Sample records for salty impregnated carbon

  1. Impregnating Coal With Calcium Carbonate

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  2. Carbon dioxide capture by activated methyl diethanol amine impregnated mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Ardhyarini, N.; Krisnandi, Y. K.

    2017-07-01

    Activated Methyl Diethanol Amine (aMDEA) were impregnated onto the surface of the mesoporous carbon to increase carbon dioxide (CO2) adsorption capacity. The mesoporous carbon was synthesized through soft template method with phloroglucinol as carbon precursor and triblock copolymer (Pluronic F127) as structure directing agent. These activated MDEA impregnated mesoporous carbon (aMDEA-MC) were characterized using various solid characterization techniques. CO2 adsorption was investigated using autoclaved-reactor in the batch system. The FTIR spectrum of aMDEA-MC had absorption peaks at 3395 cm-1 and 1031 cm-1 which are characteristic for O-H stretch and amine C-N stretch in MDEA. The elemental analyzer showed that nitrogen content on the mesoporous carbon increased after impregnation by 23 wt.%. The BET surface area and total pore volume of mesoporous carbon decreased after impregnation, 43 wt.% and 50 wt.%, respectively. The maximum CO2 adsorption capacity of aMDEA43-MC was 2.63 mmol/g (298 K, 5 psi and pure CO2). This is 64 % and 35 % higher compared to the CO2 adsorption capacity of the starting MC and also commercially available activated carbon with higher surface area. All the results suggest that MDEA-MC is a promising adsorbent for CO2 capture.

  3. Impregnated active carbons to control atmospheric emissions: influence of impregnation methodology and raw material on the catalytic activity.

    PubMed

    Alvim-Ferraz, Maria C M; Gaspar, Carla M T B

    2005-08-15

    Previous studies have reported the influence of raw material on the catalytic activity of metal oxides impregnated in activated carbons. However, knowledge was as yet quite scarce for impregnation performed before activation. The main objective of the study here reported was the development of such knowledge. Olive stones, pinewood sawdust, nutshells, and almond shells were recycled to prepare the activated carbons. Transition metal oxides (CoO, Co3O4, and CrO3) were impregnated aiming to prepare activated carbons to be used for the complete catalytic oxidation of benzene. When impregnation was performed after activation the impregnated species were deposited on the internal surface, blocking part of the initial porous texture. When impregnation was performed before activation, the metal species acted as catalysts during the activation step, allowing better catalyst distribution on a more well-developed mesoporous texture. Co3O4 was the best catalyst and almond shells were the best support. With this catalyst/support pair a conversion of 90% was possible at 404 K, the lowest temperature of all the carbons studied. Good conversions were obtained at temperatures that guarantee carbon stability (lower than 575 K). It was concluded that activated carbon was a suitable support for metal oxide catalysts aiming for the complete oxidation of benzene, especially when a suitable porous texture is induced, by performing the impregnation step before activation.

  4. A study of ignition of metal impregnated carbons: the influence of oxygen content in the activated carbon matrix.

    PubMed

    van der Merwe, M M; Bandosz, T J

    2005-02-01

    A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.

  5. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.

    PubMed

    Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien

    2007-12-01

    Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases.

  6. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.

    PubMed

    Wu, Li-Chun; Chung, Ying-Chien

    2009-03-01

    Activated carbon (AC) is widely used as an effective adsorbent in many applications, including industrial-scale air purification systems and air filter systems in gas masks. In general, ACs without chemical impregnation are good adsorbents of organic vapors but poor adsorbents of low-molecular-weight or polar gases such as chlorine, sulfur dioxide (SO2), formaldehyde, and ammonia (NH3). Impregnated ACs modified with metallic impregnating agents (ASC-carbons; e.g., copper, chromium, and silver) enhance the adsorbing properties of the ACs for simultaneously removing specific poisonous gases, but disposal of the chromium metal salt used to impregnate the ACs has the potential to result in situations that are toxic to both humans and the environment, thereby necessitating the search for replaceable organic impregnating agents that represent a much lower risk. The aim of this study was to assess the gas removal efficiency of an AC in which the organic impregnating agent triethylenediamine (TEDA) largely replaced the metallic impregnating agent chromium. We assessed batch and continuous adsorption capacities in situ for removing simulated hydrogen sulfide (H2S), trichloromethane (CHCl3), NH3, and SO2 gases. Brunauer-Emmet-Teller measurements and scanning electron microscopy analyses identified the removal mechanism by which TEDA-impregnated AS-carbon (dechromium ASC-carbon) adsorbs gases and determined the removal capacity for H2S, CHCl3, NH3, and SO2 to be 311, 258, 272, and 223 mg/g-C, respectively. These results demonstrate that TEDA-impregnated AS-carbon is significantly more efficient than ASC-carbon in adsorbing these four gases. Organic TEDA-impregnating agents have also been proven to be a reliable and environmental friendly agent and therefore a safe replacement of the hazardous chromium found in conventional ASC-carbon used in removing toxic gases from the airstream.

  7. Cyanate Ester and Phthalonitrile Impregnated Carbon Ablative TPS

    NASA Technical Reports Server (NTRS)

    Boghozian, Tane; Stackpoole, Margaret M.; Gasch, Matt

    2016-01-01

    Phenolic resin has extensive heritage as a TPS (Thermal Protection Systems) material, however, alternative resin systems such as Cyanate Ester and Phthalonitrile may offer improved performance compared to state-of-the-art phenolic resin. These alternative resin systems may have higher char yield, higher char strength, lower thermal conductivity and improved mechanical properties. In current work at NASA Ames alternative resin systems were uniformly infused into fibrous substrates and preliminary properties characterized. The density of the cyanate ester infused in fibrous substrate ranged from 0.25-0.3 grams per cubic centimeter compared to PICA (Phenolic resin impregnated carbon ablative) having a density of approximately 0.25 grams per cubic centimeter. The density of Phthalonitrile varies from 0.22-0.25 grams per cubic centimeter. Initial formulations of these new resin systems were recently tested at the LARC HyMETs (Hypersonic Materials Environmental Test System) facility to evaluate their performance and data such as back face temperature, char yield, and recession are compared to PICA. Cyanate Ester and Phthalonitrile impregnated carbon ablative samples showed comparable performance to phenolic resin impregnated carbon ablative samples.

  8. IN-FLIGHT CAPTURE OF ELEMENTAL MERCURY BY A CHLORINE-IMPREGNATED ACTIVATED CARBON

    EPA Science Inventory

    The paper discusses the in-flight capture of elemental mercury (Hgo) by a chlorine (C1)-impregnated activated carbon. Efforts to develop sorbents for the control of Hg emissions have demonstrated that C1-impregnation of virgin activated carbons using dilute solutions of hydrogen ...

  9. Low density microcellular carbon or catalytically impregnated carbon forms and process for their preparation

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1989-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  10. Low density microcellular carbon or catalytically impregnated carbon foams and process for their prepartion

    DOEpatents

    Hopper, Robert W.; Pekala, Richard W.

    1988-01-01

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  11. Low density microcellular carbon or catalytically impregnated carbon foams and process for their preparation

    DOEpatents

    Hooper, R.W.; Pekala, R.W.

    1987-04-30

    Machinable and structurally stable, low density microcellular carbon, and catalytically impregnated carbon, foams, and process for their preparation, are provided. Pulverized sodium chloride is classified to improve particle size uniformity, and the classified particles may be further mixed with a catalyst material. The particles are cold pressed into a compact having internal pores, and then sintered. The sintered compact is immersed and then submerged in a phenolic polymer solution to uniformly fill the pores of the compact with phenolic polymer. The compact is then heated to pyrolyze the phenolic polymer into carbon in the form of a foam. Then the sodium chloride of the compact is leached away with water, and the remaining product is freeze dried to provide the carbon, or catalytically impregnated carbon, foam.

  12. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    PubMed

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Comparison of EDTA and SDS as potential surface impregnation agents for lead adsorption by activated carbon

    NASA Astrophysics Data System (ADS)

    Chen, Wei-fang; Pan, Ling; Chen, Li-fang; Yu, Zhe; Wang, Qiong; Yan, Chang-cheng

    2014-08-01

    Ethylene diamine tetraacetic acid (EDTA) and sodium dodecyl sulfate (SDS) were employed to impregnate activated carbons for the purpose of lead removal. The mechanisms of surface impregnation and lead adsorption method of chemical regeneration were investigated. Results showed that the highest impregnation of EDTA and SDS on activated carbon was 0.33 and 0.96 mmol/g, respectively. Adsorption capacities for lead of EDTA and SDS impregnated activated carbons reached 0.29 and 0.24 mmol/g. Rapid small scale column tests of adsorption and regeneration were conducted. Lead adsorption was greatly enhanced by EDTA impregnation. In addition, EDTA impregnated adsorbent was able to be successful regenerated by HNO3 and thus reused.

  14. Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon

    NASA Astrophysics Data System (ADS)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2018-03-01

    The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).

  15. Impregnation of Fenofibrate on mesoporous silica using supercritical carbon dioxide.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Van Speybroeck, Michiel; Schueller, Laurent; Badens, Elisabeth

    2016-02-29

    Low oral bioavailability can be circumvented by the formulation of the poorly water soluble drug in ordered mesoporous silica (OMS-L-7). Fenofibrate is an orally administered, poorly water-soluble active pharmaceutical ingredient (API), used clinically to lower lipid levels. Fenofibrate was loaded into silica using two methods: incipient wetness and supercritical impregnation. This study investigates the impact of loading and the impact of varying supercritical carbon dioxide (scCO2) processing conditions. The objective is to enhance Fenofibrate loading into silica while reducing degree of the drug crystallinity, so as to increase the drug's dissolution rate and its bioavailability. The comparison of both impregnation processes was made in terms of impregnation yields and duration as well as physical characterization of the drug. While incipient wetness method led to a Fenofibrate loading up to 300 mgdrug/gsilica in 48 h of impregnation, the supercritical impregnation method yielded loading up to 485 mgdrug/gsilica in 120 min of impregnation duration, at 16 MPa and 308 K, with a low degree of crystallinity (about 1%) comparable to the crystallinity observed via the solvent method. In addition to the enhancement of impregnation efficiency, the supercritical route provides a solvent-free alternative for impregnation. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electrical and galvanomagnetic properties of nanoporous carbon samples impregnated with bromine

    NASA Astrophysics Data System (ADS)

    Danishevskii, A. M.; Popov, V. V.; Kyutt, R. N.; Gordeev, S. K.

    2013-07-01

    Nanoporous carbon samples with a large specific surface area can be filled with heavier elements or their compounds, which makes it possible to investigate the interaction of their electronic subsystems with carbon. One of the elements convenient for filling pores of carbon materials is bromine. Impregnation of nanoporous carbon samples with bromine causes the occurrence of the processes of micropore filling, monolayer adsorption, and intercalation. It has been found that samples impregnated with bromine substantially change their electrical and galvanomagnetic properties, and these changes depend on the structure of the samples. It has been shown that, if in the skeleton of a porous carbon sample there is a fraction of graphite clusters, the impregnation of the sample with bromine increases the concentration of charged carriers (holes). But when the sample has a quasi-amorphous structure, the injection of bromine into the sample leads to the appearance of a certain concentration of electrons in addition to charged mobile holes of the initial sample; i.e., the electrical conductivity becomes bipolar. In the former case, bromine molecules intercalate graphite clusters and, since bromine is an acceptor during intercalation of graphite, the hole concentration in the carbon skeleton network increases. In the latter case, bromine molecules can only be adsorbed on pore walls. As a result, the adsorption interaction between the electron shells of bromine molecules and the carbon surface leads to the formation of a donor layer near the surface and to the generation of electrons in the carbon skeleton network.

  17. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    NASA Technical Reports Server (NTRS)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  18. Secondary polymer layered impregnated tile

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Rasky, Daniel J. (Inventor); Szalai, Christine E. (Inventor); Carroll, Joseph A. (Inventor); Hsu, Ming-ta S. (Inventor)

    2005-01-01

    A low density organic polymer impregnated preformed fibrous ceramic article includes a plurality of layers. A front layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one organic polymer. A middle layer includes polymer impregnated ceramic fibers. A back layer includes ceramic fibers or carbon fibers or combinations of ceramic fibers and carbon fibers, and is impregnated with an effective amount of at least one low temperature pyrolyzing organic polymer capable of decomposing without depositing residues.

  19. A salty-congruent odor enhances saltiness: functional magnetic resonance imaging study.

    PubMed

    Seo, Han-Seok; Iannilli, Emilia; Hummel, Cornelia; Okazaki, Yoshiro; Buschhüter, Dorothee; Gerber, Johannes; Krammer, Gerhard E; van Lengerich, Bernhard; Hummel, Thomas

    2013-01-01

    Excessive intake of dietary salt (sodium chloride) may increase the risk of chronic diseases. Accordingly, various strategies to reduce salt intake have been conducted. This study aimed to investigate whether a salty-congruent odor can enhance saltiness on the basis of psychophysical (Experiment 1) and neuroanatomical levels (Experiment 2). In Experiment 1, after receiving one of six stimulus conditions: three odor conditions (odorless air, congruent, or incongruent odor) by two concentrations (low or high) of either salty or sweet taste solution, participants were asked to rate taste intensity and pleasantness. In Experiment 2, participants received the same stimuli during the functional magnetic resonance imaging scan. In Experiment 1, compared with an incongruent odor and/or odorless air, a congruent odor enhanced not only taste intensity but also either pleasantness of sweetness or unpleasantness of saltiness. In Experiment 2, a salty-congruent combination of odor and taste produced significantly higher neuronal activations in brain regions associated with odor-taste integration (e.g., insula, frontal operculum, anterior cingulate cortex, and orbitofrontal cortex) than an incongruent combination and/or odorless air with taste solution. In addition, the congruent odor-induced saltiness enhancement was more pronounced in the low-concentrated tastant than in the high-concentrated one. In conclusion, this study demonstrates the congruent odor-induced saltiness enhancement on the basis of psychophysical and neuroanatomical results. These findings support an alternative strategy to reduce excessive salt intake by adding salty-congruent aroma to sodium reduced food. However, there are open questions regarding the salty-congruent odor-induced taste unpleasantness. Copyright © 2011 Wiley Periodicals, Inc.

  20. Effect of impregnation pressure and time on the porosity, structure and properties of polyacrylonitrile-fiber based carbon composites

    NASA Astrophysics Data System (ADS)

    Venugopalan, Ramani; Roy, Mainak; Thomas, Susy; Patra, A. K.; Sathiyamoorthy, D.; Tyagi, A. K.

    2013-02-01

    Carbon-carbon composites may find applications in critical parts of advanced nuclear reactors. A series of carbon-carbon composites were prepared using polyacrylonitrile (PAN) based carbon fibers. The materials were densified by impregnating two-dimensional (2D) preforms with liquid phenol formaldehyde resin at different pressures and for different periods of time and then carbonizing those by slowly heating at 1000 °C. Effects of the processing parameters on the structure of the composites were extensively studied. The study showed conclusively that open porosity decreased with increasing impregnation pressure, whereas impregnation time had lesser effect. Matrix-resin bonding also improved at higher pressure. d002 spacing decreased and ordering along c-axis increased with concomitant increase in sp2-carbon fraction at higher impregnation pressures. The fiber reinforced composites exhibited short range ordering of carbon atoms and satisfied structural conditions (d002 values) of amorphous carbon according to the turbostratic model for non-graphitic carbon materials. The composites had pellet-density of ˜85% of the theoretical value, low thermal expansion and negligible neutron-poisoning. They maintained structural integrity and retained disordered nature even on heat-treatment at ca. 1800 °C.

  1. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries.

    PubMed

    Guo, Juchen; Xu, Yunhua; Wang, Chunsheng

    2011-10-12

    The commercialization of lithium-sulfur batteries is hindered by low cycle stability and low efficiency, which are induced by sulfur active material loss and polysulfide shuttle reaction through dissolution into electrolyte. In this study, sulfur-impregnated disordered carbon nanotubes are synthesized as cathode material for the lithium-sulfur battery. The obtained sulfur-carbon tube cathodes demonstrate superior cyclability and Coulombic efficiency. More importantly, the electrochemical characterization indicates a new stabilization mechanism of sulfur in carbon induced by heat treatment.

  2. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose; Pham, John

    2013-01-01

    This paper describes the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of this research is on the class of materials known as phenolic impregnated carbon ablators. It has successfully flown on the Stardust spacecraft and is the thermal protection system material chosen for the Mars Science Laboratory and SpaceX Dragon spacecraft. Although it has good thermal properties, structurally, it is a weak material. To understand failure mechanisms in carbon ablators, fracture tests were performed on FiberForm(Registered TradeMark) (precursor), virgin, and charred ablator materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the tensile strength and toughness. It was observed that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred carbon ablators, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred carbon ablators showed greater strength values compared with FiberForm samples, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  3. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx.

    PubMed

    Sumathi, S; Bhatia, S; Lee, K T; Mohamed, A R

    2010-04-15

    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO(2) and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO(2) and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO(2) (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO(2) and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO(2) and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO(2) and NOx. The formation of both sulfate (SO(4)(2-)) and nitrate (NO(3-)) species on spent PSAC-Ce further prove the catalytic role played by CeO(2). 2009 Elsevier B.V. All rights reserved.

  4. Magnetite impregnation effects on the sorbent properties of activated carbons and biochars.

    PubMed

    Han, Zhantao; Sani, Badruddeen; Mrozik, Wojciech; Obst, Martin; Beckingham, Barbara; Karapanagioti, Hrissi K; Werner, David

    2015-03-01

    This paper discusses the sorbent properties of magnetic activated carbons and biochars produced by wet impregnation with iron oxides. The sorbents had magnetic susceptibilities consistent with theoretical predictions for carbon-magnetite composites. The high BET surface areas of the activated carbons were preserved in the synthesis, and enhanced for one low surface area biochar by dissolving carbonates. Magnetization decreased the point of zero charge. Organic compound sorption correlated strongly with BET surface areas for the pristine and magnetized materials, while metal cation sorption did not show such a correlation. Strong sorption of the hydrophobic organic contaminant phenanthrene to the activated carbon or biochar surfaces was maintained following magnetite impregnation, while phenol sorption was diminished, probably due to enhanced carbon oxidation. Copper, zinc and lead sorption to the activated carbons and biochars was unchanged or slightly enhanced by the magnetization, and iron oxides also contributed to the composite metal sorption capacity. While a magnetic biochar with 219 ± 3.7 m(2)/g surface area nearly reached the very strong organic pollutant binding capacity of the two magnetic activated carbons, a magnetic biochar with 68 ± 2.8 m(2)/g surface area was the best metal sorbent. Magnetic biochars thus hold promise as more sustainable alternatives to coal-derived magnetic activated carbons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Enhanced Adsorption of Selenium Ions from Aqueous Solution Using Iron Oxide Impregnated Carbon Nanotubes

    PubMed Central

    Bakather, Omer Y.; Khraisheh, Majeda; Nasser, Mustafa S.

    2017-01-01

    The aim of this research was to investigate the potential of raw and iron oxide impregnated carbon nanotubes (CNTs) as adsorbents for the removal of selenium (Se) ions from wastewater. The original and modified CNTs with different loadings of Fe2O3 nanoparticles were characterized using high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffractometer (XRD), Brunauer, Emmett, and Teller (BET) surface area analyzer, thermogravimetric analysis (TGA), zeta potential, and energy dispersive X-ray spectroscopy (EDS). The adsorption parameters of the selenium ions from water using raw CNTs and iron oxide impregnated carbon nanotubes (CNT-Fe2O3) were optimized. Total removal of 1 ppm Se ions from water was achieved when 25 mg of CNTs impregnated with 20 wt.% of iron oxide nanoparticles is used. Freundlich and Langmuir isotherm models were used to study the nature of the adsorption process. Pseudo-first and pseudo-second-order models were employed to study the kinetics of selenium ions adsorption onto the surface of iron oxide impregnated CNTs. Maximum adsorption capacity of the Fe2O3 impregnated CNTs, predicted by Langmuir isotherm model, was found to be 111 mg/g. This new finding might revolutionize the adsorption treatment process and application by introducing a new type of nanoadsorbent that has super adsorption capacity towards Se ions. PMID:28555093

  6. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs)

    USGS Publications Warehouse

    Hsi, H.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2001-01-01

    Laboratory studies were conducted to determine the role of sulfur functional groups and micropore surface area of carbon-based adsorbents on the adsorption of Hg0 from simulated coal combustion flue gases. In this study, raw activated carbon fibers that are microporous (ACF-20) were impregnated with elemental sulfur between 250 and 650 ??C. The resulting samples were saturated with respect to sulfur content. Total sulfur content of the sulfur impregnated ACF samples decreased with increasing impregnation temperatures from 250 and 500 ??C and then remained constant to 650 ??C. Results from sulfur K-edge X-ray absorption near-edge structure (S-XANES) spectroscopy showed that sulfur impregnated on the ACF samples was in both elemental and organic forms. As sulfur impregnation temperature increased, however, the relative amounts of elemental sulfur decreased with a concomitant increase in the amount of organic sulfur. Thermal analyses and mass spectrometry revealed that sulfur functional groups formed at higher impregnation temperatures were more thermally stable. In general, sulfur impregnation decreased surface area and increased equilibrium Hg0 adsorption capacity when compared to the raw ACF sample. The ACF sample treated with sulfur at 400 ??C had a surface area of only 94 m2/g compared to the raw ACF sample's surface area of 1971 m2/g, but at least 86% of this sample's surface area existed as micropores and it had the largest equilibrium Hg0adsorption capacities (2211-11343 ??g/g). Such a result indicates that 400 ??C is potentially an optimal sulfur impregnation temperature for this ACF. Sulfur impregnated on the ACF that was treated at 400 ??C was in both elemental and organic forms. Thermal analyses and CS2extraction tests suggested that elemental sulfur was the main form of sulfur affecting the Hg0 adsorption capacity. These findings indicate that both the presence of elemental sulfur on the adsorbent and a microporous structure are important properties for

  7. DEVELOPMENT OF A CL-IMPREGNATED ACTIVATED CARBON FOR ENTRAINED-FLOW CAPTURE OF ELEMENTAL MERCURY

    EPA Science Inventory

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury [Hg(0)] and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to incre...

  8. Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Li, Jing; Fisher, John; Wignarajah, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.

  9. Carbon Dioxide Removal by Salty Aerosols

    NASA Astrophysics Data System (ADS)

    Gokturk, H.

    2016-12-01

    Aerosols consisting of salt ions dissolved in water are observed in nature as sea spray particles generated by breaking waves. Such aerosols can be also generated artificially by spraying seawater to the atmosphere to create clouds, which was suggested as a method of solar radiation management (SRM). Salty aerosols can be utilized not only for SRM, but also for carbon dioxide removal from the atmosphere, if salt ions carrying charges -2 or more negative are added to the seawater. CO2 is a very stable molecule where carbon to oxygen double bond has a bond strength of 8.3 eV (190 kcal/mol). Therefore the approach chosen here to modify CO2 is to further oxidize it to CO3. Quantum mechanical calculations indicate that CO2 reacts readily with hydroxyl minus ion (OH-) or oxygen double minus ion (O-) to form HCO3- or CO3-, respectively. What is studied in this paper is the utilization of hydrated negative salt ions to create OH- and possibly even O-. The negative ions chosen are chlorine minus ion (Cl-), sulfate double minus ion (SO4-), phosphate triple minus ion (PO4--) and silicate quadruple minus ion (SiO4--). The former two ions exist in seawater, but the latter two ions do not, though they are available as part of water soluble salts such as potassium phosphate. Using quantum mechanical calculations, following reactions were investigated: R1: (Cl-) + H2O => HCl + (OH-), R2: (SO4-) + H2O => (HSO4-) + (OH-), R3: (PO4--) + H2O => (HPO4-) + (OH-), R4: (SiO4--) + H2O => (HSiO4--) + (OH-), R5: (HPO4-) + H2O => (H2PO4-) + (OH-), R6: (HSiO4--) + H2O => (H2SiO4-) + (OH-), R7: (H2SiO4-) + H2O => (H3SiO4-) + (OH-), R8: (SiO4--) + H2O => (H2SiO4-) + (O-). Results indicate that singly charged negative salt ions, such as Cl- in R1, cannot create OH-. Doubly charged negative salt ions, such as SO4- in R2, can create OH-, though the amount of SO4- in seawater is relatively small. Triply or quadruply charged negative ions are even more favorable than doubly charged ions in creating

  10. Reactions of sulphur mustard on impregnated carbons.

    PubMed

    Prasad, G K; Singh, Beer

    2004-12-31

    Activated carbon of surface area 1100 m2/gm is impregnated with 4% sodium hydroxide plus 3% Cr(VI) as CrO3 with and without 5% ethylene diamine (EDA), 4% magnesium nitrate and 5% ruthenium chloride by using their aqueous solutions. These carbons are characterized for surface area analysis by BET conventional method and exposed to the vapours of sulphur mustard (HD) at room temperature (30 degrees C). After 24 h, the reaction products are extracted in dichloromethane and analyzed using gas chromatography and mass spectrometry (GC-MS). Hemisulphur mustard, thiodiglycol, 1,4-oxathiane are observed to be the products of reaction between sulphur mustard and NaOH/CrO3/C system, whereas on NaOH/CrO3/EDA/C system HD reacted to give 1,4-thiazane. On Mg(NO3)2/C system it gave hemisulphur mustard and thiodiglycol. On RuCl3/C system it degraded to divinyl sulphone. Residual sulphur mustard is observed along with reaction products in all systems studied. Reaction mechanisms are also proposed for these interesting surface reactions. Above-mentioned carbons can be used in filtration systems for protection against hazardous gases such as sulphur mustard.

  11. Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures

    NASA Astrophysics Data System (ADS)

    Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge

    2017-08-01

    The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.

  12. Preparation and Characterization of Impregnated Commercial Rice Husks Activated Carbon with Piperazine for Carbon Dioxide (CO2) Capture

    NASA Astrophysics Data System (ADS)

    Masoum Raman, S. N.; Ismail, N. A.; Jamari, S. S.

    2017-06-01

    Development of effective materials for carbon dioxide (CO2) capture technology is a fundamental importance to reduce CO2 emissions. This work establishes the addition of amine functional group on the surface of activated carbon to further improve the adsorption capacity of CO2. Rice husks activated carbon were modified using wet impregnation method by introducing piperazine onto the activated carbon surfaces at different concentrations and mixture ratios. These modified activated carbons were characterized by using X-Ray Diffraction (XRD), Brunauer, Emmett and Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Field Emission Scanning Electron Microscopy (FESEM). The results from XRD analysis show the presence of polyethylene butane at diffraction angles of 21.8° and 36.2° for modified activated carbon with increasing intensity corresponding to increase in piperazine concentration. BET results found the surface area and pore volume of non-impregnated activated carbon to be 126.69 m2/g and 0.081 cm3/g respectively, while the modified activated carbons with 4M of piperazine have lower surface area and pore volume which is 6.77 m2/g and 0.015 cm3/g respectively. At 10M concentration, the surface area and pore volume are the lowest which is 4.48 m2/g and 0.0065 cm3/g respectively. These results indicate the piperazine being filled inside the activated carbon pores thus, lowering the surface area and pore volume of the activated carbon. From the FTIR analysis, the presence of peaks at 3312 cm-1 and 1636 cm-1 proved the existence of reaction between carboxyl groups on the activated carbon surfaces with piperazine. The surface morphology of activated carbon can be clearly seen through FESEM analysis. The modified activated carbon contains fewer pores than non-modified activated carbon as the pores have been covered with piperazine.

  13. Nonequilibrium Ablation of Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, Frank S.; Chen, Yih K.; Gokcen, Tahir

    2012-01-01

    In previous work, an equilibrium ablation and thermal response model for Phenolic Impregnated Carbon Ablator was developed. In general, over a wide range of test conditions, model predictions compared well with arcjet data for surface recession, surface temperature, in-depth temperature at multiple thermocouples, and char depth. In this work, additional arcjet tests were conducted at stagnation conditions down to 40 W/sq cm and 1.6 kPa. The new data suggest that nonequilibrium effects become important for ablation predictions at heat flux or pressure below about 80 W/sq cm or 10 kPa, respectively. Modifications to the ablation model to account for nonequilibrium effects are investigated. Predictions of the equilibrium and nonequilibrium models are compared with the arcjet data.

  14. Pressure Venting Tests of Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Knutson, Jeffrey R.

    2015-01-01

    A series of tests was devised to investigate the pressure venting behavior of one of the candidate ablators for the Orion capsule heat shield. Three different specimens of phenolic impregnated carbon ablator (PICA) were instrumented with internal pressure taps and subjected to rapid pressure changes from near vacuum to one atmosphere and simulated Orion ascent pressure histories. The specimens vented rapidly to ambient pressure and sustained no detectable damage during testing. Peak pressure differences through the thickness of a 3-inch-thick specimen were less than 1 psi during a simulated ascent pressure history.

  15. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric entry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside thermal protection materials. The focus of research is Phenolic Impregnated Carbon Ablator (PICA). It has successfully flown on the Stardust spacecraft and is the TPS material chosen for the Mars Science Laboratory (MSL) and Dragon spacecraft. Although PICA has good thermal properties, structurally, it is a weak material. In order to thoroughly understand failure in PICA, fracture tests were performed on FiberForm* (precursor of PICA), virgin and charred PICA materials. Several samples of these materials were tested to investigate failure mechanisms at a microstructural scale. Stress-strain data were obtained simultaneously to estimate the fracture toughness. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  16. Impacts of amount of impregnated iron in granular activated carbon on arsenate adsorption capacities and kinetics.

    PubMed

    Chang, Qigang; Lin, Wei; Ying, Wei-Chi

    2012-06-01

    Iron-impregnated granular activated carbons (Fe-GAC) can remove arsenic effectively from water. In this study, Fe-GACs with iron content of 1.64 to 28.90% were synthesized using a new multi-step procedure for the investigation of effects of iron amount on arsenic adsorption capacities and kinetics. Langmuir model satisfactorily fit arsenic adsorption on Fe-GACs. The maximum arsenic adsorption capacity (q(m)) increased significantly with iron impregnation and reached 1,867 to 1,912 microg/g with iron content of 9.96 to 13.59%. Further increase of iron content (> 13.59%) caused gradual decrease of q(m). It was found that the amount of impregnated iron showed little impact on the affinity for arsenate. Kinetic study showed that the amount of impregnated iron affected the arsenic intraparticle diffusion rate greatly. The pseudo-second-order kinetic model fit arsenic adsorption kinetics on Fe-GACs better than the pseudo-first-order model. The arsenic adsorption rate increased with increasing of iron content from 1.64% to 13.59%, and then decreased with more impregnated iron (13.59 to 28.90%).

  17. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study

    PubMed Central

    Abbas, Aamir; Ihsanullah; Al-Baghli, Nadhir A. H.

    2017-01-01

    Multiwall carbon nanotubes (CNTs) and iron oxide impregnated carbon nanotubes (CNTs-iron oxide) were investigated for the adsorption of hazardous toluene and paraxylene (p-xylene) from aqueous solution. Pure CNTs were impregnated with iron oxides nanoparticles using wet impregnation technique. Various characterization techniques including thermogravimetric analysis, scanning electron microscopy, elemental dispersion spectroscopy, X-ray diffraction, and nitrogen adsorption analysis were used to study the thermal degradation, surface morphology, purity, and surface area of the materials. Batch adsorption experiments show that iron oxide impregnated CNTs have higher degree of removal of p-xylene (i.e., 90%) compared with toluene (i.e., 70%), for soaking time 2 h, with pollutant initial concentration 100 ppm, at pH 6 and shaking speed of 200 rpm at 25°C. Pseudo-second-order model provides better fitting for the toluene and p-xylene adsorption. Langmuir and Freundlich isotherm models demonstrate good fitting for the adsorption data of toluene and p-xylene. PMID:28386208

  18. Piezoresistivity of Resin-Impregnated Carbon Nanotube Film at High Temperatures.

    PubMed

    Li, Min; Zuo, Tianyi; Wang, Shaokai; Gu, Yizhuo; Gao, Limin; Li, Yanxia; Zhang, Zuoguang

    2018-06-13

    This paper presents the development of a continuous carbon nanotube (CNT) composite film sensor with a strain detecting range of 0-2% for structural composites. The strain-dependent resistance responses of continuous CNT film and its resin-impregnated composite films were investigated at temperatures as high as 200 °C. The results manifest that impregnation with resin leads to a much larger gauge factor than pristine film. Both the pristine and composite films show an increase in resistivity with increasing temperature. For different composite films, the ordering of gauge factors is consistent with that of the matrix moduli. This indicates that a resin matrix with higher modulus and strong interactions between CNTs/CNT bundles and the resin matrix are beneficial for enhancing the piezoresistive effect. The CNT/PAA composite film has a gauge factor of 4.3 at 150 °C, an order of magnitude higher than the metal foil sensor. Therefore, the CNT composite films have great potential for simultaneous application for reinforcement and as strain sensor to realise a multifunctional composite. © 2018 IOP Publishing Ltd.

  19. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury.

    PubMed

    Ghorishi, S Behrooz; Keeney, Robert M; Serre, Shannon D; Gullett, Brian K; Jozewicz, Wojciech S

    2002-10-15

    Efforts to discern the role of an activated carbon's surface functional groups on the adsorption of elemental mercury (Hg0) and mercuric chloride demonstrated that chlorine (Cl) impregnation of a virgin activated carbon using dilute solutions of hydrogen chloride leads to increases (by a factor of 2-3) in fixed-bed capture of these mercury species. A commercially available activated carbon (DARCO FGD, NORITAmericas Inc. [FGD])was Cl-impregnated (Cl-FGD) [5 lb (2.3 kg) per batch] and tested for entrained-flow, short-time-scale capture of Hg0. In an entrained flow reactor, the Cl-FGD was introduced in Hg0-laden flue gases (86 ppb of Hg0) of varied compositions with gas/solid contact times of about 3-4 s, resulting in significant Hg0 removal (80-90%), compared to virgin FGD (10-15%). These levels of Hg0 removal were observed across a wide range of very low carbon-to-mercury weight ratios (1000-5000). Variation of the natural gas combustion flue gas composition, by doping with nitrogen oxides and sulfur dioxide, and the flow reactor temperature (100-200 degrees C) had minimal effects on Hg0 removal bythe Cl-FGD in these carbon-to-mercury weight ratios. These results demonstrate significant enhancement of activated carbon reactivity with minimal treatment and are applicable to combustion facilities equipped with downstream particulate matter removal such as an electrostatic precipitator.

  20. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    PubMed Central

    Ihsanullah; Atieh, Muataz Ali

    2017-01-01

    An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3) membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II). The membrane did not require any binder to hold the carbon nanotubes (CNTs) together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM). Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II) ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II) ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II) ions. PMID:28956842

  1. Why is the ocean salty?

    USGS Publications Warehouse

    Swenson, Herbert

    1994-01-01

    All water, even rain water, contains dissolved chemicals which scientists call "salts." But not all water tastes salty. Water is fresh or salty according to individual judgment, and in making this decision man is more convinced by his sense of taste than by a laboratory test. It is one's taste buds that accept one water and reject another.

  2. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R.

    2010-03-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO2 (SCCO2). The solubility of CO2 in PCL allows for the impregnation of CO2-soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO2 to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35°C and 40 °C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  3. Chitosan impregnation with biologically active tryaryl imidazoles in supercritical carbon dioxide.

    PubMed

    Cherkasova, Anastasia V; Glagolev, Nikolay N; Shienok, Andrey I; Demina, Tatiana S; Kotova, Svetlana L; Zaichenko, Natalia L; Akopova, Tatiana A; Timashev, Peter S; Bagratashvili, Victor N; Solovieva, Anna B

    2016-09-01

    The presented paper is focused on impregnation of chitosan and its derivatives with a biologically active triaryl imidazole model compound ((2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole) in the supercritical carbon dioxide medium. Since initial chitosan represents a polycation-exchange resin and does not swell in supercritical carbon dioxide, the impregnation was carried out in the presence of water (0.15-3.0 vol%). The maximum 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole concentration in a chitosan film was achieved at the ~5 × 10(-3) g/cm(3) water content in the reactor. We also used hydroxy carboxylic acid derivatives of chitosan and its copolymer with polylactide as matrices for introduction of hydrophobic 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole. We have shown that unmodified chitosan contains the greatest amount of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole, as compared with its hydrophobic derivatives. The kinetics of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole diffusion from a chitosan matrix was studied in acidified water with pH 1.6. We found that the complete release of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole into the aqueous phase from unmodified chitosan films occurred in 48 h, while its complete release from chitosan modified with hydroxy carboxylic acids occurred in 5 min or less.

  4. Curing of Furfuryl Alcohol-Impregnated Parts

    NASA Technical Reports Server (NTRS)

    Lawton, J. W.; Brayden, T. H.

    1983-01-01

    Delamination problem in reinforced carbon/carbon parts impregnated with oxalic acid-catalyzed furfuryl alcohol overcome by instituting two additional quality-control tests on alcohol and by changing curing conditions.

  5. Hydrochemical Characteristics and Formation of the Saline or Salty Springs in Eastern Sichuan Basin of China

    NASA Astrophysics Data System (ADS)

    Zhou, X.

    2017-12-01

    Saline or salty springs provide important information on the hydrogeochemical processes and hydrology within subsurface aquifers. More than 20 saline and salty springs occur in the core of anticlines in the eastern Sichuan Basin in southwestern China where the Lower and Middle Triassic carbonates outcrop. Water samples of 8 saline and salty springs (including one saline hot spring) were collected for analyses of the major and minor constituents, trace elements and stable oxygen and hydrogen isotopes. The TDS of the springs range from 4 to 83 g/L, and they are mainly of Cl-Na type. Sr, Ba and Li are the predominant trace elements. The δ2H and δ18O of the water samples indicate that they are of meteoric origin. The source of salinity of the springs originates from dissolution of minerals in the carbonates, including halite, gypsum, calcite and dolomite. The formation mechanism of the springs is that groundwater receives recharge from infiltration of precipitation, undergoes shallow or deep circulation in the core of the anticline and incongruent dissolution of the salt-bearing carbonates occurs, and emerges in the river valley in the form of springs with relatively high TDS. The 8 springs can be classified into 4 springs of shallow groundwater circulation and 4 springs of deep groundwater circulation according to the depth of groundwater circulation, 7 springs of normal temperature and 1 hot spring according to temperature. There are also 2 up-flow springs: the carbonate aquifers are overlain by relatively impervious sandstone and shale, groundwater may flows up to the ground surface through the local portion of the overlying aquiclude where fractures were relatively well developed, and emerges as an up-flow spring. Knowledge of the hydrochemical characteristics and the geneses of the saline and salty springs are of important significance for the utilization and preservation of the springs.

  6. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Cinke, Martin; Li, Jing; Chen, Bin; Wignarajah, Kanapathipillai; Pisharody, Suresh A.; Fisher, John W.; Delzeit, Lance; Meyyappan, Meyya; Partridge, Harry; Clark, Kimberlee

    2003-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Highly purified metal-impregnated carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake gaseous species based both on the nanotube s controlled pore size, high surface area, and ordered chemical structure that allows functionalization and on the nanotube s effectiveness as a catalyst support material for toxic contaminants removal. We present results on the purification of single walled carbon nanotubes (SWCNT) and efforts at metal impregnation of the SWCNT's.

  7. Fracture in Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Chavez-Garcia, Jose F.

    2011-01-01

    The thermal protection materials used for spacecraft heat shields are subjected to various thermal-mechanical loads during an atmospheric reentry which can threaten the structural integrity of the system. This paper discusses the development of a novel technique to understand the failure mechanisms inside the thermal protection material, Phenolic Impregnated Carbon Ablator (PICA). PICA has successfully flown on the Stardust spacecraft and was the TPS material chosen for the Mars Science Laboratory (MSL), that will fly in 2011. Although PICA has good thermal properties, structurally, it is a weak material. To thoroughly understand failure in PICA, experiments were performed using FiberForm(Registered TradeMark) (precursor of PICA), virgin and furnace-charred PICA. Several small samples were tested inside an electron microscope to investigate the failure mechanisms. Micrographs were obtained before and after the failure in order to study crack initiation and growth. Videos were obtained to capture failure mechanisms in real time. Stress-strain data was obtained simultaneously for all the samples with the help of a data acquisition system, integrated to the mechanical stages. It was found that cracks initiated and grew in the FiberForm when a critical stress limit was reached such that the carbon fibers separated from the binder. However, both for virgin and charred PICA, crack initiation and growth occurred in the matrix (phenolic) phase. Both virgin and charred PICA showed greater strength values compared to FiberForm coupons, confirming that the presence of the porous matrix helps in absorbing the fracture energy.

  8. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.

    PubMed

    Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David

    2017-04-12

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.

  9. Iron-impregnated granular activated carbon for arsenic removal from drinking water

    NASA Astrophysics Data System (ADS)

    Chang, Qigang

    A new multi-step iron impregnation method was developed in this study to impregnate GAC with a high amount of iron that possesses desired characteristics: stable, even distribution, and high arsenic adsorption capacity. Research was carried out to investigate the impact of the amount of impregnated iron on arsenic adsorption properties: capacity, affinity, and kinetics. Fe-GACs were characterized in terms of the amount, stability, distribution, morphology, and species of impregnated iron. It was found that a high amount of iron was stably impregnated in GAC. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was evenly distributed on the internal surface of GAC. Impregnated iron formed nano-size particles and existed in both crystalline (akaganeite) and amorphous iron. Arsenic adsorption tests were conducted using Fe-GACs with iron content of 1.64--28.90% in a low arsenic concentration that is typical for drinking water treatment. The amount of impregnated iron affects arsenic maximum adsorption capacity (qm) but has little impact on the Langmuir constant h (the affinity of adsorbent for adsorbate). The qm for both As(V) and As(III) adsorptions increased significantly with increase of the amount of impregnated iron up to 13.59%. Further increase of iron amounts caused a gradual decrease of qm for As(V). BET analysis indicated impregnated iron possesses the highest surface area at iron content of 13.59%. A new second-order kinetic model was developed to investigate the impact of the amounts of impregnated iron on arsenic adsorption kinetics. With iron content increased from 1.64% to 28.90%, the intrinsic adsorption rate constants reduced from 4.6x10-2 1/hr to 1.18x10 -3 1/hr, which indicates that impregnated iron slows arsenic intraparticle diffusion rate in Fe-GAC. The decreased arsenic intraparticle diffusion rate was most likely caused by reduced pore size of Fe-GACs. Column tests were

  10. SO2 and NH3 gas adsorption on a ternary ZnO/CuO/CuCl2 impregnated activated carbon evaluated using combinatorial methods.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Croll, Lisa M; Dahn, J R

    2012-01-09

    Ternary libraries of 64 ZnO/CuO/CuCl(2) impregnated activated carbon samples were prepared on untreated or HNO(3)-treated carbon and evaluated for their SO(2) and NH(3) gas adsorption properties gravimetrically using a combinatorial method. CuCl(2) is shown to be a viable substitute for HNO(3) and some compositions of ternary ZnO/CuO/CuCl(2) impregnated carbon samples prepared on untreated carbon provided comparable SO(2) and NH(3) gas removal capacities to the materials prepared on HNO(3)-treated carbon. Through combinatorial methods, it was determined that the use of HNO(3) in this multigas adsorbent formulation can be avoided.

  11. Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3.

    PubMed

    Xu, Lüsi; Guo, Jia; Jin, Feng; Zeng, Hancai

    2006-02-01

    Adsorption of SO(2) from the O(2)-containing flue gas by granular activated carbons (GACs) and activated carbon fibers (ACFs) impregnated with NH(3) was studied in this technical note. Experimental results showed that the ACFs were high-quality adsorbents due to their unique textural properties. In the presence of moisture, the desulphurization efficiency for the ACFs was improved significantly due to the formation of sulfuric acid. After NH(3) impregnation of ACF samples, nitrogen-containing functional groups (pyridyl C(5)H(4)N- and pyrrolyl C(4)H(4)N-) were detected on the sample surface by using an X-ray photoelectron spectrometer. These functional groups accounted for the enhanced SO(2) adsorption via chemisorption and/or catalytic oxidization.

  12. Impregnation of Catalytic Metals in Single-Walled Carbon Nanotubes for Toxic Gas Conversion in Life Support System

    NASA Technical Reports Server (NTRS)

    Li, Jing; Wignarajah, Kanapathipillai; Cinke, Marty; Partridge, Harry; Fisher, John

    2004-01-01

    Carbon nanotubes (CNTs) possess extraordinary properties such as high surface area, ordered chemical structure that allows functionalization, larger pore volume, and very narrow pore size distribution that have attracted considerable research attention from around the world since their discovery in 1991. The development and characterization of an original and innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches due to the ability to direct the selective uptake of gaseous species based on their controlled pore size, increased adsorptive capacity due to their increased surface area and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. We present our recent investigation of using SWNTs as catalytic supporting materials to impregnate metals, such as rhodium (Rh), palladium (Pd) and other catalysts. A protocol has been developed to oxidize the SWNTs first and then impregnate the Rh in aqueous rhodium chloride solution, according to unique surface properties of SWNTs. The Rh has been successfully impregnated in SWNTs. The Rh-SWNTs have been characterized by various techniques, such as TGA, XPS, TEM, and FTIR. The project is funded by a NASA Research Announcement Grant to find applications of single walled nanocarbons in eliminating toxic gas Contaminant in life support system. This knowledge will be utilized in the development of a prototype SWNT KO, gas purification system that would represent a significant step in the development of high efficiency systems capable of selectively removing specific gaseous for use in regenerative life support system for human exploration missions.

  13. Effect Of Reaction Environments On The Reactivity Of PCB (2-Chlorobiphenyl) Over Activated Carbon Impregnated With Palladized Iron

    EPA Science Inventory

    Reactive activated carbon (RAC) impregnated with palladized iron nanoparticles has been developed to treat polychlorinated biphenyls (PCBs). In this study, we evaluated the effects of various reaction environments on the adsorption-mediated dechlorination of 2-chlorobiphenyl (2-...

  14. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects

    DOE PAGES

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...

    2017-03-14

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  15. A Comparative Study of Raw and Metal Oxide Impregnated Carbon Nanotubes for the Adsorption of Hexavalent Chromium from Aqueous Solution

    PubMed Central

    Qureshi, Muhammad I.; Al-Baghli, Nadhir

    2017-01-01

    The present study reports the use of raw, iron oxide, and aluminum oxide impregnated carbon nanotubes (CNTs) for the adsorption of hexavalent chromium (Cr(VI)) ions from aqueous solution. The raw CNTs were impregnated with 1% and 10% loadings (weight %) of iron oxide and aluminum oxide nanoparticles using wet impregnation technique. The synthesized materials were characterized using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Batch adsorption experiments were performed to assess the removal efficiency of Cr(VI) ions from water and the effects of pH, contact time, adsorbent dosage, and initial concentration of the Cr(VI) ions were investigated. Results of the study revealed that impregnated CNTs achieved significant increase in the removal efficiency of Cr(VI) ions compared to raw CNTs. In fact, both CNTs impregnated with 10% loading of iron and aluminum oxides were able to remove up to 100% of Cr(VI) ions from aqueous solution. Isotherm studies were carried out using Langmuir and Freundlich isotherm models. Adsorption kinetics of Cr(VI) ions from water was found to be well described by the pseudo-second-order model. The results suggest that metallic oxide impregnated CNTs have very good potential application in the removal of Cr(VI) ions from water resulting in better environmental protection. PMID:28487625

  16. Reinforced Carbon Carbon (RCC) oxidation resistant material samples - Baseline coated, and baseline coated with tetraethyl orthosilicate (TEOS) impregnation

    NASA Technical Reports Server (NTRS)

    Gantz, E. E.

    1977-01-01

    Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.

  17. Iron Impregnated Activated Carbon as an Efficient Adsorbent for the Removal of Methylene Blue: Regeneration and Kinetics Studies

    PubMed Central

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    In this study, iron impregnated activated carbon (FeAC) was synthesized following an oxidation and iron impregnation of activated carbon (AC). Both the AC and FeAC were characterized by pHZPC and FTIR spectroscopy. The removal of Methylene Blue (MB) by AC and FeAC was examined under various experimental conditions. The FeAC showed up to 95% (higher than AC) MB removal in the pH range of 7–10. Although the reaction kinetics was pseudo–second order, the overall rate was controlled by a number of processes such as film diffusion, pore diffusion and intraparticle diffusion. The activation energy values for the MB uptake by AC and FeAC (21.79 and 14.82 kJ/mol, respectively) revealed a physisorption process. In the regeneration study, FeAC has shown consistently ≥ 90% MB removal even up to 10 repeated cycles. The reusable characteristic of the spent FeAC improved the practical use of activated carbon and can be a breakthrough for continuous flow system applications where it can work effectively without any significant reduction in its performance. PMID:25849291

  18. Investigation of Performance Envelope for Phenolic Impregnated Carbon Ablator (PICA)

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Prabhu, Dinesh; Milos, Frank S.; Stackpoole, Mairead

    2016-01-01

    The present work provides the results of a short exploratory study on the performance of Phenolic Impregnated Carbon Ablator, or PICA, at high heat flux and pressure in an arcjet facility at NASA Ames Research Center. The primary objective of the study was to explore the thermal response of PICA at cold-wall heat fluxes well in excess of 1500 W/cm (exp 2). Based on the results of a series of flow simulations, multiple PICA samples were tested at an estimated cold wall heat flux and stagnation pressure of 1800 W/cm (exp 2) and 130 kPa, respectively. All samples survived the test, and no failure was observed either during or after the exposure. The results indicate that PICA has a potential to perform well at environments with significantly higher heat flux and pressure than it has currently been flown.

  19. Synthesis of Titania@Carbon Nanocomposite from Urea-Impregnated Cellulose for Efficient Lithium and Sodium Batteries.

    PubMed

    Henry, Aurélien; Louvain, Nicolas; Fontaine, Olivier; Stievano, Lorenzo; Monconduit, Laure; Boury, Bruno

    2016-02-08

    Nanostructured TiO2 and TiO2@C nanocomposites were prepared directly from urea-impregnated cellulose by a simple reaction/diffusion process and evaluated as negative electrode materials for Li and Na batteries. By direct treatment with TiCl4 under anhydrous conditions, the urea impregnation of cellulose impacts both the TiO2 morphology and the carbon left by cellulose after pyrolysis. Hierarchical TiO2 structures with a flower-like morphology grown from-and-at the surface of the cellulose fibers are obtained without any directing agent. The resulting TiO2/cellulose composite is then transformed either into pure TiO2 flowers by calcination in air at 600 °C, or into TiO2@C nanocomposites by pyrolysis under Ar at 600 °C. Electrochemical studies demonstrate that both samples can (de)insert lithium and sodium ions and are promising electrode materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A systematic review on the efficiency of cerium-impregnated activated carbons for the removal of gas-phase, elemental mercury from flue gas.

    PubMed

    Sowlat, Mohammad Hossein; Kakavandi, Babak; Lotfi, Saeedeh; Yunesian, Masud; Abdollahi, Mohammad; Rezaei Kalantary, Roshanak

    2017-05-01

    In the present systematic review, we aimed to collect and analyze all the relevant evidence on the efficiency of cerium-impregnated versus virgin-activated carbons (ACs) for the removal of gas-phase elemental mercury (Hg 0 ) from the flue gas of coal-fired power plants and to assess the effect of different calcination and operational parameters on their efficiency. A total of eight relevant papers (out of 1193 hits produced by the search) met the eligibility criteria and were included in the study. Results indicated that the Hg 0 adsorption capacity of cerium-impregnated ACs is significantly higher than that of virgin ACs, depending highly on the impregnation and operational parameters. It was noticed that although cerium-impregnated ACs possessed smaller surface areas and pore volumes, their Hg 0 removal efficiencies were still higher than their virgin counterparts. An increased Hg 0 removal efficiency was in general found by increasing the operational adsorption temperature as high as 150-170 °C. Studies also indicated that NO, SO 2 , and HCl have promoting impacts on the Hg 0 removal efficiency of Ce-impregnated ACs, while H 2 O has an inhibitory effect.

  1. Oil-Impregnated Polyethylene Films

    NASA Astrophysics Data System (ADS)

    Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan

    2017-11-01

    Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).

  2. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  3. Preparation of iron oxide-impregnated spherical granular activated carbon-carbon composite and its photocatalytic removal of methylene blue in the presence of oxalic acid.

    PubMed

    Kadirova, Zukhra C; Hojamberdiev, Mirabbos; Katsumata, Ken-Ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Sharipov, Khasan; Okada, Kiyoshi

    2014-01-01

    The spherical granular activated carbon-carbon composites (GAC-Fe) with different iron oxide contents (Fe mass% = 0.6-10) were prepared by a pore volume impregnation method. The X-ray diffraction (XRD), scanning electron microscopy (SEM), and N2-adsorption results confirm the presence of amorphous iron oxide, pyrolytic carbon, and graphitized globular carbon nanoparticles covered with amorphous carbon in the CAG-Fe. The rate of photodegradation of methylene blue (MB) in aqueous solution under UV light in the presence of oxalic acid correlates with porosity of the prepared materials. The total MB removal includes the combination of adsorption and photodegradation without the addition of H2O2. The results of total organic carbon (TOC) analysis reveal that the decolorization of MB in aqueous solution containing oxalic acid corresponds to the decomposition of organic compounds to CO2 and H2O.

  4. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons.

    PubMed

    Cooper, Anne Marie; Hristovski, Kiril D; Möller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g(-1) dry media and ∼4 L g(-1) dry media of water contaminated with 30 μg L(-1) TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality

    PubMed Central

    de la Horra, Ana E.; Steffolani, María Eugenia; Barrera, Gabriela N.; Ribotta, Pablo D.

    2015-01-01

    Summary The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products. PMID:27904379

  6. Yeast-Leavened Laminated Salty Baked Goods: Flour and Dough Properties and Their Relationship with Product Technological Quality.

    PubMed

    de la Horra, Ana E; Steffolani, María Eugenia; Barrera, Gabriela N; Ribotta, Pablo D; León, Alberto E

    2015-12-01

    The effect of protein composition and content on the characteristics and properties of laminated baked products has been studied for a long time. However, there are no flour quality parameters related to its suitability to produce yeast-leavened laminated salty baked products. The relationships among flour characteristics, laminated dough pieces and baked products were studied in order to establish flour quality parameters and help predict the quality of the products. Yeast-leavened salty laminated products made with hard wheat flour had better quality properties than the products made with soft wheat flour. Hydrophilic components and a high gluten network quality are responsible for the generation of a rigid structure and viscous dough. Consequently, during baking, the dough rises rather than extends laterally and does not experience any change in the expected shape. Among the analysed flour characteristics, glutenin macropolymer content, lactic acid and sodium carbonate solvent retention capacities together with dough viscosity and resistance to deformation were the variables which influenced the most the quality of yeast-leavened salty laminated products.

  7. Effect of Microwave Non thermal Plasma Irradiation on the Adsorptive Properties of Active Carbon Preliminarily Impregnated with Poly(vinyl alcohol)

    NASA Astrophysics Data System (ADS)

    Ueshima, Masato; Toda, Eriko; Nakajima, Yuki; Sugiyama, Kazuo

    2010-08-01

    Microwave non thermal plasma irradiation was conducted on active carbon (AC) preliminarily impregnated with poly(vinyl alcohol) (PVA) in order to modify the adsorption properties of active carbon, particularly to increase hydrophobicity. The plasma was produced by applying microwave power on the PVA-impregnated active carbon (PVA/AC) placed in a low vacuum chamber (<10 Torr). The surface of the plasma-treated PVA/AC was imaged using scanning electron microscopy and atomic force microscopy (SEM and AFM, respectively), and analyzed using X-ray photoelectron spectroscopy (XPS). Hydrophobicity of the plasma-treated PVA/AC was compared to that of untreated PVA/AC and AC by a sinking test in water/methanol mixed solutions. The hydrophobicity drastically increased for PVA/AC treatment with 1-min plasma irradiation. The AFM results indicated that the surface roughness of the PVA/AC was dependent upon the hydrophobicity, rather than reduction of free energy due to reduction of polarized functional groups. NaOH and HCl adsorption onto the plasma-treated PVA/AC was also measured. Adsorption capacity of plasma-treated PVA/AC increased for NaOH, whereas it decreased for HCl. The plasma treatment not only increased the hydrophobicity of PVA/AC, but also changed its acid-base adsorption properties. We have developed a new material based on active carbon, which is light, hydrophobic and electrically conductive by using a combination of PVA sintering and plasma irradiation.

  8. Implementation Of Palladized Iron-Impregnated Reactive Activated Carbon (RAC) System For PCBs Cleanup: Effects Of PCB Loading, Reaction pH, And Co-Existing NOM And Ionic Species

    EPA Science Inventory

    For the treatment of chlorinated organic compounds in the environment, such as polychlorinated biphenyls (PCBs), we have developed reactive activated carbon (RAC) impregnated with Fe/Pd bimetallic nanoparticles. The RAC system can couple adsorption of PCBs to activated carbon wi...

  9. Vapour breakthrough behaviour of carbon tetrachloride - A simulant for chemical warfare agent on ASZMT carbon: A comparative study with whetlerite carbon

    NASA Astrophysics Data System (ADS)

    Srivastava, Avanish Kumar; Shah, Dilip K.; Mahato, T. H.; Roy, A.; Yadav, S. S.; Srivas, S. K.; Singh, Beer

    2013-06-01

    ASZMT and whetlerite carbon was prepared by impregnation of active carbon with ammonical salts of Cu (II), Ag (I), Zn (II), Mo (VI), TEDA and Cu (II), Ag (I), Cr (VI), NaOH, C5H5N respectively using incipient wetness technique. Thereafter, impregnated carbon systems were characterized using scanning electron microscopy, energy dispersive X-ray, atomic absorption spectroscopy, thermogravimetry and surface characterization techniques. Impregnated carbon systems were evaluated under dynamic conditions against carbon tetrachloride (CCl4) vapour that was used as a simulant for the persistent chemical warfare agents for testing breakthrough times of filter cartridges and canisters of gas masks in the national approval test of respirators. The protective potential of ASZMT carbon was compared with the whetlerite carbon which is presently used in NBC filtration system. The effect of CCl4 concentration, test flow rate, temperature and relative humidity on the breakthrough behaviour of the impregnated carbon systems has also been studied. The study clearly indicated that the whetlerite carbon possessed breakthrough time greater than ASZMT carbon. However, ASZMT carbon provided adequate protection against CCl4 vapours and can be used as an alternative to whetlerite carbon that contain Cr(VI), which is reported to be carcinogenic and having lesser shelf life. The study indicated the breakthrough time of impregnated carbon systems were found to decrease with the increase of the CCl4 concentration and flow rate. The variation in temperature and relative humidity did not significantly affect the breakthrough behaviour of impregnated carbon systems at high vapour concentration of CCl4 whereasbreak through time of impregnated carbon systems reduced by an increase of relative humidity at low CCl4 vapour concentration.

  10. The role of sodium in the salty taste of permeate.

    PubMed

    Frankowski, K M; Miracle, R E; Drake, M A

    2014-09-01

    Many food companies are trying to limit the amount of sodium in their products. Permeate, the liquid remaining after whey or milk is ultrafiltered, has been suggested as a salt substitute. The objective of this study was to determine the sensory and compositional properties of permeates and to determine if elements other than sodium contribute to the salty taste of permeate. Eighteen whey (n=14) and reduced-lactose (n=4) permeates were obtained in duplicate from commercial facilities. Proximate analyses, specific mineral content, and nonprotein nitrogen were determined. Organic acids and nucleotides were extracted followed by HPLC. Aromatic volatiles were evaluated by gas chromatography-mass spectrometry. Descriptive analysis of permeates and model solutions was conducted using a trained sensory panel. Whey permeates were characterized by cooked/milky and brothy flavors, sweet taste, and low salty taste. Permeates with lactose removed were distinctly salty. The organic acids with the highest concentration in permeates were lactic and citric acids. Volatiles included aldehydes, sulfur-containing compounds, and diacetyl. Sensory tests with sodium chloride solutions confirmed that the salty taste of reduced-lactose permeates was not solely due to the sodium present. Permeate models were created with NaCl, KCl, lactic acid, citric acid, hippuric acid, uric acid, orotic acid, and urea; in addition to NaCl, KCl, lactic acid, and orotic acid were contributors to the salty taste. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  12. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1991-01-01

    A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

  13. Why Is the Ocean Salty?

    ERIC Educational Resources Information Center

    Swenson, Herbert

    One of a series of general interest publications on science topics, this booklet provides those interested in the composition of sea water with a non-technical introduction to the subject. Focusing on the saltiness of the sea, separate sections examine the origins of the sea, sources of the salts, why the sea is not fresh, the complexity of sea…

  14. Development of Metal-impregnated Single Walled Carbon Nanotubes for Toxic Gas Contaminant Control in Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Pisharody, Suresh A.; Fisher, John W.; Wignarajah, K.

    2002-01-01

    The success of physico-chemical waste processing and resource recovery technologies for life support application depends partly on the ability of gas clean-up systems to efficiently remove trace contaminants generated during the process with minimal use of expendables. Carbon nanotubes promise superior performance over conventional approaches to gas clean-up due to their ability to direct the selective uptake of gaseous species based on their controlled pore size, high surface area, ordered chemical structure that allows functionalization and their effectiveness also as catalyst support materials for toxic gas conversion. We present results and findings from a preliminary study on the effectiveness of metal impregnated single walled nanotubes as catalyst/catalyst support materials for toxic gas contaminate control. The study included the purification of single walled nanotubes, the catalyst impregnation of the purified nanotubes, the experimental characterization of the surface properties of purified single walled nanotubes and the characterization of physisorption and chemisorption of uptake molecules.

  15. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    PubMed

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  16. Saltiness enhancement by the characteristic flavor of dried bonito stock.

    PubMed

    Manabe, M

    2008-08-01

    There is a pressing need for the development of ways of preparing palatable salt-reduced foods to reduce the salt intake of the Japanese population. The salt-reducing effect of the characteristic flavors other than umami of dried bonito stock, which is widely used in everyday Japanese food, was examined by sensory evaluation. In the 1st sensory evaluation, the effect was evaluated in a model solution. The saltiness of 0.80% NaCl solution was equivalent to that of 0.12% monosodium glutamate (MSG) solution containing 0.81% NaCl and dried bonito stock containing 0.68% NaCl. Saltiness enhancement could not be found when MSG solution was used, but was found with 6% dried bonito stock. The 2nd evaluation examined whether the effect was valid for 2 everyday Japanese foods--traditional Japanese clear soup (sumashi-jiru) and steamed egg custard (tamagodoufu). Although enhancement of saltiness by dried bonito stock could not be clearly demonstrated in the soup, a change in NaCl concentration within 15% did not affect the palatability of the soup. However, dried bonito stock not only enhanced the saltiness but also improved the palatability of steamed egg custard. These findings are expected to be useful for improving the palatability of salt-reduced food.

  17. Higher sensitivity to sweet and salty taste in obese compared to lean individuals.

    PubMed

    Hardikar, Samyogita; Höchenberger, Richard; Villringer, Arno; Ohla, Kathrin

    2017-04-01

    Although putatively taste has been associated with obesity as one of the factors governing food intake, previous studies have failed to find a consistent link between taste perception and Body Mass Index (BMI). A comprehensive comparison of both thresholds and hedonics for four basic taste modalities (sweet, salty, sour, and bitter) has only been carried out with a very small sample size in adults. In the present exploratory study, we compared 23 obese (OB; BMI > 30), and 31 lean (LN; BMI < 25) individuals on three dimensions of taste perception - recognition thresholds, intensity, and pleasantness - using different concentrations of sucrose (sweet), sodium chloride (NaCl; salty), citric acid (sour), and quinine hydrochloride (bitter) dissolved in water. Recognition thresholds were estimated with an adaptive Bayesian staircase procedure (QUEST). Intensity and pleasantness ratings were acquired using visual analogue scales (VAS). It was found that OB had lower thresholds than LN for sucrose and NaCl, indicating a higher sensitivity to sweet and salty tastes. This effect was also reflected in ratings of intensity, which were significantly higher in the OB group for the lower concentrations of sweet, salty, and sour. Calculation of Bayes factors further corroborated the differences observed with null-hypothesis significance testing (NHST). Overall, the results suggest that OB are more sensitive to sweet and salty, and perceive sweet, salty, and sour more intensely than LN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Variation in saltiness perception of soup with respect to soup serving temperature and consumer dietary habits.

    PubMed

    Kim, Jeong-Weon; Samant, Shilpa S; Seo, Yoojin; Seo, Han-Seok

    2015-01-01

    Little is known about the effect of serving temperature on saltiness perception in food products such as soups that are typically consumed at high temperature. This study focused on determining whether serving temperature modulates saltiness perception in soup-base products. Eight trained panelists and 62 untrained consumers were asked to rate saltiness intensities in salt water, chicken broth, and miso soup, with serving temperatures of 40, 50, 60, 70, and 80 °C. Neither trained nor untrained panelists were able to find significant difference in the saltiness intensity among salt water samples served at these five different temperatures. However, untrained consumers (but not trained panelists) rated chicken broth and miso soup to be significantly less salty when served at 70 and/or 80 °C compared to when served at 40 to 60 °C. There was an interaction between temperature-related perceived saltiness and preference; for example, consumers who preferred soups served at lower temperatures found soups served at higher temperatures to be less salty. Consumers who frequently consumed hot dishes rated soup samples served at 60 °C as saltier than consumers who consumed hot dishes less frequently. This study demonstrates that soup serving temperature and consumer dietary habits are influential factors affecting saltiness perception of soup. Published by Elsevier Ltd.

  19. Roles of sulfuric acid in elemental mercury removal by activated carbon and sulfur-impregnated activated carbon.

    PubMed

    Morris, Eric A; Kirk, Donald W; Jia, Charles Q; Morita, Kazuki

    2012-07-17

    This work addresses the discrepancy in the literature regarding the effects of sulfuric acid (H(2)SO(4)) on elemental Hg uptake by activated carbon (AC). H(2)SO(4) in AC substantially increased Hg uptake by absorption particularly in the presence of oxygen. Hg uptake increased with acid amount and temperature exceeding 500 mg-Hg/g-AC after 3 days at 200 °C with AC treated with 20% H(2)SO(4). In the absence of other strong oxidizers, oxygen was able to oxidize Hg. Upon oxidation, Hg was more readily soluble in the acid, greatly enhancing its uptake by acid-treated AC. Without O(2), S(VI) in H(2)SO(4) was able to oxidize Hg, thus making it soluble in H(2)SO(4). Consequently, the presence of a bulk H(2)SO(4) phase within AC pores resulted in an orders of magnitude increase in Hg uptake capacity. However, the bulk H(2)SO(4) phase lowered the AC pore volume and could block the access to the active surface sites and potentially hinder Hg uptake kinetics. AC treated with SO(2) at 700 °C exhibited a much faster rate of Hg uptake attributed to sulfur functional groups enhancing adsorption kinetics. SO(2)-treated carbon maintained its fast uptake kinetics even after impregnation by 20% H(2)SO(4).

  20. Enhancement of Saltiness Perception by Monosodium Glutamate Taste and Soy Sauce Odor: A Near-Infrared Spectroscopy Study.

    PubMed

    Onuma, Takuya; Maruyama, Hiroaki; Sakai, Nobuyuki

    2018-02-26

    Previous studies have reported that the umami taste of monosodium l-glutamate (MSG) and salty-smelling odors (e.g., soy sauce, bacon, sardines) enhance the perception of saltiness. This study aimed to investigate the neural basis of the enhancement of saltiness in human participants using functional near-infrared spectroscopy (fNIRS). University students who had passed a taste panel test participated in this study. Sodium chloride solutions were presented with or without either 0.10% MSG or the odor of soy sauce. The participants were asked to drink a cup of the stimulus and to evaluate only saltiness intensity in Experiment 1, as well as other sensory qualities in Experiment 2, and temporal brain activity was measured using fNIRS. In Experiment 3, the participants were asked to evaluate saltiness intensity using the time-intensity (TI) method, and the response of the parotid salivary glands was measured using fNIRS. The fNIRS data showed that the added MSG and soy sauce enhanced the hemodynamic response in temporal brain regions, including the frontal operculum, but no effect on the hemodynamic salivary responses was detected. These results indicate that the perceived enhancement of saltiness occurs in the brain region that is involved in central gustatory processing. Furthermore, the results of the sensory evaluations suggest that enhancement of saltiness by the addition of MSG is mainly based on fusion of the salty-like property of MSG and saltiness of NaCl, whereas enhancement by the addition of soy sauce odor is mainly based on modulation of the temporal dynamics of saltiness perception.

  1. Determination of saltiness from the laws of thermodynamics--estimating the gas constant from psychophysical experiments.

    PubMed

    Norwich, K H

    2001-10-01

    One can relate the saltiness of a solution of a given substance to the concentration of the solution by means of one of the well-known psychophysical laws. One can also compare the saltiness of solutions of different solutes which have the same concentration, since different substances are intrinsically more salty or less salty. We develop here an equation that relates saltiness both to the concentration of the substance (psychophysical) and to a distinguishing physical property of the salt (intrinsic). For a fixed standard molar entropy of the salt being tasted, the equation simplifies to Fechner's law. When one allows for the intrinsic 'noise' in the chemoreceptor, the equation generalizes to include Stevens's law, with corresponding decrease in the threshold for taste. This threshold reduction exemplifies the principle of stochastic resonance. The theory is validated with reference to experimental data.

  2. Ablation and Thermal Response Property Model Validation for Phenolic Impregnated Carbon Ablator

    NASA Technical Reports Server (NTRS)

    Milos, F. S.; Chen, Y.-K.

    2009-01-01

    Phenolic Impregnated Carbon Ablator was the heatshield material for the Stardust probe and is also a candidate heatshield material for the Orion Crew Module. As part of the heatshield qualification for Orion, physical and thermal properties were measured for newly manufactured material, included emissivity, heat capacity, thermal conductivity, elemental composition, and thermal decomposition rates. Based on these properties, an ablation and thermal-response model was developed for temperatures up to 3500 K and pressures up to 100 kPa. The model includes orthotropic and pressure-dependent thermal conductivity. In this work, model validation is accomplished by comparison of predictions with data from many arcjet tests conducted over a range of stagnation heat flux and pressure from 107 Watts per square centimeter at 2.3 kPa to 1100 Watts per square centimeter at 84 kPa. Over the entire range of test conditions, model predictions compare well with measured recession, maximum surface temperatures, and in depth temperatures.

  3. Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source.

    PubMed

    Li, Kai; Zhu, Changpeng; Zhang, Liqiang; Zhu, Xifeng

    2016-06-01

    The current study presents the pyrolysis characteristics of rice husk impregnated with different kinds of ammonia source (ammonium acetate, urea, ammonium sulfate and ammonium dihydrogen phosphate) in a fixed bed reactor. The introduction of ammonia source in pyrolysis process achieved the conversation from carbonyl compounds to nitrogenous heterocyclic compounds. The liquid product of urea-impregnated biomass has higher content of nitrogenous heterocyclic compounds (8.35%) and phenols (30.4%). For ammonium sulfate and ammonium dihydrogen phosphate-impregnated biomass, the quantity of compounds in liquid products reduces remarkably, and the gas products are rich in CO and H2. All the solid products of pyrolysis have great potential application in biochar-based fertilizer and activated carbon for their high N content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Coating and Impregnation of Carbon-Carbon Composites with Ceramics by Electrophoretic Deposition

    DTIC Science & Technology

    1989-04-01

    electroosmotic effect 33 4.1.4 Electrophoretic impregnation of a porous substrate with ceramic particles 53 4.1.5 Morphology of induced Si02 60 4.1.6...particles acquire the charge spontaneously when mixed with the solvent. Further, this charge may be reversed upon addition of ionic compounds. According...spontaneously when mixed with the solvent. Further this charge may be reversed upon addition of ions. 2.2 ELECTHOPHORESIS IN POROUS STRUCTURES i In

  5. Impregnation quality of shredded semipreg after compression moulding

    NASA Astrophysics Data System (ADS)

    Vincent, G.; Balakrishnan, V.; de Bruijn, T. A.; Wijskamp, S.; Abdul Rasheed, M. I.

    2017-10-01

    Manufacturing of thermoplastic composites (TPC) inherently generates scrap, mainly in the form of offcuts or rejected parts. The growth of TPC over recent decades has now reached a point where developing specific recycling solutions for TPC waste has become crucial. While looking at the various steps during which scrap is produced, the nesting of semipreg or prepreg appears to be critical. This work aims to develop a route for recycling semipreg offcuts, comprising shredding and compression moulding. This article focuses on an experimental study of the compression moulding step of carbon fibres reinforced PPS (C/PPS) to investigate the uniformity and impregnation quality of plates. These plates were realised in a picture frame while varying both the fibre volume content between 30% and 50% and the processing parameters. Visual inspection and cross-sectional microscopy were performed to assess the quality of each plate. As a first step, the influence of the type of added matrix (film, powder, pellets) and the type of pre-impregnation (film, powder) was studied. Stacking of polymer powder with shredded powder-coated semipreg gave the best impregnation quality. It was also shown that longer dwell time at melt leads to better consolidation quality. However, the difficulty in obtaining good impregnation comes from the disentangled shredded material, which is composed of three forms: semipreg flakes, dry bundles and pieces of matrix. When dry bundles reach the mould surfaces during the filling of the mould or when they are packed together, the consolidation cycle hardly impregnates them and they remain dry afterwards. Furthermore, large local variations of fibre fraction were noticed, resulting from a random mould filling. Therefore, the recycling solution for shredded semipreg is feasible when the fibre fraction is reduced but improvements on the part variability still have to be made.

  6. Removal of CO2 in a multistage fluidized bed reactor by diethanol amine impregnated activated carbon.

    PubMed

    Das, Dipa; Samal, Debi Prasad; Meikap, Bhim C

    2016-07-28

    To mitigate the emission of carbon dioxide (CO2), we have developed and designed a four-stage fluidized bed reactor. There is a counter current exchange between solid adsorbent and gas flow. In this present investigation diethanol amine (DEA) impregnated activated carbon made from green coconut shell was used as adsorbent. This type of adsorbent not only adsorbs CO2 due to the presence of pore but also chemically reacts with CO2 and form secondary zwitterions. Sampling and analysis of CO2 was performed using Orsat apparatus. The effect of initial CO2 concentration, gas velocity, solid rate, weir height etc. on removal efficiency of CO2 have been investigated and presented. The percentage removal of CO2 has been found close to 80% under low gas flow rate (0.188 m/s), high solid flow rate (4.12 kg/h) and weir height of 50 mm. From this result it has been found out that multistage fluidized bed reactor may be a suitable equipment for removal of CO2 from flue gas.

  7. Adhesive, elastomeric gel impregnating composition

    DOEpatents

    Shaw, David Glenn; Pollard, John Randolph; Brooks, Robert Aubrey

    2002-01-01

    An improved capacitor roll with alternating film and foil layers is impregnated with an adhesive, elastomeric gel composition. The gel composition is a blend of a plasticizer, a polyol, a maleic anhydride that reacts with the polyol to form a polyester, and a catalyst for the reaction. The impregnant composition is introduced to the film and foil layers while still in a liquid form and then pressure is applied to aid with impregnation. The impregnant composition is cured to form the adhesive, elastomeric gel. Pressure is maintained during curing.

  8. Adsorption of low concentration ceftazidime from aqueous solutions using impregnated activated carbon promoted by Iron, Copper and Aluminum

    NASA Astrophysics Data System (ADS)

    Hu, Xiang; Zhang, Hua; Sun, Zhirong

    2017-01-01

    In this paper, three impregnated activated carbon IAC (AC-Cu, AC-Fe, and AC-Al) promoted by Iron, Copper and Aluminum were used for adsorption of ceftazidime. Iron(III), Copper(II) and Aluminum(III) nitrate were used as an impregnant. The IACs were characterized by scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS).The influence of factors, such as ion strength, pH, temperature, initial concentration, and concentration of natural organic matter organic matter on the adsorption process were studied. The adsorption kinetics and isotherms of ceftazidime were studied for the three IACs. The results showed that the adsorption was accurately represented by pseudo-second order model. Under different temperature, the maximum adsorption quantity of ceftazidime on AC-Cu calculated by pseudo-second order kinetic model were 200.0 mg g-1 (298 K), 196.1 mg g-1 (303 K) and 185.2 mg g-1 (308 K). It was much higher than that of AC-Fe and AC-Al. And the process was controlled by both film diffusion and intra particle mass transport. The results also showed that, the Freundlich and Temkin isotherm fit the adsorption well.

  9. Representation of sweet and salty taste intensity in the brain.

    PubMed

    Spetter, M S; Smeets, P A M; de Graaf, C; Viergever, M A

    2010-11-01

    The intensity of the taste of a food is affected mostly by the amount of sugars (mono- and disaccharides) or salt it contains. To season savory-tasting foods mainly table salt (NaCl) is used and to sweeten foods, sugars like sucrose are used. Foods with highly intense tastes are consumed in smaller amounts. The optimal taste intensity of a food is the intensity at which it is perceived as most pleasant. When taste intensity decreases or increases from optimal, the pleasantness of a food decreases. Here, we investigated the brain representation of sweet and salty taste intensity using functional magnetic resonance imaging. Fifteen subjects visited twice and tasted a range of 4 watery solutions (0-1 M) of either sucrose or NaCl in water. Middle insula activation increased with increasing concentration for both NaCl and sucrose. Despite similar subjective intensity ratings, anterior insula activation by NaCl increased more with concentration than that by sucrose. Amygdala activation increased with increasing NaCl concentration but not sucrose concentration. In conclusion, sweet and salty taste intensity are represented in the middle insula. Amygdala activation is only modulated by saltiness. Further research will need to extrapolate these results from simple solutions to real foods.

  10. Effect of Carbon Type on Arsenic and Trichloroethylene Removal Capacity of Iron (Hydr)oxide Nanoparticle Impregnated Granulated Activated Carbon

    NASA Astrophysics Data System (ADS)

    Cooper, Anne Marie

    This study investigates the effect of the virgin granular activated carbon (GAC) on the properties of synthesized iron (hydr)oxide nanoparticles impregnated GAC (Fe-GAC) media and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Fe-GAC media were synthesized from bituminous and lignite-based virgin GAC via three variations of a permanganate/Fe(II) synthesis method. Data obtained from an array of characterization techniques indicated that differences in pore size distribution and surface chemistry of the virgin GAC favor different reaction paths for the iron (hydr)oxide nanoparticles formation. Batch equilibrium isotherm testing (120 microg-As/L; 6 mg-TCE/L, 10 mM NaHCO3 at pH = 7.2 +/- 0.1 and pH = 8.2 +/- 0.1) showed arsenic removal capability was increased as a result of iron (nanoparticles) impregnation, while TCE removal properties were decreased in Fe-GAC media. This tradeoff was displayed by both lignite and bituminous Fe-GAC but was most pronounced in lignite-based Fe-GAC having the highest Fe content (13.4% Fe) which showed the most favorable Freundlich adsorption and intensity parameters for arsenic of Ka = 72.6 (microg-As/g-FeGAC)(L/microg-As)1/n, 1/n = 0.6; and least favorable adsorption for TCE of Ka = 0.8 (mg-TCE/g-FeGAC)(L/mg-TCE)1/n, 1/n = 4.47. It was concluded that iron content was the main factor contributing to enhanced arsenic removal and that this was affected by base GAC properties such as pore size distribution and surface functional groups. However high Fe content can result in pore blockage; reduction in available adsorption sites for organic co-contaminants; and have a significant effect on the Fe-GACs overall adsorption capacity.

  11. Salty Food Preference and Intake and Risk of Gastric Cancer: The JACC Study.

    PubMed

    Umesawa, Mitsumasa; Iso, Hiroyasu; Fujino, Yoshihisa; Kikuchi, Shogo; Tamakoshi, Akiko

    2016-01-01

    High sodium intake is a potential risk factor of gastric cancer. However, limited information is available on the relationship between salty food preference or intake and risk of gastric cancer. The aim of the present study was to determine the association between these variables among the Japanese population. Between 1988 and 1990, 15,732 men and 24,997 women aged 40-79 years old with no history of cancer or cardiovascular disease completed a lifestyle questionnaire that included information about food intake. The subjects were enrolled in the Japan Collaborative Cohort (JACC) Study for Evaluation of Cancer Risk Sponsored by Monbusho. After a median follow-up of 14.3 years, 787 incident gastric cancers were documented. We examined the associations between salty food preference and intake and gastric cancer incidence using the Cox proportional hazard model. The risk of gastric cancer among subjects with a strong preference for salty food was approximately 30% higher than among those who preferred normal-level salty food (hazard ratio [HR] 1.31; 95% confidence interval [CI], 1.02-1.67). The risk of gastric cancer in subjects who consumed 3 and ≥ 4 bowls/day of miso soup was approximately 60% higher than in those who consumed less miso soup (HR 1.67; 95% CI, 1.16-2.39 and HR 1.64; 95% CI, 1.11-2.42, respectively). Sodium intake correlated positively and linearly with risk of gastric cancer (P for trend = 0.002). The present study showed that salty food preference, consumption of large quantities of miso soup, and high sodium intake were associated with increased risk of gastric cancer among Japanese people.

  12. High temperature in-situ synchrotron-based XRD study on the crystal structure evolution of C/C composite impregnated by FLiNaK molten salt.

    PubMed

    Feng, Shanglei; Yang, Yingguo; Li, Li; Zhang, Dongsheng; Yang, Xinmei; Xia, Huihao; Yan, Long; Tsang, Derek K L; Huai, Ping; Zhou, Xingtai

    2017-09-06

    An in-situ real-time synchrotron-based grazing incidence X-ray diffraction was systematically used to investigate the crystal structural evolution of carbon fiber reinforced carbon matrix (C/C) composite impregnated with FLiNaK molten salt during the heat-treatment process. It was found that the crystallographic thermal expansion and contraction rate of interlayer spacing d 002 in C/C composite with FLiNaK salt impregnation is smaller than that in the virgin sample, indicating the suppression on interlayer spacing from FLiNaK salt impregnated. Meanwhile the crystallite size L C002 of C/C composite with FLiNaK salt impregnation is larger than the virgin one after whole heat treatment process, indicating that FLiNaK salt impregnation could facilitate the crystallization of C/C composite after heat treatment process. This improved crystallization in C/C composite with FLiNaK salt impregnation suggests the synthetic action of the salt squeeze effect on crooked carbon layer and the release of internal residual stress after heating-cooling process. Thus, the present study not only contribute to reveal the interaction mechanism between C/C composite and FLiNaK salt in high temperature environment, but also promote the design of safer and more reliable C/C composite materials for the next generation molten salt reactor.

  13. "Taste Strips" - a rapid, lateralized, gustatory bedside identification test based on impregnated filter papers.

    PubMed

    Landis, Basile Nicolas; Welge-Luessen, Antje; Brämerson, Annika; Bende, Mats; Mueller, Christian Albert; Nordin, Steven; Hummel, Thomas

    2009-02-01

    To elaborate normative values for a clinical psychophysical taste test ("Taste Strips"). The "Taste Strips" are a psychophysical chemical taste test. So far, no definitive normative data had been published and only a fairly small sample size has been investigated. In light of this shortcoming for this easy, reliable and quick taste testing device, we attempted to provide normative values suitable for the clinical use. Normative value acquisition study, multicenter study. The investigation involved 537 participants reporting a normal sense of smell and taste (318 female, 219 male, mean age 44 years, age range 18-87 years). The taste test was based on spoon-shaped filter paper strips ("Taste Strips") impregnated with the four (sweet, sour, salty, and bitter) taste qualities in four different concentrations. The strips were placed on the left or right side of the anterior third of the extended tongue, resulting in a total of 32 trials. With their tongue still extended, patients had to identify the taste from a list of four descriptors, i. e., sweet, sour, salty, and bitter (multiple forced-choice). To obtain an impression of overall gustatory function, the number of correctly identified tastes was summed up for a "taste score". Taste function decreased significantly with age. Women exhibited significantly higher taste scores than men which was true for all age groups. The taste score at the 10(th) percentile was selected as a cut-off value to distinguish normogeusia from hypogeusia. Results from a small series of patients with ageusia confirmed the clinical usefulness of the proposed normative values. The present data provide normative values for the "Taste Strips" based on over 500 subjects tested.

  14. Optimization of process condition for the preparation of amine-impregnated activated carbon developed for CO2 capture and applied to methylene blue adsorption by response surface methodology.

    PubMed

    Das, Dipa; Meikap, Bhim C

    2017-10-15

    The present research describes the optimal adsorption condition for methylene blue (MB). The adsorbent used here was monoethanol amine-impregnated activated carbon (MEA-AC) prepared from green coconut shell. Response surface methodology (RSM) is the multivariate statistical technique used for the optimization of the process variables. The central composite design is used to determine the effect of activation temperature, activation time and impregnation ratio on the MB removal. The percentage (%) MB adsorption by MEA-AC is evaluated as a response of the system. A quadratic model was developed for response. From the analysis of variance, the factor which was the most influential on the experimental design response has been identified. The optimum condition for the preparation of MEA-AC from green coconut shells is the temperature of activation 545.6°C, activation time of 41.64 min and impregnation ratio of 0.33 to achieve the maximum removal efficiency of 98.21%. At the same optimum parameter, the % MB removal from the textile-effluent industry was examined and found to be 96.44%.

  15. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Salty Taste Deficits in CALHM1 Knockout Mice

    PubMed Central

    Ellis, Hillary T.; Aleman, Tiffany R.; Downing, Arnelle; Marambaud, Philippe; Foskett, J. Kevin; Dana, Rachel M.; McCaughey, Stuart A.

    2014-01-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein–coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste–related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH4Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH4Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  17. Bacterial Growth in the Salty Liquid Water Ocean of Europa

    NASA Astrophysics Data System (ADS)

    Rubio, D. G.; Ramírez, S. I.

    2017-11-01

    We are interested in the adaptation strategies displayed by bacteria when exposed to laboratory-controlled conditions that represent the salinity, temperature, and available oxygen conditions of the salty liquid water ocean present on Europa.

  18. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  19. Activated carbon fibers and engineered forms from renewable resources

    DOEpatents

    Baker, Frederick S.

    2010-06-01

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  20. Effect of Na+ impregnated activated carbon on the adsorption of NH4(+)-N from aqueous solution.

    PubMed

    Shi, Mo; Wang, Zhengfang; Zheng, Zheng

    2013-08-01

    Two kinds of activated carbons modified by Na+ impregnation after pre-treatments involving oxidation by nitric acid or acidification by hydrochloric acid (denoted as AC/N-Na and AC/HCl-Na, respectively), were used as adsorbents to remove NH4(+)-N. The surface features of samples were investigated by BET, SEM, XRD and FT-IR. The adsorption experiments were conducted in equilibrium and kinetic conditions. Influencing factors such as initial solution pH and initial concentration were investigated. A possible mechanism was proposed. Results showed that optimal NH4(+)-N removal efficiency was achieved at a neutral pH condition for the modified ACs. The Langmuir isotherm adsorption equation provided a better fit than other models for the equilibrium study. The adsorption kinetics followed both the pseudo second-order kinetics model and intra-particle kinetic model. Chemical surface analysis indicated that Na+ ions form ionic bonds with available surface functional groups created by pre-treatment, especially oxidation by nitric acid, thus increasing the removal efficiency of the modified ACs for NH4(+)-N. Na(+)-impregnated ACs had a higher removal capability in removing NH4(+)-N than unmodified AC, possibly resulting from higher numbers of surface functional groups and better intra-particle diffusion. The good fit of Langmuir isotherm adsorption to the data indicated the presence of monolayer NH4(+)-N adsorption on the active homogenous sites within the adsorbents. The applicability of pseudo second-order and intra-particle kinetic models revealed the complex nature of the adsorption mechanism. The intra-particle diffusion model revealed that the adsorption process consisted not only of surface adsorption but also intra-particle diffusion.

  1. Calcium impregnation of coal enriched in CO.sub.2 using high-pressure techniques

    NASA Technical Reports Server (NTRS)

    Gavalas, George R. (Inventor); Sharma, Pramod K. (Inventor); Voecks, Gerald E. (Inventor)

    1990-01-01

    Methods are described for impregnating coal with calcium carbonate by utilizing an aqueous phase ionic reaction between calcium acetate, calcium hydroxide, and water with CO.sub.2 contained within the coal. The coal is enriched in CO.sub.2 by contacting it with CO.sub.2 at high pressure, in either a continuous or pulsed mode. The inclusion of CO.sub.2 in the coal during the process does not involve evacuating the coal and subsequently absorbing CO.sub.2 onto the coal as in prior methods. Rather, the coal is treated with carbon dioxide at high pressure in a practical and viable approach. The impregnation of coal by calcium compounds not only reduces sulfur emissions by effectively tying up the sulfur as calcium sulfide or sulfate, but also increases the gasification or combustion rate. The invention also encompasses the use of other Group IIA elements, as well as the coal products resulting from the methods of treatment described.

  2. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection.

    PubMed

    Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James

    2009-12-09

    A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO(3) concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).

  3. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection

    NASA Astrophysics Data System (ADS)

    Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James

    2009-12-01

    A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO3 concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).

  4. Controlled preparation of carbon nanotube-iron oxide nanoparticle hybrid materials by a modified wet impregnation method

    NASA Astrophysics Data System (ADS)

    Tsoufis, Τheodoros; Douvalis, Alexios P.; Lekka, Christina E.; Trikalitis, Pantelis N.; Bakas, Thomas; Gournis, Dimitrios

    2013-09-01

    We report a novel, simple, versatile, and reproducible approach for the in situ synthesis of iron oxide nanoparticles (NP) on the surface of carbon nanotubes (CNT). Chemically functionalized single- or multi-wall CNT were used as nanotemplates for the synthesis of a range of very small (<10 nm) ferrimagnetic and/or anti-ferromagnetic iron oxide NP on their surface. For the synthesis of the hybrid materials, we employed for the first time a modified wet impregnation method involving the adsorption of ferric cations (as nanoparticle's precursor) on the functionalized nanotube surface and the subsequent interaction with acetic acid vapors followed by calcination at 400 °C under different atmospheres (air, argon, and oxygen). X-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and magnetization measurements were used to study in-detail the morphology, size, and type of crystalline phases in the resulting hybrid materials. In addition, Raman measurements were used to monitor possible structural changes of the nanotubes during the synthetic approach. The experimental results were further supported by density functional theory calculations. These calculations were also used to disclose, how the type of the carbon nanotube template affects the nature and the size of the resulting NP in the final hybrids.

  5. Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials.

    PubMed

    Villegas, Carolina; Torres, Alejandra; Rios, Mauricio; Rojas, Adrián; Romero, Julio; de Dicastillo, Carol López; Valenzuela, Ximena; Galotto, María José; Guarda, Abel

    2017-09-01

    Supercritical impregnation was used to incorporate a natural compound with antibacterial activity into biopolymer-based films to develop active food packaging materials. Impregnation tests were carried out under two pressure conditions (9 and 12MPa), and three depressurization rates (0.1, 1 and 10MPamin -1 ) in a high-pressure cell at a constant temperature equal to 40°C. Cinnamaldehyde (Ci), a natural compound with proven antimicrobial activity, was successfully incorporated into poly(lactic acid) films (PLA) using supercritical carbon dioxide (scCO 2 ), with impregnation yields ranging from 8 to 13% w/w. Higher pressure and slower depressurization rate seem to favor the Ci impregnation. The incorporation of Ci improved thermal, structural and mechanical properties of the PLA films. Impregnated films were more flexible, less brittle and more resistant materials than neat PLA films. The tested samples showed strong antibacterial activity against the selected microorganisms. In summary, this study provides an innovative route to the development of antibacterial biodegradable materials, which could be used in a wide range of applications of active food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

  7. Aluminum-carbon composite electrode

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.

    1998-07-07

    A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg. 3 figs.

  8. Salty Taste Acuity Is Affected by the Joint Action of αENaC A663T Gene Polymorphism and Available Zinc Intake in Young Women

    PubMed Central

    Noh, Hwayoung; Paik, Hee-Young; Kim, Jihye; Chung, Jayong

    2013-01-01

    Salty taste perception affects salt intake, of which excess amounts is a major public health concern. Gene polymorphisms in salty taste receptors, zinc status and their interaction may affect salty taste perception. In this study, we examined the relationships among the α-epithelial sodium channel (αENaC) A663T genotype, zinc intake, and salty taste perception including salty taste acuity and preference in healthy young adults. The αENaC A663T genotype was determined by the PCR-restriction fragment length polymorphism in 207 adults. Zinc intake was examined by one 24-h recall and a two-day dietary record. Salty taste acuity and preference were determined by measuring the salty taste recognition threshold and the preferred salinity of beansprout soup, respectively. Men had significantly higher thresholds and preferences for salty taste than women did (p < 0.05). In women, the salty taste threshold was significantly lower in the highest tertile of available zinc intake than in the lowest tertile (12.2 mM and 17.6 mM, respectively, p = 0.02). Interestingly, a significant inverse association between available zinc intake and salty taste threshold was found only in women with αENaC AA homozygotes (β = −0.833, p = 0.02), and no such association was found in T663 allele carriers. The salty taste preference was not associated with the αENaC A663T genotype or available zinc intake in either sex. In conclusion, our data suggest that gene-nutrient interactions between the αENaC A663T genotype and available zinc intake play a role in determining the salty taste acuity in young women. PMID:24317554

  9. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging.

    PubMed

    de Souza, Ana Cristina; Dias, Ana M A; Sousa, Hermínio C; Tadini, Carmen C

    2014-02-15

    In this work, supercritical solvent impregnation (SSI) has been tested for the incorporation of natural compounds into biocomposite materials for food packaging. Cinnamaldehyde, with proved antimicrobial activity against fungi commonly found in bread products, was successfully impregnated on biocomposite cassava starch based materials using supercritical carbon dioxide as solvent. Different process experimental conditions were tested (pressure, impregnation time and depressurization rate) at a fixed temperature (35 °C) in order to study their influence on the amount of impregnated cinnamaldehyde as well as on the morphology of the films. Results showed that all conditions permitted to impregnate antimicrobial active amounts superior to those previously obtained using conventional incorporation methods. Moreover, a significant decrease of the equilibrium water vapor sorption capacity and water vapor permeability of the films was observed after SSI processing which is a clear advantage of the process, considering the envisaged applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Effects of Sweet, Bitter, Salty and Sour Stimuli on Alpha Rhythm. A Meg Study.

    PubMed

    Kotini, Athanasia; Anninos, Photios; Gemousakakis, Triandafillos; Adamopoulos, Adam

    2016-09-01

    the possible diff erences in processing gustatory stimuli in healthy subjects was investigated by magnetoencephalography (meg). meg recordings were evaluated for 10 healthy volunteers (3 men within the age range 20-46 years, 7 women within the age range 10-28 years), with four diff erent gustatory stimuli: sweet, bi" er, sour and salty. Fast fourier transform was performed on meg epochs recorded for the above conditions and the eff ect of each kind of stimuli on alpha rhythm was examined. A significant higher percent of alpha power was found irrespective of hemispheric side in all gustatory states located mainly at the occipital, le$ and right parietal lobes. One female volunteer experienced no statistically signifi cance when comparing normal with salty and sour taste respectively. Two female volunteers exhibited no statistically signifi cance when comparing their normal with their salty taste. One male volunteer experienced no statistically signifi cance when comparing the normalbitter and normal-salty states correspondingly. All the other subjects showed statistically signifi cant changes in alpha power for the 4 gustatory stimuli. The pattern of activation caused by the four stimuli indicated elevated gustatory processing mechanisms. This cortical activation might have applicability in modulation of brain status.

  11. Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Johnson, Christine E.; Rasky, Daniel J.; Hui, Frank C. L.; Hsu, Ming-Ta; Chen, Timothy; Chen, Y. K.; Paragas, Daniel; Kobayashi, Loreen

    1997-01-01

    This paper presents the development of the light weight Phenolic Impregnated Carbon Ablators (PICA) and its thermal performance in a simulated heating environment for planetary entry vehicles. The PICA material was developed as a member of the Light Weight Ceramic Ablators (LCA's), and the manufacturing process of this material has since been significantly improved. The density of PICA material ranges from 14 to 20 lbm/ft(exp 3), having uniform resin distribution with and without a densified top surface. The thermal performance of PICA was evaluated in the Ames arc-jet facility at cold wall heat fluxes from 375 to 2,960 BtU/ft(exp 2)-s and surface pressures of 0.1 to 0.43 atm. Heat loads used in these tests varied from 5,500 to 29,600 BtU/ft(exp 2) and are representative of the entry conditions of the proposed Discovery Class Missions. Surface and in-depth temperatures were measured using optical pyrometers and thermocouples. Surface recession was also measured by using a template and a height gage. The ablation characteristics and efficiency of PICA are quantified by using the effective heat of ablation, and the thermal penetration response is evaluated from the thermal soak data. In addition, a comparison of thermal performance of standard and surface densified PICA is also discussed.

  12. Catalytic fast pyrolysis of biomass impregnated with potassium phosphate in a hydrogen atmosphere for the production of phenol and activated carbon

    NASA Astrophysics Data System (ADS)

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-02-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550 oC in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1605 m2/g.

  13. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon.

    PubMed

    Lu, Qiang; Zhang, Zhen-Xi; Wang, Xin; Guo, Hao-Qiang; Cui, Min-Shu; Yang, Yong-Ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K 3 PO 4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K 3 PO 4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K 3 PO 4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO 2 activation method, the specific surface area was as high as 1,605 m 2 /g.

  14. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. J.; Dispennette, J. M.; Blank, E.; Kolb, A. C.

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH[sub 3]CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  15. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C Joseph [San Diego, CA; Dispennette, John M [Oceanside, CA; Blank, Edward [San Diego, CA; Kolb, Alan C [Rancho Santa Fe, CA

    1999-05-25

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  16. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  17. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C.J.; Dispennette, J.M.; Blank, E.; Kolb, A.C.

    1999-01-19

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator sleeve is inserted over the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH{sub 3}CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals. 32 figs.

  18. Salty and spicy food; are they involved in the pathogenesis of acne vulgaris? A case controlled study.

    PubMed

    El Darouti, M A; Zeid, O A; Abdel Halim, D M; Hegazy, R A; Kadry, D; Shehab, D I; Abdelhaliem, H S; Saleh, M A

    2016-06-01

    Many studies have suggested a strong relation between diet and acne. Many patients with acne believe that spicy and salty foods exacerbate acne. To assess the relationship between the dietary intake of salty and spicy food and the onset, severity, duration of acne. Two hundred patients with acne vulgaris and 200 age- and gender-matched controls were subjected to a detailed questionnaire taking, clinical examination and dietary assessment through using "24 h recall" method. Sodium content of the 24-h food intake was computed by a computer program connecting participants' dietary information to the food composition table of National Nutrition Institute data base. Patients with acne consumed significantly higher daily amounts of sodium chloride (NaCl) (median 3367.54 mg) compared to the controls (median 2271.8 mg) (P < 0.001). A negative correlation between the amount of NaCl in the diet of patients with acne and the age of onset of acne lesions was detected (r = -0.216, P = 0.031). However, neither salty nor spicy food correlated with duration or severity of the disease. Consumption of salty foods was significantly higher among patients with acne compared to acne free subjects, making the consumption of salty food a possible participating factor in the development of acne. © 2015 Wiley Periodicals, Inc.

  19. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    NASA Astrophysics Data System (ADS)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  20. Process for preparing tapes from thermoplastic polymers and carbon fibers

    NASA Technical Reports Server (NTRS)

    Chung, Tai-Shung (Inventor); Furst, Howard (Inventor); Gurion, Zev (Inventor); McMahon, Paul E. (Inventor); Orwoll, Richard D. (Inventor); Palangio, Daniel (Inventor)

    1986-01-01

    The instant invention involves a process for use in preparing tapes or rovings, which are formed from a thermoplastic material used to impregnate longitudinally extended bundles of carbon fibers. The process involves the steps of (a) gas spreading a tow of carbon fibers; (b) feeding the spread tow into a crosshead die; (c) impregnating the tow in the die with a thermoplastic polymer; (d) withdrawing the impregnated tow from the die; and (e) gas cooling the impregnated tow with a jet of air. The crosshead die useful in the instant invention includes a horizontally extended, carbon fiber bundle inlet channel, means for providing melted polymer under pressure to the die, means for dividing the polymeric material flowing into the die into an upper flow channel and a lower flow channel disposed above and below the moving carbon fiber bundle, means for applying the thermoplastic material from both the upper and lower channels to the fiber bundle, and means for withdrawing the resulting tape from the die.

  1. Salty Anomalies Forced by Central American Gap Winds: Aquarius Observations

    NASA Astrophysics Data System (ADS)

    Grodsky, S. A.; Carton, J.; Bentamy, A.

    2014-12-01

    Although upwelling normally doesn't have direct impact on the sea surface salinity (SSS), we present observational evidence of upwelling-induced SSS patterns off the Pacific Central American coast. This area is characterized by stable near-surface salinity stratification that is produced by the mixed layer dilution by local rainfall. Here the fresh and warm mixed layer is periodically disrupted by the gap wind-induced uplifts of colder and saltier water. Aquarius SSS data capture these high SSS events. In boreal winter when the intense gap winds are frequent, two tongues of anomalously salty water develop off the Gulfs of Tehuantepec and Papagayo. During that season the average SSS in the meridionally oriented Tehuantepec tongue is about 0.4 psu saltier than background SSS. The zonally elongated Papagayo tongue stands out even more strongly, being 1 to 2 psu saltier than SSS in the neighboring Panama Bight. The spatial locations and orientations of these salty tongues closely correspond to the locations and orientations of the cool SST tongues suggesting they have similar governing mechanisms.

  2. FIELD STUDIES OF IMPREGNATED CONCRETE PIPE

    EPA Science Inventory

    The follow-on study (initiated in June 1980) continued to monitor performance of 1,400 ft of impregnated concrete pipe installed in several Texas cities. The performance of concrete pipe has been compared with that of sulfur-impregnated concrete pipe; hydrofluoric acid (HF)-treat...

  3. Activated carbon production from bagasse and banana stem at various times of carbonization

    NASA Astrophysics Data System (ADS)

    Misran, E.; Maulina, S.; Dina, S. F.; Nazar, A.; Harahap, S. A.

    2018-02-01

    The utilization of bagasse and banana stem as activated carbon precursors has been conducted. In this study, the dried samples were impregnated using phosphoric acid (H3PO4) solution as the activator at a ratio of sample to the activator (w/w) was 1:1. The impregnation was conducted at room temperature for 24 hours. The samples then carbonized at 400 °C for 30, 45 and 60 minutes and finally washed and dried to obtain the activated carbon. The research aimed to investigate the effects of time of carbonization on the characteristics of activated carbon produced from bagasse and banana stem. The result showed that yield of activated carbon was in the range of 40.03 - 46.73 % with a high content of carbon as high 90.33 %. The result of BET analysis showed that the highest surface area reached1130.465 m2/g.

  4. IMPREGNATION OF GRAPHITE SPECIMENS USING THE FURFURYL ALCOHOL IMPREGNATION PROCESS. Project DRAGON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martina, R.A.; Vohler, O.J.

    1964-11-15

    This report gives the results of the furfuryl alcohol impregnation treatment of graphite fuel rods and end plugs done by Sigri Kohlefabrikate GmbH, Meitingen, from May 1962 till April 1964. By impregnating the components two and three times, resp. the permeability was decreased, starting from a coefficient of about 5 x 10{sup -2}cm{sup 2}sec{sup -1}, to a value of 10{sup -6} - 10{sup -7}cm{sup 2}sec{sup -1}. The rejects as occured with the first batches were finally diminished to a negligible amount by studying the single steps of treatment. (auth)

  5. Catalytic Fast Pyrolysis of Biomass Impregnated with Potassium Phosphate in a Hydrogen Atmosphere for the Production of Phenol and Activated Carbon

    PubMed Central

    Lu, Qiang; Zhang, Zhen-xi; Wang, Xin; Guo, Hao-qiang; Cui, Min-shu; Yang, Yong-ping

    2018-01-01

    A new technique was proposed to co-produce phenol and activated carbon (AC) from catalytic fast pyrolysis of biomass impregnated with K3PO4 in a hydrogen atmosphere, followed by activation of the pyrolytic solid residues. Lab-scale catalytic fast pyrolysis experiments were performed to quantitatively determine the pyrolytic product distribution, as well as to investigate the effects of several factors on the phenol production, including pyrolysis atmosphere, catalyst type, biomass type, catalytic pyrolysis temperature, and catalyst impregnation content. In addition, the pyrolytic solid residues were activated to prepare ACs with high specific surface areas. The results indicated that phenol could be obtained due to the synergistic effects of K3PO4 and hydrogen atmosphere, with the yield and selectivity reaching 5.3 wt% and 17.8% from catalytic fast pyrolysis of poplar wood with 8 wt% K3PO4 at 550°C in a hydrogen atmosphere. This technique was adaptable to different woody materials for phenol production. Moreover, gas product generated from the pyrolysis process was feasible to be recycled to provide the hydrogen atmosphere, instead of extra hydrogen supply. In addition, the pyrolytic solid residue was suitable for AC preparation, using CO2 activation method, the specific surface area was as high as 1,605 m2/g. PMID:29515994

  6. Hydrogen sorption and permeability of compacted LiBH4 nanoconfined into activated carbon nanofibers impregnated with TiO2

    NASA Astrophysics Data System (ADS)

    Sitthiwet, Chongsutthamani; Thiangviriya, Sophida; Thaweelap, Natthaporn; Meethom, Sukanya; Kaewsuwan, Dechmongkhon; Chanlek, Narong; Utke, Rapee

    2017-11-01

    Activated carbon nanofibers impregnated with titanium (IV) oxide (TiO2), denoted as ACNF-Ti are prepared by carbonization and activation of electrospun nanofibers of polyacrylonitrile (PAN)-titanium (IV) isopropoxide composite. Pristine LiBH4 and nanoconfined LiBH4 in ACNF-Ti, denoted as LiBH4-ACNF-Ti are compacted under the pressures of 434 and 868 MPa. Dehydrogenation temperature of compacted LiBH4 increases (up to 485 °C) with compaction pressure due to poor hydrogen permeability. In the case of compacted LiBH4-ACNF-Ti, major dehydrogenation temperature at 352-359 °C and hydrogen content liberated (74-76% of theoretical capacity) are obtained despite enhanced compaction pressure. Mechanical stability during cycling of compacted LiBH4-ACNF-Ti is achieved. Although hydrogen permeability of compacted LiBH4-ACNF-Ti improves with enhanced compaction pressure, detrimental kinetics and reversibility are detected. Since the fibrous structure of ACNF-Ti are brittle, the broken and/or shorten fibers are observed after compaction under high pressure. The latter results in not only inferior nanoconfinement of LiBH4 into ACNF-Ti, but also agglomeration of hydride materials upon cycling.

  7. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children.

    PubMed

    Gonçalves, Carla; Monteiro, Sérgio; Padrão, Patrícia; Rocha, Ada; Abreu, Sandra; Pinho, Olívia; Moreira, Pedro

    2014-01-01

    Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years), and preschool children recruited from a public preschool (49 children, 4.5±1.3 years). This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample) and liking (elderly and children samples) of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale ['like extremely' (1) to 'dislike extremely' (10)] and children through a five-point facial scale ['dislike very much' (1) to 'like very much' (5)]. After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150), and in perceived liking by children (p=0.160) and elderly (p=0.860). A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly.

  8. Angiotensin II modulates salty and sweet taste sensitivities.

    PubMed

    Shigemura, Noriatsu; Iwata, Shusuke; Yasumatsu, Keiko; Ohkuri, Tadahiro; Horio, Nao; Sanematsu, Keisuke; Yoshida, Ryusuke; Margolskee, Robert F; Ninomiya, Yuzo

    2013-04-10

    Understanding the mechanisms underlying gustatory detection of dietary sodium is important for the prevention and treatment of hypertension. Here, we show that Angiotensin II (AngII), a major mediator of body fluid and sodium homeostasis, modulates salty and sweet taste sensitivities, and that this modulation critically influences ingestive behaviors in mice. Gustatory nerve recording demonstrated that AngII suppressed amiloride-sensitive taste responses to NaCl. Surprisingly, AngII also enhanced nerve responses to sweeteners, but had no effect on responses to KCl, sour, bitter, or umami tastants. These effects of AngII on nerve responses were blocked by the angiotensin II type 1 receptor (AT1) antagonist CV11974. In behavioral tests, CV11974 treatment reduced the stimulated high licking rate to NaCl and sweeteners in water-restricted mice with elevated plasma AngII levels. In taste cells AT1 proteins were coexpressed with αENaC (epithelial sodium channel α-subunit, an amiloride-sensitive salt taste receptor) or T1r3 (a sweet taste receptor component). These results suggest that the taste organ is a peripheral target of AngII. The specific reduction of amiloride-sensitive salt taste sensitivity by AngII may contribute to increased sodium intake. Furthermore, AngII may contribute to increased energy intake by enhancing sweet responses. The linkage between salty and sweet preferences via AngII signaling may optimize sodium and calorie intakes.

  9. Salt reduction in vegetable soup does not affect saltiness intensity and liking in the elderly and children

    PubMed Central

    Gonçalves, Carla; Monteiro, Sérgio; Padrão, Patrícia; Rocha, Ada; Abreu, Sandra; Pinho, Olívia; Moreira, Pedro

    2014-01-01

    Study background Reduction of added salt levels in soups is recommended. We evaluated the impact of a 30% reduction of usual added salt in vegetable soups on elderly and children's saltiness and liking evaluation. Methods Subjects were elderly and recruited from two public nursing homes (29 older adults, 79.7±8.9 years), and preschool children recruited from a public preschool (49 children, 4.5±1.3 years). This study took place in institutional lunchrooms. Through randomization and crossover, the subjects participated in two sensory evaluation sessions, on consecutive days, to assess perceived saltiness intensity (elderly sample) and liking (elderly and children samples) of a vegetable soup with baseline salt content and with a 30% salt reduction. Elderly rated perceived liking through a 10 cm visual analogue scale [‘like extremely’ (1) to ‘dislike extremely’ (10)] and children through a five-point facial scale [‘dislike very much’ (1) to ‘like very much’ (5)]. Results After 30% added salt reduction in vegetable soup, there were no significant differences in saltiness noted by the elderly (p=0.150), and in perceived liking by children (p=0.160) and elderly (p=0.860). Conclusions A 30% salt reduction in vegetable soup may be achieved without compromising perceived saltiness and liking in children and the elderly. PMID:25317121

  10. Numerical analysis of the effect of the kind of activating agent and the impregnation ratio on the parameters of the microporous structure of the active carbons

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, Mirosław

    2015-09-01

    The paper presents the results of the research on the application of the LBET class adsorption models with the fast multivariant identification procedure as a tool for analysing the microporous structure of the active carbons obtained by chemical activation using potassium and sodium hydroxides as an activator. The proposed technique of the fast multivariant fitting of the LBET class models to the empirical adsorption data was employed particularly to evaluate the impact of the used activator and the impregnation ratio on the obtained microporous structure of the carbonaceous adsorbents.

  11. Extraction of organic materials from red water by metal-impregnated lignite activated carbon.

    PubMed

    Wei, Fangfang; Zhang, Yihe; Lv, Fengzhu; Chu, Paul K; Ye, Zhengfang

    2011-12-15

    Extraction of organic materials from 2,4,6-trinitrotoluene (TNT) red water by lignite activated carbon (LAC) impregnated with Cu(2+), Ba(2+), Sn(2+), Fe(3+), Ca(2+) and Ag(+) was investigated. The affinity to organic materials in red water was found to follow the order: Cu/LAC>Sn/LAC>Ag/LAC>Ba/LAC>Fe/LAC>Ca/LAC, which was explained by the hard and soft acid base (HSAB) theory. Cu(2+) showed the best performance and several parameters were further studied. X-ray photoelectron spectroscopy (XPS) verified effective loading of Cu(2+) on the LAC surface. The water quality before and after treated by Cu/LAC was evaluated using high performance liquid chromatograph, Gas Chromatography/Mass Spectroscopy (GC/MS), UV-vis spectroscopy and other analyses. The extraction performances and mechanism of organic materials on Cu/LAC were investigated through static methods. The experimental results showed that Cu/LAC possessed stronger extraction ability for the sulfonated nitrotoluenes than the non-sulfonated nitrotoluenes, the kinetic data fitted the pseudo-second-order kinetic model well. In addition, the leaching out of Cu(2+) from Cu/LAC was found much lower in the 100 times diluted red water (0.074%) than in the raw water (10.201%). Column adsorptions with more concentrated red water were also studied. Finally, Cu/LAC was observed to possess excellent reusability as well. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Sustaining Phenolic Impregnated Carbon Ablator (PICA) TPS for Future NASA Robotic Science Missions Including NF-4 and Discovery

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; Stackpoole, M.; Violette, S.

    2018-01-01

    Phenolic Impregnated Carbon Ablator (PICA), invented in the mid 1990s, is a low-density ablative thermal protection material proven capable of meeting sample return mission needs from the moon, asteroids, comets and other unrestricted class V destinations as well as for Mars. Its low density and efficient performance characteristics have proven effective for use from Discovery to Flagship class missions. It is important that NASA maintain this TPS material capability and ensure its availability for future NASA use. The rayon based carbon precursor raw material used in PICA preform manufacturing required replacement and requalification at least twice in the past 25 years and a third substitution is now needed. The carbon precursor replacement challenge is twofold the first involves finding a long-term replacement for the current rayon and the second is to assess its future availability periodically to ensure it is sustainable and be alerted if additional replacement efforts need to be initiated. Rayon is no longer a viable process in the US and Europe due to environmental concerns. In the early 80s rayon producers began investigating a new method of producing a cellulosic fiber through a more environmentally responsible process. This cellulosic fiber, lyocell, is a viable replacement precursor for PICA fiberform. This presentation reviews current SMD-PSD funded PICA sustainability activities in ensuring a rayon replacement for the long term is identified and in establishing that the capability of the new PICA derived from an alternative precursor is in family with previous versions of the so called heritage PICA.

  13. Improving Cull Cow Meat Quality Using Vacuum Impregnation.

    PubMed

    Leal-Ramos, Martha Y; Alarcón-Rojo, Alma D; Gutiérrez-Méndez, Néstor; Mújica-Paz, Hugo; Rodríguez-Almeida, Felipe; Quintero-Ramos, Armando

    2018-05-07

    Boneless strip loins from mature cows (50 to 70 months of age) were vacuum impregnated (VI) with an isotonic solution (IS) of sodium chloride. This study sought to determine the vacuum impregnation and microstructural properties of meat from cull cows. The experiments were conducted by varying the pressure, p 1 (20.3, 71.1 kPa), and time, t 1 (0.5, 2.0, 4.0 h), of impregnation. After the VI step, the meat was kept for a time, t 2 (0.0, 0.5, 2.0, 4.0 h), in the IS under atmospheric pressure. The microstructural changes, impregnation, deformation, and porosity of the meat were measured in all the treatments. Impregnation and deformation levels in terms of volume fractions of the initial sample at the end of the vacuum step and the VI processes were calculated according to the mathematical model for deformation-relaxation and hydrodynamic mechanisms. Scanning electron microscopy (SEM) was used to study the microstructure of the vacuum-impregnated meat samples. Results showed that both the vacuum and atmospheric pressures generated a positive impregnation and deformation. The highest values of impregnation X (10.5%) and deformation γ (9.3%) were obtained at p 1 of 71.1 kPa and t 1 of 4.0 h. The sample effective porosity ( ε e ) exhibited a significant interaction ( p < 0.01) between p 1 × t 1 . The highest ε e (14.0%) was achieved at p 1 of 20.3 kPa and t 1 of 4.0 h, whereas the most extended distension of meat fibers (98 μm) was observed at the highest levels of p ₁, t ₁, and t ₂. These results indicate that meat from mature cows can undergo a vacuum-wetting process successfully, with an IS of sodium chloride to improve its quality.

  14. Salty-snack eating, television or video-game viewing, and asthma symptoms among 10- to 12-year-old children: the PANACEA study.

    PubMed

    Arvaniti, Fotini; Priftis, Kostas N; Papadimitriou, Anastasios; Yiallouros, Panayiotis; Kapsokefalou, Maria; Anthracopoulos, Michael B; Panagiotakos, Demosthenes B

    2011-02-01

    Salty-snack consumption, as well as the amount of time children spend watching television or playing video games, have been implicated in the development of asthma; however, results are still conflicting. The aim of this work was to evaluate the association of salty-snack eating and television/video-game viewing with childhood asthma symptoms. Cross-sectional study. Seven hundred children (323 male), 10 to 12 years old, from 18 schools located in the greater area of Athens were enrolled. Children and their parents completed questionnaires, which evaluated, among other things, dietary habits. Adherence to the Mediterranean diet was evaluated using the KIDMED (Mediterranean Diet Quality Index for Children and Adolescents) score. The association of children's characteristics with asthma symptoms was performed by calculating the odds ratios and corresponding 95% confidence intervals. Overall lifetime prevalence of asthma symptoms was 23.7% (27.6% boys, 20.4% girls; P=0.03). Forty-eight percent of children reported salty-snack consumption (≥ 1 times/week). Salty-snack consumption was positively associated with the hours of television/video-game viewing (P=0.04) and inversely with the KIDMED score (P=0.02). Consumption of salty snacks (>3 times/week vs never/rare) was associated with a 4.8-times higher likelihood of having asthma symptoms (95% confidence interval: 1.50 to 15.8), irrespective of potential confounders. The associations of salty-snack eating and asthma symptoms were more prominent in children who watched television or played video games >2 hours/day. In addition, adherence to the Mediterranean diet was inversely associated with the likelihood of asthma symptoms. Unhealthy lifestyle behaviors, such as salty-snack eating and television/video-game viewing were strongly associated with the presence of asthma symptoms. Future interventions and public health messages should be focused on changing these behaviors from the early stages of life. Copyright © 2011

  15. The bactericidal activity of glutaraldehyde-impregnated polyurethane.

    PubMed

    Sehmi, Sandeep K; Allan, Elaine; MacRobert, Alexander J; Parkin, Ivan

    2016-10-01

    Although glutaraldehyde is known to be bactericidal in solution, its potential use to create novel antibacterial polymers suitable for use in healthcare environments has not been evaluated. Here, novel materials were prepared in which glutaraldehyde was either incorporated into polyurethane using a simple "swell-encapsulation-shrink" method (hereafter referred to as "glutaraldehyde-impregnated polyurethane"), or simply applied to the polymer surface (hereafter referred to as "glutaraldehyde-coated polyurethane"). The antibacterial activity of glutaraldehyde-impregnated and glutaraldehyde-coated polyurethane samples was tested against Escherichia coli and Staphylococcus aureus. Glutaraldehyde-impregnated polyurethane resulted in a 99.9% reduction in the numbers of E. coli within 2 h and a similar reduction of S. aureus within 1 h, whereas only a minimal reduction in bacterial numbers was observed when the biocide was bound to the polymer surface. After 15 days, however, the bactericidal activity of the impregnated material was substantially reduced presumably due to polymerization of glutaraldehyde. Thus, although glutaraldehyde retains antibacterial activity when impregnated into polyurethane, activity is not maintained for extended periods of time. Future work should examine the potential of chemical modification of glutaraldehyde and/or polyurethane to improve the useful lifespan of this novel antibacterial polymer. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  17. Preferences for Salty and Sweet Tastes Are Elevated and Related to Each Other during Childhood

    PubMed Central

    Mennella, Julie A.; Finkbeiner, Susana; Lipchock, Sarah V.; Hwang, Liang-Dar; Reed, Danielle R.

    2014-01-01

    Background The present study aimed to determine if salty and sweet taste preferences in children are related to each other, to markers of growth, and to genetic differences. Methods We conducted a 2-day, single-blind experimental study using the Monell two-series, forced-choice, paired-comparison tracking method to determine taste preferences. The volunteer sample consisted of a racially/ethnically diverse group of children, 5–10 years of age (n = 108), and their mothers (n = 83). After excluding those mothers who did not meet eligibility and children who did not understand or comply with study procedures, the final sample was 101 children and 76 adults. The main outcome measures were most preferred concentration of salt in broth and crackers; most preferred concentration of sucrose in water and jelly; reported dietary intake of salty and sweet foods; levels of a bone growth marker; anthropometric measurements such as height, weight, and percent body fat; and TAS1R3 (sweet taste receptor) genotype. Results Children preferred higher concentrations of salt in broth and sucrose in water than did adults, and for both groups, salty and sweet taste preferences were significantly and positively correlated. In children, preference measures were related to reported intake of sodium but not of added sugars. Children who were tall for their age preferred sweeter solutions than did those that were shorter and percent body fat was correlated with salt preference. In mothers but not in children, sweet preference correlated with TAS1R3 genotype. Conclusions and Relevance For children, sweet and salty taste preferences were positively correlated and related to some aspects of real-world food intake. Complying with recommendations to reduce added sugars and salt may be more difficult for some children, which emphasizes the need for new strategies to improve children's diets. PMID:24637844

  18. Preferences for salty and sweet tastes are elevated and related to each other during childhood.

    PubMed

    Mennella, Julie A; Finkbeiner, Susana; Lipchock, Sarah V; Hwang, Liang-Dar; Reed, Danielle R

    2014-01-01

    The present study aimed to determine if salty and sweet taste preferences in children are related to each other, to markers of growth, and to genetic differences. We conducted a 2-day, single-blind experimental study using the Monell two-series, forced-choice, paired-comparison tracking method to determine taste preferences. The volunteer sample consisted of a racially/ethnically diverse group of children, 5-10 years of age (n = 108), and their mothers (n = 83). After excluding those mothers who did not meet eligibility and children who did not understand or comply with study procedures, the final sample was 101 children and 76 adults. The main outcome measures were most preferred concentration of salt in broth and crackers; most preferred concentration of sucrose in water and jelly; reported dietary intake of salty and sweet foods; levels of a bone growth marker; anthropometric measurements such as height, weight, and percent body fat; and TAS1R3 (sweet taste receptor) genotype. Children preferred higher concentrations of salt in broth and sucrose in water than did adults, and for both groups, salty and sweet taste preferences were significantly and positively correlated. In children, preference measures were related to reported intake of sodium but not of added sugars. Children who were tall for their age preferred sweeter solutions than did those that were shorter and percent body fat was correlated with salt preference. In mothers but not in children, sweet preference correlated with TAS1R3 genotype. For children, sweet and salty taste preferences were positively correlated and related to some aspects of real-world food intake. Complying with recommendations to reduce added sugars and salt may be more difficult for some children, which emphasizes the need for new strategies to improve children's diets.

  19. Apparatus for coating and impregnating filament with resin

    DOEpatents

    Robinson, S.C.; Pollard, R.E.

    1986-12-17

    The present invention is directed to an apparatus for evenly coating and impregnating a filament with binder material. Dimension control and repeatability of the coating and impregnating characteristics are obtained with the apparatus.

  20. Carbon Nanotube-Enhanced Carbon-Phenenolic Ablator Material

    NASA Technical Reports Server (NTRS)

    Kikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B. A.; Waid, M.; Moloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.

    2006-01-01

    This viewgraph presentation reviews the use of PICA (phenolic impregnated carbon ablator) as the selected material for heat shielding for future earth return vehicles. It briefly reviews the manufacturing of PICA and the advantages for the use of heat shielding, and then explains the reason for using Carbon Nanotubes to improve strength of phenolic resin that binds carbon fibers together. It reviews the work being done to create a carbon nanotube enhanced PICA. Also shown are various micrographic images of the various PICA materials.

  1. Effect of Heavy Consumption of Alcoholic Beverages on the Perception of Sweet and Salty Taste.

    PubMed

    Silva, Camile S; Dias, Vaneria R; Almeida, Juliane A Regis; Brazil, Jamile M; Santos, Ramon A; Milagres, Maria P

    2016-05-01

    To determine the threshold index of sweet and salty tastes in alcoholics undergoing treatment. Taste threshold was assessed using type 3-Alternative Forced Choice in a control group (92 non-alcoholic volunteers) and a test group (92 alcoholics in therapy). The test group completed a structured questionnaire on lifestyle and habits. Significant difference were found between the threshold rates found in the test (3.78) and control groups (1.39). In the salty stimulus, no significant difference was noted in the threshold detection between the control (0.17) and test groups (0.30). A significant correlation was observed between the index Pearson's threshold to sweet taste in the test group and their reported alcohol consumption. The test group reported characteristics such as loss of appetite (93%), weight loss during consumption (62%) and weight gain after quitting drinking (72%). That the alcoholic group reported less sensitivity to sweet taste suggests that drinking habits may influence choice of foods, with a greater preference for foods with higher sucrose concentration. This contribute to poor health, because excess consumption of sugar raises risk for several diseases. No conclusive results were found for the salty stimulus. © The Author 2015. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  2. Utilization of rice-husk and coconut shell carbons for water disinfection.

    PubMed

    Carmalin Sophia, A; Catherine, D; Bhalambaal, V M

    2013-01-01

    In the present study, experiments were conducted to investigate the feasibility of using carbon derived from rice husk and coconut shell for the decontamination of water containing Escherichia coli (E. coli). The effects of silver impregnation on these agro-waste carbons were also investigated. All the carbons showed >99% removal of E coli. Among the four carbons studied, rice husk based carbon (RHC) showed better removal than the other carbons investigated. However, silver impregnated carbons showed only marginal increase in the decontamination experiments. SEM and BET results reveal that the carbons were mesoporous in nature. FTIR shows the presence of functional groups viz. C=O and -OH that might be responsible.for adsorption of E. coli on the carbon.

  3. Impregnation of Composite Materials: a Numerical Study

    NASA Astrophysics Data System (ADS)

    Baché, Elliott; Dupleix-Couderc, Chloé; Arquis, Eric; Berdoyes, Isabelle

    2017-12-01

    Oxide ceramic matrix composites are currently being developed for aerospace applications such as the exhaust, where the parts are subject to moderately high temperatures (≈ 700 ∘C) and oxidation. These composite materials are normally formed by, among other steps, impregnating a ceramic fabric with a slurry of ceramic particles. This impregnation process can be complex, with voids possibly forming in the fabric depending on the process parameters and material properties. Unwanted voids or macroporosity within the fabric can decrease the mechanical properties of the parts. In order to design an efficient manufacturing process able to impregnate the fabric well, numerical simulations may be used to design the process as well as the slurry. In this context, a tool is created for modeling different processes. Thétis, which solves the Navier-Stokes-Darcy-Brinkman equation using finite volumes, is expanded to take into account capillary pressures on the mesoscale. This formulation allows for more representativity than for Darcy's law (homogeneous preform) simulations while avoiding the prohibitive simulation times of a full discretization for the composing fibers at the representative elementary volume scale. The resulting tool is first used to investigate the effect of varying the slurry parameters on impregnation evolution. Two different processes, open bath impregnation and wet lay-up, are then studied with emphasis on varying their input parameters (e.g. inlet velocity).

  4. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  5. Exploring New Phenomena in Salty Water Under Planetary Conditions

    NASA Astrophysics Data System (ADS)

    Goncharov, A. F.; Bove, L. E.; Klotz, S.; Gaal, R.; Saitta, A. M.; Gillet, P.

    2015-12-01

    Compressed water is overspread on Earth at depth and in the extra-terrestrial space, both interstellar and on outer planets and moons (ice bodies) [1]. Under the conditions experienced in these celestial bodies water displays an incredibly rich phase diagram, including sixteen known crystalline phases, three amorphous ones, and predicted exotic properties like plasticity [2], ionization [3], and superionicity [4]. In this talk I will review our recent experimental results on salty (LiCl, NaCl, MgCl2) water under extreme conditions including: plasticity [5], pressure-induced polyamorphism [6], salty ice crystallization under high pressure [7], and hydrogen bond symmetrisation at Mbar pressures [8]. [1] De Pater, I., and Lissauer, J.J. Planetary Sciences. Cambridge University Press (2004). [2] Wang, Y., Liu, H., et al. Nat. Comm. 563 1566 (2011).[3] Aragones, L., and Vega, C., J. Chem. Phys. 130, 244504 (2009).[4] Cavazzoni, C., et al., Science 283, 44-46 (1999).[5] Bove, L. E., Dreyfus, C. et al., JCP 139, 044501 (2013) ; Ruiz, G. N., Bove, L. E. et al., PCCP 16 18553-18562 (2014).[6] Bove, L. E., Klotz, S. et al., Phys. Rev. Lett. 106, 125701 (2011); Ludl, A. A., Bove, L. E. et al., PCCP 17, 14054 (2015). [7] Klotz, S., Bove, L. E. t al., Nat. Mat. 8, 405 (2009) ; Ludl A. A., Bove, L. E., submitted (2015).[8] Bove L. E. , Gaal, R. et al., PNAS 112, 27 (2015).

  6. Polymer-impregnated bridge slabs : performance over 10 years.

    DOT National Transportation Integrated Search

    1990-01-01

    This report presents the results of a study to evaluate the performance over a 10-year period of slabs that were impregnated to a depth of about 1 in with a monomer that was subsequently polymerized (shallow polymer impregnation). The slabs were used...

  7. Study of porous silicon optical waveguides impregnated with organic dyes

    NASA Astrophysics Data System (ADS)

    Pirasteh, P.; Charrier, J.; Dumeige, Y.; Chaillou, A.; Guendouz, M.; Haji, L.

    2007-01-01

    Planar waveguides were made using oxidised porous silicon layers. Then, they were impregnated with Congo Red or Disperse Red 1 dyes. Optical losses were investigated before and after impregnation. In our case, the losses of impregnated waveguides were always higher than those of non-impregnated ones. In order to achieve a better understanding of the origin of these losses, we not only studied the absorbance of solutions which would impregnate the porous layers but also the reflectance spectra of the obtained composite materials. According to the measurements, the increase in losses in the visible spectrum depends on the intrinsic absorption of the dye while in NIR, the increase would be due to an accumulation of dried dye on the surface of the waveguide which would give rise to the surface scattering losses.

  8. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    PubMed

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  9. Carbon Dioxide (CO2) Adsorption by Activated Carbon Functionalized with Deep Eutectic Solvent (DES)

    NASA Astrophysics Data System (ADS)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2017-06-01

    In recent years, carbon dioxide (CO2) emission has become a major concern as the amount of the emitted gas significantly increases annually. Consequently, this phenomenon contributes to global warming. Several CO2 capture methods, including chemical adsorption by activated carbon, have been proposed. In this study, activated carbon was prepared from sea mango (Cerbera odollam), which was functionalized with deep eutectic solvent (DES) composed of choline chloride and glycerol to increase the efficiency of CO2 capture. The samples underwent pre-carbonization and carbonization processes at 200 °C and 500 °C, respectively, with nitrogen gas and flowing several gases, namely, CO2 and steam, and then followed by impregnation with 50 phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratio. The prepared activated carbon was impregnated with DES at 1:2 precursor-to-activant ratio. The optimum CO2 adsorption capacity of the activated carbon was obtained by using CO2 gas treatment method (9.851 mgCO2/gsol), followed by the absence of gases (9.685 mgCO2/gsol), steam (9.636 mgCO2/gsol), and N2 (9.536 mgCO2/gsol).

  10. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  11. A Modeling Approach to Fiber Fracture in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Zhang, Cong; Yu, Yang; Xin, Chunling; Tang, Ke; He, Yadong

    2017-02-01

    The effect of process variables such as roving pulling speed, melt temperature and number of pins on the fiber fracture during the processing of thermoplastic based composites was investigated in this study. The melt impregnation was used in this process of continuous glass fiber reinforced thermoplastic composites. Previous investigators have suggested a variety of models for melt impregnation, while comparatively little effort has been spent on modeling the fiber fracture caused by the viscous resin. Herein, a mathematical model was developed for impregnation process to predict the fiber fracture rate and describe the experimental results with the Weibull intensity distribution function. The optimal parameters of this process were obtained by orthogonal experiment. The results suggest that the fiber fracture is caused by viscous shear stress on fiber bundle in melt impregnation mold when pulling the fiber bundle.

  12. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOEpatents

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward; Kolb, Alan C.

    2002-09-17

    A single cell, multi-electrode high performance double layer capacitor includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodes are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two parts of the capacitor case are conductive and function as the capacitor terminals.

  13. Method of making a multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farahmandi, C. Joseph; Dispennette, John M.; Blank, Edward

    A method of making a double layer capacitior includes first and second flat stacks of electrodes adapted to be housed in a closeable two-part capacitor case which includes only a single electrolyte seal. Each electrode stack has a plurality of electrodes connected in parallel, with the electrodes of one stack being interleaved with the electrodes of the other stack to form an interleaved stack, and with the electrodes of each stack being electrically connected to respective capacitor terminals. A porous separator is positioned against the electrodes of one stack before interleaving to prevent electrical shorts between the electrodes. The electrodesmore » are made by folding a compressible, low resistance, aluminum-impregnated carbon cloth, made from activated carbon fibers, around a current collector foil, with a tab of the foils of each electrode of each stack being connected in parallel and connected to the respective capacitor terminal. The height of the interleaved stack is somewhat greater than the inside height of the closed capacitor case, thereby requiring compression of the interleaved electrode stack when placed inside of the case, and thereby maintaining the interleaved electrode stack under modest constant pressure. The closed capacitor case is filled with an electrolytic solution and sealed. A preferred electrolytic solution is made by dissolving an appropriate salt into acetonitrile (CH.sub.3 CN). In one embodiment, the two arts of the capacitor case are conductive and function as the capacitor terminals.« less

  14. Adsorption and photodegradation of methylene blue by iron oxide impregnated on granular activated carbons in an oxalate solution

    NASA Astrophysics Data System (ADS)

    Kadirova, Zukhra C.; Katsumata, Ken-ichi; Isobe, Toshihiro; Matsushita, Nobuhiro; Nakajima, Akira; Okada, Kiyoshi

    2013-11-01

    The photocatalytic adsorbents BAU-OA, BAU-CL and BAU-HA with varying iron oxide content (9-10 mass%) were prepared by heat treatment at 250 °C from commercial activated carbon (BAU) impregnated with iron oxalate, chloride, tris-benzohydroxamate, respectively. The XRD patterns showed amorphous structure in the BAU-CL sample (SBET 50 m2/g) and low crystallinity (as FeOOH and Fe2O3 phases) in the BAU-HA and BAU-OA samples (SBET 4 and 111 m2/g, respectively). The methylene blue adsorption capacities was decreased in order of BAU-OA < BAU-CL < BAU-HA sample and the adsorption followed Langmuir model. The apparent MB photodegradation rate constant (kapp) was increased in same order BAU-HA < BAU-CL < BAU-OA under the standard experimental conditions (initial MB concentrations 0.015-0.025 mM; sample content - 10 mg/l; initial oxalic acid concentration - 0.43 mM; pH 3-4; UV illumination). The process included high efficiency combination of adsorption, heterogeneous and homogeneous catalysis under UV and solar lights illumination without addition of hydrogen peroxide. The detoxification of water sample containing organic dyes was confirmed after combined sorption-photocatalytic treatment.

  15. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  16. Visibility in the Netherlands during New Year's fireworks: The role of soot and salty aerosol products

    NASA Astrophysics Data System (ADS)

    ten Brink, Harry; Henzing, Bas; Otjes, René; Weijers, Ernie

    2018-01-01

    The visibility on New Year's nights in the Netherlands is low during stagnant weather. This is due to the scattering and absorption of light by the aerosol-smoke from the fireworks. We made an assessment of the responsible aerosol-species. The investigation took place during the New Year's night of 2009. Measurements were made at a regional site in the centre of the country away from specific local sources. An Integrating Nephelometer measured the light-scattering by the inherent compounds after removal of water from the aerosol by drying the air. The actual light-scattering was determined in an open-air scatterometer; it was a factor of five higher than the ;dry; value. The difference in actual and ;dry; light-scattering can only be explained by water-uptake of the salty hygroscopic components of the aerosol. This hypothesis is substantiated by measurements of the composition of the aerosol. The size-dependent concentrations of the salty ionic species were determined on-line with a MARGA-;sizer;. These components were for a large part in particles in the size range that most effectively scatter light. The ;dry; light-scattering was exerted by the inorganic salt components and the sooty carbonaceous material alike. However, the salty products from the fireworks are hygroscopic and take up water at the high relative humidities occurring that night. This explains the fivefold larger light-scattering by the wet ambient aerosol as compared to that by the dry aerosol in the integrating nephelometer. The visibility, which is the inverse of the open-air scattering, is thus indirectly governed by the salty products of the fireworks due to their uptake of water. Under stagnant weather conditions during New Year's nights in the Netherlands both the aerosol concentrations and the relative humidity are high; this implies that the ionic species govern the low visibilities in general, be it via their uptake of water.

  17. Vacuum powder injector and method of impregnating fiber with powder

    NASA Astrophysics Data System (ADS)

    Working, Dennis C.

    1993-05-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  18. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (Inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  19. Impregnation transition in a powder

    NASA Astrophysics Data System (ADS)

    Raux, Pascal; Cockenpot, Heloise; Quere, David; Clanet, Christophe

    2011-11-01

    When an initially dry pile of micrometrical grains comes into contact with a liquid, one can observe different behaviors, function of the wetting properties. If the contact angle with the solid is low, the liquid will invade the pile (impregnation), while for higher contact angles, the grains will stay dry. We present an experimental study of this phenomenon: a dry pile of glass beads is deposed on the liquid surface, and we vary the contact angle of the liquid on the grains. We report a critical contact angle below which impregnation always occurs, and develop a model to explain its value. Different parameters modifying this critical contact angle are also investigated. Collaboration with Marco Ramaioli, Nestle Research Center, Lausanne, Switzerland.

  20. Degradation free epoxy impregnation of REBCO coils and cables

    NASA Astrophysics Data System (ADS)

    Barth, C.; Bagrets, N.; Weiss, K.-P.; Bayer, C. M.; Bast, T.

    2013-05-01

    In applications utilizing high-temperature superconductors (HTS) under high mechanical loads as high-field magnets or rotors of generators and motors, the rare-earth-barium-copper-oxide (REBCO) tapes have to be stabilized mechanically. This is achieved using support structures of structural materials and filling the voids in the support through the impregnation of the tapes. The impregnation prevents movement of the tapes and distributes mechanical loads evenly. With high mechanical strengths and low sensitivities to rapid temperature changes, epoxy resins are desired materials for the impregnation of superconductor tapes. However, a strong decrease of the current-carrying capabilities was observed in previous epoxy-impregnated REBCO coils. In this work the thermal expansion mismatches between epoxy resins and REBCO tapes are identified as the cause of these degradations. Fillers are used to reduce the thermal expansions of glues and resins. Mixtures with varying filler contents are analyzed systematically. Their thermal expansions and the corresponding degradations of short REBCO tape samples are measured. A mixture of epoxy resin and filler is found which allows degradation-free impregnation of REBCO tapes. This mixture is validated on a 1.2 m long 15 × 5 Roebel-assembled-coated-conductor (RACC) cable from Industrial Research Limited (IRL).

  1. Comparison of collagen matrix treatment impregnated with platelet rich plasma vs bone marrow.

    PubMed

    Minamimura, Ai; Ichioka, Shigeru; Sano, Hitomi; Sekiya, Naomi

    2014-02-01

    This study has reported the efficacy of an autologous bone marrow-impregnated collagen matrix experimentally and clinically. Then, it reflected that platelet rich plasma (PRP) was as good a source of growth factors as bone marrow and available in a less invasive procedure. This study aimed to compare the efficacy of a PRP-impregnated collagen matrix with that of a bone marrow-impregnated collagen matrix by quantifying wound size and capillary density using genetically diabetic db/db mice. Bone marrow cells were obtained from femurs of ddy mice. Then, a small amount of collagen matrix was immersed in bone marrow suspension. This is called a bone marrow-impregnated collagen matrix. PRP was obtained from healthy human blood and a small amount of collagen matrix was immersed in PRP. This is called a PRP-impregnated collagen matrix. A bone marrow-impregnated collagen matrix and PRP-impregnated collagen matrix were applied to excisional skin wounds on a genetically healing-impaired mouse (n = 6) and wounds were evaluated 6 days after the procedure. Wounds were divided into two groups: PRP (n = 6), in which a PRP-impregnated collagen matrix was applied; and bone marrow (n = 6), in which collagen immersed in a bone marrow suspension was applied. There was no significant difference between the PRP and bone-marrow groups in the rate of vascular density increase or wound size decrease. The present study suggested that the PRP-impregnated collagen matrix promotes repair processes at least as strongly as the bone marrow-impregnated collagen matrix. Given lower invasiveness, the PRP-impregnated collagen matrix would have advantages in clinical use.

  2. Salty sisters: The women of halophiles

    PubMed Central

    Baxter, Bonnie K.; Gunde-Cimerman, Nina; Oren, Aharon

    2014-01-01

    A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the “her story” (not “history”) of halophile discovery. PMID:24926287

  3. Activated carbon material

    DOEpatents

    Evans, A. Gary

    1978-01-01

    Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

  4. Changes in taste receptor cell [Ca2+]i modulate chorda tympani responses to salty and sour taste stimuli

    PubMed Central

    DeSimone, John A.; Ren, ZuoJun; Phan, Tam-Hao T.; Heck, Gerard L.; Mummalaneni, Shobha

    2012-01-01

    The relationship between taste receptor cell (TRC) Ca2+ concentration ([Ca2+]i) and rat chorda tympani (CT) nerve responses to salty [NaCl and NaCl+benzamil (Bz)] and sour (HCl, CO2, and acetic acid) taste stimuli was investigated before and after lingual application of ionomycin+Ca2+, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid acetoxymethyl ester (BAPTA-AM), U73122 (phospholipase C blocker), and thapsigargin (Ca2+-ATPase inhibitor) under open-circuit or lingual voltage-clamp conditions. An increase in TRC [Ca2+]i attenuated the tonic Bz-sensitive NaCl CT response and the apical membrane Na+ conductance. A decrease in TRC [Ca2+]i enhanced the tonic Bz-sensitive and Bz-insensitive NaCl CT responses and apical membrane Na+ conductance but did not affect CT responses to KCl or NH4Cl. An increase in TRC [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. A decrease in [Ca2+]i did not alter the phasic response but attenuated the tonic CT response to acidic stimuli. In a subset of TRCs, a positive relationship between [H+]i and [Ca2+]i was obtained using in vitro imaging techniques. U73122 inhibited the tonic CT responses to NaCl, and thapsigargin inhibited the tonic CT responses to salty and sour stimuli. The results suggest that salty and sour taste qualities are transduced by [Ca2+]i-dependent and [Ca2+]i-independent mechanisms. Changes in TRC [Ca2+]i in a BAPTA-sensitive cytosolic compartment regulate ion channels and cotransporters involved in the salty and sour taste transduction mechanisms and in neural adaptation. Changes in TRC [Ca2+]i in a separate subcompartment, sensitive to inositol trisphosphate and thapsigargin but inaccessible to BAPTA, are associated with neurotransmitter release. PMID:22956787

  5. Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder

    NASA Astrophysics Data System (ADS)

    Maulina, S.; Iriansyah, M.

    2018-02-01

    Activated carbon is the product of a charcoal impregnation process that has a higher absorption capacity and has more benefits than regular char. Therefore, this study aims to cultivate the powder of oil palm fronds into activated carbon that meets the requirements of Standard National Indonesia 06-3730-1995. To do so, the carbonization process of the powder of oil palm fronds was carried out using a pyrolysis reactor for 30 minutes at a temperature of 150 °C, 200 °C, and 250 °C in order to produce activated char. Then, the char was impregnated using Phosphoric Acid activator (H3PO4) for 24 hours. Characteristics of activated carbon indicate that the treatment of char by chemical activation of oil palm fronds powder has an effect on the properties of activated carbon. The activated carbons that has the highest absorption properties to Iodine (822.91 mg/g) were obtained from the impregnation process with 15% concentration of Phosphoric Acid (H3PO4) at pyrolysis temperature of 200 °C. Furthermore, the activation process resulted in activated carbon with water content of 8%, ash content of 4%, volatile matter 39%, and fixed carbon 75%, Iodine number 822.91 mg/g.

  6. Impregnation of soft biological specimens with thermosetting resins and elastomers.

    PubMed

    von Hagens, G

    1979-06-01

    A new method for impregnation of biological specimens with thermosetting resins and elastomers is described. The method has the advantage that the original relief of the surface is retained. The impregnation is carried out by utilizing the difference between the high vapor tension of the intermedium (e.g., methylene chloride) and the low vapor tension of the solution to be polymerized. After impregnation, the specimen is subject to polymerization conditions without surrounding embedding material. The optical and mechanical properties can be selected by proper choice from various kinds of resins and different procedures, for example, by complete or incomplete impregnation. Acrylic resins, polyester resins, epoxy resins, polyurethanes and silicone rubber have been found suitable for the method. Excellent results have been obtained using transparent silicone rubber since after treatment the specimens are still flexible and resilient, and have retained their natural appearance.

  7. A Mathematical Model for Continuous Fiber Reinforced Thermoplastic Composite in Melt Impregnation

    NASA Astrophysics Data System (ADS)

    Ren, Feng; Yu, Yang; Yang, Jianjun; Xin, Chunling; He, Yadong

    2017-06-01

    Through the combination of Reynolds equation and Darcy's law, a mathematical model was established to calculate the pressure distribution in wedge area, which contributed to the forecast effect of processing parameters on impregnation degree of the fiber bundle. The experiments were conducted to verify the capacity of the proposed model with satisfactory results, which means that the model is effective in predicting the influence of processing parameters on impregnation. From the mathematical model, it was known that the impregnation degree of the fiber bundle would be improved by increasing the processing temperature, number and radius of pins, or decreasing the pulling speed and the center distance of pins, which provided a possible solution to the difficulty of melt with high viscosity in melt impregnation and optimization of impregnation processing.

  8. Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2

    NASA Astrophysics Data System (ADS)

    Olivares-Marín, M.; Fernández-González, C.; Macías-García, A.; Gómez-Serrano, V.

    2006-06-01

    Cherry stones (CS), an industrial product generated abundantly in the Valle del Jerte (Cáceres province, Spain), were used as precursor in the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonisation temperature and the ZnCl 2:CS ratio (impregnation ratio) on textural and chemical-surface properties of the products obtained was studied. Such products were characterised texturally by adsorption of N 2 at -196 °C, mercury porosimetry and density measurements. Information on the surface functional groups and structures of the carbons was provided by FT-IR spectroscopy. Activated carbon with a high development of surface area and porosity is prepared. When using the 4:1 impregnation ratio, the specific surface area (BET) of the resultant carbon is as high as 1971 m 2 g -1. The effect of the increase in the impregnation ratio on the porous structure of activated carbon is stronger than that of the rise in the carbonisation temperature, whereas the opposite applies to the effect on the surface functional groups and structures.

  9. College-Aged Males Experience Attenuated Sweet and Salty Taste with Modest Weight Gain.

    PubMed

    Noel, Corinna A; Cassano, Patricia A; Dando, Robin

    2017-10-01

    Background: Human and animal studies report a blunted sense of taste in people who are overweight or obese, with heightened sensitivity also reported after weight loss. However, it is unknown if taste changes concurrently with weight gain. Objective: This study investigated the association of weight gain with changes in suprathreshold taste intensity perception in a free-living population of young adults. Methods: Taste response, anthropometric measures, and diet changes were assessed with a longitudinal study design in first-year college students 3 times throughout the academic year. At baseline, 93 participants (30 males, 63 females) were an average of 18 y old, with a body mass index (in kg/m 2 ) of 21.9. Sweet, umami, salty, sour, and bitter taste intensities were evaluated at 3 concentrations by using the general Labeled Magnitude Scale. Ordinary least-squares regression models assessed the association of weight gain and within-person taste change, adjusting for sex, race, and diet changes. Results: Participants gained an average of 3.9% in weight, ranging from -5.7% to +13.8%. With each 1% increase in body weight, males perceived sweet and salty as less intense, with taste responses decreasing by 11.0% (95% CI: -18.9%, -2.3%; P = 0.015) and 7.5% (95% CI: -13.1%, -1.5%; P = 0.015) from baseline, respectively. Meanwhile, females did not experience this decrement, and even perceived a 6.5% increase (95% CI: 2.6%, 10.5%; P = 0.007) in sour taste with similar amounts of weight gain. Changes in the consumption of meat and other umami-rich foods also negatively correlated with umami taste response (-39.1%; 95% CI: -56.3%, -15.0%; P = 0.004). Conclusions: A modest weight gain is associated with concurrent taste changes in the first year of college, especially in males who experience a decrement in sweet and salty taste. This suggests that young-adult males may be susceptible to taste loss when gaining weight. © 2017 American Society for Nutrition.

  10. Performance of 2G-HTS REBCO undulator coils impregnated epoxies mixed with different fillers

    DOE PAGES

    Kesgin, Ibrahim; Hasse, Quentin; Ivanyushenkov, Yury; ...

    2016-12-12

    The use of second-generation high-temperature superconducting-coated conductors enables an enhancement of the performance of undulator magnets. However, preventing the motion of the wire and providing sufficient conduction cooling to the winding stacks have remained challenges. In this study, we have evaluated epoxy impregnation techniques to address these issues. Epoxy resin was prepared with different nanopowders and the effect on the performance of the undulator coil pack was investigated. All epoxy impregnated coils showed smaller n values and some degree of deterioration of the critical current I c. The I c degradation was most pronounced for epoxy mixed with high aspectmore » ratio multiwalled carbon nanotubes (MWCNTs). It has been found that the crack formation in the epoxy results in plastic deformation of the copper stabilizer layer, which causes the underlying ceramic REBCO superconducting layer to crack resulting in degradation of the superconducting tape performance. As a result, careful adjustment of epoxy thickness surrounding the superconductor and the powder ratio in the epoxy eliminate the performance degradation.« less

  11. Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4

    NASA Astrophysics Data System (ADS)

    Kılıç, Murat; Apaydın-Varol, Esin; Pütün, Ayşe Eren

    2012-11-01

    Preparation of activated carbons from Euphorbia rigida by chemical activation with different impregnation agents and ratios was studied. ZnCl2, K2CO3, NaOH and H3PO4 were used as chemical activation agents and four impregnation ratios (25-50-75-100%) by mass were applied on biomass. Activation is applied to impregnated biomass samples at 700 °C under sweeping gas in a fixed bed reactor. For determination of chemical and physical properties of the obtained activated carbons; elemental analysis was applied to determine the elemental composition (C, H, N, O) and FT-IR spectra was used to analyze the functional groups. BET equation was used to calculate the surface areas of activated carbons. For understanding the changes in the surface structure, activated carbons were conducted to Scanning Electron Microscopy (SEM). Maximum BET surface area (2613 m2/g) was reached with 75% K2CO3 impregnated biomass sample. Experimental results showed that impregnation types and ratios have a significant effect on the pore structure of activated carbon and E. rigida seems to be an alternative precursor for commercial activated carbon production.

  12. A simulation study of homogeneous ice nucleation in supercooled salty water

    NASA Astrophysics Data System (ADS)

    Soria, Guiomar D.; Espinosa, Jorge R.; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-01

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  13. A simulation study of homogeneous ice nucleation in supercooled salty water.

    PubMed

    Soria, Guiomar D; Espinosa, Jorge R; Ramirez, Jorge; Valeriani, Chantal; Vega, Carlos; Sanz, Eduardo

    2018-06-14

    We use computer simulations to investigate the effect of salt on homogeneous ice nucleation. The melting point of the employed solution model was obtained both by direct coexistence simulations and by thermodynamic integration from previous calculations of the water chemical potential. Using a seeding approach, in which we simulate ice seeds embedded in a supercooled aqueous solution, we compute the nucleation rate as a function of temperature for a 1.85 NaCl mol per water kilogram solution at 1 bar. To improve the accuracy and reliability of our calculations, we combine seeding with the direct computation of the ice-solution interfacial free energy at coexistence using the Mold Integration method. We compare the results with previous simulation work on pure water to understand the effect caused by the solute. The model captures the experimental trend that the nucleation rate at a given supercooling decreases when adding salt. Despite the fact that the thermodynamic driving force for ice nucleation is higher for salty water for a given supercooling, the nucleation rate slows down with salt due to a significant increase of the ice-fluid interfacial free energy. The salty water model predicts an ice nucleation rate that is in good agreement with experimental measurements, bringing confidence in the predictive ability of the model. We expect that the combination of state-of-the-art simulation methods here employed to study ice nucleation from solution will be of much use in forthcoming numerical investigations of crystallization in mixtures.

  14. Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation

    PubMed Central

    Matsuzaki, Ryosuke; Ueda, Masahito; Namiki, Masaki; Jeong, Tae-Kun; Asahara, Hirosuke; Horiguchi, Keisuke; Nakamura, Taishi; Todoroki, Akira; Hirano, Yoshiyasu

    2016-01-01

    We have developed a method for the three-dimensional (3D) printing of continuous fiber-reinforced thermoplastics based on fused-deposition modeling. The technique enables direct 3D fabrication without the use of molds and may become the standard next-generation composite fabrication methodology. A thermoplastic filament and continuous fibers were separately supplied to the 3D printer and the fibers were impregnated with the filament within the heated nozzle of the printer immediately before printing. Polylactic acid was used as the matrix while carbon fibers, or twisted yarns of natural jute fibers, were used as the reinforcements. The thermoplastics reinforced with unidirectional jute fibers were examples of plant-sourced composites; those reinforced with unidirectional carbon fiber showed mechanical properties superior to those of both the jute-reinforced and unreinforced thermoplastics. Continuous fiber reinforcement improved the tensile strength of the printed composites relative to the values shown by conventional 3D-printed polymer-based composites. PMID:26965201

  15. SORPTION OF ELEMENTAL MERCURY BY ACTIVATED CARBONS

    EPA Science Inventory

    The mechanisms and rate of elemental mercury (HgO) capture by activated carbons have been studied using a bench-scale apparatus. Three types of activated carbons, two of which are thermally activated (PC-100 and FGD) and one with elemental sulfur (S) impregnated in it (HGR), were...

  16. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  17. Electrochemically triggered release of acetylcholine from scCO2 impregnated conductive polymer films evokes intracellular Ca2+ signaling in neurotypic SH-SY5Y cells.

    PubMed

    Löffler, Susanne; Seyock, Silke; Nybom, Rolf; Jacobson, Gunilla B; Richter-Dahlfors, Agneta

    2016-12-10

    Implantable devices for electronically triggered drug release are attractive to achieve spatial and temporal control over drug concentrations in patients. Realization of such devices is, however, associated with technical and biological challenges. Among these are containment of drug reservoirs, lack of precise control cues, as well as the charge and size of the drug. Here, we present a method for electronically triggered release of the quaternary ammonium cation acetylcholine (ACh) from an impregnated conductive polymer film. Using supercritical carbon dioxide (scCO 2 ), a film of PEDOT/PSS (poly(3,4)-ethylenedioxythiophene doped with poly(styrenesulfonate)) is impregnated with the neurotransmitter acetylcholine. The gentle scCO 2 process generated a dry, drug-impregnated surface, well suited for interaction with biological material, while maintaining normal electrochemical properties of the polymer. Electrochemical switching of impregnated PEDOT/PSS films stimulated release of ACh from the polymer matrix, likely due to swelling mediated by the influx and efflux of charged and solvated ions. Triggered release of ACh did not affect the biological activity of the drug. This was shown by real-time monitoring of intracellular Ca 2+ signaling in neurotypic cells growing on the impregnated polymer surface. Collectively, scCO 2 impregnation of conducting polymers offers the first one-step, dopant-independent drug impregnation process, potentially facilitating loading of both anionic and cationic drugs that can be dissolved in scCO2 on its own or by using a co-solvent. We foresee that scCO 2 -loaded devices for electronically triggered drug release will create novel opportunities when generating active bio-coatings, tunable for specific needs, in a variety of medical settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  19. IMPREGNATION OF CONCRETE PIPE FOR CORROSION RESISTANCE AND STRENGTH IMPROVEMENT

    EPA Science Inventory

    The program was undertaken to field test concrete sewer pipe that had been impregnated with sulfur or hydrofluoric acid. This program was a follow-on to a previous laboratory study sponsored by EPA entitled, Impregnation of Concrete Pipe, 11024EQE 06/71. In a subsequent grant ext...

  20. Effect of different catalyst preparation methods on the synthesis of carbon nanotubes with the flame pyrolysis method

    NASA Astrophysics Data System (ADS)

    Guo, Yonghong; Zhai, Gang; Ru, Yu; Wu, Chuyu; Jia, Xiaowei; Sun, Yaping; Yu, Jiawen; Kang, Zhizhong; Sun, Baomin

    2018-03-01

    The Flame pyrolysis method used to synthesize carbon nanotubes was studied in this work. In order to improve the quality of synthesized carbon nanotubes, it is important to change the corresponding natures of the catalyst. Two catalyst preparation methods, namely, the sol-gel method and the impregnation method, were compared in this experiment. The properties of the catalyst are analyzed in depth by energy dispersive spectrometer (EDS), x-ray diffraction (XRD), temperature program reduction (TPR). The generation of carbon nanotubes was systematically analysed through scanning electron microscope (SEM), molecule dynamics (MD), raman spectroscopy and transmission electron microscope (TEM). The results show that the catalysts prepared by the impregnation method are stickier, dispersed and easier to dip onto the probe or substrate, which is beneficial for the large-scale production of carbon tubes. The specific surface area of alumina is larger and the iron and molybdenum oxide are more evenly dispersed on the surface of alumina. The carbon nanotubes produced by the catalysts prepared by impregnation method are flatter and have less impurities. The ratio of ID/IG+ is 29.7% lower than that of the sol-gel method in the Raman spectra. The TEM statistics show that the average diameter of the carbon tubes decreases by 23.3%. Therefore, the impregnation method can improve the quality of carbon nanotubes in the case of a similar degree of difficulty in the preparation of the catalyst.

  1. Evaluation of the SO(2) and NH(3) gas adsorption properties of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO ternary impregnated activated carbon using combinatorial materials science methods.

    PubMed

    Romero, Jennifer V; Smith, Jock W H; Sullivan, Braden M; Macdonald, Landan; Croll, Lisa M; Dahn, J R

    2013-02-11

    Impregnated activated carbons (IAC) are widely used materials for the removal of toxic gases in personal respiratory protection applications. The combinatorial method has been employed to prepare IACs containing different types of metal oxides in various proportions and evaluate their adsorption performance for low molecular weight gases, such as SO(2) and NH(3), under dry conditions. Among the metal oxides used for the study, Mn(3)O(4) was found to have the highest capacity for retaining SO(2) gas under dry conditions. NiO and ZnO were found to have similar NH(3) adsorption capacities which are higher than the NH(3) capacities observed for the other metal oxide impregnants used in the study. Although Cu- or Zn-based impregnants and their combinations have been extensively studied and used as gas adsorbents, neither Mn(3)O(4) nor NiO have been incorporated in the formulations used. In this study, ternary libraries of IACs with various combinations of CuO/ZnO/Mn(3)O(4) and CuO/ZnO/NiO were studied and evaluated for their adsorption of SO(2) and NH(3) gases. Combinations of CuO, ZnO, and Mn(3)O(4) were found to have the potential to be multigas adsorbents compared to formulations that contain NiO.

  2. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  3. Refractory Oxidative-Resistant Ceramic Carbon Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    2001-01-01

    High-temperature, lightweight, ceramic carbon insulation is prepared by coating or impregnating a porous carbon substrate with a siloxane gel derived from the reaction of an organodialkoxy silane and an organotrialkoxy silane in an acid or base medium in the presence of the carbon substrate. The siloxane gel is subsequently dried on the carbon substrate to form a ceramic carbon precursor. The carbon precursor is pyrolyzed, in an inert atmosphere, to form the ceramic insulation containing carbon, silicon, and oxygen. The carbon insulation is characterized as a porous, fibrous, carbon ceramic tile which is particularly useful as lightweight tiles for spacecraft.

  4. Mercury adsorption properties of sulfur-impregnated adsorbents

    USGS Publications Warehouse

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  5. Preparation of porous carbons from polymeric precursors modified with acrylated kraft lignin

    NASA Astrophysics Data System (ADS)

    Sobiesiak, M.

    2016-04-01

    The presented studies concern the preparation of porous carbons from a BPA.DA-St polymer containing acrylated kraft lignin as a monomer. The porous polymeric precursor in the form of microspheres was synthesized in suspension polymerization process. Next samples of the polymer were impregnated with acetic acid or aqueous solution of acetates (potassium or ammonia), dried and carbonised in nitrogen atmosphere at 450°C. After carbonization microspherical shape of the materials was remained, that is desired feature for potential application in chromatography or SPE technique. Chemical and textural properties of the porous carbon adsorbents were characterized using infrared spectroscopy (ATR-FTIR), thermogravimetry analyses with mass spectrometry of released gases (TG-MS) and nitrogen sorption experiments. The presented studies revealed the impregnation is useful method for development of porous structure of carbonaceous materials. The highest values of porous structure parameters were obtained when acetic acid and ammonium acetate were used as impregnating substances. On the surface of the materials oxygen functional groups are present that is important for specific interactions during sorption processes. The highest contents of functionalities were observed for carbon BPA.DA-St-LA-C-AcNH4.

  6. Drug smuggling using clothing impregnated with cocaine.

    PubMed

    McDermott, Seán D; Power, John D

    2005-11-01

    A case study is presented where a woman travelling from South America to the Republic of Ireland was detained at Dublin Airport and articles of clothing she had in her luggage were found to be impregnated with cocaine. The study shows that the amount of powder recovered from the garments was approximately 14% of the total weight of the garments. The cocaine was in the form of cocaine hydrochloride and the purity was approximately 80%. An examination of the garments under filtered light highlighted the areas exposed to cocaine and indicated that the method of impregnation was by pouring liquid containing cocaine onto the clothing.

  7. High energy ball milling and supercritical carbon dioxide impregnation as co-processing methods to improve dissolution of tadalafil.

    PubMed

    Krupa, Anna; Descamps, Marc; Willart, Jean-François; Jachowicz, Renata; Danède, Florence

    2016-12-01

    Tadalafil (TD) is a crystalline drug of a high melting point (T m =299°C) and limited solubility in water (<5μg/mL). These properties may result in reduced and variable bioavailability after oral administration. Since the melting of TD is followed by its decomposition, the drug processing at high temperatures is limited. The aim of the research is, therefore, to improve the dissolution of TD by its co-processing with the hydrophilic polymer Soluplus® (SL) at temperatures below 40°C. In this study, two methods, i.e. high energy ball-milling and supercritical carbon dioxide impregnation (scCO 2 ) are compared, with the aim to predict their suitability for the vitrification of TD. The influence of the amount of SL and the kind of co-processing method on TD thermal properties is analyzed. The results show that only the high energy ball milling process makes it possible to obtain a completely amorphous form of TD, with the characteristic X-ray 'halo' pattern. The intensity of the Bragg peaks diminishes for all the formulations treated with scCO 2 , but these samples remain crystalline. The MDSC results show that high energy ball milling is capable of forcing the mixing of TD and SL at a molecular level, providing a homogeneous amorphous solid solution. The glass transition temperatures (T g ), determined for the co-milled formulations, range from 79°C to 139°C and they are higher than T g of pure SL (ca. 70°C) and lower than T g of pure TD (ca. 149°C). In contrast to the co-milled formulations which are in the form of powder, all the formulations after scCO 2 impregnation form a hard residue, sticking to the reaction vessel, which needs to be ground before analysis or further processing. Finally, the dissolution studies show that not only has SL a beneficial effect on the amount of TD dissolved, but also both co-processing methods make the dissolution enhancement of TD possible. After co-processing by scCO 2 , the amount of TD dissolved increases with the

  8. Resin impregnation of cellulose nanofibril films facilitated by water swelling

    Treesearch

    Yan Qing; Ronald Sabo; Zhiyong Cai; Yiqiang Wu

    2013-01-01

    Flexible composite films were produced by impregnating aqueous phenol formaldehyde (PF) resin into water-swollen cellulose nanofibril (CNF) films. CNF films were prepared using a pressurized filtration method in combination with freeze drying. The freeze-dried films were swollen with water then impregnated with PF resin by soaking in aqueous resin solutions of varying...

  9. Sol-gel processed thin-layer ruthenium oxide/carbon black supercapacitors: A revelation of the energy storage issues

    NASA Astrophysics Data System (ADS)

    Panić, V. V.; Dekanski, A. B.; Stevanović, R. M.

    Hydrous ruthenium oxide/carbon black nanocomposites were prepared by impregnation of the carbon blacks by differently aged inorganic RuO 2 sols, i.e. of different particle size. Commercial Black Pearls 2000 ® (BP) and Vulcan ® XC-72 R (XC) carbon blacks were used. Capacitive properties of BP/RuO 2 and XC/RuO 2 composites were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in H 2SO 4 solution. Capacitance values and capacitance distribution through the composite porous layer were found different if high- (BP) and low- (XC) surface-area carbons are used as supports. The aging time (particle size) of Ru oxide sol as well as the concentration of the oxide solid phase in the impregnating medium influenced the capacitive performance of prepared composites. While the capacitance of BP-supported oxide decreases with the aging time, the capacitive ability of XC-supported oxide is promoted with increasing oxide particle size. The increase in concentration of the oxide solid phase in the impregnating medium caused an improvement of charging/discharging characteristics due to pronounced pseudocapacitance contribution of the increasing amount of inserted oxide. The effects of these variables in the impregnation process on the energy storage capabilities of prepared nanocomposites are envisaged as a result of intrinsic way of population of the pores of carbon material by hydrous Ru oxide particle.

  10. Effect of preconditioning on silver leaching and bromide removal properties of silver-impregnated activated carbon (SIAC).

    PubMed

    Rajaeian, Babak; Allard, Sébastien; Joll, Cynthia; Heitz, Anna

    2018-07-01

    Silver impregnated activated carbon (SIAC) has been found to be effective in mitigating the formation of brominated-disinfection by products during drinking water treatment. However, there are still uncertainties regarding its silver leaching properties, and strategies for the prevention of silver leaching have remained elusive. This study focused on the evaluation of one type of commercially available SIAC for its ability to remove bromide while minimising silver leaching from the material. Both synthetic and real water matrices were tested. Depending on solution pH, it was found that changing the surface charge properties of SIAC, as measured by the point of zero charge pH, can result in additional bromide removal while minimising the extent of silver leaching. To better understand the mechanism of silver leaching from the SIAC, eight preconditioning environments, i.e. variable pH and ionic strength were tested for a fixed amount of SIAC and two preconditioning environments were selected for a more detailed investigation. Experiments carried out in synthetic water showed that preconditioning at pH 10.4 did not deteriorate the capacity of SIAC to remove bromide, but significantly decreased the release of silver in the form of ionic silver (Ag + ), silver bromide (AgBr) and silver chloride (AgCl) from 40% for the pristine to 3% for the treated SIAC. This was confirmed using a groundwater sample. These results suggest that preconditioned SIAC has the potential to be an effective method for bromide removal with minimised silver leaching in a long-term field application for drinking water production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Solid phase extraction of metal ions in environmental samples on 1-(2-pyridylazo)-2-naphthol impregnated activated carbon cloth.

    PubMed

    Alothman, Zeid A; Yilmaz, Erkan; Habila, Mohamed; Soylak, Mustafa

    2015-02-01

    1-(2-Pyridylazo)-2-naphthol impregnated activated carbon cloth (PAN-imp-ACC) was prepared as a solid phase sorbent and, for the first time, was used for the simultaneous separation and preconcentration of trace amounts of lead, cadmium and nickel in water, soil and sewage sludge samples prior to determination by flame atomic absorption spectrometry (FAAS). The parameters governing the efficiency of the method were optimized, including the pH, the eluent type and volume, the sample and eluent flow rates, diverse ions effects and the sample volume. A preconcentration factor of 100 was achieved for all the metal ions, with detection limits of 0.1-2.8 µg L(-1) and relative standard deviations below 6.3%. The adsorption capacity of the PAN-imp-ACC for Pb(II), Cd(II) and Ni(II) ions was found to be 45.0 mg g(-1), 45.0 mg g(-1) and 43.2 mg g(-1), respectively. The method was validated by the analysis of the certified reference materials TMDA-64.2 fortified Lake Ontario water and BCR-146R Sewage Sludge Amended Soil (Industrial Origin). The procedure was applied to determine the analytes content in real samples. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon.

    PubMed

    Hong, Ung Gi; Park, Hai Woong; Lee, Joongwon; Hwang, Sunhwan; Kwak, Jimin; Yi, Jongheop; Song, In Kyu

    2013-11-01

    Copper-containing mesoporous carbon (Cu-MC) was prepared by a single-step surfactant-templating method. For comparison, copper-impregnated mesoporous carbon (Cu/MC) was also prepared by a surfactant-templating method and a subsequent impregnation method. Rhenium catalysts supported on copper-containing mesoporous carbon and copper-impregnated mesoporous carbon (Re/Cu-MC and Re/Cu/MC, respectively) were then prepared by an incipient wetness method, and they were applied to the liquid-phase hydrogenation of succinic acid to 1,4-butanediol (BDO). It was observed that copper in the Re/Cu-MC catalyst was well incorporated into carbon framework, resulting in higher surface area and larger pore volume than those of Re/Cu/MC catalyst. Therefore, Re/Cu-MC catalyst showed higher copper dispersion than Re/Cu/MC catalyst, although both catalysts retained the same amounts of copper and rhenium. In the liquid-phase hydrogenation of succinic acid to BDO, Re/Cu-MC catalyst showed a better catalytic activity than Re/Cu/MC catalyst. Fine dispersion of copper in the Re/Cu-MC catalyst was responsible for its enhanced catalytic activity.

  13. Reduction of Bromate by Cobalt-Impregnated Biochar Fabricated via Pyrolysis of Lignin Using CO2 as a Reaction Medium.

    PubMed

    Cho, Dong-Wan; Kwon, Gihoon; Ok, Yong Sik; Kwon, Eilhann E; Song, Hocheol

    2017-04-19

    In this study, pyrolysis of lignin impregnated with cobalt (Co) was conducted to fabricate a Co-biochar (i.e., Co/lignin biochar) for use as a catalyst for bromate (BrO 3 - ) reduction. Carbon dioxide (CO 2 ) was employed as a reaction medium in the pyrolysis to induce desired effects associated with CO 2 ; (1) the enhanced thermal cracking of volatile organic compounds (VOCs) evolved from the thermal degradation of biomass, and (2) the direct reaction between CO 2 and VOCs, which resulted in the enhanced generation of syngas (i.e., H 2 and CO). This study placed main emphases on three parts: (1) the role of impregnated Co in pyrolysis of lignin in the presence of CO 2 , (2) the characterization of Co/lignin biochar, and (3) evaluation of catalytic capability of Co-lignin biochar in BrO 3 - reduction. The findings from the pyrolysis experiments strongly evidenced that the desired CO 2 effects were strengthened due to catalytic effect of impregnated Co in lignin. For example, the enhanced generation of syngas from pyrolysis of Coimpregnated lignin in CO 2 was more significant than the case without Co impregnation. Moreover, pyrolysis of Coimpregnated lignin in CO 2 led to production of biochar of which surface area (599 m 2 g -1 ) is nearly 100 times greater than the biochar produced in N 2 (6.6 m 2 g -1 ). Co/lignin biochar produced in CO 2 also showed a great performance in catalyzing BrO 3 - reduction as compared to the biochar produced in N 2 .

  14. Effect of autohydrolysis on the wettability, absorbility and further alkali impregnation of poplar wood chips.

    PubMed

    Xu, Ningpan; Liu, Wei; Hou, Qingxi; Wang, Peiyun; Yao, Zhirong

    2016-09-01

    Autohydrolysis with different severity factors was performed on poplar wood chips prior to pulping, and the wettability, absorbility and the following impregnation of NaOH solution for the poplar wood chips were then investigated. The results showed that after autohydrolysis pretreatment the porosity, shrinkage and fiber saturation point (FSP) of the poplar wood chips were increased, while the surface contact angle decreased as the severity factor was increased. The autohydrolyzed chips absorbed more NaOH in impregnation that resulted in a low NaOH concentration in the bulk impregnation liquor (i.e., the impregnation liquor outside wood chips), while the concentration in the entrapped liquor (i.e., the impregnation liquor inside wood chips) was increased. Autohydrolysis substantially improved the effectiveness of alkali impregnation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Supercritical impregnation and optical characterization of loaded foldable intraocular lenses using supercritical fluids.

    PubMed

    Bouledjouidja, Abir; Masmoudi, Yasmine; Li, Yanfeng; He, Wei; Badens, Elisabeth

    2017-10-01

    To prepare drug-loaded intraocular lenses (IOLs) used to combine cataract surgery with postoperative complication treatment through supercritical impregnation while preserving their optical properties. Aix-Marseille Université, CNRS, Centrale Marseille, Laboratoire de Mécanique, Modélisation & Procédés Propres, Marseille, France, and He University Eye Hospital, Liaoning Province, China. Experimental study. Supercritical impregnations of commercial foldable IOLs used in cataract surgery with ciprofloxacin (an antibiotic) and dexamethasone 21-phosphate disodium salt (an antiinflammatory drug) were performed in a noncontinuous mode. Impregnation amounts were determined through drug-release kinetic studies. The optical characterizations of IOLs were determined by evaluating the dioptric power and the imaging quality by determining the modulating transfer function (MTF) at a specified spatial frequency according to the International Organization for Standardization (ISO 11979-2:2014). Transparent IOLs presenting an effective impregnation were obtained with a prolonged drug delivery during approximately 10 days. Optical characterizations (dioptric powers and MTF values) show preserved optical properties after supercritical treatment/impregnation. Supercritical treatments/impregnations do not damage the optical properties of IOLs and are therefore adequate for the preparation of delivery devices used for cataract surgery. Copyright © 2017. Published by Elsevier Inc.

  16. Wear and Friction Behavior of Metal Impregnated Microporous Carbon Composites

    NASA Technical Reports Server (NTRS)

    Goller, Gultekin; Koty, D. P.; Tewari, S. N.; Singh, M.; Tekin, A.

    1996-01-01

    Metal-matrix composites have been prepared by pressure-infiltration casting of copper-base alloy melts into microporous carbon preforms. The carbon preforms contained varying proportions of amorphous carbon and graphite. Load dependence of the wear and friction behavior of the composite pins has been examined under ambient conditions against cast-iron plates, using a pin-on-plate reciprocating wear tester. The wear resistance of the composite is significantly improved, as compared with the base alloy. Contrary to the normally expected behavior, the addition of graphite to the amorphous carbon does not reduce the friction coefficient, especially at high loads. The wear and friction behavior of the composites is very sensitive to the size and distribution of the microstructural constituents.

  17. Heterogeneous Catalysts for VOC Oxidation from Red Mud and Bagasse Ash Carbon

    NASA Astrophysics Data System (ADS)

    Pande, Gaurav

    solids. The highest surface area of 311 m2/g was for the sample prepared from oxalic acid and l-ascorbic acid as the leaching acid; as received red mud has a surface area of 11.5 m2/g. This sample showed better catalytic performance than the ones made from hydrochloric acid as the leaching acid in spite of a similar increase in surface area. High temperature XRD shows the reason for this difference in catalytic properties could be due to both the solids reducing in a different way to give different phases though they are both derived from red mud as the starting material. Also, the sample prepared with oxalic acid leachate had higher surface iron concentration. For the best catalyst (oxalic acid derived) the light off temperature is about 300 °C for toluene oxidation. For solids prepared from red mud leachate for iron source and pickling acid for copper source, it was seen that the TPR gave hydrogen absorption at temperatures even lower than that for red mud leachate precipitates. In another set of experiments, iron oxide impregnated on activated carbon supports were prepared. Activated carbon is known for its adsorption properties which could give a better access of the impregnated metal oxide catalyst to perform the catalytic oxidation on the adsorbed substrate. Unburned carbon in bagasse ash which is a sugar industry agricultural waste was used to get the activated carbon. This material was separated from the ash and further modified to enhance the activity and increase the porosity. To this effect steam activation was performed. To impart thermal stability for oxidation reaction, the carbon was impregnated by phosphoric acid at activated at high temperatures in inert atmosphere. These carbons were thermally stable due to the surface C--O--P groups. Toluene adsorption studies were also performed for both the steam activated as well as phosphoric acid activated carbon and it was found that the steam activated carbons with less surface oxygen had reasonable adsorption

  18. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOEpatents

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  19. Polymer impregnated bridge slabs : interim report.

    DOT National Transportation Integrated Search

    1979-01-01

    The procedure used for producing precast slabs of polymer impregnated concrete (PIC) and described in this report was generally satisfactory from an operational standpoint. A strength loss of 14%, attributable to the drying step, was observed in PIC ...

  20. Effects of H ₂SO₄ and O ₂ on Hg⁰ uptake capacity and reversibility of sulfur-impregnated activated carbon under dynamic conditions.

    PubMed

    Wei, Yuanyang; Yu, Danqing; Tong, Shitang; Jia, Charles Q

    2015-02-03

    Powder activated carbon (AC) injection is widely considered as the most viable technology for removing gaseous elemental mercury (Hg(0)) in flue gases of coal-fired power plants. However, sulfuric acid (H2SO4) can form on the external and internal surfaces of AC particles due to the presence of sulfur oxides, nitrogen oxides, oxygen, and moisture in flue gases. This work focuses on the effects of H2SO4 and O2 on the Hg(0) uptake capacity and reversibility of sulfur impregnated activated carbon (SIAC) under dynamic conditions. Experiments were conducted with 25 μg-Hg(0)/m(3) of nitrogen or air, using a semicontinuous flow fixed-bed reactor kept at 120 or 180 °C. H2SO4 had a profound hindering effect on Hg(0) uptake due to pore blockage. O2 significantly enhanced Hg(0) uptake and its reversibility, via the oxidation of Hg(0) which facilitated chemisorption and the subsequent physisorption onto chemically adsorbed Hg. Absorption of Hg in H2SO4 was unlikely a significant contributor, when Hg(0) concentrations were at levels of typical power plants (tens of ppb). The reversibility of and relative contributions of physisorption and chemisorption to Hg(0) uptake would change with Hg(0) concentrations in flue gases. These findings could be significant in developing a complete solution for Hg capture where the handling of spent sorbent materials and the possible secondary pollution need to be considered.

  1. Integration of Carbon Fiber Composite Materials into Air-Cooled Reciprocating Piston Engines for UA V Applications

    DTIC Science & Technology

    2012-05-04

    Wrapping Pre-impregnated CFRP unidirectional and +/-45° woven carbon fiber fabric prepreg was used for the loop. Pre-impregnated material was a...viable application for the connecting rod because there are no complex geometries for the CFRP to negotiate. Prepreg aids in maintaining proper fiber

  2. High-Rate and Long-Term Cycle Stability of Li-S Batteries Enabled by Li2S/TiO2-Impregnated Hollow Carbon Nanofiber Cathodes.

    PubMed

    Wang, Xinran; Bi, Xuanxuan; Wang, Shaona; Zhang, Yi; Du, Hao; Lu, Jun

    2018-05-16

    The high theoretical energy density of lithium-sulfur (Li-S) batteries makes them an alternative battery technology to lithium ion batteries. However, Li-S batteries suffer from low sulfur loading, poor charge transport, and dissolution of lithium polysulfide. In our study, we use the lithiated S, Li 2 S, as the cathode material, coupled with electrospun TiO 2 -impregnated hollow carbon nanofibers (TiO 2 -HCFs), which serve as the conductive agent and protective barrier for Li 2 S in Li-S batteries. TiO 2 -HCFs provide much improved electron/ionic conductivity and serve as a physical barrier, which prevents the dissolution of lithium polysulfides. The Li 2 S/TiO 2 -HCF composite delivers a discharge capacity of 851 mA h g Li 2 S -1 at 0.1C and the bilayer TiO 2 -HCFs/Li 2 S/TiO 2 -HCF composite delivers a high specific capacity of 400 mA h g Li 2 S -1 at 5C.

  3. Ferrihydrite-impregnated granular activated carbon (FH@GAC) for efficient phosphorus removal from wastewater secondary effluent.

    PubMed

    Mahardika, Dedy; Park, Hak-Soon; Choo, Kwang-Ho

    2018-05-23

    Adsorptive removal of phosphorus from wastewater effluents has attracted attention because of its reduced sludge production and potential P recovery. In this study, we investigated granular activated carbons (GACs) impregnated with amorphous ferrihydrite (FH@GAC) for the sorption of phosphorus from aqueous solutions. Preoxidation of intact GAC surfaces using an oxidant (e.g., hypochlorite) and strong acids (e.g., HNO 3 /H 2 SO 4 ) was performed to create active functional groups (e.g., carboxyl or phenolic) for enhanced iron binding, leading to greater phosphorus uptake. Both the rate and the capacity of phosphorus sorption onto FH@GAC had significant, positive relationships (Pearson correlation coefficient r > 0.9) with the product of surface area and Fe content. The pseudo-second-order reaction kinetics explained the P sorption rate better than the pseudo-first-order reaction kinetics, whereas the Langmuir model fit the P sorption isotherm better than the Freundlich model. The iron content in the FH@GAC increased significantly (>10 mg/g) when GAC (e.g., BMC1050) was preoxidized by a 1:1 (w/w) concentrated HNO 3 /H 2 SO 4 mixture. The Langmuir maximum P sorption capacity of a functionalized FH@BMC1050 adsorbent prepared with acid pretreatment was estimated to be substantial (5.73 mg P/g GAC corresponding to 526 mg P/g Fe). This sorption capacity was superior to that of a FH slurry, possibly because the nano-sized FH formed inside the GAC pores (<2.5 nm) can bind phosphate ions more effectively than FH aggregates. Fixed-bed column reactor operation with bicarbonate regeneration showed potential for efficient, continuous phosphorus removal by FH@GAC media. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Using raw and sulfur-impregnated activated carbon as active cap for leaching inhibition of mercury and methylmercury from contaminated sediment.

    PubMed

    Ting, Yu; Chen, Chi; Ch'ng, Boon-Lek; Wang, Ying-Lin; Hsi, Hsing-Cheng

    2018-07-15

    Sulfur-impregnated activated carbon (SAC) has been reported with a high affinity to Hg, but little research has done on understanding its potential as active cap for inhibition of Hg release from contaminated sediments. In this study, high-quality coconut-shell activated carbon (AC) and its derived SAC were examined and shown to have great affinity to both aqueous Hg 2+ and methylmercury (MeHg). SAC had greater partitioning coefficients for Hg 2+ (K D  = 9.42 × 10 4 ) and MeHg (K D  = 7.661 × 10 5 ) as compared to those for AC (K D  = 3.69 × 10 4 and 2.25 × 10 5 , respectively). However, AC appeared to have greater inhibition in total Hg (THg) leaching from sediment (14.2-235.8 mg-Hg/kg-sediment) to porewater phase as compared to SAC. 3 wt% AC amendment in sediment (235.8 mg/kg Hg) was the optimum dosage causing the porewater THg reduction by 99.88%. Moreover, significant inhibition in both THg and MeHg releases within the 83-d trial microcosm tests was demonstrated with active caps composed of SAC + bentonite, SAC + clean sediment, and AC + bentonite. While both AC and SAC successfully reduce the porewater Hg in sediment environment, the smaller inhibition in Hg release by SAC as compared to that by raw AC may suggest that possibly formed HgS nanoparticles could be released into the porewater that elevates the porewater Hg concentration. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Enhancement of Combined Umami and Salty Taste by Glutathione in the Human Tongue and Brain.

    PubMed

    Goto, Tazuko K; Yeung, Andy Wai Kan; Tanabe, Hiroki C; Ito, Yuki; Jung, Han-Sung; Ninomiya, Yuzo

    2016-09-01

    Glutathione, a natural substance, acts on calcium receptors on the tongue and is known to enhance basic taste sensations. However, the effects of glutathione on brain activity associated with taste sensation on the tongue have not been determined under standardized taste delivery conditions. In this study, we investigated the sensory effect of glutathione on taste with no effect of the smell when glutathione added to a combined umami and salty taste stimulus. Twenty-six volunteers (12 women and 14 men; age 19-27 years) performed a sensory evaluation of taste of a solution of monosodium L-glutamate and sodium chloride, with and without glutathione. The addition of glutathione changed taste qualities and significantly increased taste intensity ratings under standardized taste delivery conditions (P < 0.001). Functional magnetic resonance imaging showed that glutathione itself elicited significant activation in the left ventral insula. These results are the first to demonstrate the enhancing effect of glutathione as reflected by brain data while tasting an umami and salty mixture. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Modification of oil palm wood using acetylation and impregnation process

    NASA Astrophysics Data System (ADS)

    Subagiyo, Lambang; Rosamah, Enih; Hesim

    2017-03-01

    The purpose of this study is chemical modification by process of acetylation and impregnation of oil palm wood to improve the dimensional stability. Acetylation process aimed at substituting the hydroxyl groups in a timber with an acetyl group. By increasing the acetyl groups in wood is expected to reduce the ability of wood to absorb water vapor which lead to the dimensions of the wood becomes more stable. Studies conducted on oil palm wood (Elaeis guineensis Jacq) by acetylation and impregnation method. The results showed that acetylated and impregnated wood oil palm (E. guineensis Jacq) were changed in their physical properties. Impregnation with coal ashfly provide the greatest response to changes in weight (in wet conditions) and after conditioning (dry) with the average percentage of weight gain of 198.16% and 66.41% respectively. Changes in volume indicates an increase of volume in the wet condition (imbibition) with the coal ashfly treatment gave highest value of 23.04 %, whereas after conditioning (dry) the highest value obtained in the treatment of gum rosin:ethanol with a volume increase of 13:44%. The highest changes of the density with the coal ashfly impregnation in wet condition (imbibition) in value of 142.32% and after conditioning (dry) of 57.87%. The result of reduction in water absorption (RWA) test showed that in the palm oil wood samples most stable by using of gum rosin : ethanol of 0.97%, whereas the increase in oil palm wood dimensional stability (ASE) is the best of 59.42% after acetylation with Acetic Anhydride: Xylene.

  7. Processing effects in production of composite prepreg by hot melt impregnation

    NASA Astrophysics Data System (ADS)

    Chmielewski, C.; Jayaraman, K.; Petty, C. A.

    1993-06-01

    The hot melt impregnation process for producing composite prepreg has been studied. The role of the exit die is highlighted by operating without impregnation bars. Experimental results show that when a fiber tow is pulled through a resin bath and then through a wedge shaped die, the total resin mass fraction and the extent of resin impregnation in the tow increase with the processing viscosity. The penetration of resin into a fiber bundle is greater when the resin viscosity is higher. This trend is unchanged over a range of tow speeds up to the breaking point. A theoretical model is developed to describe the effect of processing conditions and die geometry on the degree of impregnation. Calculations with this model indicate that for a given die geometry, the degree of impregnation increases from 58 percent to 90 percent as the ratio of the clearance between the tow and the die wall, to the total die gap is decreased from 0.15 to 0.05. Physical arguments related to the effective viscosity of the prepreg show that the clearance ratio is independent of the tow speed, but decreases as the ratio of the effective shear viscosity of the prepreg to the resin viscosity increases. This provides a connection between the experimental results obtained with varying resin viscosity and the computational results obtained with varying clearance values at the die inlet.

  8. Modification of fast-growing Chinese Fir wood with unsaturated polyester resin: Impregnation technology and efficiency

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Zhao, Zijian; Yi, Songlin; Wang, Tianlong

    In this study, Chinese Fir was impregnated with unsaturated polyester resin to enhance its properties. Samples 20 mm × 20 mm × 20 mm in size were split into different sections with epoxy resin and tinfoil and subjected to an impregnation experiment under various parameters. Vacuum degree was -0.04 MPa, -0.06 MPa or -0.08 MPa and vacuum duration was 15 min, 30 min, or 45 min. The results indicated that impregnation weight percent gain is linearly dependent on curing weight percent gain. Vacuum duration appears to have less influence on the curing weight percent gain than vacuum degree, and impregnation was most successful at the transverse section compared to other sections. The optimal impregnation parameters were 30 min modification under -0.08 MPa vacuum followed by 120 min at atmospheric pressure for samples 200 mm × 100 mm × 20 mm in size. Uneven distribution of weight percent gain and cracking during the curing process suggested that 30 min post-processing at -0.09 MPa vacuum was the most effective way to complete the impregnation process. The sample's bending strength and modulus of elasticity increased after impregnation treatment. Bending strength after impregnation without post-processing reached 112.85%, but reached 71.65% with vacuum-processing; modulus of elasticity improved 67.13% and 58.28% without and with post-processing, respectively.

  9. Environmental engineering interventions to control the expansion of salty lakes and marshes in siwa oasis.

    PubMed

    El-Naggar, Hesham M

    2010-01-01

    The main activity in Siwa Oasis society is the agriculture, it depends on the groundwater. The agricultural drainage water and the unused saline water of naturally flowing springs are poured into four main salty lakes. This leads to an increase in the surface area of the saltwater lakes, marshes and rise in water table levels. to investigate some environmental engineering interventions to control the expansion of saltwater surface area in Siwa Oasis. Field visits, observation sheets and questionnaire survey with farmers were carried out to find out the main environmental problems in the Oasis. Environmental survey was carried out to collect different rocks and stones samples as natural construction materials from the desert that surrounds Siwa Oasis. Physical analyses, chemical composition and principal mechanical parameters were conducted on the collected samples. After the analysis, the safa rocks were the best natural construction materials in the Siwa Oasis. So, it could be used to build a construction wall around the salty lakes and marshes. Walls could convert the lakes into basins. The water will be evaporated at high rate during summer season by solar energy. After evaporation, the remaining salty rock named "karshef" can be easily collected from the lakes to be used as a low cost construction material for traditional building houses in Siwa Oasis. Therefore, the water level of lakes will be reduced to dryness and land could be reused as agricultural land. Among different rocks, safa rocks proved to be the best natural construction materials to construct a defense wall around the lakes and marshes. They will save about 80% of the concrete cost. The formed karshef rocks from the lakes will be used in the construction of the traditional building houses which will save about 90% of the concrete buildings. This intervention will save energy as it exchanges fuel consuming man-made material such as cement with naturally made material. This can reduce the green

  10. Different Neural Processing of Umami and Salty Taste Determined by Umami Identification Ability Independent of Repeated Umami Exposure.

    PubMed

    Han, Pengfei; Mohebbi, Mohebbat; Unrath, Manja; Hummel, Cornelia; Hummel, Thomas

    2018-07-15

    There is a large inter-individual variation for umami taste perception. However the neural mechanism for this variability is not well understood. This study investigated brain responses to umami and salty taste among individuals with different umami identification abilities and the effect of repeated oral umami exposure on umami identification and neural processing of taste perceptions. Fifteen participants with high umami identification ability ("High Tasters, HT) and fifteen with low umami identification ability ("Low Tasters", LT) underwent three weeks of controlled exposure to umami taste (umami training). Prior to and after the training, participants underwent fMRI scans during which the umami taste solution and a control taste (salty) solution were delivered to their mouth using a gustometer. Taste intensity and pleasantness were rated after each scan. Umami taste identification was assessed before and after the umami training using "Taste Strips" test. Neuroimaging results showed different central processing of umami and salty taste based on umami identification ability, in which the umami LT had stronger activation in the thalamus and hippocampus while the umami HT showed stronger activation in the primary gustatory cortex. In addition, umami identification was significantly improved after umami training for LT. However, it was not reflected in changes in neural activation. The current study shows that attention and association/memory related brain structures play a significant role in the perception of umami taste; and with reference to the results of repeated umami exposure, the presence of very subtle changes regarding the neural processing. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Sodium Hydroxide Activated Nanoporous Carbons Based on Lapsi Seed Stone.

    PubMed

    Joshi, Sahira; Shrestha, Lok Kumar; Kamachi, Yuichiro; Yamauchi, Yusuke; Pradhananga, Mandira Adhikari; Pokhrel, Bhadra Prasad; Ariga, Katsuhiko; Pradhananga, Raja Ram

    2015-02-01

    Nanoporous activated carbons (ACs) were prepared from Lapsi (Choerospondias axillaris) seed powder by chemical activation with sodium hydroxide (NaOH) at different NaOH impregnation ratios. The prepared ACs were characterized by Fourier transform-infrared (FTIR) spectroscopy, Raman scattering, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Semi-quantitative information on the surface properties was obtained by estimating iodine number. FTIR spectra showed the presence of oxygenated functional groups such as hydroxyl, carbonyl, and carboxyl in the prepared ACs. Raman scattering showed clear D and G bands in the spectra. The intensity ratio of G and D band peak intensity was ca. 1.39 at lowest NaOH and Lapsi seed powder ratio 0.25:1 showing high graphitic degree. This ratio decreased with increase in the NaOH impregnation ratio and reached minimum ca. 0.94 (comparable with commercial AC) at NaOH and Lapsi seed powder ratio 1:1 demonstrating that higher NaOH impregnation reduces the graphitic structure of the carbon. XRD patterns showed two broad peaks at diffraction angles of approximately 25 and 43 degrees indicating the amorphous structure. Surface properties of the ACs (BET surface area, pore volume, and pore size distributions) were evaluated by nitrogen adsorption-desorption isotherm. Our ACs showed strong methylene blue adsorption property (maximum methylene blue is ca. 200 mg/g). Judging from the iodine number and methylene blue values, structure, and surface areas, it can be concluded that NaOH impregnation ratio is one of the key parameters to tune the surface properties of Lapsi seed stone-based activated carbons.

  12. Calcite-impregnated defluidization structures in littoral sands of Mono Lake, California

    USGS Publications Warehouse

    Cloud, P.; Lajoie, K.R.

    1980-01-01

    Associated locally with well-known tufa mounds and towers of Mono Lake, California, are subvertical, concretionary sand structures through which fresh calcium-containing artesian waters moved up to sites of calcium carbonate precipitation beneath and adjacent to the lake. The structures include closely spaced calcite-impregnated columns, tubes, and other configurations with subcylindrical to bizarre cross sections and predominantly vertical orientation in coarse, barely coherent pumice sands along the south shore of the lake. Many structures terminate upward in extensive calcareous layers of caliche and tufa. Locally they enter the bases of tufa mounds and towers. A common form superficially resembles root casts and animal burrows except that branching is mostly up instead of down. Similar defluidization structures in ancient sedimentary rocks have been mistakenly interpreted as fossil burrows.

  13. Bio-inspired surfactant assisted nano-catalyst impregnation of Solid-Oxide Fuel Cell (SOFC) electrodes

    DOE PAGES

    Ozmen, Ozcan; Zondlo, John W.; Lee, Shiwoo; ...

    2015-11-02

    A bio-inspired surfactant was utilized to assist in the efficient impregnation of a nano-CeO₂ catalyst throughout both porous Solid Oxide Fuel Cells (SOFC’s) electrodes simultaneously. The process included the initial modification of electrode pore walls with a polydopamine film. The cell was then submersed into a cerium salt solution. The amount of nano-CeO₂ deposited per impregnation step increased by 3.5 times by utilizing this two-step protocol in comparison to a conventional drip impregnation method. The impregnated cells exhibited a 20% higher power density than a baseline cell without the nano-catalyst at 750°C (using humid H₂ fuel).

  14. Kl-impregnated Oyster Shells as a Solid Catalyst for Soybean Oil Transesterificaton

    USDA-ARS?s Scientific Manuscript database

    Research on inexpensive and green catalysts is needed for economical production of biodiesel. The goal of the research was to test KI-impregnated oyster shell as a solid catalyst for transesterification of soybean oil. Specific objectives were to characterize KI-impregnated oyster shell, determine t...

  15. Elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads in vitro.

    PubMed

    Tulipan, Rachel J; Phillips, Heidi; Garrett, Laura D; Dirikolu, Levent; Mitchell, Mark A

    2016-11-01

    OBJECTIVE To characterize the elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate (CSH) beads in vitro. SAMPLE 60 carboplatin-impregnated CSH beads and 9 CSH beads without added carboplatin (controls). PROCEDURES Carboplatin-impregnated CSH beads (each containing 4.6 mg of carboplatin [2.4 mg of platinum]) were placed into separate 10-mL plastic tubes containing 5 mL of PBSS in groups of 1, 3, 6, or 10; 3 control beads were placed into a single tube of PBSS at the same volume. Experiments were conducted in triplicate at 37°C and a pH of 7.4 with constant agitation. Eluent samples were collected at 1, 2, 3, 6, 12, 24, and 72 hours. Samples were analyzed for platinum content by inductively coupled plasma-mass spectrometry. RESULTS The mean concentration of platinum released per carboplatin-impregnated bead over 72 hours was 445.3 mg/L. Cumulative concentrations of platinum eluted increased as the number of beads per tube increased. There was a significant difference in platinum concentrations over time, with values increasing over the first 12 hours and then declining for all tubes. There was also a significant difference in percentage of total incorporated platinum released into tubes with different numbers of beads: the percentage of eluted platinum was higher in tubes containing 1 or 3 beads than in those containing 6 or 10 beads. CONCLUSIONS AND CLINICAL RELEVANCE Carboplatin-impregnated CSH beads eluted platinum over 72 hours. Further studies are needed to determine whether implantation of carboplatin-impregnated CSH beads results in detectable levels of platinum systemically and whether the platinum concentrations eluted locally are toxic to tumor cells.

  16. Mesoporous carbon-supported Pd nanoparticles with high specific surface area for cyclohexene hydrogenation: Outstanding catalytic activity of NaOH-treated catalysts

    NASA Astrophysics Data System (ADS)

    Puskás, R.; Varga, T.; Grósz, A.; Sápi, A.; Oszkó, A.; Kukovecz, Á.; Kónya, Z.

    2016-06-01

    Extremely high specific surface area mesoporous carbon-supported Pd nanoparticle catalysts were prepared with both impregnation and polyol-based sol methods. The silica template used for the synthesis of mesoporous carbon was removed by both NaOH and HF etching. Pd/mesoporous carbon catalysts synthesized with the impregnation method has as high specific surface area as 2250 m2/g. In case of NaOH-etched impregnated samples, the turnover frequency of cyclohexene hydrogenation to cyclohexane at 313 K was obtained 14 molecules • site- 1 • s- 1. The specific surface area of HF-etched samples was higher compared to NaOH-etched samples. However, catalytic activity was 3-6 times higher on NaOH-etched samples compared to HF-etched samples, which can be attributed to the presence of sodium and surface hydroxylgroups of the catalysts etched with NaOH solution.

  17. Electrochemical properties of a lithium-impregnated metal foam anode for thermal batteries

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Song; Yu, Hye-Ryeon; Cheong, Hae-Won

    2015-02-01

    Lithium-impregnated metal foam anodes (LIMFAs) are fabricated and investigated. The LIMFAs are prepared by the impregnation of lithium into molten-salt-coated nickel metal foam. A single cell with the LIMFA exhibits a specific capacity of 3009 As g-1. For comparison, a single cell with a LiSi alloy anode is also discharged, demonstrating a specific capacity of 1050 As g-1. These significant improvements can be attributed to the large amount of lithium impregnated into the metal foam as well as the molten lithium holding capability of the foam. Due to their excellent electrochemical properties, LIMFAs are suitable for use in thermal batteries.

  18. Preparation and properties of polytetrafluoroethylene impregnated with rhenium oxides

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Easter, R. W.

    1973-01-01

    The results of tests carried out to determine the properties of polytetrafluorethylene (PTFE) impregnated with rhenium oxides are presented. The tests included measurement of physical properties of the impregnated material and investigation of the effects of preparation process variables. Based on the latter tests a mechanism to describe the permeation process is postulated which identifies the rate controlling step to be diffusion of ReF6 molecules into the solid during the initial ReF6 soak. Physical property tests indicated that the electronic conductance is increased by many orders of magnitude while the desirable properties of the PTFE remain virtually unchanged.

  19. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    PubMed

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  20. Clinical review: Efficacy of antimicrobial-impregnated catheters in external ventricular drainage - a systematic review and meta-analysis.

    PubMed

    Wang, Xiang; Dong, Yan; Qi, Xiang-Qian; Li, Yi-Ming; Huang, Cheng-Guang; Hou, Li-Jun

    2013-07-25

    To assess the efficacy of antimicrobial-impregnated catheters in preventing catheter-related infections during external ventricular drainage (EVD), we performed a meta-analysis and systematic review. We systematically searched Medline, Embase, and the Cochrane Library. All randomized controlled trials (RCTs) and nonrandomized prospective studies (NPSs) related to antimicrobial-impregnated EVD catheters were included. The primary outcome was the rate of cerebrospinal fluid infection (CFI). The secondary outcomes included the rate of time-dependent CFI and catheter bacterial colonization. We further performed subgroup analysis, meta-regression analysis, and microbial spectrum analysis. Four RCTs and four NPSs were included. The overall rate of CFIs was 3.6% in the antimicrobial-impregnated catheter group and 13.7% in the standard catheter group. The pooled data demonstrated that antimicrobial-impregnated catheters were superior to standard catheters in lowering the rate of CFIs (odds ratio (OR) = 0.25, 95% confidence interval (CI) = 0.12 to 0.52, P <0.05). In survival analysis, the 20-day infection rate was significantly reduced with the use of antimicrobial-impregnated catheters (hazard ratio = 0.52, 95% CI = 0.29 to 0.95, P <0.05). Furthermore, a significantly decreased rate of catheter bacterial colonization was noticed for antimicrobial-impregnated catheters (OR = 0.37, 95% CI = 0.21 to 0.64, P <0.05). In subgroup analyses, although significant results remained for RCTs and NPSs, a subgroup difference was revealed (P <0.05). Compared with standard catheters, a significantly lower rate of CFIs was noticed for clindamycin/rifampin-impregnated catheters (OR = 0.27, 95% CI = 0.10 to 0.73, P <0.05) and for minocycline/rifampin-impregnated catheters (OR = 0.11, 95% CI = 0.06 to 0.21, P <0.05). However, no statistical significance was found when compared with silver-impregnated catheters (OR = 0.33, 95% CI = 0.07 to 1.69, P = 0.18). In microbial spectrum analysis

  1. Clinical review: Efficacy of antimicrobial-impregnated catheters in external ventricular drainage - a systematic review and meta-analysis

    PubMed Central

    2013-01-01

    To assess the efficacy of antimicrobial-impregnated catheters in preventing catheter-related infections during external ventricular drainage (EVD), we performed a meta-analysis and systematic review. We systematically searched Medline, Embase, and the Cochrane Library. All randomized controlled trials (RCTs) and nonrandomized prospective studies (NPSs) related to antimicrobial-impregnated EVD catheters were included. The primary outcome was the rate of cerebrospinal fluid infection (CFI). The secondary outcomes included the rate of time-dependent CFI and catheter bacterial colonization. We further performed subgroup analysis, meta-regression analysis, and microbial spectrum analysis. Four RCTs and four NPSs were included. The overall rate of CFIs was 3.6% in the antimicrobial-impregnated catheter group and 13.7% in the standard catheter group. The pooled data demonstrated that antimicrobial-impregnated catheters were superior to standard catheters in lowering the rate of CFIs (odds ratio (OR) = 0.25, 95% confidence interval (CI) = 0.12 to 0.52, P <0.05). In survival analysis, the 20-day infection rate was significantly reduced with the use of antimicrobial-impregnated catheters (hazard ratio = 0.52, 95% CI = 0.29 to 0.95, P <0.05). Furthermore, a significantly decreased rate of catheter bacterial colonization was noticed for antimicrobial-impregnated catheters (OR = 0.37, 95% CI = 0.21 to 0.64, P <0.05). In subgroup analyses, although significant results remained for RCTs and NPSs, a subgroup difference was revealed (P <0.05). Compared with standard catheters, a significantly lower rate of CFIs was noticed for clindamycin/rifampin-impregnated catheters (OR = 0.27, 95% CI = 0.10 to 0.73, P <0.05) and for minocycline/rifampin-impregnated catheters (OR = 0.11, 95% CI = 0.06 to 0.21, P <0.05). However, no statistical significance was found when compared with silver-impregnated catheters (OR = 0.33, 95% CI = 0.07 to 1.69, P = 0.18). In microbial spectrum analysis

  2. Flammability studies of impregnated paper sheets

    Treesearch

    Ivan Simkovic; Anne Fuller; Robert White

    2011-01-01

    Paper sheets impregnated with flame retardants made from agricultural residues and other additives were studied with the cone calorimeter. The use of sugar beet ethanol eluent (SBE), CaCl2, and ZnCl2 lowered the peak rate of heat release (PRHR) the most in comparison to water treated material. The average effective heat of...

  3. Multiwall carbon nanotube embedded phenolic resin-based carbon foam for the removal of As (V) from contaminated water

    NASA Astrophysics Data System (ADS)

    Rani Agrawal, Pinki; Singh, Nahar; Kumari, Saroj; Dhakate, Sanjay R.

    2018-03-01

    It is well proposed that micron or nano size filters requires to separate adsorbent from water after removal of adsorbate. However, even after filtration trace quantity of adsorbent remains in purified water, which deteriorates the quality of water for potability. To overcome these problems, multi walled carbon nanotube (MWCNT) loaded Carbon Foam (CF) was fabricated by a sacrificial template process. In this process, multi walled carbon nanotubes (MWCNTs) and phenolic resin mixture was used for the impregnation of the polyurethane (PU) template. Impregnated PU Foam stabilized and carbonized to get MWCNTs embedded Carbon Foam (CF). The MWCNT loaded CF (MWCNTs-CF) was used for the removal of As (V) species from water. The proposed foam efficiently removes arsenic (As (V)) from water and it can be easily separated from water after purification without any sophisticated tools. The adsorption capacity of the proposed material was found to be 90.5 μg*g-1 at optimized condition of pH, time and concentration, which is excellent in comparison to several other materials utilized for removal of As (V). Kinetic and isotherm studies reveal that the multilayer adsorption over heterogeneous surface follows pseudo second order kinetics. The adsorption phenomena were further confirmed by several characterization techniques like scanning electron microscope (SEM), x-ray diffraction (XRD) spectroscopy and x-ray photoelectron spectroscopy (XPS).

  4. Biomethanation of a mixture of salty cheese whey and poultry waste or cattle dung - a study of effect of temperature and retention time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, C.; Madamwar, D.

    1996-08-01

    This paper describes the results of a study aimed at improving the efficiency of anaerobic digestion of salty cheese whey in combination with poultry waste or cattle dung. Best results were obtained when salty cheese whey was mixed with poultry waste in the ratio of 7:3, or cattle dung in the ratio of 1:1, both on dry weight basis giving maximum gas production of 1.2 L/L of digester/d with enriched methane content of 64% and 1.3 L/L of digester/d having methane content of 63% respectively. Various conditions such as temperature and retention time have been optimized for maximum process performance.more » 16 refs., 3 figs.« less

  5. Salty or Sweet? Nutritional quality, consumption, and cost of snacks served in afterschool programs

    PubMed Central

    Beets, Michael W.; Weaver, R. Glenn; Tilley, Falon; Turner-McGrievy, Brie; Huberty, Jennifer; Ward, Dianne S.; Freedman, Darcy A.

    2015-01-01

    BACKGROUND Snacks served in afterschool programs (ASPs, 3–6pm) represent an important opportunity to promote healthy eating. ASP policies suggest a fruit/vegetable is served daily, while sugar-sweetened foods/beverages and artificially-flavored snacks are eliminated. Limited information exists on the types of snacks served in ASPs, if snacks meet existing nutrition policies, whether children eat the snacks, and their cost. METHODS Direct observation of snacks served and consumed was collected in 20 ASPs serving over 1,700 elementary-age children. The number of days snacks were served/week was evaluated for compliance with nutrition policies. Costs of snacks were collected via receipts. RESULTS Programs served desserts and artificially-flavored salty-snacks on 2.7 and 2.1 days/week. Fruits and vegetables were served 0.6 and 0.1 days/wk, respectively. Sugar-sweetened-beverages were served 1.8 days/wk. Of the children (N=383) observed, 75–100% consumed the snack served, with 95% and 100% of served fruits/vegetables consumed. No ASP served fruit/vegetables daily, 18 served sugar-sweetened foods, 16 served artificially-flavored snacks, and 14 served sugar-sweetened-beverages. Desserts and salty-snacks cost $0.27–$0.32/snack vs. $0.38–$0.40/snack for vegetables/fruits. CONCLUSIONS The quality of snacks failed to meet nutrition policies and consists of predominately high-sugar and artificially-flavored options. Strategies to improve snack offerings in ASPs while addressing price barriers are required. PMID:25564980

  6. Salty or sweet? Nutritional quality, consumption, and cost of snacks served in afterschool programs.

    PubMed

    Beets, Michael W; Weaver, Robert G; Tilley, Falon; Turner-McGrievy, Gabrielle; Huberty, Jennifer; Ward, Dianne S; Freedman, Darcy A

    2015-02-01

    Snacks served in afterschool programs (ASPs, 3-6 pm) represent an important opportunity to promote healthy eating. ASP policies suggest a fruit/vegetable is served daily, while sugar-sweetened foods/beverages and artificially flavored snacks are eliminated. Limited information exists on the types of snacks served in ASPs, if snacks meet existing nutrition policies, whether children eat the snacks, and their cost. Direct observation of snacks served and consumed was collected in 20 ASPs serving over 1700 elementary age children. The number of days that snacks were served/week was evaluated for compliance with nutrition policies. Costs of snacks were collected via receipts. Programs served desserts and artificially flavored salty snacks on 2.7 and 2.1 days/week. Fruits and vegetables were served 0.6 and 0.1 days/week, respectively. Sugar-sweetened beverages were served 1.8 days/week. Of the children (N = 383) observed, 75% to 100% consumed the snack served, with 95% and 100% of served fruits/vegetables consumed. No ASP served fruit/vegetables daily, 18 served sugar-sweetened foods, 16 served artificially flavored snacks, and 14 served sugar-sweetened beverages. Desserts and salty snacks cost $0.27-$0.32/snack vs $0.38-$0.40/snack for vegetables/fruits. The quality of snacks failed to meet nutrition policies and consists of predominately high-sugar and artificially flavored options. Strategies to improve snack offerings in ASPs while addressing price barriers are required. © 2015, American School Health Association.

  7. The temporal change in the cortical activations due to salty and sweet tastes in humans: fMRI and time-intensity sensory evaluation.

    PubMed

    Nakamura, Yuko; Goto, Tazuko K; Tokumori, Kenji; Yoshiura, Takashi; Kobayashi, Koji; Nakamura, Yasuhiko; Honda, Hiroshi; Ninomiya, Yuzo; Yoshiura, Kazunori

    2012-04-18

    It remains unclear how the cerebral cortex of humans perceives taste temporally, and whether or not such objective data about the brain show a correlation with the current widely used conventional methods of taste-intensity sensory evaluation. The aim of this study was to investigate the difference in the time-intensity profile between salty and sweet tastes in the human brain. The time-intensity profiles of functional MRI (fMRI) data of the human taste cortex were analyzed using finite impulse response analysis for a direct interpretation in terms of the peristimulus time signal. Also, time-intensity sensory evaluations for tastes were performed under the same condition as fMRI to confirm the reliability of the temporal profile in the fMRI data. The time-intensity profile for the brain activations due to a salty taste changed more rapidly than those due to a sweet taste in the human brain cortex and was also similar to the time-intensity sensory evaluation, confirming the reliability of the temporal profile of the fMRI data. In conclusion, the time-intensity profile using finite impulse response analysis for fMRI data showed that there was a temporal difference in the neural responses between salty and sweet tastes over a given period of time. This indicates that there might be taste-specific temporal profiles of activations in the human brain.

  8. Degradation of the performance of an epoxy-impregnated REBCO solenoid due to electromagnetic forces

    NASA Astrophysics Data System (ADS)

    Matsuda, T.; Okamura, T.; Hamada, M.; Matsumoto, S.; Ueno, T.; Piao, R.; Yanagisawa, Y.; Maeda, H.

    2018-03-01

    Recently, degradation of a high-field REBCO coil due to strong electromagnetic forces, has been identified. This issue is related to a conductor movement, forming a kink in the conductor body, and hence epoxy impregnation should be effective to prevent it. The purpose of this paper is to examine the effect of epoxy impregnation on the electromagnetic force-induced degradation of a REBCO coil. We made an epoxy impregnated solenoid coil and charged it at 4.2 K in an external field of 11 T. A notable characteristic behavior, which is different from that of a dry or paraffin impregnated coil, was observed in the coil's performance. The coil did not show any normal voltage below 408 A, at 65% on the coil load line, but it showed a sudden voltage jump at 408 A, resulted from a sudden fracture of the REBCO conductor. The outward bending, combined with a strong circumferential stress, caused the REBCO layer to fracture. Although epoxy impregnation is effective to suppress a conductor movement inside the winding, avoiding self-supported sites at a coil edge is required to eliminate degradation of the thin and flexible REBCO conductor.

  9. The dynamics of Black Smokers: a heated-salty plume analog.

    NASA Astrophysics Data System (ADS)

    Maxworthy, Tony

    2004-11-01

    Experiments have been carried out on the dynamical processes that govern the evolution of hot, salty plumes injected into cold surroundings. Under the appropriate circumstances these are then used as an analoque system to understand some features of particle-laden, deep-ocean, hydrothermal plumes, e.g., Black Smokers. Details of the temperature distributions over a wide range of parameters are presented and these, coupled with flow visualization experiments, have yielded a fairly complete picture of the important features of the flow. As a result it has been concluded that cabelling processes are critical to an understanding of the flow reversals found in a certain parameter range and that double diffusive processes, though present, are of minor importance. As a final exercise an example is worked through in which the circumstances for flow reversal in deep-sea plumes have been estimated based on the best available knowledge of these interesting entities.

  10. The preparation and structure of salty ice VII under pressure

    NASA Astrophysics Data System (ADS)

    Klotz, Stefan; Bove, Livia E.; Strässle, Thierry; Hansen, Thomas C.; Saitta, Antonino M.

    2009-05-01

    It is widely accepted that ice, no matter what phase, is unable to incorporate large amounts of salt into its structure. This conclusion is based on the observation that on freezing of salt water, ice expels the salt almost entirely as brine. Here, we show that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate by neutron diffraction that substantial amounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallization of its glassy (amorphous) state under pressure. Such `alloyed' ice VII has significantly different structural properties compared with pure ice VII, such as an 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure and plasticity. Our study suggests that there could be a whole new class of `salty' high-pressure ice forms.

  11. The preparation and structure of salty ice VII under pressure.

    PubMed

    Klotz, Stefan; Bove, Livia E; Strässle, Thierry; Hansen, Thomas C; Saitta, Antonino M

    2009-05-01

    It is widely accepted that ice, no matter what phase, is unable to incorporate large amounts of salt into its structure. This conclusion is based on the observation that on freezing of salt water, ice expels the salt almost entirely as brine. Here, we show that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate by neutron diffraction that substantial amounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallization of its glassy (amorphous) state under pressure. Such 'alloyed' ice VII has significantly different structural properties compared with pure ice VII, such as an 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure and plasticity. Our study suggests that there could be a whole new class of 'salty' high-pressure ice forms.

  12. Adsorption of methyl orange using activated carbon prepared from lignin by ZnCl2 treatment

    NASA Astrophysics Data System (ADS)

    Mahmoudi, K.; Hamdi, N.; Kriaa, A.; Srasra, E.

    2012-08-01

    Lignocellulosic materials are good and cheap precursors for the production of activated carbon. In this study, activated carbons were prepared from the lignin at different temperatures (200 to 500°C) by ZnCl2. The effects influencing the surface area of the resulting activated carbon are activation temperature, activation time and impregnation ratio. The optimum condition, are found an impregnation ratio of 2, an activation temperature of 450°C, and an activation time of 2 h. The results showed that the surface area and micropores volume of activated carbon at the experimental conditions are achieved to 587 and 0.23 cm3 g-1, respectively. The adsorption behavior of methyl orange dye from aqueous solution onto activated lignin was investigated as a function of equilibrium time, pH and concentration. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. A maximum adsorption capacity of 300 mg g-1 of methyl orange by activated carbon was achieved.

  13. Increased Utilization of Salty Food with Age Among Preteenage Black Girls

    PubMed Central

    Karp, Robert J.; Williams, Clara; Grant, Jeanne-Olivia

    1980-01-01

    In a survey of black inner-city school children 10 to 13 years of age, a significant correlation was found for obesity index (weight/height2) and measurements of systolic blood pressure. Significant correlations were found for both blood pressure and obesity index of mothers and daughters. No such relationships were found for mothers and sons. There was an increased availability of sodium-rich foods found for girls as their age increased. This was not found for boys. Both obesity and a sodium-rich diet are risk factors for the development of hypertension. The present study suggests that among over-weight black girls in the preteen years, attempts should be made (1) to identify (and limit) any increase in the consumption of salty foods and (2) to limit weight gain appropriately. PMID:7392064

  14. Impregnation of bio-oil from small diameter pine into wood for moisture resistance

    Treesearch

    Thomas J. Robinson; Brian K. Via; Oladiran Fasina; Sushil Adhikari; Emily Carter

    2011-01-01

    Wood pyrolysis oil consists of hundreds of complex compounds, many of which are phenolic-based and exhibit hydrophobic properties. Southern yellow pine was impregnated with a pyrolysis oil-based penetrant using both a high pressure and vacuum impregnation systems, with no significant differences in retention levels. Penetrant concentrations ranging from 5-50% pyrolysis...

  15. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    NASA Astrophysics Data System (ADS)

    Timko, M.; Kopčanský, P.; Marton, K.; Tomčo, L.; Koneracká, M.

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 106 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  16. Acoustic cavitation induced synthesis of zirconium impregnated activated carbon for effective fluoride scavenging from water by adsorption.

    PubMed

    Mullick, Aditi; Neogi, Sudarsan

    2018-07-01

    Environmental concern associated with the side effects of high fluoride content in ground water and surface water has prompted the researchers to look for an efficient, convenient and easy method. Considering the potential of a good adsorbent, present study reports the synthesis of a composite by impregnating zirconium on powdered activated carbon (AC) using ultrasound as the tool for synthesis and applying it for fluoride adsorption from water. The nature of the composite was determined through characterization by scanning electron microscopy (SEM), energy dispersive Xray (EDX), Xray diffraction (XRD), N 2 adsorption analysis (BET) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. The pH pzc (point of zero charge) of the adsorbent was found to be 5.03; with the optimum pH obtained at 4 for adsorption of strong electronegative fluoride ions. The initial fluoride concentration was varied from 2.5 up to 20 mg.L -1 and the maximum adsorption capacity of 5 mg.g -1 was obtained. A maximum fluoride removal of 94.4% was obtained for an initial concentration of 2.5 mg.L -1 within an equilibrium time of 180 min. The adsorption isotherm followed the Langmuir isotherm model indicating a monolayer adsorption process and the adsorption kinetics followed pseudo second order model. The effects of various coexisting ions (HCO 3 - , NO 3 - , SO 4 2- , Cl - ) commonly present in the water were found to have negligible impact on the process performance. Conducting the adsorption-desorption studies for five consecutive cycles for an initial fluoride concentration of 10 mg.L -1 , the removal efficiency reduced from 86.2 to 32.6%. The ultrasonic method provided an easy route to synthesize the composite in less time and significantly reduced energy consumption by more than 96% compared to the conventional method. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  18. Insights into the Adsorption of Carbon Dioxide in the Presence of Water Vapor Utilizing a Low Molecular Weight Polyethylenimine-Impregnated CARiACT Silica Sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.

    Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less

  19. Insights into the Adsorption of Carbon Dioxide in the Presence of Water Vapor Utilizing a Low Molecular Weight Polyethylenimine-Impregnated CARiACT Silica Sorbent

    DOE PAGES

    Monazam, Esmail R.; Breault, Ronald W.; Fauth, Daniel J.; ...

    2017-07-20

    Thermogravimetric analysis was employed to investigate the CO 2 and H 2O adsorption rates and water vapor equilibrium on anhydrous and pre-hydrate linear polyethylenimine (LPEI) sorbent impregnated within a commercially functional CARiACT G10 (HPV) silica support. Water vapor experiments utilizing specific humidity of 2%, 8%, and 16% in contact with an anhydrous PEI sorbent resulted in proportional quantities of water vapor uptake. Subsequently, both anhydrous and pre-hydrated PEI-impregnated sorbents were made available to identical humidified gaseous streams containing a CO 2 concentration of 10% at 60oC. CO 2 capacity increased dramatically in the presence of different levels of humidity. Variousmore » kinetic models were systematically employed to interpret the experimental data including single and multiple-step models. The rate data was best represented by a reaction mechanism pathway involving the interplay of CO 2 with PEI-impregnated sorbents exhibited a quick adsorption phase followed by a slow approach to equilibrium. Moreover, a phenomenological rate model was developed to describe the dynamic H 2O and CO 2 uptakes at specific humidity levels studied. The kinetic study showed good agreement with experimental data. Furthermore, the effects observed during the adsorption and hydration are shown to be complementary to known chemical and physical transformations within the polyethylenimine’s macromolecule.« less

  20. Molecular dimensions and surface diffusion assisted mechanically robust slippery perfluoropolyether impregnated mesoporous alumina interfaces

    NASA Astrophysics Data System (ADS)

    Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik

    2017-12-01

    Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10-8 mm3 N-1 m-1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.

  1. Antimicrobial-impregnated catheters for the prevention of catheter-related bloodstream infections.

    PubMed

    Lorente, Leonardo

    2016-05-04

    Central venous catheters are commonly used in critically ill patients. Such catheterization may entail mechanical and infectious complications. The interest in catheter-related infection lies in the morbidity, mortality and costs that it involved. Numerous contributions have been made in the prevention of catheter-related infection and the current review focuses on the possible current role of antimicrobial impregnated catheters to reduce catheter-related bloodstream infections (CRBSI). There is evidence that the use of chlorhexidine-silver sulfadiazine (CHSS), rifampicin-minocycline, or rifampicin-miconazol impregnated catheters reduce the incidence of CRBSI and costs. In addition, there are some clinical circumstances associated with higher risk of CRBSI, such as the venous catheter access and the presence of tracheostomy. Current guidelines for the prevention of CRBSI recommended the use of a CHSS or rifampicin-minocycline impregnated catheter in patients whose catheter is expected to remain in place > 5 d and if the CRBSI rate has not decreased after implementation of a comprehensive strategy to reduce it.

  2. Antimicrobial-impregnated catheters for the prevention of catheter-related bloodstream infections

    PubMed Central

    Lorente, Leonardo

    2016-01-01

    Central venous catheters are commonly used in critically ill patients. Such catheterization may entail mechanical and infectious complications. The interest in catheter-related infection lies in the morbidity, mortality and costs that it involved. Numerous contributions have been made in the prevention of catheter-related infection and the current review focuses on the possible current role of antimicrobial impregnated catheters to reduce catheter-related bloodstream infections (CRBSI). There is evidence that the use of chlorhexidine-silver sulfadiazine (CHSS), rifampicin-minocycline, or rifampicin-miconazol impregnated catheters reduce the incidence of CRBSI and costs. In addition, there are some clinical circumstances associated with higher risk of CRBSI, such as the venous catheter access and the presence of tracheostomy. Current guidelines for the prevention of CRBSI recommended the use of a CHSS or rifampicin-minocycline impregnated catheter in patients whose catheter is expected to remain in place > 5 d and if the CRBSI rate has not decreased after implementation of a comprehensive strategy to reduce it. PMID:27152256

  3. Mechanical and electric characteristics of vacuum impregnated no-insulation HTS coil

    NASA Astrophysics Data System (ADS)

    Park, Heecheol; Kim, A.-rong; Kim, Seokho; Park, Minwon; Kim, Kwangmin; Park, Taejun

    2014-09-01

    For the conduction cooling application, epoxy impregnation is inevitable to enhance the thermal conduction. However, there have been several research results on the delamination problem with coated conductor and the main cause of the delamination is related with the different thermal contraction between epoxy, the insulation layer and the weak conductor. To avoid this problem, the amount of epoxy and insulation layer between conductors should be minimized or removed. Therefore, no insulation (NI) winding method and impregnation after dry winding can be considered to solve the problem. The NI coil winding method is very attractive due to high mechanical/thermal stability for the special purpose of DC magnets by removing the insulation layer. In this paper, the NI coil winding method and vacuum impregnation are applied to a HTS coil to avoid the delamination problem and enhance the mechanical/thermal stability for the conduction cooling application. Through the charging/discharging operation, electric/thermal characteristics are investigated at 77 K and 30 K.

  4. Silver Nanoparticle Impregnated Bio-Based Activated Carbon with Enhanced Antimicrobial Activity

    NASA Astrophysics Data System (ADS)

    Selvakumar, R.; Suriyaraj, S. P.; Jayavignesh, V.; Swaminathan, K.

    2013-08-01

    The present study involves the production of silver nanoparticles using a novel yeast strain Saccharomyces cerevisiae BU-MBT CY-1 isolated from coconut cell sap. The biological reduction of silver nitrate by the isolate was deducted at various time intervals. The yeast cells after biological silver reduction were harvested and subjected to carbonization at 400°C for 1 h and its properties were analyzed using Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope attached with energy dispersive spectroscopy and transmission electron microscopy. The average size of the silver nanoparticles present on the surface of the carbonized silver containing yeast cells (CSY) was 19 ± 9 nm. The carbonized control yeast cells (CCY) did not contain any particles on its surface. The carbonized silver nanoparticles containing yeast cells (CSY) were made into bioactive emulsion and tested for its efficacy against various pathogenic Gram positive and Gram negative bacteria. The antimicrobial activity studies indicated that CSY bioactive nanoemulsion was effective against Gram negative organisms than Gram positive organism.

  5. A Laboratory Investigation of Aerosol and Extinction Characteristics for SALTY DOG, NWC 29 and NWC 78 Pyrotechnics

    DTIC Science & Technology

    1980-10-01

    The artificial fogs are produced by 1’SALTY DOC,14 and phosphorus pentoxide smokeS~in Calspan’s 590 cubic meter chamber at controlled relative...the chamber experiments, an isokinetic sampling inlet was employed for minimizing aerosol losses during sampling. Instrumentation used to monitor...with a 1 cfm critical orifice and vacuum pump. Additionally, a flow meter , placed behind the filter, was monitored to assure that filter loading did

  6. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    NASA Astrophysics Data System (ADS)

    Ahmad, Norhidayah; Yong, Sing Hung; Ibrahim, Naimah; Ali, Umi Fazara Md; Ridwan, Fahmi Muhammad; Ahmad, Razi

    2018-03-01

    Oil palm empty fruit bunch (EFB) was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO) to synthesize CuO modified catalytic carbon (CuO/EFBC) for low-temperature removal of nitric oxide (NO) from gas streams. CuO impregnation was optimised through response surface methodology (RSM) using Box-Behnken Design (BBD) in terms of metal loading (5-20%), sintering temperature (200-800˚C) and sintering time (2-6 hours). The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625) was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature) are significant (Prob.>F less than 0.05).

  7. Control of Effluent Gases from Solid Waste Processing Using Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Fisher, John; Cinke, Martin; Wignarajab, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is the release of effluent gases and contaminants that are in gaseous formed from the processes. A number of other gases, in particular NO(x), SO2, NH3, Hydrocarbons (e.g. CH4) do present hazards to the crew in space habitats. Reduction of mass, power, volume and resupply can be achieved by using catalyst impregnated carbon nanotubes as compared to other catalytic systems. The development and characterization of an innovative approach for the control and elimination of gaseous toxins using single walled carbon nanotubes (SWNTs) promise superior performance over conventional approaches. This is due to the ability to direct the selective uptake of gaseous species based on their controllable pore size, high adsorptive capacity and the effectiveness of carbon nanotubes as catalyst supports for gaseous conversion. For example, SWNTs have high adsorptive capacity for NO and the adsorbed NO can be decomposed to N2 and O2 . Experimental results showing the decomposition of NO on metal impregnated carbon nanotubes is presented. Equivalent System Mass (ESM) comparisons are made of the existing TCCS systems with the carbon nanotube technology for removing NO(x). The potential for methane decomposition using carbon nanotubes catalysts is also discussed.

  8. Modeling and Experiment of Melt Impregnation of Continuous Fiber-reinforced Thermoplastic with Pins

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Jun; Xin, Chun-Ling; Tang, Ke; Zhang, Zhi-Cheng; Yan, Bao-Rui; Ren, Feng; He, Ya-Dong

    2016-05-01

    Melt impregnation is a crucial method for continuous fiber-reinforced thermoplastic. It was developed several years ago for thermosetting plastic, but it is very popular now in the thermoplastic matrices, with a much higher viscosity. In this paper, we propose a mathematic model based on Darcy's law, which combined with processing parameters and material physical parameters. Then we use this model to predict the influence of processing parameters on the degree of impregnation of the prepreg, and the trend of prediction is consistent with the experimental results. Therefore, the exhaustive numerical study enables to define the optimal processing conditions for a perfect impregnation. The results are shown to be effective tools for finding optimal pulling speed, pin number and pressure for a given fluid/fibers pair.

  9. Adsorption Studies of Chromium(VI) on Activated Carbon Derived from Mangifera indica (Mango) Seed Shell

    NASA Astrophysics Data System (ADS)

    Mise, Shashikant; Patil, Trupti Nagendra

    2015-09-01

    The removal of chromium(VI) from synthetic sample by adsorption on activated carbon prepared from Mangifera indica (mango) seed shell have been carried out at room temperature 32 ± 1 °C. The removal of chromium(VI) from synthetic sample by adsorption on two types of activated carbon, physical activation and chemical activation (Calcium chloride and Sodium chloride), Impregnation Ratio's (IR) 0.25, 0.50, 0.75 for optimum time, optimum dosages and variation of pH were studied. It is observed that contact time differs for different carbons i.e. for physically and chemically activated carbons. The contact time decreases for chemically activated carbon compared to the physically activated carbon. It was observed that as dosage increases the adsorption increased along with the increase in impregnation ratio. It was also noted that as I.R. increases the surface area of Mangifera indica shell carbon increased. These dosage data were considered in the construction of isotherms and it was found that adsorption obeys Freundlich Isotherm and does not obey Langmuir Isotherm. The maximum removal of chromium (VI) was obtained in highly acidic medium at a pH of 1.50.

  10. Impregnation of glass fibres with polymethylmethacrylate using a powder-coating method

    NASA Astrophysics Data System (ADS)

    Vallittu, Pekka K.

    1995-01-01

    The aim of this study was to evaluate the usefulness of a powder-coating method to impregnate glass fibres with polymethylmethacrylate (PMMA) for dental purposes. The continuous unidirectional E-glass fibres, the surface of which had been treated with precured silane, were powder-coated with spherical PMMA particles. Before the powder-coated prepregs were used, the incorporated PMMA powder was dissolved with methylmethacrylate monomer. The degree of impregnation of the polymerized composite was determined with a scanning electron microscope. The results revealed that the mean degree of impregnation varied from 0.87 to 0.92, being lower in the heat-cured PMMA group (which simulated fabrication of a new denture), and higher in the autopolymerizing group (which simulated the repair of a fractured denture). The means between the two groups did not, however, differ significantly ( p=0.249). The results suggest that, even though the method has some shortcomings in terms of dental laboratory technology, the powder-coating method can be used to fabricate or repair acrylic resin-based dentures.

  11. Heatshield material selection for advanced ballistic reentry vehicles. [rayon fiber cloth impregnated with phenolic resin

    NASA Technical Reports Server (NTRS)

    Legendre, P. J.; Holtz, T.; Sikra, J. C.

    1980-01-01

    The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance.

  12. Preparation and Characterization of Activated Carbon from Palm Kernel Shell

    NASA Astrophysics Data System (ADS)

    Andas, J.; Rahman, M. L. A.; Yahya, M. S. M.

    2017-08-01

    In this study, a high quality of activated carbon (AC) was successfully synthesized from palm kernel shell (PKS) via single step KOH activation. Several optimal conditions such as impregnation ratio and activation temperature were investigated. The prepared activated carbon under the optimum condition of impregnation ratio (1:1.5 raw/KOH) and activation temperature (800 °C) was characterized using Na2S2O3 volumetric method, CHNS/O analysis and Scanning Electron Microscope (SEM). Na2S2O3 volumetric showed an iodine number of 994.83 mgg-1 with yield % of 8.931 %. CHNS/O analysis verified an increase in C content for KOH-AC (61.10 %) in comparison to the raw PKS (47.28 %). Well-formation of porous structure was evidenced through SEM for KOH-AC. From this study, it showed a successful conversion of agricultural waste into value added porous material under benign condition.

  13. The definition of the process of electrochemical impregnation of nickel electrodes

    NASA Technical Reports Server (NTRS)

    Antoine, P.

    1983-01-01

    Electrochemical impregnation was studied during a series of experiments designed to define the optimal conditions for the fabrication of dimensionally stable cell anodes of Ni-H2 and Ni-Cd systems. The influence of various parameters, such as current and duration of electrolysis, temperature and acidity of the chemical bath, the concentrations of Ni and Co as well as the use of ethanol was determined. Results show that the electrochemical impregnation process as defined is industrially feasible and it is suggested that Ni-H2 and Ni-Cd type electrodes be produced in sufficient quantity to further evaluate their performance characteristics.

  14. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    PubMed

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  15. Background electrolytes and pH effects on selenate adsorption using iron-impregnated granular activated carbon and surface binding mechanisms.

    PubMed

    Zhang, Ning; Gang, Daniel Dianchen; McDonald, Louis; Lin, Lian-Shin

    2018-03-01

    Iron-impregnated granular activated carbon (Fe-GAC) has been shown effective for selenite adsorptive removal from aqueous solutions, but similar effectiveness was not observed with selenate. This study examined the effects of background electrolytes and pH on selenate adsorption on to Fe-GAC, and surface bindings to elucidate the selenate adsorption mechanisms. The decrease magnitude of selenate adsorption capacity under three background electrolytes followed the order: LiCl > NaCl > KCl, as ionic strength increased from 0.01 to 0.1 M. Larger adsorption capacity differences among the three electrolytes were observed under the higher ionic strengths (0.05 and 0.1 M) than those under 0.01 M. Multiplet peak fittings of high resolution X-ray photoelectron spectra for O1s and Fe2p 3/2 indicated the presence of iron (III) on adsorbent surface. pH variations during the adsorbent preparation within 3-8 in NaCl solutions did not cause appreciable changes in the iron redox state and composition. Raman spectra showed the formation of both monodentate and bidentate inner sphere complexes under pHs <7 and a mixture of outer sphere and inner sphere complexes at pH 8. These results explained the lower selenate adsorption under alkaline conditions. Mechanisms for monodentate and bidentate formations and a stable six-member ring structure were proposed. Two strategies were recommended for modifying Fe-GAC preparation procedure to enhance the selenate adsorption: (1) mixed-metal oxide coatings to increase the point of zero charge (pH zpc ); and (2) ferrous iron coating to initially reduce selenate followed by selenite adsorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impregnating magnetic components with MDA free epoxy

    NASA Astrophysics Data System (ADS)

    Sanchez, R. O.; Domeier, L.; Gunewardena, S.

    1995-08-01

    This paper describes the use of 'Formula 456' an aliphatic amine cured epoxy for impregnating coils. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA.

  17. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    PubMed Central

    Rahman, Mokhlesur M.; Adil, Mohd; Yusof, Alias M.; Kamaruzzaman, Yunus B.; Ansary, Rezaul H.

    2014-01-01

    In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model. PMID:28788640

  18. Enjoyment of Spicy Flavor Enhances Central Salty-Taste Perception and Reduces Salt Intake and Blood Pressure.

    PubMed

    Li, Qiang; Cui, Yuanting; Jin, Rongbing; Lang, Hongmei; Yu, Hao; Sun, Fang; He, Chengkang; Ma, Tianyi; Li, Yingsha; Zhou, Xunmei; Liu, Daoyan; Jia, Hongbo; Chen, Xiaowei; Zhu, Zhiming

    2017-12-01

    High salt intake is a major risk factor for hypertension and is associated with cardiovascular events. Most countries exhibit a traditionally high salt intake; thus, identification of an optimal strategy for salt reduction at the population level may have a major impact on public health. In this multicenter, random-order, double-blind observational and interventional study, subjects with a high spice preference had a lower salt intake and blood pressure than subjects who disliked spicy food. The enjoyment of spicy flavor enhanced salt sensitivity and reduced salt preference. Salt intake and salt preference were related to the regional metabolic activity in the insula and orbitofrontal cortex (OFC) of participants. Administration of capsaicin-the major spicy component of chili pepper-enhanced the insula and OFC metabolic activity in response to high-salt stimuli, which reversed the salt intensity-dependent differences in the metabolism of the insula and OFC. In animal study, OFC activity was closely associated with salt preference, and salty-taste information processed in the OFC was affected in the presence of capsaicin. Thus, interventions related to this region may alter the salt preference in mice through fiber fluorometry and optogenetic techniques. In conclusion, enjoyment of spicy foods may significantly reduce individual salt preference, daily salt intake, and blood pressure by modifying the neural processing of salty taste in the brain. Application of spicy flavor may be a promising behavioral intervention for reducing high salt intake and blood pressure. © 2017 American Heart Association, Inc.

  19. Spray-dried chitosan/acid/NaCl microparticles enhance saltiness perception.

    PubMed

    Yi, Cheng; Tsai, Min-Lang; Liu, Tristan

    2017-09-15

    The composition, physicochemical properties and salinity of spray-dried chitosan/acid/NaCl microparticles were tested to ensure a low-sodium and high-salinity salty agent. The spray-dried chitosan/acid/NaCl microparticles were hollow and had a favourable hygroscopicity, and increased NaCl content and decreased organic acid content. Their size of the microparticles was 15.4-32.0μm and increased with NaCl concentration. The microparticles of acetic and lactic acid groups had a NaCl crystal size of 1-2 and 1-4μm, respectively. The NaCl crystals of acetic, lactic and citric acid group microparticles were distributed on the microparticle matrices, mostly on the microparticle surface and mainly on the inner walls of the microparticles walls, respectively. The acetic and lactic acid group microparticles were relatively smaller than general salt, with NaCl crystals distributed on the particle surfaces. Consequently, they were perceived as saltier than general salt and could potentially be regarded as a low-sodium salt for surface-salted foods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Dehalogenation of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyl by Bimetallic, Impregnated, and Nanoscale Zerovalent Iron

    PubMed Central

    Zhuang, Yuan; Ahn, Sungwoo; Seyfferth, Angelia L.; Masue-Slowey, Yoko; Fendorf, Scott; Luthy, Richard G.

    2011-01-01

    Nanoscale zerovalent iron particles (nZVI), bimetallic nanoparticles (nZVI/Pd), and nZVI/Pd impregnated activated carbon (nZVI/Pd-AC) composite particles were synthesized and investigated for their effectiveness to remove polybrominated diphenyl ethers (PBDEs) and/or polychlorinated biphenyls (PCBs). Palladization of nZVI promoted the dehalogenation kinetics for mono- to tri-BDEs and 2,3,4-trichlorobiphenyl (PCB 21). Compared to nZVI, the iron-normalized rate constants for nZVI/Pd were about 2-, 3-, and 4-orders of magnitude greater for tri-, di-, and mono-BDEs, respectively, with diphenyl ether as a main reaction product. The reaction kinetics and pathways suggest an H-atom transfer mechanism. The reaction pathways with nZVI/Pd favor preferential removal of para-halogens on PBDEs and PCBs. X-ray fluorescence mapping of nZVI/Pd-AC showed that Pd mainly deposits on the outer part of particles, while Fe was present throughout the activated carbon particles. While BDE 21 was sorbed onto activated carbon composites quickly, debromination was slower compared to reaction with freely dispersed nZVI/Pd. Our XPS and chemical data suggest about 7% of the total iron within the activated carbon was zero-valent, which shows the difficulty with in-situ synthesis of a significant fraction of zero-valent iron in the micro-porous material. Related factors that likely hinder the reaction with nZVI/Pd-AC are the heterogenous distribution of nZVI and Pd on activated carbon and/or immobilization of hydrophobic organic contaminants at the adsorption sites thereby inhibiting contact with nZVI. PMID:21557574

  1. Bright Soil Near 'McCool': Salty Deja Vu?

    NASA Technical Reports Server (NTRS)

    2006-01-01

    While driving eastward toward the northwestern flank of 'McCool Hill,' the wheels of NASA's Mars Exploration Rover Spirit churned up the largest amount of bright soil discovered so far in the mission. This image from Spirit's navigation camera, taken on the rover's 787th Martian day, or sol, of exploration (March 21, 2006), shows the strikingly light tone and large extent of the deposit.

    A few days earlier, Spirit's wheels unearthed a small patch of light-toned material informally named 'Tyrone.' In images from Spirit's panoramic camera, 'Tyrone' strongly resembled both 'Arad' and 'Paso Robles,' two patches of light-toned soils discovered earlier in the mission. Spirit found 'Paso Robles' in 2005 while climbing 'Cumberland Ridge' on the western slope of 'Husband Hill.' In early January 2006, the rover discovered 'Arad' on the basin floor just south of 'Husband Hill.' Spirit's instruments confirmed that those soils had a salty chemistry dominated by iron-bearing sulfates. Spirit's miniature thermal emission spectrometer is analyzing this most recent discovery, and researchers will compare it with those other deposits.

    These discoveries indicate that light-toned soil deposits might be widely distributed on the flanks and valley floors of the 'Columbia Hills' region in Gusev Crater on Mars. The salts may record the past presence of water, as they are easily mobilized and concentrated in liquid solution.

  2. A brief review on activated carbon derived from agriculture by-product

    NASA Astrophysics Data System (ADS)

    Yahya, Mohd Adib; Mansor, Muhammad Humaidi; Zolkarnaini, Wan Amani Auji Wan; Rusli, Nurul Shahnim; Aminuddin, Anisah; Mohamad, Khalidah; Sabhan, Fatin Aina Mohamad; Atik, Arif Abdallah Aboubaker; Ozair, Lailatun Nazirah

    2018-06-01

    A brief review focusing on preparation of the activated carbon derived from agriculture by-products is presented. The physical and chemical activation of activated carbon were also reviewed. The effects of various parameters including types of activating agents, temperature, impregnation ratio, were also discussed. The applications of activated carbon from agricultural by products were briefly reviewed. It is provenly evident in this review, the relatively inexpensive and renewable resources of the agricultural waste were found to be effectively being converted into wealth materials.

  3. Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples.

    PubMed

    Gouda, Ayman A; Al Ghannam, Sheikha M

    2016-07-01

    A new, sensitive and simple solid phase extraction (SPE), separation and preconcentration method of some heavy metal ions, Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) at trace levels using multiwalled carbon nanotubes (MWCNTs) impregnated with 2-(2-benzothiazolylazo)orcinol (BTAO) from food and water samples were investigated. The effect of analytical parameters was examined. The metals retained on the nanotubes at pH 7.0 were eluted by 5.0mL HNO3 (2.0molL(-1)). The influence of matrix ions on the proposed method was evaluated. The preconcentration factor was calculated and found to be 100. The detection limits (LODs) for Cd(II), Cu(II), Ni(II), Pb(II) and Zn(II) were found at 0.70, 1.2, 0.80, 2.6 and 2.2μgL(-1), respectively. The relative standard deviation (RSD) and the recoveries of the standard addition method were lower than 5.0% and 95-102%, respectively. The new procedure was successfully applied to the determination of trace amounts of the studied metal ions in various food and water samples and validated using certified reference materials SRM 1570A (spinach leaves) with satisfactory and compatible results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization.

    PubMed

    Martínez-Vázquez, Francisco J; Perera, Fidel H; van der Meulen, Inge; Heise, Andreas; Pajares, Antonia; Miranda, Pedro

    2013-11-01

    Ring-opening polymerization of ε-caprolactone (ε-CL) and L-lactide (LLA) was performed to impregnate β-tricalcium phosphate (β-TCP) scaffolds fabricated by robocasting. Concentrated colloidal inks prepared from β-TCP commercial powders were used to fabricate porous structures consisting of a 3D mesh of interpenetrating rods. ε-CL and LLA were in situ polymerized within the ceramic structure by using a lipase and stannous octanoate, respectively, as catalysts. The results show that both the macropores inside the ceramic mesh and the micropores within the ceramic rods are full of polymer in either case. The mechanical properties of scaffolds impregnated by in situ polymerization (ISP) are significantly increased over those of the bare structures, exhibiting similar values than those obtained by other, more aggressive, impregnation methods such as melt-immersion (MI). ISP using enzymatic catalysts requires a reduced processing temperature which could facilitate the incorporation of growth factors and other drugs into the polymer composition, thus enhancing the bioactivity of the composite scaffold. The implications of these results for the optimization of the mechanical and biological performance of scaffolds for bone tissue engineering applications are discussed. Copyright © 2013 Wiley Periodicals, Inc.

  5. Adsorption of Carbon Dioxide, Ammonia, Formaldehyde, and Water Vapor on Regenerable Carbon Sorbents

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is nonregenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for simultaneous carbon dioxide, ammonia, formaldehyde, and water sorption. Multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also the enhancement of formaldehyde sorption by the presence of ammonia in the gas mixture.

  6. When music is salty: The crossmodal associations between sound and taste.

    PubMed

    Guetta, Rachel; Loui, Psyche

    2017-01-01

    Here we investigate associations between complex auditory and complex taste stimuli. A novel piece of music was composed and recorded in four different styles of musical articulation to reflect the four basic tastes groups (sweet, sour, salty, bitter). In Experiment 1, participants performed above chance at pairing the music clips with corresponding taste words. Experiment 2 uses multidimensional scaling to interpret how participants categorize these musical stimuli, and to show that auditory categories can be organized in a similar manner as taste categories. Experiment 3 introduces four different flavors of custom-made chocolate ganache and shows that participants can match music clips with the corresponding taste stimuli with above-chance accuracy. Experiment 4 demonstrates the partial role of pleasantness in crossmodal mappings between sound and taste. The present findings confirm that individuals are able to make crossmodal associations between complex auditory and gustatory stimuli, and that valence may mediate multisensory integration in the general population.

  7. When music is salty: The crossmodal associations between sound and taste

    PubMed Central

    Guetta, Rachel; Loui, Psyche

    2017-01-01

    Here we investigate associations between complex auditory and complex taste stimuli. A novel piece of music was composed and recorded in four different styles of musical articulation to reflect the four basic tastes groups (sweet, sour, salty, bitter). In Experiment 1, participants performed above chance at pairing the music clips with corresponding taste words. Experiment 2 uses multidimensional scaling to interpret how participants categorize these musical stimuli, and to show that auditory categories can be organized in a similar manner as taste categories. Experiment 3 introduces four different flavors of custom-made chocolate ganache and shows that participants can match music clips with the corresponding taste stimuli with above-chance accuracy. Experiment 4 demonstrates the partial role of pleasantness in crossmodal mappings between sound and taste. The present findings confirm that individuals are able to make crossmodal associations between complex auditory and gustatory stimuli, and that valence may mediate multisensory integration in the general population. PMID:28355227

  8. Life Model of Hollow Cathodes Using a Barium Calcium Aluminate Impregnated Tungsten Emitter

    NASA Technical Reports Server (NTRS)

    Kovaleski, S. D.; Burke, Tom (Technical Monitor)

    2001-01-01

    Hollow cathodes with barium calcium aluminate impregnated tungsten emitters for thermionic emission are widely used in electric propulsion. These high current, low power cathodes are employed in ion thrusters, Hall thrusters, and on the International Space Station in plasma contactors. The requirements on hollow cathode life are growing more stringent with the increasing use of electric propulsion technology. The life limiting mechanism that determines the entitlement lifetime of a barium impregnated thermionic emission cathode is the evolution and transport of barium away from the emitter surface. A model is being developed to study the process of barium transport and loss from the emitter insert in hollow cathodes. The model accounts for the production of barium through analysis of the relevant impregnate chemistry. Transport of barium through the approximately static gas is also being treated. Finally, the effect of temperature gradients within the cathode are considered.

  9. Cyfluthrin (EW 050)-impregnated bednets in a malaria control program in Ghassreghand (Baluchistan, Iran).

    PubMed

    Zaim, M; Ghavami, M B; Nazari, M; Edrissian, G H; Nateghpour, M

    1998-12-01

    In a study carried out in the Ghassreghand Division (Baluchistan, Iran) from March through November 1995, efficacy of cyfluthrin-impregnated bednets was compared to that of untreated nets, in relation to malaria control. Ten villages with a total population of 4,572 and 3 villages with a total population of 1,935 were used as treatment and control, respectively. The collection, impregnation (target dosage of 40 mg active ingredient [AI]/m2), and redistribution of the nets (9% nylon, 52% light cotton, 30% medium cotton, and 9% heavy cotton), carried out in mid-April, were done by local health workers, supervised by the senior research staff. Anopheles culicifacies was considered to be the main vector of malaria in the named area. This species is mainly zoophilic, endophilic, and exophagic. The initial uptake of the insecticide was lower than the target dosage, with high variation (nylon, 12.5 +/- 5.4 mg AI/m2; light cotton, 33.3 +/- 26.1 mg AI/m2; medium cotton, 25.9 +/- 20 mg AI/m2; heavy cotton, 17.6 +/- 12.5 mg AI/m2). The use of impregnated mosquito nets (used primarily outside) had no significant effect on the incidence of malaria. No difference was detected in the parasite density of patients with positive slides. No significant effect was observed in the parous rate, human blood index, and sporozoite rate of anopheline vectors. Only the indoor resting densities of An. culicifacies and other malaria vectors were drastically reduced after the introduction of the cyfluthrin-impregnated nets into the treatment villages. The residual activity of cyfluthrin was lower than expected. The mortality of anophelines brought in contact with the treated nets for 3 min in bioassays dropped to less than 55% in 3 months. The loss of chemical activity was greatest for the light cotton nets, followed by the medium cotton nets. Cyfluthrin-treated nets were mildly irritating to host-seeking female anophelines in the laboratory. The protective rate of impregnation (all fabric

  10. Synthesis of carbon-encapsulated metal nanoparticles from wood char

    Treesearch

    Yicheng Du; Chuji Wang; Hossein Toghiani; Zhiyong Cai; Xiaojian Liu; Jilei Zhang; Qiangu Yan

    2010-01-01

    Carbon-encapsulated metal nanoparticles were synthesized by thermal treatment of wood char, with or without transition metal ions pre-impregnated, at 900ºC to 1,100ºC. Nanoparticles with concentric multilayer shells were observed. The nanoparticles were analyzed by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction...

  11. Infiltration of carbon in pores within coke and charcoal by methane cracking

    NASA Astrophysics Data System (ADS)

    Shigeno, Y.; Evans, J. W.

    1992-08-01

    In order to modify metallurgical coke to increase its resistance to oxidation by CO2, pores within the coke were infiltrated by methane cracking. Carbon produced by methane cracking can impregnate small pores (about 30 nm < pore radius < about 0.3 μm) in which considerable oxidation takes place. This carbon can prevent CO2 from intruding into these pores, reducing the oxidation rate by one third.

  12. Polyethylene barrier impregnated with lambda-cyhalothrin for exclusion of subterranean termites (Isoptera: Rhinotermitidae) from structures.

    PubMed

    Su, Nan-Yao; Ban, Paul; Scheffrahn, Rudolf H

    2004-04-01

    Polyethylene film impregnated with lambda-cyhalothrin was placed over a sand plot and covered with a concrete slab to allow insecticide movement into the sand for a period of 5.5 yr. Discs of polyethylene film and sand beneath them were sampled annually for 5 yr and at 5.5 yr for bioassay with the Formosan and eastern subterranean termite. Results demonstrated that sufficient quantities of lambda-cyhalothrin were released from the impregnated polyethylene film into adjacent sand to prevent termite penetration. The impregnated film has less environmental impact than conventional liquid termiticides because the insecticide is held in the polymer. Other advantages include its dual function as a construction moisture barrier and ease in verifying its proper installation.

  13. Use of Antibiotic-Impregnated Absorbable Beads and Tissue Coverage of Complex Wounds.

    PubMed

    White, Terris L; Culliford, Alfred T; Zomaya, Martin; Freed, Gary; Demas, Christopher P

    2016-11-01

    The treatment of complex wounds is commonplace for plastic surgeons. Standard management is debridement of infected and devitalized tissue and systemic antibiotic therapy. In cases where vital structures are exposed within the wound, coverage is obtained with the use of vascularized tissue using both muscle and fasciocutaneous flaps. The use of nondissolving polymethylmethacrylate and absorbable antibiotic-impregnated beads has been shown to deliver high concentrations of antibiotics with low systemic levels of the same antibiotic. We present a multicenter retrospective review of all cases that used absorbable antibiotic-impregnated beads for complex wound management from 2003 to 2013. A total of 104 cases were investigated, flap coverage was used in 97 cases (93.3%). Overall, 15 patients (14.4%) required reoperation with the highest groups involving orthopedic wounds and sternal wounds. The advantages of using absorbable antibiotic-impregnated beads in complex infected wounds have been demonstrated with minimal disadvantages. The utilization of these beads is expanding to a variety of complex infectious wounds requiring high concentrations of local antibiotics.

  14. A new model for impregnation mechanisms in different GF/PP commingled yarns

    NASA Astrophysics Data System (ADS)

    Klinkmüller, V.; Um, M.-K.; Steffens, M.; Friedrich, K.; Kim, B.-S.

    1994-09-01

    Impregnation mechanisms of different kinds of GF/PP commingled yarns have been studied. As the reinforcing fibres were always the same, a global description has been worked out. Two different mathematical approaches for fibre bed permeability (Kozeny-Carman and Gutowski) were compared. The constants of the applied mathematical models have to stay the same if the fibre reeinforcement and the fibre arrangement is the same. Neither the kind of matrix, nor the fibre volume content may change these constants. Differences in the degree of impregnation after the same process conditions can be only due to different sizes of fibre agglomerations, thus the initial distribution of reinforcing fibres and matrix. For an exact determination of impregnation times and conditions the exact distribution of fibres in the intermediate material and after processing has to be known. This distribution is determined by SEM microscopy and data given from the material supplier. The importance of different process parameters, such as temperature, pressure, processing time is weighted by determining the density and mechanical properties of the specimens.

  15. Optimum BET surface areas for activated carbon produced from textile sewage sludges and its application as dye removal.

    PubMed

    Kacan, Erdal

    2016-01-15

    The purpose of this experimental study is to determine optimum preparation conditions for activated carbons obtained from textile sewage sludge (TSS) for removal of dyes from aqueous solutions. The textile sewage sludge activated carbon (TSSAC) was prepared by chemical activation with potassium hydroxide using Response Surface Methodology (RSM). The most influential factor on each experimental design responses was identified via ANNOVA analysis. Based on the central composite design (CCD), quadratic model was developed to correlate the preparation variables for one response which is the Brunauer-Emmelt-Teller (BET) surface area. RSM based on a three-variable CCD was used to determine the effect of pyrolyzed temperature (400-700 °C), carbonization time (45-180 min) and KOH: weight of TSS (wt%) impregnation ratio (0.5:1-1.5:1) on BET surface area. According to the results, pyrolyzed temperature and impregnation ratio were found as the significant factors for maximizing the BET surface area. The major effect which influences the BET surface area was found as pyrolyzed temperature. Both carbonization time and impregnation ratio of KOH had no significant effect. The optimum conditions for preparing TSSAC, based on response surface and contour plots, were found as follows: pyrolyzed temperature 700 °C, carbonization time of 45 min and chemical impregnation ratio of 0.5. The maximum and optimum BET surface area of TSSAC were found as 336 m(2)/g and 310.62 m(2)/g, respectively. Synozol Blue reactive (RSB) and Setapers Yellow-Brown (P2RFL) industrial textile dyes adsorption capacities were investigated. As expected the TSSAC which has the biggest BET surface area (336 m(2)/g) adsorbed dye best. The maximum (RSB) and (P2RFL) uptake capacities were found as 8.5383 mg/g and 5.4 mg/g, respectively. The results of this study indicated the applicability of TSSAC for removing industrial dyes from aqueous solution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite

    DOE PAGES

    Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; ...

    2014-11-26

    In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi 2Sr 2CaCu 2O x round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO 2 insulation coating and the Rutherford cablemore » insulated with a braided ceramic sleeve.« less

  17. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation: Effect of activation conditions.

    PubMed

    Nayak, Arunima; Bhushan, Brij; Gupta, Vartika; Sharma, P

    2017-05-01

    Chemical activation is known to induce specific surface features of porosity and functionality which play a definite role in enhancing the adsorptive potential of the developed activated carbons. Different conditions of temperature, time, reagent type and impregnation ratio were applied on sawdust precursor and their effect on the physical, surface chemical features and finally on the adsorption potential of the developed activated carbons were analysed. Under activation conditions of 600°C, 1hr, 1:0.5 ratio, ZnCl 2 impregnated carbon (CASD_ZnCl 2 ) resulted in microporosity while KOH impregnation (CASD_KOH) yielded a carbon having a wider pore size distribution. The surface chemistry revealed similar functionalities. At same pH, temperature and adsorbate concentrations, CASD_KOH demonstrated better adsorption potential (1.06mmoles/g for Cd 2+ and 1.61mmoles/g for Ni 2+ ) in comparison to CASD_ZnCl 2 (0.23mmoles/g and 0.33mmoles/g for Cd 2+ and Ni 2+ respectively). Other features were a short equilibrium time of 60mins and an adsorbent dose of 0.2g/L for the CASD_KOH in comparison to CASD_ZnCl 2 (equilibrium time of 150min and dosage of 0.5g/L). The nature of interactions was physical for both adsorbents and pore diffusion mechanisms were operative. The results reveal the potentiality of chemical activation so as to achieve the best physico-chemical properties suited for energy efficient, economical and eco-friendly water treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    PubMed Central

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-01-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity. PMID:27040483

  19. Testing fungus impregnated cloths for the control of adult Aedes aegypti under natural conditions.

    PubMed

    Paula, Adriano R; Carolino, Aline T; Silva, Carlos P; Pereira, César R; Samuels, Richard I

    2013-09-08

    Entomopathogenic fungi could be useful tools for reducing populations of the dengue mosquito Aedes aegypti. Here the efficiency of fungus (Metarhizium anisopliae) impregnated cloths (with and without imidacloprid [IMI]) was evaluated against adult A. aegypti in simulated human dwellings. Behaviour of mosquitoes in the presence of black cloths was also investigated. When mosquitoes were released into the test rooms, the lowest survival rates (38%) were seen when five black cloths impregnated with conidia of ESALQ 818 + 10 ppm IMI were fixed under tables and chairs. This result was significantly lower than the survival rate recorded when cloths were impregnated with ESALQ 818 alone (44%) or ESALQ 818 + 0.1 ppm IMI (43%). Blood fed A. aegypti had lower landing frequencies on black cloths than sucrose fed insects during the first 24 h following feeding, which may have been due to reduced flight activity. Few mosquitoes (4-5%) were observed to land on the cloths during the hours of darkness. The landing pattern of sucrose-fed mosquitoes on non-treated and fungus-treated cloths was similar. The synergism between M. anisopliae and IMI significantly reduced Aedes survival in simulated field conditions. The use of fungus impregnated cloths is a promising point source application method for the control of adult A. aegypti.

  20. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    NASA Astrophysics Data System (ADS)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  1. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces.

    PubMed

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-04

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  2. Improved lifetime of new fibrous carbon/ceramic composites

    NASA Astrophysics Data System (ADS)

    Gumula, Teresa

    2018-03-01

    New carbon/ceramic composites have been synthesized from low-cost phenol-formaldehyde resin and polysiloxane preceram. A reference carbon composite reinforced with carbon fibre (CC composite) is obtained in first place from a carbon fibre roving impregnated with a solution of phenol-formaldehyde resin in isopropyl alcohol. To obtain fibrous carbon/ceramic composites the CC perform is impregnated with polymethylphenylsiloxane polymer and then a thermal treatment in an inert atmosphere is applied. Depending on the temperature of this process, the resulting ceramics can be silicon carbide (SiC) or silicon oxycarbide (SiCO). Three representative samples, named CC/SiCO( a) (obtained at 1000 °C), CC/SiCO( b) (1500 °C) and CC/SiC (1700 °C), have been tested for fatigue behaviour and oxidation resistance. The value of the Young's modulus remains constant in fatigue tests done in flexion mode for the three new composites during a high number of cycles until sudden degradation begins. This is an unusual and advantageous characteristic for this type of materials and results in the absence of delamination during the measurements. In contrast, the CC reference composite shows a progressive degradation of the Young's modulus accompanied by delamination. SEM micrographs revealed that the formation of filaments of submicrometer diameter during the heat treatment can be responsible for the improved behaviour of these composites. The CC/SiC composite shows the best oxidation resistance among the three types of composites, with a 44% mass loss after 100 h of oxidation.

  3. Adsorption behavior of thorium on N,N,N',N'-tetraoctyldiglycolamide (TODGA) impregnated graphene aerogel.

    PubMed

    Chen, Mumei; Li, Zheng; Geng, Yiyun; Zhao, Haogui; He, Shuhua; Li, Qingnuan; Zhang, Lan

    2018-05-01

    As a kind of three-dimensional graphene architecture material with superhydrophobic, low density, high specific surface area and porosity, graphene aerogel (GA) can be used to immobilize extractant to constitute the solvent impregnated adsorbent. In this paper, the N,N,N',N'-tetraoctyldiglycolamide impregnated graphene aerogel ( GA-TODGA) was prepared to remove the thorium from aqueous solution. It is found that the adsorption of thorium on GA-TODGA is strongly dependent on the concentration of TODGA in GA and HNO 3 in aqueous solution. Compared with other solvent impregnated adsorbents, the adsorption capacity of GA-TODGA is much higher due to the high immobilization capacity of GA for TODGA. Furthermore, the GA-TODGA also possesses excellent stability and reusability, ensuring the application potential of using GA-TODGA in large scale. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Lightweight Ceramic Composition of Carbon Silicon Oxygen and Boron

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B. (Inventor); Hsu, Ming-Ta (Inventor); Chen, Timothy S. (Inventor)

    1997-01-01

    Lightweight, monolithic ceramics resistant to oxidation in air at high temperatures are made by impregnating a porous carbon preform with a sol which contains a mixture of tetraethoxysilane, dimethyldiethoxysilane and trimethyl borate. The sol is gelled and dried on the carbon preform to form a ceramic precursor. The precursor is pyrolyzed in an inert atmosphere to form the ceramic which is made of carbon, silicon, oxygen and boron. The carbon of the preform reacts with the dried gel during the pyrolysis to form a component of the resulting ceramic. The ceramic is of the same size, shape and form as the carbon precursor. Thus, using a porous, fibrous carbon precursor, such as a carbon felt, results in a porous, fibrous ceramic. Ceramics of the invention are useful as lightweight tiles for a reentry spacecraft.

  5. Activities in support of the wax-impregnated wallboard concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.; Stovall, T.K.

    1989-01-01

    The concept of octadecane wax impregnated wallboard for the passive solar application is a major thrust of the Oak Ridge National Laboratory (ORNL) Thermal Energy Storage (TES) program. Thus, ORNL has initiated a number of internal efforts in support of this concept. The results of these efforts are: The immersion process for filling wallboard with wax has been successfully sealed up from small samples to full-size sheets; analysis shows that the immersion process has the potential for achieving higher storage capacity than adding wax filled pellets to wallboard during its manufacture; analysis indicates that 75/degree/F is close to an optimummore » phase change temperature for the non-passive solar application; and the thermal conductivity of wallboard without wax has been measured and will be measured for wax impregnated wallboard. In addition, efforts are underway to confirm an analytical model that handles phase change wallboard for the passive solar application. 4 refs., 10 figs.« less

  6. A process for the production of a scale-proof and corrosion-resistant coating on graphite and carbon bodies

    NASA Technical Reports Server (NTRS)

    Fitzer, E.

    1981-01-01

    A process for the production of a corrosion resistant coating on graphite and carbon bodies is described. The carbon or graphite body is coated or impregnated with titanium silicide under the addition of a metal containing wetting agent in a nitrogen free atmosphere, so that a tight coating is formed.

  7. Multilayer Impregnated Fibrous Thermal Insulation Tiles

    NASA Technical Reports Server (NTRS)

    Tran, Huy K.; Rasky, Daniel J.; Szalai, Christine e.; Hsu, Ming-ta; Carroll, Joseph A.

    2007-01-01

    The term "secondary polymer layered impregnated tile" ("SPLIT") denotes a type of ablative composite-material thermal- insulation tiles having engineered, spatially non-uniform compositions. The term "secondary" refers to the fact that each tile contains at least two polymer layers wherein endothermic reactions absorb considerable amounts of heat, thereby helping to prevent overheating of an underlying structure. These tiles were invented to afford lighter-weight alternatives to the reusable thermal-insulation materials heretofore variously used or considered for use in protecting the space shuttles and other spacecraft from intense atmospheric-entry heating.

  8. Characterisation of nimesulide-betacyclodextrins systems prepared by supercritical fluid impregnation.

    PubMed

    Moneghini, M; Kikic, I; Perissutti, B; Franceschinis, E; Cortesi, A

    2004-11-01

    The purpose of this study was to apply the supercritical CO(2) impregnation process for preparing solvent-free nimesulide (NMS)-betacyclodextrins (BCD) association systems with enhanced drug dissolution rate. Several drug-to-carrier molar ratios were tested (1:1; 1:2.5; 1:3.5) at different conditions of temperatures (40, 100, and 130 degrees C) and pressures (140, 190 or 220 bar). The physical and morphological characterisation of the systems using powder X-ray diffraction, thermal analysis, diffuse reflectance Fourier transform-infrared spectroscopy and scanning electron microscopy was carried out to understand the influence of this technological process on the physical status of single components and binary systems and to detect possible interactions between drug and carrier. These analyses provided no evidence of a complete inclusion of NMS in the carrier but the existence of interactions between drug and carrier together with a partial dehydration of the BCD and the formation of drug crystallites with lower melting point and heat of fusion than the native NMS. These phenomena were more intense when severe conditions of pressure and temperature (220 bar and 130 degrees C) were used during impregnation trials and when the amount of BCD augmented in the systems. These activated solid state of the impregnated systems promoted an enhancement of drug dissolution rate that, in keeping with the results of the physical characterisation, was function of the process conditions and BCD content.

  9. The Evaluation of Activated Carbon as an Anti-Vesicant Agent in Protective Clothing

    DTIC Science & Technology

    1944-07-03

    of the desirable properties Riscussed above. In addition to the CWS-N 44 carbon, which is made from wood flour, MSA-Gl, a coconut base carbon, and...Cu, Ag, and Cr. MSA-G 1 Base Activated coconut charcoal HSA-GI Type ASC MSA-GI Base chemically impregnated with salts of Cu, Ag, and Cr. PCI-Pn.I...threads in which the rayon fibres contained carbon. Out- door exposure of such cloths up to six months showed that the protective capacity was not

  10. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    NASA Astrophysics Data System (ADS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  11. High copper level comulled and impregnated sulfur sorbent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, K.C.

    A porous sulfur sorbent is disclosed which has principal use in desulfurizing reformer feedstreams. The sorbent is prepared by peptizing alumina with acid and mulling the peptized alumina with a copper compound to form an extrudable dough. The dough is extruded, dried and impregnated with additional copper. The resulting sorbent has a higher capacity for adsorbing sulfur compounds than conventional prior art materials.

  12. Activated carbon coated palygorskite as adsorbent by activation and its adsorption for methylene blue.

    PubMed

    Zhang, Xianlong; Cheng, Liping; Wu, Xueping; Tang, Yingzhao; Wu, Yucheng

    2015-07-01

    An activation process for developing the surface and porous structure of palygorskite/carbon (PG/C) nanocomposite using ZnCl2 as activating agent was investigated. The obtained activated PG/C was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field-emission scanning electron microscopy (SEM), and Brunauer-Emmett-Teller analysis (BET) techniques. The effects of activation conditions were examined, including activation temperature and impregnation ratio. With increased temperature and impregnation ratio, the collapse of the palygorskite crystal structure was found to accelerate and the carbon coated on the surface underwent further carbonization. XRD and SEM data confirmed that the palygorskite structure was destroyed and the carbon structure was developed during activation. The presence of the characteristic absorption peaks of CC and C-H vibrations in the FTIR spectra suggested the occurrence of aromatization. The BET surface area improved by more than 11-fold (1201 m2/g for activated PG/C vs. 106 m2/g for PG/C) after activation, and the material appeared to be mainly microporous. The maximum adsorption capacity of methylene blue onto the activated PG/C reached 351 mg/g. The activated PG/C demonstrated better compressive strength than activated carbon without palygorskite clay. Copyright © 2015. Published by Elsevier B.V.

  13. Long-lasting permethrin impregnated uniforms: A randomized-controlled trial for tick bite prevention.

    PubMed

    Vaughn, Meagan F; Funkhouser, Sheana Whelan; Lin, Feng-Chang; Fine, Jason; Juliano, Jonathan J; Apperson, Charles S; Meshnick, Steven R

    2014-05-01

    Because of frequent exposure to tick habitats, outdoor workers are at high risk for tick-borne diseases. Adherence to National Institute for Occupational Safety and Health-recommended tick bite prevention methods is poor. A factory-based method for permethrin impregnation of clothing that provides long-lasting insecticidal and repellent activity is commercially available, and studies are needed to assess the long-term effectiveness of this clothing under field conditions. To evaluate the protective effectiveness of long-lasting permethrin impregnated uniforms among a cohort of North Carolina outdoor workers. A double-blind RCT was conducted between March 2011 and September 2012. Subjects included outdoor workers from North Carolina State Divisions of Forestry, Parks and Recreation, and Wildlife who worked in eastern or central North Carolina. A total of 159 volunteer subjects were randomized, and 127 and 101 subjects completed the first and second years of follow-up, respectively. Uniforms of participants in the treatment group were factory-impregnated with long-lasting permethrin whereas control group uniforms received a sham treatment. Participants continued to engage in their usual tick bite prevention activities. Incidence of work-related tick bites reported on weekly tick bite logs. Study subjects reported 1,045 work-related tick bites over 5,251 person-weeks of follow-up. The mean number of reported tick bites in the year prior to enrollment was similar for both the treatment and control groups, but markedly different during the study period. In our analysis conducted in 2013, the effectiveness of long-lasting permethrin impregnated uniforms for the prevention of work-related tick bites was 0.82 (95% CI=0.66, 0.91) and 0.34 (95% CI=-0.67, 0.74) for the first and second years of follow-up. These results indicate that long-lasting permethrin impregnated uniforms are highly effective for at least 1 year in deterring tick bites in the context of typical tick bite

  14. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons.

    PubMed

    Huang, Congcong; Sun, Ting; Hulicova-Jurcakova, Denisa

    2013-12-01

    Phosphorus-rich carbons (PCs) were prepared by phosphoric acid activation of waste coffee grounds in different impregnation ratios. PCs were characterized by nitrogen and carbon dioxide adsorption and X-ray photoelectron spectroscopy. The results indicate that the activation step not only creates a porous structure, but also introduces various phosphorus and oxygen functional groups to the surface of carbons. As evidenced by cyclic voltammetry, galvanostatic charge/discharge, and wide potential window tests, a supercapacitor constructed from PC-2 (impregnation ratio of 2), with the highest phosphorus content, can operate very stably in 1 M H2 SO4 at 1.5 V with only 18 % degradation after 10 000 cycles at a current density of 5 A g(-1) . Due to the wide electrochemical window, a supercapacitor assembled with PC-2 has a high energy density of 15 Wh kg(-1) at a power density of 75 W kg(-1) . The possibility of widening the potential window above the theoretical potential for the decomposition of water is attributed to reversible electrochemical hydrogen storage in narrow micropores and the positive effect of phosphorus-rich functional groups, particularly the polyphosphates on the carbon surface. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ruthenium-based, inert oxide electrodes for impregnating active materials in nickel plaques

    NASA Astrophysics Data System (ADS)

    Manoharan, R.; Uma, M.

    Titanium electrodes coated with mixed ruthenium-iridium-titanium oxides are tested as inert counter electrodes for impregnating active materials in porous nickel plaques. The latter are to be used as the positive electrodes in nickel/cadmium cells. Weight losses and variations in bath voltage have been monitored while using these electrodes in the impregnation bath. A 2.85 Ah nickel/cadmium cell has been constructed using nickel electrodes developed by employing the coated electrodes of this study. The performances of these coated electrodes are compared with those of platinum electrodes that are currently employed by nickel/cadmium battery manufacturers. The results are found to be satisfactory.

  16. Impregnation of Scots pine and beech with tannin solutions: effect of viscosity and wood anatomy in wood infiltration.

    PubMed

    Tondi, G; Thevenon, M F; Mies, B; Standfest, G; Petutschnigg, A; Wieland, S

    The impregnation process of Scots pine and beech samples with tannin solutions was investigated. The two materials involved in the process (impregnation solution and wood samples) are studied in depth. Viscosity of mimosa tannin solutions and the anatomical aspect of beech and Scots pine were analysed and correlated. The viscosity of tannin solutions presents a non-newtonian behaviour when its pH level increases, and in the case of addition of hexamine as a hardener, the crosslinking of the flavonoids turns out to be of great importance. During the impregnation of Scots pine ( Pinus sylvestris L.) and beech ( Fagus sylvatica L.), the liquid and solid uptakes were monitored while taking into consideration the different conditions of the impregnation process. This method allowed to identify the best conditions needed in order to get a successful preservative uptake for each wooden substrate. The penetration mechanism within the wood of both species was revealed with the aid of a microscopic analysis. Scots pine is impregnated through the tracheids in the longitudinal direction and through parenchyma rays in the radial direction, whereas in beech, the penetration occurs almost completely through longitudinal vessels.

  17. In-situ evaluation of the degradable carbon influence for industrial waste water treatment

    NASA Astrophysics Data System (ADS)

    Fayomi, O. S. I.; Olukanni, D. O.; Fayomi, G. U.; Joseph, O. O.; Popoola, A. P. I.

    2016-07-01

    A photochemical investigation and synergetic blend for wastewater purification was carried out. Blends of different peels: Potato-, Apple and Pineapples-peals (PAP-peals) were impregnated with aqueous solutions of ZnCl2 following the variant of the incipient wetness method for activation of activated carbon (AC). Different concentrations were used to produce impregnation ratios. Activation was carried out in a tube furnace by heating to 700°C with 1 hour soaking time. Scanning Electron Microscopic with attached energy dispersive spectrometer (SEM/EDS), Atomic Adsorption Spectrometry (AAS) and Fourier Transform Infrared spectrometer (FTIS) equipments were used for the characterization of the AC produced. The result shows that PAP-peals derived activated carbons had micro porous characteristics. The study revealed that these new combined adsorbents materials are inexpensive, easily available and they have applications for the removal of Cu, Pb and Cr contained in industrial effluents.

  18. In-situ evaluation of the degradable carbon influence for industrial waste water treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fayomi, O. S. I., E-mail: ojo.fayomi@covenantuniversity.edu.ng, E-mail: fayomio@tut.ac.za, E-mail: ojosundayfayomi3@gmail.com; Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria; Olukanni, D. O.

    A photochemical investigation and synergetic blend for wastewater purification was carried out. Blends of different peels: Potato-, Apple and Pineapples-peals (PAP-peals) were impregnated with aqueous solutions of ZnCl{sub 2} following the variant of the incipient wetness method for activation of activated carbon (AC). Different concentrations were used to produce impregnation ratios. Activation was carried out in a tube furnace by heating to 700°C with 1 hour soaking time. Scanning Electron Microscopic with attached energy dispersive spectrometer (SEM/EDS), Atomic Adsorption Spectrometry (AAS) and Fourier Transform Infrared spectrometer (FTIS) equipments were used for the characterization of the AC produced. The result showsmore » that PAP-peals derived activated carbons had micro porous characteristics. The study revealed that these new combined adsorbents materials are inexpensive, easily available and they have applications for the removal of Cu, Pb and Cr contained in industrial effluents.« less

  19. Utilization of oil palm fronds in producing activated carbon using Na2CO3 as an activator

    NASA Astrophysics Data System (ADS)

    Maulina, S.; Anwari, FN

    2018-02-01

    Oil Palm Frond is a waste in palm oil plantations that have the potential to be processed into more valuable products. This possibility is because of the presence of cellulose, hemicellulose, and lignin in oil palm fronds. Therefore, this study aimed to utilize oil palm fronds in manufacturing of activated carbon through pyrolysis and impregnation that meets the requirements of the Industrial National Standard 06-3730-1995. The palm-fringed oil palm fronds were pyrolyzed in reactors at 150°C, 200°C, and 250°C for 60 minutes. Subsequently, the charcoal produced from the pyrolysis was smoothed with a ball mill, sieved with a size of 140 meshes, and impregnated using a Sodium Carbonate (Na2CO3) for 24 hours at a concentration of 0 %, 2.5%, 5%, and 7.5 % (w/v). The activated carbon has 35.13% of charcoal yield, 8.6% of water content, 14.25% of ash content, 24.75% of volatile matter, 72.75% of fixed carbon, and 492.29 of iodine number. Moreover, SEM analysis indicated that activated carbon porous are coarse and distributed.

  20. Zinc impregnated cellulose nanocomposites: Synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Ali, Attarad; Ambreen, Sidra; Maqbool, Qaisar; Naz, Sania; Shams, Muhammad Fahad; Ahmad, Madiha; Phull, Abdul Rehman; Zia, Muhammad

    2016-11-01

    Nanocomposite materials have broad applicability due to synergistic effect of combined components. In present investigation, cellulose isolated from citrus peel waste is used as a supporting material; impregnation of zinc oxide nanoparticles via co-precipitation method. The characterization of nano composite is carried out through Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and Thermo-gravimetric analysis (TGA) resulting less than 10 μm cellulose fiber and approx. 50 nm ZnO NPs. Zinc oxide impregnated cellulose (ZnO-Cel) exhibited significant bacterial devastation property when compared to ZnO NPs or Cellulose via disc diffusion and colony forming unit methods. In addition, the ZnO-Cel exhibited significant total antioxidant, and minor DPPH free radical scavenging and total reducing power activities. The nano composite also showed time dependent increase in photocatalytic by effectively degrading methylene blue dye up to 69.5% under sunlight irradiation within 90 min. The results suggest effective utilization of cellulose obtained from citrus waste and synthesis of pharmacologically important nano-composites that can be exploited in wound dressing; defence against microbial attack and healing due to antioxidative property, furthermore can also be used for waste water treatment.

  1. Cost efficient carbon fibre reinforced thermoplastics with in-situ polymerization of polyamide

    NASA Astrophysics Data System (ADS)

    Köhler, T.; Akdere, M.; Röding, T.; Gries, T.; Seide, G.

    2017-10-01

    Lightweight design has gained more and more relevance over the last decades. Especially in automotive industry it is of paramount importance to reduce weight and save fuel. At the same time the demand for safety and performance increases the components’ weight. To reach a trade-off between driving comfort and efficiency new lightweight materials have to be developed. One possible solution is the usage of carbon fibre reinforced thermoplastics (CFRTP) as a lightweight substitute material. In contrast to conventional carbon fibre reinforced plastics (CFRP), CFRTPs are cheaper and have a higher impact resistance. Furthermore they are characterized by hot forming ability, weldability and recyclability. However, the impregnation of the textile requires high pressure, because of the melted polymer’s high viscosity. A new innovative approach for CFRTP is the usage of in-situ polymerization with ɛ-caprolactam as matrix, which has a much lower viscosity and thus requires much lower pressure for impregnation and consolidation.

  2. Method for initiating in-situ vitrification using an impregnated cord

    DOEpatents

    Carter, John G.

    1991-01-01

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process.

  3. Fabrication of aluminum-carbon composites

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1973-01-01

    A screening, optimization, and evaluation program is reported of unidirectional carbon-aluminum composites. During the screening phase both large diameter monofilament and small diameter multifilament reinforcements were utilized to determine optimum precursor tape making and consolidation techniques. Difficulty was encountered in impregnating and consolidating the multifiber reinforcements. Large diameter monofilament reinforcement was found easier to fabricate into composites and was selected to carry into the optimization phase in which the hot pressing parameters were refined and the size of the fabricated panels was scaled up. After process optimization the mechanical properties of the carbon-aluminum composites were characterized in tension, stress-rupture and creep, mechanical fatigue, thermal fatigue, thermal aging, thermal expansion, and impact.

  4. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  5. Effects of properties of manganese oxide-impregnated catalysts and flue gas condition on multipollutant control of Hg0 and NO.

    PubMed

    Chiu, Chun-Hsiang; Hsi, Hsing-Cheng; Lin, Hong-Ping; Chang, Tien-Chin

    2015-06-30

    This research investigated the effects of manganese oxide (MnOx) impregnation on the physical/chemical properties and multi pollutant control effectiveness of Hg(0) and NO using a V2O5-WO3/TiO2-SiO2 selective catalytic reduction (SCR) catalyst. Raw and MnOx-treated SCR samples were bean-shaped nanoparticles with sizes within 10-30 nm. Impregnating MnOx of ≤ 5 wt% caused limited changes in physical properties of the catalyst. The decrease in surface area when the impregnated MnOx amount was 10 wt% may stem from the pore blockage and particle growth or aggregation of the catalyst. Mn(4+) was the main valence state of impregnated MnOx. Apparent crystallinity of MnOx was not observed based on X-ray diffraction. MnOx impregnation enhanced the Hg(0) oxidation and NO/SO2 removal of SCR catalyst. The 5 and 10% MnOx-impregnated samples had the greatest multi pollutant control potentials for Hg(0) oxidation and NO removal; however, the increasing SO2 removal that may be mainly due to SO2-SO3 conversion should be cautioned. HCl and O2 greatly promoted Hg(0) oxidation. SO2 enhanced Hg(0) oxidation at ≤ 200 ppm while NO and NH3 consistently inhibited Hg(0) oxidation. Elevating flue gas temperature enhanced Hg(0) oxidation. Overall, MnOx-impregnated catalysts show stable and consistent multi pollutant removal effectiveness under the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  7. Properties of radiation stable, low viscosity impregnating resin for cryogenic insulation system

    NASA Astrophysics Data System (ADS)

    Wu, Zhixiong; Zhang, Hao; Yang, Huihui; Chu, Xinxin; Song, Yuntao; Wu, Weiyue; Liu, Huajun; Li, Laifeng

    2011-06-01

    Impregnating resins in fusion magnet technology are required to be radiation stable, low viscosity, long usable life and high toughness. To meet these objectives, we developed a new epoxy based composite which consists of triglycidyl-p-aminophenol (TGPAP) epoxy resin and isopropylidenebisphenol bis[(2-glycidyloxy-3-n-butoxy)-1-propylether] (IPBE). The ratio of TGPAP to IPBE can be varied to achieve desired viscosity and working time. The boron-free glass fiber reinforced composites were prepared by vacuum pressure impregnation. The radiation resistance was evaluated by 60Co γ-ray irradiation of 1 MGy at ambient temperature. The mechanical properties of the composites have been measured at room temperature and at 77 K.

  8. Leaching of Silver from Silver-Impregnated Food Storage Containers

    ERIC Educational Resources Information Center

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  9. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W. (Inventor); Gordon, Keith L. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor); Siochi, Emilie J. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  10. Puncture-Healing Thermoplastic Resin Carbon-Fiber Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2017-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  11. Method for initiating in-situ vitrification using an impregnated cord

    DOEpatents

    Carter, J.G.

    1991-04-02

    In-situ vitrification of soil is initiated by placing a cord of dielectric material impregnated with conductive material in thermally-conductive contact with the soil, and energizing the cord with an electric current for heating the cord and starting the vitrification process. 1 figure.

  12. Water Vapor Adsorption on Biomass Based Carbons under Post-Combustion CO2 Capture Conditions: Effect of Post-Treatment

    PubMed Central

    Querejeta, Nausika; Plaza, Marta G.; Rubiera, Fernando; Pevida, Covadonga

    2016-01-01

    The effect of post-treatment upon the H2O adsorption performance of biomass-based carbons was studied under post-combustion CO2 capture conditions. Oxygen surface functionalities were partially replaced through heat treatment, acid washing, and wet impregnation with amines. The surface chemistry of the final carbon is strongly affected by the type of post-treatment: acid treatment introduces a greater amount of oxygen whereas it is substantially reduced after thermal treatment. The porous texture of the carbons is also influenced by post-treatment: the wider pore volume is somewhat reduced, while narrow microporosity remains unaltered only after acid treatment. Despite heat treatment leading to a reduction in the number of oxygen surface groups, water vapor adsorption was enhanced in the higher pressure range. On the other hand acid treatment and wet impregnation with amines reduce the total water vapor uptake thus being more suitable for post-combustion CO2 capture applications. PMID:28773488

  13. Infection rates of rifampin/gentamicin-coated Titan Coloplast penile implants. Comparison with Inhibizone-impregnated AMS penile implants.

    PubMed

    Dhabuwala, Chirpriya; Sheth, Sheila; Zamzow, Brent

    2011-01-01

    It is a common practice to soak Titan(®) Coloplast penile implants in antibiotic solution prior to implantation. Experience with Inhibizone impregnation suggests that rifampin coating significantly reduces infection rates of penile implant surgery. In this article we describe the results of coating Titan Coloplast penile implants with rifampin/gentamicin solution. To compare infection rates of Titan(®) Coloplast penile implants coated with vancomycin/gentamycin, rifampin/gentamicin, and Inhibizone-impregnated American Medical Systems (AMS) penile implants. Chart review was done for all Mentor/Coloplast and AMS implant surgeries performed at our center between the dates January 1, 2002 and February 8, 2010. Infection rates for Titan(®) Coloplast penile implants coated with vancomycin/gentamycin, rifampin/gentamicin, and Inhibizone-impregnated (AMS) penile implants were compared. Infection rates for penile implants coated with different antibiotics. Infection rates for Titan(®) Coloplast penile implants coated with vancomycin/gentamycin and Inhibizone-impregnated (AMS) penile implants was 4.4% and 1.3%, respectively (P = 0.05). None of the rifampin/gentamicin-coated Titan(®) Coloplast penile implants have developed infection. Rifampin is the common antibiotic both in rifampin/gentamicin-coated Coloplast implants and Inhibizone(®) . The infection rate in this combined rifampin/gentamicin-coated Titan Coloplast implants and Inhibizone-coated AMS implants group was 0.63% (P = 0.03). Both rifampin/gentamicin-coated Titan(®) Coloplast penile implants and Inhibizone-impregnated (AMS) penile implants appear to have lower infection rates compared with vancomycin/gentamycin-coated Titan(®) Coloplast penile implants The present study does not suggest superiority of rifampin/gentamicin-coated Titan(®) Coloplast penile implants or Inhibizone-impregnated (AMS) penile implants but we strongly suggest that all Titan(®) Coloplast penile implants should be coated with

  14. Adsorption of Ammonia on Regenerable Carbon Sorbents

    NASA Technical Reports Server (NTRS)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  15. Carbon Nanotube-enhanced Carbon-phenolic Ablator Material

    NASA Technical Reports Server (NTRS)

    Nikolaev, P.; Stackpoole, M.; Fan, W.; Cruden, B.; Waid, M.; Maloney, P.; Arepalli, S.; Arnold, J.; Partridge, H.; Yowell, L.

    2006-01-01

    Phenolic impregnated carbon ablator (PICA) is a thermal protection system (TPS) material developed at NASA Ames Research Center in the mid-90 s for Discovery missions. It was used on the Stardust return capsule heat shield which successfully executed the highest speed Earth entry to date on January 15, 2006. PICA is a porous fibrous carbon insulation infiltrated with phenolic resin, and is an excellent ablator that is effective for heating rates up to 1000 W/sq cm. It is one of several candidate TPS materials for the next generation of crewed spacecraft for Lunar and Mars missions. We will describe an ongoing research effort at NASA to improve mechanical properties of the phenolic matrix with carbon nanotubes. The aim is two-fold: to increase overall TPS strength during reentry and to improve Micrometeoroid/Orbital Debris (MMOD) protection in space. The former requires at least a good dispersion of nanotubes in phenolic, while the latter also requires covalent bonding between them to couple and transfer impact energy effectively from matrix to nanotubes. We will discuss the required chemical functionalization of nanotubes, processing issues and test results.

  16. Insights from in-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds

    DOE PAGES

    Larson, Natalie M.; Zok, Frank W.

    2017-12-27

    In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less

  17. Development of nitrocellulose membrane filters impregnated with different biosynthesized silver nanoparticles applied to water purification.

    PubMed

    Fernández, Jorge G; Almeida, César A; Fernández-Baldo, Martín A; Felici, Emiliano; Raba, Julio; Sanz, María I

    2016-01-01

    Bactericidal water filters were developed. For this purpose, nitrocellulose membrane filters were impregnated with different biosynthesized silver nanoparticles. Silver nanoparticles (AgNPs) from Aspergillus niger (AgNPs-Asp), Cryptococcus laurentii (AgNPs-Cry) and Rhodotorula glutinis (AgNPs-Rho) were used for impregnating nitrocellulose filters. The bactericidal properties of these nanoparticles against Escherichia coli, Enterococcus faecalis and Pseudomona aeruginosa were successfully demonstrated. The higher antimicrobial effect was observed for AgNPs-Rho. This fact would be related not only to the smallest particles, but also to polysaccharides groups that surrounding these particles. Moreover, in this study, complete inhibition of bacterial growth was observed on nitrocellulose membrane filters impregnated with 1 mg L(-1) of biosynthesized AgNPs. This concentration was able to reduce the bacteria colony count by over 5 orders of magnitude, doing suitable for a water purification device. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Insights from in-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Natalie M.; Zok, Frank W.

    In-situ X-ray computed tomography during axial impregnation of unidirectional fiber beds is used to study coupled effects of fluid velocity, fiber movement and preferred flow channeling on permeability. Here, in order to interpret the experimental measurements, a new computational tool for predicting axial permeability of very large 2D arrays of non-uniformly packed fibers is developed. The results show that, when the impregnation velocity is high, full saturation is attained behind the flow front and the fibers rearrange into a less uniform configuration with higher permeability. In contrast, when the velocity is low, fluid flows preferentially in the narrowest channels betweenmore » fibers, yielding unsaturated permeabilities that are lower than those in the saturated state. Lastly, these insights combined with a new computational tool will enable improved prediction of permeability, ultimately for use in optimization of composite manufacturing via liquid impregnation.« less

  19. Combination of metallic impregnation and autoradiography of brain sections. A method for differentiation of proliferating glial cells in the brain of adult rats and mice.

    PubMed

    Korr, H

    1978-12-29

    After labeling with 14C-thymidine, frozen sections or paraffin sections of the brain of adult mice or rats were first stained by metallic impregnation and then coated with chrome alum gelatine and with an emulsion layer of about 10 micron. On the autoradiographs 14C-tracks are readily recognized above labelled astrocytes or oligodendrocytes, and these can be well discriminated, if the sections are processed by the silver carbonate method of Rio-Hortega. In contrast, no labelling is obtained, if the gold chloride sublimate method of Cajal is applied.

  20. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    PubMed

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  1. Theoretical impact of insecticide-impregnated school uniforms on dengue incidence in Thai children.

    PubMed

    Massad, Eduardo; Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Kittayapong, Pattamaporn; Wilder-Smith, Annelies

    2013-03-28

    Children carry the main burden of morbidity and mortality caused by dengue. Children spend a considerable amount of their day at school; hence strategies that reduce human-mosquito contact to protect against the day-biting habits of Aedes mosquitoes at schools, such as insecticide-impregnated uniforms, could be an effective prevention strategy. We used mathematical models to calculate the risk of dengue infection based on force of infection taking into account the estimated proportion of mosquito bites that occur in school and the proportion of school time that children wear the impregnated uniforms. The use of insecticide-impregnated uniforms has efficacy varying from around 6% in the most pessimistic estimations, to 55% in the most optimistic scenarios simulated. Reducing contact between mosquito bites and human hosts via insecticide-treated uniforms during school time is theoretically effective in reducing dengue incidence and may be a valuable additional tool for dengue control in school-aged children. The efficacy of this strategy, however, is dependent on the compliance of the target population in terms of proper and consistent wearing of uniforms and, perhaps more importantly, the proportion of bites inflicted by the Aedes population during school time.

  2. Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism

    PubMed Central

    Halla, Velazquez-Jimenez Litza; Hurt Robert, H; Juan, Matos; Rene, Rangel-Mendez Jose

    2014-01-01

    When activated carbon (AC) is modified with zirconium(IV) by impregnation or precipitation, the fluoride adsorption capacity is typically improved. There is significant potential to improve these hybrid sorbent by controlling the impregnation conditions, which determine the assembly and dispersion of the Zr phases on carbon surfaces. Here, commercial activated carbon was modified with Zr(IV) together with oxalic acid (OA) used to maximize the zirconium dispersion and enhance fluoride adsorption. Adsorption experiments were carried out at pH 7 and 25 °C with a fluoride concentration of 40 mg L−1. The OA/Zr ratio was varied to determine the optimal conditions for subsequent fluoride adsorption. The data was analyzed using the Langmuir and Freundlich isotherm models. FTIR, XPS and the surface charge distribution were performed to elucidate the adsorption mechanism. Potentiometric titrations showed that the modified activated carbon (ZrOx-AC) possesses positive charge at pH lower than 7, and FTIR analysis demonstrated that zirconium ions interact mainly with carboxylic groups on the activated carbon surfaces. Moreover, XPS analysis demonstrated that Zr(IV) interacts with oxalate ions, and the fluoride adsorption mechanism is likely to involve –OH− exchange from zirconyl oxalate complexes. PMID:24359079

  3. Fabrication of a form- and size-variable microcellular-polymer-stabilized metal nanocomposite using supercritical foaming and impregnation for catalytic hydrogenation

    PubMed Central

    2012-01-01

    This article presents the fabrication of size-controllable and shape-flexible microcellular high-density polyethylene-stabilized palladium nanoparticles (Pd/m-HDPE) using supercritical foaming, followed by supercritical impregnation. These nanomaterials are investigated for use as heterogeneous hydrogenation catalysts of biphenyls in supercritical carbon dioxide with no significant surface and inner mass transfer resistance. The morphology of the Pd/m-HDPE is examined using scanning electron microscopy images of the pores inside Pd/m-HDPE catalysts and transmission electron microscopy images of the Pd particles confined in an HDPE structure. This nanocomposite simplifies industrial design and operation. These Pd/m-HDPE catalysts can be recycled easily and reused without complex recovery and cleaning procedures. PMID:22651135

  4. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes.

    PubMed

    Gueon, Donghee; Hwang, Jeong Tae; Yang, Seung Bo; Cho, Eunkyung; Sohn, Kwonnam; Yang, Doo-Kyung; Moon, Jun Hyuk

    2018-01-23

    A carbon host capable of effective and uniform sulfur loading is the key for lithium-sulfur batteries (LSBs). Despite the application of porous carbon materials of various morphologies, the carbon hosts capable of uniformly impregnating highly active sulfur is still challenging. To address this issue, we demonstrate a hierarchical pore-structured CNT particle host containing spherical macropores of several hundred nanometers. The macropore CNT particles (M-CNTPs) are prepared by drying the aerosol droplets in which CNTs and polymer particles are dispersed. The spherical macropore greatly improves the penetration of sulfur into the carbon host in the melt diffusion of sulfur. In addition, the formation of macropores greatly develops the volume of the micropore between CNT strands. As a result, we uniformly impregnate 70 wt % sulfur without sulfur residue. The S-M-CNTP cathode shows a highly reversible capacity of 1343 mA h g -1 at a current density of 0.2 C even at a high sulfur content of 70 wt %. Upon a 10-fold current density increase, a high capacity retention of 74% is observed. These cathodes have a higher sulfur content than those of conventional CNT hosts but nevertheless exhibit excellent performance. Our CNTPs and pore control technology will advance the commercialization of CNT hosts for LSBs.

  5. Improved method facilitates debulking and curing of phenolic impregnated asbestos

    NASA Technical Reports Server (NTRS)

    Gaines, P.

    1966-01-01

    Workpieces covered with phenolic impregnated asbestos tape and then wrapped with a specified thickness of nylon yarn under pressure, are debulked and cured in a standard oven. This method of debulking and curing is used in the fabrication of ablative chambers for the Gemini and Apollo attitude control engines.

  6. Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming

    In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at themore » surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.« less

  7. Low-density resin impregnated ceramic article and method for making the same

    NASA Technical Reports Server (NTRS)

    Tran, Huy K. (Inventor); Henline, William D. (Inventor); Hsu, Ming-ta S. (Inventor); Rasky, Daniel J. (Inventor); Riccitiello, Salvatore R. (Inventor)

    1997-01-01

    A low-density resin impregnated ceramic article advantageously employed as a structural ceramic ablator comprising a matrix of ceramic fibers. The fibers of the ceramic matrix are coated with an organic resin film. The organic resin can be a thermoplastic resin or a cured thermosetting resin. In one embodiment, the resin is uniformly distributed within the ceramic article. In a second embodiment, the resin is distributed so as to provide a density gradient along at least one direction of the ceramic article. The resin impregnated ceramic article is prepared by providing a matrix of ceramic fibers; immersing the matrix of ceramic fibers in a solution of a solvent and an organic resin infiltrant; and removing the solvent to form a resin film on the ceramic fibers.

  8. High-resolution separation of neodymium and dysprosium ions utilizing extractant-impregnated graft-type particles.

    PubMed

    Uchiyama, Shoichiro; Sasaki, Takaaki; Ishihara, Ryo; Fujiwara, Kunio; Sugo, Takanobu; Umeno, Daisuke; Saito, Kyoichi

    2018-01-19

    An efficient method for rare metal recovery from environmental water and urban mines is in high demand. Toward rapid and high-resolution rare metal ion separation, a novel bis(2-ethylhexyl) phosphate (HDEHP)-impregnated graft-type particle as a filler for a chromatography column is proposed. To achieve rapid and high-resolution separation, a convection-flow-aided elution mode is required. The combination of 35 μm non-porous particles and a polymer-brush-rich particle structure minimizes the distance from metal ion binding sites to the convection flow in the column, resulting in minimized diffusional mass transfer resistance and the convection-flow-aided elution mode. The HDEHP-impregnated graft-type non-porous-particle-packed cartridge developed in this study exhibited a higher separation performance for model rare metals, neodymium (III) and dysprosium (III) ions, and a narrower peak at a higher linear velocity, than those of previous HDEHP-impregnated fiber-packed and commercially available Lewatit ® VP OC 1026-packed cartridges. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Honey in combination with vacuum impregnation to prevent enzymatic browning of fresh-cut apples.

    PubMed

    Jeon, M; Zhao, Y

    2005-05-01

    This study evaluated the antioxidative capacity of 13 US Northwest honeys from different floral sources and their anti-browning effect on fresh-cut apples. The inhibitory effect of honey on enzymatic browning of fresh-cut apples were studied by simply immersing apple slices in 10% honey solution for 30 min or vacuum impregnating (vacuum at 75 mmHg for 15 min followed with 30 min restoration at atmospheric pressure) in the same honey solution. The 10% diluted high-fructose corn syrup solution was used as a comparison. The surface color of the apple slices was monitored during 14 days of storage at 3 degrees C and 90% relative humidity. Physicochemical properties of the apples immediately after treatment were also evaluated. Wildflower honey had the darkest color and the highest antioxidative capacity among all test honeys. Vacuum impregnation with honey was more effective in controlling browning discoloration than that of simple immersion treatment. Honey in combination with vacuum impregnating operation may have a great potential for developing high-quality fresh-cut fruits.

  10. Technology for improving the wear resistance of aggregates by materials impregnation

    DOT National Transportation Integrated Search

    1981-08-01

    The use of impregnation as a means of improving the wear resistance of natural aggregates was investigated. A series of tests were conducted using four aggregates of varying quality, selected from a sampling of 40 different aggregates. Tests performe...

  11. [Potentially toxic antibiotics concentrations after administration using impregnated dressing in a severe burned patient: A case report].

    PubMed

    Dupouey, Julien; Wiramus, Sandrine; Albanese, Jacques; Guilhaumou, Romain; Blin, Olivier

    2016-10-01

    Severe burned patients present high risk of skins infections, frequently due to Pseudomonas aeruginosa. Impregnated dressings with amikacin or colistin could be a good alternative to obtain effective concentration directly at the infected site. Therapeutic drug monitoring for these antibiotics is currently recommended after an intravenous administration to obtain effective and non-toxic plasmatic concentrations. However, data are lacking about systemic exposition and risk of toxicity after an administration with impregnated dressings. We report the case of a severe burned patient with cutaneous infection treated with amikacin and colistin impregnated dressings, for which plasmatic pharmacokinetic profiles were performed. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  12. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    NASA Technical Reports Server (NTRS)

    Forman, R.

    1976-01-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium or barium oxide coated tungsten surface. The barium and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface.

  13. Ethylene sensing by silver(I) salt-impregnated luminescent films

    USDA-ARS?s Scientific Manuscript database

    Luminescent oligomer /polymer films impregnated with Ag(I) salts are effective sensors for small gas molecules such as ethylene. Films composed of various Ag(I) salts (i.e. AgBF4, AgSbF6, AgB(C6F5)4, AgClO4 and AgOTf) and polymers (i.e. poly(vinylphenylketone) (PVPK), polystyrene (PS) or oligomers (...

  14. Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater.

    PubMed

    Ahmad, A A; Hameed, B H

    2010-01-15

    This study deals with the use of activated carbon prepared from bamboo waste (BMAC), as an adsorbent for the removal of chemical oxygen demand (COD) and color of cotton textile mill wastewater. Bamboo waste was used to prepare activated carbon by chemical activation using phosphoric acid (H(3)PO(4)) as chemical agent. The effects of three preparation variables activation temperature, activation time and H(3)PO(4):precursor (wt%) impregnation ratio on the color and COD removal were investigated. Based on the central composite design (CCD) and quadratic models were developed to correlate the preparation variables to the color and COD. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The optimum condition was obtained by using temperature of 556 degrees C, activation time of 2.33 h and chemical impregnation ratio of 5.24, which resulted in 93.08% of color and 73.98% of COD.

  15. Effects Of Aging And Oxidation Of Palladized Iron Embedded In Activated Carbon On The Dechlorination Of 2-Chlorobiphenyl

    EPA Science Inventory

    Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity ...

  16. Improving the Durability of Methanol Oxidation Reaction Electro-Catalysts Through the Modification of Carbon Architectures

    DTIC Science & Technology

    2014-01-01

    zeolite template was used in conjunction with liquid cyanamide to form a carbon nitride structure with a better 2D mesoporous hexagonal framework, resulting...the core. Both hybrid inorganic–organic polymer networks and 139 zeolitic inorganic–organic polymer electrolyte materials were used to impregnate an

  17. The influence of FLiNaK salt impregnation on the mechanical properties of a 2D woven C/C composite

    NASA Astrophysics Data System (ADS)

    Zhang, Dongsheng; Xia, Huihao; Yang, Xinmei; Feng, Shanglei; Song, Jinliang; Zhou, Xingtai

    2017-03-01

    Impregnating of molten LiF-NaF-KF salt (LiF-NaF-KF: 46.5-11.5-42 mol%, FLiNaK) into a 2D woven C/C composite was performed at 650 °C under different pressure. The weight gain and mechanical properties change of the 2D woven C/C composite after FLiNaK salt impregnation were measured. The FLiNaK salt distribution into the 2D woven C/C composite was observed by X-ray computed tomography (X-ray CT) and scanning electron microscopy. The results showed that the weight gain of the 2D woven C/C composite increased with increasing impregnating pressure. In X-ray CT images, FLiNaK salt was distributed into the open pores and fissures among fiber bundles and neighboring plies. The interlaminar shear strength, compressive strength, and flexural strength of the 2D woven C/C composite increased with the increase of weight gain. The influence of FLiNaK salt impregnation on the mechanical properties was attributed to the coupling effect of re-densification of FLiNaK salt impregnation and residual stress formed in 2D woven C/C composite.

  18. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat.

    PubMed

    Ahmad, Shakeel; Imran, Muhammad; Hussain, Sabir; Mahmood, Sajid; Hussain, Azhar; Hasnain, Muhammad

    2017-08-01

    The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g -1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  19. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products--a review.

    PubMed

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-09-19

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.

  20. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    PubMed Central

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012

  1. Synthesis of K2O/Zeolite catalysts by KOH impregnation for biodiesel production from waste frying oil

    NASA Astrophysics Data System (ADS)

    Fitriana, N.; Husin, H.; Yanti, D.; Pontas, K.; Alam, P. N.; Ridho, M.; Iskandar

    2018-03-01

    K2O/Zeolite compounds were successfully synthesized using KOH as starting material and natural zeolite as support. The catalysts were calcined at 500°C for 3 h and then characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The SEM images reveal that the zeolite and K2O/zeolite particles are irregular in shape (100 to 400 nm). The independent variables were impregnated amounts of KOH (15 - 25%), catalyst to oil ratios of 1.0 - 6.0 wt.%, and reaction time of 2 h. The highest biodiesel yield of 95% was produced from the reaction with 2.1 wt.% catalyst of 25% KOH impregnated. The properties of produced biodiesel complied with SNI. The catalytic stability test showed that the 25% KOH impregnated catalyst was stable.

  2. Long-Lasting Permethrin-Impregnated Clothing Protects against Mosquito Bites in Outdoor Workers

    PubMed Central

    Londono-Renteria, Berlin; Patel, Jaymin C.; Vaughn, Meagan; Funkhauser, Sheana; Ponnusamy, Loganathan; Grippin, Crystal; Jameson, Sam B.; Apperson, Charles; Mores, Christopher N.; Wesson, Dawn M.; Colpitts, Tonya M.; Meshnick, Steven R.

    2015-01-01

    Outdoor exposure to mosquitoes is a risk factor for many diseases, including malaria and dengue. We have previously shown that long-lasting permethrin-impregnated clothing protects against tick and chigger bites in a double-blind randomized controlled trial in North Carolina outdoor workers. Here, we evaluated whether this clothing is protective against mosquito bites by measuring changes in antibody titers to mosquito salivary gland extracts. On average, there was a 10-fold increase in titer during the spring and summer when mosquito exposure was likely to be the highest. During the first year of the study, the increase in titer in subjects wearing treated uniforms was 2- to 2.5-fold lower than that of control subjects. This finding suggests that long-lasting permethrin-impregnated clothing provided protection against mosquito bites. PMID:26195460

  3. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    NASA Astrophysics Data System (ADS)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  4. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    NASA Astrophysics Data System (ADS)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  5. Antibiotic-Impregnated Central Venous Catheters Do Not Change Antibiotic Resistance Patterns.

    PubMed

    Turnbull, Isaiah R; Buckman, Sara A; Horn, Christopher B; Bochicchio, Grant V; Mazuski, John E

    2018-01-01

    Antibiotic-impregnated central venous catheters (CVCs) decrease the incidence of infection in high-risk patients. However, use of these catheters carries the hypothetical risk of inducing antibiotic resistance. We hypothesized that routine use of minocycline and rifampin-impregnated catheters (MR-CVC) in a single intensive care unit (ICU) would change the resistance profile for Staphylococcus aureus. We reviewed antibiotic susceptibilities of S. aureus isolates obtained from blood cultures in a large urban teaching hospital from 2002-2015. Resistance patterns were compared before and after implementation of MR-CVC use in the surgical ICU (SICU) in August 2006. We also compared resistance patterns of S. aureus obtained in other ICUs and in non-ICU patients, in whom MR-CVCs were not used. Data for rifampin, oxacillin, and clindamycin were available for 9,703 cultures; tetracycline resistance data were available for 4,627 cultures. After implementation of MR-CVC use in the SICU, rifampin resistance remained unchanged, with rates the same as in other ICU and non-ICU populations (3%). After six years of use of MR-CVCs in the SICU, the rate of tetracycline resistance was unchanged in all facilities (1%-3%). The use of MR-CVCs was not associated with any change in S. aureus oxacillin-resistance rates in the SICU (66% vs. 60%). However, there was a significant decrease in S. aureus clindamycin resistance (59% vs. 34%; p < 0.05) in SICU patients. Routine use of rifampin-minocycline-impregnated CVCs in the SICU was not associated with increased resistance of S. aureus isolates to rifampin or tetracyclines.

  6. Surrogate nits impregnated with white piedra--a case report.

    PubMed

    Ghorpade, A

    2004-07-01

    White piedral spores packed inside empty pedicular nits were accidentally found on microscopic examination in a 42-year-old Indian woman who presented with hair loss. The diagnosis of piedra was confirmed on culture. She responded to topical 2% miconazole nitrate solution and manual removal of the nits. This is the first case report of pedicular nits found to be impregnated with spores of white piedra.

  7. Theoretical impact of insecticide-impregnated school uniforms on dengue incidence in Thai children

    PubMed Central

    Massad, Eduardo; Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Kittayapong, Pattamaporn; Wilder-Smith, Annelies

    2013-01-01

    Background Children carry the main burden of morbidity and mortality caused by dengue. Children spend a considerable amount of their day at school; hence strategies that reduce human–mosquito contact to protect against the day-biting habits of Aedes mosquitoes at schools, such as insecticide-impregnated uniforms, could be an effective prevention strategy. Methodology We used mathematical models to calculate the risk of dengue infection based on force of infection taking into account the estimated proportion of mosquito bites that occur in school and the proportion of school time that children wear the impregnated uniforms. Principal findings The use of insecticide-impregnated uniforms has efficacy varying from around 6% in the most pessimistic estimations, to 55% in the most optimistic scenarios simulated. Conclusions Reducing contact between mosquito bites and human hosts via insecticide-treated uniforms during school time is theoretically effective in reducing dengue incidence and may be a valuable additional tool for dengue control in school-aged children. The efficacy of this strategy, however, is dependent on the compliance of the target population in terms of proper and consistent wearing of uniforms and, perhaps more importantly, the proportion of bites inflicted by the Aedes population during school time. PMID:23541045

  8. HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan

    PubMed Central

    de Araújo, Maria José G.; Barbosa, Rossemberg C.; Fook, Marcus Vinícius L.; Canedo, Eduardo L.; Silva, Suédina M. L.; Medeiros, Eliton S.; Leite, Itamara F.

    2018-01-01

    In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials. PMID:29438286

  9. HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan.

    PubMed

    de Araújo, Maria José G; Barbosa, Rossemberg C; Fook, Marcus Vinícius L; Canedo, Eduardo L; Silva, Suédina M L; Medeiros, Eliton S; Leite, Itamara F

    2018-02-13

    In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials.

  10. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging.

    PubMed

    Milovanovic, Stoja; Hollermann, Gesa; Errenst, Cornelia; Pajnik, Jelena; Frerich, Sulamith; Kroll, Stephen; Rezwan, Kurosch; Ivanovic, Jasna

    2018-05-01

    Biodegradable polymers with antibacterial properties are highly desirable materials for active food packaging applications. Thymol, a dietary monoterpene phenol with a strong antibacterial activity is abundant in plants belonging to the genus Thymus. This study presents two approaches for supercritical CO 2 impregnation of poly(lactic acid)(PLA)/poly(ε-caprolactone)(PCL) blended films to induce antibacterial properties of the material: (i) a batch impregnation process for loading pure thymol, and (ii) an integrated supercritical extraction-impregnation process for isolation of thyme extract and its incorporation into the films, operated in both batch or semi-continuous modes with supercritical solution circulation. The PCL content in films, impregnation time and CO 2 flow regime were varied to maximize loading of the films with thymol or thyme extract with preserving films' structure and thermal stability. Representative film samples impregnated with thymol and thyme extract were tested against Gram (-) (Escherichia coli) and Gram(+) (Bacillus subtilis) model strains, by measuring their metabolic activity and re-cultivation after exposure to the films. The film containing thymol (35.8 wt%) showed a strong antibacterial activity leading to a total reduction of bacterial cell viability. Proposed processes enable fast, controlled and organic solvent-free fabrication of the PLA/PCL films containing natural antibacterial substances at moderately low temperature, with a compact structure and a good thermal stability, for potential use as active food packaging materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Study of different nanostructured carbon supports for fuel cell catalysts

    NASA Astrophysics Data System (ADS)

    Mirabile Gattia, Daniele; Antisari, Marco Vittori; Giorgi, Leonardo; Marazzi, Renzo; Piscopiello, Emanuela; Montone, Amelia; Bellitto, Serafina; Licoccia, Silvia; Traversa, Enrico

    Pt clusters were deposited by an impregnation process on three carbon supports: multi-wall carbon nanotubes (MWNT), single-wall carbon nanohorns (SWNH), and Vulcan XC-72 carbon black to investigate the effect of the carbon support structure on the possibility of reducing Pt loading on electrodes for direct methanol (DMFC) fuel cells without impairing performance. MWNT and SWNH were in-house synthesised by a DC and an AC arc discharge process between pure graphite electrodes, respectively. UV-vis spectrophotometry, scanning and transmission electron microscopy, X-ray diffraction, and cyclic voltammetry measurements were used to characterize the Pt particles deposited on the three carbon supports. A differential yield for Pt deposition, not strictly related to the surface area of the carbon support, was observed. SWNH showed the highest surface chemical activity toward Pt deposition. Pt deposited in different forms depending on the carbon support. Electrochemical characterizations showed that the Pt nanostructures deposited on MWNT are particularly efficient in the methanol oxidation reaction.

  12. Development of Low Density, Flexible Carbon Phenolic Ablators

    NASA Technical Reports Server (NTRS)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  13. Ultrasound-assisted synthesis and processing of carbon materials

    NASA Astrophysics Data System (ADS)

    Fortunato, Maria E.

    2011-12-01

    Part I: Porous carbons are of interest in many applications because of their high surface areas and other physicochemical properties, and much effort has been directed towards developing new methods for controlling the porosity of carbons. Ultrasonic spray pyrolysis (USP) is an aerosol method suitable for large-scale, continuous synthesis of materials. Ultrasound is used to create aerosol droplets of a precursor solution which serve as micron-sized spherical reactors for materials synthesis. This work presents a precursor system for the template-free USP synthesis of porous carbons using low-cost precursors that do not evolve or require hazardous chemicals: sucrose was used as the carbon source, and sodium carbonate, sodium bicarbonate, or sodium nitrate was added as a decomposition catalyst and porogen. The USP carbons had macroporous interiors and microporous shells with surface areas as high as 800 m2/g and a narrow pore size distribution. It was determined that the interior porosity was a result of the gas evolution from salt decomposition and not from the presence of a salt template. Porous carbon is frequently used as a catalyst support because it provides high surface area and it is chemically and physically stable under many anoxic reaction conditions. Typically, the preparation of supported catalysts requires multiple steps for carbonization and metal impregnation. In this work, iron-impregnated porous carbon microspheres (Fe-C) were prepared by a one-step USP process by incorporating both the carbon and metal sources into the precursor solution. Carbonization, pore formation, metal impregnation, and metal activation occurred simultaneously to produce Fe-C materials with surface areas as high as 800 m2/g and up to 10 wt% Fe incorporated as nanoparticles < 20 nm in diameter. Fe-C was used as a catalyst to reduce aqueous hexavalent chromium, which demonstrated the accessibility of the iron nanoparticles despite the fact that they are likely encapsulated in

  14. Development of a quantitative method for the analysis of cocaine analogue impregnated into textiles by Raman spectroscopy.

    PubMed

    Xiao, Linda; Alder, Rhiannon; Mehta, Megha; Krayem, Nadine; Cavasinni, Bianca; Laracy, Sean; Cameron, Shane; Fu, Shanlin

    2018-04-01

    Cocaine trafficking in the form of textile impregnation is routinely encountered as a concealment method. Raman spectroscopy has been a popular and successful testing method used for in situ screening of cocaine in textiles and other matrices. Quantitative analysis of cocaine in these matrices using Raman spectroscopy has not been reported to date. This study aimed to develop a simple Raman method for quantifying cocaine using atropine as the model analogue in various types of textiles. Textiles were impregnated with solutions of atropine in methanol. The impregnated atropine was extracted using less hazardous acidified water with the addition of potassium thiocyanate (KSCN) as an internal standard for Raman analysis. Despite the presence of background matrix signals arising from the textiles, the cocaine analogue could easily be identified by its characteristic Raman bands. The successful use of KSCN normalised the analyte signal response due to different textile matrix background interferences and thus removed the need for a matrix-matched calibration. The method was linear over a concentration range of 6.25-37.5 mg/cm 2 with a coefficient of determination (R 2 ) at 0.975 and acceptable precision and accuracy. A simple and accurate Raman spectroscopy method for the analysis and quantification of a cocaine analogue impregnated in textiles has been developed and validated for the first time. This proof-of-concept study has demonstrated that atropine can act as an ideal model compound to study the problem of cocaine impregnation in textile. The method has the potential to be further developed and implemented in real world forensic cases. Copyright © 2017 John Wiley & Sons, Ltd.

  15. High temperature hydrogen sulfide adsorption on activated carbon - I. Effects of gas composition and metal addition

    USGS Publications Warehouse

    Cal, M.P.; Strickler, B.W.; Lizzio, A.A.

    2000-01-01

    Various types of activated carbon sorbents were evaluated for their ability to remove H2S from a simulated coal gas stream at a temperature of 550 ??C. The ability of activated carbon to remove H2S at elevated temperature was examined as a function of carbon surface chemistry (oxidation, thermal desorption, and metal addition), and gas composition. A sorbent prepared by steam activation, HNO3 oxidation and impregnated with Zn, and tested in a gas stream containing 0.5% H2S, 50% CO2 and 49.5% N2, had the greatest H2S adsorption capacity. Addition of H2, CO, and H2O to the inlet gas stream reduced H2S breakthrough time and H2S adsorption capacity. A Zn impregnated activated carbon, when tested using a simulated coal gas containing 0.5% H2S, 49.5% N2, 13% H2, 8.5% H2O, 21% CO, and 7.5% CO2, had a breakthrough time of 75 min, which was less than 25 percent of the length of breakthrough for screening experiments performed with a simplified gas mixture of 0.5% H2S, 50% CO2, and 49.5% N2.

  16. Intra-articular implantation of gentamicin impregnated collagen sponge causes joint inflammation and impaired renal function in dogs.

    PubMed

    Hayes, Galina; Gibson, Tom; Moens, Noel M M; Nykamp, Stephanie; Wood, Darren; Foster, Robert; Lerer, Asaf

    2016-01-01

    Gentamicin impregnated collagen sponge (GICS) can be used to treat intra-articular surgical site infections. High local concentrations of gentamicin can be reached for short periods; however the collagen vehicle may persist for much longer periods. We wished to determine the effect of sponge implantation on joint inflammation and renal function. Eighteen medium sized mixed breed research dogs of hound type were randomized to two groups; arthroscopic implantation of GICS at gentamicin dose = 6 mg/kg (n = 9) or sham operation (n = 9). Endpoints consisted of joint inflammation measured by synovial fluid cell counts and cytokine concentrations; lameness measured by force plate asymmetry indices; and renal function measured by glomerular filtration rate (GFR) study. The prevalence of lesions associated with aminoglycoside nephrotoxicity was assessed by renal biopsy and transmission electron microscopy. Gentamicin impregnated collagen sponge implantation caused joint inflammation (p <0.01), lameness (p = 0.04), and decreased GFR (p = 0.04). No difference was observed in the prevalence of renal lesions on biopsy between the treatment and control groups (p = 0.49). Gentamicin impregnated collagen sponge implantation causes joint inflammation and lameness as well as GFR reductions at the dose assessed. Gentamicin impregnated collagen sponge are not recommended for intra-articular implantation in dogs.

  17. Chlorhexidine-impregnated cloths to prevent skin and soft-tissue infection in Marine recruits: a cluster-randomized, double-blind, controlled effectiveness trial.

    PubMed

    Whitman, Timothy J; Herlihy, Rachel K; Schlett, Carey D; Murray, Patrick R; Grandits, Greg A; Ganesan, Anuradha; Brown, Maya; Mancuso, James D; Adams, William B; Tribble, David R

    2010-12-01

    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes skin and soft-tissue infection (SSTI) in military recruits. To evaluate the effectiveness of 2% chlorhexidine gluconate (CHG)-impregnated cloths in reducing rates of SSTI and S. aureus colonization among military recruits. A cluster-randomized (by platoon), double-blind, controlled effectiveness trial. Marine Officer Candidate School, Quantico, Virginia, 2007. Military recruits. Application of CHG-impregnated or control (Comfort Bath; Sage) cloths applied over entire body thrice weekly. Recruits were monitored daily for SSTI. Baseline and serial nasal and/or axillary swabs were collected to assess S. aureus colonization. Of 1,562 subjects enrolled, 781 (from 23 platoons) underwent CHG-impregnated cloth application and 781 (from 21 platoons) underwent control cloth application. The rate of compliance (defined as application of 50% or more of wipes) at 2 weeks was similar (CHG group, 63%; control group, 67%) and decreased over the 6-week period. The mean 6-week SSTI rate in the CHG-impregnated cloth group was 0.094, compared with 0.071 in the control group (analysis of variance model rate difference, 0.025  ± 0.016; P = .14). At baseline, 43% of subjects were colonized with methicillin-susceptible S. aureus (MSSA), and 2.1% were colonized with MRSA. The mean incidence of colonization with MSSA was 50% and 61% (P = .026) and with MRSA was 2.6% and 6.0% (P = .034) for the CHG-impregnated and control cloth groups, respectively. CHG-impregnated cloths applied thrice weekly did not reduce rates of SSTI among recruits. S. aureus colonization rates increased in both groups but to a lesser extent in those assigned to the CHG-impregnated cloth intervention. Antecedent S. aureus colonization was not a risk factor for SSTI. Additional studies are needed to identify effective measures for preventing SSTI among military recruits. ClinicalTrials.gov identifier: NCT00475930.

  18. Super-Maxwellian helium evaporation from pure and salty water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, Christine; Kann, Zachary R.; Faust, Jennifer A.

    2016-01-28

    Helium atoms evaporate from pure water and salty solutions in super-Maxwellian speed distributions, as observed experimentally and modeled theoretically. The experiments are performed by monitoring the velocities of dissolved He atoms that evaporate from microjets of pure water at 252 K and 4–8.5 molal LiCl and LiBr at 232–252 K. The average He atom energies exceed the flux-weighted Maxwell-Boltzmann average of 2RT by 30% for pure water and 70% for 8.5m LiBr. Classical molecular dynamics simulations closely reproduce the observed speed distributions and provide microscopic insight into the forces that eject the He atoms from solution. Comparisons of the densitymore » profile and He kinetic energies across the water-vacuum interface indicate that the He atoms are accelerated by He–water collisions within the top 1-2 layers of the liquid. We also find that the average He atom kinetic energy scales with the free energy of solvation of this sparingly soluble gas. This free-energy difference reflects the steeply decreasing potential of mean force on the He atoms in the interfacial region, whose gradient is the repulsive force that tends to expel the atoms. The accompanying sharp decrease in water density suppresses the He–water collisions that would otherwise maintain a Maxwell-Boltzmann distribution, allowing the He atom to escape at high energies. Helium is especially affected by this reduction in collisions because its weak interactions make energy transfer inefficient.« less

  19. Evaluation of Reagent-Impregnated Coagulase-Mannitol Test Strip for Speciation of Staphylococci

    PubMed Central

    Washington, John A.; Yu, Pauline K. W.

    1970-01-01

    A new coagulase-mannitol reagent-impregnated strip test has been evaluated with 322 Micrococcaceae. Mannitol fermentation was determined accurately by this test; however, the coagulase reaction was difficult to interpret and was subject to significant error. PMID:5418952

  20. Sensors for measurement of moisture diffusion in power cables with oil-impregnated paper

    NASA Astrophysics Data System (ADS)

    Thomas, Z. M.; Zahn, M.; Yang, W.

    2007-07-01

    Some old power cables use oil-impregnated paper as the insulation material, which is enclosed by a layer of lead sheath. As cracks can form on the sheath of aged cables, the oil-impregnated paper can be exposed to the environmental conditions, and ambient moisture can diffuse into the paper through the cracks, causing a reduced breakdown voltage. To understand this diffusion phenomenon, multi-wavelength dielectrometry sensors have been used to measure permittivity and conductivity, aiming to obtain information on the moisture content. Different electrode-grouping strategies have been suggested to obtain more detailed information. Effectively, an electrode-grouping approach forms a type of electrical capacitance tomography sensor. This paper presents different sensor designs together with a capacitance measuring circuit. Some analytical results are also presented.

  1. Long-Lasting Permethrin-Impregnated Clothing Protects Against Mosquito Bites in Outdoor Workers.

    PubMed

    Londono-Renteria, Berlin; Patel, Jaymin C; Vaughn, Meagan; Funkhauser, Sheana; Ponnusamy, Loganathan; Grippin, Crystal; Jameson, Sam B; Apperson, Charles; Mores, Christopher N; Wesson, Dawn M; Colpitts, Tonya M; Meshnick, Steven R

    2015-10-01

    Outdoor exposure to mosquitoes is a risk factor for many diseases, including malaria and dengue. We have previously shown that long-lasting permethrin-impregnated clothing protects against tick and chigger bites in a double-blind randomized controlled trial in North Carolina outdoor workers. Here, we evaluated whether this clothing is protective against mosquito bites by measuring changes in antibody titers to mosquito salivary gland extracts. On average, there was a 10-fold increase in titer during the spring and summer when mosquito exposure was likely to be the highest. During the first year of the study, the increase in titer in subjects wearing treated uniforms was 2- to 2.5-fold lower than that of control subjects. This finding suggests that long-lasting permethrin-impregnated clothing provided protection against mosquito bites. © The American Society of Tropical Medicine and Hygiene.

  2. Impact of oceanic processes on the carbon cycle during the last termination

    NASA Astrophysics Data System (ADS)

    Bouttes, N.; Paillard, D.; Roche, D. M.; Waelbroeck, C.; Kageyama, M.; Lourantou, A.; Michel, E.; Bopp, L.

    2012-01-01

    During the last termination (from ~18 000 years ago to ~9000 years ago), the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a coupled climate-carbon model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependent diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 years ago, when the Antarctic ice sheet extent was at its maximum. In this scenario, we make the hypothesis that sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario, it is possible to simulate both the amplitude and timing of the long-term CO2 increase during the last termination in agreement with

  3. Impact of oceanic processes on the carbon cycle during the last termination

    NASA Astrophysics Data System (ADS)

    Bouttes, N.; Paillard, D.; Roche, D. M.; Waelbroeck, C.; Kageyama, M.; Lourantou, A.; Michel, E.; Bopp, L.

    2011-06-01

    During the last termination (from ~18 000 yr ago to ~9000 yr ago) the climate significantly warmed and the ice sheets melted. Simultaneously, atmospheric CO2 increased from ~190 ppm to ~260 ppm. Although this CO2 rise plays an important role in the deglacial warming, the reasons for its evolution are difficult to explain. Only box models have been used to run transient simulations of this carbon cycle transition, but by forcing the model with data constrained scenarios of the evolution of temperature, sea level, sea ice, NADW formation, Southern Ocean vertical mixing and biological carbon pump. More complex models (including GCMs) have investigated some of these mechanisms but they have only been used to try and explain LGM versus present day steady-state climates. In this study we use a climate-carbon coupled model of intermediate complexity to explore the role of three oceanic processes in transient simulations: the sinking of brines, stratification-dependant diffusion and iron fertilization. Carbonate compensation is accounted for in these simulations. We show that neither iron fertilization nor the sinking of brines alone can account for the evolution of CO2, and that only the combination of the sinking of brines and interactive diffusion can simultaneously simulate the increase in deep Southern Ocean δ13C. The scenario that agrees best with the data takes into account all mechanisms and favours a rapid cessation of the sinking of brines around 18 000 yr ago, when the Antarctic ice sheet extent was at its maximum. Sea ice formation was then shifted to the open ocean where the salty water is quickly mixed with fresher water, which prevents deep sinking of salty water and therefore breaks down the deep stratification and releases carbon from the abyss. Based on this scenario it is possible to simulate both the amplitude and timing of the CO2 increase during the last termination in agreement with data. The atmospheric δ13C appears to be highly sensitive to

  4. Functioned silver nanoparticle loaded activated carbon for the recovery of bioactive molecule from bacterial fermenter for its bactericidal activity

    NASA Astrophysics Data System (ADS)

    Arivizhivendhan, Villalan; Mahesh, Mannacharaju; Boopathy, Ramasamy; Karthikeyan, Sekar; Mary, Rathanasamy Regina; Sekaran, Ganesan

    2018-01-01

    A novel continuous production and extraction of bacterial bioactive prodigiosin (PG) from fermented using silver nanoparticle impregnated functioned activated carbon composite is proposed for cost-effective and ecofriendly microbial technique. Hence, in this investigation silver nanoparticle was impregnated onto functioned activated carbon ([AC]F) as a support matrix and to enable the separation of PG conjugated silver nanoparticle from the fermented medium. A laboratory scale experiment was carried out to evaluate the continuous production and recovery of PG using [AC@Ag]F. Ag nanoparticle impregnated [AC]F ([AC@Ag]F) characterized by FT-IR, XRD, TGA, DSC and SEM. Instrumental analyses confirmed that Ag nanoparticles significantly impregnated on AC through the functionalization of AC with diethanolamine and it enhances the binding capacity between AC and Ag. The various process parameters, such as contact time, pH, and mass of [AC@Ag]F, were statistically optimized for the recovery of PG using Response Surface Methodology (RSM). The maximum extraction of PG in [AC@Ag]F was found to be 16.2 ± 0.2 mg g-1, its twofold higher than [AC]F. Further, PG conjugated [AC@Ag]F and ([AC@Ag]F-PG) were checked for the growth inhibition of gram negative and gram positive bacteria without formation of biofilm upto 96 h. Hence, the developed matrix could be eco-friendly, viable and lower energy consumption step for separation of the bacterial bioactive PG from fermented broth. In additionally, [AC@Ag]F-PG was used as an antifouling matrix without formation of biofilm.

  5. Carbon-Based Regenerable Sorbents for the Combined Carbon Dioxide and Ammonia Removal for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Manthina, Venkata; Singh, Prabhakar; Chullen, Cinda

    2014-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs). Since ammonia is the most important TC to be captured, data on TC sorption presented in this paper are limited to ammonia, with results relevant to other TCs to be reported at a later time. The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Furthermore, the current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. The objective of this study was to demonstrate the feasibility of using carbon sorbents for the reversible, concurrent sorption of carbon dioxide and ammonia. Several carbon sorbents were fabricated and tested, and multiple adsorption/vacuum-regeneration cycles were demonstrated at room temperature, and also a carbon surface conditioning technique that enhances the combined carbon dioxide and ammonia sorption without impairing sorbent regeneration.

  6. Carbon coated textiles for flexible energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Kristy; Perez, Carlos R.; McDonough, John K.

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25more » A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².« less

  7. Carbon coated textiles for flexible energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jost, Kristy; Perez, Carlos O; Mcdonough, John

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25more » A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.« less

  8. Endocrine alterations around the time of abortion in mares impregnated with donkey or horse semen.

    PubMed

    Boeta, M; Zarco, L

    2010-08-01

    The objective of this study was to monitor and compare the concentrations of equine chorionic gonadotropin (eCG), progesterone and estrone sulphate during normal and failed pregnancies of mares impregnated with donkey or horse semen, relating their individual endocrine profiles to the time of pregnancy loss, and to the histopathologic findings in the aborted fetuses and placenta. Mares (n=54) were used, 32 of them impregnated with donkey semen and 22 impregnated with horse semen. Blood samples were taken twice a week from Day 35 to 120 of pregnancy. Ultrasonographic observations of the fetus were carried out twice a week. The incidence of abortion in mares impregnated with donkey semen (30%) was greater (P<0.05) than the 5% observed in mares impregnated with horse semen. From Week 8 to the end of the sampling period, the mean progesterone concentrations of mares with normal mule pregnancies were less (P<0.05) than those of mares with normal pregnancies with equine fetuses. The concentrations of eCG were less (P<0.05) in mule pregnancies from Week 6. Estrone sulphate concentrations were only different (P<0.05) between types of pregnancy on Weeks 13 and 14, being in this case greater with the mule pregnancies. Most of the abortions of mule fetuses were associated with lesser progesterone concentrations than the average for mares with successful mule pregnancies. Four of the abortions of mule fetuses and the only abortion of horse fetus occurred in mares with lesser progesterone and very low eCG concentrations, and were classified as caused by luteal impairment secondary to eCG deficiency; estrone sulphate concentrations were less than normal or absent before these abortions. Two mares aborted after several weeks of low progesterone concentrations in the presence of eCG concentrations that were normal for mule pregnancies, suggesting primary luteal deficiency. In three mares carrying a mule fetus, the concentrations of progesterone and estrone sulphate decreased

  9. In situ investigation of supercritical CO2 assisted impregnation of drugs into a polymer by high pressure FTIR micro-spectroscopy.

    PubMed

    Champeau, M; Thomassin, J-M; Jérôme, C; Tassaing, T

    2015-02-07

    An original experimental set-up combining a FTIR micro-spectrometer with a high pressure cell has been built in order to analyze in situ the impregnation of a solute into microscopic polymer samples, such as fibers or films, subjected to supercritical CO2. Thanks to this experimental set-up, key factors governing the impregnation process can be simultaneously followed such as the swelling of the polymeric matrix, the CO2 sorption, the kinetics of impregnation and the drug loading into the matrix. Moreover, the solute/polymer interactions and the speciation of the solute can be analyzed. We have monitored in situ the impregnation of aspirin and ketoprofen into PEO (Polyethylene Oxide) platelets at T = 40 °C and P = 5; 10 and 15 MPa. The kinetics of impregnation of aspirin was quicker than the one of ketoprofen and the final drug loading was also higher in the case of aspirin. Whereas the CO2 sorption and the PEO swelling remain constant when PEO is just subjected to CO2 under isobaric conditions, we noticed that both parameters can increase while the drug impregnates PEO. Coupling these results with DSC measurements, we underlined the plasticizing effect of the drug that also leads to a decrease in the crystallinity of PEO in situ thus favoring the sorption of CO2 molecules into the matrix and the swelling of the matrix. The plasticizing effect increases with the drug loading. Finally, the speciation of drugs was investigated considering the shift of the carboxyl bands of the drugs. Both drugs were found to be mainly homogeneously dispersed into PEO.

  10. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  11. Disruption in the relationship between blood pressure and salty taste thresholds among overweight and obese children

    PubMed Central

    Bobowski, Nuala K.

    2015-01-01

    Background Prevalence of high blood pressure (BP) among American children has increased over the past two decades, due in part to increasing rates of obesity and excessive dietary salt intake. Objective We tested the hypotheses that the relationships among BP, salty taste sensitivity, and salt intake differ between normal-weight and overweight/obese children. Design In an observational study, sodium chloride (NaCl) and monosodium glutamate (MSG) taste detection thresholds were measured using the Monell two-alternative, forced-choice, paired-comparison tracking method. Weight and BP were measured, and salt intake was determined by 24-hour dietary recall. Participants/Setting Eight- to 14-year-olds (N=97; 52% overweight or obese) from the Philadelphia area completed anthropometrics and BP measurements; 97% completed one or both thresholds. Seventy-six percent provided valid dietary recall data. Testing was completed between December 2011 and August 2012. Main outcome measures NaCl and MSG detection thresholds, BP, and dietary salt intake. Statistical analyses Outcome measures were compared between normal-weight and overweight/obese children with t-tests. Relationships among outcome measures within groups were examined with Pearson correlations, and multiple regression analysis was used to examine the relationship between BP and thresholds, controlling for age, BMI-Z score, and dietary salt intake. Results Salt and MSG thresholds were positively correlated (r(71)=0.30, p=0.01) and did not differ between body-weight groups (p>0.20). Controlling for age, BMI-Z score, and salt intake, systolic BP was associated with NaCl thresholds among normal-weight children (p=0.01), but not among overweight/obese children. All children consumed excess salt (>8 g/day). Grain and meat products were the primary source of dietary sodium. Conclusions The apparent disruption in the relationship between salty taste response and BP among overweight/obese children suggests the relationship

  12. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    PubMed

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  13. Gauze Impregnated With Quaternary Ammonium Salt Reduces Bacterial Colonization of Surgical Drains After Breast Reconstruction.

    PubMed

    Strong, Amy L; Wolfe, Emily T; Shank, Nina; Chaffin, Abigail E; Jansen, David A

    2018-06-01

    Surgical site infection after breast reconstruction is associated with increased length of hospital stay, readmission rates, cost, morbidity, and mortality. Identifying methods to reduce surgical site infection without the use of antibiotics may be beneficial at reducing antimicrobial resistance, reserving the use of antibiotics for more severe cases. Quaternary ammonium salts have previously been shown to be a safe and effective antimicrobial agent in the setting of in vitro and in vivo animal experiments. A retrospective study was conducted to investigate the antimicrobial properties of a quaternary ammonium salt, 3-trimethoxysilyl propyldimethyloctadecyl ammonium chloride (QAS-3PAC; Bio-spear), at reducing surgical drain site colonization and infection after breast reconstruction (deep inferior epigastric perforator flap reconstruction or tissue expander placement). Twenty patients were enrolled, with 14 surgical drains covered with nonimpregnated gauze and 17 surgical drains covered with QAS-3PAC impregnated gauze, for the purposes of investigating bacterial colonization. Antibiotic sensitivity analysis was also conducted when bacterial cultures were positive. The overall incidence of bacterial colonization of surgical drains was lower in the treatment group compared with the control group (17.6% vs 64.3%, respectively; P = 0.008). QAS-3PAC impregnated gauze reduced the incidence of bacterial colonization of surgical drains during the first (0.0% vs 33.3%) and second (33.3% vs 87.5%; P = 0.04) postoperative week. Furthermore, no enhanced antibiotic resistance was noted on drains treated with QAS-3PAC impregnated gauze. The results of this study suggest that QAS-3PAC impregnated gauze applied over surgical drains may be an effective method for reducing the incidence of bacterial colonization.

  14. A methodology based on insecticide impregnated filter paper for monitoring resistance to deltamethrin in Triatoma infestans field populations.

    PubMed

    Remón, C; Lobbia, P; Zerba, E; Mougabure-Cueto, G

    2017-12-01

    The domiciliary presence of Triatoma infestans (Klug) (Hemiptera: Reduviidae) after control interventions was reported in recent years. Toxicological studies showed high levels of resistance to pyrethroids suggesting resistance as one of the main causes of deficient control. The aim of the present study was to develop a protocol to test resistance to deltamethrin in T. infestans collected from the field by discriminate concentration. To evaluate field insects, the effect of age (early vs. later) and nutritional state (starved vs. fed) on the deltamethrin susceptibility of each developmental stage was studied. Topical and insecticide impregnated paper bioassays were used. Using the impregnated paper, the susceptibility to deltamethrin was not affected by the age of the stadium and the nutritional states, and varied with the post-exposure time and with the different developmental stages. A discriminant concentration of deltamethrin (0.36% w/v) impregnated in filter paper was established for all developmental stages. Finally, the methodology and the discriminant concentration were evaluated in the laboratory showing high sensitivity in the discrimination of resistance. The present study developed a methodology of exposure to insecticide impregnated papers and proposes a protocol to test T. infestans in field populations with the aim to detect early evolution of resistance to deltamethrin. © 2017 The Royal Entomological Society.

  15. The British antibiotic and silver-impregnated catheters for ventriculoperitoneal shunts multi-centre randomised controlled trial (the BASICS trial): study protocol

    PubMed Central

    2014-01-01

    Background Insertion of a ventriculoperitoneal shunt (VPS) for the treatment of hydrocephalus is one of the most common neurosurgical procedures in the UK, but failures caused by infection occur in approximately 8% of primary cases. VPS infection is associated with considerable morbidity and mortality and its management results in substantial cost to the health service. Antibiotic-impregnated (rifampicin and clindamycin) and silver-impregnated VPS have been developed to reduce infection rates. Whilst there is some evidence showing that such devices may lead to a reduction in VPS infection, there are no randomised controlled trials (RCTs) to support their routine use. Methods/design Overall, 1,200 patients will be recruited from 17 regional neurosurgical units in the UK and Ireland. Patients of any age undergoing insertion of their first VPS are eligible. Patients with previous indwelling VPS, active and on-going cerebrospinal fluid (CSF) or peritoneal infection, multiloculated hydrocephalus requiring multiple VPS or neuroendoscopy, and ventriculoatrial or ventriculopleural shunt planned will be excluded. Patients will be randomised 1:1:1 to either standard silicone (comparator), antibiotic-impregnated, or silver-impregnated VPS. The primary outcome measure is time to VPS infection. Secondary outcome measures include time to VPS failure of any cause, reason for VPS failure (infection, mechanical failure, or patient failure), types of bacterial VPS infection (organism type and antibiotic resistance), and incremental cost per VPS failure averted. Discussion The British antibiotic and silver-impregnated catheters for ventriculoperitoneal shunts multi-centre randomised controlled trial (the BASICS trial) is the first multi-centre RCT designed to determine whether antibiotic or silver-impregnated VPS reduce early shunt infection compared to standard silicone VPS. The results of this study will be used to inform current neurosurgical practice and may potentially benefit

  16. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    PubMed

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Unit costs for house spraying and bednet impregnation with residual insecticides in Colombia: a management tool for the control of vector-borne disease.

    PubMed

    Kroeger, A; Ayala, C; Medina Lara, A

    2002-06-01

    A study of unit costs and cost components of two malaria-control strategies (house spraying and bednet impregnation with residual insecticides) was undertaken in 11 malaria-endemic states (departamentos) of Colombia, using data provided by control staff on self-administered questionnaires. The accuracy of the data was verified by personal visits, telephone conversations and complementary information from 10 other states. Allthe financial-cost components of the malaria-control operations carried out in the previous 6 months and the results of the control operations themselves (including the numbers of houses sprayed and numbers of bednets impregnated/day) were recorded. The information was stratified according to whether the target communities were 'near' or 'far away' from an operational base, the far-away communities being those that needed overnight stays by the control staff. The main variables analysed were unit costs/house treated, and annual cost/person protected. The results show that house spraying was generally more expensive for the health services than bednet impregnation. This is particularly the case in 'nearby' communities, where most of those at-risk live. In such communities, spraying one house was 7.2 times more expensive than impregnating one bednet. Even if only those sleeping under an impregnated net were assumed to be protected, the unit costs/person protected in a 'nearby' community were twice as high for house spraying than for bednet impregnation. In 'nearby' communities, where technicians could return to the operational base each evening, insecticides made up 80% of the total spraying costs and 42% of the costs of bednet impregnation. In 'far-away' communities, however, salaries and 'per diems' were the most important cost components, representing, respectively, 23% and 22% of the costs of spraying, and 34% plus 27% of the costs of impregnation. Insecticide wastage and non-use of discounts on insecticide prices (available through the

  19. The Application of Perfluorocarbons as Impregnants for Plastic Film Capacitors

    NASA Technical Reports Server (NTRS)

    Mauldin, G. H.

    1981-01-01

    A liquid impregnated, plastic film (wet) capacitor was developed that is thought to be the most reliable and space efficient capacitor of any type ever produced for high voltage, pulse discharge service. The initial design stores five times the energy of a premium quality dry capacitor of equivalent energy and reliability. The technology, as well as a production capacitor design using this technology are described.

  20. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  1. Low abundance of sweat duct Cl− channel CFTR in both healthy and cystic fibrosis athletes with exceptionally salty sweat during exercise

    PubMed Central

    Haack, Karla K. V.; Pollack, Brian P.; Millard-Stafford, Mindy; McCarty, Nael A.

    2011-01-01

    To understand potential mechanisms explaining interindividual variability observed in human sweat sodium concentration ([Na+]), we investigated the relationship among [Na+] of thermoregulatory sweat, plasma membrane expression of Na+ and Cl− transport proteins in biopsied human eccrine sweat ducts, and basal levels of vasopressin (AVP) and aldosterone. Lower ductal luminal membrane expression of the Cl− channel cystic fibrosis transmembrane conductance regulator (CFTR) was observed in immunofluorescent staining of sweat glands from healthy young adults identified as exceptionally “salty sweaters” (SS) (n = 6, P < 0.05) and from patients with cystic fibrosis (CF) (n = 6, P < 0.005) compared with ducts from healthy young adults with “typical” sweat [Na+] (control, n = 6). Genetic testing of healthy subjects did not reveal any heterozygotes (“carriers”) for any of the 39 most common disease-causing CFTR mutations in the United States. SS had higher baseline plasma [AVP] compared with control (P = 0.029). Immunostaining to investigate a potential relationship between higher plasma [AVP] (and sweat [Na+]) and ductal membrane aquaporin-5 revealed for all groups a relatively sparse and location-dependent ductal expression of the water channel with localization primarily to the secretory coil. Availability of CFTR for NaCl transport across the ductal membrane appears related to the significant physiological variability observed in sweat salt concentration in apparently healthy humans. At present, a heritable link between healthy salty sweaters and the most prevalent disease-causing CFTR mutations cannot be established. PMID:21228336

  2. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  3. Synthesis of polysiloxane with quaternized N-halamine moieties for antibacterial coating of polypropylene via supercritical impregnation technique

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Yu, Panwei; Feng, Chunyan; Wang, Yuyu; Han, Qiuxia; Zhang, Qiang

    2017-10-01

    Development of polymers with enhanced biocidal ability to coated surfaces by a simple and versatile approach is very desirable in biomaterial area. A polysiloxane containing both quaternary ammonium and N-halamine was synthesized by silane alcoholysis between poly(methylhydrosiloxane) (PMHS) and 3-bromo-1-propanol, subsequent quaternization with 3-(3-(dimethylamino)propyl)-5,5-dimethylhydantoin (DMAPDMH), and chlorination with tert-butyl hypochlorite. The quaternized N-halamine polysiloxane was impregnated into polypropylene (PP) in supercritical carbon dioxide (scCO2) and formed an antibacterial coating layer of 61 nm. The synthetic procedures and coating results were characterized using FTIR, NMR, XPS, and SEM. The polysiloxane layer showed enhanced synergetic antibacterial ability, providing a total kill of a 7-log S. aureus and E. coli within 10 min of contact. The rechargability and stability of the coating layer toward washing cycles, storage, and UV irradiation were good. This coating procedure uses environmentally benign CO2 as solvent and affords a general method to functionalize inert polymers with biocidal capability.

  4. DGEBF epoxy blends for use in the resin impregnation of extremely large composite parts

    DOE PAGES

    Madhukar, M. S.; Martovetsky, N. N.

    2015-01-16

    Large superconducting electromagnets used in fusion reactors utilize a large amount of glass/epoxy composite for electrical insulation and mechanical and thermal strengths. Moreover, the manufacture of these magnets involves wrapping each superconducting cable bundle with dry glass cloth followed by the vacuum-assisted resin transfer molding of the entire magnet. Due to their enormous size (more than 100 tons), it requires more than 40 h for resin impregnation and the subsequent pressure cycles to ensure complete impregnation and removal of any trapped air pockets. Diglycidyl ether of bisphenol F epoxy resin cross-linked with methyltetrahydrophthalic anhydride with an accelerator has been shownmore » to be a good candidate for use in composite parts requiring long impregnation cycles. Viscosity, gel time, and glass transition temperature of four resin-blends of diglycidyl ether of bisphenol F resin system were monitored as a function of time and temperature with an objective to find the blend that provides a working window longer than 40h at low viscosity without lowering its glass transition temperature. A resin-blend in the weight ratios of resin:hardener:accelerator=100:82:0.125 is shown to provide more than 60h at low resin viscosity while maintaining the same glass transition temperature as obtained with previously used resin-blends, based on the results.« less

  5. The Effect of the Melt Viscosity and Impregnation of a Film on the Mechanical Properties of Thermoplastic Composites

    PubMed Central

    Kim, Jong Won; Lee, Joon Seok

    2016-01-01

    Generally, to produce film-type thermoplastic composites with good mechanical properties, high-performance reinforcement films are used. In this case, films used as a matrix are difficult to impregnate into tow due to their high melt viscosity and high molecular weight. To solve the problem, in this paper, three polypropylene (PP) films with different melt viscosities were used separately to produce film-type thermoplastic composites. A film with a low melt viscosity was stacked so that tow was impregnated first and a film with a higher melt viscosity was then stacked to produce the composite. Four different composites were produced by regulating the pressure rising time. The thickness, density, fiber volume fraction (Vf), and void content (Vc) were analyzed to identify the physical properties and compare them in terms of film stacking types. The thermal properties were identified by using differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). The tensile property, flexural property, interlaminar shear strength (ILSS), and scanning electron microscopy (SEM) were performed to identify the mechanical properties. For the films with low molecular weight, impregnation could be completed fast but showed low strength. Additionally, the films with high molecular weight completed impregnation slowly but showed high strength. Therefore, appropriate films should be used considering the forming process time and their mechanical properties to produce film-type composites. PMID:28773572

  6. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing.

    PubMed

    Alavi, Mehrosadat; Totonchi, Alireza; Okhovat, Mohammad Ali; Motazedian, Motahareh; Rezaei, Peyman; Atefi, Mohammad

    2014-12-01

    In recent years, a wide variety of research has been carried out in the field of novel technologies to stop severe bleeding. In several studies, coagulation properties of minerals such as zeolite, bentonite and halloysite have been proven. In this study, the effect of a new impregnated sterile gauze containing bentonite and halloysite minerals was studied on blood coagulation and wound healing rate in male Wistar rats. Initially, impregnated sterile gauze was prepared from the mixture of bentonite and halloysite minerals and petroleum jelly (Vaseline). Then, the effect of gauze was studied on the blood coagulation time and wound healing process in 40 Wistar rats. SPSS software was used for data analysis and P values less than 0.05 were considered significant. The coagulation time of 81.10 ± 2.532 s in the control group and 33.00 ± 1.214 s in the study group (bentonite-halloysite treated) were reported (P < 0.0005). Time for complete wound healing in the group, which is treated with impregnated sterile pads, was calculated approximately from 10 to 12 days. However, in the control group, there was no complete wound healing (P < 0.0005). According to the results of the present study, topical application of the bentonite-halloysite impregnated sterile gauze significantly decreases the clotting time and increase the wound healing rate.

  7. Carbon bed mercury emissions control for mixed waste treatment.

    PubMed

    Soelberg, Nick; Enneking, Joe

    2010-11-01

    Mercury has various uses in nuclear fuel reprocessing and other nuclear processes, and so it is often present in radioactive and mixed (radioactive and hazardous) wastes. Compliance with air emission regulations such as the Hazardous Waste Combustor (HWC) Maximum Achievable Control Technology (MACT) standards can require off-gas mercury removal efficiencies up to 99.999% for thermally treating some mixed waste streams. Test programs have demonstrated this level of off-gas mercury control using fixed beds of granular sulfur-impregnated activated carbon. Other results of these tests include (1) the depth of the mercury control mass transfer zone was less than 15-30 cm for the operating conditions of these tests; (2) MERSORB carbon can sorb mercury up to 19 wt % of the carbon mass; and (3) the spent carbon retained almost all (98.3-99.99%) of the mercury during Toxicity Characteristic Leachability Procedure (TCLP) tests, but when even a small fraction of the total mercury dissolves, the spent carbon can fail the TCLP test when the spent carbon contains high mercury concentrations.

  8. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption.

    PubMed

    Barathi, M; Kumar, A Santhana Krishna; Rajesh, N

    2014-05-01

    In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. An experimental study on oil supply in a space bearing with an oil-impregnated retainer

    NASA Astrophysics Data System (ADS)

    Liu, Jianhai; Fan, Youwen; Wen, Shizhu

    1993-06-01

    Parched elastohydrodynamic lubrication (EHL) film thickness in a space ball bearing is measured by electrical capacitance and resistance, and parched transients of oil film and lubricant breakdown are observed. With different oil-impregnated polymer retainers, which are employed as oil supply resources, parched degradation is restricted to some degree, even lubricant breakdown disappears and a steady state of the oil film is produced. A long-term space bail bearing demands both the lowest driving torque and a steady state oil film, which depends on a strictly controlled oil supply from oil-impregnated retainers. The results of this experimental research describe the effects of oil supply by amounts of oil in retainers on parched EHL.

  10. Bending analyses for 3D engineered structural panels made from laminated paper and carbon fabric

    Treesearch

    Jinghao Li; John F. Hunt; Zhiyong Cai; Xianyan Zhou

    2013-01-01

    This paper presents analysis of a 3-dimensional engineered structural panel (3DESP) having a tri-axial core structure made from phenolic impregnated laminated-paper composites with and without high strength composite carbon-fiber fabric laminated to the outside of both faces. Both I-beam equations and finite element method were used to analyze four-point bending of the...

  11. Antibiotic-impregnated calcium phosphate cement as part of a comprehensive treatment for patients with established orthopaedic infection.

    PubMed

    Niikura, Takahiro; Lee, Sang Yang; Iwakura, Takashi; Sakai, Yoshitada; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-07-01

    The treatment of established orthopaedic infection is challenging. While the main focus of treatment is wide surgical debridement, systemic and local antibiotic administration are important adjuvant therapies. Several reports have described the clinical use of antibiotic-impregnated calcium phosphate cement (CPC) to provide local antibiotic therapy for bone infections. However, these were all individual case reports, and no case series have been reported. We report a case series treated by a single surgeon using antibiotic-impregnated CPC as part of a comprehensive treatment plan in patients with established orthopaedic infection. We enrolled 13 consecutive patients with osteomyelitis (n = 6) or infected non-union (n = 7). Implantation of antibiotic-impregnated CPC was performed to provide local antibiotic therapy as part of a comprehensive treatment plan that also included wide surgical debridement, systemic antibiotic therapy, and subsequent second-stage reconstruction surgery. We investigated the rate of successful infection eradication and systemic/local complications. The concentration of antibiotics in the surgical drainage fluids, blood, and recovered CPC (via elution into a phosphate-buffered saline bath) were measured. The mean follow-up period after surgery was 50.4 (range, 27-73) months. There were no cases of infection recurrence during follow-up. No systemic toxicity or local complications from the implantation of antibiotic-impregnated CPC were observed. The vancomycin concentration in the fluid from surgical drainage (n = 6) was 527.1 ± 363.9 μg/mL on postoperative day 1 and 224.5 ± 198.4 μg/mL on postoperative day 2. In patients who did not receive systemic vancomycin therapy (n = 3), the maximum serum vancomycin level was <0.8 μg/mL. In vitro vancomycin elution was observed from the CPC that was surgically retrieved (n = 2). Implantation of antibiotic-impregnated CPC is an option to provide local antibiotic therapy as part of

  12. Impact of sulfur oxides on mercury capture by activated carbon.

    PubMed

    Presto, Albert A; Granite, Evan J

    2007-09-15

    Recent field tests of mercury removal with activated carbon injection (ACI) have revealed that mercury capture is limited in flue gases containing high concentrations of sulfur oxides (SOx). In order to gain a more complete understanding of the impact of SOx on ACl, mercury capture was tested under varying conditions of SO2 and SO3 concentrations using a packed bed reactor and simulated flue gas (SFG). The final mercury content of the activated carbons is independent of the SO2 concentration in the SFG, but the presence of SO3 inhibits mercury capture even at the lowest concentration tested (20 ppm). The mercury removal capacity decreases as the sulfur content of the used activated carbons increases from 1 to 10%. In one extreme case, an activated carbon with 10% sulfur, prepared by H2SO4 impregnation, shows almost no mercury capacity. The results suggest that mercury and sulfur oxides are in competition for the same binding sites on the carbon surface.

  13. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity.

    PubMed

    Chen, Chao; Yang, Seung-Tae; Ahn, Wha-Seung; Ryoo, Ryong

    2009-06-28

    A polyethylenimine-impregnated hierarchical silica monolith exhibited significantly higher CO(2) capturing capacity than other silica-supported amine sorbents, and produced a reversible and durable sorption performance.

  14. Effects of linoleic acid on sweet, sour, salty, and bitter taste thresholds and intensity ratings of adults.

    PubMed

    Mattes, Richard D

    2007-05-01

    Evidence supporting a taste component for dietary fat has prompted study of plausible transduction mechanisms. One hypothesizes that long-chain, unsaturated fatty acids block selected delayed-rectifying potassium channels, resulting in a sensitization of taste receptor cells to stimulation by other taste compounds. This was tested in 17 male and 17 female adult (mean +/- SE age = 23.4 +/- 0.7 yr) propylthiouracil tasters with normal resting triglyceride concentrations (87.3 +/- 5.6 mg/day) and body mass index (23.3 +/- 0.4 kg/m(2)). Participants were tested during two approximately 30-min test sessions per week for 8 wk. Eight stimuli were assessed in duplicate via an ascending, three-alternative, forced-choice procedure. Qualities were randomized over weeks. Stimuli were presented as room-temperature, 5-ml portions. They included 1% solutions of linoleic acid with added sodium chloride (salty), sucrose (sweet), citric acid (sour), and caffeine (bitter) as well as solutions of these taste compounds alone. Participants also rated the intensity of the five strongest concentrations using the general labeled magnitude scale. The suprathreshold samples were presented in random order with a rinse between each. Subjects made the ratings self-paced while wearing nose clips. It was hypothesized that taste thresholds would be lower and absolute intensity ratings or slopes of intensity functions would be higher for the stimuli mixed with the linoleic acid. Thresholds were compared by paired t-tests and intensity ratings by repeated measures analysis of variance. Thresholds were significantly higher (i.e., lower sensitivity) for the sodium chloride, citric acid, and caffeine solutions with added fatty acid. Sweet, sour, and salty intensity ratings were lower or unchanged by the addition of a fatty acid. The two highest concentrations of caffeine were rated as weaker in the presence of linoleic acid. These data do not support a mechanism for detecting dietary fats whereby fatty

  15. Co-Adsorption of Ammonia and Formaldehyde on Regenerable Carbon Sorbents for the Primary Life Support System (PLSS)

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Cosgrove, Joseph E.; Serio, Michael A.; Wilburn, Monique S.

    2016-01-01

    Results are presented on the development of a reversible carbon sorbent for trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is deemed non-regenerable, while the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. Data on concurrent sorption and desorption of ammonia and formaldehyde, which are major TCs of concern, are presented in this paper. A carbon sorbent was fabricated by dry impregnation of a reticulated carbon-foam support with polyvinylidene chloride, followed by carbonization and thermal oxidation in air. Sorbent performance was tested for ammonia and formaldehyde sorption and vacuum regeneration, with and without water present in the gas stream. It was found that humidity in the gas phase enhanced ammonia-sorption capacity by a factor larger than two. Co-adsorption of ammonia and formaldehyde in the presence of water resulted in strong formaldehyde sorption (to the point that it was difficult to saturate the sorbent on the time scales used in this study). In the absence of humidity, adsorption of formaldehyde on the carbon surface was found to impair ammonia sorption in subsequent runs; in the presence of water, however, both ammonia and formaldehyde could be efficiently removed from the gas phase by the sorbent. The efficiency of vacuum regeneration could be enhanced by gentle heating to temperatures below 60 deg.

  16. Thermodynamic analysis of Cr(VI) extraction using TOPO impregnated membranes.

    PubMed

    Praveen, Prashant; Loh, Kai-Chee

    2016-08-15

    Solid/liquid extraction of Cr(VI) was accomplished using trioctylphosphine oxide impregnated polypropylene hollow fiber membranes. Extraction of 100-500mg/L Cr(VI) by the extractant impregnated membranes (EIM) was characterized by high uptake rate and capacity, and equilibrium was attained within 45min of contact. Extraction equilibrium was pH-dependent (at an optimal pH 2), whereas stripping using 0.2M sodium hydroxide yielded the highest recovery of 98% within 60min. The distribution coefficient was independent of initial Cr(VI) concentration, and the linear distribution equilibrium isotherm could be modeled using Freundlich isotherm. The mass transfer kinetics of Cr(VI) was examined using pseudo-second-order and intraparticle diffusion models and a mass transfer mechanism was deduced. The distribution coefficient increased with temperature, which indicated endothermic nature of the reaction. Enthalpy and entropy change during Cr(VI) extraction were positive and varied in the range of 37-49kJ/mol and 114-155J/mol, respectively. The free energy change was negative, confirming the feasibility and spontaneity of the mass transfer process. Results obtained suggest that EIMs are efficient and sustainable for extraction of Cr(VI) from wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes

    NASA Technical Reports Server (NTRS)

    Comtat, M.; Lafage, B.; Leonardi, J.

    1986-01-01

    Nickel hydroxide electrodes containing 11g/dsqm hydroxide, with capacities of 3.6 to 3.8 Ah/dsqm were prepared at 353 K by electrochemical impregnation. The reproducibility of the results is obtained by readjusting the pH before each preparation. The control of each electrode is done during two cycles of charge and discharge following the manufacture by a potential relaxation method.

  18. Mitigating Diseases Transmitted by Aedes Mosquitoes: A Cluster-Randomised Trial of Permethrin-Impregnated School Uniforms

    PubMed Central

    Kittayapong, Pattamaporn; Olanratmanee, Phanthip; Maskhao, Pongsri; Byass, Peter; Logan, James; Tozan, Yesim; Louis, Valérie; Gubler, Duane J.; Wilder-Smith, Annelies

    2017-01-01

    Background Viral diseases transmitted via Aedes mosquitoes are on the rise, such as Zika, dengue, and chikungunya. Novel tools to mitigate Aedes mosquitoes-transmitted diseases are urgently needed. We tested whether commercially insecticide-impregnated school uniforms can reduce dengue incidence in school children. Methods We designed a cluster-randomised controlled trial in Thailand. The primary endpoint was laboratory-confirmed dengue infections. Secondary endpoints were school absenteeism; and impregnated uniforms’ 1-hour knock-down and 24 hour mosquito mortality as measured by standardised WHOPES bioassay cone tests at baseline and after repeated washing. Furthermore, entomological assessments inside classrooms and in outside areas of schools were conducted. Results We enrolled 1,811 pupils aged 6–17 from 5 intervention and 5 control schools. Paired serum samples were obtained from 1,655 pupils. In the control schools, 24/641 (3.7%) and in the intervention schools 33/1,014 (3.3%) students had evidence of new dengue infections during one school term (5 months). There was no significant difference in proportions of students having incident dengue infections between the intervention and control schools, with adjustment for clustering by school. WHOPES cone tests showed a 100% knock down and mortality of Aedes aegypti mosquitoes exposed to impregnated clothing at baseline and up to 4 washes, but this efficacy rapidly declined to below 20% after 20 washes, corresponding to a weekly reduction in knock-down and mosquito mortality by 4.7% and 4.4% respectively. Results of the entomological assessments showed that the mean number of Aedes aegypti mosquitoes caught inside the classrooms of the intervention schools was significantly reduced in the month following the introduction of the impregnated uniforms, compared to those collected in classrooms of the control schools (p = 0.04) Conclusions Entomological assessments showed that the intervention had some impact on

  19. Mitigating Diseases Transmitted by Aedes Mosquitoes: A Cluster-Randomised Trial of Permethrin-Impregnated School Uniforms.

    PubMed

    Kittayapong, Pattamaporn; Olanratmanee, Phanthip; Maskhao, Pongsri; Byass, Peter; Logan, James; Tozan, Yesim; Louis, Valérie; Gubler, Duane J; Wilder-Smith, Annelies

    2017-01-01

    Viral diseases transmitted via Aedes mosquitoes are on the rise, such as Zika, dengue, and chikungunya. Novel tools to mitigate Aedes mosquitoes-transmitted diseases are urgently needed. We tested whether commercially insecticide-impregnated school uniforms can reduce dengue incidence in school children. We designed a cluster-randomised controlled trial in Thailand. The primary endpoint was laboratory-confirmed dengue infections. Secondary endpoints were school absenteeism; and impregnated uniforms' 1-hour knock-down and 24 hour mosquito mortality as measured by standardised WHOPES bioassay cone tests at baseline and after repeated washing. Furthermore, entomological assessments inside classrooms and in outside areas of schools were conducted. We enrolled 1,811 pupils aged 6-17 from 5 intervention and 5 control schools. Paired serum samples were obtained from 1,655 pupils. In the control schools, 24/641 (3.7%) and in the intervention schools 33/1,014 (3.3%) students had evidence of new dengue infections during one school term (5 months). There was no significant difference in proportions of students having incident dengue infections between the intervention and control schools, with adjustment for clustering by school. WHOPES cone tests showed a 100% knock down and mortality of Aedes aegypti mosquitoes exposed to impregnated clothing at baseline and up to 4 washes, but this efficacy rapidly declined to below 20% after 20 washes, corresponding to a weekly reduction in knock-down and mosquito mortality by 4.7% and 4.4% respectively. Results of the entomological assessments showed that the mean number of Aedes aegypti mosquitoes caught inside the classrooms of the intervention schools was significantly reduced in the month following the introduction of the impregnated uniforms, compared to those collected in classrooms of the control schools (p = 0.04). Entomological assessments showed that the intervention had some impact on the number of Aedes mosquitoes inside

  20. Steam pretreatment of Saccharum officinarum L. bagasse by adding of impregnating agents for advanced bioethanol production.

    PubMed

    Verardi, A; Blasi, A; De Bari, I; Calabrò, V

    2016-12-01

    The main byproduct of the sugarcane industry, Saccharum officinarum L. bagasse (sugarcane bagasse, SCB), is widely used as lignocellulose biomass for bio-ethanol (EtOH) production. In this research study, SCB was pretreated by steam explosion (SE) method using two different impregnating agents: sulfur dioxide (SD) and hydrogen peroxide (HP). As matter of fact, the use of impregnating agents improves the performance of SE method, increasing the concentrations of fermentable sugars after enzymatic saccharification, and decreasing the inhibitor compounds produced during the steam pretreatment step. The aim of this study was to investigate and compare the use of the two impregnating agents in various SE-conditions in order to optimize pretreatment parameters. For every pretreatment condition, it has been evaluated: concentration of fermentable sugars, glucose and xylose yields, and the effects of the inhibitor compounds on enzymatic hydrolysis step. The obtained results allow to improve the efficiency of the whole process of bio-EtOH synthesis enhancing the amount of fermentable sugars produced and the eco-sustainability of the whole process. Indeed, the optimization of steam pretreatment leads to a reduction of energy requirements and to a lower environmental impact. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Hemostatic Agents in Periapical Surgery: A Randomized Study of Gauze Impregnated in Epinephrine versus Aluminum Chloride.

    PubMed

    Menéndez-Nieto, Isabel; Cervera-Ballester, Juan; Maestre-Ferrín, Laura; Blaya-Tárraga, Juan Antonio; Peñarrocha-Oltra, David; Peñarrocha-Diago, Miguel

    2016-11-01

    Adequate bleeding control is essential for the success of periapical surgery. The aim of this study was to evaluate the effects of 2 hemostatic agents on the outcome of periapical surgery and their relationship with patient and teeth parameters. A prospective study was designed with 2 randomized parallel groups, depending on the hemostatic agent used: gauze impregnated in epinephrine (epinephrine group) and aluminum chloride (aluminum chloride group). The analysis of the hemorrhage control was judged before and after the application of the hemostatic agents by the surgeon, and 2 examiners independently recorded it as adequate (complete hemorrhage control) or inadequate (incomplete hemorrhage control). Ninety-nine patients with a periradicular lesion were enrolled in this study and divided into 2 groups: gauze impregnated in epinephrine in 48 patients (epinephrine group) or aluminum chloride in 51 (aluminum chloride group). In epinephrine group adequate hemostasis was achieved in 25 cases, and in aluminum chloride group it was achieved in 37 cases (P < .05). The outcome was better in the aluminum chloride group than in the gauze impregnated in epinephrine group. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  3. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    DOEpatents

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  4. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  5. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane.

    PubMed

    Aghamohammadi, Sogand; Haghighi, Mohammad; Karimipour, Samira

    2013-07-01

    Carbon dioxide reforming of methane is an interesting route for synthesis gas production especially over nano-sized catalysts. The present research deals with catalyst development for dry reforming of methane with the aim of reaching the most stable catalyst. Effect of preparation method, one of the most significant variables, on the properties of the catalysts was taken in to account. The Ni/Al2O3-MgO catalysts were prepared via sol-gel and sequential impregnation methods and characterized with XRD, FESEM, EDAX, BET and FTIR techniques. The reforming reactions were carried out using different feed ratios, gas hourly space velocities (GHSV) and reaction temperatures to identify the influence of operational variables. FESEM images indicate uniform particle size distribution for the sample synthesized with sol-gel method. It has been found that the sol-gel method has the potential to improve catalyst desired properties especially metal surface enrichment resulting in catalytic performance enhancement. The highest yield of products was obtained at 850 degrees C for both of the catalysts. During the 10 h stability test, CH4 and CO2 conversions gained higher values in the case of sol-gel made catalyst compared to impregnated one.

  6. Effect of the addition mode of carbon nanotubes for the production of chitosan hydrogel core-shell beads on adsorption of Congo red from aqueous solution.

    PubMed

    Chatterjee, Sudipta; Chatterjee, Tania; Lim, Seong-Rin; Woo, Seung H

    2011-03-01

    The adsorption performance of chitosan (CS) hydrogel beads (CSBs) generated by sodium dodecyl sulfate (SDS) gelation with multi-walled carbon nanotube (CNT) impregnation was investigated for Congo red removal as a model anionic dye. CNT-impregnated CSBs were prepared by four different strategies for dispersing CNTs: (a) in CS solution (CSBN1), (b) in SDS solution (CSBN2), (c) in CS solution containing cetyltrimethylammonium bromide (CTAB) (CSBN3), and (d) in SDS solution for gelation with CTAB-containing CS solution (CSBN4). It was observed from FE-SEM study that depending on nature of CNT dispersion, CNTs were found on the outer surface of CSBN2 and CSBN4 only. The adsorption capacity of the CSBs varied with the strategy used for CNT impregnation, and CSBN4 exhibited the highest maximum adsorption capacity (375.94 mg/g) from the Sips model. The lowest Sips maximum adsorption capacity by CSBN3 (121.07 mg/g) suggested significant blocking of binding sites of CS by CNT impregnation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Nickel-impregnated silica nanoparticle synthesis and their evaluation for biocatalyst immobilization.

    PubMed

    Prakasham, Reddy Shetty; Devi, G Sarala; Rao, Chaganti Subba; Sivakumar, V S S; Sathish, T; Sarma, P N

    2010-04-01

    In the present investigation, impact of nickel-impregnated silica paramagnetic particles (NSP) as biocatalyst immobilization matrices was investigated. These nanoparticles were synthesized by sol-gel route using a nonionic surfactant block co polymer [poly (ethylene glycol)-block-poly-(propylene glycol)-block-poly (ethylene glycol)]. Diastase enzyme was immobilized on these particles (enzyme-impregnated NSP) as model enzyme and characterized using Fourier-transform infrared spectroscopy and X-ray crystallography. Analysis of enzyme-binding nature with these nanoparticles at different physiological conditions revealed that binding pattern and activity profile varied with the pH of the reaction mixture. The immobilized enzyme was further characterized for its biocatalytic activity with respect to kinetic properties such as Km and Vmax and compared with free enzyme. Paramagnetic nanoparticle-immobilized enzyme showed more affinity for substrate compared to free one. The nature of silica and nickel varied from amorphous to crystalline nature and vice versa upon immobilization of enzyme. To the best of our knowledge, this is the first report of its kind for change of nature from one form to other under normal temperatures upon diastase interaction with NSP.

  8. Adsorption property of Br-PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples.

    PubMed

    Khamirchi, Ramzanali; Hosseini-Bandegharaei, Ahmad; Alahabadi, Ahmad; Sivamani, Selvaraju; Rahmani-Sani, Abolfazl; Shahryari, Taher; Anastopoulos, Ioannis; Miri, Mohammad; Tran, Hai Nguyen

    2018-04-15

    A newer efficient U(VI) ion adsorbent was synthesized by impregnating Br-PADAP [2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol] onto multiwall carbon nanotubes (MWCNTs). The effects of various operation conditions on uranium adsorption (i.e., pH contact time, temperature, and initial uranium concentration) were systematically evaluated using batch experiments. The results indicated that the uranium adsorption on modified MWNCTs (5.571 × 10 -3 g/mg × min) reached faster equilibrium than that on pristine MWNCTs (4.832 × 10 -3 g/mg × min), reflecting the involvement of appropriate functional groups of Br-PADAP on the chelating ion-exchange mechanism of U(VI) adsorption. Modified MWNCTs (83.4mg/g) exhibited significantly higher maximum Langmuir adsorption capacity than pristine MWNCTs (15.1mg/g). Approximately 99% of uranium adsorbed onto modified MWNCTs can be desorbed by 2.5mL of 1M HNO 3 solution. Therefore, Br-PADAP-modified MWNCTs can server as a promising adsorbent for efficient uranium adsorption applications in water treatment. Subsequently, the proposed solid-phase extraction (using a mini-column packed with Br-PADAP/MWCNT) was successfully utilized for analysing trace uranium levels by the ICP-AES method in different environmental samples with a pre-concentration factor of 300-fold. The coexistence of other ions demonstrated an insignificant interference on the separative pre-concentration of uranium. the detection limit was recognized as 0.14μg/L, and the relative standard deviation was approximately 3.3% (n = 7). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Light-toned salty soils and co-existing Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills

    USGS Publications Warehouse

    Wang, Alian; Bell, J.F.; Li, Ron; Johnson, J. R.; Farrand, W. H.; Cloutis, E.A.; Arvidson, R. E.; Crumpler, L.; Squyres, S. W.; McLennan, S.M.; Herkenhoff, K. E.; Ruff, S.W.; Knudson, A.T.; Chen, Wei; Greenberger, R.

    2008-01-01

    Light-toned soils were exposed, through serendipitous excavations by Spirit Rover wheels, at eight locations in the Columbia Hills. Their occurrences were grouped into four types on the basis of geomorphic settings. At three major exposures, the light-toned soils are hydrous and sulfate-rich. The spatial distributions of distinct types of salty soils vary substantially: with centimeter-scaled heterogeneities at Paso Robles, Dead Sea, Shredded, and Champagne-Penny, a well-mixed nature for light-toned soils occurring near and at the summit of Husband Hill, and relatively homogeneous distributions in the two layers at the Tyrone site. Aeolian, fumarolic, and hydrothermal fluid processes are suggested to be responsible for the deposition, transportation, and accumulation of these light-toned soils. In addition, a change in Pancam spectra of Tyrone yellowish soils was observed after being exposed to current Martian surface conditions for 175 sols. This change is interpreted to be caused by the dehydration of ferric sulfates on the basis of laboratory simulations and suggests a relative humidity gradient beneath the surface. Si-rich nodules and soils were observed near the major exposures of S-rich soils. They possess a characteristic feature in Pancam visible near-infrared (Vis-NIR) spectra that may be diagnostic of hydrated species, and this spectral feature can be used to search for additional Si-rich species. The exposures of hydrated salty soils within various geomorphic settings imply the potential existence of hydrous minerals in similar settings over a much wider area. Hydrous sulfates represent one of the candidates that may contribute the high level of water equivalent hydrogen in equatorial regions detected by the Neutron Spectrometer on Mars Odyssey.

  10. Adsorption Isotherm of Chromium (Vi) into Zncl2 Impregnated Activated Carbon Derived by Jatropha Curcas Seed Hull

    NASA Astrophysics Data System (ADS)

    Mohammad, M.; Yakub, I.; Yaakob, Z.; Asim, N.; Sopian, K.

    2017-12-01

    Hexavalent chromium is carcinogenic and should be removed from industrial wastewater before discharged into water resources. Adsorption by using activated carbon from biomass is an economic and conventional way on removing the heavy metal ions from wastewater. In this research, activated carbon is synthesized from Jatropha curcas L. seed hull through chemical activation with ZnCl2 and carbonized at 800 °C (JAC/ZnCl2). The activated carbon has been characterized using FTIR, SEM-EDX, BET and CHNS-O analyzer. Adsorption isotherms have been analysed using Langmuir and Freundlich models to determine its removal mechanism. The maximum adsorption capacity of Cr (VI) metal ions onto JAC/ZnCl2 activated carbon is 25.189 mg/g and following Langmuir isotherm model which is monolayer adsorption.

  11. Fabrication of Silica Nanospheres Coated Membranes: towards the Effective Separation of Oil-in-Water Emulsion in Extremely Acidic and Concentrated Salty Environments

    PubMed Central

    Chen, Yuning; Liu, Na; Cao, Yingze; Lin, Xin; Xu, Liangxin; Zhang, Weifeng; Wei, Yen; Feng, Lin

    2016-01-01

    A superhydrophilic and underwater superoleophobic surface is fabricated by simply coating silica nanospheres onto a glass fiber membrane through a sol-gel process. Such membrane has a complex framework with micro and nano structures covering and presents a high efficiency (more than 98%) of oil-in-water emulsion separation under harsh environments including strong acidic and concentrated salty conditions. This membrane also possesses outstanding stability since no obvious decline in efficiency is observed after different kinds of oil-in-water emulsions separation, which provides it candidate for comprehensive applicability. PMID:27597570

  12. Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)

    NASA Technical Reports Server (NTRS)

    Fechter, N. J.; Petrunich, P. S.

    1973-01-01

    A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.

  13. Modification of tubular ceramic membranes with carbon nanotubes using catalytic chemical vapor deposition.

    PubMed

    Tran, Duc Trung; Thieffry, Guillemette; Jacob, Matthieu; Batiot-Dupeyrat, Catherine; Teychene, Benoit

    2015-01-01

    In this study, carbon nanotubes (CNTs) were successfully grown on tubular ceramic membranes using the catalytic chemical vapor deposition (CCVD) method. CNTs were synthesized at 650°C for 3-6 h under a 120 mL min(-1) flow of C2H6 on ceramic membranes impregnated with iron salt. The synthesis procedure was beforehand optimized in terms of catalyst amount, impregnation duration and reaction temperature, using small pieces of tubular ceramic membranes. The yield, size and structure of the CNTs produced were characterized using thermogravimetric analysis and microscopic imaging techniques. Afterwards, preliminary filtration tests with alginate and phenol were performed on two modified tubular membranes. The results indicate that the addition of CNTs on the membrane material increased the permeability of ceramic membrane and its ability to reject alginate and adsorb phenol, yet decreased its fouling resistance.

  14. Review of electrochemical impregnation for nickel cadmium cells. [aerospace applications

    NASA Technical Reports Server (NTRS)

    Gross, S.

    1977-01-01

    A method of loading active material within the electrodes of nickel cadmium cells is examined. The basic process of electrochemical impregnation of these electrodes is detailed, citing the principle that when current is applied reactions occur which remove hydrogen ions from solution, making the interior of the plaque less acidic. Electrodes result which are superior in energy density, stability, and life. The technology is reviewed and illustrated with typical performance data. Recommendations are made for additional research and development.

  15. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    NASA Astrophysics Data System (ADS)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  16. Micro- and macroscopic study on the porosity of marble as a function of temperature and impregnation

    NASA Astrophysics Data System (ADS)

    Malaga-Starzec, K.; Akesson, U.; Lindqvist, J. E.; Schouenborg, B.

    2003-04-01

    The thermal weathering of marble is demonstrated by the progressive granular decohesion that leads to an increased porosity and subsequently to loss of strength. In order to determine how temperature cycling initiates changes in the porosity of fresh and impregnated stones: two chemically and petrographically very different marble types were tested for water absorption and ultrasonic velocity propagation and analysed by fluorescence microscopy and nitrogen adsorption. The influence of the impregnation materials: GypStop P17 and P22, both silica sols with different particle size, on changes of the porosity was also evaluated. A separate long-term study of thermal expansion was additionally performed on fresh unimpregnated samples. The results indicated that inter-granular decohesion was more pronounced for the calictic marble than the dolomitic marble. The impregnation materials had a mitigating effect on the granular decohesion. Use of fluorescence microscopy, among the other methods, appears to give inexpensive and reliable information about internal structure of the marbles. A better understanding of the effect that temperature has on the porosity of marble could be used as a guide for election of suitable stone material for exterior use as well as an indication for appropriate conditioning of the samples before physical properties testing.

  17. The impact of antibiotic impregnated PICC lines on the incidence of bacteremia in a regional burn center.

    PubMed

    Armstrong, Shannon D; Thomas, Wendy; Neaman, Keith C; Ford, Ronald D; Paulson, Jayne

    2013-06-01

    Peripherally inserted central catheters (PICCs) have been used increasingly in burn patients who often have decreased intravascular volumes and obtaining intravascular access for resuscitative efforts can be difficult. A potentially serious complication is bloodstream infection. The purpose of our study is to examine the impact of antibiotic impregnated PICC lines on the bacteremia rate in a regional burn center. Consecutive patients admitted to the burn unit and receiving an antibiotic impregnated PICC line were included in the study. Baseline demographics and bacteremia rate was recorded. A retrospective chart review was then undertaken of the 30 consecutive patients admitted to the burn unit and receiving a PICC line prior to the study period. Nineteen patients were enrolled over the two-year period. The bacteremia rate for the study group was 0% compared to the 50% bacteremia rate of the retrospective control group (p=<0.001). Antibiotic impregnated PICC lines decrease the bacteremia rate in our burn population. This has potential benefits for both patient morbidity and mortality as well as potential cost savings for the healthcare system. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  18. Improving the delivery and efficiency of fungus-impregnated cloths for control of adult Aedes aegypti using a synthetic attractive lure.

    PubMed

    Paula, Adriano R; Silva, Leila E I; Ribeiro, Anderson; Butt, Tariq M; Silva, Carlos P; Samuels, Richard I

    2018-05-04

    Entomopathogenic fungi are highly promising agents for controlling Aedes aegypti mosquitoes. Deploying fungus-impregnated black cloths in PET traps efficiently reduced Ae. aegypti female survival rates under intra-domicile conditions. With the aim of further increasing the effectiveness of the traps, the addition of attractive lures to fungus-impregnated traps was evaluated. Black cloths were suspended inside 2 l plastic bottles called "PET traps". These traps were placed in rooms simulating human residences. The first experiments evaluated the attraction of mosquitoes to PET traps with black cloths covered in adhesive film with and without synthetic lures (AtrAedes™). Traps were left in the test rooms for either 24 or 48 h. The attractiveness of the lures over time was also evaluated. The efficiency of PET traps with fungus-impregnated black cloths associated with lures was compared to that of traps without lures. The highest percentage of captured mosquitoes (31 and 66%) were observed in PET traps with black cloths covered in adhesive film + attractive lure maintained in test rooms for 24 h and 48 h, respectively. Black cloths covered in adhesive film captured 17 or 36% of the mosquitoes at 24 h and 48 h, respectively. The attractiveness of the lures fell gradually over time, capturing 37% after 5 days on the bench and 22% of the mosquitoes after 30 days exposure to ambient conditions. Associating attractive synthetic lures with black cloths impregnated with M. anisopliae placed in test rooms for 120 h reduced mean survival to 32%, whilst black cloths impregnated with M. anisopliae without lures resulted in a 48% survival rate. Using Beauveria bassiana in the traps resulted in a 52% reduction in mosquito survival, whilst combining Beauveria and AtrAedes resulted in a 36% survival rate. PET traps impregnated with fungus + AtrAedes resulted in similar reductions in survival when left in the rooms for 24, 48, 72 or 120 h. AtrAedes increased attractiveness of PET

  19. Evaluation of grit-impregnated, epoxy coated prestressing strand on South Slough (Charleston) Bridge : construction report.

    DOT National Transportation Integrated Search

    1991-12-01

    Construction of the South Slough (Charleston) Bridge was completed in March of 1991. The structure was constructed with prestressed concrete beams using grit-impregnated, epoxy coated prestressing strands. While epoxy coated reinforcing steel has bee...

  20. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    NASA Astrophysics Data System (ADS)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  1. Removal of arsenic from toxic ash after combustion of impregnated wood

    NASA Astrophysics Data System (ADS)

    Ottosen, L. M.; Pedersen, A. J.; Kristensen, I. V.; Ribeiro, A. B.

    2003-05-01

    ln the next ten years the amounts of waste wood impregnated with Cu, Cr and As (CCA) is expected to increase dramatically. Mixed with municipal solid waste for incineration the wood constitutes a problem because As emission is not hindered through common flue gas treatment. Furthermore the ashes will contain higher concentrations of Cu, Cr and As. In different countries initiatives has been taken or are implemented to sort the impregnated wood from other waste and handle the wood separately. This handling can involve combustion in special plants. This paper deals with electrodialytic treatment of ash from combustion of CCA treated wood. The total concentrations in the ash were very high: 69gCu/kg, 62gCr/kg and 35gAs/kg. A SEM/EDX analysis showed that Cr was mainly build into the matrix structure of the ash. Cu, too, but some Cu was also precipitated on the surface of the particles. As, on the other hand, was only found associated with Ca and thus probably in a soluble form. As is the main problem of the ash due to the high toxicity and mobility and thus the treatment aims at removing this element. It was shown that during 5 days of electrodialytic treatment 92% As could be removed.

  2. Life in the Slow, Dark, Salty, Cold and Oxygen-Depleted Lane - Insights on Habitability from Lake Vida

    NASA Astrophysics Data System (ADS)

    Murray, A.

    2014-04-01

    Ice-entrained Lake Vida brine has provided an accessible natural habitat to study life in the slow lane - where cellular growth is limited, but not extinguished. We measured in situ stable isotopic signatures of N2O, SO42-, H2, conducted experiments utilizing stable isotope geochemical tracers to detect microbial transformations and employed radioisotopically-labeled amino acid precursors to detect cellular macromolecule biosynthesis. The results indicated a dominance of abiotic processes in the brine - yet support metabolically active life through detection of nominal rates of protein biosynthesis. At the same time, the brine has posed a challenge to our understanding of ecosystem energetics. Data collected thus far suggests that the brine is isolated from surfical processes and receives no new mass or energy from above. Calculations have estimated carbon remineralization rates, which indicate that resources should be depleted to the level of small molecules perhaps supporting a methanogenic ecosystem given the amount of time since encapsulation at the temperatures recorded - yet the brine is resource-rich harboring abundant bacteria and large molecules, in addition to a complex mixture of both reduced and oxidized compounds. This has motivated explorations into alternative sources of energy such as hydrogen - which was detected at levels 10 micromolar - that could be generated by brine-rock interactions and supply endogenous energy to this closed ecosystem. This cold, salty, anoxic and organically rich brine, provides insight into a new category of habitable earth ecosystems that may also give us food for thought when considering habitability of giant planet icy worlds or of icy exoplanets. However, the methods we use, and the framework of scientific inquiry applied, are limited by perception and familiarity of rates of change that are important in human time scales. The Vida-icy brine ecosystem provides a model for expansion of our understanding of habitability

  3. Mesoporous carbon synthesized from different pore sizes of SBA-15 for high density electrode supercapacitor application

    NASA Astrophysics Data System (ADS)

    Jamil, Farinaa Md; Sulaiman, Mohd Ali; Ibrahim, Suhaina Mohd; Masrom, Abdul Kadir; Yahya, Muhd Zu Azhan

    2017-12-01

    A series of mesoporous carbon sample was synthesized using silica template, SBA-15 with two different pore sizes. Impregnation method was applied using glucose as a precursor for converting it into carbon. An appropriate carbonization and silica removal process were carried out to produce a series of mesoporous carbon with different pore sizes and surface areas. Mesoporous carbon sample was then assembled as electrode and its performance was tested using cyclic voltammetry and impedance spectroscopy to study the effect of ion transportation into several pore sizes on electric double layer capacitor (EDLC) system. 6M KOH was used as electrolyte at various scan rates of 10, 20, 30 and 50 mVs-1. The results showed that the pore size of carbon increased as the pore size of template increased and the specific capacitance improved as the increasing of the pore size of carbon.

  4. Phosphate adsorption on aluminum-impregnated mesoporous silicates : surface structure and behavior of adsorbents

    Treesearch

    Eun Woo Shin; James S. Han; Min Jang; Soo-Hong Min; Jae Kwang Park; Roger M. Rowell

    2004-01-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface...

  5. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    NASA Astrophysics Data System (ADS)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  6. Evaluation of grit-impregnated, epoxy coated prestressing strand on South Slough (Charleston) Bridge : final report.

    DOT National Transportation Integrated Search

    1995-04-01

    The use of grit-impregnated, epoxy coated prestressing strand is a relatively new design strategy being used for corrosion abatement on new concrete structures. This application was chosen for the South Slough (Charleston) structure because it subjec...

  7. The effect of barium on perceptions of taste intensity and palatability.

    PubMed

    Dietsch, Angela M; Solomon, Nancy Pearl; Steele, Catriona M; Pelletier, Cathy A

    2014-02-01

    Barium may affect the perception of taste intensity and palatability. Such differences are important considerations in the selection of dysphagia assessment strategies and interpretation of results. Eighty healthy women grouped by age (younger, older) and genetic taste status (supertaster, nontaster) rated intensity and palatability for seven tastants prepared in deionized water with and without 40 % w/v barium: noncarbonated and carbonated water, diluted ethanol, and high concentrations of citric acid (sour), sodium chloride (salty), caffeine (bitter), and sucrose (sweet). Mixed-model analyses explored the effects of barium, taster status, and age on perceived taste intensity and acceptability of stimuli. Barium was associated with lower taste intensity ratings for sweet, salty, and bitter tastants, higher taste intensity in carbonated water, and lower palatability in water, sweet, sour, and carbonated water. Older subjects reported lower palatability (all barium samples, sour) and higher taste intensity scores (ethanol, sweet, sour) compared to younger subjects. Supertasters reported higher taste intensity (ethanol, sweet, sour, salty, bitter) and lower palatability (ethanol, salty, bitter) than nontasters. Refusal rates were highest for younger subjects and supertasters, and for barium (regardless of tastant), bitter, and ethanol. Barium suppressed the perceived intensity of some tastes and reduced palatability. These effects are more pronounced in older subjects and supertasters, but younger supertasters are least likely to tolerate trials of barium and strong tastant solutions.

  8. Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops

    NASA Astrophysics Data System (ADS)

    Marin, Alvaro; Karpitschka, Stefan; Rossi, Massimiliano; Kaehler, Christian J.; Noguera-Marin, Diego; Rodriguez-Valverde, Miguel A.

    2017-11-01

    Salts can be found in different forms in almost any evaporating droplet in nature, our homes and in laboratories. The transport processes in such apparently simple systems differ strongly from `sweet' evaporating droplets since the liquid flows in the inverse direction due to Marangoni stresses at the surface. Such an effect has crucial consequences to salt crystallization processes and to the evaporation itself. In this work we show measurements that not only confirm clearly the details of the inverted flow patterns, but also permit us to calculate the surface tension gradients responsible for the reversal. Such a reversal does not prevent the coffee-stain effect; on the contrary, particles accumulate and get trapped at the liquid-air interface driven by the surface flow. In order to prove this, we show measurements of the full three-dimensional flow inside the evaporating salty droplet, confocal imaging is used to quantify the growth of the particle deposits for different salt concentrations, and we compare the experimental results with numerical simulations that capture the solvent evaporation, the evaporation-induced liquid flow and the quasi-equilibrium liquid-gas interface.

  9. Impact of Prior Consumption on Sour, Sweet, Salty, and Bitter Tastes.

    PubMed

    Christina, Josephine; Palma-Salgado, Sindy; Clark, Diana; Kahraman, Ozan; Lee, Soo-Yeun

    2016-02-01

    Food sensory tests generally require panelists to abstain from food or beverage consumption 30 min to an hour before a tasting session. However, investigators do not have a complete control over panelists' intentional or unintentional consumption prior to a tasting session. Currently, it is unclear how prior consumption impacts the results of the tasting session. The aim of this study was to determine the effects of temporary and lingering mouth irritation caused by the consumption of coffee, orange juice, and gum within 1, 15, or 30 min prior to the tasting session on the perception of 4 basic tastes: sweet, salty, sour, and bitter. Fifty-two panelists were served a beverage (orange juice, coffee, and water) or were asked to chew a piece of gum, and then, remained in the waiting room for 1, 15, or 30 min. They were then asked to report taste intensities using 15-cm unstructured line scales. Mean intensities of all tastes were not significantly different when orange juice was a primer at 1, 15, and 30 min when compared to water. Mean intensities of bitter were significantly lower when coffee was a primer at 1, 15, and 30 min than when water was a primer. Mean intensities of sweet were significantly lower when gum was a primer at 1 and 15 min than when water was a primer. The findings showed that it is necessary for 30 min or more waiting period of no food or beverage consumption prior to sensory testing. © 2015 Institute of Food Technologists®

  10. Highly regenerable carbon-Fe3O4 core-satellite nanospheres as oxygen reduction electrocatalyst and magnetic adsorbent

    NASA Astrophysics Data System (ADS)

    Zhou, Wenqiang; Liu, Minmin; Cai, Chao; Zhou, Haijun; Liu, Rui

    2017-02-01

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe3O4 nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO3)3, carbon-Fe3O4 core-satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe3O4 and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe3O4 nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B from an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity.

  11. The unusual electrochemical characteristics of a novel three-dimensional ordered bicontinuous mesoporous carbon

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Liu, Xiaoying; Zhao, Dongyuan; Jiang, Zhiyu

    2004-05-01

    The electrochemical properties of the ordered three-dimensional (3D) mesoporous carbon, synthesized by using mesoporous silica (FDU-5) as a hard template from an impregnation procedure, has been firstly explored as an anode material for lithium-ion batteries. The material presents uniform pore size of 7.4 nm, BET surface area of 750 m 2/g. As a novel nano-material C-FDU-5 shows almost constant resistance and Li + diffusion coefficient when the potential is lower than the critical potential. The material also presents a reversible capacity higher than that of carbon nanotubes, and can be charge/discharged at the large current rate.

  12. Significant solubility of carbon dioxide in Soluplus® facilitates impregnation of ibuprofen using supercritical fluid technology.

    PubMed

    Obaidat, Rana; Alnaief, Mohammed; Jaeger, Philip

    2017-04-13

    Treatment of Soluplus ® with supercritical carbon dioxide allows promising applications in preparing dispersions of amorphous solids. Several characterization techniques were employed to reveal this effect, including CO 2 gas sorption under high pressure and physicochemical characterizations techniques. A gravimetric method was used to determine the solubility of carbon dioxide in the polymer at elevated pressure. The following physicochemical characterizations were used: thermal analysis, X-ray diffraction, Fourier transform, infrared spectroscopy and scanning electron microscopy. Drug loading of the polymer with ibuprofen as a model drug was also investigated. The proposed treatment with supercritical carbon dioxide allows to prepare solid solutions of Soluplus ® in less than two hours at temperatures that do not exceed 45 °C, which is a great advantage to be used for thermolabile drugs. The advantages of using this technology for Soluplus ® formulations lies behind the high sorption capability of carbon dioxide inside the polymer. This will ensure rapid diffusion of the dissolved/dispersed drug inside the polymer under process conditions and rapid precipitation of the drug in the amorphous form during depressurization accompanied by foaming of the polymer.

  13. Decomposition of adsorbed VX on activated carbons studied by {sup 31}P MAS NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishay Columbus; Daniel Waysbort; Liora Shmueli

    2006-06-15

    The fate of the persistent OP nerve agent O-ethyl S-(2-(diisopropylamino)ethyl) methylphosphonothioate (VX) on granular activated carbons that are used for gas filtration was studied by means of 31P magic angle spinning (MAS) NMR spectroscopy. Four types of activated carbon were used, including coal-based BPL. VX as vapor or liquid was adsorbed on carbon granules, and MAS NMR spectra were recorded periodically. The results show that at least 90% of the adsorbed VX decomposes within 20 days or less to the nontoxic ethyl methylphosphonic acid (EMPA) and bis(S-2-diisopropylaminoethane) ((DES){sub 2}). Decomposition occurred irrespective of the phase from which VX was loaded,more » the presence of metal impregnation on the carbon surface, and the water content of the carbon. Theoretical and practical aspects of the degradation are discussed. 17 refs., 6 figs., 3 tabs.« less

  14. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts.

    PubMed

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-04-14

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.

  15. Carbon/ λ-MnO 2 composites for supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Malak-Polaczyk, A.; Matei-Ghimbeu, C.; Vix-Guterl, C.; Frackowiak, E.

    2010-04-01

    In the present work a composite of carbon with λ-MnO 2 have been synthesized by a simple two-step route. In the first step, to obtain LiMn 2O 4/carbon material, mesoporous activated carbon was impregnated with the solution of precursor metal salts and heated subsequently. As-prepared materials were acid treated which resulted in the formation of λ-MnO 2/carbon. Physical properties, structure and specific surface area of electrode materials were studied by TEM, X-ray diffraction and nitrogen sorption measurements. Voltammetry cycling, galvanostatic charge/discharge and impedance spectroscopy measurements performed in two- and three-electrode cells have been applied in order to measure electrochemical parameters. TEM images confirmed well dispersed λ-MnO 2 particles on the surface of carbon material. The carbon in the composite plays an important role as the surface area enhancing component and a support of pseudocapacitive material. Furthermore, the through-connected porosity serves as a continuous pathway for electrolyte transport. A synergetic effect of the porous carbon framework and of the redox properties of the λ-MnO 2 is at the origin of improvement of specific capacitance values which has been observed for composites after delithiation.

  16. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  17. Enhanced adsorption of congo red from aqueous solutions by chitosan hydrogel beads impregnated with cetyl trimethyl ammonium bromide.

    PubMed

    Chatterjee, Sudipta; Lee, Dae S; Lee, Min W; Woo, Seung H

    2009-06-01

    The adsorption of congo red (CR) onto chitosan (CS) beads impregnated by a cationic surfactant (CTAB, cetyl trimethyl ammonium bromide) was investigated. Chitosan beads impregnated at a ratio of 1/20 of CTAB to CS (0.05% of CTAB and 1% of CS) increased the CR adsorption capacity by 2.2 times from 162.3 mg/g (0% CTAB) to 352.5 mg/g (0.05% CTAB). The CR adsorption decreased with an increase in pH of the CR solution from 4.0 to 9.0. The Sips isotherm model showed a good fit with the equilibrium experimental data and the values of the heterogeneity factor (n) indicated heterogeneous adsorption of CR onto CS/CTAB beads, as well as CS beads. The kinetic data showed better fit to the pseudo second-order rate model than to the pseudo first-order rate model. The impregnation of CS beads by cationic surfactants showed the highest adsorption capacities of CR compared to any other adsorbents and would be a good method to increase adsorption efficiency for the removal of anionic dyes in a wastewater treatment process.

  18. Removal of organic dyes using Cr-containing activated carbon prepared from leather waste.

    PubMed

    Oliveira, Luiz C A; Coura, Camila Van Zanten; Guimarães, Iara R; Gonçalves, Maraisa

    2011-09-15

    In this work, hydrogen peroxide decomposition and oxidation of organics in aqueous medium were studied in the presence of activated carbon prepared from wet blue leather waste. The wet blue leather waste, after controlled pyrolysis under CO(2) flow, was transformed into chromium-containing activated carbons. The carbon with Cr showed high microporous surface area (up to 889 m(2)g(-1)). Moreover, the obtained carbon was impregnated with nanoparticles of chromium oxide from the wet blue leather. The chromium oxide was nanodispersed on the activated carbon, and the particle size increased with the activation time. It is proposed that these chromium species on the carbon can activate H(2)O(2) to generate HO radicals, which can lead to two competitive reactions, i.e. the hydrogen peroxide decomposition or the oxidation of organics in water. In fact, in this work we observed that activated carbon obtained from leather waste presented high removal of methylene blue dye combining the adsorption and oxidation processes. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOEpatents

    Abrevaya, H.; Targos, W.M.

    1987-12-22

    A catalyst composition is described for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  20. Microemulsion impregnated catalyst composite and use thereof in a synthesis gas conversion process

    DOEpatents

    Abrevaya, Hayim; Targos, William M.

    1987-01-01

    A catalyst composition for synthesis gas conversion comprising a ruthenium metal component deposited on a support carrier wherein the average metal particle size is less than about 100 A. The method of manufacture of the composition via a reverse micelle impregnation technique and the use of the composition in a Fischer-Tropsch conversion process is also disclosed.

  1. Optimization of Vacuum Impregnation with Calcium Lactate of Minimally Processed Melon and Shelf-Life Study in Real Storage Conditions.

    PubMed

    Tappi, Silvia; Tylewicz, Urszula; Romani, Santina; Siroli, Lorenzo; Patrignani, Francesca; Dalla Rosa, Marco; Rocculi, Pietro

    2016-10-05

    Vacuum impregnation (VI) is a processing operation that permits the impregnation of fruit and vegetable porous tissues with a fast and more homogeneous penetration of active compounds compared to the classical diffusion processes. The objective of this research was to investigate the impact on VI treatment with the addition of calcium lactate on qualitative parameters of minimally processed melon during storage. For this aim, this work was divided in 2 parts. Initially, the optimization of process parameters was carried out in order to choose the optimal VI conditions for improving texture characteristics of minimally processed melon that were then used to impregnate melons for a shelf-life study in real storage conditions. On the basis of a 2 3 factorial design, the effect of Calcium lactate (CaLac) concentration between 0% and 5% and of minimum pressure (P) between 20 and 60 MPa were evaluated on color and texture. Processing parameters corresponding to 5% CaLac concentration and 60 MPa of minimum pressure were chosen for the storage study, during which the modifications of main qualitative parameters were evaluated. Despite of the high variability of the raw material, results showed that VI allowed a better maintenance of texture during storage. Nevertheless, other quality traits were negatively affected by the application of vacuum. Impregnated products showed a darker and more translucent appearance on the account of the alteration of the structural properties. Moreover microbial shelf-life was reduced to 4 d compared to the 7 obtained for control and dipped samples. © 2016 Institute of Food Technologists®.

  2. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes.

    PubMed

    Cai, Haohao; Bao, Feng; Gao, Jie; Chen, Tao; Wang, Si; Ma, Rui

    2015-01-01

    New nano-sized carbon dioxide (CO2) adsorbents based on Halloysite nanotubes impregnated with polyethylenimine (PEI) were designed and synthesized, which were excellent adsorbents for the capture of CO2 at room temperature and had relatively high CO2 adsorption capacity. The prepared adsorbents were characterized by various techniques such as Fourier transform infrared spectrometry, gel permeation chromatography, dynamic light scattering, thermogravimetry, thermogravimetry-Fourier transform-infrared spectrometry, scanning electron microscopy and transmission electron microscopy. The adsorption characteristics and capacity were studied at room temperature, the highest CO2 adsorption capacity of 156.6 mg/g-PEI was obtained and the optimal adsorption capacity can reach a maximum value of 54.8 mg/g-adsorbent. The experiment indicated that this kind of adsorbent has a high stability at 80°C and PEI-impregnated adsorbents showed good reversibility and stability during cyclic adsorption-regeneration tests.

  3. Production of carbon nanotubes: Chemical vapor deposition synthesis from liquefied petroleum gas over Fe-Co-Mo tri-metallic catalyst supported on MgO

    NASA Astrophysics Data System (ADS)

    Setyopratomo, P.; Wulan, Praswasti P. D. K.; Sudibandriyo, M.

    2016-06-01

    Carbon nanotubes were produced by chemical vapor deposition method to meet the specifications for hydrogen storage. So far, the various catalyst had been studied outlining their activities, performances, and efficiencies. In this work, tri-metallic catalyst consist of Fe-Co-Mo supported on MgO was used. The catalyst was prepared by wet-impregnation method. Liquefied Petroleum Gas (LPG) was used as carbon source. The synthesis was conducted in atmospheric fixed bed reactor at reaction temperature range 750 - 850 °C for 30 minutes. The impregnation method applied in this study successfully deposed metal component on the MgO support surface. It found that the deposited metal components might partially replace Mg(OH)2 or MgO molecules in their crystal lattice. Compare to the original MgO powder; it was significant increases in pore volume and surface area has occurred during catalyst preparation stages. The size of obtained carbon nanotubes is ranging from about 10.83 nm OD/4.09 nm ID up to 21.84 nm OD/6.51 nm ID, which means that multiwall carbon nanotubes were formed during the synthesis. Yield as much as 2.35 g.CNT/g.catalyst was obtained during 30 minutes synthesis and correspond to carbon nanotubes growth rate of 0.2 μm/min. The BET surface area of the obtained carbon nanotubes is 181.13 m2/g and around 50 % of which is contributed by mesopores. Micropore with half pore width less than 1 nm contribute about 10% volume of total micro and mesopores volume of the carbon nanotubes. The existence of these micropores is very important to increase the hydrogen storage capacity of the carbon nanotubes.

  4. Reduction of health care-associated infection indicators by copper oxide-impregnated textiles: Crossover, double-blind controlled study in chronic ventilator-dependent patients.

    PubMed

    Marcus, Esther-Lee; Yosef, Hana; Borkow, Gadi; Caine, Yehezkel; Sasson, Ady; Moses, Allon E

    2017-04-01

    Copper oxide has potent wide-spectrum biocidal properties. The purpose of this study is to determine if replacing hospital textiles with copper oxide-impregnated textiles reduces the following health care-associated infection (HAI) indicators: antibiotic treatment initiation events (ATIEs), fever days, and antibiotic usage in hospitalized chronic ventilator-dependent patients. A 7-month, crossover, double-blind controlled trial including all patients in 2 ventilator-dependent wards in a long-term care hospital. For 3 months (period 1), one ward received copper oxide-impregnated textiles and the other received untreated textiles. After a 1-month washout period of using regular textiles, for 3 months (period 2) the ward that received the treated textiles received the control textiles and vice versa. The personnel were blinded to which were treated or control textiles. There were no differences in infection control measures during the study. There were reductions of 29.3% (P = .002), 55.5% (P < .0001), 23.0% (P < .0001), and 27.5% (P < .0001) in the ATIEs, fever days (>37.6°C), days of antibiotic treatment, and antibiotic defined daily dose per 1,000 hospitalization days, respectively, when using the copper oxide-impregnated textiles. Use of copper oxide-impregnated biocidal textiles in a long-term care ward of ventilator-dependent patients was associated with a significant reduction of HAI indicators and antibiotic utilization. Using copper oxide-impregnated biocidal textiles may be an important measure aimed at reducing HAIs in long-term care medical settings. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  5. Enhanced encapsulation of metoprolol tartrate with carbon nanotubes as adsorbent

    NASA Astrophysics Data System (ADS)

    Garala, Kevin; Patel, Jaydeep; Patel, Anjali; Dharamsi, Abhay

    2011-12-01

    A highly water-soluble antihypertensive drug, metoprolol tartrate (MT), was selected as a model drug for preparation of multi-walled carbon nanotubes (MWCNTs)-impregnated ethyl cellulose (EC) microspheres. The present investigation was aimed to increase encapsulation efficiency of MT with excellent adsorbent properties of MWCNTs. The unique surface area, stiffness, strength and resilience of MWCNTs have drawn much anticipation as carrier for highly water-soluble drugs. Carbon nanotubes drug adsorbate (MWCNTs:MT)-loaded EC microspheres were further optimized by the central composite design of the experiment. The effects of independent variables (MWCNTs:MT and EC:adsorbate) were evaluated on responses like entrapment efficiency (EE) and t 50 (time required for 50% drug release). The optimized batch was compared with drug alone EC microspheres. The results revealed high degree of improvement in encapsulation efficiency for MWCNTs:MT-loaded EC microspheres. In vitro drug release study exhibited complete release form drug alone microspheres within 15 h, while by the same time only 50-60% drug was released for MWCNTs-impregnated EC microspheres. The optimized batch was further characterized by various instrumental analyses such as scanning electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The results endorse encapsulation of MWCNTs:MT adsorbate inside the matrix of EC microspheres, which might have resulted in enhanced encapsulation and sustained effect of MT. Hence, MWCNTs can be utilized as novel carriers for extended drug release and enhanced encapsulation of highly water-soluble drug, MT.

  6. SILVER IMPREGNATION OF ULTRATHIN SECTIONS FOR ELECTRON MICROSCOPY

    PubMed Central

    Marinozzi, Vittorio

    1961-01-01

    A new procedure is described for silver impregnation of thin sections for electron microscopy. Sections of various tissues, fixed in OsO4 and embedded in methacrylate, were treated with an ammoniacal silver solution, directly or after oxidation with periodic acid or hydrogen peroxide. After OsO4 fixation all cellular membranous systems exhibit a primary argentaffinity probably due to the reduction of ammoniacal silver solution by the reduced osmium bound to unsaturated lipids. Bleaching the sections with hydrogen peroxide removes the argentaffinity of protoplasmic structures. Treatment of the sections with periodic acid results in decreased argentaffinity of protoplasmic components while the argentaffinity of metaplasmic structures is greatly enhanced. The latter procedure appears particularly useful for enhancing the contrast of basement membranes. PMID:13766855

  7. Mesoporous carbon spheres with controlled porosity for high-performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dexian; Fu, Aiping; Li, Hongliang; Wang, Yiqian; Guo, Peizhi; Liu, Jingquan; Zhao, Xiu Song

    2015-07-01

    Mesoporous carbon (MC) spheres with hierarchical pores, controlled pore volume and high specific surface areas have been prepared by a mass-producible spray drying assisted template method using sodium alginate as carbon precursor and commercial colloidal silica particles as hard template. The resulting MC spheres, possessing hierarchical pores in the range of 3-30 nm, are employed as conductive matrices for the preparation of cathode materials for lithium-sulfur batteries. A high pressure induced one-step impregnation of elemental sulfur into the pore of the MC spheres has been exploited. The electrochemical performances of sulfur-impregnated MC spheres (S-MC) derived from MC spheres with different pore volume and specific surface area but with the same sulfur loading ratio of 60 wt% (S-MC-X-60) have been investigated in details. The S-MC-4-60 composite cathode material displayed a high initial discharge capacity of 1388 mAhg-1 and a good cycling stability of 857 mAhg-1 after 100 cycles at 0.2C, and shows also excellent rate capability of 864 mAhg-1 at 2C. More importantly, the sulfur loading content in MC-4 spheres can reach as high as 80%, and it still can deliver a capacity of 569 mAhg-1 after 100 cycles at 0.2C.

  8. Liquid crystal polyester-carbon fiber composites

    NASA Technical Reports Server (NTRS)

    Chung, T. S.

    1984-01-01

    Liquid crystal polymers (LCP) have been developed as a thermoplastic matrix for high performance composites. A successful melt impregnation method has been developed which results in the production of continuous carbon fiber (CF) reinforced LCP prepreg tape. Subsequent layup and molding of prepreg into laminates has yielded composites of good quality. Tensile and flexural properties of LCP/CF composites are comparable to those of epoxy/CF composites. The LCP/CF composites have better impact resistance than the latter, although epoxy/CF composites possess superior compression and shear strength. The LCP/CF composites have good property retention until 200 F (67 % of room temperature value). Above 200 F, mechanical properties decrease significantly. Experimental results indicate that the poor compression and shear strength may be due to the poor interfacial adhesion between the matrix and carbon fiber as adequate toughness of the LCP matrix. Low mechanical property retention at high temperatures may be attributable to the low beta-transition temperature (around 80 C) of the LCP matrix material.

  9. Solar-Driven Hydrogen Peroxide Production Using Polymer-Supported Carbon Dots as Heterogeneous Catalyst

    NASA Astrophysics Data System (ADS)

    Gogoi, Satyabrat; Karak, Niranjan

    2017-10-01

    Safe, sustainable, and green production of hydrogen peroxide is an exciting proposition due to the role of hydrogen peroxide as a green oxidant and energy carrier for fuel cells. The current work reports the development of carbon dot-impregnated waterborne hyperbranched polyurethane as a heterogeneous photo-catalyst for solar-driven production of hydrogen peroxide. The results reveal that the carbon dots possess a suitable band-gap of 2.98 eV, which facilitates effective splitting of both water and ethanol under solar irradiation. Inclusion of the carbon dots within the eco-friendly polymeric material ensures their catalytic activity and also provides a facile route for easy catalyst separation, especially from a solubilizing medium. The overall process was performed in accordance with the principles of green chemistry using bio-based precursors and aqueous medium. This work highlights the potential of carbon dots as an effective photo-catalyst.

  10. Hydrogen production using thermocatalytic decomposition of methane on Ni30/activated carbon and Ni30/carbon black.

    PubMed

    Srilatha, K; Viditha, V; Srinivasulu, D; Ramakrishna, S U B; Himabindu, V

    2016-05-01

    Hydrogen is an energy carrier of the future need. It could be produced from different sources and used for power generation or as a transport fuel which mainly in association with fuel cells. The primary challenge for hydrogen production is reducing the cost of production technologies to make the resulting hydrogen cost competitive with conventional fuels. Thermocatalytic decomposition (TCD) of methane is one of the most advantageous processes, which will meet the future demand, hence an attractive route for COx free environment. The present study deals with the production of hydrogen with 30 wt% of Ni impregnated in commercially available activated carbon and carbon black catalysts (samples coded as Ni30/AC and Ni30/CB, respectively). These combined catalysts were not attempted by previous studies. Pure form of hydrogen is produced at 850 °C and volume hourly space velocity (VHSV) of 1.62 L/h g on the activity of both the catalysts. The analysis (X-ray diffraction (XRD)) of the catalysts reveals moderately crystalline peaks of Ni, which might be responsible for the increase in catalytic life along with formation of carbon fibers. The activity of carbon black is sustainable for a longer time compared to that of activated carbon which has been confirmed by life time studies (850 °C and 54 sccm of methane).

  11. Modeling of a self-healing process in blast furnace slag cement exposed to accelerated carbonation

    NASA Astrophysics Data System (ADS)

    Zemskov, Serguey V.; Ahmad, Bilal; Copuroglu, Oguzhan; Vermolen, Fred J.

    2013-02-01

    In the current research, a mathematical model for the post-damage improvement of the carbonated blast furnace slag cement (BFSC) exposed to accelerated carbonation is constructed. The study is embedded within the framework of investigating the effect of using lightweight expanded clay aggregate, which is incorporated into the impregnation of the sodium mono-fluorophosphate (Na-MFP) solution. The model of the self-healing process is built under the assumption that the position of the carbonation front changes in time where the rate of diffusion of Na-MFP into the carbonated cement matrix and the reaction rates of the free phosphate and fluorophosphate with the components of the cement are comparable to the speed of the carbonation front under accelerated carbonation conditions. The model is based on an initial-boundary value problem for a system of partial differential equations which is solved using a Galerkin finite element method. The results obtained are discussed and generalized to a three-dimensional case.

  12. A new use for long-term frozen brain tissue: Golgi impregnation

    PubMed Central

    Melendez-Ferro, Miguel; Perez-Costas, Emma; Roberts, Rosalinda C.

    2009-01-01

    The study of dendritic spine shape and number has become a standard in the analysis of synaptic transmission anomalies since a considerable number of neuropsychiatric and neurological diseases have their foundation in alterations in these structures. One of the best ways to study possible alterations of dendritic spines is the use of Golgi impregnation. Although usually the Golgi method implies the use of fresh or fixed tissue, here we report the use of Golgi-Cox for the staining of human and animal brain tissue kept frozen for long periods of time. We successfully applied the Golgi-Cox method to human brain tissue stored for up to 15 years in a freezer. The technique produced reliable and reproducible impregnation of dendrites and dendritic spines in different cortical areas. We also applied the same technique to rat brain frozen for up to one year, obtaining the same satisfactory results. The fact that Golgi-Cox can be successfully applied to this type of tissue adds a new value for hundreds of frozen human or animal brains kept in the freezers of the laboratories, that otherwise would not be useful for anything else. Researchers other than neuroanatomists, i.e. in fields such as biochemistry and molecular biology can also benefit from a simple and reliable technique that can be applied to tissue left from their primary experiments. PMID:18789970

  13. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes

    NASA Astrophysics Data System (ADS)

    Meng, Xie; Liu, Xuejiao; Han, Da; Wu, Hao; Li, Junliang; Zhan, Zhongliang

    2014-04-01

    Here we report nominally symmetrical solid oxide fuel cells that feature thin La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM) electrolytes and impregnated SrFe0.75Mo0.25O3-δ (SFMO)-LSGM composite electrodes. Operation on hydrogen fuels and air oxidants can produce maximum power densities of 0.39 W cm-2 at 650 °C and 0.97 W cm-2 at 800 °C. Impedance measurements indicate that the anode and the cathode polarizations are 0.22 and 0.04 Ω cm2 at 800 °C, respectively. Hydrogen partial pressure and temperature dependence of impedance data in humidified hydrogen shows that hydrogen oxidation kinetics is largely determined by hydrogen adsorption on the SFMO catalysts at high temperatures and charge transfer reactions along the SFMO|LSGM interfaces at low temperatures. Carbon tolerance of the present fuel cells is also examined in iso-octane fuels balanced by nitrogen at 800 °C that yields stable maximum power densities of 0.39 W cm-2.

  14. Influence of surface properties on the mechanism of H2S removal by alkaline activated carbons.

    PubMed

    Yan, Rong; Chin, Terence; Ng, Yuen Ling; Duan, Huiqi; Liang, David Tee; Tay, Joo Hwa

    2004-01-01

    sulfuric acid as the predominant products. Although both carbons are coal-based and of KOH impregnated type, performances of different carbons differ significantly. A correlation is well established to link the reaction extent with various surface properties. In summary, not only the homogeneous alkali impregnation and physical porosity but also the carbon surface chemistry are significant factors influencing the performances of alkaline activated carbons as H2S adsorbents.

  15. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconia-Impregnated Halloysite Nanotubes with Different Loadings.

    PubMed

    Kim, Suhyun; Kim, Moon Il; Shon, Minyoung; Seo, Bongkuk; Lim, Choongsun

    2018-09-01

    Epoxy resins are widely used in various industrial fields due to their low cost, good workability, heat resistance, and good mechanical strength. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method. The HNTs were impregnated with zirconia at different loadings using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with these fillers were investigated. The zirconia-impregnated HNTs (Zr/HNT) were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and tunneling electron microscopy (TEM). The hardening conditions of the epoxy composites were analyzed by differential scanning calorimetry (DSC). The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and micro-calorimetry and the mechanical strength of the epoxy composites (flexural strength and tensile strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy composites with Zr/HNT were improved compared to those of the epoxy composite with HNT, and also increased as the zirconia loading on HNT increased.

  16. Polymer impregnated bridge slabs : interim report, condition of slabs after three years of service life.

    DOT National Transportation Integrated Search

    1983-01-01

    The condition of six concrete bridge slabs that had been in service for three years was evaluated. The top 2 in. of the four slabs that had been impregnated to a depth of about 1 in. with a methyl methacrylate and trimethylolpropane trimethacrylate m...

  17. Synthesis and characterization of activated carbon from white lotus via single step chemical activation

    NASA Astrophysics Data System (ADS)

    Andas, Jeyashelly; Midon, Muhammad Dzulfiqar

    2017-08-01

    Highly porous activated carbon was successfully fabricated from the stalk of Nymphaea odorata via single step chemical activation. ZnCl2 was used as the chemical activating agent in the activation process. The raw material was preliminary characterized using Fourier Transform Infrared (FTIR), ultimate analysis (CHNS/O Analyzer) and Scanning Electron Microscope (SEM). The percentage yield, iodine number (IN) and the textural properties of the activated carbon were optimized under the influence of several synthesizing parameters such as impregnation ratio, activation temperature and activation time using ZnCl2. High IN (750.11 mg/g - 967.16 mg/g) was obtained from Sodium thiosulphate volumetric method and represents the porosity of the synthesized materials. Reduction in several functional groups was observed in the FTIR spectrum of the synthesized activated carbon. SEM analysis of the activated carbon verified the formation of highly porous surface compared to the raw Nymphaea odorata. This study provides a facile synthesis of activated carbon from waste natural resources at benign condition.

  18. In-Situ Crafting of ZnFe₂O₄ Nanoparticles Impregnated within Continuous Carbon Network as Advanced Anode Materials.

    PubMed

    Jiang, Beibei; Han, Cuiping; Li, Bo; He, Yanjie; Lin, Zhiqun

    2016-02-23

    The ability to create a synergistic effect of nanostructure engineering and its hybridization with conductive carbonaceous material is highly desirable for attaining high-performance lithium ion batteries (LIBs). Herein, we judiciously crafted ZnFe2O4/carbon nanocomposites composed of ZnFe2O4 nanoparticles with an average size of 16 ± 5 nm encapsulated within the continuous carbon network as anode materials for LIBs. Such intriguing nanocomposites were yielded in situ via the pyrolysis-induced carbonization of polystyrene@poly(acrylic acid) (PS@PAA) core@shell nanospheres in conjunction with the formation of ZnFe2O4 nanoparticles through the thermal decomposition of ZnFe2O4 precursors incorporated within the PS@PAA nanospheres. By systematically varying the ZnFe2O4 content in the ZnFe2O4/carbon nanocomposites, the nanocomposite containing 79.3 wt % ZnFe2O4 was found to exhibit an excellent rate performance with high capacities of 1238, 1198, 1136, 1052, 926, and 521 mAh g(-1) at specific currents of 100, 200, 500, 1000, 2000, and 5000 mA g(-1), respectively. Moreover, cycling performance of the ZnFe2O4/carbon nanocomposite with 79.3 wt % ZnFe2O4 at specific currents of 200 mA g(-1) delivered an outstanding prolonged cycling stability for several hundred cycles.

  19. Economic aspects of the use of impregnated mosquito nets for malaria control.

    PubMed Central

    Brinkmann, U.; Brinkmann, A.

    1995-01-01

    The use of pyrethroids to impregnate mosquito nets has had a good impact on the incidence of morbidity and mortality from malaria. These nets are therefore likely to be used on a large scale as an important strategy of malaria control in the future. Published information on the cost and effectiveness of mosquito nets is presented and analysed. In two examples, from Malawi and Cameroon, the per household expenditure to purchase and use impregnated mosquito nets compares favourably with the costs of malaria. Thus, we expect that the economic losses from malaria would be reduced by 37.3% over a 3-year period in Malawi. Even if the impact of malaria on productivity is not taken into account, the introduction of nets will result in gains, as shown in Cameroon; savings of 9.3% and 11.2% in two places resulted as a consequence of a diminished need for case treatment. The role of government programmes in the promotion of bednets is indirect and concerned mainly with facilitation and the dissemination of information. Much depends on the capability of the private sector and the willingness of the target population to buy the nets for a programme to be effective. Specific studies by health economists on this subject are lacking. PMID:8846491

  20. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals.

    PubMed

    Borai, E H; Harjula, R; Malinen, Leena; Paajanen, Airi

    2009-12-15

    The objective of the proposed work was focused to provide promising solid-phase materials that combine relatively inexpensive and high removal capacity of some radionuclides from low-level radioactive liquid waste (LLRLW). Four various zeolite minerals including natural clinoptilolite (NaNCl), natural chabazite (NaNCh), natural mordenite (NaNM) and synthetic mordenite (NaSM) were investigated. The effective key parameters on the sorption behavior of cesium (Cs-134) were investigated using batch equilibrium technique with respect to the waste solution pH, contacting time, potassium ion concentration, waste solution volume/sorbent weight ratio and Cs ion concentration. The obtained results revealed that natural chabazite (NaNCh) has the higher distribution coefficients and capacity towards Cs ion rather than the other investigated zeolite materials. Furthermore, novel impregnated zeolite material (ISM) was prepared by loading Calix [4] arene bis(-2,3 naphtho-crown-6) onto synthetic mordenite to combine the high removal uptake of the mordenite with the high selectivity of Calix [4] arene towards Cs radionuclide. Comparing the obtained results for both NaSM and the impregnated synthetic mordenite (ISM-25), it could be observed that the impregnation process leads to high improvement in the distribution coefficients of Cs+ ion (from 0.52 to 27.63 L/g). The final objective in all cases was aimed at determining feasible and economically reliable solution to the management of LLRLW specifically for the problems related to the low decontamination factor and the effective recovery of monovalent cesium ion.

  1. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites

    NASA Astrophysics Data System (ADS)

    Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan

    2016-12-01

    This work focused on the catalytic transformation of methane (CH4) and carbon dioxide (CO2) into syngas (mixture of CO and H2). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400-700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.

  2. Achieving Amphibious Superprotonic Conductivity in a CuI Metal-Organic Framework by Strategic Pyrazinium Salt Impregnation.

    PubMed

    Khatua, Sajal; Bar, Arun Kumar; Sheikh, Javeed Ahmad; Clearfield, Abraham; Konar, Sanjit

    2018-01-19

    Treatment of a pyrazine (pz)-impregnated Cu I metal-organic framework (MOF) ([1⊃pz]) with HCl vapor renders an interstitial pyrazinium chloride salt-hybridized MOF ([1⊃pz⋅6 HCl]) that exhibits proton conductivity over 10 -2  S cm -1 both in anhydrous and under humid conditions. Framework [1⊃pz⋅6 HCl] features the highest anhydrous proton conductivity among the lesser-known examples of MOF-based materials exhibiting proton conductivity under both anhydrous and humid conditions. Moreover, [1⊃pz] and corresponding pyrazinium sulfate- and pyrazinium phosphate-hybridized MOFs also exhibit superprotonic conductivity over 10 -2  S cm -1 under humid conditions. The impregnated pyrazinium ions play a crucial role in protonic conductivity, which occurs through a Grotthuss mechanism. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chlorinated phenol removal from aqueous media by tea (Camellia sinensis) leaf waste tailored activated carbon

    NASA Astrophysics Data System (ADS)

    Joseph, C. G.; Anisuzzaman, S. M.; Daud, W. M. A. W.; Krishnaiah, D.; Ng, K. A.

    2017-06-01

    In this study, activated carbons (ACs) wereprepared from tea leaves by using a two-stage self-generated atmosphere method. The process was done by semi-carbonizing the precursor at 300 °C for 1 h, followed by the impregnation of the resulting char at 85 °C for 4 h and finally activation at 500 °C for 2 h. The semi-carbonised samples were impregnated with different ratios of zinc chloride (ZnCl2) and their physicochemical effect was studied. The prepared ACs underwent several aspects of both, chemical and physical characterizations, such as the percentage of yield, moisture content, ash content, pH, porosity, adsorption capacity of 2,4-dichlorophenol (2,4-DCP), surface area, porosity, morphology and surface chemistry studies. It was found that sample AC2, with an impregnation ratio of 2:1 was the best AC produced in this study. The maximum Brunauer, Emmett and Teller surface area of AC2 was found to be 695 m2/g. Langmuir, Freundlich and Temkin isotherm models were used to examine the experimental isotherms while the kinetic data was analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The 2,4-DCP adsorption isotherm results complied well to the Langmuir isotherm for the equilibrium data while the adsorption kinetic data fitted well to the pseudo-second order model, indicating that chemisorption by valency forces via the sharing (covalent bond) or exchanging of electrons between the AC and the 2,4-DCP molecules were mainly responsible for the adsorption process. From these findings, it is concluded that tea leaves can be used as a low cost precursor for the removal of 2,4-DCP in aqueous medium.

  4. Shifting human salty taste preference: Potential opportunities and challenges in reducing dietary salt intake of Americans

    PubMed Central

    Bobowski, Nuala

    2015-01-01

    Dietary salt reduction of Americans has been a focus of public health initiatives for more than 40 years primarily due to the association between high salt intake and development of hypertension. Despite past efforts, salt intake of Americans has remained at levels well above dietary recommendations, likely due in part to the hedonic appeal of salty taste. As such, in 2010 the Institute of Medicine suggested a strategy of gradual salt reduction of processed foods, the primary source of Americans’ dietary salt intake, via an approach intended to minimize impact on consumer acceptability of lower-sodium foods. This brief review discusses the ontogeny and development of human salt taste preference, the role of experience in shifting salt preference, and sources of dietary salt. Our current understanding of shifting human salt taste preference is discussed within the context of potential opportunities for success in reducing dietary salt, and gaps in the research that both limit our ability to predict effectiveness of gradual salt reduction and that need be addressed before a strategy to shift salt preference can realistically be implemented. PMID:26451233

  5. Polymer-Based Nanofibers Impregnated with Drug Infused Plant Virus Particles as a Responsive Fabric for Therapeutic Delivery

    NASA Astrophysics Data System (ADS)

    Honarbakhsh, Sara

    A biodegradable and controlled drug delivery system has been developed herein composed of electrospun polymeric nanofibers impregnated with cargo loaded Red clover necrotic mosaic virus (RCNMV)---a robust plant virus---as the drug carrier nanoparticle. In this system, controlled drug release is achieved by altering the porosity of the biodegradable matrix as well as controlling the position and distribution of the cargo loaded nanocarriers in the matrix. Solution electrospinning as well as dipping method are used to create and to impregnate the matrix (the fibers of which possess uniformly distributed nano-size surface pores) with cargo loaded nanocarriers. Prior to the impregnation stage of cargo loaded nanocarriers into the matrix, compatibility of a group of candidate cargos (Ampicillin, Novanthrone, Doxorubicin and Ethidium Bromide) and RCNMV functionality with potential electrospinning solvents were investigated and a solvent with the least degradative effect was selected. In order to achieve both sustained and immediate drug release profiles, cargo loaded nanocarriers were embedded into the matrix---through co-spinning process---as well as on the surface of matrix fibers---through dipping method. SEM, TEM and Fluorescent Light Microscopy images of the medicated structures suggested that the nanocarriers were incorporated into/on the matrix. In vitro release assays were also carried out the results of which confirmed having obtained sustained release in the co-spun medicated structures where as dipped samples showed an immediate release profile.

  6. Engineering of Iron-Based Magnetic Activated Carbon Fabrics for Environmental Remediation

    PubMed Central

    Haham, Hai; Grinblat, Judith; Sougrati, Moulay-Tahar; Stievano, Lorenzo; Margel, Shlomo

    2015-01-01

    Magnetic Fe3O4, Fe and Fe/Pd nanoparticles embedded within the pores of activated carbon fabrics (ACF) were prepared by impregnation of the ACF in iron acetylacetanoate (Fe(acac)3) ethanol solution, followed by thermal decomposition of the embedded iron precursor at 200, 400 and 600 °C in an inert atmosphere. The effect of the annealing temperature on the chemical composition, shape, crystallinity, surface area, pore volume, and magnetic properties of the various functionalized ACF was elucidated. The Fe nanoparticles within the ACF were also doped with tinier Pd nanoparticles, by impregnation of the Fe/ACF in palladium acetate ethanol solution. The potential use of the functionalized ACF for removal of a model azo-dye, orange II, was demonstrated. This study illustrated the enhanced removal of the dye from an aqueous solution according to the following order: Fe/Pd/ACF > Fe/ACF > ACF. In addition, the enhanced activity of Fe3O4/ACF in the presence of increasing concentrations of H2O2 (Fenton catalysts) was also illustrated. PMID:28793459

  7. New catalyst supports prepared by surface modification of graphene- and carbon nanotube structures with nitrogen containing carbon coatings

    NASA Astrophysics Data System (ADS)

    Oh, Eun-Jin; Hempelmann, Rolf; Nica, Valentin; Radev, Ivan; Natter, Harald

    2017-02-01

    We present a new and facile method for preparation of nitrogen containing carbon coatings (NCC) on the surface of graphene- and carbon nanotubes (CNT), which has an increased electronic conductivity. The modified carbon system can be used as catalyst support for electrocatalytic applications, especially for polymer electrolyte membrane fuel cells (PEMFC). The surface modification is performed by impregnating carbon structures with a nitrogen containing ionic liquid (IL) with a defined C:N ratio, followed by a thermal treatment under ambient conditions. We investigate the influence of the main experimental parameters (IL amount, temperature, substrate morphology) on the formation of the NCC. Additionally, the structure and the chemical composition of the resulting products are analyzed by electron microscopic techniques (SEM, TEM), energy disperse X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS) and hot extraction analysis. The modified surface has a nitrogen content of 29 wt% which decreases strongly at temperatures above 600 °C. The new catalyst supports are used for the preparation of PEMFC anodes which are characterized by polarization measurements and electrochemical impedance spectroscopy (EIS). Compared to unmodified graphene and CNT samples the electronic conductivity of the modified systems is increased by a factor of 2 and shows improved mass transport properties.

  8. A preliminary report on the effects of paclitaxel-impregnated stents on sheep nasal mucosa.

    PubMed

    Herrmann, Brian W; Citardi, Martin J; Vogler, George; Gardner, Laura; Smith, Greg; Javer, Amin R; Burt, Helen M; Jackson, John; Kuhn, Frederick A

    2004-01-01

    Traditional frontal sinus stents serve only as mechanical devices. It has been proposed that stents also may serve as drug-delivery systems for the topical application of drugs that minimize postoperative scarring. Paclitaxel (Taxol), which has recognized antiscarring effects, may be incorporated via a polymeric formulation into standard rubber stents. The impact of topically applied paclitaxel on the morphology of the nasal mucosa is unknown. An adult sheep model was used for this study. A modified rubber T-tube stent (incorporating paclitaxel at varying dosages) was secured to each side of the septum in four animals (eight sides). An unmodified T-tube was placed on each side of one animal, a T-tube with the drug carrier (but no paclitaxel) was placed on each side of the second animal, and T-tubes with varying paclitaxel were placed on each side of the final two animals. After 4 weeks, animals were killed and the nasal mucosa was harvested. The nasal mucosa was sectioned and stained with hematoxylin and eosin. A pathologist then assessed the nasal mucosa for vascular congestion, glandular atrophy, chronic inflammation, mucosal metaplasia, and mucosal ulceration. No consistent histopathological differences were noted in the specimens. All specimens showed varying degrees of vascular congestion, glandular atrophy, chronic inflammation, and mucosal metaplasia; the paclitaxel-impregnated stents were not consistently associated with more severe mucosal injury. Finally, mucosal ulceration was noted to be very rare in all specimens. This preliminary report describes the impact of paclitaxel-impregnated stents on sheep nasal mucosa, which tolerated these stents very well. Because paclitaxel minimizes scarring reactions at very low concentrations, paclitaxel-impregnated stents may prove useful in clinical situations in which frontal sinus stenting is deemed necessary. Additional investigations with animal models, as well as clinical trials, may be warranted.

  9. [Two-stage revision of infected total knee arthroplasty using antibiotic-impregnated articulating cement spacer].

    PubMed

    Cai, Pengde; Hu, Yihe; Xie, Lie; Wang, Long

    2012-10-01

    To investigate the effectiveness of two-stage revision of infected total knee arthroplasty (TKA) using an antibiotic-impregnated articulating cement spacer. The clinical data were analyzed from 23 patients (23 knees) undergoing two-stage revision for late infection after primary TKA between January 2007 and December 2009. There were 15 males and 8 females, aged from 43 to 75 years (mean, 65.2 years). Infection occurred at 13-52 months (mean, 17.3 months) after TKA. The time interval between infection and admission ranged from 15 days to 7 months (mean, 2.1 months). One-stage operation included surgical debridement and removal of all knee prosthesis and cement, then an antibiotic-impregnated articulating cement spacer was implanted. The re-implantation of prosthesis was performed after 8-10 weeks when infections were controlled. The American Hospital for Special Surgery (HSS) score and Knee Society Score (KSS) were used to compare the function of the knee between pre- and post-revision. The rate of infection control and complication were analyzed. All incisions healed primarily. Re-infection occurred in 2 cases after two-stage revision, and infection was controlled in the other 21 cases, with an infection control rate of 91.3%. The patients were followed up 2-5 years (mean, 3.6 years). The HSS score was increased from 60.6 +/- 9.8 at pre-revision to 82.3 +/- 7.4 at last follow-up, the KSS score was increased from 110.7 +/- 9.6 at pre-revision to 134.0 +/- 10.5 at last follow-up, all showing significant differences (P < 0.01). Radiographs showed that prosthesis had good position with no loosening, fracture, or periprosthetic radiolucent. Two-stage revision using an antibiotic-impregnated articulating cement spacer is an effective method to control infected TKA and to restore the function of affected knee.

  10. Weed Control and Seedling Performance Using Oust, Velpar, and Velpar+Oust Impregnated Diammonium Phosphate

    Treesearch

    J.L. Yeiser

    2002-01-01

    Technology that combines herbicide and fertilizer into one treatment thereby reducing application costs while enhancing growth is needed. Four clean and well-prepared sites in TX, MS, and AL were tested. Study objectives were to evaluate the effectiveness of diammonium phosphate (DAP) impregnated with Oust, Velpar, or Velpar+Oust for herbaceous weed control and newly...

  11. Occupational exposure to chromium, copper and arsenic during work with impregnated wood in joinery shops.

    PubMed

    Nygren, O; Nilsson, C A; Lindahl, R

    1992-10-01

    CCA-impregnated timber contains copper, chromium and arsenic (CCA), and occupational exposure to wood dust as well as the CCA compounds may occur in work with such timber. Dust from commercially available impregnated wood has been found to contain hexavalent chromium, which is regarded as a carcinogen. Apart from determinations of the total amounts of the CCA compounds, specific determination of hexavalent chromium is therefore essential. Selective methods have been applied for control of the work environment in six joinery shops. The mean exposure to wood dust was found to be below 1 mg m-3. The mean airborne concentration of arsenic around various types of joinery machines was in the range from 0.54 to 3.1 micrograms m-3. No hexavalent chromium was detected in any samples and no increased concentrations of arsenic were found in urine from the workers. The presence of arsenic in the work-room air must be considered for appropriate assessment of the occupational environment in joinery shops.

  12. Vacuum impregnation: a promising way for mineral fortification in potato porous matrix (potato chips).

    PubMed

    Joshi, Alka; Kar, A; Rudra, S G; Sagar, V R; Varghese, E; Lad, M; Khan, I; Singh, B

    2016-12-01

    Potato chips can be considered as an ideal carrier for targeted nutrient/s delivery as mostly consumed by the vulnerable group (children and teen agers). The present study was planned to fortifiy potato chips with calcium (Calcium lactate) and zinc (Zinc sulphate) using vacuum impregnation technique. At about 70-80 mm Hg vacuum pressure, maximum level of impregnation of both the minerals was achieved. Results showed that after optimization, calcium lactate at 4.81%, zinc sulphate at 0.72%, and vacuum of 33.53 mm Hg with restoration period of 19.52 min can fortify potato chips that can fulfil 10 and 21% need of calcium and zinc, respectively of targeted group (age 4-17 years). The present research work has shown that through this technique, fortification can be done in potato chips which are generally considered as a poor source of minerals. Further to make potato chips more fit to health conscious consumers, rather frying microwaving was done to develop mineral fortified low fat potato chips.

  13. Impregnating unconsolidated pyroclastic sequences: A tool for detailed facies analysis

    NASA Astrophysics Data System (ADS)

    Klapper, Daniel; Kueppers, Ulrich; Castro, Jon M.; Pacheco, Jose M. R.; Dingwell, Donald B.

    2010-05-01

    The interpretation of volcanic eruptions is usually derived from direct observation and the thorough analysis of the deposits. Processes in vent-proximal areas are usually not directly accessible or likely to be obscured. Hence, our understanding of proximal deposits is often limited as they were produced by the simultaneous events stemming from primary eruptive, transportative, and meteorological conditions. Here we present a method that permits for a direct and detailed quasi in-situ investigation of loose pyroclastic units that are usually analysed in the laboratory for their 1) grain-size distribution, 2) componentry, and 3) grain morphology. As the clast assembly is altered during sampling, the genesis of a stratigraphic unit and the relative importance of the above mentioned deposit characteristics is hard to achieve. In an attempt to overcome the possible loss of information during conventional sampling techniques, we impregnated the cleaned surfaces of proximal, unconsolidated units of the 1957-58 Capelinhos eruption on Faial, Azores. During this basaltic, emergent eruption, fluxes in magma rise rate led to a repeated build-up and collapse of tuff cones and consequently to a shift between phreatomagmatic and magmatic eruptive style. The deposits are a succession of generally parallel bedded, cm- to dm-thick layers with a predominantly ashy matrix. The lapilli content is varying gradually; the content of bombs is enriched in discrete layers without clear bomb sags. The sample areas have been cleaned and impregnated with two-component glue (EPOTEK 301). For approx. 10 * 10 cm, a volume of mixed glue of 20 ml was required. Using a syringe, this low-viscosity, transparent glue could be easily applied on the target area. We found that the glue permeated the deposit as deep as 5 mm. After > 24 h, the glue was sufficiently dry to enable the sample to be laid open. This impregnation method renders it possible to cut and polish the sample and investigate grain

  14. Preloading hydrous ferric oxide into granular activated carbon for arsenic removal.

    PubMed

    Jang, Min; Chen, Weifang; Cannon, Fred S

    2008-05-01

    Arsenic is of concern in water treatment because of its health effects. This research focused on incorporating hydrous ferric oxide (HFO) into granular activated carbon (GAC) for the purpose of arsenic removal. Iron was incorporated into GAC via incipient wetness impregnation and cured at temperatures ranging from 60 to 90 degrees C. X-ray diffractions and arsenic sorption as a function of pH were conducted to investigate the effect of temperature on final iron oxide (hydroxide) and their arsenic removal capabilities. Results revealed that when curing at 60 degrees C, the procedure successfully created HFO in the pores of GAC, whereas at temperatures of 80 and 90 degrees C, the impregnated iron oxide manifested a more crystalline form. In the column tests using synthetic water, the HFO-loaded GAC prepared at 60 degrees C also showed higher sorption capacities than media cured at higher temperatures. These results indicated that the adsorption capacity for arsenic was closely related to the form of iron (hydr)oxide for a given iron content For the column test using a natural groundwater, HFO-loaded GAC (Fe, 11.7%) showed an arsenic sorption capacity of 26 mg As/g when the influent contained 300 microg/L As. Thus, the preloading of HFO into a stable GAC media offered the opportunity to employ fixed carbon bed reactors in water treatment plants or point-of-use filters for arsenic removal.

  15. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    NASA Technical Reports Server (NTRS)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  16. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil.

    PubMed

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-05-25

    Behavioral reaction to different taste qualities affects nutritional status and health. 6- n -Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors.

  17. Taste Perception of Sweet, Sour, Salty, Bitter, and Umami and Changes Due to l-Arginine Supplementation, as a Function of Genetic Ability to Taste 6-n-Propylthiouracil

    PubMed Central

    Melis, Melania; Tomassini Barbarossa, Iole

    2017-01-01

    Behavioral reaction to different taste qualities affects nutritional status and health. 6-n-Propylthiouracil (PROP) tasting has been reported to be a marker of variation in taste perception, food preferences, and eating behavior, but results have been inconsistent. We showed that l-Arg can enhance the bitterness intensity of PROP, whilst others have demonstrated a suppression of the bitterness of quinine. Here, we analyze the taste perception of sweet, sour, salty, bitter, and umami and the modifications caused by l-Arg supplementation, as a function of PROP-taster status. Taste perception was assessed by testing the ability to recognize, and the responsiveness to, representative solutions of the five primary taste qualities, also when supplemented with l-Arg, in subjects classified as PROP-tasting. Super-tasters, who showed high papilla density, gave higher ratings to sucrose, citric acid, caffeine, and monosodium l-glutamate than non-tasters. l-Arg supplementation mainly modified sucrose perception, enhanced the umami taste, increased NaCl saltiness and caffeine bitterness only in tasters, and decreased citric acid sourness. Our findings confirm the role of PROP phenotype in the taste perception of sweet, sour, and bitter and show its role in umami. The results suggest that l-Arg could be used as a strategic tool to specifically modify taste responses related to eating behaviors. PMID:28587069

  18. Salty dog, an SLC5 symporter, modulates Drosophila response to salt stress.

    PubMed

    Stergiopoulos, Konstantinos; Cabrero, Pablo; Davies, Shireen-Anne; Dow, Julian A T

    2009-03-03

    To regulate their internal environments, organisms must adapt to varying ion levels in their diet. Adult Drosophila were exposed to dietary salt stress, and their physiological, survival, and gene expression responses monitored. Insects continued to feed on NaCl-elevated diet, although levels >4% wt/vol ultimately proved fatal. Affymetrix microarray analysis of flies fed on diet containing elevated NaCl showed a phased response: the earliest response was widespread upregulation of immune genes, followed by upregulation of carbohydrate metabolism as the immune response was downregulated, then finally a switch to amino acid catabolism and inhibition of genes associated with the reproductive axis. Significantly, the online transcriptomic resource FlyAtlas reports that most of the modulated genes are predominantly expressed in hindgut or Malpighian (renal) tubule, implicating these excretory tissues as the major responders to salt stress. Three genes were selected for further study: the SLC5 symporter CG2196, the GLUT transporter CG6484, and the transcription factor sugarbabe (previously implicated in starvation and stress responses). Expression profiles predicted by microarray were validated by quantitative PCR (qPCR); expression was mapped to the alimentary canal by in situ hybridization. CG2196::eYFP overexpression constructs were localized to the basolateral membrane of the Malpighian (renal) tubules, and RNAi against CG2196 improved survival on high-salt diet, even when driven specifically to just principal cells of the Malpighian tubule, confirming both this tissue and this transporter as major determinants of survival upon salt stress. Accordingly, CG2196 was renamed salty dog (salt).

  19. Plasma impregnation of wood with fire retardants

    NASA Astrophysics Data System (ADS)

    Pabeliña, Karel G.; Lumban, Carmencita O.; Ramos, Henry J.

    2012-02-01

    The efficacy of chemical and plasma treatments with phosphate and boric compounds, and nitrogen as flame retardants on wood are compared in this study. The chemical treatment involved the conventional method of spraying the solution over the wood surface at atmospheric condition and chemical vapor deposition in a vacuum chamber. The plasma treatment utilized a dielectric barrier discharge ionizing and decomposing the flame retardants into innocuous simple compounds. Wood samples are immersed in either phosphoric acid, boric acid, hydrogen or nitrogen plasmas or a plasma admixture of two or three compounds at various concentrations and impregnated by the ionized chemical reactants. Chemical changes on the wood samples were analyzed by Fourier transform infrared spectroscopy (FTIR) while the thermal changes through thermo gravimetric analysis (TGA). Plasma-treated samples exhibit superior thermal stability and fire retardant properties in terms of highest onset temperature, temperature of maximum pyrolysis, highest residual char percentage and comparably low total percentage weight loss.

  20. Structural optimization of structured carbon-based energy-storing composite materials used in space vehicles.

    PubMed

    Yu, Jia; Yu, Zhichao; Tang, Chenlong

    2016-07-04

    The hot work environment of electronic components in the instrument cabin of spacecraft was researched, and a new thermal protection structure, namely graphite carbon foam, which is an impregnated phase-transition material, was adopted to implement the thermal control on the electronic components. We used the optimized parameters obtained from ANSYS to conduct 2D optimization, 3-D modeling and simulation, as well as the strength check. Finally, the optimization results were verified by experiments. The results showed that after optimization, the structured carbon-based energy-storing composite material could reduce the mass and realize the thermal control over electronic components. This phase-transition composite material still possesses excellent temperature control performance after its repeated melting and solidifying.

  1. Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit

    NASA Astrophysics Data System (ADS)

    Yusuf, N. Y.; Masdar, M. S.; Isahak, W. N. R. W.; Nordin, D.; Husaini, T.; Majlan, E. H.; Rejab, S. A. M.; Chew, C. L.

    2017-06-01

    Biological methods for hydrogen production (biohydrogen) are known as energy intensive and can be operated at ambient temperature and pressure; however, consecutive productions such as purification and separation processes still remain challenging in the industry. Various techniques are used to purify and separate hydrogen. These techniques include the use of sorbents/solvents, membranes and cryogenic distillation. In this study, carbon dioxide (CO2) was purified and separated from biohydrogen to produce high purity hydrogen gas. CO2 capture was studied using the activated carbon (AC) modified with the ionic liquid (IL) choline chloride as adsorbent. The physical and chemical properties of the adsorbents were characterized through XRD, FTIR, SEM-EDX, TGA, and BET analyses. The effects of IL loading, flow rate, temperature, and gas mixture were also investigated based on the absorption and desorption of CO2. The CO2 level in the biohydrogen composition was analyzed using a CO2 gas analyzer. The SEM image indicated that the IL homogeneously covered the AC surface. High IL dispersion inlet enhanced the capability of the adsorbent to capture CO2 gas. The thermal stability and presence of the functionalized group of ILs on AC were analyzed by TGA and FTIR techniques, respectively. CO2 adsorption experiments were conducted using a 1 L adsorber unit. Hence, adsorption technologies exhibit potential for biohydrogen purification and mainly affected by adsorbent ability and operating parameters. This research presents an improved biohydrogen technique based on adsorption technology with novel adsorbents. Two different types of commercial CO2 adsorbents were used in the experiment. Results show that the IL/AC exhibited properties suitable for CO2 adsorption. The IL/AC sample presented a high CO2 uptake of 30 wt. % IL when treated at 30 °C for 6 h under a flow rate of 1 L/min. The presence of IL increased the selectivity of CO2 removal during the adsorption process. This IL

  2. Ozone sensing based on palladium decorated carbon nanotubes.

    PubMed

    Colindres, Selene Capula; Aguir, Khalifa; Cervantes Sodi, Felipe; Vargas, Luis Villa; Salazar, José Moncayo; Febles, Vicente Garibay

    2014-04-14

    Multiwall carbon nanotubes (MWCNTs) were easily and efficiently decorated with Pd nanoparticles through a vapor-phase impregnation-decomposition method starting from palladium acetylacetonates. The sensor device consisted on a film of sensitive material (MWCNTs-Pd) deposited by drop coating on platinum interdigitated electrodes on a SiO₂ substrate. The sensor exhibited a resistance change to ozone (O₃) with a response time of 60 s at different temperatures and the capability of detecting concentrations up to 20 ppb. The sensor shows the best response when exposed to O3 at 120 °C. The device shows a very reproducible sensor performance, with high repeatability, full recovery and efficient response.

  3. Experimental Investigation of the Axial Impregnation of Oriented Fiber Bundles by Capillary Forces

    DTIC Science & Technology

    1992-05-01

    construed as an official Department of the Army position, unless so designated by other authorized documents. The use of trade names or manufacturers...AND DATES COVERED I May 1992 Final Feb 1988-Mar 1990 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Eperimental Investigation Of the Axial Impregnation of...will be used.) _____________________ 2. How, specifically, is the report being used? (Information source, design data, procedure, source of ideas, etc

  4. Large-scale synthesis of coiled-like shaped carbon nanotubes using bi-metal catalyst

    NASA Astrophysics Data System (ADS)

    Krishna, Vemula Mohana; Somanathan, T.; Manikandan, E.; Umar, Ahmad; Maaza, M.

    2018-02-01

    Carbon nanomaterials (CNMs), especially carbon nanotubes (CNTs) with coiled structure exhibit scientifically fascinating. They may be projected as an innovative preference to future technological materials. Coiled carbon nanotubes (c-CNTs) on a large-scale were successfully synthesized with the help of bi-metal substituted α-alumina nanoparticles catalyst via chemical vapor deposition (CVD) technique. Highly spring-like carbon nanostructures were observed by field emission scanning electron microscope (FESEM) examination. Furthermore, the obtained material has high purity, which correlates the X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) analysis. Raman spectroscopy reveals that the carbon multi layers are well graphitized and crystalline, even if they have defects in its structure due to coiled morphology. High-resolution transmission electron microscope (HRTEM) describes internal structure and dia of the product. Ultimately, results support the activity of bi-metal impregnated α-alumina nanoparticles catalyst to determine the high yield, graphitization and internal structure of the material. We have also studied the purified c-CNTs magnetic properties at room temperature and will be an added advantage in several applications.

  5. Electrochemical performance and carbon deposition resistance of M-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ (M = Pd, Cu, Ni or NiCu) anodes for solid oxide fuel cells

    PubMed Central

    Li, Meng; Hua, Bin; Pu, Jian; Chi, Bo; Jian, Li

    2015-01-01

    Pd-, Cu-, Ni- and NiCu-BaZr0.1Ce0.7Y0.1Yb0.1O3-δ anodes, designated as M-BZCYYb, were prepared by impregnating M-containing solution into BZCYYb scaffold, and investigated in the aspects of electrocatalytic activity for the reactions of H2 and CH4 oxidation and the resistance to carbon deposition. Impregnation of Pd, Ni or NiCu significantly reduced both the ohmic (RΩ) and polarization (RP) losses of BZCYYb anode exposed to H2 or CH4, while Cu impregnation decreased only RΩ in H2 and the both in CH4. Pd-, Ni- and NiCu-BZCYYb anodes were resistant to carbon deposition in wet (3 mol. % H2O) CH4 at 750°C. Deposited carbon fibers were observed in Pd- and Ni-BZCYYb anodes exposed to dry CH4 at 750°C for 12 h, and not observed in NiCu-BZCYYb exposed to dry CH4 at 750°C for 24 h. The performance of a full cell with NiCu-BZCYYb anode, YSZ electrolyte and La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd doped CeO2 (LSCF-GDC) cathode was stable at 750°C in wet CH4 for 130 h, indicating that NiCu-BZCYYb is a promising anode for direct CH4 solid oxide fuel cells (SOFCs). PMID:25563843

  6. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    PubMed

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Perfluoropolyether-Impregnated Mesoporous Alumina Composites Overcome the Dewetting-Tribological Properties Trade-Off.

    PubMed

    Rowthu, Sriharitha; Hoffmann, Patrik

    2018-03-28

    Conventional omniphobic surfaces suffer from wear-sensitivity due to soft apolar coatings or substrates and protruding surface features that are eroded even for mild abrasion treatments, leading to the loss of dewetting properties after wear. Evidently, there was a trade-off between dewetting and tribological properties. Here, we show the establishment of self-healing slippery properties post severe abrasion by utilizing perfluoropolyether-impregnated mesoporous Al 2 O 3 (MPA) composites. The hard polar alumina matrix provides the optimal tribological properties, and the liquid lubricant in the porous network contributes to both tribological and self-healing dewetting properties. These composites sustained normal pressures up to 350 MPa during reciprocating sliding contacts. The severely abraded surfaces are capable of self-replenishing in ambient environment, driven by capillarity and surface diffusion processes, and regained their slippery properties toward water and hexadecane after 15 h of self-healing. Eventually, a dewetting-tribology diagram has been introduced to show different regimes, namely-optimal slippery properties, optimal tribological properties, and a mixed regime). We found out that the microstructural expression [Formula: see text] is a robust guiding tool to predict the regime of interest. This dewetting-tribological diagram may be marked as an inception to designing abrasion-resistant slippery liquid impregnated composites for overcoming the dewetting tribological properties trade-off. Such surfaces may potentially find applications in paint industries and as anti-icing surfaces.

  8. In Vitro Investigation of a Terbinafine Impregnated Subcutaneous Implant for Veterinary Use

    PubMed Central

    Souza, M. J.; Cairns, T.; Yarbrogh, J.; Cox, S. K.

    2012-01-01

    A terbinafine impregnated subcutaneous implant was evaluated to determine if drug was released into isotonic saline over the course of 6 months at two different temperatures, 37°C and 4°C. These temperatures were chosen to simulate the nonhibernating (37°C) and hibernating body (4°C) temperatures of little brown bats (Myotis lucifugus). Insectivorous bats of North America, including little brown bats, have been devastated by white nose syndrome, a fungal infection caused by Geomyces destructans. No treatments exist for bats infected with G. destructans. Implants were placed into isotonic saline; samples were collected once per week and analyzed with HPLC to determine terbinafine concentrations. The mean amount of terbinafine released weekly across the 28 weeks was approximately 1.7 μg at 4°C and 4.3 μg at 37°C. Although significant differences in the amount released did occur at some time points, these differences were not consistently greater or less at either of the temperatures. This study showed that terbinafine was released from an impregnated implant over the course of 6 months at concentrations ranging from 0.02 to 0.06 μg/mL depending on temperature, which may be appropriate for little brown bats (Myotis lucifugus) infected with Geomyces destructans, the etiologic agent of white nose syndrome. PMID:22888440

  9. Use of Fe-Impregnated Biochar To Efficiently Sorb Chlorpyrifos, Reduce Uptake by Allium fistulosum L., and Enhance Microbial Community Diversity.

    PubMed

    Tang, Xiao-Yan; Huang, Wen-Da; Guo, Jing-Jing; Yang, Yang; Tao, Ran; Feng, Xu

    2017-07-05

    Fe-impregnated biochar was assessed as a method to remove the pesticide pollutant chlorpyrifos, utilizing biochar/FeO x composite synthesized via chemical coprecipitation of Fe 3+ /Fe 2+ onto Cyperus alternifolius biochar. Fe-impregnated biochar exhibited a higher sorption capacity than pristine biochar, resulting in more efficient removal of chlorpyrifos from water. Soil was dosed with pristine or Fe-impregnated biochar at 0.1 or 1.0% w/w, to evaluate chlorpyrifos uptake in Allium fistulosum L. (Welsh onion). The results showed that the average concentration of chlorpyrifos and its degradation product, 3,5,6-trichloro-2-pyridinol (TCP), decreased in A. fistulosum L. with increased levels of pristine biochar and Fe-biochar. Fe-biochar was found to be more effective in reducing the uptake of chlorpyrifos by improving the sorption ability and increasing plant root iron plaque. Bioavailability of chlorpyrifos is reduced with both biochar and Fe-biochar soil dosing; however, the greatest persistence of chlorpyrifos residues was observed with 1.0% pristine biochar. Microbial community analysis showed Fe-biochar to have a positive impact on the efficiency of chlorpyrifos degradation in soils, possibly by altering microbial communities.

  10. S-Nitroso-N-acetylpenicillamine (SNAP) Impregnated Silicone Foley Catheters: A Potential Biomaterial/Device To Prevent Catheter-Associated Urinary Tract Infections

    PubMed Central

    2016-01-01

    Urinary Foley catheters are utilized for management of hospitalized patients and are associated with high rates of urinary tract infections (UTIs). Nitric oxide (NO) potently inhibits microbial biofilm formation, which is the primary cause of catheter associated UTIs (CAUTIs). Herein, commercial silicone Foley catheters are impregnated via a solvent swelling method with S-nitroso-N-acetyl-D-penicillamine (SNAP), a synthetic NO donor that exhibits long-term NO release and stability when incorporated into low water-uptake polymers. The proposed catheters generate NO surface-fluxes >0.7 × 10–10 mol min–1 cm–2 for over one month under physiological conditions, with minimal SNAP leaching. These biomedical devices are demonstrated to significantly decrease formation of biofilm on the surface of the catheter tubings over 3, 7, and 14 day periods by microbial species (Staphylococcus epidermidis and Proteus mirabilis) commonly causing CAUTIs. Toxicity assessment demonstrates that the SNAP-impregnated catheters are fully biocompatible, as extracts of the catheter tubings score 0 on a 3-point grading scale using an accepted mouse fibroblast cell-line toxicity model. Consequently, SNAP-impregnated silicone Foley catheters can likely provide an efficient strategy to greatly reduce the occurrence of nosocomial CAUTIs. PMID:26462294

  11. Property Changes of Cyanate Ester/epoxy Insulation Systems Caused by AN Iter-Like Double Impregnation and by Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  12. Reduction of healthcare-associated infections in a long-term care brain injury ward by replacing regular linens with biocidal copper oxide impregnated linens.

    PubMed

    Lazary, A; Weinberg, I; Vatine, J-J; Jefidoff, A; Bardenstein, R; Borkow, G; Ohana, N

    2014-07-01

    Contaminated textiles in hospitals contribute to endogenous, indirect-contact, and aerosol transmission of nosocomial related pathogens. Copper oxide impregnated linens have wide-spectrum antimicrobial, antifungal, and antiviral properties. Our aim was to determine if replacing non-biocidal linens with biocidal copper oxide impregnated linens would reduce the rates of healthcare-associated infections (HAI) in a long-term care ward. We compared the rates of HAI in two analogous patient cohorts in a head injury care ward over two 6-month parallel periods before (period A) and after (period B) replacing all the regular non-biocidal linens and personnel uniforms with copper oxide impregnated biocidal products. During period B, in comparison to period A, there was a 24% reduction in the HAI per 1000 hospitalization-days (p<0.05), a 47% reduction in the number of fever days (>38.5°C) per 1000 hospitalization-days (p<0.01), and a 32.8% reduction in total number of days of antibiotic administration per 1000 hospitalization-days (p<0.0001). Accordingly there was saving of approximately 27% in costs of antibiotics, HAI-related treatments, X-rays, disposables, labor, and laundry, expenses during period B. The use of biocidal copper oxide impregnated textiles in a long-term care ward may significantly reduce HAI, fever, antibiotic consumption, and related treatment costs. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Evaluation of various activated carbons for air cleaning - Towards design of immune and sustainable buildings

    NASA Astrophysics Data System (ADS)

    Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash

    There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.

  14. The adsorption of gold, palladium and platinum from acidic chloride solutions on mesoporous carbons.

    DOE PAGES

    Zalupski, Peter R.; McDowell, Rocklan; Dutech, Guy

    2014-08-05

    Studies on the adsorption characteristics of gold, palladium and platinum on mesoporous carbon (CMK-3) and sulfur-impregnated mesoporous carbon (CMK-3/S) evaluated the benefits/drawbacks of the presence of a layer of elemental sulfur inside mesoporous carbon structures. Adsorption isotherms collected for Au(III), Pd(II) and Pt(IV) on those materials suggest that sulfur does enhance the adsorption of those metal ions in mildly acidic environment (pH 3). The isotherms collected in 1 M HCl show that the benefit of sulfur disappears due to the competing influence of large concentration of hydrogen ions on the ion-exchanging mechanism of metal ions sorption on mesoporous carbon surfaces.more » The collected acid dependencies illustrate similar adsorption characteristics for CMK-3 and CMK-3/S in 1-5 M HCl concentration range. Sorption of metal ions from diluted aqueous acidic mixtures of actual leached electronic waste demonstrated the feasibility of recovery of gold from such liquors.« less

  15. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  16. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  17. Preparation and drug release behavior of temperature-responsive mesoporous carbons

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Liu, Ping; Tian, Yong

    2011-06-01

    A temperature-responsive composite based on poly (N-isopropylacrylamide) (PNIPAAm) and ordered mesoporous carbons (OMCs) has been successfully prepared by a simple wetness impregnation technique. The structures and properties of the composite were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 sorption, thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). The results showed that the inclusion of PNIPAAm had not greatly changed the basic ordered pore structure of the OMCs. Ibuprofen (IBU) was selected as model drug, and in vitro test of IBU release exhibited a temperature-responsive controlled release delivery.

  18. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  19. Management of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow.

    PubMed

    Datta, N K; Das, K P; Alam, M S; Kaiser, M S

    2014-07-01

    Unicameral bone cyst is a common benign bone tumor and most frequent cause of the pathological fracture in children. We have started a prospective study for that treatment of unicameral bone cyst by using freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow in the department of Orthopaedics, Bangabandhu Sheikh Mujib Medical University (BSMMU) during May 1999 to April 2012. Aim of this study was to see Freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow a satisfactory graft material in the treatment of unicameral bone cyst as well as factors such as patients age, sex, cyst size and site of lesion influence on cyst healing. A total 35 patients of unicameral bone cyst were operated. In this study out of 35 patients, male were 22(62.86%) and female were 13(37.14). Male Female ratio 22:13(1.70:1) Age of the patients ranging from 2 years 6 month to 20 years, mean age 12.18 years more common 11 years to 20 years 29(82.86%) patients. Common bones sites involvements are proximal end of Humerus 20(57.14%), proximal end of Femur 7(20 %), proximal end of Tibia 3(8.57%), Calcanium 2(5.71%), proximal end of Ulna 1(2.86%), shaft of Radius 1(2.86%) and Phalanx 1(2.86%). Final clinical outcome of unicameral bone cyst treated by thorough curettage of cavity and tightly filled with freeze dried radiation sterilized bone allograft impregnate with autogenous bone marrow in which healed (success rate) 88.57% (31) and recurrence rate is 11.43% (4). P value is <0.001. Follow up period was 6 month to 11 years. From our study it was realized that freeze dried radiation sterilized bone allograft impregnated with autogenous bone marrow is useful graft material for healing of the lesional area as well as restoring structural integrity for the treatment of unicameral bone cyst.

  20. Impregnation with antimicrobials has an impact on degree of conversion and colour stability of acrylic liner.

    PubMed

    Salim, Nesreen; Satterthwaite, Julian; Rautemaa, Riina; Silikas, Nick

    2012-01-01

    This study investigated the impact of impregnation of a poly(ethyl methacrylate) /tetrahydrofurfuryl methacrylate (PEM/THFM) polymer with chlorhexidine or fluconazole on the degree of conversion (DC) and colour stability (ΔE). The DC of uncured (0 h) and cured (24 h) samples was analysed by Fourier transform infrared spectroscopy (FTIR) and colour stability was analysed colorimetrically. The DC percentage of the control samples was significantly greater than those containing chlorhexidine and fluconazole (p≤0.05). The control discs exhibited only slight colour change compared to the impregnated discs which showed marked colour change (p≤0.05). A strong negative correlation between the extent of colour change and the degree of conversion was detected (r=0.97). The DC and colour stability were influenced by the addition of chlorhexidine or fluconazole. However, the final values were comparable to other commonly used acrylic liners and within acceptable ranges. PEM/THFM can be considered as a biocompatible drug delivery system.