremophiles’ are called halophytes. Scope Improved knowledge of halophytes is of importance to understanding our natural world and to enable the use of some of these fascinating plants in land re-vegetation, as forages for livestock, and to develop salt-tolerant crops. In this Preface to a Special Issue on halophytes and saline adaptations, the evolution of salt tolerance in halophytes, their life-history traits and progress in understanding the molecular, biochemical and physiological mechanisms contributing to salt tolerance are summarized. In particular, cellular processes that underpin the ability of halophytes to tolerate high tissue concentrations of Na+ and Cl−, including regulation of membrane transport, their ability to synthesize compatible solutes and to deal with reactive oxygen species, are highlighted. Interacting stress factors in addition to salinity, such as heavy metals and flooding, are also topics gaining increased attention in the search to understand the biology of halophytes. Conclusions Halophytes will play increasingly important roles as models for understanding plant salt tolerance, as genetic resources contributing towards the goal of improvement of salt tolerance in some crops, for re-vegetation of saline lands, and as ‘niche crops’ in their own right for landscapes with saline soils. PMID:25844430

  3. Evolution of salt-related structures

    SciTech Connect

    Bishop, R.S.

    1988-01-01

    Several types of structures (piercements, turtles, and nonpiercements) are caused by salt movement. Reconstructions show that the emplacement process is basically the same for many geometrically dissimilar structures, but that the great differences of shape originated from different patterns of sediment loading, salt thickness, and basin evolution. The reconstructions are generalizations derived from numerous real examples to show timing, evolution of dip, origin of thickness changes and overchanges, how the salt-sediment volume exchange occurs, and diagnostic criteria to interpret these events. Such reconstructions help to discriminate between turtles and nonpiercements, to interpret lithofacies, and to unravel the role of sedimentary events on the structural evolution. In addition, they illustrate the mechanism of diapirism, using criteria to help distinguish diapirism in an overburden having strength (the mechanism assumed here) from diapirism in a viscous overburden (the classical buoyancy theory). In general, many piercements may start quite early (even before a density inversion exists) and move primarily by extrusion or may alternate between extrusion and intrusion beneath a thin overburden. The pattern of sedimentation largely determines the pattern of diapirism. In contrast, nonpiercements and turtle structures are passive features and may form whenever salt migrates away from them to an adjacent ''escape hatch.'' For example, nonpiercements may not form by salt rising vertically, but rather by salt moving away horizontally to some point of escape. In other words, the dome remains static while the overburden collapses into the rim syncline.

  4. Salt disposal of heat-generating nuclear waste.

    SciTech Connect

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  5. Direct esterification of ammonium salts of carboxylic acids

    SciTech Connect

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  6. Great Salt Lake, Utah

    USGS Publications Warehouse

    Stephens, Doyle W.; Gardner, Joe F.

    1999-01-01

    This document is intended as a source of general information and facts about Great Salt Lake, Utah. This U.S. Geological Survey information sheet answers frequently asked questions about Great Salt Lake. Topics include: History, salinity, brine shrimp, brine flies, migratory birds, and recreation. Great Salt Lake, the shrunken remnant of prehistoric Lake Bonneville, has no outlet. Dissolved salts accumulate in the lake by evaporation. Salinity south of the causeway has ranged from 6 percent to 27 percent over a period of 22 years (2 to 7 times saltier than the ocean). The high salinity supports a mineral industry that extracts about 2 million tons of salt from the lake each year. The aquatic ecosystem consists of more than 30 species of organisms. Harvest of its best-known species, the brine shrimp, annually supplies millions of pounds of food for the aquaculture industry worldwide. The lake is used extensively by millions of migratory and nesting birds and is a place of solitude for people. All this occurs in a lake that is located at the bottom of a 35,000-square-mile drainage basin that has a human population of more than 1.5 million.

  7. Mineral resource of the month: salt

    USGS Publications Warehouse

    Kostick, Dennis S.

    2010-01-01

    The article presents information on various types of salt. Rock salt is either found from underground halite deposits or near the surface. Other types of salt include solar salt, salt brine, and vacuum pan salt. The different uses of salt are also given including its use as a flavor enhancer, as a road deicing agent, and to manufacture sodium hydroxide.

  8. Molten Salts for High Temperature Reactors: University of Wisconsin Molten Salt Corrosion and Flow Loop Experiments -- Issues Identified and Path Forward

    SciTech Connect

    Piyush Sabharwall; Matt Ebner; Manohar Sohal; Phil Sharpe; Thermal Hydraulics Group

    2010-03-01

    Considerable amount of work is going on regarding the development of high temperature liquid salts technology to meet future process needs of Next Generation Nuclear Plant. This report identifies the important characteristics and concerns of high temperature molten salts (with lesson learned at University of Wisconsin-Madison, Molten Salt Program) and provides some possible recommendation for future work

  9. Gas releases from salt

    SciTech Connect

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  10. Corrosion of aluminides by molten nitrate salt

    SciTech Connect

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  11. The Great Salt Lake

    USGS Publications Warehouse

    Hassibe, W.R.; Keck, W.G.

    1991-01-01

    The western part of the conterminous United States is often thought of as being a desert without any large bodies of water. In the desert area of western Utah, however, lies Great Salt Lake, which in 1986 covered approximately 2,300 square miles and contained 30 million acre-feet of water (an acre-foot is the amount of water necessary to cover 1 acre of land with water 1 foot in depth or about 326,000 gallons). To emphasize its size, the Great Salt Lake is the largest lake west of the Mississippi River, larger than the states of Rhode Island and Delaware.

  12. Mechanism for salt scaling

    NASA Astrophysics Data System (ADS)

    Valenza, John J., II

    Salt scaling is superficial damage caused by freezing a saline solution on the surface of a cementitious body. The damage consists of the removal of small chips or flakes of binder. The discovery of this phenomenon in the early 1950's prompted hundreds of experimental studies, which clearly elucidated the characteristics of this damage. In particular it was shown that a pessimum salt concentration exists, where a moderate salt concentration (˜3%) results in the most damage. Despite the numerous studies, the mechanism responsible for salt scaling has not been identified. In this work it is shown that salt scaling is a result of the large thermal expansion mismatch between ice and the cementitious body, and that the mechanism responsible for damage is analogous to glue-spalling. When ice forms on a cementitious body a bi-material composite is formed. The thermal expansion coefficient of the ice is ˜5 times that of the underlying body, so when the temperature of the composite is lowered below the melting point, the ice goes into tension. Once this stress exceeds the strength of the ice, cracks initiate in the ice and propagate into the surface of the cementitious body, removing a flake of material. The glue-spall mechanism accounts for all of the characteristics of salt scaling. In particular, a theoretical analysis is presented which shows that the pessimum concentration is a consequence of the effect of brine pockets on the mechanical properties of ice, and that the damage morphology is accounted for by fracture mechanics. Finally, empirical evidence is presented that proves that the glue-small mechanism is the primary cause of salt scaling. The primary experimental tool used in this study is a novel warping experiment, where a pool of liquid is formed on top of a thin (˜3 mm) plate of cement paste. Stresses in the plate, including thermal expansion mismatch, result in warping of the plate, which is easily detected. This technique revealed the existence of

  13. Numerical simulation of ice-load induced salt movements

    NASA Astrophysics Data System (ADS)

    Lang, Joerg; Al-Hseinat, Muayyad; Brandes, Christian; Hampel, Andrea; Hübscher, Christian; Winsemann, Jutta

    2015-04-01

    movement. The surface displacement due to ice-load induced salt movement will impact the pattern of glacigenic deformation, erosion and deposition. Ice-marginal uplift will provide favourable conditions for push-moraine formation, while subglacial subsidence of salt structures will enhance erosion and contribute to tunnel-valley incision. References Lang, J., Hampel, A., Brandes, C., Winsemann, J. (2014) Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes. Quaternary Science Reviews 101, 217-233. Liszkowski, J. (1993) The effects of Pleistocene ice-sheet loading-deloading cycles on the bedrock structure of Poland. Folia Quaternaria 64, 7-23.

  14. 13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF THE MOLTEN SALT EXTRACTION LINE. THE MOLTEN SALT EXTRACTION PROCESS WAS USED TO PURIFY PLUTONIUM BY REMOVING AMERICIUM, A DECAY BY-PRODUCT OF PLUTONIUM. (1/98) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO

  15. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  16. Salt Lake Community College Strategic Vision, September 2001-June 2006.

    ERIC Educational Resources Information Center

    Salt Lake Community Coll., UT.

    This document reviews July 2001 findings from a team of Salt Lake Community College administrators, faculty, and staff who were appointed by the college President to prepare a strategic plan that defines the strategic vision of Salt Lake Community College. The team utilized a planning process that began with an evaluation of the external and…

  17. SALT WORKS, School by School: A School-Centered Plan To Improve Teaching and Learning. Book One.

    ERIC Educational Resources Information Center

    Rhode Island State Dept. of Elementary and Secondary Education, Providence.

    This document describes Rhode Island's School Accountability for Learning and Teaching (SALT) process. It defines SALT's vision, outlines Article 31 (which requires schools to engage in self-study and goal setting and sets rigorous requirements for schools), and explains how SALT concepts mirror and respond to Article 31 demands. SALT's vision is…

  18. An approach to better understanding of salt weathering on stone monuments - the "petraSalt" research project

    NASA Astrophysics Data System (ADS)

    Heinrichs, K.; Azzam, R.

    2012-04-01

    Salt weathering is known as a major cause of damage on stone monuments. However, processes and mechanisms of salt weathering still can not be explained satisfactorily. From the expertś point of view, better understanding of salt weathering deserves further comprehensive in-situ investigation jointly addressing active salt weathering processes and controlling factors. The 'petraSalt' research project takes this approach. The rock-cut monuments of Petra / Jordan were selected for studies, since stone type and spectra of monument exposure regimes, environmental influences, salt loading and weathering damage are representative for many stone monuments worldwide. The project aims at real-time / real-scale weathering models that depict characteristic interdependencies between stone properties, monument exposure regimes, environmental influences, salt loading and salt weathering damage. These models are expected to allow reliable rating and interpretation of aggressiveness and damage potential of the salt weathering regimes considering their variability under range of lithology, monument exposure scenarios, environmental conditions and time. The methodological approach systematically combines assessment of weathering damage (type, extent, spatial distribution and progression of damage), assessment of monument exposure characteristics and environmental influences acting on the monuments (monument orientation / geometry, lithology, rain impact, water run-off, rising humidity, wind impact, insolation, heating-cooling and drying-wetting behaviour, etc.), engineering geological studies (structural discontinuities and related failure processes) and investigation of salt loading (type, concentration, spatial distribution and origin of salt, salt crystallization / dissolution, phase transitions, etc.). Besides established methods, very innovative technologies are applied in the course of investigation such as high-resolution 3D terrestrial laser scanning (TLS) and wireless

  19. Proteomics-based investigation of salt-responsive mechanisms in plant roots.

    PubMed

    Zhao, Qi; Zhang, Heng; Wang, Tai; Chen, Sixue; Dai, Shaojun

    2013-04-26

    Salinity is one of the major abiotic stresses that limits agricultural productivity worldwide. Plant roots function as the primary site of salinity perception. Salt responses in roots are essential for maintaining root functionality, as well as for transmitting the salt signal to shoot for proper salt response and adaptation in the entire plant. Therefore, a thorough understanding of signaling and metabolic mechanisms of salt response in roots is critical for improving plant salt tolerance. Current proteomic studies have provided salt-responsive expression patterns of 905 proteins in 14 plant species. Through integrative analysis of salt-responsive proteins and previous physiological and molecular findings, this review summarizes current understanding of salt responses in roots and highlights proteomic findings on the molecular mechanisms in the fine-tuned salt-responsive networks. At the proteome level, the following processes become dominant in root salt response: (i) salt signal perception and transduction; (ii) detoxification of reactive oxygen species (ROS); (iii) salt uptake/exclusion and compartmentalization; (iv) protein translation and/or turnover dynamics; (v) cytoskeleton/cell wall dynamics; (vi) carbohydrate and energy metabolism; and (vii) other salt-responsive metabolisms. These processes work together to gain cellular homeostasis in roots and determine the overall phenotype of plant growth and development under salt stress.

  20. Unitized paramagnetic salt thermometer

    SciTech Connect

    Abraham, B.M.

    1982-06-01

    The details of construction and assembly of a cerous magnesium nitrate (CMN) paramagnetic thermometer are presented. The thermometer is a small unit consisting of a primary, two secondaries, the salt pill, and thermal links. The thermometer calibration changes very little on successive coolings and is reliable to 35 mK. A typical calibration curve is also presented.

  1. SALT and Spelling Achievement.

    ERIC Educational Resources Information Center

    Nelson, Joan

    A study investigated the effects of suggestopedic accelerative learning and teaching (SALT) on the spelling achievement, attitudes toward school, and memory skills of fourth-grade students. Subjects were 20 male and 28 female students from two self-contained classrooms at Kennedy Elementary School in Rexburg, Idaho. The control classroom and the…

  2. Salt controls endothelial and vascular phenotype.

    PubMed

    Kusche-Vihrog, Kristina; Schmitz, Boris; Brand, Eva

    2015-03-01

    High salt (NaCl) intake promotes the development of vascular diseases independent of a rise in blood pressure, whereas reduction of salt consumption has beneficial effects for the arterial system. This article summarizes our current understanding of the molecular mechanisms of high salt-induced alterations of the endothelial phenotype, the impact of the individual endothelial genotype, and the overall vascular phenotype. We focus on the endothelial Na(+) channel (EnNaC)-controlled nanomechanical properties of the endothelium, since high Na(+) leads to an EnNaC-induced Na(+)-influx and subsequent stiffening of endothelial cells. The mechanical stiffness of the endothelial cell (i.e., the endothelial phenotype) plays a crucial role as it controls the production of the endothelium-derived vasodilator nitric oxide (NO) which directly affects the tone of the vascular smooth muscle cells. In contrast to soft endothelial cells, stiff endothelial cells release reduced amounts of NO, the hallmark of endothelial dysfunction. This endothelium-born process is followed by the development of arterial stiffness (i.e., the vascular phenotype), predicting the development of vascular end-organ damage such as myocardial infarction, stroke, and renal impairment. In this context, we outline the potential clinical implication of direct (amiloride) and indirect (spironolactone) EnNaC inhibition on vascular function. However, interindividual differences exist in the response to high salt intake which involves different endothelial genotypes. Thus, selected genes and genetic variants contributing to the development of salt-induced endothelial dysfunction and hypertension are discussed. In this review, we focus on the role of salt in endothelial and vascular (dys)function and the link between salt-induced changes of the endothelial and vascular phenotype and its clinical implications.

  3. [Salt--hidden poison in everyday meal].

    PubMed

    Jelaković, Bojan; Premuzić, Vedran; Skupnjak, Berislav; Reiner, Zeljko

    2009-01-01

    A large number of epidemiologic, evolutionary and clinical studies have confirmed that table salt is a significant factor in determining the blood pressure (BP) level, and thereby in the prevalence of arterial hypertension (AH). It has been observed in epidemiologic studies that BP increases with age only if accompanied by excessive table salt intake. In addition to affecting BP, increased salt intake independently contributes to target organ damage. Correlation has also been observed between coronary artery disease, left ventricular hypertrophy, cerebrovascular insult, microalbuminuria. Table salt, i.e. NaCl, is directly involved in the process of atherothrombogenesis by changing the relation between vasoactive factors in the blood vessel wall, by affecting the expression of receptor for angiotensin II and, which is particularly important, by elevating platelet aggregability. From clinical and public health aspects, the data obtained in interventional studies are particularly important, as well as those that apparently confirm the benefit of restricting NaCl intake. This benefit is manifested not only in decreased BP and reduction in cardiovascular morbidity and mortality, but also in improved total health as it is known that excessive table salt intake is also a risk factor for osteoporosis, nephrolithiasis, gastric and nasopharyngeal carcinoma, etc. Although there were some studies that raised doubt about the fact that reduced table salt intake could be harmful due to activation of counter-regulative mechanisms, a substantially higher number of authors demonstrated that moderate intake reduction was not associated with the increased risk but rather the contrary. Table salt intake restriction should be performed as part of other lifestyle changes, primarily weight loss and increased physical activity. During NaCl intake reduction, it is necessary to pay attention to other electrolytes and microelements that are also important stones in the mosaic of healthy

  4. Sodium (Salt or Sodium Chloride)

    MedlinePlus

    ... reduce the salt in your diet and for information, strategies, and tools you need to lead a healthier ... reduce the salt in your diet and get information, strategies, and tools you need to lead a healthier ...

  5. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  6. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  7. Amplification of salt-induced polymer diffusiophoresis by increasing salting-out strength.

    PubMed

    McAfee, Michele S; Zhang, Huixiang; Annunziata, Onofrio

    2014-10-21

    The role of salting-out strength on (1) polymer diffusiophoresis from high to low salt concentration, and (2) salt osmotic diffusion from high to low polymer concentration was investigated. These two cross-diffusion phenomena were experimentally characterized by Rayleigh interferometry at 25 °C. Specifically, we report ternary diffusion coefficients for polyethylene glycol (molecular weight, 20 kg·mol(-1)) in aqueous solutions of several salts (NaCl, KCl, NH4Cl, CaCl2, and Na2SO4) as a function of salt concentration at low polymer concentration (0.5% w/w). We also measured polymer diffusion coefficients by dynamic light scattering in order to discuss the interpretation of these transport coefficients in the presence of cross-diffusion effects. Our cross-diffusion results, primarily those on salt osmotic diffusion, were utilized to extract N(w), the number of water molecules in thermodynamic excess around a macromolecule. This preferential-hydration parameter characterizes the salting-out strength of the employed salt. For chloride salts, changing cation has a small effect on N(w). However, replacing NaCl with Na2SO4 (i.e., changing anion) leads to a 3-fold increase in N(w), in agreement with cation and anion Hofmeister series. Theoretical arguments show that polymer diffusiophoresis is directly proportional to the difference N(w) - n(w), where n(w) is the number of water molecules transported by the migrating macromolecule. Interestingly, the experimental ratio, n(w)/N(w), was found to be approximately the same for all investigated salts. Thus, the magnitude of polymer diffusiophoresis is also proportional to salting-out strength as described by N(w). A basic hydrodynamic model was examined in order to gain physical insight on the role of n(w) in particle diffusiophoresis and explain the observed invariance of n(w)/N(w). Finally, we consider a steady-state diffusion problem to show that concentration gradients of strong salting-out agents such as Na2SO4 can

  8. Studies of metals electroprocessing in molten salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1982-01-01

    Fluid flow patterns in molten salt electrolytes were observed in order to determine how mass transport affects the morphology of the metal deposit. Studies conducted on the same metal, both in aqueous electrolytes in which coherent solid electrodeposits are produced, as well as in transparent molten salt electrolytes are described. Process variables such as current density and composition of the electrolyte are adjusted to change the morphology of the electrodeposit and, thus, to permit the study of the nature of electrolyte flow in relation to the quality of the electrodeposit.

  9. Spreading of salt structures in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Talbot, C. J.

    1993-12-01

    Past and present overhangs on diapirs (ductile intrusions) of salt are potential hydrocarbon traps and increasing numbers of larger overhangs are being recognised as seismic acquisition and processing improves. Salt overhangs develop by three process: drag by ductile surroundings sinking around salt diapirs; thinning of diapiric stems; or the topic considered here—gravity spreading. Gravity spreads salt where it is easier for salt to flow sideways than it is to float or sink. The potential level to which individual salt diapirs rise depends on the pressure applied to their source by the overburden load and any lateral forces. The potential level to which salt diapirs rise can be independent of both the top free surface and the level of neutral buoyancy of the salt. Even the most vigorous diapirs cannot rise indefinitely; they gravitationally spread at barriers they cannot penetrate: below, at, or above their level of neutral buoyancy. It has been suggested that salt diapirs spread below their level of neutral buoyancy in weak layers beneath stiff barriers. However, no case of deep subsurface salt spreading appears to have been documented; instead, shales rise with salt along the US Gulf coast. Some salt diapirs in the Gulf of Mexico may simulate ductile ice flows and spread both upwards and downwards to a subsurface level of neutral buoyancy in surroundings of similar strain rate. However, most diapirs in the Gulf are driven above their level of neutral buoyancy so that they spread downwards back towards it. These spread over denser or stifter layers in less dense and weaker barriers of air, water, or unconsolidated sediments. This work focuses on the geological implications of the shapes of the tops of small-scale secondary salt bodies that spread superficially in weaker and less dense barriers under the northern Gulf of Mexico. Analytical, material and natural models are used to show that the shape of the top free surface of spreading salt contains information

  10. Molten salts and energy related materials.

    PubMed

    Fray, Derek

    2016-08-15

    Molten salts have been known for centuries and have been used for the extraction of aluminium for over one hundred years and as high temperature fluxes in metal processing. This and other molten salt routes have gradually become more energy efficient and less polluting, but there have been few major breakthroughs. This paper will explore some recent innovations that could lead to substantial reductions in the energy consumed in metal production and in carbon dioxide production. Another way that molten salts can contribute to an energy efficient world is by creating better high temperature fuel cells and novel high temperature batteries, or by acting as the medium that can create novel materials that can find applications in high energy batteries and other energy saving devices, such as capacitors. Carbonate melts can be used to absorb carbon dioxide, which can be converted into C, CO and carbon nanoparticles. Molten salts can also be used to create black silicon that can absorb more sunlight over a wider range of wavelengths. Overall, there are many opportunities to explore for molten salts to play in an efficient, low carbon world. PMID:27276650

  11. Molten salts and energy related materials.

    PubMed

    Fray, Derek

    2016-08-15

    Molten salts have been known for centuries and have been used for the extraction of aluminium for over one hundred years and as high temperature fluxes in metal processing. This and other molten salt routes have gradually become more energy efficient and less polluting, but there have been few major breakthroughs. This paper will explore some recent innovations that could lead to substantial reductions in the energy consumed in metal production and in carbon dioxide production. Another way that molten salts can contribute to an energy efficient world is by creating better high temperature fuel cells and novel high temperature batteries, or by acting as the medium that can create novel materials that can find applications in high energy batteries and other energy saving devices, such as capacitors. Carbonate melts can be used to absorb carbon dioxide, which can be converted into C, CO and carbon nanoparticles. Molten salts can also be used to create black silicon that can absorb more sunlight over a wider range of wavelengths. Overall, there are many opportunities to explore for molten salts to play in an efficient, low carbon world.

  12. Combined Evaporation and Salt Precipitation in Porous Media

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Dragila, M. I.; Nachshon, U.; Or, D.; Shaharani, E.; Grader, A.

    2012-12-01

    The vadose zone pore water contains dissolved salts and minerals; therefore, evaporation results in high rates of salt accumulation that may change the physical and chemical properties of the porous media. Here, a series of experiments, together with a mathematical model, are presented to shed new light on these processes. Experiments included: (1) long-term column evaporation experiments to quantify changes in evaporation rates due to salt precipitation; (2) CT scans of evaporated porous media samples saturated with salt solutions, to observe salt precipitation from micro to macro scales; and (3) Infrared thermography analysis to quantify evaporation rates from porous media surfaces for homogeneous and heterogeneous conditions and constant water table, in the presence of salt precipitation. As expected, the majority of salt crystallization occurs in the upper parts of the matrix, near the evaporation front. For heterogeneous porous matrices, salt precipitation will occur mainly in the fine pore regions as preferential evaporation takes place in these locations. In addition, it was found that the precipitated NaCl salt crust diffusion coefficient for water vapor is one to two orders of magnitude lower than the vapor diffusion coefficient in free air, depending on environmental conditions and salt crystallization rates. Three new stages of evaporation were defined for saline solutions: SS1, SS2 and SS3. SS1 exhibits a low and gradual decrease in the evaporation rate due to osmotic pressure. During SS2, the evaporation rate falls progressively due to salt precipitation; SS3 is characterized by a constant low evaporation rate and determined by the diffusion rate of water vapor through the precipitated salt layer. Even though phenomenologically similar to the classical evaporation stages of pure water, these stages correspond to different mechanisms and the transition between stages can occur regardless the hydraulic conditions. As well, it was shown that matrix

  13. Hydrological methods preferentially recover cesium from nuclear waste salt cake

    SciTech Connect

    Brooke, J.N.; Hamm, L.L.

    1997-05-01

    The Savannah River Site is treating high level radioactive waste in the form of insoluble solids (sludge), crystallized salt (salt cake), and salt solutions. High costs and operational concerns have prompted DOE to look for ways to improve the salt cake treatment process. A numerical model was developed to evaluate the feasibility of pump and treat technology for extracting cesium from salt cake. A modified version of the VAM3DCG code was used to first establish a steady-state flow field, then to simulate 30 days of operation. Simulation results suggest that efficient cesium extraction can be obtained with low displacement volumes. The actual extraction process will probably be less impressive because of nonuniform properties. 2 refs., 2 figs.

  14. Salt stress or salt shock: which genes are we studying?

    PubMed

    Shavrukov, Yuri

    2013-01-01

    Depending on the method of NaCl application, whether gradual or in a single step, plants may experience either salt stress or salt shock, respectively. The first phase of salt stress is osmotic stress. However, in the event of salt shock, plants suffer osmotic shock, leading to cell plasmolysis and leakage of osmolytes, phenomena that do not occur with osmotic stress. Patterns of gene expression are different in response to salt stress and salt shock. Salt stress initiates relatively smooth changes in gene expression in response to osmotic stress and a more pronounced change in expression of significant numbers of genes related to the ionic phase of salt stress. There is a considerable time delay between changes in expression of genes related to the osmotic and ionic phases of salt stress. In contrast, osmotic shock results in strong, rapid changes in the expression of genes with osmotic function, and fewer changes in ionic-responsive genes that occur earlier. There are very few studies in which the effects of salt stress and salt shock are described in parallel experiments. However, the patterns of changes in gene expression observed in these studies are consistently as described above, despite the use of diverse plant species. It is concluded that gene expression profiles are very different depending the method of salt application. Imposition of salt stress by gradual exposure to NaCl rather than salt shock with a single application of a high concentration of NaCl is recommended for genetic and molecular studies, because this more closely reflects natural incidences of salinity. PMID:23186621

  15. Microbiology of salt rising bread.

    PubMed

    Juckett, Gregory; Bardwell, Genevieve; McClane, Bruce; Brown, Susan

    2008-01-01

    Salt rising bread (SRB) is an Appalachian traditional bread made without yeast, using a starter derived from flour, milk and potatoes. The "rising agent" has been identified as Clostridium perfringens, not salt, and is presumably derived from the environment. Although no cases of illness have been attributed to SRB, C. perfringens type A is a common cause of food poisoning from meats and gravies. Other C. perfringens isolates may cause enteritis necroticans (pig-bel disease) and gas gangrene. Past research documents that pathogenic strains derived from wounds may be used to produce bread and that bacteria isolated from this bread retain their pathogenicity. SRB starter samples were cultured at the University of Pittsburgh and abundant C. perfringens, type A grew out of all samples. However none of the cultures were positive for enterotoxin and thus would be unlikely to cause human food borne disease. While this does not preclude the possibility of other starter mixes containing enteropathogenic strains, the baking process appears to reduce bacterial contamination to safe levels and SRB has not been implicated in causing any human disease.

  16. Modelling salt finger formation using the Imperial College Ocean Model

    NASA Astrophysics Data System (ADS)

    MacTavish, F. P.; Cotter, C. J.; Piggott, M. D.

    2009-04-01

    We present numerical simulations of salt finger formation produced using the Imperial College Ocean Model (ICOM) which is a finite element model using adaptive meshing. Our aim is to validate the model against published data and to develop the capability to simulate salt finger formation using adaptive meshes. Salt fingering is a form of double-diffusion which occurs because heat diffuses more quickly than salt. When an area of warm, salty water overlies an area of colder, fresher water, an initial perturbation can lead to some of the water from the lower layer moving into the top layer. Its temperature then increases more quickly than its salinity, so that the water is less dense than its surroundings and it will rise up more. This process repeats to form salt fingers, with salt fingers also forming in the downward direction. Salt fingers play a role in oceanic mixing, in particular they are responsible for maintaining thermohaline staircases such as the C-SALT staircase which have been observed extensively, particularly in the tropics. The study of salt fingers could therefore improve our understanding of processes in the ocean, and inform the design of subgrid parameterisations in general circulation models. We used the salt finger formation test case of Oezgoekmen et al (1998) in order to validate ICOM. The formation of salt fingers is modelled by solving the Navier-Stokes equations for a two-dimensional rectangular area of Boussinesq fluid, beginning with two layers of water, the top warm and salty and the bottom cold and fresh, with parameters chosen to match the test case of Oezgoekmen et al (1998). The positions of the interfaces between the fingering layer and the mixed layers as well as the finger growth rate and the kinetic energy are plotted against time. The results are compared with those of Oezgoekmen et al (1998). We present results from structured meshes and preliminary results using adaptive meshing.

  17. Molten salt techniques. Volume 3

    SciTech Connect

    Lovering, D.G.; Gale, R.J.

    1987-01-01

    This collection of five papers on molten salts deals with the following specific topics: the actinides and their salts, including their availability along with techniques and equipment for their handling, preparation, purification, and physical property measurement; cryolite systems and methods for their handling, preparation, and thermodynamic and physicochemical property assessment, as well as the use of electrodes in molten cryolite; the theory, construction, and application of reference electrodes for molten salt electrolytes; neutron diffraction in molten salt systems including isotope exchange methods for sample preparation; and dry boxes and inert atmosphere techniques for molten salt handling and analysis.

  18. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and

  19. Target salt 2025: a global overview of national programs to encourage the food industry to reduce salt in foods.

    PubMed

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-08-01

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods-the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target.

  20. Target Salt 2025: A Global Overview of National Programs to Encourage the Food Industry to Reduce Salt in Foods

    PubMed Central

    Webster, Jacqui; Trieu, Kathy; Dunford, Elizabeth; Hawkes, Corinna

    2014-01-01

    Reducing population salt intake has been identified as a priority intervention to reduce non-communicable diseases. Member States of the World Health Organization have agreed to a global target of a 30% reduction in salt intake by 2025. In countries where most salt consumed is from processed foods, programs to engage the food industry to reduce salt in products are being developed. This paper provides a comprehensive overview of national initiatives to encourage the food industry to reduce salt. A systematic review of the literature was supplemented by key informant questionnaires to inform categorization of the initiatives. Fifty nine food industry salt reduction programs were identified. Thirty eight countries had targets for salt levels in foods and nine countries had introduced legislation for some products. South Africa and Argentina have both introduced legislation limiting salt levels across a broad range of foods. Seventeen countries reported reductions in salt levels in foods—the majority in bread. While these trends represent progress, many countries have yet to initiate work in this area, others are at early stages of implementation and further monitoring is required to assess progress towards achieving the global target. PMID:25195640

  1. Metabolic contribution to salt stress in two maize hybrids with contrasting resistance.

    PubMed

    Richter, Julia Annika; Erban, Alexander; Kopka, Joachim; Zörb, Christian

    2015-04-01

    Salt stress reduces the growth of salt-sensitive plants such as maize. The cultivation of salt-resistant maize varieties might therefore help to reduce yield losses. For the elucidation of the underlying physiological and biochemical processes of a resistant hybrid, we used a gas chromatography mass spectrometry approach and analyzed five different salt stress levels. By comparing a salt-sensitive and a salt-resistant maize hybrid, we were able to identify an accumulation of sugars such as glucose, fructose, and sucrose in leaves as a salt-resistance adaption of the salt-sensitive hybrid. Although, both hybrids showed a strong decrease of the metabolite concentration in the tricarboxylic acid cycle. These decreases resulted in the same reduced catabolism for the salt-sensitive and even the salt-resistant maize hybrid. Surprisingly, the change of root metabolism was negligible under salt stress. Moreover, the salt-resistance mechanisms were the most effective at low salt-stress levels in the leaves of the salt-sensitive maize. PMID:25711818

  2. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.

    PubMed

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges

    2009-08-01

    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  3. Consumption and sources of dietary salt in family members in Beijing.

    PubMed

    Zhao, Fang; Zhang, Puhong; Zhang, Lu; Niu, Wenyi; Gao, Jianmei; Lu, Lixin; Liu, Caixia; Gao, Xian

    2015-04-01

    In China, few people are aware of the amount and source of their salt intake. We conducted a survey to investigate the consumption and sources of dietary salt using the "one-week salt estimation method" by weighing cooking salt and major salt-containing food, and estimating salt intake during dining out based on established evidence. Nine hundred and three families (1981 adults and 971 children) with students in eight primary or junior high schools in urban and suburban Beijing were recruited. On average, the daily dietary salt intake of family members in Beijing was 11.0 (standard deviation: 6.2) g for children and adolescents (under 18 years old), 15.2 (9.1) g for adults (18 to 59 years old), and 10.2 (4.8) g for senior citizens (60 years old and over), respectively. Overall, 60.5% of dietary salt was consumed at home, and 39.5% consumed outside the home. Approximately 90% of the salt intake came from cooking (household cooking and cafeteria or restaurant cooking), while less than 10% came from processed food. In conclusion, the dietary salt intake in Beijing families far surpassed the recommended amounts by World Health Organization, with both household cooking and dining-out as main sources of salt consumption. More targeted interventions, especially education about major sources of salt and corresponding methods for salt reduction should be taken to reduce the risks associated with a high salt diet. PMID:25867952

  4. Bases, Assumptions, and Results of the Flowsheet Calculations for the Decision Phase Salt Disposition Alternatives

    SciTech Connect

    Elder, H.H.

    2001-07-11

    The HLW salt waste (salt cake and supernate) now stored at the SRS must be treated to remove insoluble sludge solids and reduce the soluble concentration of radioactive cesium radioactive strontium and transuranic contaminants (principally Pu and Np). These treatments will enable the salt solution to be processed for disposal as saltstone, a solid low-level waste.

  5. Cerebral salt wasting syndrome.

    PubMed

    Harrigan, M R

    2001-01-01

    There is significant evidence to show that many patients with hyponatremia and intracranial disease who were previously diagnosed with SIADH actually have CSW. The critical difference between SIADH and CSW is that CSW involves renal salt loss leading to hyponatremia and volume loss, whereas SIADH is a euvolemic or hypervolemic condition. Attention to volume status in patients with hyponatremia is essential. The primary treatment for CSW is water and salt replacement. The mechanisms underlying CSW are not understood but may involve ANP or other natriuretic factors and direct neural influence on renal function. Future investigation is needed to better define the incidence of CSW in patients with intracranial disease, identify other disorders that can lead to CSW, and elucidate the mechanisms underlying this syndrome.

  6. SALT IN AYURVEDA I

    PubMed Central

    Mooss, N S

    1987-01-01

    In basic Ayurveda texts, Susruta, Caraka and Vagbhata, some quite specific Salts (Lavanam) have been described and their properties and actions are enumerated. By comparing those accounts with the present methods of preparation, conclusions have been made and evidently spurious methods are pointed out. The reported properties of Saindhava, Samudra, Vida, Sauvarcha, Romaka, Audbhida, Gutika, the Katu Group, Krsna and Pamsuja Lavanas are discussed in terms of their chemical constituents here and, thus, the authors establish its inter-connections. PMID:22557573

  7. Molten salt destruction of base hydrolysate

    SciTech Connect

    Watkins, B.E.; Kanna, R.L.; Chambers, R.D.; Upadhye, R.S.; Promeda, C.O.

    1996-10-01

    There is a great need for alternatives to open burn/open detonation of explosives and propellants from dismantled munitions. LANL has investigated the use of base hydrolysis for the demilitarization of explosives. Hydrolysates of Comp B, Octol, Tritonal, and PBXN-109 were processed in the pilot molten salt unit (in building 191). NOx and CO emissions were found to be low, except for CO from PBXN-109 processing. This report describes experimental results of the destruction of the base hydrolysates.

  8. A Trail of Salts

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the relative abundances of sulfur (in the form of sulfur tri-oxide) and chlorine at three Meridiani Planum sites: soil measured in the small crater where Opportunity landed; the rock dubbed 'McKittrick' in the outcrop lining the inner edge of the crater; and the rock nicknamed 'Guadalupe,' also in the outcrop. The 'McKittrick' data shown here were taken both before and after the rover finished grinding the rock with its rock abrasion tool to expose fresh rock underneath. The 'Guadalupe' data were taken after the rover grounded the rock. After grinding both rocks, the sulfur abundance rose to high levels, nearly five times higher than that of the soil. This very high sulfur concentration reflects the heavy presence of sulfate salts (approximately 30 percent by weight) in the rocks. Chloride and bromide salts are also indicated. Such high levels of salts strongly suggest the rocks contain evaporite deposits, which form when water evaporates or ice sublimes into the atmosphere.

  9. Salt and hypertension: is salt dietary reduction worth the effort?

    PubMed

    Frisoli, Tiberio M; Schmieder, Roland E; Grodzicki, Tomasz; Messerli, Franz H

    2012-05-01

    In numerous epidemiologic, clinical, and experimental studies, dietary sodium intake has been linked to blood pressure, and a reduction in dietary salt intake has been documented to lower blood pressure. In young subjects, salt intake has a programming effect in that blood pressure remains elevated even after a high salt intake has been reduced. Elderly subjects, African Americans, and obese patients are more sensitive to the blood pressure-lowering effects of a decreased salt intake. Depending on the baseline blood pressure and degree of salt intake reduction, systolic blood pressure can be lowered by 4 to 8 mm Hg. A greater decrease in blood pressure is achieved when a reduced salt intake is combined with other lifestyle interventions, such as adherence to Dietary Approaches to Stop Hypertension. A high salt intake has been shown to increase not only blood pressure but also the risk of stroke, left ventricular hypertrophy, and proteinuria. Adverse effects associated with salt intake reduction, unless excessive, seem to be minimal. However, data linking a decreased salt intake to a decrease in morbidity and mortality in hypertensive patients are not unanimous. Dietary salt intake reduction can delay or prevent the incidence of antihypertensive therapy, can facilitate blood pressure reduction in hypertensive patients receiving medical therapy, and may represent a simple cost-saving mediator to reduce cardiovascular morbidity and mortality.

  10. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOEpatents

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  11. System Requirements Document for the Molten Salt Reactor Experiment

    SciTech Connect

    Aigner, R.D.

    2000-04-01

    The purpose of the conversion process is to convert the {sup 233}U fluoride compounds that are being extracted from the Molten Salt Reactor Experiment (MSRE) equipment to a stable oxide for long-term storage at Bldg. 3019.

  12. A novel non-vacuum process for the preparation of CuIn(Se,S)2 thin-film solar cells from air-stable, eco-friendly, metal salts based solution ink

    NASA Astrophysics Data System (ADS)

    Luo, Paifeng; Liu, Zhaofan; Ding, Yuankui; Cheng, Jigui

    2015-01-01

    A facile solution-based non-vacuum process for deposition of CuIn(Se,S)2 (CISeS) absorber layers is presented in this work, which indicates a promising way for the low-cost applications in thin-film solar cells. Firstly, low-boiling-point solvents Monobutylamine C4H11N and Carbon disulfide CS2 are selected as the complexing and thickening agents and added into the Cu/In metal salts based solution. Thus the air-stable, eco-friendly solution ink is successfully synthesized through a simple solution synthesis route. The detailed chemical reaction mechanism and the influence of the composition of precursor solution have been discussed intensively as well. After sequential spin-coating, hot-treatment and selenization process, the high-quality CISeS films are obtained and then characterized by XRD, Raman, SEM, EDS, Metallographic microscope, Hall Effect measurement and UV-vis-NIR spectroscopy, respectively. It is found that the compact CISeS films with chalcopyrite α-phase possess a double-layer structure, and also incorporate with a little ordered vacancy compounds (OVCs) and Cu2-xSe impurities. The typical near stoichiometric CISeS films without Carbon residuals have superior photoelectric properties with carrier concentration of 3.46 × 1016 N cm-3 and band gap of 1.15 eV. Finally, the original first-made PV devices provide a power conversion efficiency (PCE) of 4.25%, which can be further improved by increasing the thickness of CISeS films and/or optimizing the selenization and sulfuration technologies.

  13. Accelerator-driven molten-salt blankets: Physics issues

    SciTech Connect

    Houts, M.G.; Beard, C.A.; Buksa, J.J.; Davidson, J.W.; Durkee, J.W.; Perry, R.T.; Poston, D.I.

    1994-10-01

    A number of nuclear physics issues concerning the Los Alamos molten-salt accelerator-driven plutonium converter are discussed. General descriptions of several concepts using internal and external moderation are presented. Burnup and salt processing requirement calculations are presented for four concepts, indicating that both the high power density externally moderated concept and an internally moderated concept achieve total plutonium burnups approaching 90% at salt processing rates of less than 2 m{sup 3} per year. Beginning-of-life reactivity temperature coefficients and system kinetic response are also discussed. Future research should investigate the effect of changing blanket composition on operational and safety characteristics.

  14. Assessing the soil microbial carbon budget: Probing with salt stress

    NASA Astrophysics Data System (ADS)

    Rath, Kristin; Rousk, Johannes

    2014-05-01

    The amount of carbon stored as soil organic matter (SOM) constitutes a pool more than double the size of the atmospheric carbon pool. Soil respiration represents one of the largest fluxes of carbon between terrestrial ecosystems and the atmosphere. A large fraction of the CO2 released by soils is produced by the microbial decomposition of SOM. The microbial carbon budget is characterized by their carbon use efficiency, i.e. the partitioning of substrate into growth and respiration. This will shape the role of the soil as a net source or sink for carbon. One of the canonical factors known to influence microbial processes in soil is pH. In aquatic systems salinity has been found to have a comparably strong influence as pH. However salinity remains understudied in soil, despite its growing relevance due to land use change and agricultural practices. The aim of this project is to understand how microbial carbon dynamics respond to disturbance by changing environmental conditions, using salinity as a reversible stressor. First, we compiled a comparative analysis of the sensitivity of different microbial processes to increasing salt concentrations. Second, we compared different salts to determine whether salt toxicity depended on the identity of the salt. Third, we used samples from a natural salinity gradient to assess if a legacy of salt exposure can influence the microbial response to changing salt concentrations. If salt had an ecologically significant effect in shaping these communities, we would assume that microbial processes would be less sensitive to an increase in salt concentrations. The sensitivity of microbial processes to salt was investigated by establishing inhibition curves in order to estimate EC50 values (the concentration resulting in 50% inhibition). These EC50 values were used to compare bacterial and fungal growth responses, as well as catabolic processes such as respiration and nitrogen mineralisation. Initial results suggest that growth related

  15. Exploring the use of Low-intensity Ultrasonics as a Tool for Assessing the Salt Content in Pork Meat Products

    NASA Astrophysics Data System (ADS)

    García-Pérez, J. V.; de Prados, M.; Martínez-Escrivá, G.; González, R.; Mulet, A.; Benedito, J.

    Meat industry demands non-destructive techniques for the control of the salting process to achieve a homogeneous final salt content in salted meat products. The feasibility of using low-intensity ultrasound for characterizing the salting process of pork meat products was evaluated. The ultrasonic velocity (V) and time of flight (TF) were measured by through-transmission and pulse-echo methods, respectively, in salted meat products. Salting involved an increase of the V in meat muscles and a decrease of the time of flight in whole hams. Measuring the V before and after salting, the salt content could be estimated. Moreover, online monitoring of the salting process by computing the TF could be considered a reliable tool for quality control purposes.

  16. Salt and ice crystallisation in porous sandstones

    NASA Astrophysics Data System (ADS)

    Ruedrich, Joerg; Siegesmund, Siegfried

    2007-03-01

    Salt and ice crystallisation in the pore spaces causes major physical damage to natural building stones. The damaging effect of these processes can be traced back to physically induced stress inside of the rock while crystallizing. The increasing scientific research done during the past century has shown that there are numerous parameters that have an influence on the weathering resulting from these processes. However, the working mechanisms of the stress development within the rock and its material dependency are still subject to discussion. This article gives an overview of salt and ice weathering. Additionally, laboratory results of various sandstones examined are presented. Salt crystallisation tests and freeze/thaw tests were done to obtain information about how crystallisation weathering depends on material characteristics such as pore space, water transportation, and mechanical features. Simultaneous measuring of the length alternating during the salt and ice crystallisation has revealed detailed information on the development of crystal in the pore spaces as well as the development of stress. These findings can help to understand the damaging mechanisms.

  17. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  18. Dynamics of salt playa polygons

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Fourrière, A.

    2014-12-01

    In natural salt playa or in evaporation pools for the salt extraction industry, one can sometimes see surprising regular structures formed by ridges of salt. These ridges connect together to form a self-organized network of polygons one to two meters in diameter, which we call salt polygons. Here we propose a mechanism based on porous media convection of salty water in soil to explain the formation and the scaling of the salt polygons. Surface evaporation causes a steady upward flow of salty water, which can cause precipitation near the surface. A vertical salt gradient then builds up in the porous soil, with heavy salt-saturated water lying over the less salty source water. This can drive convection when a threshold is reached, given by a critical Rayleigh number of about 7. We suggest that the salt polygons are the surface expression of the porous medium convection, with salt crystallizing along the positions of the convective downwellings. To study this instability directly, we developed a 2D analogue experiment using a Hele-Shaw cell filled with a porous medium saturated with a salt solution and heated from above. We perform a linear stability analysis of this system, and find that it is unstable to convection, with a most unstable wavelength that is set by a balance between salt diffusion and water evaporation. The Rayleigh number in our experiment is controlled by the particle size of our model soil, and the evaporation rate. We obtain results that scale with the observation of natural salt polygons. Using dye, we observe the convective movement of salty water and find downwelling convective plumes underneath the spots where surface salt ridges form, as shown in the attached figure.

  19. The bioenergetics of salt tolerance: Final report (1)

    SciTech Connect

    Packer, L.

    1986-10-28

    Studies on the sequence of events that lead to salt adaptation in the cyanobacterium Synechococcus 6311 are reported. We present here our major findings on how this freshwater organism responds to a transition from low salt (12 M NaCl) to high salt (0.5 M NaCl) medium; we have studied immediate and long-term osmotic responses, identified deleterious effects of NaCl on cellular processes, and analyzed adaptations of the bioenergetic systems that permit Synechococcus 6311 to tolerate a high salt environment. We have also developed new electron spin resonance (ESR) methods for measuring intracellular O/sub 2/ concentrations and intracellular pH. These new methods will continue to be of great value in our future studies on the bioenergetics of salt tolerance. 26 refs.

  20. A stop-restart solid propellant study with salt quench

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.

    1976-01-01

    Experiments were conducted to gain insight into the unsatisfactory performance of the salt quench system of solid propellants in earlier studies. Nine open-air salt spray tests were conducted and high-speed cinematographic coverage was obtained of the events. It is shown that the salt spray by the detonator is generally a two-step process yielding two different fractions. The first fraction consists of finely powdered salt and moves practically unidirectionally at a high velocity (thousand of feet per second) while the second fraction consists of coarse particles and moves randomly at a low velocity (a few feet per second). Further investigation is required to verify the speculation that a lower quench charge ratio (weight of salt/propellant burning area) than previously employed may lead to an efficient quench

  1. Submarine allochthonous salt sheets: Gravity-driven deformation of North African Cretaceous passive margin in Tunisia - Bled Dogra case study and nearby salt structures

    NASA Astrophysics Data System (ADS)

    Masrouhi, Amara; Bellier, Olivier; Ben Youssef, Mohamed; Koyi, Hemin

    2014-09-01

    We used structural, stratigraphic and sedimentologic data, together with a comparison of nearby structures and a Bouguer gravity map, to evaluate the evolution of the Bled Dogra salt structure (northern Tunisia) during the Cretaceous. Triassic salt sheets are recognized in the northwestern region of the Tunisian Atlas. These salt sheets are the result of Cretaceous thick and/or thin-skinned extension along the south Tethyan margin. The Bled Dogra salt structure is one of these submarine allochthonous salt sheets, which was emplaced during the Early Cretaceous. The geologic framework, during this period, produces conditions for a predominantly gravity-driven deformation: extension has produced space for the salt to rise; vigorous differential sedimentation created differential loading that resulted in the emplacement and extrusion of a large volume of Triassic salt and formation of large submarine salt sheets. Geologic field data suggest an interlayered Triassic salt sheet within Albian sequences. Salt was extruded at the sea floor during the Early-Middle Albian and was initially buried by Middle-Late Albian strata. The Coniacian corresponds to a second transgressive cover onto the salt sheet after the gliding of the first salt cover (Late Albian-Turonian). In addition, this northwest Tunisian area exposes evidences for salt flow and abundant slump features at the base of a northward facing submarine slope, which was probably dominant from the Early Cretaceous to Santonian. Two gravity deformation processes are recognized: gravity gliding and gravity spreading. Acting concurrently, these two processes appear indistinguishable in this geologic context. Like the present-day salt-involved passive margins - such as the northern Gulf of Mexico, the Atlantic margin of Morocco, the Brazilian Santos basin, the Angola margin, Cadiz in western Iberia, and the Red Sea - the North African Cretaceous passive margin in Tunisia provides evidences that deformation in a passive

  2. Fission product ion exchange between zeolite and a molten salt

    NASA Astrophysics Data System (ADS)

    Gougar, Mary Lou D.

    The electrometallurgical treatment of spent nuclear fuel (SNF) has been developed at Argonne National Laboratory (ANL) and has been demonstrated through processing the sodium-bonded SNF from the Experimental Breeder Reactor-II in Idaho. In this process, components of the SNF, including U and species more chemically active than U, are oxidized into a bath of lithium-potassium chloride (LiCl-KCl) eutectic molten salt. Uranium is removed from the salt solution by electrochemical reduction. The noble metals and inactive fission products from the SNF remain as solids and are melted into a metal waste form after removal from the molten salt bath. The remaining salt solution contains most of the fission products and transuranic elements from the SNF. One technique that has been identified for removing these fission products and extending the usable life of the molten salt is ion exchange with zeolite A. A model has been developed and tested for its ability to describe the ion exchange of fission product species between zeolite A and a molten salt bath used for pyroprocessing of spent nuclear fuel. The model assumes (1) a system at equilibrium, (2) immobilization of species from the process salt solution via both ion exchange and occlusion in the zeolite cage structure, and (3) chemical independence of the process salt species. The first assumption simplifies the description of this physical system by eliminating the complications of including time-dependent variables. An equilibrium state between species concentrations in the two exchange phases is a common basis for ion exchange models found in the literature. Assumption two is non-simplifying with respect to the mathematical expression of the model. Two Langmuir-like fractional terms (one for each mode of immobilization) compose each equation describing each salt species. The third assumption offers great simplification over more traditional ion exchange modeling, in which interaction of solvent species with each other

  3. POA 01-1 MODERATE DIETARY SALT REDUCTION IN POPULATIONS.

    PubMed

    Cappuccio, Francesco

    2016-09-01

    Current salt consumption in human societies is now much greater than needed for survival. Furthermore, high salt intake substantially increases blood pressure (BP) in both animals and humans. Conversely, a reduction in salt intake causes a dose-dependent reduction in BP in men and women of all ages and ethnic groups, and in patients already on medication. The risk of strokes and heart attacks rises with increasing BP, but can be decreased by anti-hypertensive drugs. However, the majority of cardiovascular disease (CVD) events occur in the numerous individuals with 'normal' BP levels below the 'clinically hypertensive' level which might trigger drug therapy. Non-pharmacological prevention is therefore the only option to reduce the majority of such events. Reductions in population salt intake consistently reduce the number of subsequent CVD events (with additional benefits for the heart, kidneys, stomach and skeleton). Indeed, this is one of the most important public health measures for reducing the global CVD burden. The most successful policies involve comprehensive programmes which ideally include population monitoring, health education and reformulation to reduce the salt content concealed in processed foods (which represent over 75% of daily salt intake). Such population-wide salt reduction policies are generally powerful, rapid, equitable and cost saving. Inevitably, the food and beverage industries, which profit from marketing salt will try and oppose such policies in many different ways. However, public health has succeeded in countries that considered the necessary levers: regulation, legislation and, at times, taxation. PMID:27643102

  4. Estimation of Retained Crude Oil Associated with Crushed Salt and Salt Cores in the Presence of Near-Saturated Brine

    SciTech Connect

    Grasser, T.W.; Hinkebein, T.E.; O'Hern, T.J.

    1999-02-01

    This paper describes three experiments whose purpose is to determine the amount of retained oil on massive salt surfaces and in crushed salt in the presence of water and brine. These experiments have application to the decommissioning process for the Weeks Island mine. In the first experiment, oil-coated salt cores were immersed in either fresh water or in 85% brine. In the case of both fluids, the oil was completely removed from the cores within several hours. In the second experiment, oil-coated salt pieces were suspended in air and the oil was allowed to drain. The weight of retained oil clinging to the salt was determined. This experiment was used to estimate the total amount of oil clinging to the roofs of the mine. The total amount of oil clinging to the roofs of the mine is estimated to be between 240 and 400 m3 (1500 and 2500 BBL). In the third experiment, a pan of oil-soaked crushed salt was immersed in 85% brine, and oil removal from the salt was monitored as a function of time. At the start of the experiment, prior to immersion, 16% of the bulk volume of the crushed salt was determined to be interstitial oil. After the pan of crushed salt was immersed in 85% brine, 80% of the oil, which had been in the interstitial spaces of the crushed salt, immediately floated to the surface of the brine. This oil was not bound and was immediately released. During the next 380 hours, oil continued to separate from the salt and the rate of transfer was governed by a mass-transfer rate limitation.

  5. Cerebral salt wasting syndrome.

    PubMed

    Uygun, M A; Ozkal, E; Acar, O; Erongun, U

    1996-01-01

    Hyponatremia following acute or chronic central nervous system injury which is due to excessive Na+ loss in the urine without an increase in the body fluid, has been described as Cerebral Salt Wasting Syndrome (CSWS). This syndrome is often confused with dilutional hyponatremia secondary to inappropriate ADH secretion. Accurate diagnosis and management are mandatory for to improve the course of the disease. In this study a patient with CSW Syndrome is presented and the treatment and diagnosis of this syndrome are discussed in view of the literature.

  6. Molten salt lithium cells

    DOEpatents

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  7. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  8. Molten salt lithium cells

    DOEpatents

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  9. Electrolyte salts for nonaqueous electrolytes

    DOEpatents

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  10. Electrochromic Salts, Solutions, and Devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  11. Electrochromic salts, solutions, and devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  12. Electrochromic Salts, Solutions, and Devices

    SciTech Connect

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  13. Salt appetite in the elderly.

    PubMed

    Hendi, Khadeja; Leshem, Micah

    2014-11-28

    The present study investigated whether salt appetite in the elderly is impaired similar to thirst because of the commonality of their physiological substrates and whether alterations in salt appetite are related to mood. Elderly (65-85 years, n 30) and middle-aged (45-58 years, n 30) men and women were compared in two test sessions. Thirst, psychophysical ratings of taste solutions, dietary Na and energy intakes, seasoning with salt and sugar, number of salty and sweet snacks consumed, preferred amounts of salt in soup and sugar in tea, and an overall measure of salt appetite and its relationship with mood, nocturia and sleep were measured. Elderly participants were found to be less thirsty and respond less to thirst. In contrast, no impairment of salt appetite was found in them, and although they had a reduced dietary Na intake, it dissipated when corrected for their reduced dietary energy intake. Diet composition and Na intake were found to be similar in middle-aged and elderly participants, despite the lesser intake in elderly participants. There were no age-related differences in the intensity of taste or hedonic profile of Na, in salting habits, in tests of salting soup, or number of salty snacks consumed. No relationship of any measure of salt appetite with mood measured by the Positive and Negative Affect Schedule, frequency of nocturia, or sleep duration was observed. The age-related impairment of the physiology of mineralofluid regulation, while compromising thirst and fluid intake, spares salt appetite, suggesting that salt appetite in humans is not regulated physiologically. Intact salt appetite in the elderly might be utilised judiciously to prevent hyponatraemia, increase thirst and improve appetite. PMID:25287294

  14. Batteries using molten salt electrolyte

    DOEpatents

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  15. Ion chromatography to detect salts in stone structures and to assess salt removal methods

    NASA Astrophysics Data System (ADS)

    Alvarez de Buergo, M.; Lopez-Arce, P.; Fort, R.

    2012-04-01

    Stone - and in general all materials- from built heritage is very often damaged by salt crystallisation processes. Such processes usually derive into a loss of material compactness, as salts - given specific conditions and parameters- crystallize inside the material pores, exerting a pressure against the material pore walls higher than what they can resist - similar to the effect of liquid water when converts to solid water or ice-, thus breaking and disrupting the material by generating fissures and increasing the pore volume ratio, loosing its initial cohesion. When these deterioration processes take place inside a structure, salts - from different sources: material itself, restoration materials, from the ground, etc.- may come up to the stone surface - either temporarily or in permanently-, from beneath it, as efflorescences, depending mainly on the microclimatic conditions of the environment and the salts source. Efflorescences can be analysed and their nature identified (e.g. by means of X ray diffraction, in which the mineralogical composition of the salt is obtained), which can be, general, of aid not only for restoration but for preventive conservation measures. But what we do not know a priori when only characterising salt compounds- is the extent of the damage due to the presence of salts inside a structure (sub- and cryptoefflorescences). In this work we present a procedure in which the depth of the salt content can be measured, and its nature identified, based on the use of the ion chromatography technique. This technique allows identifying the existing ions in a specific sample, both anions and cations. The procedure consists of drilling (with a drilling core ranging from 5 to 8 mm in diameter, therefore causing the minimum damage to the material) in a same point at different depths from the surface and several depths from the bottom. The samples obtained are analysed and the ion content determined, qualitative and quantitatively. By means of a

  16. [Salt consumption and cerebrovascular diseases].

    PubMed

    Demarin, Vida; Morović, Sandra

    2010-05-01

    Stroke is the second leading cause of death and disability in Croatia. Risk factors for cerebrovascular disease can be divided into evidence-based risk factors and those with supposed relationship. Strong evidence suggests that current salt consumption is one of the most important factors influencing the increase in blood pressure, along with the risk of cerebrovascular disease. Hypertension is an important modifiable risk factor for stroke. Studies on salt have shown that a decrease in blood pressure is in correlation with lower salt intake. Over-consumption of salt carries a higher risk of cerebrovascular disease in overweight individuals. Conservative estimates suggest that salt intake reduction by 3 g/day could reduce the stroke rate by 13%; this percentage would be almost double if salt intake be reduced by 6 g/day and triple with a 9 g/day reduction. Salt intake reduction by 9 g/day could reduce the stroke rate by almost 30%. This corresponds to about 20,500 prevented strokes each year. There is evidence supporting a positive correlation of salt intake and stroke, independent of hypertension. The introduction of salt reduction proposal should be considered in future updates of recommendations for stroke prevention.

  17. Molten salt techniques. Volume 2

    SciTech Connect

    Gale, R.J.; Lovering, D.G.

    1984-01-01

    This is the second volume in a series addressing the practical aspects of molten salt research. The book covers experiments with alkali metal carbonates, oxides, silicates, phosphates and borates. Additional sections cover molten salt spectroscopy, electrochemistry, and automated admittance spectroscopy of the semiconductor/molten salt electrolyte interface. Particular emphasis is given to safety considerations for working with these high temperature, often corrosive materials. Planning of experiments is of interest, and several experiments are described. Attention is given to the selection of materials to be used in this research, including the purification of the salts themselves, and the requirements for laboratory apparatus.

  18. Dietary Salt Intake and Hypertension

    PubMed Central

    2014-01-01

    Over the past century, salt has been the subject of intense scientific research related to blood pressure elevation and cardiovascular mortalities. Moderate reduction of dietary salt intake is generally an effective measure to reduce blood pressure. However, recently some in the academic society and lay media dispute the benefits of salt restriction, pointing to inconsistent outcomes noted in some observational studies. A reduction in dietary salt from the current intake of 9-12 g/day to the recommended level of less than 5-6 g/day will have major beneficial effects on cardiovascular health along with major healthcare cost savings around the world. The World Health Organization (WHO) strongly recommended to reduce dietary salt intake as one of the top priority actions to tackle the global non-communicable disease crisis and has urged member nations to take action to reduce population wide dietary salt intake to decrease the number of deaths from hypertension, cardiovascular disease and stroke. However, some scientists still advocate the possibility of increased risk of CVD morbidity and mortality at extremes of low salt intake. Future research may inform the optimal sodium reduction strategies and intake targets for general populations. Until then, we have to continue to build consensus around the greatest benefits of salt reduction for CVD prevention, and dietary salt intake reduction strategies must remain at the top of the public health agenda. PMID:25061468

  19. Genesis of sub-seismic intra-salt layers and their use as tracers for salt deformation

    NASA Astrophysics Data System (ADS)

    Biehl, Bianca C.; Reuning, Lars; Strozyk, Frank; Kukla, Peter A.

    2014-05-01

    From Zechstein salt mine galleries and well data it is known that thick rock salt layers can contain anhydrite and carbonate layers with thicknesses on the millimetre to tens of metre scale. The relatively thick Zechstein 3 (Z3) anhydrite-carbonate layer in the northern Netherlands has been studied using 3D seismic data. Observations from geophysical well logs in this study reveal the presence of thin sulphate layers on the sub-seismic scale imbedded in the Zechstein 2 (Z2) salt. Core samples, thin sections, seismic data, and geochemical measurements were used to determine the mineralogy and genesis of these Z2 sulphate layers. Bromine analyses show that they mark freshening events in the Z2 salt, which can be correlated over large distances in the northern Netherlands. Such salt internal heterogeneities can be used to distinguish between different deformation mechanisms. The distribution of sulphate layers within the Zechstein 2 salt indicates that subjacent salt dissolution was not the dominant process leading to salt-related deformation. Further, the mineralogy and thickness of the sulphate layers is interpreted to vary between synsedimentary morphologic lows (thin anhydrite-polyhalite couplets) and highs (thicker anhydrite layers). Such a combination of core observations and well log analysis is a powerful tool to detect lateral trends in evaporite mineralogy and to reconstruct the environmental setting of their formation.

  20. Salt repository project closeout status report

    SciTech Connect

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  1. Bioenergetics of salt tolerance. Final report

    SciTech Connect

    Packer, L.

    1986-10-28

    Major findings are presented on how Synechococcus responds to a transition from low salt (12mM NaCl) to high salt (0.5 M NaCl) medium; we have studied immediate and long-term osmotic responses, identified deleterious effects of NaCl on cellular processes, and analyzed adaptations of the bioenergetic systems that permit the organism to tolerate a high salt environment. We have also developed new electron spin resonance methods for measuring intracellular O/sub 2/ concentrations and intracellular pH. In addition studies on the physiology and molecular mechanism of light-driven chloride transport by halorhodopsin in the halobacteria are reported. The ion-transport ATPase of halobacteria and the respiration-linked sodium transport system of the halotolerant bacterium, Bal were studied with respect to the role and functioning of ionic pumps. Chloride transport was shown to be an integral componet of the overall ion circulation in halobacterial cells, one which maintains internal salt concentration and therefore cellular volume. How halorhodopsin functions, its photointermediates, the nature of chloride-binding sites, the role of the deprotonation of the retinal Schiff-base, and how removal of most of the arginine residues, does not affect chloride-binding are reported. Methods were developed for the study of membrane-bound halobacterial ATPase, its solubilization and partial purification. 43 refs., 1 fig.

  2. Salt pretreatment enhance salt tolerance in Zea mays L. seedlings.

    PubMed

    Tajdoost, S; Farboodnia, T; Heidari, R

    2007-06-15

    Recent molecular studies show that genetic factors of salt tolerance in halophytes exist in glycophytes too, but they are not active. If these plants expose to low level salt stress these factors may become active and cause plants acclimation to higher salt stresses. So because of the importance of these findings in this research the effect of salt pretreatment has been examined in Zea mays seedlings. To do the experiment four day old Zea mays seedlings (Var. single cross 704) pretreated with 50 mM NaCl for the period of 20 h. Then they were transferred to 200 and 300 mM NaCl for 48 h. At the end of treatment roots and shoots of seedlings were harvested separately. The changes of K+ -leakage, the amount of malondialdehyde, proline, soluble sugars and the Hill reaction rate were analyzed. The results indicated that the amount of K+ -leakage and malondialdehyde (MDA) have been increased because of salt-induced lipid peroxidation and membrane unstability. Soluble sugars and proline as osmoregulators has been increased in stress condition and in pretreated plants with NaCl were the highest. The rate of Hill reaction was reduced significantly in stressed plants. Therefore we concluded that salt stress causes serious physiological and biochemical damages in plants and salt pretreatment enhances tolerance mechanisms of plants and help them to tolerate salt stress and grow on salty environments. PMID:19093451

  3. Salt in the wound: The interfering effect of road salt on acidified forest catchments.

    PubMed

    Schweiger, Andreas H; Audorff, Volker; Beierkuhnlein, Carl

    2015-11-01

    Atmospheric acidic depositions have strongly altered the functioning and biodiversity of Central European forest ecosystems. Most impacts occurred until the end of the 20(th) century but the situation substantially improved thereafter caused by legal regulations in the late 1980's to reduce acidifying atmospheric pollution. Since then slow recovery from acidification has been observed in forested catchments and adjacent waters. However, trends of recovery are inconsistent and underlying mechanisms diminishing recovery are still poorly understood. We propose that the input of road salt can significantly affect acidity regime and acidification recovery of forest ecosystems. By comparing the discharge hydro-chemistry and plant community composition of springs fed by forested catchments with and without high levels of salt input over two decades we observed a significant suppression of recovery and elevated levels of nutrient leaching (K(+), Ca(2+) and Mg(2+)) in highly salt contaminated catchments. We show that the pollution of near-surface groundwater (interflow) by road salt application can have lasting effects on ecosystem processes over distances of several hundred metres apart from the salt emitting road.

  4. Salt in the wound: The interfering effect of road salt on acidified forest catchments.

    PubMed

    Schweiger, Andreas H; Audorff, Volker; Beierkuhnlein, Carl

    2015-11-01

    Atmospheric acidic depositions have strongly altered the functioning and biodiversity of Central European forest ecosystems. Most impacts occurred until the end of the 20(th) century but the situation substantially improved thereafter caused by legal regulations in the late 1980's to reduce acidifying atmospheric pollution. Since then slow recovery from acidification has been observed in forested catchments and adjacent waters. However, trends of recovery are inconsistent and underlying mechanisms diminishing recovery are still poorly understood. We propose that the input of road salt can significantly affect acidity regime and acidification recovery of forest ecosystems. By comparing the discharge hydro-chemistry and plant community composition of springs fed by forested catchments with and without high levels of salt input over two decades we observed a significant suppression of recovery and elevated levels of nutrient leaching (K(+), Ca(2+) and Mg(2+)) in highly salt contaminated catchments. We show that the pollution of near-surface groundwater (interflow) by road salt application can have lasting effects on ecosystem processes over distances of several hundred metres apart from the salt emitting road. PMID:26115338

  5. Theory Of Salt Effects On Protein Solubility

    NASA Astrophysics Data System (ADS)

    Dahal, Yuba; Schmit, Jeremy

    Salt is one of the major factors that effects protein solubility. Often, at low salt concentration regime, protein solubility increases with the salt concentration(salting in) whereas at high salt concentration regime, solubility decreases with the increase in salt concentration(salting out). There are no quantitative theories to explain salting in and salting out. We have developed a model to describe the salting in and salting out. Our model accounts for the electrostatic Coulomb energy, salt entropy and non-electrostatic interaction between proteins. We analytically solve the linearized Poisson Boltzmann equation modelling the protein charge by a first order multipole expansion. In our model, protein charges are modulated by the anion binding. Consideration of only the zeroth order term in protein charge doesn't help to describe salting in phenomenon because of the repulsive interaction. To capture the salting in behaviour, it requires an attractive electrostatic interaction in low salt regime. Our work shows that at low salt concentration, dipole interaction is the cause for salting in and at high salt concentration a salt-dependent depletion interaction dominates and gives the salting out. Our theoretical result is consistent with the experimental result for Chymosin protein NIH Grant No R01GM107487.

  6. Stationary phase deposition based on onium salts

    DOEpatents

    Wheeler, David R.; Lewis, Patrick R.; Dirk, Shawn M.; Trudell, Daniel E.

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  7. [Reason for dietary salt reduction and potential effect on population health--WHO recommendation].

    PubMed

    Kaić-Rak, Antoinette; Pucarin-Cvetković, Jasna; Heim, Inge; Skupnjak, Berislav

    2010-05-01

    It is well known that reduction of salt results in lowering blood pressure and cardiovascular incidents. Daily salt is double the recommended daily quantity and mainly comes from processed food. The assessment of daily salt intake for Croatia is 12 g/day (WHO recommendation is <5 g/day). The main source of sodium is processed food and food prepared in restaurants (77%), natural content of sodium in food (12%), added salt at table (6%) and prepared meals at home (5%). Reduction of salt by 50% would save nearly 180,000 lives per year in Europe. It is necessary to establish better collaboration with food manufacturers in order to reduce the content of salt in processed food and to achieve appropriate salt intake per day in accordance with the WHO recommendation. Further, it is necessary to encourage food manufacturers to produce food and meals with low or reduced salt content (shops, catering, changes in recipes, offer salt substitutions). This kind of collaboration is based on bilateral interests that can result in positive health effects. One of the most important public health tasks is to educate consumers and to give them choice when buying food. This can be achieved by effective campaigns and social marketing, by ensuring a declaration of salt content on the product, or specially designed signs for food products with low or reduced salt content. PMID:20649079

  8. DNA binding in high salt: analysing the salt dependence of replication protein A3 from the halophile Haloferax volcanii.

    PubMed

    Winter, Jody A; Patoli, Bushra; Bunting, Karen A

    2012-01-01

    Halophilic archaea maintain intracellular salt concentrations close to saturation to survive in high-salt environments and their cellular processes have adapted to function under these conditions. Little is known regarding halophilic adaptation of the DNA processing machinery, particularly intriguing since protein-DNA interactions are classically salt sensitive. To investigate such adaptation, we characterised the DNA-binding capabilities of recombinant RPA3 from Haloferax volcanii (HvRPA3). Under physiological salt conditions (3 M KCl), HvRPA3 is monomeric, binding 18 nucleotide ssDNA with nanomolar affinity, demonstrating that RPAs containing the single OB-fold/zinc finger architecture bind with broadly comparable affinity to two OB-fold/zinc finger RPAs. Reducing the salt concentration to 1 M KCl induces dimerisation of the protein, which retains its ability to bind DNA. On circular ssDNA, two concentration-dependent binding modes are observed. Conventionally, increased salt concentration adversely affects DNA binding but HvRPA3 does not bind DNA in 0.2 M KCl, although multimerisation may occlude the binding site. The single N-terminal OB-fold is competent to bind DNA in the absence of the C-terminal zinc finger, albeit with reduced affinity. This study represents the first quantitative characterisation of DNA binding in a halophilic protein in extreme salt concentrations.

  9. Lowering Salt in Your Diet

    MedlinePlus

    ... needs some salt to function. Also known as sodium chloride, salt helps maintain the body's balance of fluids. ... select foods that provide 5% or less for sodium, per serving. back to ... substitutes contain potassium chloride and can be used by individuals to replace ...

  10. Structure of liquid trivalent salts

    SciTech Connect

    Price, D.L.; Saboungi, M.L.; Howells, W.S.; Tosi, M.P.

    1993-04-01

    Total neutron scattering measurements have been made on three trivalent molten salts: InCl{sub 3} (605C), BiCl{sub 3}(300C) and BiI{sub 3} (420C). Results are discussed in the general context of ordering, bonding and macroscopic properties of trivalent molten salts.

  11. Structure of liquid trivalent salts

    SciTech Connect

    Price, D.L.; Saboungi, M.L. . Materials Science Div.); Howells, W.S. ); Tosi, M.P. )

    1993-04-01

    Total neutron scattering measurements have been made on three trivalent molten salts: InCl[sub 3] (605C), BiCl[sub 3](300C) and BiI[sub 3] (420C). Results are discussed in the general context of ordering, bonding and macroscopic properties of trivalent molten salts.

  12. Ammoniated salt heat pump

    NASA Astrophysics Data System (ADS)

    Haas, W. R.; Jaeger, F. J.; Giordano, T. J.

    A thermochemical heat pump/energy storage system using liquid ammoniate salts is described. The system, which can be used for space heating or cooling, provides energy storage for both functions. The bulk of the energy is stored as chemical energy and thus can be stored indefinitely. The system is well suited to use with a solar energy source or industrial waste heat. Several liquid ammoniates are identified and the critical properties of three of the most promising are presented. Results of small scale (5000 Btu) system tests are discussed and a design concept for a prototype system is given. This system represents a significant improvement over the system using solid ammoniates investigated previously because of the increase in heat transfer rates (5 to 60 Btu/hr sq ft F) and the resulting reduction in heat exchanger size. As a result the concept shows promise of being cost competitive with conventional systems.

  13. History Leaves Salts Behind

    NASA Technical Reports Server (NTRS)

    2004-01-01

    These plots, or spectra, show that a rock dubbed 'McKittrick' near the Mars Exploration Rover Opportunity's landing site at Meridiani Planum, Mars, has higher concentrations of sulfur and bromine than a nearby patch of soil nicknamed 'Tarmac.' These data were taken by Opportunity's alpha particle X-ray spectrometer, which uses curium-244 to assess the elemental composition of rocks and soil. Only portions of the targets' full spectra are shown to highlight the significant differences in elemental concentrations between 'McKittrick' and 'Tarmac.' Intensities are plotted on a logarithmic scale.

    A nearby rock named Guadalupe similarly has extremely high concentrations of sulfur, but very little bromine. This 'element fractionation' typically occurs when a watery brine slowly evaporates and various salt compounds are precipitated in sequence.

  14. Plant salt-tolerance mechanisms

    SciTech Connect

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  15. Plant salt-tolerance mechanisms

    DOE PAGESBeta

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  16. DESCRIPTIVE ANALYSIS OF DIVALENT SALTS

    PubMed Central

    YANG, HEIDI HAI-LING; LAWLESS, HARRY T.

    2005-01-01

    Many divalent salts (e.g., calcium, iron, zinc), have important nutritional value and are used to fortify food or as dietary supplements. Sensory characterization of some divalent salts in aqueous solutions by untrained judges has been reported in the psychophysical literature, but formal sensory evaluation by trained panels is lacking. To provide this information, a trained descriptive panel evaluated the sensory characteristics of 10 divalent salts including ferrous sulfate, chloride and gluconate; calcium chloride, lactate and glycerophosphate; zinc sulfate and chloride; and magnesium sulfate and chloride. Among the compounds tested, iron compounds were highest in metallic taste; zinc compounds had higher astringency and a glutamate-like sensation; and bitterness was pronounced for magnesium and calcium salts. Bitterness was affected by the anion in ferrous and calcium salts. Results from the trained panelists were largely consistent with the psychophysical literature using untrained judges, but provided a more comprehensive set of oral sensory attributes. PMID:16614749

  17. Rheological characterization of hair shampoo in the presence of dead sea salt.

    PubMed

    Abu-Jdayil, B; Mohameed, H A; Sa'id, M; Snobar, T

    2004-02-01

    In Jordan, a growing industry has been established to produce different types of Dead Sea (DS) cosmetics that have DS salt (contains mainly NaCl, KCl, and MgCl(2)) in their formulas. In this work, the effect of DS salt on the rheology of hair shampoo containing the sodium lauryl ether sulfate as a main active matter was studied. The effects of DS salt and active matter concentration, and the temperature and time of salt mixing, on the rheological properties of hair shampoo were investigated. The salt-free shampoo showed a Newtonian behavior at 'low active matter' (LAM) and shear thinning at 'high active matter' (HAM). The presence of DS salt changed the rheological behavior of LAM shampoo from Newtonian (for the salt-free shampoo) to shear thinning. On the other hand, the behavior of HAM shampoo switched from shear thinning to Newtonian behavior in the presence of high concentration of DS salt. The addition of DS salt increased the apparent viscosity of shampoo to reach a maximum value that corresponded to a salt concentration of 1.5 wt.%. Further addition of DS salt led to a decrease in the shampoo viscosity to reach a value less than that of the salt-free sample at high salt concentration. Changing the mixing temperature (25-45 degrees C) and mixing time (15-120 min) of DS salt with shampoo has no significant influence on the rheological behavior. However, the mixing process increased the apparent viscosity of salt-free shampoo. The power law model fitted well the flow curves of hair shampoo with and without DS salt.

  18. A perspective on liquid salts for energy and materials.

    PubMed

    Irvine, J T S

    2016-08-15

    Liquid salts comprising molten salts and ionic liquids offer important media to address both energy and materials challenges. Here we review topics presented in this Faraday Discussion volume related to improved electrowinning of metals, optimisation of processes, new electrochemical device concepts, chemistry in ionic liquids, conversion of biomass, carbon chemistry and nuclear applications. The underlying phenomenology is then reviewed and commentary given. Some future applications are then discussed, further exemplifying the high potential rewards achievable from these chemistries.

  19. Factors controlling emissions of dimethylsulphide from salt marshes

    NASA Technical Reports Server (NTRS)

    Dacey, John W. H.; Wakeham, Stuart G.; King, Gary M.

    1987-01-01

    Salt marshes are presently identified as systems exhibiting high area-specific sulfur emission in the form of dimethylsulfide (DMS) and H2S, with the former predominating in vegetated areas of the marshes. Attention is presently given to the distribution of DMS in salt marshes; it is found that this compound primarily arises from physiological processes in the leaves of higher plants, especially the grass species Spartina alterniflora. Uncertainties associated with DMS emission measurements are considered.

  20. A perspective on liquid salts for energy and materials.

    PubMed

    Irvine, J T S

    2016-08-15

    Liquid salts comprising molten salts and ionic liquids offer important media to address both energy and materials challenges. Here we review topics presented in this Faraday Discussion volume related to improved electrowinning of metals, optimisation of processes, new electrochemical device concepts, chemistry in ionic liquids, conversion of biomass, carbon chemistry and nuclear applications. The underlying phenomenology is then reviewed and commentary given. Some future applications are then discussed, further exemplifying the high potential rewards achievable from these chemistries. PMID:27483385