Sample records for sample aspect ratio

  1. Effect of multi-walled carbon nanotubes aspect ratio and temperature on the dielectric behavior of alternating alkene-carbon monoxide polyketone nanocomposites

    NASA Astrophysics Data System (ADS)

    Abu-Surrah, Adnan S.; Abdul Jawad, Saadi; Al-Ramahi, Esraa; Hallak, Awni B.; Khattari, Z.

    2015-04-01

    New alternating poly(propylene-alt-carbon monoxide/ethylene-alt-carbon monoxide) (PECO)/multiwalled carbon nanotubes (MWCNTs) composites have been prepared. Dielectric permittivity, electric modulus and ac conductivity of the isolated materials were investigated as a function of fiber aspect ratio, frequency and temperature. For aspect ratio of 30 and 200, a transition from insulator to semiconductor was observed at frequency 1×104. However, for high aspect ratio sample (660), no transition was observed and the conductivity is frequency independent in the measured frequency range of 10-106 Hz. The conductivity increases from about 1×10-4 for the sample that contain fibers of aspect ratio 30 and reaches 5×10-2 (Ω m)-1 for aspect ratio was 660. This behavior can be modeled by a circuit that consists of a contact resistance in series with a parallel combination of resistance (R) and capacitance (C). The calculated activation energy for sample filled with fibers having aspect ratio 30 is about 0.26 eV and decreases to about 0.16 eV when the aspect ratio is 660.

  2. Effect of aspect ratio on the mechanical behavior of packings of spheroids

    NASA Astrophysics Data System (ADS)

    Parafiniuk, Piotr; Bańda, Maciej; Stasiak, Mateusz; Horabik, Józef; Wiącek, Joanna; Molenda, Marek

    2018-07-01

    This paper presents measurements of the mechanical response of assemblages formed by spheroid particles. Sets of such particles in the form of thin, cylindrical samples were subjected to uniaxial confined compression. The particles were flattened and elongated, with aspect ratios ranging from 0.5 to 2.5. All particles were fabricated using a 3D printer and each had the same volume. Because the particles had well-defined shapes, it was possible to experimentally observe how the mechanical response of the anisotropic and highly constrained samples depended on the elongation of the particles. In particular, we showed how the sample density, lateral pressure ratio, and work done to compact a sample of elongated or flattened particles changed with change in particle aspect ratio. Furthermore, we found that the evolution of packing density in subsequent loading-unloading cycles followed a stretched exponential law regardless of particle aspect ratio.

  3. Relationship between BaTiO₃ nanowire aspect ratio and the dielectric permittivity of nanocomposites.

    PubMed

    Tang, Haixiong; Zhou, Zhi; Sodano, Henry A

    2014-04-23

    The aspect ratio of barium titanate (BaTiO3) nanowires is demonstrated to be successfully controlled by adjusting the temperature of the hydrothermal growth from 150 to 240 °C, corresponding to aspect ratios from 9.3 to 45.8, respectively. Polyvinylidene fluoride (PVDF) nanocomposites are formed from the various aspect ratio nanowires and the relationship between the dielectric constant of the nanocomposite and the aspect ratio of the fillers is quantified. It was found that the dielectric constant of the nanocomposite increases with the aspect ratio of the nanowires. Nanocomposites with 30 vol % BaTiO3 nanowires and an aspect ratio of 45.8 can reach a dielectric constant of 44.3, which is 30.7% higher than samples with an aspect ratio of 9.3 and 352% larger than the polymer matrix. These results demonstrate that using high-aspect-ratio nanowires is an effective way to control and improve the dielectric performance of nanocomposites for future capacitor applications.

  4. Device Acquires and Retains Rock or Ice Samples

    NASA Technical Reports Server (NTRS)

    Giersch, Louis R.; Backes, Paul G.

    2009-01-01

    The Rock Baller is a sample acquisition tool that improves sample retention. The basic elements of the Rock Baller are the tool rotation axis, the hub, the two jaws, and the cutting blades, which are located on each of the jaws. The entire device rotates about the tool rotation axis, which is aligned parallel to the nominal normal direction of the parent rock surface. Both jaws also rotate about the jaw axis, which is perpendicular to the tool rotation axis, at a rate much slower than the rotation about the tool rotation axis. This movement gradually closes the jaws into a nearly continuous hemispherical shell that encloses the sample as it is cut from the parent rock. When required the jaws are opened to release the sample. The hemispherical cutting method eliminates the sample retention problems associated with existing sample acquisition methods that employ conventional cylindrical cutting. The resulting samples are hemispherical, or nearly hemispherical, and as a result the aspect ratio (sample depth relative to sample radius) is essentially fixed. This fixed sample aspect ratio may be considered a drawback of the Rock Baller method, as samples with a higher aspect ratio (more depth, less width) may be considered more scientifically valuable because such samples would allow for a broader inspection of the geological record. This aspect ratio issue can be ameliorated if the Rock Baller is paired with a device similar to the Rock Abrasion Tool (RAT) used on the Mars Exploration Rovers. The RAT could be used to first grind into the surface of the parent rock, after which the Rock Baller would extract a sample from a depth inside the rock that would not have been possible without first using the RAT. Other potential applications for this technology include medical applications such as the removal of tissue samples or tumors from the body, particularly during endoscopic, laparoscopic, or thoracoscopic surgeries.

  5. Enhancing Tensile Response of Sn Using Cu at Nano Length Scale and High Temperature Extrusion

    DTIC Science & Technology

    2009-02-01

    temperature extruded Sn-1.1Cu 664 samples suggesting the presence of lenticular pores. This aspect ratio of pores was only 1.7 for high temperature Sn...resulting in filling the voids or breaking the lenticular pores into small pores besides higher atomic diffusion rates [8...relatively round pores were observed for hot extruded Sn-Cu samples that helps to increase the strength. The lenticular pores (higher aspect ratio) in

  6. Settlement statistics of a granular layer composed of polyhedral particles

    NASA Astrophysics Data System (ADS)

    Quezada, Juan Carlos; Saussine, Gilles; Breul, Pierre; Radjai, Farhang

    2013-06-01

    We use 3D contact dynamics simulations to investigate the mechanical equilibrium and settlement of a granular material composed of irregular polyhedral particles confined between two horizontal frictional planes. We show that, as a consequence of mobilized wall-particle friction force at the top and bottom boundaries, the transient deformation induced by a constant vertical load increment is controlled by the aspect ratio (thickness over width) of the packing as well as the stress ratio. The transient deformation declines considerably for increasingly smaller aspect ratios and grows with the stress ratio. From the simulation data for a large number of independent configurations, we find that sample-to-sample fluctuations of the deformation have a broad distribution and they scale with the average deformation.

  7. Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.

    2017-04-01

    The sensitivity of porous energetic materials depends on mesostructural heterogeneities such as voids, defects, cracks, and grain boundaries. The mesostructure of pressed explosives contains voids of arbitrary shapes including elongated voids of various orientations and aspect ratios. Mesoscale simulations to date have analyzed the effect of void morphology on the sensitivity of energetic materials for idealized shapes such as cylindrical, conical, and elliptical. This work analyzes the sensitivity behavior of elongated voids in an HMX matrix subject to shock loading. Simulations show that sensitivity of elongated voids depends strongly on orientation as well as aspect ratio. Ranges of orientations and aspects ratios are identified that enhance or inhibit initiation. Insights obtained from single elongated void analyses are used to identify sensitive locations in an imaged mesostructure of a pressed explosive sample.

  8. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-11-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  9. Particle shape accounts for instrumental discrepancy in ice core dust size distributions

    NASA Astrophysics Data System (ADS)

    Folden Simonsen, Marius; Cremonesi, Llorenç; Baccolo, Giovanni; Bosch, Samuel; Delmonte, Barbara; Erhardt, Tobias; Kjær, Helle Astrid; Potenza, Marco; Svensson, Anders; Vallelonga, Paul

    2018-05-01

    The Klotz Abakus laser sensor and the Coulter counter are both used for measuring the size distribution of insoluble mineral dust particles in ice cores. While the Coulter counter measures particle volume accurately, the equivalent Abakus instrument measurement deviates substantially from the Coulter counter. We show that the difference between the Abakus and the Coulter counter measurements is mainly caused by the irregular shape of dust particles in ice core samples. The irregular shape means that a new calibration routine based on standard spheres is necessary for obtaining fully comparable data. This new calibration routine gives an increased accuracy to Abakus measurements, which may improve future ice core record intercomparisons. We derived an analytical model for extracting the aspect ratio of dust particles from the difference between Abakus and Coulter counter data. For verification, we measured the aspect ratio of the same samples directly using a single-particle extinction and scattering instrument. The results demonstrate that the model is accurate enough to discern between samples of aspect ratio 0.3 and 0.4 using only the comparison of Abakus and Coulter counter data.

  10. Fiber Angle and Aspect Ratio Influence the Shear Mechanics of Oriented Electrospun Nanofibrous Scaffolds

    PubMed Central

    Driscoll, Tristan P.; Nerurkar, Nandan L.; Jacobs, Nathan T.; Elliott, Dawn M.; Mauck, Robert L.

    2011-01-01

    Fibrocartilages, including the knee meniscus and the annulus fibrosus (AF) of the intervertebral disc, play critical mechanical roles in load transmission across joints and their function is dependent upon well-defined structural hierarchies, organization, and composition. All, however, are compromised in the pathologic transformations associated with tissue degeneration. Tissue engineering strategies that address these key features, for example, aligned nanofibrous scaffolds seeded with mesenchymal stem cells (MSCs), represent a promising approach for the regeneration of these fibrous structures. While such engineered constructs can replicate native tissue structure and uniaxial tensile properties, the multidirectional loading encountered by these tissues in vivo necessitates that they function adequately in other loading modalities as well, including shear. As previous findings have shown that native tissue tensile and shear properties are dependent on fiber angle and sample aspect ratio, respectively, the objective of the present study was to evaluate the effects of a changing fiber angle and sample aspect ratio on the shear properties of aligned electrospun poly(ε-caprolactone) (PCL) scaffolds, and to determine how extracellular matrix deposition by resident MSCs modulates the measured shear response. Results show that fiber orientation and sample aspect ratio significantly influence the response of scaffolds in shear, and that measured shear strains can be predicted by finite element models. Furthermore, acellular PCL scaffolds possessed a relatively high shear modulus, 2–4 fold greater than native tissue, independent of fiber angle and aspect ratio. It was further noted that under testing conditions that engendered significant fiber stretch, the aggregate resistance to shear was higher, indicating a role for fiber stretch in the overall shear response. Finally, with time in culture, the shear modulus of MSC laden constructs increased, suggesting that deposited ECM contributes to the construct shear properties. Collectively, these findings show that aligned electrospun PCL scaffolds are a promising tool for engineering fibrocartilage tissues, and that the shear properties of both acellular and cell-seeded formulations can match or exceed native tissue benchmarks. PMID:22098865

  11. An effective medium approach to modelling the pressure-dependent electrical properties of porous rocks

    NASA Astrophysics Data System (ADS)

    Han, Tongcheng

    2018-07-01

    Understanding the electrical properties of rocks under varying pressure is important for a variety of geophysical applications. This study proposes an approach to modelling the pressure-dependent electrical properties of porous rocks based on an effective medium model. The so-named Textural model uses the aspect ratios and pressure-dependent volume fractions of the pores and the aspect ratio and electrical conductivity of the matrix grains. The pores were represented by randomly oriented stiff and compliant spheroidal shapes with constant aspect ratios, and their pressure-dependent volume fractions were inverted from the measured variation of total porosity with differential pressure using a dual porosity model. The unknown constant stiff and compliant pore aspect ratios and the aspect ratio and electrical conductivity of the matrix grains were inverted by best fitting the modelled electrical formation factor to the measured data. Application of the approach to three sandstone samples covering a broad porosity range showed that the pressure-dependent electrical properties can be satisfactorily modelled by the proposed approach. The results demonstrate that the dual porosity concept is sufficient to explain the electrical properties of porous rocks under pressure through the effective medium model scheme.

  12. Investigation of dielectric properties of polymer composites reinforced with carbon nanotubes in the frequency band of 0.01 Hz - 10 MHz

    NASA Astrophysics Data System (ADS)

    Goshev, A. A.; Eseev, M. K.; Kapustin, S. N.; Vinnik, L. N.; Volkov, A. S.

    2016-08-01

    The goal of this work is experimental study of dielectric properties of polymer nanocomposites reinforced with multiwalled carbon nanotubes (MWCNTs) in alternating electric field in low frequency band of 0.01 Hz - 10 MHz. We investigated the influence, functionalization degree, aspect ratio, concentration of carbon nanotubes (CNTs) on dielectric properties of polymer sample. We also studied the dependence of dielectric properties on the polymerization temperature. The dependence of CNTs agglomeration on sample polymerization temperature and temperature's influence on conductivity has been shown. We conducted model calculation of percolation threshold and figured out its dependence on CNTs aspect ratio.

  13. Carbonate pore system evaluation using the velocity-porosity-pressure relationship, digital image analysis, and differential effective medium theory

    NASA Astrophysics Data System (ADS)

    Lima Neto, Irineu A.; Misságia, Roseane M.; Ceia, Marco A.; Archilha, Nathaly L.; Oliveira, Lucas C.

    2014-11-01

    Carbonate reservoirs exhibit heterogeneous pore systems and a wide variety of grain types, which affect the rock's elastic properties and the reservoir parameter relationships. To study the Albian carbonates in the Campos Basin, a methodology is proposed to predict the amount of microporosity and the representative aspect ratio of these inclusions. The method assumes three pore-space scales in two representative inclusion scenarios: 1) a macro-mesopore median aspect ratio from the thin-section digital image analysis (DIA) and 2) a microporosity aspect ratio predicted based on the measured P-wave velocities. Through a laboratory analysis of 10 grainstone core samples of the Albian age, the P- and S-wave velocities (Vp and Vs) are evaluated at effective pressures of 0-10 MPa. The analytical theories in the proposed methodology are functions of the aspect ratios from the differential effective medium (DEM) theory, the macro-mesopore system recognized from the DIA, the amount of microporosity determined by the difference between the porosities estimated from laboratorial helium-gas and the thin-section petrographic images, and the P-wave velocities under dry effective pressure conditions. The DIA procedure is applied to estimate the local and global parameters, and the textural implications concerning ultrasonic velocities and image resolution. The macro-mesopore inclusions contribute to stiffer rocks and higher velocities, whereas the microporosity inclusions contribute to softer rocks and lower velocities. We observe a high potential for this methodology, which uses the microporosity aspect ratio inverted from Vp to predict Vs with a good agreement. The results acceptably characterize the Albian grainstones. The representative macro-mesopore aspect ratio is 0.5, and the inverted microporosity aspect ratio ranges from 0.01 to 0.07. The effective pressure induced an effect of slight porosity reduction during the triaxial tests, mainly in the microporosity inclusions, slightly changing the amount and the aspect ratio of the microporosity.

  14. Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Sawamiphakdi, K.

    1984-01-01

    A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.

  15. Supercritical CO2 drying of poly(methyl methacrylate) photoresist for deep x-ray lithography: a brief note

    NASA Astrophysics Data System (ADS)

    Shukla, Rahul; Abhinandan, Lala; Sharma, Shivdutt

    2017-07-01

    Poly(methyl methacrylate) (PMMA) is an extensively used positive photoresist for deep x-ray lithography. The post-development release of the microstructures of PMMA becomes very critical for high aspect ratio fragile and freestanding microstructures. Release of high aspect ratio comb-drive microstructure of PMMA made by one-step x-ray lithography (OXL) is studied. The effect of low-surface tension Isopropyl alcohol (IPA) over water is investigated for release of the high aspect ratio microstructures using conventional and supercritical (SC) CO2 drying. The results of conventional drying are also compared for the samples released or dried in both in-house developed and commercial SC CO2 dryer. It is found that in all cases the microstructures of PMMA are permanently deformed and damaged while using SC CO2 for drying. For free-standing high aspect ratio microstructures of PMMA made by OXL, it is advised to use low-surface tension IPA over DI water. However, this brings a limitation on the design of the microstructure.

  16. Effects of excimer laser illumination on microdrilling into an oblique polymer surface

    NASA Astrophysics Data System (ADS)

    Wu, Chih-Yang; Shu, Chun-Wei; Yeh, Zhi-Chang

    2006-08-01

    In this work, we present the experimental results of micromachining into polymethy-methacrylate exposed to oblique KrF excimer laser beams. The results of low-aspect-ratio ablations show that the ablation rate decreases monotonously with the increase of incident angle for various fluences. The ablation rate of high-aspect-ratio drilling with opening center on the focal plane is almost independent of incident angles and is less than that of low-aspect-ratio ablation. The results of high-aspect-ratio ablations show that the openings of the holes at a distance from the focal plane are enlarged and their edges are blurred. Besides, the depth of a hole in the samples oblique to the laser beam at a distance from the focal plane decreases with the increase of the distance from the focal plane. The number of deep holes generated by oblique laser beams through a matrix of apertures decreases with the increase of incident angle. Those phenomena reveal the influence of the local light intensity on microdrilling into an oblique surface.

  17. Elastic properties of continental carbonate rocks: controlling factors and applicable model

    NASA Astrophysics Data System (ADS)

    Regnet, Jean-Baptiste; Fortin, Jérôme; Guéguen, Yves; Pellerin, Matthieu

    2016-04-01

    Continental carbonates gained interest following the discovery of the supergiant field in the post- and pre-salt deposits in offshore Brazil, as they account for a large portion of the deepwater production. The genesis of continental carbonates is generally associated with physico-chemical and biological precipitation of carbonates, coupled with a strong influence of clastic mineralogical inputs. This results in a complex mineralogical mixing, associated with a wide heterogeneity of pore types due to the intense diagenetic overprint potential of carbonate deposits (cementation, dissolution, recrystallisation, dolomitisation...). With that in mind, we propose insights on the controling factors of elastic properties in a continental carbonate dataset, analogue of the brazilian pre-salt deposits. An applicable model based on the effective medium theory is proposed and discussed regarding the experimental results, and try to account for the wide variability of the elastic properties. Analyzed samples exhibit large variation of (1) sedimentary texture (coquinas grainstones, muddy facies (mudstones to packtones), travertines and stromatolites, (2) pore types (moldic, intercrystalline, vuggy and micropores) and shapes (aspect ratio values fall between 0.2 and 0.5) and (3) physical properties (porosity, acoustic velocity). Regarding composition, samples are characterized by three major mineralogical assemblages, from pure calcite, dolomite, to quartz/clay mixing. If porosity is clearly the first order parameter controlling P-wave velocities, the mineralogical overprint can be accounted for the wide variability of the p-wave velocities at a given porosity (figure 1). The lower porosity-velocity relationship trend is dominated by samples with low to large quartz/clay proportions, whereas the higher trend is dominated by dolomitized samples. Two input parameters are extracted from the previous experimental observation: porosity and mineralogical composition of each sample. The pore aspect ratio is used as a fitting parameter, but always takes realistic value, falling closely in the range of the one extracted from the samples. Figure 2 shows that prediction is fairly good. For porosity lower than 20%, the predicted velocity is 9% accurate with an aspect ratio of 0.15. For higher porosity, the prediction is 13% accurate with an aspect ratio of 0.3. All in all, the used analytical predictions of the acoustic wave velocities are in very good agreements with the experimental data.

  18. Reliability Criteria for Thick Bonding Wire.

    PubMed

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  19. Reliability Criteria for Thick Bonding Wire

    PubMed Central

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  20. Nanocomposites with increased energy density through high aspect ratio PZT nanowires.

    PubMed

    Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A

    2011-01-07

    High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.

  1. Scanning tunneling microscope study of GaAs(001) surfaces grown by migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; Gallagher, M.C.; Willis, R.F.

    We report an investigation of the morphology of p-type GaAs(001) surfaces using scanning tunneling microscopy (STM). The substrates were prepared using two methods: migration enhanced epitaxy (MEE) and standard molecular-beam epitaxy (MBE). The STM measurements were performed ex situ using As decapping. Analysis indicates that the overall step density of the MEE samples decreases as the growth temperature is increased. Nominally flat samples grown at 300{degrees}C exhibited step densities of 10.5 steps/1000 {Angstrom} along [ 110] dropping to 2.5 steps at 580{degrees}C. MEE samples exhibited a lower step density than MBE samples. However as-grown surfaces exhibited a larger distribution ofmore » step heights. Annealing the samples reduced the step height distribution exposing fewer atomic layers. Samples grown by MEE at 580{degrees}C and annealed for 2 min displayed the lowest step density and the narrowest step height distribution. All samples displayed an anisotropic step density. We found a ratio of A-type to B-type steps of between 2 and 3 which directly reflects the difference in the incorporation energy at steps. The aspect ratio increased slightly with growth temperature. We found a similar aspect ratio on samples grown by MBE. This indicates that anisotropic growth during MEE, like MBE, is dominated by incorporation kinetics. MEE samples grown at 580{degrees}C and capped immediately following growth exhibited a number of {open_quotes}holes{close_quotes} in the surface. The holes could be eliminated by annealing the surface prior to quenching. 20 refs., 3 figs., 1 tab.« less

  2. Field emission from isolated individual vertically aligned carbon nanocones

    NASA Astrophysics Data System (ADS)

    Baylor, L. R.; Merkulov, V. I.; Ellis, E. D.; Guillorn, M. A.; Lowndes, D. H.; Melechko, A. V.; Simpson, M. L.; Whealton, J. H.

    2002-04-01

    Field emission from isolated individual vertically aligned carbon nanocones (VACNCs) has been measured using a small-diameter moveable probe. The probe was scanned parallel to the sample plane to locate the VACNCs, and perpendicular to the sample plane to measure the emission turn-on electric field of each VACNC. Individual VACNCs can be good field emitters. The emission threshold field depends on the geometric aspect ratio (height/tip radius) of the VACNC and is lowest when a sharp tip is present. VACNCs exposed to a reactive ion etch process demonstrate a lowered emission threshold field while maintaining a similar aspect ratio. Individual VACNCs can have low emission thresholds, carry high current densities, and have long emission lifetime. This makes them very promising for various field emission applications for which deterministic placement of the emitter with submicron accuracy is needed.

  3. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul

    2016-07-01

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  4. Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection.

    PubMed

    Becker, Nathan; Scheel, J D; Cross, M C; Ahlers, Guenter

    2006-06-01

    Experiments and simulations from a variety of sample sizes indicated that the centrifugal force significantly affects the domain-chaos state observed in rotating Rayleigh-Bénard convection-patterns. In a large-aspect-ratio sample, we observed a hybrid state consisting of domain chaos close to the sample center, surrounded by an annulus of nearly stationary nearly radial rolls populated by occasional defects reminiscent of undulation chaos. Although the Coriolis force is responsible for domain chaos, by comparing experiment and simulation we show that the centrifugal force is responsible for the radial rolls. Furthermore, simulations of the Boussinesq equations for smaller aspect ratios neglecting the centrifugal force yielded a domain precession-frequency f approximately epsilon(mu) with mu approximately equal to 1 as predicted by the amplitude-equation model for domain chaos, but contradicted by previous experiment. Additionally the simulations gave a domain size that was larger than in the experiment. When the centrifugal force was included in the simulation, mu and the domain size were consistent with experiment.

  5. Wafer Scale Fabrication of Dense and High Aspect Ratio Sub-50 nm Nanopillars from Phase Separation of Cross-Linkable Polysiloxane/Polystyrene Blend.

    PubMed

    Li, Yang; Hao, Yuli; Huang, Chunyu; Chen, Xingyao; Chen, Xinyu; Cui, Yushuang; Yuan, Changsheng; Qiu, Kai; Ge, Haixiong; Chen, Yanfeng

    2017-04-19

    We demonstrated a simple and effective approach to fabricate dense and high aspect ratio sub-50 nm pillars based on phase separation of a polymer blend composed of a cross-linkable polysiloxane and polystyrene (PS). In order to obtain the phase-separated domains with nanoscale size, a liquid prepolymer of cross-linkable polysiloxane was employed as one moiety for increasing the miscibility of the polymer blend. After phase separation via spin-coating, the dispersed domains of liquid polysiloxane with sub-50 nm size could be solidified by UV exposure. The solidified polysiloxane domains took the role of etching mask for formation of high aspect ratio nanopillars by O 2 reactive ion etching (RIE). The aspect ratio of the nanopillars could be further amplified by introduction of a polymer transfer layer underneath the polymer blend film. The effects of spin speeds, the weight ratio of the polysiloxane/PS blend, and the concentration of polysiloxane/PS blend in toluene on the characters of the nanopillars were investigated. The gold-coated nanopillar arrays exhibited a high Raman scattering enhancement factor in the range of 10 8 -10 9 with high uniformity across over the wafer scale sample. A superhydrophobic surface could be realized by coating a self-assembled monolayers (SAM) of fluoroalkyltrichlorosilane on the nanopillar arrays. Sub-50 nm silicon nanowires (SiNWs) with high aspect ratio of about 1000 were achieved by using the nanopillars as etching mask through a metal-assisted chemical etching process. They showed an ultralow reflectance of approximately 0.1% for wavelengths ranging from 200 to 800 nm.

  6. Positivity and well-being among community-residing elders and nursing home residents: what is the optimal affect balance?

    PubMed

    Meeks, Suzanne; Van Haitsma, Kimberly; Kostiwa, Irene; Murrell, Stanley A

    2012-07-01

    To explore whether a ratio of positive to negative affect, from the work of Fredricksen and Losada, could predict high levels of well-being in elderly samples and especially in nursing home residents despite multiple chronic health conditions, consonant with Ryff and Singer's notion of "flourishing under fire." We used two samples: a probability sample of community-residing elders and a sample from nursing homes. We calculated ratios of positive to negative affect in each sample and measured well-being with social interaction, mental health, life satisfaction, and general well-being. The positivity ratio of 2.9 differentiated high levels of well-being in both the samples, as in previous research on younger samples. Although we expected the positivity ratio to perform less well among nursing home residents, we found that it differentiated residents with high well-being just as well as in the community sample. The ability to regulate positive affect to maintain a relative ratio of positive over negative affect appears to be an important aspect of successful adjustment in late life. Further research is needed on objective indicators of quality of life and on whether intra-individual shifts in affect balance are coupled with shifts in indicators of positive mental health.

  7. Positivity and Well-being Among Community-Residing Elders and Nursing Home Residents: What Is the Optimal Affect Balance?

    PubMed Central

    Van Haitsma, Kimberly; Kostiwa, Irene; Murrell, Stanley A.

    2012-01-01

    Objectives: To explore whether a ratio of positive to negative affect, from the work of Fredricksen and Losada, could predict high levels of well-being in elderly samples and especially in nursing home residents despite multiple chronic health conditions, consonant with Ryff and Singer's notion of “flourishing under fire.” Method: We used two samples: a probability sample of community-residing elders and a sample from nursing homes. We calculated ratios of positive to negative affect in each sample and measured well-being with social interaction, mental health, life satisfaction, and general well-being. Results: The positivity ratio of 2.9 differentiated high levels of well-being in both the samples, as in previous research on younger samples. Discussion: Although we expected the positivity ratio to perform less well among nursing home residents, we found that it differentiated residents with high well-being just as well as in the community sample. The ability to regulate positive affect to maintain a relative ratio of positive over negative affect appears to be an important aspect of successful adjustment in late life. Further research is needed on objective indicators of quality of life and on whether intra-individual shifts in affect balance are coupled with shifts in indicators of positive mental health. PMID:22227736

  8. Effects of curing type, silica fume fineness, and fiber length on the mechanical properties and impact resistance of UHPFRC

    NASA Astrophysics Data System (ADS)

    Arel, Hasan Şahan

    The effects of silica fume fineness and fiber aspect ratio on the compressive strength and impact resistance of ultra high-performance fiber-reinforced concrete (UHPFRC) are investigated experimentally. To this end, UHPFRC mixtures are manufactured by combining silica fumes with different fineness (specific surface areas: 17,200, 20,000, and 27,600 m2/kg) and hooked-end steel fibers with various aspect ratios (lengths: 8, 13, and 16 mm). The samples are subjected to standard curing, steam curing, and hot-water curing. Compressive strength tests are conducted after 7-, 28-, 56-, and 90-day curing periods, and an impact resistance experiment is performed after the 90th day. A steam-cured mixture of silica fumes with a specific surface area of 27,600 m2/kg and 16-mm-long fibers produce better results than the other mixtures in terms of mechanical properties. Moreover, impact resistance increases with the fiber aspect ratio.

  9. Study of micropart fabrication via 17-4 PH stainless nanopowder injection molding.

    PubMed

    Tirta, Andy; Prasetyo, Yus; Baek, Eung-Ryul; Choi, Chul-Jin

    2011-01-01

    Micropart fabrication via 17-4 PH stainless nanopowder injection molding was investigated. The nanopowder was mixed with a binder that was based on wax to produce a feedstock composed of 45% powder and binder (the powder load). Initially, the fit and proper test was done before the micropart was made by making some bars of green samples, which the properties were examined after the sintering process. The examination involved the mechanical properties such as the porosity, hardness, and some of metallurgical aspects, such as the second-phase formation and the final compound after the sintering. The results showed that utilizing 17-4 PH stainless nanopowder is promising for micropart fabrication since it can form a nearly full-density sintered sample with a low porosity and good toughness, and can provide a smooth surface finish. After this, the investigations followed with the injection of the feedstock into the PDMS micromold that was formed by the nickel pattern from the X-Ray LIGA process. The green samples successfully produced a high-aspect-ratio sample with a thickness of up to 1 mm and an aspect ratio of 15 in the microchannel part. Then the green samples were sintered at 1,300 degrees C for 2 h, since from the initial test, they showed optimum parameters with nearly full density, low porosity, and a high degree of hardness. The research shows the excellent results of the application of the 17-4 PH stainless nanopowder to micropart fabrication.

  10. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    PubMed Central

    2011-01-01

    Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost-effective platform to evaluate the potential of engineered high aspect ratio nanomaterials, including carbon nanotubes, nanofibers, nanorods and metallic nanowires, to induce granulomas following inhalation. PMID:21592387

  11. Rectification of depth measurement using pulsed thermography with logarithmic peak second derivative method

    NASA Astrophysics Data System (ADS)

    Li, Xiaoli; Zeng, Zhi; Shen, Jingling; Zhang, Cunlin; Zhao, Yuejin

    2018-03-01

    Logarithmic peak second derivative (LPSD) method is the most popular method for depth prediction in pulsed thermography. It is widely accepted that this method is independent of defect size. The theoretical model for LPSD method is based on the one-dimensional solution of heat conduction without considering the effect of defect size. When a decay term considering defect aspect ratio is introduced into the solution to correct the three-dimensional thermal diffusion effect, we found that LPSD method is affected by defect size by analytical model. Furthermore, we constructed the relation between the characteristic time of LPSD method and defect aspect ratio, which was verified with the experimental results of stainless steel and glass fiber reinforced plate (GFRP) samples. We also proposed an improved LPSD method for depth prediction when the effect of defect size was considered, and the rectification results of stainless steel and GFRP samples were presented and discussed.

  12. Capillary-valve-based fabrication of ion-selective membrane junction for electrokinetic sample preconcentration in PDMS chip.

    PubMed

    Liu, Vincent; Song, Yong-Ak; Han, Jongyoon

    2010-06-07

    In this paper, we report a novel method for fabricating ion-selective membranes in poly(dimethylsiloxane) (PDMS)/glass-based microfluidic preconcentrators. Based on the concept of capillary valves, this fabrication method involves filling a lithographically patterned junction between two microchannels with an ion-selective material such as Nafion resin; subsequent curing results in a high aspect-ratio membrane for use in electrokinetic sample preconcentration. To demonstrate the concentration performance of this high-aspect-ratio, ion-selective membrane, we integrated the preconcentrator with a surface-based immunoassay for R-Phycoerythrin (RPE). Using a 1x PBS buffer system, the preconcentrator-enhanced immunoassay showed an approximately 100x improvement in sensitivity within 30 min. This is the first time that an electrokinetic microfluidic preconcentrator based on ion concentration polarization (ICP) has been used in high ionic strength buffer solutions to enhance the sensitivity of a surface-based immunoassay.

  13. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles.

    PubMed

    Reddy, Naveen Krishna; Pérez-Juste, Jorge; Pastoriza-Santos, Isabel; Lang, Peter R; Dhont, Jan K G; Liz-Marzán, Luis M; Vermant, Jan

    2011-06-28

    Particle shape plays an important role in controlling the optical, magnetic, and mechanical properties of nanoparticle suspensions as well as nanocomposites. However, characterizing the size, shape, and the associated polydispersity of nanoparticles is not straightforward. Electron microscopy provides an accurate measurement of the geometric properties, but sample preparation can be laborious, and to obtain statistically relevant data many particles need to be analyzed separately. Moreover, when the particles are suspended in a fluid, it is important to measure their hydrodynamic properties, as they determine aspects such as diffusion and the rheological behavior of suspensions. Methods that evaluate the dynamics of nanoparticles such as light scattering and rheo-optical methods accurately provide these hydrodynamic properties, but do necessitate a sufficient optical response. In the present work, three different methods for characterizing nonspherical gold nanoparticles are critically compared, especially taking into account the complex optical response of these particles. The different methods are evaluated in terms of their versatility to asses size, shape, and polydispersity. Among these, the rheo-optical technique is shown to be the most reliable method to obtain hydrodynamic aspect ratio and polydispersity for nonspherical gold nanoparticles for two reasons. First, the use of the evolution of the orientation angle makes effects of polydispersity less important. Second, the use of an external flow field gives a mathematically more robust relation between particle motion and aspect ratio, especially for particles with relatively small aspect ratios.

  14. The Effect of Cooling Passage Aspect Ratio on Curvature Heat Transfer Enhancement

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.

    1997-01-01

    A series of electrically heated tube experiments was performed to investigate the effect of high aspect ratio on curvature heat transfer enhancement in uniformly heated rectangular cooling passages. Three hardware geometries were tested: a baseline straight aspect ratio 10 tube, an aspect ratio 1 (square) tube with a 45 deg. curve, and an aspect ratio 10 tube with a 45 deg. curve. Gaseous nitrogen with the following properties was used as the coolant: ambient inlet temperature, pressures to 8.3 MPa, wall-to-bulk temperature ratios less than two, and Reynolds numbers based on hydraulic diameter ranging from 250,000 to 1,600,000. The measured curvature enhancement factors were compared to values predicted by three previously published models which had been developed for low aspect ratio tubes. The models were shown to be valid for the high aspect ratio tube as well the low aspect ratio tube, indicating that aspect ratio had little impact on the curvature heat transfer enhancement in these tests.

  15. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAMmore » potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.« less

  16. Strong geographical variation in wing aspect ratio of a damselfly, Calopteryx maculata (Odonata: Zygoptera)

    PubMed Central

    2015-01-01

    Geographical patterns in body size have been described across a wide range of species, leading to the development of a series of fundamental biological rules. However, shape variables are less well-described despite having substantial consequences for organism performance. Wing aspect ratio (AR) has been proposed as a key shape parameter that determines function in flying animals, with high AR corresponding to longer, thinner wings that promote high manoeuvrability, low speed flight, and low AR corresponding to shorter, broader wings that promote high efficiency long distance flight. From this principle it might be predicted that populations living in cooler areas would exhibit low AR wings to compensate for reduced muscle efficiency at lower temperatures. I test this hypothesis using the riverine damselfly, Calopteryx maculata, sampled from 34 sites across its range margin in North America. Nine hundred and seven male specimens were captured from across the 34 sites (mean = 26.7 ± 2.9 SE per site), dissected and measured to quantify the area and length of all four wings. Geometric morphometrics were employed to investigate geographical variation in wing shape. The majority of variation in wing shape involved changes in wing aspect ratio, confirmed independently by geometric morphometrics and wing measurements. There was a strong negative relationship between wing aspect ratio and the maximum temperature of the warmest month which varies from west-east in North America, creating a positive relationship with longitude. This pattern suggests that higher aspect ratio may be associated with areas in which greater flight efficiency is required: regions of lower temperatures during the flight season. I discuss my findings in light of research of the functional ecology of wing shape across vertebrate and invertebrate taxa. PMID:26336648

  17. Ultrafast studies of gold, nickel, and palladium nanorods

    NASA Astrophysics Data System (ADS)

    Sando, Gerald M.; Berry, Alan D.; Owrutsky, Jeffrey C.

    2007-08-01

    Steady state and ultrafast transient absorption studies have been carried out for gold, nickel, and palladium high aspect ratio nanorods. For each metal, nanorods were fabricated by electrochemical deposition into ˜6μm thick polycarbonate templates. Two nominal pore diameters(10 and 30nm, resulting in nanorod diameters of about 40 and 60nm, respectively) were used, yielding nanorods with high aspect ratios (>25). Static spectra of nanorods of all three metals reveal both a longitudinal surface plasmon resonance (SPRL) band in the mid-infrared as well as a transverse band in the visible for the gold and larger diameter nickel and palladium nanorods. The appearance of SPRL bands in the infrared for high aspect ratio metal nanorods and the trends in their maxima for the different aspect ratios and metals are consistent with calculations based on the Gans theory. For the gold and nickel samples, time resolved studies were performed with a subpicosecond resolution using 400nm excitation and a wide range of probe wavelengths from the visible to the mid-IR as well as for infrared excitation (near 2000cm-1) probed at 800nm. The dynamics observed for nanorods of both metals and both diameters include transients due to electron-phonon coupling and impulsively excited coherent acoustic breathing mode oscillations, which are similar to those previously reported for spherical and smaller rod-shaped gold nanoparticles. The dynamics we observe are the same within the experimental uncertainty for 400nm and infrared (5μm) excitation probed at 800nm. The transient absorption using 400nm excitation and 800nm probe pulses of the palladium nanorods also reveal coherent acoustic oscillations. The results demonstrate that the dynamics for high aspect ratio metal nanorods are similar to those for smaller nanoparticles.

  18. Electron microscope phase enhancement

    DOEpatents

    Jin, Jian; Glaeser, Robert M.

    2010-06-15

    A microfabricated electron phase shift element is used for modifying the phase characteristics of an electron beam passing though its center aperture, while not affecting the more divergent portion of an incident beam to selectively provide a ninety-degree phase shift to the unscattered beam in the back focal plan of the objective lens, in order to realize Zernike-type, in-focus phase contrast in an electron microscope. One application of the element is to increase the contrast of an electron microscope for viewing weakly scattering samples while in focus. Typical weakly scattering samples include biological samples such as macromolecules, or perhaps cells. Preliminary experimental images demonstrate that these devices do apply a ninety degree phase shift as expected. Electrostatic calculations have been used to determine that fringing fields in the region of the scattered electron beams will cause a negligible phase shift as long as the ratio of electrode length to the transverse feature-size aperture is about 5:1. Calculations are underway to determine the feasibility of aspect smaller aspect ratios of about 3:1 and about 2:1.

  19. The relationship between hardness to the tensile properties of kenaf/ unsaturated polyester composite

    NASA Astrophysics Data System (ADS)

    Ghaztar, Muhammad Mustakim Mohd; Romli, Ahmad Zafir; Ibrahim, Nik Noor Idayu Nik

    2017-12-01

    The level of fibre-matrix interaction and consolidation are essential aspects to determine the composite deformation but, less attention is given to the effect of small fibre weight increment (5 wt%), chemical treatment coalition (NaOH/ silane), fibre's length and aspect ratio to the physical and mechanical properties of the composite. Hence, this paper studies the correlation between these parameters towards hardness and tensile properties of Kenaf fibre and unsaturated polyester (UP) matrix. The study was carried out by fabricating the sample into two (2) types of fibre categories and fibre loadings and tested to determine its properties. The results showed that the hardness and tensile stress were significantly influenced by the fibre loading and dispersion of the fabricated samples. At low filler loading, the treated samples for both fibre sizes showed lower hardness property compared to the untreated samples. The chemical treatment coalition might diffuse out the pectin and hemicellulose which affect the ability of the fibre to absorb the force applied by the hardness indenter. Good fibre dispersion observed for the treated samples also resulted in the fibre-dominating composite system where the fibres were efficiently absorbed and distributed the indentation force. However, chemical treatments and good fibre dispersion contributed to the higher tensile stress of the treated fibre samples especially for smaller fibre length and aspect ratio compared to the untreated samples. At high fibre loading, treated fibre samples showed higher hardness property compared to the untreated samples since the treatment resulted in better fibre wetting by the matrix and the formation of pack structure. However, high fibre loading caused the mutual abrasion among the fibre which led to the lower tensile stress compared to the low fibre loading samples. In conclusion, by understanding the factors that influenced the reinforcing mechanism of the composite, the inconsistency of natural based composite strength can be resolved.

  20. Core compressor exit stage study, 2

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Burdsall, E. A.; Canal, E., Jr.; Korn, N. D.

    1979-01-01

    A total of two three-stage compressors were designed and tested to determine the effects of aspect ratio on compressor performance. The first compressor was designed with an aspect ratio of 0.81; the other, with an aspect ratio of 1.22. Both compressors had a hub-tip ratio of 0.915, representative of the rear stages of a core compressor, and both were designed to achieve a 15.0% surge margin at design pressure ratios of 1.357 and 1.324, respectively, at a mean wheel speed of 167 m/sec. At design speed the 0.81 aspect ratio compressor achieved a pressure ratio of 1.346 at a corrected flow of 4.28 kg/sec and an adiabatic efficiency of 86.1%. The 1.22 aspect ratio design achieved a pressure ratio of 1.314 at 4.35 kg/sec flow and 87.0% adiabatic efficiency. Surge margin to peak efficiency was 24.0% with the lower aspect ratio blading, compared with 12.4% with the higher aspect ratio blading.

  1. Tuning filler shape, surface chemistry and ion content in nanofilled polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ganapatibhotla, Lalitha V. N. R.

    We investigate how nanofiller surface chemistry and aspect ratio affect the performance of nanofilled solid polymer electrolytes. Polymer-based electrolytes are an attractive alternative to the organic electrolytes currently used in lithium ion batteries. We characterize acidic nanoparticle filled electrolytes and compare them to neutral particle-filled electrolytes previously measured in our lab. Dielectric spectroscopy measurements indicate that the highest increase in conductivity occurs at the eutectic composition (EO/Li=10) and is independent of filler surface chemistry. We measure PEO dynamics using quasi-elastic neutron scattering and do not observe any change in polymer dynamics with particle surface chemistry. When we examine the elastic incoherent structure factor associated with the rotational process, fillers are found to restrict the rotation of the highly conducting PEO6:LiClO4 tunnels. At the eutectic composition, these tunnels are stabilized at the filler surface even above PEO melting temperature. Marginal stability theory predicts formation of alternating layers of coexisting phases at the eutectic composition. We propose a new mechanism, via stabilization of alternating layers of PEO and highly conducting PEO 6:LiClO4 tunnels at the filler surface. When compared to spherical particles, more such structures would be stabilized at a filler surface with high aspect ratio. Consistent with this hypothesis, neutral gamma-Al2O3 nanowhiskers (2-4 nm in diameter and 200-400 nm in length) intensify the effect of neutral gamma-Al 2O3 nanoparticles. The diameters of the two fillers are similar, but the change in aspect ratio (1 to 100) improves conductivity by a factor of 5. This enhancement occurs at battery operation temperatures! Although the change in aspect ratio does not affect thermal transitions and segmental dynamics at optimal whisker loading, the rotation of PEO6 remnants is distinct at the eutectic composition. Because the mechanism by which nanofillers enhance conductivity is related to stabilization of conducting structures at the filler-electrolyte interface, we determine the interface morphology using neutron reflectometry. For this, we spin-coat the unfilled electrolytes EO/Li = 8, 10 on sapphire substrate, which has the same surface chemistry as alpha-Al2O3. When freshly-spin coated on sapphire substrate, the non-eutectic sample does not exhibit any segregation of layers. The freshly spin-coated eutectic sample forms layers with alternating high and low salt concentrations, very similar to the eutectic lamellae predicted by the marginal stability theory for eutectic solidification. Such lamellae do not develop further when the sample is annealed at eutectic temperature and the salt concentration in the polymer decreases gradually away from the surface of sapphire. To take fullest advantage of the surface mechanism and obtain larger increases in conductivity we tailor the aspect ratio of high aspect ratio fillers. Commercial availability of alumina nanowhiskers is limited to neutral surface chemistry and aspect ratio of 100, cellulose nanowhiskers provide a model system where a wide range of surface chemistries may be accessed with variable aspect ratio. We synthesized cellulose whiskers of two different aspect ratios [cotton whiskers: aspect ratio ˜ 10, acetobacter whiskers: aspect ratio ˜ 200] and tested their influence on conductivity and morphology of polymer electrolytes. Similar to all fillers studied in this work, both types of cellulose whiskers provide highest increase in conductivity at the eutectic composition, with the longer acetobacter whiskers providing a marginally higher increase than the cotton whiskers. Although both cellulose whiskers do not alter the crystallinity or glass transition temperature at the optimal 1 wt% loading, they amplify the faint cold crystallization behavior observed in the unfilled eutectic electrolyte without changing the overall crystallinity. At the non-eutectic compositions, cellulose whiskers behave similar to the acidic nanoparticles. To determine the function of nanofillers in entire composition range of the phase diagram, we extend the range of measurements on the nanofilled PEO+LiClO4 electrolyte to EO/Li = 4 to 100. Because PEO+LiAsF 6 electrolytes have similar phase diagram as the PEO+LiClO4 electrolytes, we augment the study of nanofilled PEO+LiAsF6 complexes to the PEO+LiClO4 electrolytes. At compositions near the high and low ends of the phase diagram, the effect of nanofillers on conductivity is governed by reduction in crystallinity of PEO and PEO-salt complexes. In the absence of PEO6, fillers interact directly with PEO and suppress crystallization. This is consistent with the reflectometry experiment where sapphire surface prefers to interact with the salt-rich layers. Around the eutectic composition fillers restrict the highly conducting PEO6 complex at their surface and any increase in conductivity is due to stabilization of these conducting tunnels. For room temperature applications, lithium hexafluoroarsenate seems to be the better salt than lithium perchlorate. At temperatures higher than the eutectic temperature (50°C), conductivity levels off at the value set by the eutectic composition. (Abstract shortened by ProQuest.).

  2. Magnetic hysteresis classification of the lunar surface and the interpretation of permanent remanence in lunar surface samples

    NASA Technical Reports Server (NTRS)

    Wasilewski, P.

    1972-01-01

    A magnetic hysteresis classification of the lunar surface is presented. It was found that there is a distinct correlation between natural remanence (NRM), saturation magnetization, and the hysteresis ratios for the rock samples. The hysteresis classification is able to explain some aspects of time dependent magnetization in the lunar samples and relates the initial susceptibility to NRM, viscous remanence, and to other aspects of magnetization in lunar samples. It is also considered that since up to 60% of the iron in the lunar soil may be super paramagnetic at 400 K, and only 10% at 100 K, the 50% which becomes ferromagnetic over the cycle has the characteristics of thermoremanence and may provide for an enhancement in measurable field on the dark side during a subsatellite magnetometer circuit.

  3. Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst

    NASA Astrophysics Data System (ADS)

    Pourreza, M.; Naseri, N.

    2017-11-01

    Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown nanoflakes (density and aspect ratio based on SEM results) has been derived. According to a comprehensive study of the flakes’ electrocatalytic performance in WOR, the optimized sample fabricated with a moderate electrodeposition current density (7 mA cm-2) and duration time (2000 s) revealed the highest density (7.6  ×  108 cm-2) and aspect ratio (7.1) as well as the lowest values for overpotential (OP  =  324 mV) and charge transfer resistance (14 Ω). This designed array of Co-based nanoflakes also showed the lowest value of overpotential for bare cobalt-based WOR electrocatalysts reported yet. High and low values for deposition current density and/or deposition time had a negative effect on the sample surface, leaving some areas without any flakes or with incomplete and inefficient formation of nanoflakes with low densities and aspect ratios. A similar effect was observed for annealed samples in the range of 200-400 °C. Based on recorded overpotentials and extracted surface morphological parameters, a linear and logarithmic behavior in overpotential-flake density dependency was proposed for current density and time controlled systems, respectively.

  4. Experimental analysis for fabrication of high-aspect-ratio piezoelectric ceramic structure by micro-powder injection molding process

    NASA Astrophysics Data System (ADS)

    Han, Jun Sae; Gal, Chang Woo; Park, Jae Man; Kim, Jong Hyun; Park, Seong Jin

    2018-04-01

    Aspect ratio effects in the micro-powder injection molding process were experimentally analyzed for fabrication of high-aspect-ratio piezoelectric ceramic structure. The mechanisms of critical defects have been studied according to individual manufacturing steps. In the molding process, incomplete filling phenomenon determines the critical aspect ratios of a micro pattern. According to mold temperature, an incomplete filling phenomenon has been analyzed with respect to different pattern sizes and aspect ratio. In demolding and drying process, the capillary behavior of sacrificial polymeric mold insert determines the critical aspect ratio of a micro pattern. With respect to pattern dimensions, slumping behavior has been analyzed. Based on our current systems, micro PZT feature has stability when it has lower aspect ratio than 5. Under optimized processing conditions, 20 μm and 40 μm ceramic rod array feature which has 5 of aspect ratio were successfully fabricated by the developed process. Further modification points to fabricate the smaller and higher feature were specifically addressed.

  5. A minimally invasive micro sampler for quantitative sampling with an ultrahigh-aspect-ratio microneedle and a PDMS actuator.

    PubMed

    Liu, Long; Wang, Yan; Yao, Jinyuan; Yang, Cuijun; Ding, Guifu

    2016-08-01

    This study describes a novel micro sampler consisting of an ultrahigh-aspect-ratio microneedle and a PDMS actuator. The microneedle was fabricated by a new method which introduced reshaped photoresist technology to form a flow channel inside. The microneedle includes two parts: shaft and pedestal. In this study, the shaft length is 1500 μm with a 45° taper angle on the tip and pedestal is 1000 μm. Besides, the shaft and pedestal are connected by an arc connection structure with a length of 600 μm. The microneedles have sufficient mechanical strength to insert into skin with a wide safety margin which was proved by mechanics tests. Moreover, a PDMS actuator with a chamber inside was designed and fabricated in this study. The chamber, acting as a reservoir in sampling process as well as providing power, was optimized by finite element analysis (FEA) to decrease dead volume and improve sampling precision. The micro sampler just needs finger press to activate the sampling process as well as used for quantitative micro injection to some extent. And a volume of 31.5 ± 0.8 μl blood was successfully sampled from the ear artery of a rabbit. This micro sampler is suitable for micro sampling for diagnose or therapy in biomedical field.

  6. Physiological responses of Yellowstone bison to winter nutritional deprivation

    USGS Publications Warehouse

    DelGiudice, Glenn D.; Singer, Francis J.; Seal, Ulysses S.; Bowser, Gillian

    1994-01-01

    Because nutrition is critically related to other aspects of bison (Bison bison) ecology, and the winter ranges inhabited by bison in Yellowstone National Park (YNP) are ecologically diverse, it was important to determine if nutritional deprivation differences occurred among winter ranges. We used chemistry profiles of urine suspended in snow to compare nutritional deprivation of bison from January to April 1988 on 4 sampling areas of 3 winter ranges in YNP. Declining (P < 0.001) trends of urinary potassium: creatinine ratios in bison on all 4 sampling areas indicated progressive nutritional deprivation through late March. Concurrent increases (P ≤ 0.001) in mean urea nitrogen: creatinine ratios from late February through late march in 3 of 4 areas suggested that increased net catabolism was occurring. Diminished creatinine ratios of sodium and phosphorus reflected low dietary intake of these minerals throughout winter. Mean values and trends of urinary characteristics indicated nutritional deprivation varied among 3 winter ranges in YNP. Continued physiological monitoring of nutritional deprivation, along with detailed examination of other aspects of the bison's ecology, will provide greater insight into the role of ungulate nutrition in the dynamics of such a complex system and improve management.

  7. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    DOE PAGES

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvetmore » samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. Furthermore, the results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.« less

  8. Secondary electron emission yield from high aspect ratio carbon velvet surfaces

    NASA Astrophysics Data System (ADS)

    Jin, Chenggang; Ottaviano, Angelica; Raitses, Yevgeny

    2017-11-01

    The plasma electrons bombarding a plasma-facing wall surface can induce secondary electron emission (SEE) from the wall. A strong SEE can enhance the power losses by reducing the wall sheath potential and thereby increasing the electron flux from the plasma to the wall. The use of the materials with surface roughness and the engineered materials with surface architecture is known to reduce the effective SEE by trapping the secondary electrons. In this work, we demonstrate a 65% reduction of SEE yield using a velvet material consisting of high aspect ratio carbon fibers. The measurements of SEE yield for different velvet samples using the electron beam in vacuum demonstrate the dependence of the SEE yield on the fiber length and the packing density, which is strongly affected by the alignment of long velvet fibers with respect to the electron beam impinging on the velvet sample. The results of SEE measurements support the previous observations of the reduced SEE measured in Hall thrusters.

  9. On averaging aspect ratios and distortion parameters over ice crystal population ensembles for estimating effective scattering asymmetry parameters

    PubMed Central

    van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Fridlind, Ann M.; Cairns, Brian

    2017-01-01

    The use of ensemble-average values of aspect ratio and distortion parameter of hexagonal ice prisms for the estimation of ensemble-average scattering asymmetry parameters is evaluated. Using crystal aspect ratios greater than unity generally leads to ensemble-average values of aspect ratio that are inconsistent with the ensemble-average asymmetry parameters. When a definition of aspect ratio is used that limits the aspect ratio to below unity (α≤1) for both hexagonal plates and columns, the effective asymmetry parameters calculated using ensemble-average aspect ratios are generally consistent with ensemble-average asymmetry parameters, especially if aspect ratios are geometrically averaged. Ensemble-average distortion parameters generally also yield effective asymmetry parameters that are largely consistent with ensemble-average asymmetry parameters. In the case of mixtures of plates and columns, it is recommended to geometrically average the α≤1 aspect ratios and to subsequently calculate the effective asymmetry parameter using a column or plate geometry when the contribution by columns to a given mixture’s total projected area is greater or lower than 50%, respectively. In addition, we show that ensemble-average aspect ratios, distortion parameters and asymmetry parameters can generally be retrieved accurately from simulated multi-directional polarization measurements based on mixtures of varying columns and plates. However, such retrievals tend to be somewhat biased toward yielding column-like aspect ratios. Furthermore, generally large retrieval errors can occur for mixtures with approximately equal contributions of columns and plates and for ensembles with strong contributions of thin plates. PMID:28983127

  10. Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor

    NASA Technical Reports Server (NTRS)

    Reid, L.; Moore, R. D.

    1978-01-01

    The detailed design and overall performances of four inlet stages for an advanced core compressor are presented. These four stages represent two levels of design total pressure ratio (1.82 and 2.05), two levels of rotor aspect ratio (1.19 and 1.63), and two levels of stator aspect ratio (1.26 and 1.78). The individual stages were tested over the stable operating flow range at 70, 90, and 100 percent of design speeds. The performances of the low aspect ratio configurations were substantially better than those of the high aspect ratio configurations. The two low aspect ratio configurations achieved peak efficiencies of 0.876 and 0.872 and corresponding stage efficiencies of 0.845 and 0.840. The high aspect ratio configurations achieved peak ratio efficiencies of 0.851 and 0.849 and corresponding stage efficiencies of 0.821 and 0.831.

  11. A Widely-Accessible Distributed MEMS Processing Environment. The MEMS Exchange Program

    DTIC Science & Technology

    2012-10-29

    promise for high-aspect and deep etching into fused silica. This process capability is important for a DARPA project called the Navigation-Grade...on fused silica samples that appear to allow 2 to 1 aspect ratios in fused silica with a depth of etch of around 125 microns – a dramatic result in a...very hard to etch material such as fused silica! After receiving approval from DARPA, the MEMS Exchange purchased a previously- owned Ulvac etcher

  12. Effects of Blowing Spanwise from the Tips of Low-Aspect Ratio Wings of Varying Taper Ratio, with Application to Improving STOL Capability of Fighter Aircraft.

    DTIC Science & Technology

    1983-02-01

    aspect ratio is relatively small. Brooks (ref. 1) worked with rectangular fins of 0.62 and 1.24 aspect ratio in a water medium and showed very large ...airflow rates. Lloyd (ref. 3) worked with an aspect ratio 2.0 rectangular wing using a very wide range of jet momentum coefficient; his results were in...D-A1i35 688 EFFECTS OF BLOWING SPANWISE FROM THE TIPS OF LOW ASPECT in, RATIO WINGS OF VA .(U) NIELSEN ENGINEERING AND RESEARCH INC MOUNTAIN VIEW CA

  13. Numerical studies of the reversed-field pinch at high aspect ratio

    NASA Astrophysics Data System (ADS)

    Sätherblom, H.-E.; Drake, J. R.

    1998-10-01

    The reversed field pinch (RFP) configuration at an aspect ratio of 8.8 is studied numerically by means of the three-dimensional magnetohydrodynamic code DEBS [D. D. Schnack et al., J. Comput. Phys. 70, 330 (1987)]. This aspect ratio is equal to that of the Extrap T1 experiment [S. Mazur et al., Nucl. Fusion 34, 427 (1994)]. A numerical study of a RFP with this level of aspect ratio requires extensive computer achievements and has hitherto not been performed. The results are compared with previous studies [Y. L. Ho et al., Phys. Plasmas 2, 3407 (1995)] of lower aspect ratio RFP configurations. In particular, an evaluation of the extrapolation to the aspect ratio of 8.8 made in this previous study shows that the extrapolation of the spectral spread, as well as most of the other findings, are confirmed. An important exception, however, is the magnetic diffusion coefficient, which is found to decrease with aspect ratio. Furthermore, an aspect ratio dependence of the magnetic energy and of the helicity of the RFP is found.

  14. Ultra-thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures.

    PubMed

    Belu, A; Schnitker, J; Bertazzo, S; Neumann, E; Mayer, D; Offenhäusser, A; Santoro, F

    2016-07-01

    The preparation of biological cells for either scanning or transmission electron microscopy requires a complex process of fixation, dehydration and drying. Critical point drying is commonly used for samples investigated with a scanning electron beam, whereas resin-infiltration is typically used for transmission electron microscopy. Critical point drying may cause cracks at the cellular surface and a sponge-like morphology of nondistinguishable intracellular compartments. Resin-infiltrated biological samples result in a solid block of resin, which can be further processed by mechanical sectioning, however that does not allow a top view examination of small cell-cell and cell-surface contacts. Here, we propose a method for removing resin excess on biological samples before effective polymerization. In this way the cells result to be embedded in an ultra-thin layer of epoxy resin. This novel method highlights in contrast to standard methods the imaging of individual cells not only on nanostructured planar surfaces but also on topologically challenging substrates with high aspect ratio three-dimensional features by scanning electron microscopy. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  15. An investigation of the effect of aspect and compression ratios on sediment dispersion using discrete element modelling

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Tan, Danielle S.

    2017-12-01

    We use discrete element modelling to simulate a system of sand being released underwater, similar to the process of releasing sediment tailings back into the sea in nodule harvesting, in 2D. The force model includes concentration-dependent drag, buoyancy, `added mass' and Stokeslet disturbance. For a fixed number of uniform-sized particles, we vary the aspect ratio and the compression ratio of the rectangular mass of granular media pre-release. We observed that the spreading leads to a nonlinear increase with aspect ratio. On the other hand, when the compression ratio is increased, the total spreading increases; however the spread of the bulk of the sand decreases at small aspect ratios and increases at large aspect ratios. We proposed a simple theoretical model for the horizontal spreading which depends on both the aspect and compression ratios.

  16. Towards Solving the Conundrum of Fast-Spread Ocean Crust Formation: Insights from Textural Analysis of Gabbroic Rocks from Pito Deep and Hess Deep, East Pacific Rise

    NASA Astrophysics Data System (ADS)

    Brown, T. C.; Cheadle, M. J.; John, B. E.; Coogan, L. A.; Gee, J. S.; Karson, J. A.; Meyer, R.; Ceuleneer, G.; Swapp, S.

    2014-12-01

    Few examples of in situ fast-spread lower ocean crust exist for sampling. Here we present detailed textural analyses of two sample sets that formed at the East Pacific Rise, collected from tectonic windows at Pito (PD) and Hess (HD) deeps. PD samples (collected by ROV) span the upper ~900 m of lower crust. HD samples (collected by seafloor drilling during IODP Exp. 345) come from >1500 m below the sheeted dike gabbro transition (mbsd). PD gabbroic rock textures are consistent with a gabbro glacier flow model generating the uppermost plutonic crust. Shallow samples (41-72 mbsd) likely formed at the distal edge of the magma lens, analogous to similar rocks from Oman. These gabbros are relatively evolved (cpx Mg#75-77, An53-61 and 1-4% Fe-Ti oxides), and have elongate plagioclase grains (aspect ratios up to 1:2:10) exhibiting a strong shape preferred orientation (SPO) with <40% of grains showing dislocation creep textures. Deeper samples (177-876 mbsd) likely began crystallizing in the magma lens then subsided and 'flowed' through the underlying mush zone. These gabbros are more primitive below 386 mbsd (Fo83-88, cpx Mg# 85-89 and An70-82), and plagioclase grains have more equilibrated morphologies (aspect ratios < 1:2:6) that define ~vertical SPOs which increase in strength with depth. Plagioclase exhibits magmatic crystal-lattice preferred orientations (CPOs) which are also vertical. Significantly, the proportion of grains showing dislocation creep textures increases with depth, and plagioclase grain size distributions show a smaller range of sizes at depth; observations that perhaps reflect the effect of increasing strain with depth. IODP Hole U1415I at HD recovered gabbros and troctolitic gabbros from the mid lower crust that show distinctive cm-dm scale modal layering. Strong plagioclase SPOs parallel layering and magmatic CPOs vary dramatically in strength over just 4.5 m of core. Plagioclase grains are relatively equant (aspect ratios < 1:2:4), wrap around large cpx oikocrysts, and exhibit fewer dislocation creep textures than the PD gabbros. These observations perhaps suggest primary crystal accumulation rather than bulk strain/flow. The similar mineralogy and textures of these samples to those from the Rum layered intrusion suggest HD U1415I gabbros may have formed by mid-crust sill injection.

  17. Designed Synthesis of CeO2 Nanorods and Nanowires for Studying Toxicological Effects of High Aspect Ratio Nanomaterials

    PubMed Central

    Ji, Zhaoxia; Wang, Xiang; Zhang, Haiyuan; Lin, Sijie; Meng, Huan; Sun, Bingbing; George, Saji; Xia, Tian; Nel, André E.; Zink, Jeffrey I.

    2012-01-01

    While it has been shown that high aspect ratio nanomaterials like carbon nanotubes and TiO2 nanowires can induce toxicity by acting as fiber-like substances that damage the lysosome, it is not clear what the critical lengths and aspect ratios are that induce this type of toxicity. To answer this question, we synthesized a series of cerium oxide (CeO2) nanorods and nanowires with precisely controlled lengths and aspect ratios. Both phosphate and chloride ions were shown to play critical roles in obtaining these high aspect ratio nanostructures. High resolution TEM analysis shows that single crystalline CeO2 nanorods/nanowires were formed along the [211] direction by an “oriented attachment” mechanism, followed by Ostwald ripening. The successful creation of a comprehensive CeO2 nanorod/nanowire combinatorial library allows, for the first time, the systematic study of the effect of aspect ratio on lysosomal damage, cytoxicity and IL-1β production by the human myeloid cell line (THP-1). This in vitro toxicity study demonstrated that at lengths ≥200 nm and aspect ratios ≥ 22, CeO2 nanorods induced progressive cytotoxicity and pro-inflammatory effects. The relatively low “critical” length and aspect ratio were associated with small nanorod/nanowire diameters (6–10 nm), which facilitates the formation of stacking bundles due to strong van der Waals and dipole-dipole attractions. Our results suggest that both length and diameter components of aspect ratio should be considered when addressing the cytotoxic effects of long aspect ratio materials. PMID:22564147

  18. The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Kao, Chien-Chih; Su, Yan-Kuin; Lin, Chuing-Liang; Chen, Jian-Jhong

    2010-07-01

    The nanopatterned sapphire substrates (NPSSs) with aspect ratio that varied from 2.00 to 2.50 were fabricated by nanoimprint lithography. We could improve the epitaxial film quality and enhance the light extraction efficiency by NPSS technique. In this work, the aspect ratio effects on the performances of GaN-based light-emitting diodes (LEDs) with NPSS were investigated. The light output enhancement of GaN-based LEDs with NPSS was increased from 11% to 27% as the aspect ratio of the NPSS increases from 2.00 to 2.50. Owing to the same improvement of crystalline quality by using various aspect ratios of NPSS, these results indicated that the aspect ratio of the NPSS is strongly related to the light extraction efficiency.

  19. Numerical simulations of vortex-induced vibrations of a flexible riser with different aspect ratiosin uniform and shear currents

    NASA Astrophysics Data System (ADS)

    Duanmu, Yu; Zou, Lu; Wan, De-cheng

    2017-12-01

    This paper aimed at describing numerical simulations of vortex-induced vibrations (VIVs) of a long flexible riser with different length-to-diameter ratio (aspect ratio) in uniform and shear currents. Three aspect ratios were simulated: L/D = 500, 750 and 1 000. The simulation was carried out by the in-house computational fluid dynamics (CFD) solver viv-FOAM-SJTU developed by the authors, which was coupled with the strip method and developed on the OpenFOAM platform. Moreover, the radial basis function (RBF) dynamic grid technique is applied to the viv-FOAM-SJTU solver to simulate the VIV in both in-line (IL) and cross-flow (CF) directions of flexible riser with high aspect ratio. The validation of the benchmark case has been completed. With the same parameters, the aspect ratio shows a significant influence on VIV of a long flexible riser. The increase of aspect ratio exerted a strong effect on the IL equilibrium position of the riser while producing little effect on the curvature of riser. With the aspect ratio rose from 500 to 1 000, the maximum IL mean displacement increased from 3 times the diameter to 8 times the diameter. On the other hand, the vibration mode of the riser would increase with the increase of aspect ratio. When the aspect ratio was 500, the CF vibration was shown as a standing wave with a 3rd order single mode. When the aspect ratio was 1 000, the modal weights of the 5th and 6th modes are high, serving as the dominant modes. The effect of the flow profile on the oscillating mode becomes more and more apparent when the aspect ratio is high, and the dominant mode of riser in shear flow is usually higher than that in uniform flow. When the aspect ratio was 750, the CF oscillations in both uniform flow and shear flow showed multi-mode vibration of the 4th and 5th mode. While, the dominant mode in uniform flow is the 4th order, and the dominant mode in shear flow is the 5th order.

  20. Assessment of densification and mechanical property of AISI 8630 steel composition on different heat treatments produced through hot upsetting powder preform forging

    NASA Astrophysics Data System (ADS)

    Bala, Y. G.; Sankaranarayanan, S. Raman; Pandey, K. S.

    2015-11-01

    The present investigation was carried out to evaluate the densification, mechanical properties, microstructural and fractrography effects of AISI 8630 steel composition developed through powder preform forging under different heat treated conditions. Sintered preforms of different aspect ratios such as 0.6, 0.9, and 1.2 were hot upset forged to disc shape to different height strain to analysis the densification mechanism. Certain relationships relating strains, Poisson's ratio relating densification have revealed the effect of preform geometry on densification kinetics and resulted in the polynomial expression with justified regression coefficient greater the 0.9 or unity. The preforms of aspect ratio of 1.1 were hot upset forged to square cross section bars and transferred to different quenching medium like oil, water, furnace and air to assess its mechanical properties. Comparing the temperament of the heat treatments, sintered forged homogenised water quenched sample upshot in the maximum Tensile strength with least per centage elongation andthe furnace cooled sample shows the maximum toughness with desirable per centage elongation and least tensile strength. Microstructure stated the presence of varying ferrite and pearlite distribution and fractograph studies has disclosed the mixed mode of failure on the effect of varying heat treatments progression has affected the properties significantly.

  1. Aerodynamic Characteristics of Low-Aspect-Ratio Wings in Close Proximity to the Ground

    NASA Technical Reports Server (NTRS)

    Fink, Marvin P.; Lastinger, James L.

    1961-01-01

    A wind-tunnel investigation has been conducted to determine the effect of ground proximity on the aerodynamic characteristics of thick highly cambered rectangular wings with aspect ratios of 1. 2, 4, and 6. The results showed that, for these aspect ratios, as the ground war, approached all wings experienced increases in lift-curve slope and reductions in induced drag which resulted in increases in lift-drag ratio. Although an increase in lift-curve slope was obtained for all aspect ratios as the ground was approached, the lift coefficient at an angle of attack of 0 deg for any given aspect ratio remained nearly constant. The experimental results were in general agreement with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77). As the wings approached the ground, there was an increase in static longitudinal stability at positive angles of attack. When operating in ground effect, all the wings had stability of height at positive angles of attack and instability of height at negative angles of attack. Wing-tip fairings on the wings with aspect ratios of 1 and 2 produced small increases in lift-drag ratio in ground effect. End plates extending only below the chord plane on the wing with an aspect ratio of 1 provided increases in lift coefficient and in lift-drag ratio in ground effect.

  2. Micro-computed Tomographic Analysis of Mandibular Second Molars with C-shaped Root Canals.

    PubMed

    Amoroso-Silva, Pablo Andrés; Ordinola-Zapata, Ronald; Duarte, Marco Antonio Hungaro; Gutmann, James L; del Carpio-Perochena, Aldo; Bramante, Clovis Monteiro; de Moraes, Ivaldo Gomes

    2015-06-01

    The goal of the present study was to evaluate the morphometric aspects of the internal anatomy of the root canal system of mandibular second molars with C-shaped canals. Fifty-two extracted second mandibular molars with C-shaped canals, fused roots, and radicular grooves were selected from a Brazilian population. The samples were scanned with a micro-computed tomographic scanner at a voxel size of 19.6 μm. The root canal cross sections were recorded as C1, C2, C3, and C4 root canal configurations according to the modified Melton classification. Morphometric parameters, including the major and minor diameters of the root canals, the aspect ratio, the roundness, and the tridimensional configuration (merging, symmetric, and asymmetric), were evaluated. The 3-dimensional reconstruction images of the teeth indicated an even distribution within the sample. The analysis of the prevalence of the different cross-sectional configurations of the C-shaped molars revealed that these were predominantly of the C4 and C3 configurations (1 mm from the apex) and the C1 and C2 configurations in the cervical third. According to the morphometric parameters, the C1 and the distal aspect of the C2 configurations exhibited the lowest roundness values and higher values for the area, major diameter, and aspect ratio in the apical third. Mandibular molars with C-shaped root canals exhibited similar distributions of symmetric, asymmetric, and merging type canals. The C1 configuration and the distal aspect of the C2 configuration exhibited the highest area values, low roundness values, and large apical diameters. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Large eddy simulation on Rayleigh–Bénard convection of cold water in the neighborhood of the maximum density

    NASA Astrophysics Data System (ADS)

    Huang, Xiao-Jie; Zhang, Li; Hu, Yu-Peng; Li, You-Rong

    2018-06-01

    In order to understand the effect of the Rayleigh number, the density inversion phenomenon and the aspect ratio on the flow patterns and the heat transfer characteristics of Rayleigh–Bénard convection of cold water in the neighborhood of the maximum density, a series of large eddy simulations are conducted by using the finite volume method. The Rayleigh number ranges between 106 and 109, the density inversion parameter and the aspect ratio are varied from 0 to 0.9 and from 0.4 to 2.5, respectively. The results indicate that the reversal of the large scale circulation (LSC) occurs with the increase of the Rayleigh number. When there exists a density inversion phenomenon, the key driver for the LSC is hot plumes. When the density inversion parameter is large enough, a stagnant region is found near the top of the container as the hot plumes cannot move to the top wall. The flow pattern structures depend mainly on the aspect ratio. When the aspect ratio is small, the rolls are vertically stacked and the flow keeps on switching among different flow states. For a moderate aspect ratio, different long-lived roll states coexist at a fixed aspect ratio. For a larger aspect ratio, the flow state is everlasting. The number of rolls increases with the increase of the aspect ratio. Furthermore, the aspect ratio has only slight influence on the time averaged Nusselt number for all density inversion parameters.

  4. A sensitive label–free amperometric immunosensor for alpha-fetoprotein based on gold nanorods with different aspect ratio

    PubMed Central

    Zhou, Chunyang; Liu, Dali; Xu, Lin; Li, Qingling; Song, Jian; Xu, Sai; Xing, Ruiqing; Song, Hongwei

    2015-01-01

    A simple and accurate label–free amperometric immunosensor for α–fetoprotein (AFP) detection is developed based on gold nanorods (GNRs) with different aspect ratio and compared with gold particles (GNPs). The positively charged GNRs and GNPs due to the surface immobilized cetyltrimethyl ammonium bromide (CTAB) can adsorb the negatively charged AFP antibody (Ab) directly. The presence of the GNRs not only enhanced the immobilized amount of biomolecules, but also improved the electrochemical properties of the immunosensor. With the aid of GNRs, the electrochemical signal was greatly enhanced in comparison with GNPs. Under optimal conditions, the proposed immunosensor could detect AFP in a linear range from 0.1 to 200 ng/mL with a detection limit of 0.04 ng/mL (signal–to–noise ratio = 3), and it also possessed good reproducibility and storage stability. Moreover, the detection of AFP in five human serum samples also showed satisfactory accuracy. The proposed methodology was potentially attractive for clinical immunoassay. PMID:25909588

  5. The effect of aspect ratio on adhesion and stiffness for soft elastic fibres

    PubMed Central

    Aksak, Burak; Hui, Chung-Yuen; Sitti, Metin

    2011-01-01

    The effect of aspect ratio on the pull-off stress and stiffness of soft elastic fibres is studied using elasticity and numerical analysis. The adhesive interface between a soft fibre and a smooth rigid surface is modelled using the Dugdale–Barenblatt model. Numerical simulations show that, while pull-off stress increases with decreasing aspect ratio, fibres get stiffer. Also, for sufficiently low aspect ratio fibres, failure occurs via the growth of internal cracks and pull-off stress approaches the intrinsic adhesive strength. Experiments carried out with various aspect ratio polyurethane elastomer fibres are consistent with the numerical simulations. PMID:21227962

  6. Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4)

    NASA Astrophysics Data System (ADS)

    Watanabe, Tohru; Shimizu, Yuhta; Noguchi, Satoshi; Nakada, Setsuya

    2008-07-01

    Permeability measurement was made on five rock samples from USDP-4 cores. Rock samples were collected from the conduit zone and its country rock. One sample (C14-1-1) is considered as a part of the feeder dyke for the 1991-1995 eruption. The transient pulse method was employed under confining pressure up to 50 MPa. Compressional wave velocity was measured along with permeability. The measured permeability ranges from 10 - 19 to 10 - 17 m 2 at the atmospheric pressure, and is as low as that reported for tight rocks such as granite. The permeability decreases with increasing confining pressure, while the compressional wave velocity increases. Assuming that pores are parallel elliptical tubes, the pressure dependence of permeability requires aspect ratio of 10 - 4 -10 - 2 at the atmospheric pressure. The pore aperture is estimated to be less than 1 μm. The estimated aspect ratio and pore aperture suggest that connectivity of pores is maintained by narrow cracks. The existence of cracks is supported by the pressure dependence of compressional wave velocity. Narrow cracks (< 1 μm) are observed in dyke samples, and they must have been created after solidification. Dyke samples do not provide us information of pore structures during degassing, since exsolved gas has mostly escaped and pores governing the gas permeable flow should have been lost. Both dyke and country rock samples provide us information of materials around ascending magma. Although the measured small-scale permeability cannot be directly applied to geological-scale processes, it gives constrains on studies of large-scale permeability.

  7. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    NASA Technical Reports Server (NTRS)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  8. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  9. Effect of Aspect Ratio on the Low-Speed Lateral Control Characteristics of Untapered Low-Aspect-Ratio Wings Equipped with Flap and with Retractable Ailerons

    NASA Technical Reports Server (NTRS)

    Fischel, Jack; Naeseth, Rodger L; Hagerman, John R; O'Hare, William M

    1952-01-01

    A low-speed wind-tunnel investigation was made to determine the lateral control characteristics of a series of untapered low-aspect-ratio wings. Sealed flap ailerons of various spans and spanwise locations were investigated on unswept wings of aspect ratios 1.13, 1.13, 4.13, and 6.13; and various projections of 0.60-semispan retractable ailerons were investigated on the unsweptback wings of aspect ratios 1.13, 2.13, and 4.13 and on a 45 degree sweptback wing. The retractable ailerons investigated on the unswept wings spanned the outboard stations of each wing; whereas the plain and stepped retractable ailerons investigated on the sweptback wing were located at various spanwise stations. Design charts based on experimental results are presented for estimating the flap aileron effectiveness for low-aspect-ratio, untapered, unswept.

  10. Achieving high aspect ratio wrinkles by modifying material network stress.

    PubMed

    Chen, Yu-Cheng; Wang, Yan; McCarthy, Thomas J; Crosby, Alfred J

    2017-06-07

    Wrinkle aspect ratio, or the amplitude divided by the wavelength, is hindered by strain localization transitions when an increasing global compressive stress is applied to synthetic material systems. However, many examples from living organisms show extremely high aspect ratios, such as gut villi and flower petals. We use three experimental approaches to demonstrate that these high aspect ratio structures can be achieved by modifying the network stress in the wrinkle substrate. We modify the wrinkle stress and effectively delay the strain localization transition, such as folding, to larger aspect ratios by using a zero-stress initial wavy substrate, creating a secondary network with post-curing, or using chemical stress relaxation materials. A wrinkle aspect ratio as high as 0.85, almost three times higher than common values of synthetic wrinkles, is achieved, and a quantitative framework is presented to provide understanding the different strategies and predictions for future investigations.

  11. Mortality, fertility, and the OY ratio in a model hunter-gatherer system.

    PubMed

    White, Andrew A

    2014-06-01

    An agent-based model (ABM) is used to explore how the ratio of old to young adults (the OY ratio) in a sample of dead individuals is related to aspects of mortality, fertility, and longevity experienced by the living population from which the sample was drawn. The ABM features representations of rules, behaviors, and constraints that affect person- and household-level decisions about marriage, reproduction, and infant mortality in hunter-gatherer systems. The demographic characteristics of the larger model system emerge through human-level interactions playing out in the context of "global" parameters that can be adjusted to produce a range of mortality and fertility conditions. Model data show a relationship between the OY ratios of living populations (the living OY ratio) and assemblages of dead individuals drawn from those populations (the dead OY ratio) that is consistent with that from empirically known ethnographic hunter-gatherer cases. The dead OY ratio is clearly related to the mean ages, mean adult mortality rates, and mean total fertility rates experienced by living populations in the model. Sample size exerts a strong effect on the accuracy with which the calculated dead OY ratio reflects the actual dead OY ratio of the complete assemblage. These results demonstrate that the dead OY ratio is a potentially useful metric for paleodemographic analysis of changes in mortality and mean age, and suggest that, in general, hunter-gatherer populations with higher mortality, higher fertility, and lower mean ages are characterized by lower dead OY ratios. Copyright © 2014 Wiley Periodicals, Inc.

  12. Effect of local void morphology on the reaction initiation mechanism in the case of pressed HMX

    NASA Astrophysics Data System (ADS)

    Roy, Sidhartha; Rai, Nirmal; Udaykumar, H. S.

    2017-06-01

    The microstructural characteristics of pressed HMX has a significant effect on its sensitivity under shock loading. The microstructure of pressed HMX contains voids of various orientation and aspect ratio. Subject to shock loading, these voids can collapse forming hotspots and initiate chemical reaction. This work shows how the ignition and growth of chemical reaction is dependent on the local microstructural features of the voids. Morphological quantities like size, aspect ratio and orientations are extracted from the real microstructural images of Class III and Class V pressed HMX. These morphological quantities are correlated with the ignition and growth rates of the chemical reaction. The dependency of the sensitivity of a given HMX sample on the local morphological features shows that these local features can create a mocroscale physical response.

  13. Adaptive AFM scan speed control for high aspect ratio fast structure tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, Ahmad; Schuh, Andreas; Rangelow, Ivo W.

    2014-10-15

    Improved imaging rates in Atomic Force Microscopes (AFM) are of high interest for disciplines such as life sciences and failure analysis of semiconductor wafers, where the sample topology shows high aspect ratios. Also, fast imaging is necessary to cover a large surface under investigation in reasonable times. Since AFMs are composed of mechanical components, they are associated with comparably low resonance frequencies that undermine the effort to increase the acquisition rates. In particular, high and steep structures are difficult to follow, which causes the cantilever to temporarily loose contact to or crash into the sample. Here, we report on amore » novel approach that does not affect the scanner dynamics, but adapts the lateral scanning speed of the scanner. The controller monitors the control error signal and, only when necessary, decreases the scan speed to allow the z-piezo more time to react to changes in the sample's topography. In this case, the overall imaging rate can be significantly increased, because a general scan speed trade-off decision is not needed and smooth areas are scanned fast. In contrast to methods trying to increase the z-piezo bandwidth, our method is a comparably simple approach that can be easily adapted to standard systems.« less

  14. Numerical simulation of turbulent flow and heat transfer though sinusoidal ducts

    NASA Astrophysics Data System (ADS)

    Abroshan, Hamid

    2018-02-01

    Turbulent forced convection heat transfer in corrugated plate surfaces was studied by means of CFD. Flow through corrugated plates, which are sets of sinusoidal ducts, was analyzed for different inlet flow angles (0° to 50°), aspect ratios (0.1 to 10), Reynolds numbers (2000 to 40,000) and Prantdel numbers (0.7 to 5). Heat transfer is affected significantly by variation of aspect ratio. A maximum heat transfer coefficient is observed at a particular aspect ratio although the aspect ratio has a minor effect on friction factor. Enlarging inlet flow angle also leads to a higher heat transfer coefficient and pressure loss in aspect ratios close to unity. Dependency of Nusselt and friction factor on the angle and aspect ratio was interpreted by means of appearance of secondary motions and coexistence of laminar and turbulent flow in a cross section. Comparing the results with experimental data shows a maximum 12.8% difference. By evaluating the results, some correlations were proposed to calculate Nusselt number and friction factor for entrance and fully developed regions. A corrugated plate with an aspect ratio equal to 1.125 and an inlet flow angle equal to 50° gives the best heat transfer and pressure drop characteristics.

  15. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Yi-Mu, E-mail: ymlee@nuu.edu.t; Yang, Hsi-Wen

    2011-03-15

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 {sup o}C) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 {sup o}C and solution concentration of 0.03 M possessmore » highest aspect ratio of {approx}21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D{approx}21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: > Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. > Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 {sup o}C. > The prepared ZnO samples possess well-alignment and high aspect ratio (L/D{approx}21). > An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. > SS-DSSC has J{sub SC} of 0.31 mA/cm{sup 2} and V{sub OC} of 590 mV, and an improved {eta} of 0.059%.« less

  16. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.

    PubMed

    Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je

    2011-07-01

    Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.

  17. Enhanced NIF neutron activation diagnostics.

    PubMed

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  18. Synthesis of high aspect ratio ZnO nanowires with an inexpensive handcrafted electrochemical setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, Ali, E-mail: at1361@aut.ac.ir, E-mail: atahery@aeoi.org.ir; Saramad, Shahyar; Setayeshi, Saeed

    In this work, high aspect ratio zinc oxide nanowires are synthesized using templated one-step electrodeposition technique. Electrodeposition of the nanowires is done using a handcrafted electronic system. Nuclear track-etched polycarbonate membrane is used as a template to form the high aspect ratio nanowires. The result of X-ray diffraction and scanning electron microscopy shows that nanowires with a good crystallinity and an aspect ratio of more than 30 can be achieved in a suitable condition. The height of electrodeposited nanowires reaches to about 11 μm. Based on the obtained results, high aspect ratio ZnO nanowires can be formed using inexpensive electrodepositionmore » setup with an acceptable quality.« less

  19. Extraction of information from major element chemical analyses of lunar basalts

    NASA Technical Reports Server (NTRS)

    Butler, J. C.

    1985-01-01

    Major element chemical analyses often form the framework within which similarities and differences of analyzed specimens are noted and used to propose or devise models. When percentages are formed the ratios of pairs of components are preserved whereas many familiar statistical and geometrical descriptors are likely to exhibit major changes. This ratio preserving aspect forms the basis for a proposed framework. An analysis of compositional variability within the data set of 42 major element analyses of lunar reference samples was selected to investigate this proposal.

  20. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection.

    PubMed

    Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Brady, Charles; Pullagurla, Swathi; Kamande, Joyce; Aufforth, Rachel D; Tignanelli, Christopher J; Torphy, Robert J; Yeh, Jen Jen; Soper, Steven A

    2014-01-07

    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ~3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.

  1. Method for obtaining a collimated near-unity aspect ratio output beam from a DFB-GSE laser with good beam quality.

    PubMed

    Liew, S K; Carlson, N W

    1992-05-20

    A simple method for obtaining a collimated near-unity aspect ratio output beam from laser sources with extremely large (> 100:1) aspect ratios is demonstrated by using a distributed-feedback grating-surfaceemitting laser. Far-field power-in-the-bucket measurements of the laser indicate good beam quality with a high Strehl ratio.

  2. Studying aerosol light scattering based on aspect ratio distribution observed by fluorescence microscope.

    PubMed

    Li, Li; Zheng, Xu; Li, Zhengqiang; Li, Zhanhua; Dubovik, Oleg; Chen, Xingfeng; Wendisch, Manfred

    2017-08-07

    Particle shape is crucial to the properties of light scattered by atmospheric aerosol particles. A method of fluorescence microscopy direct observation was introduced to determine the aspect ratio distribution of aerosol particles. The result is comparable with that of the electron microscopic analysis. The measured aspect ratio distribution has been successfully applied in modeling light scattering and further in simulation of polarization measurements of the sun/sky radiometer. These efforts are expected to improve shape retrieval from skylight polarization by using directly measured aspect ratio distribution.

  3. Effects of Variable Aspect-Ratio Inclusions on the Electrical Impedance of an Alumina Zirconia Composite at Intermediate Temperatures

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2010-01-01

    A series of alumina-yttria-stabilized zirconia composites containing either a high aspect ratio (5 and 30 mol%) hexagonal platelet alumina or an alumina low aspect ratio (5 and 30 mol%) spherical particulate was used to determine the effect of the aspect ratio on the temperature-dependent impedance of the composite material. The highest impedance across the temperature range of 373 to 1073 K is attributed to the grain boundary of the hexagonal platelet second phase in this alumina zirconia composite.

  4. Simulation and experimental study of aspect ratio limitation in Fresnel zone plates for hard-x-ray optics.

    PubMed

    Liu, Jianpeng; Shao, Jinhai; Zhang, Sichao; Ma, Yaqi; Taksatorn, Nit; Mao, Chengwen; Chen, Yifang; Deng, Biao; Xiao, Tiqiao

    2015-11-10

    For acquiring high-contrast and high-brightness images in hard-x-ray optics, Fresnel zone plates with high aspect ratios (zone height/zone width) have been constantly pursued. However, knowledge of aspect ratio limits remains limited. This work explores the achievable aspect ratio limit in polymethyl methacrylate (PMMA) by electron-beam lithography (EBL) under 100 keV, and investigates the lithographic factors for this limitation. Both Monte Carlo simulation and EBL on thick PMMA are applied to investigate the profile evolution with exposure doses over 100 nm wide dense zones. A high-resolution scanning electron microscope at low acceleration mode for charging free is applied to characterize the resultant zone profiles. It was discovered for what we believe is the first time that the primary electron-beam spreading in PMMA and the proximity effect due to extra exposure from neighboring areas could be the major causes of limiting the aspect ratio. Using the optimized lithography condition, a 100 nm zone plate with aspect ratio of 15/1 was fabricated and its focusing property was characterized at the Shanghai Synchrotron Radiation Facility. The aspect ratio limit found in this work should be extremely useful for guiding further technical development in nanofabrication of high-quality Fresnel zone plates.

  5. Impact of Aspect Ratio, Incident Angle, and Surface Roughness on Windbreak Wakes

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2017-11-01

    Wind-tunnel results are presented on the wakes behind three-dimensional windbreaks in a simulated atmospheric boundary layer. Sheltering by upwind windbreaks, and surface-mounted obstacles (SMOs) in general, is parameterized by the wake-moment coefficient C h , which is a complex function of obstacle geometry and flow conditions. Values of C h are presented for several windbreak aspect ratios, incident angles, and windbreak-height-to-surface-roughness ratios. Lateral wake deflection is further presented for several incident angles and aspect ratios, and compared to a simple analytical formulation including a near- and far-wake solution. It is found that C h does not change with aspect ratios of 10 or greater, though C h may be lower for an aspect ratio of 5. C h is found to change roughly with the cosine of the incident angle, and to depend strongly on windbreak-height-to-surface-roughness ratio. The data broadly support the proposed wake-deflection model.

  6. Shapes of Venusian 'pancake' domes imply episodic emplacement and silicic composition

    NASA Technical Reports Server (NTRS)

    Fink, Jonathan H.; Bridges, Nathan T.; Grimm, Robert E.

    1993-01-01

    The main evidence available for constraining the composition of the large circular 'pancake' domes on Venus is their gross morphology. Laboratory simulations using polyethylene glycol show that the height to diameter (aspect) ratios of domes of a given total volume depend critically on whether their extrusion was continuous or episodic, with more episodes leading to greater cooling and taller domes. Thus without observations of their emplacement, the compositions of Venusian domes cannot be uniquely constrained by their morphology. However, by considering a population of 51 Venusian domes to represent a sampling of many stages during the growth of domes with comparable histories, and by plotting aspect ratio versus total volume, we find that the shapes of the domes are most consistent with episodic emplacement. On Earth this mode of dome growth is found almost exclusively in lavas of dacite to rhyolite composition, strengthening earlier inferences about the presence of evolved magmas on Venus.

  7. Business Profile of Boat Lift Net and Stationary Lift Net Fishing Gear in Morodemak Waters Central Java

    NASA Astrophysics Data System (ADS)

    Hapsari, Trisnani D.; Jayanto, Bogi B.; Fitri, Aristi D. P.; Triarso, I.

    2018-02-01

    Lift net is one of the fishing gears that is used widely in the Morodemak coastal fishing port (PPP) for catching pelagic fish. The yield of fish captured by these fishing gear has high economic value, such as fish belt (Trichiurus sp), squids (Loligo sp) and anchovies (Stelophorus sp). The aims of this research were to determine the technical aspects of boat lift net and stationary lift net fishing gear in Morodemak Waters Demak Regency; to find out the financial aspect of those fishing gears and to analyze the financial feasibility by counting PP, NPV, IRR, and B/C ratio criteria. This research used case study method with descriptive analysis. The sampling method was purposive sampling with 22 fishermen as respondents. The result of the research showed that the average of boat lift net acceptance was Rp 388,580,000. The financial analysis of fisheries boat lift net with the result of NPV Rp 836,149,272, PP 2.44 years, IRR value 54%, and B/C ratio 1.73. The average of stationary lift net acceptance was Rp 27,750,000. The financial analysis lift net with the result of NPV Rp 37,937,601; PP 1.96 years, IRR value 86%, and B/C ratio 1.32. This research had a positive NPV value, B/C ratio >1, and IRR > discount rate (12 %). This study concluded that the fishery business of boat lift net and stationary lift net in Morodemak coastal fishing port (PPP) was worth running.

  8. Thermo-mechanical properties of high aspect ratio silica nanofiber filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Ren, Liyun

    The optimization of thermo-mechanical properties of polymer composites at low filler loadings is of great interest in both engineering and scientific fields. There have been several studies on high aspect ratio fillers as novel reinforcement phase for polymeric materials. However, facile synthesis method of high aspect ratio nanofillers is limited. In this study, a scalable synthesis method of high aspect ratio silica nanofibers is going to be presented. I will also demonstrate that the inclusion of high aspect ratio silica nanofibers in epoxy results in a significant improvement of epoxy thermo-mechanical properties at low filler loadings. With silica nanofiber concentration of 2.8% by volume, the Young's modulus, ultimate tensile strength and fracture toughness of epoxy increased ~23, ~28 and ~50%, respectively, compared to unfilled epoxy. At silica nanofiber volume concentration of 8.77%, the thermal expansion coefficient decreased by ˜40% and the thermal conductivity was improved by ˜95% at room temperature. In the current study, the influence of nano-sized silica filler aspect ratio on mechanical and thermal behavior of epoxy nanocomposites were studied by comparing silica nanofibers to spherical silica nanoparticles (with aspect ratio of one) at various filler loadings. The significant reinforcement of composite stiffness is attributed to the variation of the local stress state in epoxy due to the high aspect ratio of the silica nanofiber and the introduction of a tremendous amount of interfacial area between the nanofillers and the epoxy matrix. The fracture mechanisms of silica nanofiber filled epoxy were also investigated. The existence of high aspect ratio silica nanofiber promotes fracture energy dissipation by crack deflection, crack pinning as well as debonding with fiber pull-out leading to enhanced fracture toughness. High aspect ratio fillers also provide significant reduction of photon scattering due to formation of a continuous fiber network within the composite. The resulting silica nanofiber filled epoxy would be widely applicable as underfill and encapsulant in advanced electronic packaging industry because of its electrically insulating, low cost and ease of processability.

  9. Optimization of laser energy deposition for single-shot high aspect-ratio microstructuring of thick BK7 glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzillo, Valerio; Grigutis, Robertas; Jukna, Vytautas

    We investigate the generation of high aspect ratio microstructures across 0.7 mm thick glass by means of single shot Bessel beam laser direct writing. We study the effect on the photoinscription of the cone angle, as well as of the energy and duration of the ultrashort laser pulse. The aim of the study is to optimize the parameters for the writing of a regular microstructure due to index modification along the whole sample thickness. By using a spectrally resolved single pulse transmission diagnostics at the output surface of the glass, we correlate the single shot material modification with observations of themore » absorption in different portions of the retrieved spectra, and with the absence or presence of spectral modulation. Numerical simulations of the evolution of the Bessel pulse intensity and of the energy deposition inside the sample help us interpret the experimental results that suggest to use picosecond pulses for an efficient and more regular energy deposition. Picosecond pulses take advantage of nonlinear plasma absorption and avoid temporal dynamics effects which can compromise the stationarity of the Bessel beam propagation.« less

  10. Micro-structure and motion of two-dimensional dense short spherocylinder liquids

    NASA Astrophysics Data System (ADS)

    Wang, Wen; Lin, Jyun-Ting; Su, Yen-Shuo; I, Lin

    2018-03-01

    We numerically investigate the micro-structure and motion of 2D liquids composed of dense short spherocylinders, by reducing the shape aspect ratio from 3. It is found that reducing shape aspect ratio from 3 causes a smooth transition from heterogeneous structures composed of crystalline ordered domains with good tetratic alignment order to those with good hexagonal bond-orientational order at an aspect ratio equaling 1.35. In the intermediate regime, both structural orders are strongly deteriorated, and the translational hopping rate reaches a maximum due to the poor particle interlocking of the disordered structure. Shortening rod length allows easier rotation, induces monotonic increase of rotational hopping rates, and resumes the separation of rotational and translational hopping time scales at the small aspect ratio end, after the crossover of their rates in the intermediate regime. At the large shape aspect ratio end, the poor local tetratic order has the same positive effects on facilitating local rotational and translational hopping. In contrast, at the small shape aspect ratio end, the poor local bond orientational order has the opposite effects on facilitating local rotational and translational hopping.

  11. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.

    PubMed

    Fu, Junjiang; Liu, Xiaohui; Shyy, Wei; Qiu, Huihe

    2018-03-14

    In the current study, we experimentally investigated the flexibility effects on the aerodynamic performance of flapping wings and the correlation with aspect ratio at angle of attack α  =  45°. The Reynolds number based on the chord length and the wing tip velocity is maintained at Re  =  5.3  ×  10 3 . Our result for compliant wings with an aspect ratio of 4 shows that wing flexibility can offer improved aerodynamic performance compared to that of a rigid wing. Flexible wings are found to offer higher lift-to-drag ratios; in particular, there is significant reduction in drag with little compromise in lift. The mechanism of the flexibility effects on the aerodynamic performance is addressed by quantifying the aerodynamic lift and drag forces, the transverse displacement on the wings and the flow field around the wings. The regime of the effective stiffness that offers improved aerodynamic performance is quantified in a range of about 0.5-10 and it matches the stiffness of insect wings with similar aspect ratios. Furthermore, we find that the aspect ratio of the wing is the predominant parameter determining the flexibility effects of compliant wings. Compliant wings with an aspect ratio of two do not demonstrate improved performance compared to their rigid counterparts throughout the entire stiffness regime investigated. The correlation between wing flexibility effects and the aspect ratio is supported by the stiffness of real insect wings.

  12. Report of the panel on theoretical aerodynamics. [for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Bobbitt, P. J.; Carter, J. E.

    1977-01-01

    Requirements for flow quality in the National Transonic Facility are explored. Viscous flow effects of concern to theoreticians are discussed. Experiments outlined for theory validation in the facility include validating high aspect ratio wing-body combination; low aspect ratio moderately swept wing; low aspect ratio highly swept wing; high lift systems on high aspect ration wings; Reynolds number scaling; dynamic shock- boundary layer interaction; and the effect of R and M on dynamic stall.

  13. Test Report on Three- and Six-Component Measurements on a Series of Tapered Wings of Small Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Lange; Wacke

    1948-01-01

    The investigations of the reports to 4 on wings of small aspect ratio are continued. The present report deals with the results of the three- and six-component measurements and the flow pictures of the triangular wing series with the aspect ratio Lambda = 3 to Lambda = 1.

  14. Enhanced solar photoelectrochemical conversion efficiency of the hydrothermally-deposited TiO2 nanorod arrays: Effects of the light trapping and optimum charge transfer

    NASA Astrophysics Data System (ADS)

    An, Gil Woo; Mahadik, Mahadeo A.; Chae, Weon-Sik; Kim, Hyun Gyu; Cho, Min; Jang, Jum Suk

    2018-05-01

    The vertically aligned TiO2 nanorod arrays (NRA) with manipulated aspect ratio were hydrothermally synthesized by changing the amount of the titanium (Ti) precursor in the initial growth solution. FE-SEM images show the optimum morphology, density and aspect ratio of the well-aligned TB-1.2 NRs on the surface of the FTO substrate. The UV-vis-absorption measurements revealed that a sample prepared at TB-1.2 can provide an increased light trapping effect. PEC analyses demonstrated that the TiO2 nanorods deposited at TB-1.2 of Titanium butoxide show a relatively high PEC conversion efficiency (3.5 times) compared with the TB-0.8 prepared TiO2 at a 1.0 V versus RHE. The higher PEC performance is believed to be the result of an enhancement of the optimum aspect ratio, light trapping, an efficient charge separation, and the high carrier transport in the vertically aligned TiO2 NRs. Further, the PEC based organic dye degradation experiments showed 77% and 94% removal of Orange II and methylene blue respectively. Additionally, 109 μmol h-1 cm-2 hydrogen generations were attributed using optimized vertically aligned TiO2 NRA's. Thus, the appropriate morphology manipulated the TiO2 NRAs are useful for solar conversion applications.

  15. Energy and economic trade offs for advanced technology subsonic aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Whereas current airplanes have been designed for AR = 7, supercritical technology and much higher fuel prices will drive aspect ratio to the AR = 9-10 range. Composite materials may raise aspect ratio to about 11-12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  16. Core compressor exit stage study. 1: Aerodynamic and mechanical design

    NASA Technical Reports Server (NTRS)

    Burdsall, E. A.; Canal, E., Jr.; Lyons, K. A.

    1979-01-01

    The effect of aspect ratio on the performance of core compressor exit stages was demonstrated using two three stage, highly loaded, core compressors. Aspect ratio was identified as having a strong influence on compressors endwall loss. Both compressors simulated the last three stages of an advanced eight stage core compressor and were designed with the same 0.915 hub/tip ratio, 4.30 kg/sec (9.47 1bm/sec) inlet corrected flow, and 167 m/sec (547 ft/sec) corrected mean wheel speed. The first compressor had an aspect ratio of 0.81 and an overall pressure ratio of 1.357 at a design adiabatic efficiency of 88.3% with an average diffusion factor or 0.529. The aspect ratio of the second compressor was 1.22 with an overall pressure ratio of 1.324 at a design adiabatic efficiency of 88.7% with an average diffusion factor of 0.491.

  17. Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio

    PubMed Central

    Kruyt, Jan W.; van Heijst, GertJan F.; Altshuler, Douglas L.; Lentink, David

    2015-01-01

    Airplanes and helicopters use high aspect ratio wings to reduce the power required to fly, but must operate at low angle of attack to prevent flow separation and stall. Animals capable of slow sustained flight, such as hummingbirds, have low aspect ratio wings and flap their wings at high angle of attack without stalling. Instead, they generate an attached vortex along the leading edge of the wing that elevates lift. Previous studies have demonstrated that this vortex and high lift can be reproduced by revolving the animal wing at the same angle of attack. How do flapping and revolving animal wings delay stall and reduce power? It has been hypothesized that stall delay derives from having a short radial distance between the shoulder joint and wing tip, measured in chord lengths. This non-dimensional measure of wing length represents the relative magnitude of inertial forces versus rotational accelerations operating in the boundary layer of revolving and flapping wings. Here we show for a suite of aspect ratios, which represent both animal and aircraft wings, that the attachment of the leading edge vortex on a revolving wing is determined by wing aspect ratio, defined with respect to the centre of revolution. At high angle of attack, the vortex remains attached when the local radius is shorter than four chord lengths and separates outboard on higher aspect ratio wings. This radial stall limit explains why revolving high aspect ratio wings (of helicopters) require less power compared with low aspect ratio wings (of hummingbirds) at low angle of attack and vice versa at high angle of attack. PMID:25788539

  18. Deep Reactive Ion Etching (DRIE) of High Aspect Ratio SiC Microstructures using a Time-Multiplexed Etch-Passivate Process

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.; Beheim, Glenn M.

    2006-01-01

    High aspect ratio silicon carbide (SiC) microstructures are needed for microengines and other harsh environment micro-electro-mechanical systems (MEMS). Previously, deep reactive ion etching (DRIE) of low aspect ratio (AR less than or = 1) deep (greater than 100 micron) trenches in SiC has been reported. However, existing DRIE processes for SiC are not well-suited for definition of high aspect ratio features because such simple etch-only processes provide insufficient control over sidewall roughness and slope. Therefore, we have investigated the use of a time-multiplexed etch-passivate (TMEP) process, which alternates etching with polymer passivation of the etch sidewalls. An optimized TMEP process was used to etch high aspect ratio (AR greater than 5) deep (less than 100 micron) trenches in 6H-SiC. Power MEMS structures (micro turbine blades) in 6H-SiC were also fabricated.

  19. Electrical Conductivity in Transparent Silver Nanowire Networks: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Sherrott, Michelle; Mutiso, Rose; Rathmell, Aaron; Wiley, Benjamin; Winey, Karen

    2012-02-01

    We model and experimentally measure the electrical conductivity of two-dimensional networks containing finite, conductive cylinders with aspect ratio ranging from 33 to 333. We have previously used our simulations to explore the effects of cylinder orientation and aspect ratio in three-dimensional composites, and now extend the simulation to consider two-dimensional silver nanowire networks. Preliminary results suggest that increasing the aspect ratio and area fraction of these rods significantly decreases the sheet resistance of the film. For all simulated aspect ratios, this sheet resistance approaches a constant value for high area fractions of rods. This implies that regardless of aspect ratio, there is a limiting minimum sheet resistance that is characteristic of the properties of the nanowires. Experimental data from silver nanowire networks will be incorporated into the simulations to define the contact resistance and corroborate experimentally measured sheet resistances of transparent thin films.

  20. Numerical analysis of two-fluid tearing mode instability in a finite aspect ratio cylinder

    NASA Astrophysics Data System (ADS)

    Ito, Atsushi; Ramos, Jesús J.

    2018-01-01

    The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigenmode equations for general aspect ratios and ion skin depths are compared and found to be in very good agreement with the corresponding analytic solutions derived by means of the boundary layer theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate and the real frequency of the mode are derived from the analytic dispersion relation by using Taylor expansions and Padé approximations. The cylindrical finite aspect ratio effect is inferred from the scaling law for the real frequency of the mode.

  1. Collisionless microtearing modes in hot tokamaks: Effect of trapped electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swamy, Aditya K.; Ganesh, R., E-mail: ganesh@ipr.res.in; Brunner, S.

    2015-07-15

    Collisionless microtearing modes have recently been found linearly unstable in sharp temperature gradient regions of large aspect ratio tokamaks. The magnetic drift resonance of passing electrons has been found to be sufficient to destabilise these modes above a threshold plasma β. A global gyrokinetic study, including both passing electrons as well as trapped electrons, shows that the non-adiabatic contribution of the trapped electrons provides a resonant destabilization, especially at large toroidal mode numbers, for a given aspect ratio. The global 2D mode structures show important changes to the destabilising electrostatic potential. The β threshold for the onset of the instabilitymore » is found to be generally downshifted by the inclusion of trapped electrons. A scan in the aspect ratio of the tokamak configuration, from medium to large but finite values, clearly indicates a significant destabilizing contribution from trapped electrons at small aspect ratio, with a diminishing role at larger aspect ratios.« less

  2. The Hydrodynamic Characteristics of Modified Rectangular Flat Plates Having Aspect Ratios of 1.00, 0.25, and 0.125 and Operating near a Free Water Surface

    NASA Technical Reports Server (NTRS)

    Wadlin, Kenneth L; Ramsen, John A; Vaughan, Victor L , Jr

    1955-01-01

    Report presents the results of an investigation conducted to determine the hydrodynamic forces and moments acting on modified rectangular flat plates with aspect ratios of 1.00, 0.25, and 0.125 mounted on a single strut and operating at several depths of submersion. A simple method has been developed by modification of Falkner's vortex-lattice theory which enables the prediction of the lift characteristics in unseparated flow at large depths. This method shows good agreement with experimental data from the present tests and with aerodynamic data at all angles investigated for aspect ratios of 1.00 and 0.25 and at angles up to 16 degrees for aspect ratio 0.125. Above 16 degrees for aspect ratio 0.125, the predicted lift proved too high.

  3. A Study on Aspect Ratio of Heat Dissipation Fin for the Heat Dissipation Performance of Ultra Constant Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Ko, Dong Guk; Cong Ge, Jun; Im, Ik Tae; Choi, Nag Jung; Kim, Min Soo

    2018-01-01

    In this study, we analyzed the heat dissipation performance of UCD lamp ballast fin with various aspect ratios. The minimum grid size was 0.02 mm and the number of grid was approximately 11,000. In order to determine the influence of the aspect ratio on the heat dissipation performance of UCD lamp ballast fin, the heat transfer area of the fin was kept constant at 4 mm2. The aspect ratios of the fin were 2 mm: 2 mm (basic model), 1.5 mm: 2.7 mm and 2.7 mm: 1.5 mm, respectively. The heat flux and heat flux time at fin were kept constant at 1×105 W/m2 and 10 seconds, respectively. The heat dissipation performance by the fin was the best at an aspect ratio of 1.5 mm: 2.7 mm.

  4. An Experimental Study on the Edgewise Compressive Failure of Paper Honeycomb Sandwich Panels with Respect to Various Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Samad, W. A.; Warsame, A. A.; Khan, A.

    2018-04-01

    The present work investigates the edgewise compression failure for honeycomb paperboards. Various panels are tested under a fixed loading rate with varying aspect ratios. The influence of the varying properties aspect ratio on yield strength is recorded. The experimental results indicate that the honeycomb paperboards are subject a decrease in yield strength with an increase in aspect ratio towards more slender bodies. Buckling was not observed in any of the tested specimens. All experiments are conducted under the general framework of ASTM C364/C364M -16 with a few noted changes.

  5. Transport phenomena during vapor growth of optoelectronic material - A mercurous chloride system

    NASA Technical Reports Server (NTRS)

    Singh, N. B.

    1990-01-01

    Crystal growth velocity was measured in a mercurous chloride system in a two-zone transparent furnace as a function of the Rayleigh number by varying a/L, where a is the radius of the growth tube and L is the transport length. Growth velocity data showed different trends at low and high aspect ratio, a result that does not support the velocity-aspect ratio trend predicted by theories. The system cannot be scaled on the basis of measurements done at a low aspect ratio. Some change in fluid flow behavior occurs in the growth tube as the aspect ratio increases.

  6. Multiscale Pores in TBCs for Lower Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun

    2017-08-01

    The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.

  7. Robust Stereo Visual Odometry Using Improved RANSAC-Based Methods for Mobile Robot Localization

    PubMed Central

    Liu, Yanqing; Gu, Yuzhang; Li, Jiamao; Zhang, Xiaolin

    2017-01-01

    In this paper, we present a novel approach for stereo visual odometry with robust motion estimation that is faster and more accurate than standard RANSAC (Random Sample Consensus). Our method makes improvements in RANSAC in three aspects: first, the hypotheses are preferentially generated by sampling the input feature points on the order of ages and similarities of the features; second, the evaluation of hypotheses is performed based on the SPRT (Sequential Probability Ratio Test) that makes bad hypotheses discarded very fast without verifying all the data points; third, we aggregate the three best hypotheses to get the final estimation instead of only selecting the best hypothesis. The first two aspects improve the speed of RANSAC by generating good hypotheses and discarding bad hypotheses in advance, respectively. The last aspect improves the accuracy of motion estimation. Our method was evaluated in the KITTI (Karlsruhe Institute of Technology and Toyota Technological Institute) and the New Tsukuba dataset. Experimental results show that the proposed method achieves better results for both speed and accuracy than RANSAC. PMID:29027935

  8. Fabrication of high aspect ratio nanogrid transparent electrodes via capillary assembly of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Kang, Juhoon; Park, Chang-Goo; Lee, Su-Han; Cho, Changsoon; Choi, Dae-Geun; Lee, Jung-Yong

    2016-05-01

    In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%.In this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing. The fabricated high-aspect-ratio nanogrid structure with a line width of 150 nm and a height of 450 nm has a sheet resistance of 15.2 Ω sq-1 and an optical transmittance of 85.4%. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01896c

  9. Experimental study of low aspect ratio compressor blading

    NASA Technical Reports Server (NTRS)

    Reid, L.; Moore, R. D.

    1979-01-01

    The effects of low aspect ratio blading on aerodynamic performance were examined. Four individual transonic compressor stages, representative of the inlet stage of an advanced high pressure ratio core compressor, are discussed. The flow phenomena for the four stages are investigated. Comparisons of blade element parameters are presented for the two different aspect ratio configurations. Blade loading levels are compared for the near stall conditions and comparisons are made of loss and diffusion factors over the operating range of incidence angles.

  10. Acicular photomultiplier photocathode structure

    DOEpatents

    Craig, Richard A.; Bliss, Mary

    2003-09-30

    A method and apparatus for increasing the quantum efficiency of a photomultiplier tube by providing a photocathode with an increased surface-to-volume ratio. The photocathode includes a transparent substrate, upon one major side of which is formed one or more large aspect-ratio structures, such as needles, cones, fibers, prisms, or pyramids. The large aspect-ratio structures are at least partially composed of a photoelectron emitting material, i.e., a material that emits a photoelectron upon absorption of an optical photon. The large aspect-ratio structures may be substantially composed of the photoelectron emitting material (i.e., formed as such upon the surface of a relatively flat substrate) or be only partially composed of a photoelectron emitting material (i.e., the photoelectron emitting material is coated over large aspect-ratio structures formed from the substrate material itself.) The large aspect-ratio nature of the photocathode surface allows for an effective increase in the thickness of the photocathode relative the absorption of optical photons, thereby increasing the absorption rate of incident photons, without substantially increasing the effective thickness of the photocathode relative the escape incidence of the photoelectrons.

  11. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.

  12. Some physical and functional properties of finger millet (Eleusine coracana) obtained in sub-Saharan Africa.

    PubMed

    Ramashia, S E; Gwata, E T; Meddows-Taylor, S; Anyasi, T A; Jideani, A I O

    2018-02-01

    The study determined the physical properties of finger millet (FM) (Eluesine coracana) grains and the functional properties of FM flour. Physical properties such as colour attributes, sample weight, bulk density, true density, porosity, surface area, sample volume, aspect ratio, sphericity, dimensional properties and moisture content of grain cultivars were determined. Water absorption capacity (WAC), bulk density (BD), dispersibility, viscosity and micro-structure of FM flours were also evaluated. Data collected were analyzed using SPSS statistical software version 23.0. Results showed that milky cream cultivar was significantly higher (p<0.05) than other samples in sample weight, bulk density, true density, aspect ratio and sphericity. However, pearl millet, used as a control, was significantly different from FM flour on all dimensional properties. Moisture content of milky cream showed higher significant difference for both grains and flours as compared to brown and black grain/flours. Milky cream cultivar was significantly different in L*, b*, C*, H* values, WAC, BD and dispersibility for both FM grains and flours. Data showed that brown flour was significantly higher in viscosity than in milky and black flours. Microstructure results revealed that starch granules of raw FM flours had oval/spherical and smooth surface. The study is important for agricultural and food engineers, designers, scientists and processors in the design of equipment for FM grain processing. Results are likely to be useful in assessing the quality of grains used to fortify FM flour. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. INFLUENCE OF SCALE RATIO, ASPECT RATIO, AND PLANFORM ON THE PERFORMANCE OF SUPERCAVITATING HYDROFOILS.

    DTIC Science & Technology

    performance of supercavitating hydrofoils. No appreciable scale effect was found for scale ratios up to 3 in the fully-cavitating flow region. The...overall performance of the hydrofoil by increasing the aspect ratio above 3, and (2) moderate taper ratio seems to be advantageous in view of the overall performance of supercavitating hydrofoils. (Author)

  14. On virial analysis at low aspect ratio

    DOE PAGES

    Bongard, Michael W.; Barr, Jayson L.; Fonck, Raymond J.; ...

    2016-07-28

    The validity of virial analysis to infer global MHD equilibrium poloidal beta β p and internal inductance ℓ i from external magnetics measurements is examined for low aspect ratio configurations with A < 2. Numerical equilibrium studies at varied aspect ratio are utilized to validate the technique at finite aspect ratio. The effect of applying high-A approximations to low-A experimental data is quantified and demonstrates significant over-estimation of stored energy (factors of 2–10) in spherical tokamak geometry. Experimental approximations to equilibrium-dependent volume integral terms in the analysis are evaluated at low-A. Highly paramagnetic configurations are found to be inadequately representedmore » through the virial mean radius parameter R T. Alternate formulations for inferring β p and ℓ i that are independent of R T to avoid this difficulty are presented for the static isotropic limit. Lastly, these formulations are suitable for fast estimation of tokamak stored energy components at low aspect ratio using virial analysis.« less

  15. Framework to model neutral particle flux in convex high aspect ratio structures using one-dimensional radiosity

    NASA Astrophysics Data System (ADS)

    Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.

  16. A review on non-linear aeroelasticity of high aspect-ratio wings

    NASA Astrophysics Data System (ADS)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  17. Shape matters: pore geometry and orientation influences the strength and stiffness of porous rocks

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael; Xu, Tao; Chen, Chong-Feng; Baud, Patrick

    2017-04-01

    The geometry of voids in porous rock fall between two end-members: very low aspect ratio (the ratio of the minor to the major semi-axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of 2.4 and 1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. This weakening effect is accentuated at higher porosities. The influence of pore aspect ratio (which we vary from 0.2 to 1.0) on strength and Young's modulus depends on the pore angle. At low angles ( 0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles ( 40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles ( 20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. We find that the analytical solutions for the stress and Young's modulus at the boundary of a single elliptical pore are in excellent agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. The alignment of grains or platy minerals such as clays may play an important role in controlling strength anisotropy in porous sandstones. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  18. An Analysis of the Effects of Wing Aspect Ratio and Tail Location on Static Longitudinal Stability Below the Mach Number of Lift Divergence

    NASA Technical Reports Server (NTRS)

    Axelson, John A.; Crown, J. Conrad

    1948-01-01

    An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.

  19. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1988-01-01

    Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.

  20. Soft-lithography fabrication of microfluidic features using thiol-ene formulations.

    PubMed

    Ashley, John F; Cramer, Neil B; Davis, Robert H; Bowman, Christopher N

    2011-08-21

    In this work, a novel thiol-ene based photopolymerizable resin formulation was shown to exhibit highly desirable characteristics, such as low cure time and the ability to overcome oxygen inhibition, for the photolithographic fabrication of microfluidic devices. The feature fidelity, as well as various aspects of the feature shape and quality, were assessed as functions of various resin attributes, particularly the exposure conditions, initiator concentration and inhibitor to initiator ratio. An optical technique was utilized to evaluate the feature fidelity as well as the feature shape and quality. These results were used to optimize the thiol-ene resin formulation to produce high fidelity, high aspect ratio features without significant reductions in feature quality. For structures with aspect ratios below 2, little difference (<3%) in feature quality was observed between thiol-ene and acrylate based formulations. However, at higher aspect ratios, the thiol-ene resin exhibited significantly improved feature quality. At an aspect ratio of 8, raised feature quality for the thiol-ene resin was dramatically better than that achieved by using the acrylate resin. The use of the thiol-ene based resin enabled fabrication of a pinched-flow microfluidic device that has complex channel geometry, small (50 μm) channel dimensions, and high aspect ratio (14) features. This journal is © The Royal Society of Chemistry 2011

  1. Modeling of Turbulent Natural Convection in Enclosed Tall Cavities

    NASA Astrophysics Data System (ADS)

    Goloviznin, V. M.; Korotkin, I. A.; Finogenov, S. A.

    2017-12-01

    It was shown in our previous work (J. Appl. Mech. Tech. Phys 57 (7), 1159-1171 (2016)) that the eddy-resolving parameter-free CABARET scheme as applied to two-and three-dimensional de Vahl Davis benchmark tests (thermal convection in a square cavity) yields numerical results on coarse (20 × 20 and 20 × 20 × 20) grids that agree surprisingly well with experimental data and highly accurate computations for Rayleigh numbers of up to 1014. In the present paper, the sensitivity of this phenomenon to the cavity shape (varying from cubical to highly elongated) is analyzed. Box-shaped computational domains with aspect ratios of 1: 4, 1: 10, and 1: 28.6 are considered. The results produced by the CABARET scheme are compared with experimental data (aspect ratio of 1: 28.6), DNS results (aspect ratio of 1: 4), and an empirical formula (aspect ratio of 1: 10). In all the cases, the CABARET-based integral parameters of the cavity flow agree well with the other authors' results. Notably coarse grids with mesh refinement toward the walls are used in the CABARET calculations. It is shown that acceptable numerical accuracy on extremely coarse grids is achieved for an aspect ratio of up to 1: 10. For higher aspect ratios, the number of grid cells required for achieving prescribed accuracy grows significantly.

  2. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less

  3. Hydrodynamic thrust generation and power consumption investigations for piezoelectric fins with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Tan, D.; Erturk, A.

    2015-12-01

    Bio-inspired hydrodynamic thrust generation using piezoelectric transduction has recently been explored using Macro-Fiber Composite (MFC) actuators. The MFC technology strikes a balance between the actuation force and structural deformation levels for effective swimming performance, and additionally offers geometric scalability, silent operation, and ease of fabrication. Recently we have shown that mean thrust levels comparable to biological fish of similar size can be achieved using MFC fins. The present work investigates the effect of length-to-width (L/b) aspect ratio on the hydrodynamic thrust generation performance of MFC cantilever fins by accounting for the power consumption level. It is known that the hydrodynamic inertia and drag coefficients are controlled by the aspect ratio especially for L/b< 5. The three MFC bimorph fins explored in this work have the aspect ratios of 2.1, 3.9, and 5.4. A nonlinear electrohydroelastic model is employed to extract the inertia and drag coefficients from the vibration response to harmonic actuation for the first bending mode. Experiments are then conducted for various actuation voltage levels to quantify the mean thrust resultant and power consumption levels for different aspect ratios. Variation of the thrust coefficient of the MFC bimorph fins with changing aspect ratio is also semi-empirically modeled and presented.

  4. Multilayer material characterization using thermographic signal reconstruction

    NASA Astrophysics Data System (ADS)

    Shepard, Steven M.; Beemer, Maria Frendberg

    2016-02-01

    Active-thermography has become a well-established Nondestructive Testing (NDT) method for detection of subsurface flaws. In its simplest form, flaw detection is based on visual identification of contrast between a flaw and local intact regions in an IR image sequence of the surface temperature as the sample responds to thermal stimulation. However, additional information and insight can be obtained from the sequence, even in the absence of a flaw, through analysis of the logarithmic derivatives of individual pixel time histories using the Thermographic Signal Reconstruction (TSR) method. For example, the response of a flaw-free multilayer sample to thermal stimulation can be viewed as a simple transition between the responses of infinitely thick samples of the individual constituent layers over the lifetime of the thermal diffusion process. The transition is represented compactly and uniquely by the logarithmic derivatives, based on the ratio of thermal effusivities of the layers. A spectrum of derivative responses relative to thermal effusivity ratios allows prediction of the time scale and detectability of the interface, and measurement of the thermophysical properties of one layer if the properties of the other are known. A similar transition between steady diffusion states occurs for flat bottom holes, based on the hole aspect ratio.

  5. Development of neutron imaging beamline for NDT applications at Dhruva reactor, India

    NASA Astrophysics Data System (ADS)

    Shukla, Mayank; Roy, Tushar; Kashyap, Yogesh; Shukla, Shefali; Singh, Prashant; Ravi, Baribaddala; Patel, Tarun; Gadkari, S. C.

    2018-05-01

    Thermal neutron imaging techniques such as radiography or tomography are very useful tool for various scientific investigations and industrial applications. Neutron radiography is complementary to X-ray radiography, as neutrons interact with nucleus as compared to X-ray interaction with orbital electrons. We present here design and development of a neutron imaging beamline at 100 MW Dhruva research reactor for neutron imaging applications such as radiography, tomography and phase contrast imaging. Combinations of sapphire and bismuth single crystals have been used as thermal neutron filter/gamma absorber at the input of a specially designed collimator to maximize thermal neutron to gamma ratio. The maximum beam size of neutrons has been restricted to ∼120 mm diameter at the sample position. A cadmium ratio of ∼250 with L / D ratio of 160 and thermal neutron flux of ∼ 4 × 107 n/cm2 s at the sample position has been measured. In this paper, different aspects of the beamline design such as collimator, shielding, sample manipulator, digital imaging system are described. Nondestructive radiography/tomography experiments on hydrogen concentration in Zr-alloy, aluminium foam, ceramic metal seals etc. are also presented.

  6. Some Effects of Sweep and Aspect Ratio on the Transonic Flutter Characteristics of a Series of Thin Cantilever Wings Having a Taper Ratio of 0.6

    NASA Technical Reports Server (NTRS)

    Jones, G. W., Jr.; Unangst, J. R.

    1963-01-01

    An investigation of the flutter characteristics of a series of thin cantilever wings having taper ratios of 0.6 was conducted in the Langley transonic blowdown tunnel at Mach numbers between 0.76 and 1.42. The angle of sweepback was varied from 0 degrees to 60 degrees on wings of aspect ratio 4, and the aspect ratio was varied from 2.4 to 6.4 on wings with 45 degrees of sweepback. The results are presented as ratios between the experimental flutter speeds and the reference flutter speeds calculated on the basis of incompressible two-dimensional flow. These ratios, designated the flutter-speed ratios, are given as functions of Mach number for the various wings. The flutter-speed ratios were characterized, in most cases, by values near 1.0 at subsonic speeds with large increases in the speed ratios in the range of supersonic speeds investigated. Increasing the sweep effected increases in the flutter-speed ratios between 0 degrees and 30 degrees followed by progressive reductions of the speed ratios to nearly 1.0 as the sweep was increased from 30 degrees to 60 degrees. Reducing the aspect ratio from 6.4 to 2.4 resulted in progressively larger values of the flutter-speed ratios throughout the Mach number range investigated.

  7. Frequency modulation detection atomic force microscopy in the liquid environment

    NASA Astrophysics Data System (ADS)

    Jarvis, S. P.; Ishida, T.; Uchihashi, T.; Nakayama, Y.; Tokumoto, H.

    True atomic resolution imaging using frequency modulation detection is already well established in ultra-high vacuum. In this paper we demonstrate that it also has great potential in the liquid environment. Using a combination of magnetic activation and high-aspect-ratio carbon nanotube probes, we show that imaging can be readily combined with point spectroscopy, revealing both the tip-sample interaction and the structure of the intermediate liquid.

  8. Physical characterization of fine particulate matter inside the public transit buses fueled by biodiesel in Toledo, Ohio.

    PubMed

    Shandilya, Kaushik K; Kumar, Ashok

    2011-06-15

    This study presents the physical characteristics of fine particulate matter (PM) collected inside the urban-public transit buses in Toledo, OH. These buses run on 20% biodiesel blended with ultra-low sulfur diesel (ULSD) (B20). For risk analysis, it is crucial to know the modality of the size distribution and the shape factor of PM collected inside the bus. The number-size distribution, microstructure, and aspect ratio of fine PM filter samples collected in the urban-public transit buses were measured for three years (2007-2009), using an environmental scanning electron microscope (ESEM) coupled with energy dispersive X-ray spectrometry (EDX). Only the reproducible results from repeated experiments on ESEM and size distribution obtained by the GRIMM dust monitor were used in this study. The size distribution was found bi-modal in the winter and fall months and was primarily uni-modal during spring and summer. The aspect ratio for different filter samples collected inside the bus range from 2.4 to 3.6 in average value, with standard deviation ranging from 0.9 to 7.4. The square-shaped and oblong-shaped particles represent the single inhalable particle's morphology characteristics in the air of the Toledo transit buses. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Shape-controlled synthesis and influence of W doping and oxygen nonstoichiometry on the phase transition of VO2

    PubMed Central

    Chen, Ru; Miao, Lei; Liu, Chengyan; Zhou, Jianhua; Cheng, Haoliang; Asaka, Toru; Iwamoto, Yuji; Tanemura, Sakae

    2015-01-01

    Monoclinic VO2(M) in nanostructure is a prototype material for interpreting correlation effects in solids with fully reversible phase transition and for the advanced applications to smart devices. Here, we report a facile one-step hydrothermal method for the controlled growth of single crystalline VO2(M/R) nanorods. Through tuning the hydrothermal temperature, duration of the hydrothermal time and W-doped level, single crystalline VO2(M/R) nanorods with controlled aspect ratio can be synthesized in large quantities, and the crucial parameter for the shape-controlled synthesis is the W-doped content. The dopant greatly promotes the preferential growth of (110) to form pure phase VO2(R) nanorods with high aspect ratio for the W-doped level = 2.0 at% sample. The shape-controlled process of VO2(M/R) nanorods upon W-doping are systematically studied. Moreover, the phase transition temperature (Tc) of VO2 depending on oxygen nonstoichiometry is investigated in detail. PMID:26373612

  10. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    PubMed

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  11. Microstructure and texture of a nano-grained complex Al alloy fabricated by accumulative roll-bonding of dissimilar Al alloys.

    PubMed

    Lee, Seong-Hee; Jeon, Jae-Yeol; Lee, Kwang-Jin

    2013-01-01

    An ultrafine grain (UFG) complex lamella aluminum alloy sheet was successfully fabricated by ARB process using AA1050 and AA6061. The lamella thickness of the alloy became thinner and elongated to the rolling direction with increasing the number of ARB cycles. By TEM observation, it is revealed that the aspect ratio of UFGs formed by ARB became smaller with increasing the number of ARB cycles. In addition, the effect of ARB process on the development of deformation texture at the quarter thickness of ARB-processed sheets was clarified. ARB process leaded to the formation of the rolling texture with shear texture and weak cube orientation. The subdivision of the grains to the rolling direction began to occur after 3 cycles of the ARB, resulting in formation of ultrafine grains with small aspect ratio. After 5 cycles, the ultrafine grained structure with the average grain diameter of 560 nm develops in almost whole regions of the sample.

  12. Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk.

    PubMed

    Collazo-Bigliardi, Sofía; Ortega-Toro, Rodrigo; Chiralt Boix, Amparo

    2018-07-01

    Cellulosic material from coffee husk has not been previously studied despite being a potential source of reinforcing agents for different applications. This material has been extracted and characterised from coffee husk, in parallel with previously studied rice husk. Samples have been analysed as to their ability to obtain cellulosic fibres and cellulose nanocrystals (CNC) by applying alkali and bleaching treatments and final sulphuric acid hydrolysis. Microstructural changes were analysed after treatments, and the size and aspect ratio of CNCs were determined. Crystallinity and thermal stability of both materials progressed in line with the enrichment in cellulosic compounds. The CNC aspect ratio was higher than 10, which confers good reinforcing properties. These were tested in thermoplastic starch films, whose elastic modulus increased by 186 and 121% when 1 wt% of CNCs from rice and coffee husks, respectively, was incorporated into the matrix. Coffee husk represents an interesting source of cellulosic reinforcing materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Statistical aspects of genetic association testing in small samples, based on selective DNA pooling data in the arctic fox.

    PubMed

    Szyda, Joanna; Liu, Zengting; Zatoń-Dobrowolska, Magdalena; Wierzbicki, Heliodor; Rzasa, Anna

    2008-01-01

    We analysed data from a selective DNA pooling experiment with 130 individuals of the arctic fox (Alopex lagopus), which originated from 2 different types regarding body size. The association between alleles of 6 selected unlinked molecular markers and body size was tested by using univariate and multinomial logistic regression models, applying odds ratio and test statistics from the power divergence family. Due to the small sample size and the resulting sparseness of the data table, in hypothesis testing we could not rely on the asymptotic distributions of the tests. Instead, we tried to account for data sparseness by (i) modifying confidence intervals of odds ratio; (ii) using a normal approximation of the asymptotic distribution of the power divergence tests with different approaches for calculating moments of the statistics; and (iii) assessing P values empirically, based on bootstrap samples. As a result, a significant association was observed for 3 markers. Furthermore, we used simulations to assess the validity of the normal approximation of the asymptotic distribution of the test statistics under the conditions of small and sparse samples.

  14. Experiments on two- and three-dimensional vortex flows in lid-driven cavities

    NASA Astrophysics Data System (ADS)

    Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.

    2009-11-01

    Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.

  15. Computational Modeling And Analysis Of Synthetic Jets

    NASA Technical Reports Server (NTRS)

    Mittal, Rajat; Cattafesta, Lou

    2005-01-01

    In the last report we focused on the study of 3D synthetic jets of moderate jet aspect-ratio. Jets in quiescent and cross-flow cases were investigated. Since most of the synthetic jets in practical applications are found to be of large aspect ratio, the focus was shifted to studying synthetic jets of large aspect ratio. In the current year, further progress has been made by studying jets of aspect ratio 8 and infinity. Some other aspects of the jet, like the vorticity flux is looked into apart from analyzing the vortex dynamics, velocity profiles and the other dynamical characteristics of the jet which allows us to extract some insight into the effect of these modifications on the jet performance. Also, efforts were made to qualitatively validate the simulated results with the NASA Langley test cases at higher jet Reynolds number for the quiescent jet case.

  16. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  17. The influence of pore geometry and orientation on the strength and stiffness of porous rock

    NASA Astrophysics Data System (ADS)

    Griffiths, Luke; Heap, Michael J.; Xu, Tao; Chen, Chong-feng; Baud, Patrick

    2017-03-01

    The geometry of voids in porous rock falls between two end-members: very low aspect ratio (the ratio of the minor to the major axis) microcracks and perfectly spherical pores with an aspect ratio of unity. Although the effect of these end-member geometries on the mechanical behaviour of porous rock has received considerable attention, our understanding of the influence of voids with an intermediate aspect ratio is much less robust. Here we perform two-dimensional numerical simulations (Rock Failure Process Analysis, RFPA2D) to better understand the influence of pore aspect ratio (from 0.2 to 1.0) and the angle between the pore major axis and the applied stress (from 0 to 90°) on the mechanical behaviour of porous rock under uniaxial compression. Our numerical simulations show that, for a fixed aspect ratio (0.5) the uniaxial compressive strength and Young's modulus of porous rock can be reduced by a factor of ∼2.4 and ∼1.3, respectively, as the angle between the major axis of the elliptical pores and the applied stress is rotated from 0 to 90°. The influence of pore aspect ratio on strength and Young's modulus depends on the pore angle. At low angles (∼0-10°) an increase in aspect ratio reduces the strength and Young's modulus. At higher angles (∼40-90°), however, strength and Young's modulus increase as aspect ratio is increased. At intermediate angles (∼20-30°), strength and Young's modulus first increase and then decrease as pore aspect ratio approaches unity. These simulations also highlight that the influence of pore angle on compressive strength and Young's modulus decreases as the pore aspect ratio approaches unity. We find that the analytical solution for the stress concentration around a single elliptical pore, and its contribution to elasticity, are in excellent qualitative agreement with our numerical simulations. The results of our numerical modelling are also in agreement with recent experimental data for porous basalt, but fail to capture the strength anisotropy observed in experiments on sandstone. We conclude that the alignment of grains or platy minerals such as clays exerts a greater influence on strength anisotropy in porous sandstones than pore geometry. Finally, we show that the strength anisotropy that arises as a result of preferentially aligned elliptical pores is of a similar magnitude to that generated by bedding in porous sandstones and foliation in low-porosity metamorphic rocks. The modelling presented herein shows that porous rocks containing elliptical pores can display a strength and stiffness anisotropy, with implications for the preservation and destruction of porosity and permeability, as well as the distribution of stress and strain within the Earth's crust.

  18. Artificial phototropism based on a photo-thermo-responsive hydrogel

    NASA Astrophysics Data System (ADS)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon absorption. Slopes of 0.82 and 0.56 were observed for the low and high Au NP concentration samples. The rapid and precise incident light tracking of our system has shown the promise in phototropic applications.

  19. Role of dipolar interactions on morphologies and tunnel magnetoresistance in assemblies of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Anand, Manish; Carrey, Julian; Banerjee, Varsha

    2018-05-01

    We undertake comprehensive simulations of 2d arrays (Lx ×Ly) of magnetic nanoparticles (MNPs) with dipole-dipole interactions by solving LLG equations. Our primary interest is to understand the correspondence between equilibrium spin (ES) morphologies and tunnel magnetoresistance (TMR) as a function of Θ - the ratio of the dipolar to the anisotropy strength, sample size Lx , aspect ratio Ar =Ly /Lx and the direction of the applied field H → = HêH . The parameter Θ is varied by choosing three distinct particles: (i) α -Fe2O3 (Θ ≃ 0) , (ii) Co (Θ ≃ 0.37) and (iii) Fe3O4 (Θ ≃ 1.28) . Our main observations are as follows: (a) For weakly interacting spins (Θ ≃ 0) , the morphology has randomly oriented magnetic moments for all sample sizes and aspect ratios. The TMR exhibits a peak value of 50% at the coercive field Hc . It is robust with respect to Lx and Ar , and isotropic with respect to êH . (b) For strong interactions (Θ > 1) , the moments order in the plane of the sample. The ES morphology comprises of magnetically aligned regions interspersed with flux closure loops. For fields along x or y, the maximum TMR amplitude decrease to ∼30%. For êH = z ̂ , it drops to ∼3%. The TMR is robust with respect to Lx and Ar and isotropic in the x and y directions only. (c) In strongly interacting samples (Θ > 1) with Lx comparable to the size of a flux closure loop, increasing Ar creates ferromagnetic chains in the sample oriented along y or - y . Consequently, for êH = y ̂ , the TMR magnitude for Ar = 1 is ∼33% while that for Ar = 32 drops to ∼16%. For êH = x ̂ on the other hand, it is ∼30% and independent of Ar . The TMR of long ribbons of MNPs has a strong dependence on Ar and is anisotropic in all three directions.

  20. A study of the rheology and micro-structure of dumbbells in shear geometries

    NASA Astrophysics Data System (ADS)

    Mandal, Sandip; Khakhar, D. V.

    2018-01-01

    We study the flow of frictional, inelastic dumbbells made of two fused spheres of different aspect ratios down a rough inclined plane and in a simple shear cell, using discrete element simulations. At a fixed inclination angle, the mean velocity decreases, and the volume fraction increases significantly with increasing aspect ratio in the chute flow. At a fixed solid fraction, the shear stress and pressure decrease significantly with increasing aspect ratio in the shear cell flow. The micro-structure of the flow is characterized. The translational diffusion coefficient in the normal direction to the flow is found to scale as Dy y=b γ ˙ d2, independent of aspect ratio, where b is a constant, γ ˙ is the shear rate, and d is the diameter of the constituent spheres of the dumbbells. The effective friction coefficient (μ, the ratio of shear stress to pressure) increases by 30%-35% on increasing the aspect ratio λ, from 1.0 to 1.7, for a fixed inertial number I. The volume fraction (ϕ) also increases significantly with increasing aspect ratio, especially at high inertial numbers. The effective friction coefficient and volume fraction are found to follow simple scalings of the form μ = μ(I, λ) and ϕ = ϕ(I, λ) for all the data from both systems, and the results are in reasonable agreement with kinetic theory predictions at low I. The computational results are in reasonable agreement with the experimental data for flow in a rotating cylinder.

  1. Tensile and tribological properties of a short-carbon-fiber-reinforced peek composite doped with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Li, J.; Zhang, L. Q.

    2009-09-01

    The main objective of this paper is to develop a high-wear-resistant short-carbon-fiber-reinforced polyetheretherketone (PEEK) composite by introducing additional multiwall carbon nanotubes (MWCNTs) into it. The compounds were mixed in a Haake batch mixer and fabricated into sheets by compression molding. Samples with different aspect ratios and concentrations of fillers were tested for wear resistance. The worn surfaces of the samples were examined by using a scanning electron microscope (SEM), and the photomicrographs revealed a higher wear resistance of the samples containing the additional carbon nanotubes. Also, a better interfacial adhesion between the short carbon fibers and vinyl ester in the composite was observed.

  2. CFD Assessment of Orifice Aspect Ratio and Mass Flow Ratio on Jet Mixing in Rectangular Ducts

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1994-01-01

    Isothermal CFD analysis was performed on axially opposed rows of jets mixing with cross flow in a rectangular duct. Laterally, the jets' centerlines were aligned with each other on the top and bottom walls. The focus of this study was to characterize the effects of orifice aspect ratio and jet-to-mainstream mass flow ratio on jet penetration and mixing. Orifice aspect ratios (L/W) of 4-to-1, 2-to-1, and 1-to-1, along with circular holes, were parametrically analyzed. Likewise, jet-to-mainstream mass flow ratios (MR) of 2.0, 0.5, and 0.25 were systematically investigated. The jet-to-mainstream momentum-flux ratio (J) was maintained at 36 for all cases, and the orifice spacing-to-duct height (S/H) was varied until optimum mixing was attained for each configuration. The numerical results showed that orifice aspect ratio (and likewise orifice blockage) had little effect on jet penetration and mixing. Based on mixing characteristics alone, the 4-to-1 slot was comparable to the circular orifice. The 4-to-1 slot has a smaller jet wake which may be advantageous for reducing emissions. However, the axial length of a 4-to-1 slot may be prohibitively long for practical application, especially for MR of 2.0. The jet-to-mainstream mass flow ratio had a more significant effect on jet penetration and mixing. For a 4-to-1 aspect ratio orifice, the design correlating parameter for optimum mixing (C = (S/H)(sq. root J)) varied from 2.25 for a mass flow ratio of 2.0 to 1.5 for a mass flow ratio of 0.25.

  3. Sub-surface structures and collapse mechanisms of summit pit craters

    NASA Astrophysics Data System (ADS)

    Roche, O.; van Wyk de Vries, B.; Druitt, T. H.

    2001-01-01

    Summit pit craters are found in many types of volcanoes and are generally thought to be the product of collapse into an underpressured reservoir caused by magma withdrawal. We investigate the mechanisms and structures associated with summit pit crater formation by scaled analogue experiments and make comparisons with natural examples. Models use a sand plaster mixture as analogue rock over a cylinder of silicone simulating an underpressured magma reservoir. Experiments are carried out using different roof aspect ratios (roof thickness/roof width) of 0.2-2. They reveal two basic collapse mechanisms, dependant on the roof aspect ratio. One occurs at low aspect ratios (≤1), as illustrated by aspect ratios of 0.2 and 1. Outward dipping reverse faults initiated at the silicone margins propagates through the entire roof thickness and cause subsidence of a coherent block. Collapse along the reverse faults is accommodated by marginal flexure of the block and tension fractures at the surface (aspect ratio of 0.2) or by the creation of inward dipping normal faults delimiting a terrace (aspect ratio of 1). At an aspect ratio of 1, overhanging pit walls are the surface expressions of the reverse faults. Experiments at high aspect ratio (>1.2) reveal a second mechanism. In this case, collapse occurs by stopping, which propagates upwards by a complex pattern of both reverse faults and tension fractures. The initial underground collapse is restricted to a zone above the reservoir and creates a cavity with a stable roof above it. An intermediate mechanism occurs at aspect ratios of 1.1-1.2. In this case, stopping leads to the formation of a cavity with a thin and unstable roof, which collapses suddenly. The newly formed depression then exhibits overhanging walls. Surface morphology and structure of natural examples, such as the summit pit craters at Masaya Volcano, Nicaragua, have many of the features created in the models, indicating that the internal structural geometry of experiments can be applied to real examples. In particular, the surface area and depth of the underpressured reservoir can be roughly estimated. We present a morphological analysis of summit pit craters at volcanoes such as Kilimanjaro (Tanzania), San Cristobal, Telica and Masaya (Nicaragua), and Ubinas (Peru), and indicate a likely type of subsidence and possible position of the former magma reservoir responsible for collapse in each case.

  4. Contact fatigue mechanisms as a function of crystal aspect ratio in baria-silicate glass ceramics

    NASA Astrophysics Data System (ADS)

    Suputtamongkol, Kallaya

    2003-10-01

    Ceramic materials are potentially useful for dental applications because of their esthetic potential and biocompatibility. However, the existence of fatigue damage in ceramics raises considerable concern regarding its effect on the life prediction of dental prostheses. During normal mastication, dental restorations are subjected to repeated loading more than a thousand times per day and relatively high clinical failure rates for ceramic prostheses have been reported. To simulate the intraoral loads, Hertzian indentation loading was used in this study to characterize the fatigue failure mechanisms of ceramic materials using clinically relevant parameters. The baria-silicate system was chosen because of the nearly identical composition between the crystal and the glass matrix. Little or no residual stress is expected from the elastic modulus and thermal expansion mismatches between the two phases. Crystallites with different aspect ratios can also be produced by controlled heat treatment schedules. The objective of this study was to characterize the effect of crystal morphology on the fatigue mechanisms of bariasilicate glass-ceramics under clinically relevant conditions. The results show that the failure of materials with a low toughness such as baria-silicate glass (0.7 MPa•m1/2) and glass-ceramic with an aspect ratio of 3/1 (1.3 MPa•m1/2) initiated from a cone crack developed during cyclic loading for 103 to 105 cycles. The mean strength values of baria-silicate glass and glass-ceramic with an aspect ratio of 3/1 decreased significantly as a result of the presence of a cone crack. Failure of baria-silicate glass-ceramics with an aspect ratio of 8/1 (Kc = 2.1 MPa•m1/2) was initiated from surface flaws caused by either polishing or cyclic loading. The gradual decrease of fracture stress was observed in specimens with an aspect ratio of 8/1 after loading in air for 103 to 10 5 cycles. A reduction of approximately 50% in fracture stress levels was found for specimens with an aspect ratio of 8/1 after loading for 10 5 cycles in deionized water. The mechanisms for cyclic fatigue crack propagation in baria-silicate glass-ceramics are similar to those observed under quasi-static loading conditions. An intergranular fracture path was observed in glass-ceramics with an aspect ratio of 3/1. For an aspect ratio of 8/1, a transgranular fracture mode was dominant.

  5. Simultaneous fabrication of very high aspect ratio positive nano- to milliscale structures.

    PubMed

    Chen, Long Qing; Chan-Park, Mary B; Zhang, Qing; Chen, Peng; Li, Chang Ming; Li, Sai

    2009-05-01

    A simple and inexpensive technique for the simultaneous fabrication of positive (i.e., protruding), very high aspect (>10) ratio nanostructures together with micro- or millistructures is developed. The method involves using residual patterns of thin-film over-etching (RPTO) to produce sub-micro-/nanoscale features. The residual thin-film nanopattern is used as an etching mask for Si deep reactive ion etching. The etched Si structures are further reduced in size by Si thermal oxidation to produce amorphous SiO(2), which is subsequently etched away by HF. Two arrays of positive Si nanowalls are demonstrated with this combined RPTO-SiO(2)-HF technique. One array has a feature size of 150 nm and an aspect ratio of 26.7 and another has a feature size of 50 nm and an aspect ratio of 15. No other parallel reduction technique can achieve such a very high aspect ratio for 50-nm-wide nanowalls. As a demonstration of the technique to simultaneously achieve nano- and milliscale features, a simple Si nanofluidic master mold with positive features with dimensions varying continuously from 1 mm to 200 nm and a highest aspect ratio of 6.75 is fabricated; the narrow 200-nm section is 4.5 mm long. This Si master mold is then used as a mold for UV embossing. The embossed open channels are then closed by a cover with glue bonding. A high aspect ratio is necessary to produce unblocked closed channels after the cover bonding process of the nanofluidic chip. The combined method of RPTO, Si thermal oxidation, and HF etching can be used to make complex nanofluidic systems and nano-/micro-/millistructures for diverse applications.

  6. Effects of aspect ratio of multi-walled carbon nanotubes on coal washery waste water treatment.

    PubMed

    Aliyu, Ahmed; Kariim, Ishaq; Abdulkareem, Saka Ambali

    2017-11-01

    The dependency of adsorption behaviour on the aspect ratio of multi-walled carbon nanotubes (MWCNTs) has been explored. In this study, effect of growth temperature on yield and aspect ratio of MWCNTs by catalytic chemical vapour deposition (CCVD) method is reported. The result revealed that yield and aspect ratio of synthesised MWCNTs strongly depend on the growth temperature during CCVD operation. The resulting MWCNTs were characterized by High Resolution Transmission Electron Microscope (HRTEM), Dynamic Light Scattering (DLS) and X-ray diffraction (XRD) techniques to determine it diameter, hydrodynamic diameter and crystallinity respectively. Aspect ratio and length of the grown MWCNTs were determined from the HRTEM images with the hydrodynamic diameter using the modified Navier-Stokes and Stokes-Einstein equations. The effect of the prepared MWCNTs dosage were investigated on the Turbidity, Iron (Fe) and Lead (Pb) removal efficiency of coal washery effluent. The MWCNTs with higher length (58.17 μm) and diameter (71 nm) tend to show high turbidity and Fe removal, while MWCNTs with lower length (38.87 μm) and diameter (45 nm) tend to show high removal of Pb. Hence, the growth temperature during CCVD operation shows a great effluence on the aspect ratio of MWCNTs which determines it area of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Investigation at low speeds of the effect of aspect ratio and sweep on rolling stability derivatives of untapered wings

    NASA Technical Reports Server (NTRS)

    Goodman, Alex; Fisher, Lewis R.

    1949-01-01

    A low scale wind tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. Test results indicate that when the aspect ratio was held constant, an increase in the sweepback angle caused a significant reduction in the damping in roll at low lift coefficients for only the higher aspect ratios that were tested. This result was in agreement with available swept wing theory which indicated no effect of sweep for aspect ratios near zero. The result of the linear theory that the damping in roll is independent of lift coefficient and that the yawing moment and lateral force due to rolling are directly proportional to the lift coefficient was found to be valid for only a very limited lift coefficient range when the wings were highly swept. For such wings, the damping was found to increase in magnitude and the yawing moment due to rolling, to change from negative to positive at moderate lift coefficients. The effect of wing tip suction, not acounted for by present theory, was found to be very important with regard to the yawing moment due to rolling, particularly for low aspect ratio swept wings. An empirical means of correcting present theory for the effect of tip suction is suggested.

  8. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  9. Preliminary design characteristics of a subsonic business jet concept employing an aspect ratio 25 strut braced wing

    NASA Technical Reports Server (NTRS)

    Turriziani, R. V.; Lovell, W. A.; Martin, G. L.; Price, J. E.; Swanson, E. E.; Washburn, G. F.

    1980-01-01

    The advantages of replacing the conventional wing on a transatlantic business jet with a larger, strut braced wing of aspect ratio 25 were evaluated. The lifting struts reduce both the induced drag and structural weight of the heavier, high aspect ratio wing. Compared to the conventional airplane, the strut braced wing design offers significantly higher lift to drag ratios achieved at higher lift coefficients and, consequently, a combination of lower speeds and higher altitudes. The strut braced wing airplane provides fuel savings with an attendant increase in construction costs.

  10. Experimental and Calculated Characteristics of Several NACA 44-series Wings with Aspect Ratios of 8, 10, and 12 and Taper Ratios of 2.5 and 3.5

    NASA Technical Reports Server (NTRS)

    Neely, Robert H; Bollech, Thomas V; Westrick, Gertrude C

    1947-01-01

    The aerodynamic characteristics of seven unswept tapered wings were determined by calculation from two-dimensional data and by wind-tunnel tests in order to demonstrate the accuracy of the calculations and to show some of the effects of aspect ratio, taper ratio, and root thickness-chord ratio. The characteristics were calculated by the usual application of the lifting-line theory which assumes linear section lift curves and also by an application of the theory which allows the use of nonlinear lift curves. A correction to the lift for the effect of chord was made by using the Jones edge-velocity factor. The wings had aspect ratios of 8, 10, and 12, taper ratios of 2.5 and 3.5, and NACA 44-series airfoils.

  11. Anisometric Particle Systems—from Shape Characterization to Suspension Rheology

    NASA Astrophysics Data System (ADS)

    Gregorová, Eva; Pabst, Willi; Vaněrková, Lucie

    2009-06-01

    Methods for the characterization of anisometric particle systems are discussed. For prolate particles, the aspect ratio determination via microscopic image analysis is recalled, and aspect ratio distributions as well as shape-size dependences are commented upon. For oblate particles a simple relation is recalled with can be used to determine an average aspect ratio when size distributions are available from two methods, typically from sedimentation analysis and laser diffraction. The connection between particle shape (aspect ratio) and suspension rheology is outlined and it is shown how a generic procedure, based on Brenner's theory, can be applied to predict the intrinsic viscosity when the aspect ratio is known. On the other hand it is shown, how information on the intrinsic viscosity and the critical solids volume fraction can be extracted from experiments, when the measured concentration dependence of the effective suspension viscosity is adequately interpreted (using the Krieger relation for fitting). The examples mentioned in this paper include systems with oblate or prolate ceramic particles (kaolins, pyrophyllite, wollastonite, silicon carbide) as well as (prolate) pharmaceuticals (mesalamine, ibuprofen, nifuroxazide, paracetamol).

  12. Percolation in suspensions of hard nanoparticles: From spheres to needles

    NASA Astrophysics Data System (ADS)

    Schilling, Tanja; Miller, Mark A.; van der Schoot, Paul

    2015-09-01

    We investigate geometric percolation and scaling relations in suspensions of nanorods, covering the entire range of aspect ratios from spheres to extremely slender needles. A new version of connectedness percolation theory is introduced and tested against specialised Monte Carlo simulations. The theory accurately predicts percolation thresholds for aspect ratios of rod length to width as low as 10. The percolation threshold for rod-like particles of aspect ratios below 1000 deviates significantly from the inverse aspect ratio scaling prediction, thought to be valid in the limit of infinitely slender rods and often used as a rule of thumb for nanofibres in composite materials. Hence, most fibres that are currently used as fillers in composite materials cannot be regarded as practically infinitely slender for the purposes of percolation theory. Comparing percolation thresholds of hard rods and new benchmark results for ideal rods, we find that i) for large aspect ratios, they differ by a factor that is inversely proportional to the connectivity distance between the hard cores, and ii) they approach the slender rod limit differently.

  13. Demographic factors associated with moral sensitivity among nursing students.

    PubMed

    Tuvesson, Hanna; Lützén, Kim

    2017-11-01

    Today's healthcare environment is often characterized by an ethically demanding work situation, and nursing students need to prepare to meet ethical challenges in their future role. Moral sensitivity is an important aspect of the ethical decision-making process, but little is known regarding nursing students' moral sensitivity and its possible development during nursing education. The aims of this study were to investigate moral sensitivity among nursing students, differences in moral sensitivity according to sample sub-group, and the relation between demographic characteristics of nursing students and moral sensitivity. A convenience sample of 299 nursing students from one university completed a questionnaire comprising questions about demographic information and the revised Moral Sensitivity Questionnaire. With the use of SPSS, non-parametric statistics, including logistic regression models, were used to investigate the relationship between demographic characteristics and moral sensitivity. Ethical considerations: The study followed the regulations according to the Swedish Ethical Review Act and was reviewed by the Ethics Committee of South-East Sweden. The findings showed that mean scores of nursing students' moral sensitivity were found in the middle to upper segment of the rating scale. Multivariate analysis showed that gender (odds ratio = 3.32), age (odds ratio = 2.09; 1.73), and parental status (odds ratio = 0.31) were of relevance to nursing students' moral sensitivity. Academic year was found to be unrelated to moral sensitivity. These demographic aspects should be considered when designing ethics education for nursing students. Future studies should continue to investigate moral sensitivity in nursing students, such as if and how various pedagogical strategies in ethics may contribute to moral sensitivity in nursing students.

  14. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout.

    PubMed

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results.

  15. Aspect Ratio Model for Radiation-Tolerant Dummy Gate-Assisted n-MOSFET Layout

    PubMed Central

    Lee, Min Su; Lee, Hee Chul

    2014-01-01

    In order to acquire radiation-tolerant characteristics in integrated circuits, a dummy gate-assisted n-type metal oxide semiconductor field effect transistor (DGA n-MOSFET) layout was adopted. The DGA n-MOSFET has a different channel shape compared with the standard n-MOSFET. The standard n-MOSFET has a rectangular channel shape, whereas the DGA n-MOSFET has an extended rectangular shape at the edge of the source and drain, which affects its aspect ratio. In order to increase its practical use, a new aspect ratio model is proposed for the DGA n-MOSFET and this model is evaluated through three-dimensional simulations and measurements of the fabricated devices. The proposed aspect ratio model for the DGA n-MOSFET exhibits good agreement with the simulation and measurement results. PMID:27350975

  16. Silicon macroporous arrays with high aspect ratio prepared by ICP etching

    NASA Astrophysics Data System (ADS)

    Wang, Guozheng; Yang, Bingchen; Wang, Ji; Yang, Jikai; Duanmu, Qingduo

    2018-02-01

    This paper reports on a macroporous silicon arrays with high aspect ratio, the pores of which are of 162, 205, 252, 276μm depths with 6, 10, 15 and 20 μm diameters respectively, prepared by Multiplex Inductively Coupled Plasma (ICP) etching. It was shown that there are very differences in process of high aspect ratio microstructures between the deep pores, a closed structure, and deep trenches, a open structure. The morphology and the aspect ratio dependent etching were analyzed and discussed. The macroporous silicon etched by ICP process yield an uneven, re-entrant, notched and ripples surface within the pores. The main factors effecting on the RIE lag of HARP etching are the passivation cycle time, the pressure of reactive chamber, and the platen power of ICP system.

  17. Effects of aspect ratio on the phase diagram of spheroidal particles

    NASA Astrophysics Data System (ADS)

    Kutlu, Songul; Haaga, Jason; Rickman, Jeffrey; Gunton, James

    Ellipsoidal particles occur in both colloidal and protein science. Models of protein phase transitions based on interacting spheroidal particles can often be more realistic than those based on spherical molecules. One of the interesting questions is how the aspect ratio of spheroidal particles affects the phase diagram. Some results have been obtained in an earlier study by Odriozola (J. Chem. Phys. 136:134505 (2012)). In this poster we present results for the phase diagram of hard spheroids interacting via a quasi-square-well potential, for different aspect ratios. These results are obtained from Monte Carlo simulations using the replica exchange method. We find that the phase diagram, including the crystal phase transition, is sensitive to the choice of aspect ratio. G. Harold and Leila Y. Mathers Foundation.

  18. Single point aerosol sampling: evaluation of mixing and probe performance in a nuclear stack.

    PubMed

    Rodgers, J C; Fairchild, C I; Wood, G O; Ortiz, C A; Muyshondt, A; McFarland, A R

    1996-01-01

    Alternative reference methodologies have been developed for sampling of radionuclides from stacks and ducts, which differ from the methods previously required by the United States Environmental Protection Agency. These alternative reference methodologies have recently been approved by the U.S. EPA for use in lieu of the current standard techniques. The standard EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative reference methodologies are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of some aspects of the alternative reference methodologies. Coefficients of variation of velocity, tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed that numerical criteria placed upon the coefficients of variation by the alternative reference methodologies were met at sampling stations located 9 and 14 stack diameters from the flow entrance, but not at a location that was 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 microns aerodynamic diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L min-1 (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the existing EPA standard requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the alternative reference methodologies criteria; however, the isokinetic probes would not.

  19. Hydrodynamic Characteristics of Two Low-Drag Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McGehee, John R.; Johnson, Virgil E., Jr.

    1959-01-01

    An experimental investigation has been conducted in Langley tank no. 2 to determine the hydrodynamic characteristics of two low-drag supercavitating hydrofoils operating in a range of cavitation numbers from 0 to approximately 6. The hydrofoils had aspect ratios of 1 and 3, and the sections were derived by assuming five terms in the vorticity-distribution expansion of the equivalent airfoil. The aspect-ratio-1 hydrofoil was also tested at zero cavitation number with two sets of end plates having depths of 3/8 and 1/4 chords. Zero cavitation number was established by operating the hydrofoils near the water surface so that complete ventilation of the upper surfaces could be obtained. For those depths of submersion where complete ventilation was not obtained through vortex ventilation, two probes were used to introduce air to the upper surfaces of the hydrofoils and to induce complete ventilation. Data were obtained for a range of speeds from 20 to 80 fps, angles of attack from 2 to 20 deg, and ratios of depth of submersion to chord from 0 to 0.85. The experimental results obtained from the aspect-ratio-1 and aspect-ratio-3, five-term hydrofoils were compared with a three-dimensional zero-cavitation-number theory. The theoretical and experimental values of lift and center of pressure for the aspect-ratio-1 hydrofoil were in agreement, within engineering accuracy, for the range of lift coefficients investigated. The theoretical drag coefficients were lower, by a constant amount, than the experimental drag coefficients. The theoretical expressions derived for the lift, drag, and center of pressure of the aspect-ratio-3 hydrofoil were in agreement, within engineering accuracy, with the experimental values. The theoretical and experimental drag coefficients of the aspect-ratio-3 five-term hydrofoil were lower than the theoretical drag coefficients computed for a comparable Tulin-Burkart hydrofoil.

  20. Some applications of the NASTRAN level 16 subsonic flutter analysis capability. [to transport wing and arrow wing

    NASA Technical Reports Server (NTRS)

    Doggett, R. V., Jr.; Cunningham, H. J.

    1976-01-01

    The Level 16 flutter analysis capability was applied to an aspect-ratio-6.8 subsonic transport type wing, an aspect-ratio-1.7 arrow wing, and an aspect-ratio-1.3 all movable horizontal tail with a geared elevator. The transport wing and arrow wing results are compared with experimental results obtained in the Langley transonic dynamic tunnel and with other calculated results obtained using subsonic lifting surface (kernel function) unsteady aerodynamic theory.

  1. Method of fabricating a high aspect ratio microstructure

    DOEpatents

    Warren, John B.

    2003-05-06

    The present invention is for a method of fabricating a high aspect ratio, freestanding microstructure. The fabrication method modifies the exposure process for SU-8, an negative-acting, ultraviolet-sensitive photoresist used for microfabrication whereby a UV-absorbent glass substrate, chosen for complete absorption of UV radiation at 380 nanometers or less, is coated with a negative photoresist, exposed and developed according to standard practice. This UV absorbent glass enables the fabrication of cylindrical cavities in a negative photoresist microstructures that have aspect ratios of 8:1.

  2. Potential of lattice Boltzmann to model droplets on chemically stripe-patterned substrates

    NASA Astrophysics Data System (ADS)

    Patrick Jansen, H.; Sotthewes, K.; Zandvliet, Harold J. W.; Kooij, E. Stefan

    2016-01-01

    Lattice Boltzmann modelling (LBM) has recently been applied to a range of different wetting situations. Here we demonstrate its potential in representing complex kinetic effects encountered in droplets on chemically stripe-patterned surfaces. An ultimate example of the power of LBM is provided by comparing simulations and experiments of impacting droplets with varying Weber numbers. Also, the shape evolution of droplets is discussed in relation to their final shape. The latter can then be compared to Surface Evolver (SE) results, since under the proper boundary conditions both approaches should yield the same configuration in a static state. During droplet growth in LBM simulations, achieved by increasing the density within the droplet, the contact line initially advances in the direction parallel to the stripes, therewith increasing its aspect ratio. Once the volume becomes too large the droplet starts wetting additional stripes, leading to a lower aspect ratio. The maximum aspect ratio is shown to be a function of the width ratio of the hydrophobic and hydrophilic stripes and also their absolute widths. In the limit of sufficiently large stripe widths the aspect ratio is solely dependent on the relative stripe widths. The maximum droplet aspect ratio in the LBM simulations is compared to SE simulations and results are shown to be in good agreement. Additionally, we also show the ability of LBM to investigate single stripe wetting, enabling determination of the maximum aspect ratio that can be achieved in the limit of negligible hydrophobic stripe width, under the constraint that the stripe widths are large enough such that they are not easily crossed.

  3. Processing and microstructure of Nb-1 percent Zr-0.1 percent C alloy sheet

    NASA Technical Reports Server (NTRS)

    Uz, Mehmet; Titran, Robert H.

    1992-01-01

    A systematic study was carried out to evaluate the effects of processing on the microstructure of Nb-1 wt. pct. Zr-0.1 wt. pct. C alloy sheet. The samples were fabricated by cold rolling different sheet bars that were single-, double- or triple-extruded at 1900 K. Heat treatment consisted on one- or two-step annealing of different samples at temperatures ranging from 1350 to 1850 K. The assessment of the effects of processing on microstructure involved characterization of the precipitates including the type, crystal structure, chemistry and distribution within the material as well as an examination of the grain structure. A combination of various analytical and metallographic techniques were used on both the sheet samples and the residue extracted from them. The results show that the relatively coarse orthorhombic Nb2C carbides in the as-rolled samples transformed to rather fine cubic monocarbides of Nb and Zr with varying Zr/Nb ratios upon subsequent heat treatment. The relative amount of the cubic carbides and the Zr/Nb ratio increased with increasing number of extrusions prior to cold rolling. Furthermore, the size and the aspect ratio of the grains appear to be strong functions of the processing history of the material. These and other results obtained will be presented with the emphasis on a possible relationship between processing and microstructure.

  4. Cleaning of nanopillar templates for nanoparticle collection using PDMS

    NASA Astrophysics Data System (ADS)

    Merzsch, S.; Wasisto, H. S.; Waag, A.; Kirsch, I.; Uhde, E.; Salthammer, T.; Peiner, E.

    2011-05-01

    Nanoparticles are easily attracted by surfaces. This sticking behavior makes it difficult to clean contaminated samples. Some complex approaches have already shown efficiencies in the range of 90%. However, a simple and cost efficient method was still missing. A commonly used silicone for soft lithography, PDMS, is able to mold a given surface. This property was used to cover surface-bonded particles from all other sides. After hardening the PDMS, particles are still embedded. A separation of silicone and sample disjoins also the particles from the surface. After this procedure, samples are clean again. This method was first tested with carbon particles on Si surfaces and Si pillar samples with aspect ratios up to 10. Experiments were done using 2 inch wafers, which, however, is not a size limitation for this method.

  5. Numerical analysis on effect of aspect ratio of planar solid oxide fuel cell fueled with decomposed ammonia

    NASA Astrophysics Data System (ADS)

    Tan, Wee Choon; Iwai, Hiroshi; Kishimoto, Masashi; Brus, Grzegorz; Szmyd, Janusz S.; Yoshida, Hideo

    2018-04-01

    Planar solid oxide fuel cells (SOFCs) with decomposed ammonia are numerically studied to investigate the effect of the cell aspect ratio. The ammonia decomposer is assumed to be located next to the SOFCs, and the heat required for the endothermic decomposition reaction is supplied by the thermal radiation from the SOFCs. Cells with aspect ratios (ratios of the streamwise length to the spanwise width) between 0.130 and 7.68 are provided with the reactants at a constant mass flow rate. A parametric study is conducted by varying the cell temperature and fuel utility factor to investigate their effects on the cell performance in terms of the voltage efficiency. The effect of the heat supply to the ammonia decomposer is also studied. The developed model shows good agreement, in terms of the current-voltage curve, with the experimental data obtained from a short stack without parameter tuning. The simulation study reveals that the cell with the highest aspect ratio achieves the highest performance under furnace operation. On the other hand, the 0.750 aspect ratio cell with the highest voltage efficiency of 0.67 is capable of thermally sustaining the ammonia decomposers at a fuel utility of 0.80 using the thermal radiation from both sidewalls.

  6. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling.

    PubMed

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth; Bøggild, Peter; Bartenwerfer, Malte; Krohs, Florian; Oliva, Maria; Harzendorf, Torsten

    2013-11-22

    Fabrication of ultra-high aspect ratio exchangeable and customizable tips for atomic force microscopy (AFM) using lateral focused ion beam (FIB) milling is presented. While on-axis FIB milling does allow high aspect ratio (HAR) AFM tips to be defined, lateral milling gives far better flexibility in terms of defining the shape and size of the tip. Due to beam-induced deformation, it has so far not been possible to define HAR structures using lateral FIB milling. In this work we obtain aspect ratios of up to 45, with tip diameters down to 9 nm, by a deformation-suppressing writing strategy. Several FIB milling strategies for obtaining sharper tips are discussed. Finally, assembly of the HAR tips on a custom-designed probe as well as the first AFM scanning is shown.

  7. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    NASA Technical Reports Server (NTRS)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  8. Global two-fluid simulations of geodesic acoustic modes in strongly shaped tight aspect ratio tokamak plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J. R.; Hnat, B.; Thyagaraja, A.

    2013-05-15

    Following recent observations suggesting the presence of the geodesic acoustic mode (GAM) in ohmically heated discharges in the Mega Amp Spherical Tokamak (MAST) [J. R. Robinson et al., Plasma Phys. Controlled Fusion 54, 105007 (2012)], the behaviour of the GAM is studied numerically using the two fluid, global code CENTORI [P. J. Knight et al. Comput. Phys. Commun. 183, 2346 (2012)]. We examine mode localisation and effects of magnetic geometry, given by aspect ratio, elongation, and safety factor, on the observed frequency of the mode. An excellent agreement between simulations and experimental data is found for simulation plasma parameters matchedmore » to those of MAST. Increasing aspect ratio yields good agreement between the GAM frequency found in the simulations and an analytical result obtained for elongated large aspect ratio plasmas.« less

  9. Cryogenic Etching of High Aspect Ratio 400 nm Pitch Silicon Gratings.

    PubMed

    Miao, Houxun; Chen, Lei; Mirzaeimoghri, Mona; Kasica, Richard; Wen, Han

    2016-10-01

    The cryogenic process and Bosch process are two widely used processes for reactive ion etching of high aspect ratio silicon structures. This paper focuses on the cryogenic deep etching of 400 nm pitch silicon gratings with various etching mask materials including polymer, Cr, SiO 2 and Cr-on-polymer. The undercut is found to be the key factor limiting the achievable aspect ratio for the direct hard masks of Cr and SiO 2 , while the etch selectivity responds to the limitation of the polymer mask. The Cr-on-polymer mask provides the same high selectivity as Cr and reduces the excessive undercut introduced by direct hard masks. By optimizing the etching parameters, we etched a 400 nm pitch grating to ≈ 10.6 μ m depth, corresponding to an aspect ratio of ≈ 53.

  10. Short revolving wings enable hovering animals to avoid stall and reduce drag

    NASA Astrophysics Data System (ADS)

    Lentink, David; Kruyt, Jan W.; Heijst, Gertjan F.; Altshuler, Douglas L.

    2014-11-01

    Long and slender wings reduce the drag of airplanes, helicopters, and gliding animals, which operate at low angle of attack (incidence). Remarkably, there is no evidence for such influence of wing aspect ratio on the energetics of hovering animals that operate their wings at much higher incidence. High incidence causes aircraft wings to stall, hovering animals avoid stall by generating an attached vortex along the leading edge of their wings that elevates lift. Hypotheses that explain this capability include the necessity for a short radial distance between the shoulder joint and wing tip, measured in chord lengths, instead of the long tip-to-tip distance that elevates aircraft performance. This stems from how hovering animals revolve their wings around a joint, a condition for which the precise effect of aspect ratio on stall performance is unknown. Here we show that the attachment of the leading edge vortex is determined by wing aspect ratio with respect to the center of rotation-for a suite of aspect ratios that represent both animal and aircraft wings. The vortex remains attached when the local radius is shorter than 4 chord lengths, and separates outboard on more slender wings. Like most other hovering animals, hummingbirds have wing aspect ratios between 3 and 4, much stubbier than helicopters. Our results show this makes their wings robust against flow separation, which reduces drag below values obtained with more slender wings. This revises our understanding of how aspect ratio improves performance at low Reynolds numbers.

  11. Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao

    2011-07-01

    Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.

  12. Auxiliary drying to prevent pattern collapse in high aspect ratio nanostructures.

    PubMed

    Liu, Gang; Zhou, Jie; Xiong, Ying; Zhang, Xiaobo; Tian, Yangchao

    2011-07-29

    Many defects are generated in densely packed high aspect ratio structures during nanofabrication. Pattern collapse is one of the serious problems that may arise, mainly due to the capillary force during drying after the rinsing process. In this paper, a method of auxiliary drying is presented to prevent pattern collapse in high aspect ratio nanostructures by adding an auxiliary substrate as a reinforcing rib to restrict deformation and to balance the capillary force. The principle of the method is presented based on the analysis of pattern collapse. A finite element method is then applied to analyze the deformation of the resist beams caused by the surface tension using the ANSYS software, and the effect of the nanostructure's length to width ratio simulated and analyzed. Finally, the possible range of applications based on the proposed method is discussed. Our results show that the aspect ratio may be increased 2.6 times without pattern collapse; furthermore, this method can be widely used in the removal of solvents in micro- and nanofabrication.

  13. Legibility of Text and Pictograms in Variable Message Signs: Can Single-Word Messages Outperform Pictograms?

    PubMed

    Roca, Javier; Insa, Beatriz; Tejero, Pilar

    2018-05-01

    The current research shows the advantage of single-word messages in the particular case of variable message signs (VMSs) with a high aspect ratio. Early studies on traffic sign design proposed that pictorial information would advantage equivalent text messages in static signs. We used a driving simulator to present individually 36 VMSs, showing six words (e.g., "congestion") and six danger signs (e.g., congestion traffic sign). In Experiment 1, 18 drivers read aloud the text or orally identified the pictograms as soon as they could correctly do it. In Experiment 2, a different sample of 18 drivers gave a motor response, according to the meaning of the message. We analyzed the legibility distance and accuracy, driving performance (speed variability), and glance behavior. Our results show that single-word messages were associated with better performance (farther reading distances) and required less visual demands (fewer glances and less glancing times) than pictograms. As typical configurations of VMSs usually have a high aspect ratio, and thus allow large character heights, single-word messages can outperform the legibility of pictograms. However, the final advantage of text or pictorial messages would depend on several factors, such as the driver's knowledge of the language and the pictogram set, the use of single or multiple words, the particular design and size of critical details in letters and pictograms, environmental factors, and driver age. Potential applications include the design of VMSs and other devices aimed at displaying text and/or pictograms with a high aspect ratio.

  14. Evidence for ubiquitous preferential particle orientation in representative oceanic shear flows.

    PubMed

    Nayak, Aditya R; McFarland, Malcolm N; Sullivan, James M; Twardowski, Michael S

    2018-01-01

    In situ measurements were undertaken to characterize particle fields in undisturbed oceanic environments. Simultaneous, co-located depth profiles of particle fields and flow characteristics were recorded using a submersible holographic imaging system and an acoustic Doppler velocimeter, under different flow conditions and varying particle concentration loads, typical of those found in coastal oceans and lakes. Nearly one million particles with major axis lengths ranging from ∼14 μm to 11.6 mm, representing diverse shapes, sizes, and aspect ratios were characterized as part of this study. The particle field consisted of marine snow, detrital matter, and phytoplankton, including colonial diatoms, which sometimes formed "thin layers" of high particle abundance. Clear evidence of preferential alignment of particles was seen at all sampling stations, where the orientation probability density function (PDF) peaked at near horizontal angles and coincided with regions of low velocity shear and weak turbulent dissipation rates. Furthermore, PDF values increased with increasing particle aspect ratios, in excellent agreement with models of spheroidal particle motion in simple shear flows. To the best of our knowledge, although preferential particle orientation in the ocean has been reported in two prior cases, our findings represent the first comprehensive field study examining this phenomenon. Evidence of nonrandom particle alignment in aquatic systems has significant consequences to aquatic optics theory and remote sensing, where perfectly random particle orientation and thus isotropic symmetry in optical parameters is assumed. Ecologically, chain-forming phytoplankton may have evolved to form large aspect ratio chains as a strategy to optimize light harvesting.

  15. Evidence for ubiquitous preferential particle orientation in representative oceanic shear flows

    PubMed Central

    McFarland, Malcolm N.; Sullivan, James M.; Twardowski, Michael S.

    2017-01-01

    Abstract In situ measurements were undertaken to characterize particle fields in undisturbed oceanic environments. Simultaneous, co‐located depth profiles of particle fields and flow characteristics were recorded using a submersible holographic imaging system and an acoustic Doppler velocimeter, under different flow conditions and varying particle concentration loads, typical of those found in coastal oceans and lakes. Nearly one million particles with major axis lengths ranging from ∼14 μm to 11.6 mm, representing diverse shapes, sizes, and aspect ratios were characterized as part of this study. The particle field consisted of marine snow, detrital matter, and phytoplankton, including colonial diatoms, which sometimes formed “thin layers” of high particle abundance. Clear evidence of preferential alignment of particles was seen at all sampling stations, where the orientation probability density function (PDF) peaked at near horizontal angles and coincided with regions of low velocity shear and weak turbulent dissipation rates. Furthermore, PDF values increased with increasing particle aspect ratios, in excellent agreement with models of spheroidal particle motion in simple shear flows. To the best of our knowledge, although preferential particle orientation in the ocean has been reported in two prior cases, our findings represent the first comprehensive field study examining this phenomenon. Evidence of nonrandom particle alignment in aquatic systems has significant consequences to aquatic optics theory and remote sensing, where perfectly random particle orientation and thus isotropic symmetry in optical parameters is assumed. Ecologically, chain‐forming phytoplankton may have evolved to form large aspect ratio chains as a strategy to optimize light harvesting. PMID:29456268

  16. Simultaneous shape repulsion and global assimilation in the perception of aspect ratio

    PubMed Central

    Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru

    2012-01-01

    Although local interactions involving orientation and spatial frequency are well understood, less is known about spatial interactions involving higher level pattern features. We examined interactive coding of aspect ratio, a prevalent two-dimensional feature. We measured perception of two simultaneously flashed ellipses by randomly post-cueing one of them and having observers indicate its aspect ratio. Aspect ratios interacted in two ways. One manifested as an aspect-ratio-repulsion effect. For example, when a slightly tall ellipse and a taller ellipse were simultaneously flashed, the less tall ellipse appeared flatter and the taller ellipse appeared even taller. This repulsive interaction was long range, occurring even when the ellipses were presented in different visual hemifields. The other interaction manifested as a global assimilation effect. An ellipse appeared taller when it was a part of a global vertical organization than when it was a part of a global horizontal organization. The repulsion and assimilation effects temporally dissociated as the former slightly strengthened, and the latter disappeared when the ellipse-to-mask stimulus onset asynchrony was increased from 40 to 140 ms. These results are consistent with the idea that shape perception emerges from rapid lateral and hierarchical neural interactions. PMID:21248223

  17. Fabrication of ultra-high aspect ratio (>160:1) silicon nanostructures by using Au metal assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Hailiang; Ye, Tianchun; Shi, Lina; Xie, Changqing

    2017-12-01

    We present a facile and effective approach for fabricating high aspect ratio, dense and vertical silicon nanopillar arrays, using a combination of metal etching following electron-beam lithography and Au metal assisted chemical etching (MacEtch). Ti/Au nanostructures used as catalysts in MacEtch are formed by single layer resist-based electron-beam exposure followed by ion beam etching. The effects of MacEtch process parameters, including half period, etching time, the concentrations of H2O2 and HF, etching temperature and drying method are systematically investigated. Especially, we demonstrate an enhancement of etching quality by employing cold MacEtch process, and an enhancement in preventing the collapse of high aspect ratio nanostructures by employing low surface tension rinse liquid and natural evaporation in the drying stage. Using an optimized MacEtch process, vertical silicon nanopillar arrays with a period of 250 nm and aspect ratio up to 160:1 are realized. Our results should be instructive for exploring the achievable aspect ratio limit in silicon nanostructures and may find potential applications in photovoltaic devices, thermoelectric devices and x-ray diffractive optics.

  18. Preparation of HCPT-Loaded Nanoneedles with Pointed Ends for Highly Efficient Cancer Chemotherapy

    NASA Astrophysics Data System (ADS)

    Wu, Shichao; Yang, Xiangrui; Li, Yang; Wu, Hongjie; Huang, Yu; Xie, Liya; Zhang, Ying; Hou, Zhenqing; Liu, Xiangyang

    2016-06-01

    The high-aspect-ratio nanoparticles were proved to be internalized much more rapidly and efficiently by cancer cells than the nanoparticles with an equal aspect ratio. Herein, a kind of high-aspect ratio, pointed-end nanoneedles (NDs) with a high drug loading (15.04 %) and the prolonged drug release profile were fabricated with an anti-tumor drug—10-hydroxycamptothecin (HCPT)—via an ultrasound-assisted emulsion crystallization technique. It is surprising to see that the cellular internalization of NDs with an average length of 5 μm and an aspect ratio of about 12:1 was even much faster and higher than that of nanorods with the same size and the nanospheres with a much smaller size of 150 nm. The results further validated that cellular internalization of the nanoparticles exhibited a strong shape-dependent effect, and cellular uptake may favor the particles with sharp ends as well as a high-aspect ratio instead of particle size. The NDs with enhanced cytotoxicity would lead to a promising sustained local drug delivery system for highly efficient anticancer therapy. More importantly, the fabrication of NDs opens a door to design new formulations of nanoneedle drug delivery systems for highly efficient cancer.

  19. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  20. Geometrical contribution to the anomalous Nernst effect in TbFeCo thin films

    NASA Astrophysics Data System (ADS)

    Ando, Ryo; Komine, Takashi

    2018-05-01

    The geometrical contribution to the anomalous Nernst effect in magnetic thin films was experimentally investigated by varying the aspect ratios and electrode configurations. The bar-type electrode configuration induces a short-circuit current near both edges of electrodes and decreases the effective Nernst voltage, while the point-contact (PC) electrode exploits the intrinsic Nernst voltage. In a sample with PC electrodes, as the sample width along the transverse direction of the thermal flow increases, the Nernst voltage increases monotonically. Thus, a much wider element with PC electrodes enables us to bring out a larger Nernst voltage by utilizing perpendicularly magnetized thin films.

  1. Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.

    1989-01-01

    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.

  2. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kassemi, S.A.

    1988-04-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  3. High Rayleigh number convection in rectangular enclosures with differentially heated vertical walls and aspect ratios between zero and unity

    NASA Technical Reports Server (NTRS)

    Kassemi, Siavash A.

    1988-01-01

    High Rayleigh number convection in a rectangular cavity with insulated horizontal surfaces and differentially heated vertical walls was analyzed for an arbitrary aspect ratio smaller than or equal to unity. Unlike previous analytical studies, a systematic method of solution based on linearization technique and analytical iteration procedure was developed to obtain approximate closed-form solutions for a wide range of aspect ratios. The predicted velocity and temperature fields are shown to be in excellent agreement with available experimental and numerical data.

  4. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves).

    PubMed

    Hieronymus, Tobin L

    2015-02-27

    Among living fliers (birds, bats, and insects), birds display relatively high aspect ratios, a dimensionless shape variable that distinguishes long and narrow vs. short and broad wings. Increasing aspect ratio results in a functional tradeoff between low induced drag (efficient cruise) and increased wing inertia (difficult takeoff). Given the wide scope of its functional effects, the pattern of aspect ratio evolution is an important factor that contributes to the substantial ecological and phylogenetic diversity of living birds. However, because the feathers that define the wingtip (and hence wingspan and aspect ratio) often do not fossilize, resolution in the pattern of avian wing shape evolution is obscured by missing information. Here I use a comparative approach to investigate the relationship between skeletal proxies of flight feather attachment and wing shape. An accessory lobe of the internal index process of digit II-1, a bony correlate of distal primary attachment, shows weak but statistically significant relationships to aspect ratio and mass independent of other skeletal morphology. The dorsal phalangeal fossae of digit II-1, which house distal primaries VIII and IX, also show a trend of increased prominence with higher aspect ratio. Quill knobs on the ulna are examined concurrently, but do not show consistent signal with respect to wing shape. Although quill knobs are cited as skeletal correlates of flight performance in birds, their relationship to wing shape is inconsistent among extant taxa, and may reflect diverging selection pressures acting on a conserved architecture. In contrast, correlates of distal primary feather attachment on the major digit show convergent responses to increasing aspect ratio. In light of the diversity of musculoskeletal and integumentary mophology that underlies wing shape in different avian clades, it is unlikely that a single skeletal feature will show consistent predictive power across Neoaves. Confident inference of wing shape in basal ornithurine birds will require multiple lines of evidence, together with an understanding of clade-specific evolutionary trends within the crown.

  5. Determination of consolidation properties using electrical resistivity

    NASA Astrophysics Data System (ADS)

    Kibria, Golam; Hossain, Sahadat; Khan, Mohammad Sadik

    2018-05-01

    Electrical conductivity is an indirect method used to evaluate pore-structures and their influence on macro and microscale behavior of soils. Although this method can provide useful information about the consolidation properties of soil samples, insufficient studies have been conducted to identify correlations between electrical and consolidation properties. The current study presents electrical resistivity responses of clayey samples at different consolidation stages. The consolidation properties of four soil specimens were measured in conjunction with electrical conductivity. Scanning electron microscope (SEM) analyses were performed on soil samples before and after consolidation to identify the changes in fabric morphology due to the application of loads. It was observed that the electrical conductivity of samples decreased with the increase of pressure, and the trends of variations were similar to e vs. logP curves. Although a linear correlation exists between electrical conductivity and void ratio, the relationship depends on the structural changes in clay particles. Therefore, changes in fabric structures were analyzed using SEM images, and results showed that the aspect ratio of the particles increased as much as 18.3% after consolidation. Based on the investigation, the coefficient of consolidations and one-dimensional strain were determined using electrical resistivity measurements.

  6. Elliptic nozzle aspect ratio effect on controlled jet propagation

    NASA Astrophysics Data System (ADS)

    Aravindh Kumar, S. M.; Rathakrishnan, Ethirajan

    2017-04-01

    The present study deals with the control of a Mach 2 elliptic jet from a convergent-divergent elliptic nozzle of aspect ratio 4 using tabs at the nozzle exit. The experiments were carried out for rectangular and triangular tabs of the same blockage, placed along the major and minor axes of the nozzle exit, at different levels of nozzle expansion. The triangular tabs along the minor axis promoted superior mixing compared to the other controlled jets and caused substantial core length reduction at all the nozzle pressure ratios studied. The rectangular tabs along the minor axis caused core length reduction at all pressure ratios, but the values were minimal compared to that of triangular tabs along the minor axis. For all the test conditions, the mixing promotion caused by tabs along the major axis was inferior to that of tabs along the minor axis. The waves present in the core of controlled jets were visualized using a shadowgraph. Comparison of the present results with the results of a controlled Mach 2 elliptic jet of aspect ratio 2 (Aravindh Kumar and Sathakrishnan 2016 J. Propulsion Power 32 121-33, Aravindh Kumar and Rathakrishnan 2016 J. Aerospace Eng. at press (doi:10.1177/0954410016652921)) show that for all levels of expansion, the mixing effectiveness of triangular tabs along the minor axis of an aspect ratio 4 nozzle is better than rectangular or triangular tabs along the minor axis of an aspect ratio 2 nozzle.

  7. Seismogenic width controls aspect ratios of earthquake ruptures

    NASA Astrophysics Data System (ADS)

    Weng, Huihui; Yang, Hongfeng

    2017-03-01

    We investigate the effect of seismogenic width on aspect ratios of earthquake ruptures by using numerical simulations of strike-slip faulting and an energy balance criterion near rupture tips. If the seismogenic width is smaller than a critical value, then ruptures cannot break the entire fault, regardless of the size of the nucleation zone. The seismic moments of these self-arresting ruptures increase with the nucleation size, forming nucleation-related events. The aspect ratios increase with the seismogenic width but are smaller than 8. In contrast, ruptures become breakaway and tend to have high aspect ratios (>8) if the seismogenic width is sufficiently large. But the critical nucleation size is larger than the theoretical estimate for an unbounded fault. The eventual seismic moments of breakaway ruptures do not depend on the nucleation size. Our results suggest that estimating final earthquake magnitude from the nucleation phase may only be plausible on faults with small seismogenic width.

  8. Effect of Cell Aspect Ratio on Swarming Bacteria

    NASA Astrophysics Data System (ADS)

    Ilkanaiv, Bella; Kearns, Daniel B.; Ariel, Gil; Be'er, Avraham

    2017-04-01

    Swarming bacteria collectively migrate on surfaces using flagella, forming dynamic whirls and jets that consist of millions of individuals. Because some swarming bacteria elongate prior to actual motion, cell aspect ratio may play a significant role in the collective dynamics. Extensive research on self-propelled rodlike particles confirms that elongation promotes alignment, strongly affecting the dynamics. Here, we study experimentally the collective dynamics of variants of swarming Bacillus subtilis that differ in length. We show that the swarming statistics depends on the aspect ratio in a critical, fundamental fashion not predicted by theory. The fastest motion was obtained for the wild-type and variants that are similar in length. However, shorter and longer cells exhibit anomalous, non-Gaussian statistics and nonexponential decay of the autocorrelation function, indicating lower collective motility. These results suggest that the robust mechanisms to maintain aspect ratios may be important for efficient swarming motility. Wild-type cells are optimal in this sense.

  9. Multielement suppressor nozzles for thrust augmentation systems.

    NASA Technical Reports Server (NTRS)

    Lawrence, R. L.; O'Keefe, J. V.; Tate, R. B.

    1972-01-01

    The noise reduction and nozzle performance characteristics of large-scale, high-aspect-ratio multielement nozzle arrays operated at low velocities were determined by test. The nozzles are selected for application to high-aspect-ratio augmentor suppressors to be used for augmentor wing airplanes. Significant improvements in noise characteristics for multielement nozzles over those of round or high-aspect-ratio slot nozzles are obtained. Elliptical noise patterns typical of slot nozzles are presented for high-aspect-ratio multielement nozzle arrays. Additional advantages are available in OASPL noise reduction from the element size and spacing. Augmentor-suppressor systems can be designed for maximum beam pattern directivity and frequency spectrum shaping advantages. Measurements of the nozzle wakes show a correlation with noise level data and frequency spectrum peaks. The noise and jet wake results are compared with existing prediction procedures based on empirical jet flow equations, Lighthill relationships, Strouhal number, and empirical shock-induced screech noise effects.

  10. Stability of low aspect ratio inverted flags and rods in a uniform flow

    NASA Astrophysics Data System (ADS)

    Huertas-Cerdeira, Cecilia; Sader, John E.; Gharib, Morteza

    2016-11-01

    Cantilevered elastic plates and rods in an inverted configuration, where the leading edge is free to move and the trailing edge is clamped, undergo complex dynamics when subjected to a uniform flow. The stability of low aspect ratio inverted plates and rods is theoretically examined, showing that it is markedly different from that of their large aspect ratio counterpart. In the limit of zero aspect ratio, the undeflected equilibrium position is found to be stable for all wind speeds. A saddle-node bifurcation emerges at finite wind speed, giving rise to a strongly deflected stable and a weakly deflected unstable equilibria. This theory is compared to experimental measurements, where good agreement is found. This research was supported by a Grant of the Gordon and Betty Moore Foundation, the Australian Research Council Grants scheme and a "la Caixa" Fellowship Grant for Post-Graduate Studies of "la Caixa" Banking Foundation.

  11. FFT-impedance spectroscopy analysis of the growth of magnetic metal nanowires in ultra-high aspect ratio InP membranes

    NASA Astrophysics Data System (ADS)

    Gerngross, M.-D.; Carstensen, J.; Föll, H.; Adelung, R.

    2016-01-01

    This paper reports on the characterization of the electrochemical growth process of magnetic nanowires in ultra-high-aspect ratio InP membranes via in situ fast Fourier transform impedance spectroscopy in a typical frequency range from 75 Hz to 18.5 kHz. The measured impedance data from the Ni, Co, and FeCo can be very well fitted using the same electric equivalent circuit consisting of a series resistance in serial connection to an RC-element and a Maxwell element. The impedance data clearly indicate the similarities in the growth behavior of Ni, Co and FeCo nanowires in ultra-high aspect ratio InP membranes—the beneficial impact of boric acid on the metal deposition in ultra-high aspect ratio membranes and the diffusion limitation of boric acid, as well as differences such as passivation or side reactions.

  12. Rheology of concentrated suspensions of non-colloidal rigid fibers

    NASA Astrophysics Data System (ADS)

    Guazzelli, Elisabeth; Tapia, Franco; Shaikh, Saif; Butler, Jason E.; Pouliquen, Olivier

    2017-11-01

    Pressure and volume-imposed rheology is used to study suspensions of non-colloidal, rigid fibers in the concentrated regime for aspect ratios ranging from 3 to 15. The suspensions exhibit yield-stresses. Subtracting these apparent yield-stresses reveals a viscous scaling for both the shear and normal stresses. The variation in aspect ratio does not affect the friction coefficient (ratio of shear and normal stresses), but increasing the aspect ratio lowers the maximum volume fraction at which the suspension flows. Constitutive laws are proposed for the viscosities and the friction coefficient close to this maximum flowable fraction. The scaling of the stresses near this jamming transition are found to differ substantially from that of a suspension of spheres.

  13. Efficient Carrier Multiplication in Colloidal Silicon Nanorods

    DOE PAGES

    Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan; ...

    2017-08-01

    In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less

  14. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering.

    PubMed

    Moskalensky, Alexander E; Yurkin, Maxim A; Konokhova, Anastasiya I; Strokotov, Dmitry I; Nekrasov, Vyacheslav M; Chernyshev, Andrei V; Tsvetovskaya, Galina A; Chikova, Elena D; Maltsev, Valeri P

    2013-01-01

    We introduce a novel approach for determination of volume and shape of individual blood platelets modeled as an oblate spheroid from angle-resolved light scattering with flow-cytometric technique. The light-scattering profiles (LSPs) of individual platelets were measured with the scanning flow cytometer and the platelet characteristics were determined from the solution of the inverse light-scattering problem using the precomputed database of theoretical LSPs. We revealed a phenomenon of parameter compensation, which is partly explained in the framework of anomalous diffraction approximation. To overcome this problem, additional a priori information on the platelet refractive index was used. It allowed us to determine the size of each platelet with subdiffraction precision and independent of the particular value of the platelet aspect ratio. The shape (spheroidal aspect ratio) distributions of platelets showed substantial differences between native and activated by 10 μM adenosine diphosphate samples. We expect that the new approach may find use in hematological analyzers for accurate measurement of platelet volume distribution and for determination of the platelet activation efficiency.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stolle, Carl Jackson; Lu, Xiaotang; Yu, Yixuan

    In this study, auger recombination lifetimes, absorption cross sections, and the quantum yields of carrier multiplication (CM), or multiexciton generation (MEG), were determined for solvent-dispersed silicon (Si) nanorods using transient absorption spectroscopy (TAS). Nanorods with an average diameter of 7.5 nm and aspect ratios of 6.1, 19.3, and 33.2 were examined. Colloidal Si nanocrystals of similar diameters were also studied for comparison. The nanocrystals and nanorods were passivated with organic ligands by hydrosilylation to prevent surface oxidation and limit the effects of surface trapping of photoexcited carriers. All samples used in the study exhibited relatively efficient photoluminescence. The Auger lifetimesmore » increased with nanorod length, and the nanorods exhibited higher CM quantum yield and efficiency than the nanocrystals with a similar band gap energy E g. Beyond a critical length, the CM quantum yield decreases. Finally, nanorods with the aspect ratio of 19.3 had the highest CM quantum yield of 1.6 ± 0.2 at 2.9E g, which corresponded to a multiexciton yield that was twice as high as observed for the spherical nanocrystals.« less

  16. Numerical Simulations of Noise Generated by High Aspect Ratio Supersonic Rectangular Jets - Validation

    NASA Astrophysics Data System (ADS)

    Viswanath, Kamal; Johnson, Ryan; Kailasanath, Kailas; Malla, Bhupatindra; Gutmark, Ephraim

    2017-11-01

    The noise from high performance jet engines of both civilian and military aircraft is an area of active concern. Asymmetric exhaust nozzle configurations, in particular rectangular, potentially offer a passive way of modulating the farfield noise and are likely to become more important in the future. High aspect ratio nozzles offer the further benefit of easier airframe integration. In this study we validate the far field noise for ideally and over expanded supersonic jets issuing from a high aspect ratio rectangular nozzle geometry. Validation of the acoustic data is performed against experimentally recorded sound pressure level (SPL) spectra for a host of observer locations around the asymmetric nozzle. Data is presented for a slightly heated jet case for both nozzle pressure ratios. The contrast in the noise profile from low aspect ratio rectangular and circular nozzle jets are highlighted, especially the variation in the azimuthal direction that shows ``quiet'' and ``loud'' planes in the farfield in the peak noise direction. This variation is analyzed in the context of the effect of mixing at the sharp corners, the sense of the vortex pairs setup in the exit plane, and the evolution of the high aspect ratio exit cross-section as it propagates downstream including possible axis-switching. Supported by Office of Naval Research (ONR) through the Computational Physics Task Area under the NRL 6.1 Base Program.

  17. Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks

    PubMed Central

    Li, Tianyang; Qiu, Hao; Wang, Feifei

    2015-01-01

    Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729

  18. 2D fall of granular columns controlled by slow horizontal withdrawal of a retaining wall

    NASA Astrophysics Data System (ADS)

    Mériaux, C. A.

    2006-12-01

    This paper describes a series of experiments designed to investigate the fall of granular columns in quasi- static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall and the material properties was investigated within the quasi-static regime. A change in the behaviour of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau.

  19. Morphological constraints on changing avian migration phenology.

    PubMed

    Møller, A P; Rubolini, D; Saino, N

    2017-06-01

    Many organisms at northern latitudes have responded to climate warming by advancing their spring phenology. Birds are known to show earlier timing of spring migration and reproduction in response to warmer springs. However, species show heterogeneous phenological responses to climate warming, with those that have not advanced or have delayed migration phenology experiencing population declines. Although some traits (such as migration distance) partly explain heterogeneity in phenological responses, the factors affecting interspecies differences in the responsiveness to climate warming have yet to be fully explored. In this comparative study, we investigate whether variation in wing aspect ratio (reflecting relative wing narrowness), an ecomorphological trait that is strongly associated with flight efficiency and migratory behaviour, affects the ability to advance timing of spring migration during 1960-2006 in a set of 80 European migratory bird species. Species with larger aspect ratio (longer and narrower wings) showed smaller advancement of timing of spring migration compared to species with smaller aspect ratio (shorter and wider wings) while controlling for phylogeny, migration distance and other life-history traits. In turn, migration distance positively predicted aspect ratio across species. Hence, species that are better adapted to migration appear to be more constrained in responding phenologically to rapid climate warming by advancing timing of spring migration. Our findings corroborate the idea that aspect ratio is a major evolutionary correlate of migration, and suggest that selection for energetically efficient flights, as reflected by high aspect ratio, may hinder phenotypically plastic/microevolutionary adjustments of migration phenology to ongoing climatic changes. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. On current drive by Ohkawa mechanism of electron cyclotron wave in large inverse aspect ratio tokamaks

    NASA Astrophysics Data System (ADS)

    Zheng, Pingwei; Gong, Xueyu; Lu, Xingqiang; He, Lihua; Cao, Jingjia; Huang, Qianhong; Deng, Sheng

    2018-03-01

    A localized and efficient current drive method in the outer-half region of the tokamak with a large inverse aspect ratio is proposed via the Ohkawa mechanism of electron cyclotron (EC) waves. Further off-axis Ohkawa current drive (OKCD) via EC waves was investigated in high electron beta β e HL-2M-like tokamaks with a large inverse aspect ratio, and in EAST-like tokamaks with a low inverse aspect ratio. OKCD can be driven efficiently, and the driven current profile is spatially localized in the radial region, ranging from 0.62 to 0.85, where the large fraction of trapped electrons provides an excellent advantage for OKCD. Furthermore, the current drive efficiency increases with an increase in minor radius, and then drops when the minor radius beyond a certain value. The effect of trapped electrons greatly enhances the current driving capability of the OKCD mechanism. The highest current drive efficiency can reach 0.183 by adjusting the steering mirror to change the toroidal and poloidal incident angle, and the total driven current by OKCD can reach 20-32 kA MW-1 in HL-2M-like tokamaks. The current drive is less efficient for the EAST-like scenario due to the lower inverse aspect ratio. The results show that OKCD may be a valuable alternative current drive method in large inverse aspect ratio tokamaks, and the potential capabilities of OKCD can be used to suppress some important magnetohydrodynamics instabilities in the far off-axis region.

  1. Advances toward fully automated in vivo assessment of oral epithelial dysplasia by nuclear endomicroscopy-A pilot study.

    PubMed

    Liese, Jan; Winter, Karsten; Glass, Änne; Bertolini, Julia; Kämmerer, Peer Wolfgang; Frerich, Bernhard; Schiefke, Ingolf; Remmerbach, Torsten W

    2017-11-01

    Uncertainties in detection of oral epithelial dysplasia (OED) frequently result from sampling error especially in inflammatory oral lesions. Endomicroscopy allows non-invasive, "en face" imaging of upper oral epithelium, but parameters of OED are unknown. Mucosal nuclei were imaged in 34 toluidine blue-stained oral lesions with a commercial endomicroscopy. Histopathological diagnosis showed four biopsies in "dys-/neoplastic," 23 in "inflammatory," and seven in "others" disease groups. Strength of different assessment strategies of nuclear scoring, nuclear count, and automated nuclear analysis were measured by area under ROC curve (AUC) to identify histopathological "dys-/neoplastic" group. Nuclear objects from automated image analysis were visually corrected. Best-performing parameters of nuclear-to-image ratios were the count of large nuclei (AUC=0.986) and 6-nearest neighborhood relation (AUC=0.896), and best parameters of nuclear polymorphism were the count of atypical nuclei (AUC=0.996) and compactness of nuclei (AUC=0.922). Excluding low-grade OED, nuclear scoring and count reached 100% sensitivity and 98% specificity for detection of dys-/neoplastic lesions. In automated analysis, combination of parameters enhanced diagnostic strength. Sensitivity of 100% and specificity of 87% were seen for distances of 6-nearest neighbors and aspect ratios even in uncorrected objects. Correction improved measures of nuclear polymorphism only. The hue of background color was stronger than nuclear density (AUC=0.779 vs 0.687) to detect dys-/neoplastic group indicating that macroscopic aspect is biased. Nuclear-to-image ratios are applicable for automated optical in vivo diagnostics for oral potentially malignant disorders. Nuclear endomicroscopy may promote non-invasive, early detection of dys-/neoplastic lesions by reducing sampling error. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  3. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  4. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    NASA Astrophysics Data System (ADS)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases, resulting in less NO titration. In the deep street canyons, outward flow becomes weak and outward NOX flux decreases, resulting in an increase (decrease) in NOX (O3) concentration.

  5. Comparison of High Aspect Ratio Cooling Channel Designs for a Rocket Combustion Chamber with Development of an Optimized Design

    NASA Technical Reports Server (NTRS)

    Wadel, Mary F.

    1998-01-01

    An analytical investigation on the effect of high aspect ratio (height/width) cooling channels, considering different coolant channel designs, on hot-gas-side wall temperature and coolant pressure drop for a liquid hydrogen cooled rocket combustion chamber, was performed. Coolant channel design elements considered were: length of combustion chamber in which high aspect ratio cooling was applied, number of coolant channels, and coolant channel shape. Seven coolant channel designs were investigated using a coupling of the Rocket Thermal Evaluation code and the Two-Dimensional Kinetics code. Initially, each coolant channel design was developed, without consideration for fabrication, to reduce the hot-gas-side wall temperature from a given conventional cooling channel baseline. These designs produced hot-gas-side wall temperature reductions up to 22 percent, with coolant pressure drop increases as low as 7.5 percent from the baseline. Fabrication constraints for milled channels were applied to the seven designs. These produced hot-gas-side wall temperature reductions of up to 20 percent, with coolant pressure drop increases as low as 2 percent. Using high aspect ratio cooling channels for the entire length of the combustion chamber had no additional benefit on hot-gas-side wall temperature over using high aspect ratio cooling channels only in the throat region, but increased coolant pressure drop 33 percent. Independent of coolant channel shape, high aspect ratio cooling was able to reduce the hot-gas-side wall temperature by at least 8 percent, with as low as a 2 percent increase in coolant pressure drop. ne design with the highest overall benefit to hot-gas-side wall temperature and minimal coolant pressure drop increase was the design which used bifurcated cooling channels and high aspect ratio cooling in the throat region. An optimized bifurcated high aspect ratio cooling channel design was developed which reduced the hot-gas-side wall temperature by 18 percent and reduced the coolant pressure drop by 4 percent. Reductions of coolant mass flow rate of up to 50 percent were possible before the hot-gas-side wall temperature reached that of the baseline. These mass flow rate reductions produced coolant pressure drops of up to 57 percent.

  6. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy.

    PubMed

    Castro, Fernando C; Dravid, Vinayak P

    2018-06-01

    Cutting-edge research on materials for lithium ion batteries regularly focuses on nanoscale and atomic-scale phenomena. Electron energy-loss spectroscopy (EELS) is one of the most powerful ways of characterizing composition and aspects of the electronic structure of battery materials, particularly lithium and the transition metal mixed oxides found in the electrodes. However, the characteristic EELS signal from battery materials is challenging to analyze when there is strong overlap of spectral features, poor signal-to-background ratios, or thicker and uneven sample areas. A potential alternative or complementary approach comes from utilizing the valence EELS features (<20 eV loss) of battery materials. For example, the valence EELS features in LiCoO2 maintain higher jump ratios than the Li-K edge, most notably when spectra are collected with minimal acquisition times or from thick sample regions. EELS maps of these valence features give comparable results to the Li-K edge EELS maps of LiCoO2. With some spectral processing, the valence EELS maps more accurately highlight the morphology and distribution of LiCoO2 than the Li-K edge maps, especially in thicker sample regions. This approach is beneficial for cases where sample thickness or beam sensitivity limit EELS analysis, and could be used to minimize electron dosage and sample damage or contamination.

  7. 17 CFR 229.503 - (Item 503) Prospectus summary, risk factors, and ratio of earnings to fixed charges.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... provide a brief overview of the key aspects of the offering. Carefully consider and identify those aspects...) Foreign private issuers. A foreign private issuer must show the ratio based on the figures in the primary financial statement. A foreign private issuer must show the ratio based on the figures resulting from the...

  8. 17 CFR 229.503 - (Item 503) Prospectus summary, risk factors, and ratio of earnings to fixed charges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... provide a brief overview of the key aspects of the offering. Carefully consider and identify those aspects...) Foreign private issuers. A foreign private issuer must show the ratio based on the figures in the primary financial statement. A foreign private issuer must show the ratio based on the figures resulting from the...

  9. Blade tip, finite aspect ratio, and dynamic stall effects on the Darrieus rotor

    NASA Astrophysics Data System (ADS)

    Paraschivoiu, I.; Desy, P.; Masson, C.

    1988-02-01

    The objective of the work described in this paper was to apply the Boeing-Vertol dynamic stall model in an asymmetric manner to account for the asymmetry of the flow between the left and right sides of the rotor. This phenomenon has been observed by the flow visualization of a two-straight-bladed Darrieus rotor in the IMST water tunnel. Also introduced into the aerodynamic model are the effects of the blade tip and finite aspect ratio on the aerodynamic performance of the Darrieus wind turbine. These improvements are compatible with the double-multiple-streamtube model and have been included in the CARDAAV computer code for predicting the aerodynamic performance. Very good agreement has been observed between the test data (Sandia 17 m) and theoretical predictions; a significant improvement over the previous dynamic stall model was obtained for the rotor power at low tip speed ratios, while the inclusion of the finite aspect ratio effects enhances the prediction of the rotor power for high tip speed ratios. The tip losses and finite aspect ratio effects were also calculated for a small-scale vertical-axis wind turbine, with a two-straight-bladed (NACA 0015) rotor.

  10. Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio.

    PubMed

    Giordano, Guido; Doronzo, Domenico M

    2017-06-30

    The aspect ratio of ignimbrites is a commonly used parameter that has been related to the energy of the parent pyroclastic density currents (PDCs). However this parameter, calculated as the ratio between the average thickness and the average lateral extent of ignimbrites, does not capture fundamental differences in pyroclastic flow mobility nor relates to lithofacies variations of the final deposits. We herein introduce the "topological aspect ratio" (ARt) as the ratio of the local deposit thickness (Ht) to the distance between the local site and the maximum runout distance (Lt), where Ht is a proxy for the PDC tendency to deposit, and Lt a proxy for the PDC mobility or its tendency to further transport the pyroclastic material. The positive versus negative spatial gradient d(ARt)/dx along flow paths discriminate zones where PDCs are forced (i.e. where they transport the total energy under the action of mass discharge rate) from zones where they are inertial (i.e. where they transport the total energy under the action of viscous or turbulent fluidization). Though simple to apply, the topological aspect ratio and its spatial gradient are powerful descriptors of the interplay between sedimentation and mobility of PDCs, and of the resulting lithofacies variations.

  11. An Experimental Investigation of the Effect of a Canard Control on the Lift, Drag, and Pitching Moment of an Aspect-Ratio 2.0 Triangular Wing Incorporating a Form of Conical Camber

    NASA Technical Reports Server (NTRS)

    Menees, Gene P.; Boyd, John W.

    1959-01-01

    The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.

  12. On simple aerodynamic sensitivity derivatives for use in interdisciplinary optimization

    NASA Technical Reports Server (NTRS)

    Doggett, Robert V., Jr.

    1991-01-01

    Low-aspect-ratio and piston aerodynamic theories are reviewed as to their use in developing aerodynamic sensitivity derivatives for use in multidisciplinary optimization applications. The basic equations relating surface pressure (or lift and moment) to normal wash are given and discussed briefly for each theory. The general means for determining selected sensitivity derivatives are pointed out. In addition, some suggestions in very general terms are included as to sample problems for use in studying the process of using aerodynamic sensitivity derivatives in optimization studies.

  13. Computer modelling of grain microstructure in three dimensions

    NASA Astrophysics Data System (ADS)

    Narayan, K. Lakshmi

    We present a program that generates the two-dimensional micrographs of a three dimensional grain microstructure. The code utilizes a novel scanning, pixel mapping technique to secure statistical distributions of surface areas, grain sizes, aspect ratios, perimeters, number of nearest neighbors and volumes of the randomly nucleated particles. The program can be used for comparing the existing theories of grain growth, and interpretation of two-dimensional microstructure of three-dimensional samples. Special features have been included to minimize the computation time and resource requirements.

  14. Electrodeposition of Gold to Conformally Fill High Aspect Ratio Nanometric Silicon Grating Trenches: A Comparison of Pulsed and Direct Current Protocols

    PubMed Central

    Znati, Sami A.; Chedid, Nicholas; Miao, Houxun; Chen, Lei; Bennett, Eric E.; Wen, Han

    2016-01-01

    Filling high-aspect-ratio trenches with gold is a frequent requirement in the fabrication of x-ray optics as well as micro-electronic components and other fabrication processes. Conformal electrodeposition of gold in sub-micron-width silicon trenches with an aspect ratio greater than 35 over a grating area of several square centimeters is challenging and has not been described in the literature previously. A comparison of pulsed plating and constant current plating led to a gold electroplating protocol that reliably filled trenches for such structures. PMID:27042384

  15. Oscillatory/chaotic thermocapillary flow induced by radiant heating

    NASA Technical Reports Server (NTRS)

    Hsieh, Kwang-Chung; Thompson, Robert L.; Vanzandt, David; Dewitt, Kenneth; Nash, Jon

    1994-01-01

    The objective of this paper is to conduct ground-based experiments to measure the onset conditions of oscillatory Marangoni flow in laser-heated silicone oil in a cylindrical container. For a single fluid, experimental data are presented using the aspect ratio and the dynamic Bond number. It is found that for a fixed aspect ratio, there seems to be an asymptotic limit of the dynamic Bond number beyond which no onset of flow oscillation could occur. Experimental results also suggested that there could be a lower limit of the aspect ratio below which there is no onset of oscillatory flow.

  16. Electrohydrodynamic pressure enhanced by free space charge for electrically induced structure formation with high aspect ratio.

    PubMed

    Tian, Hongmiao; Wang, Chunhui; Shao, Jinyou; Ding, Yucheng; Li, Xiangming

    2014-10-28

    Electrically induced structure formation (EISF) is an interesting and unique approach for generating a microstructured duplicate from a rheological polymer by a spatially modulated electric field induced by a patterned template. Most of the research on EISF have so far used various dielectric polymers (with an electrical conductivity smaller than 10(-10) S/m that can be considered a perfect dielectric), on which the electric field induces a Maxwell stress only due to the dipoles (or bounded charges) in the polymer molecules, leading to a structure with a small aspect ratio. This paper presents a different approach for improving the aspect ratio allowed in EISF by doping organic salt into the perfect dielectric polymer, i.e., turning the perfect dielectric into a leaky dielectric, considering the fact that the free space charges enriched in the leaky dielectric polymer can make an additional contribution to the Maxwell stress, i.e., electrohydrodynamic pressure, which is desirable for high aspect ratio structuring. Our numerical simulations and experimental tests have shown that a leaky dielectric polymer, with a small conductivity comparable to that of deionized water, can be much more effective at being electrohydrodynamically deformed into a high aspect ratio in comparison with a perfect dielectric polymer when both of them have roughly the same dielectric constant.

  17. Effect of Aspect Ratio on Electrical, Rheological and Glass Transition Properties of PC/MWCNT Nanocomposites.

    PubMed

    Cruz, Heidy; Son, Younggon

    2018-02-01

    Since the discovery of carbon nanotubes (CNT), significant research works have focused on the application of CNT as conductive filler to polymer nanocomposites which can be used in several fields such as electrostatic dissipation (ESD), electrostatic painting and electromagnetic interference shielding (EMI-shielding). However, the main challenge in the large-scale manufacturing of this technology is the poor electrical conductivity of polymer nanocomposites produced by injection molding process. This study aims to investigate the effect of CNT aspect ratio in improving the electrical conductivity of injection molded nanocomposites. In this work, three types of multiwall carbon nanotubes with different lengths were melt-mixed with polycarbonate in a twin screw extruder followed by injection and compression molding. Results show that nanocomposites with higher CNT aspect ratio exhibit higher electrical conductivity. Longer nanotubes form a stronger conductive network during secondary agglomeration which can withstand the high shear forces during injection molding. Higher melt viscosity and storage modulus were observed in nanocomposites with higher CNT aspect ratio which is attributed to the effective constriction of polymer chains by longer nanotubes. It was also found that Tg of the composites increased with nanotube aspect ratio and the addition of CNT causes degradation which leads to the general Tg depression of polycarbonate.

  18. Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers

    PubMed Central

    Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.

    2017-01-01

    There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites. PMID:28332636

  19. Influence of aspect ratio and surface defect density on hydrothermally grown ZnO nanorods towards amperometric glucose biosensing applications

    NASA Astrophysics Data System (ADS)

    Shukla, Mayoorika; Pramila; Dixit, Tejendra; Prakash, Rajiv; Palani, I. A.; Singh, Vipul

    2017-11-01

    In this work, hydrothermally grown ZnO Nanorods Array (ZNA) has been synthesized over Platinum (Pt) coated glass substrate, for biosensing applications. In-situ addition of strong oxidizing agent viz KMnO4 during hydrothermal growth was found to have profound effect on the physical properties of ZNA. Glucose oxidase (GOx) was later immobilized over ZNA by means of physical adsorption process. Further influence of varying aspect ratio, enzyme loading and surface defects on amperometric glucose biosensor has been analyzed. Significant variation in biosensor performance was observed by varying the amount of KMnO4 addition during the growth. Moreover, investigations revealed that the suppression of surface defects and aspect ratio variation of the ZNA played key role towards the observed improvement in the biosensor performance, thereby significantly affecting the sensitivity and response time of the fabricated biosensor. Among different biosensors fabricated having varied aspect ratio and surface defect density of ZNA, the best electrode resulted into sensitivity and response time to be 18.7 mA cm-2 M-1 and <5 s respectively. The observed results revealed that apart from high aspect ratio nanostructures and the extent of enzyme loading, surface defect density also hold a key towards ZnO nanostructures based bio-sensing applications.

  20. Equilibrium state of a cylindrical particle with flat ends in nematic liquid crystals.

    PubMed

    Hashemi, S Masoomeh; Ejtehadi, Mohammad Reza

    2015-01-01

    A continuum theory is employed to numerically study the equilibrium orientation and defect structures of a circular cylindrical particle with flat ends under a homeotropic anchoring condition in a uniform nematic medium. Different aspect ratios of this colloidal geometry from thin discotic to long rodlike shapes and several colloidal length scales ranging from mesoscale to nanoscale are investigated. We show that the equilibrium state of this colloidal geometry is sensitive to the two geometrical parameters: aspect ratio and length scale of the particle. For a large enough mesoscopic particle, there is a specific asymptotic equilibrium angle associated to each aspect ratio. Upon reducing the particle size to nanoscale, the equilibrium angle follows a descending or ascending trend in such a way that the equilibrium angle of a particle with the aspect ratio bigger than 1:1 (a discotic particle) goes to a parallel alignment with respect to the far-field nematic, whereas the equilibrium angle for a particle with the aspect ratio 1:1 and smaller (a rodlike particle) tends toward a perpendicular alignment to the uniform nematic direction. The discrepancy between the equilibrium angles of the mesoscopic and nanoscopic particles originates from the significant differences between their defect structures. The possible defect structures related to mesoscopic and nanoscopic colloidal particles of this geometry are also introduced.

  1. Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R.

    2017-03-01

    There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO3 NFs achieved the maximal energy storage density of 15.48 J/cm3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.

  2. Significantly Enhanced Energy Storage Density by Modulating the Aspect Ratio of BaTiO3 Nanofibers.

    PubMed

    Zhang, Dou; Zhou, Xuefan; Roscow, James; Zhou, Kechao; Wang, Lu; Luo, Hang; Bowen, Chris R

    2017-03-23

    There is a growing need for high energy density capacitors in modern electric power supplies. The creation of nanocomposite systems based on one-dimensional nanofibers has shown great potential in achieving a high energy density since they can optimize the energy density by exploiting both the high permittivity of ceramic fillers and the high breakdown strength of the polymer matrix. In this paper, BaTiO 3 nanofibers (NFs) with different aspect ratio were synthesized by a two-step hydrothermal method and the permittivity and energy storage of the P(VDF-HFP) nanocomposites were investigated. It is found that as the BaTiO 3 NF aspect ratio and volume fraction increased the permittivity and maximum electric displacement of the nanocomposites increased, while the breakdown strength decreased. The nanocomposites with the highest aspect ratio BaTiO 3 NFs exhibited the highest energy storage density at the same electric field. However, the nanocomposites with the lowest aspect ratio BaTiO 3 NFs achieved the maximal energy storage density of 15.48 J/cm 3 due to its higher breakdown strength. This contribution provides a potential route to prepare and tailor the properties of high energy density capacitor nanocomposites.

  3. Fluid Dynamics of a High Aspect-Ratio Jet

    NASA Technical Reports Server (NTRS)

    Munro, Scott E.; Ahuja, K. K.

    2003-01-01

    Circulation control wings are a type of pneumatic high-lift device that have been extensively researched as to their aerodynamic benefits. However, there has been little research into the possible airframe noise reduction benefits of a circulation control wing. The key element of noise is the jet noise associated with the jet sheet emitted from the blowing slot. High aspect-ratio jet acoustic results (aspect-ratios from 100 to 3,000) from a related study showed that the jet noise of this type of jet was proportional to the slot height to the 3/2 power and slot width to the 1/2 power. Fluid dynamic experiments were performed in the present study on the high aspect-ratio nozzle to gain understanding of the flow characteristics in an effort to relate the acoustic results to flow parameters. Single hot-wire experiments indicated that the jet exhaust from the high aspect-ratio nozzle was similar to a 2-d turbulent jet. Two-wire space-correlation measurements were performed to attempt to find a relationship between the slot height of the jet and the length-scale of the flow noise generating turbulence structure. The turbulent eddy convection velocity was also calculated, and was found to vary with the local centerline velocity, and also as a function of the frequency of the eddy.

  4. The Flow Field Downstream of a Dynamic Low Aspect Ratio Circular Cylinder: A Parametric Study

    NASA Astrophysics Data System (ADS)

    Gildersleeve, Samantha; Dan, Clingman; Amitay, Michael

    2015-11-01

    Flow past a static, low aspect ratio cylinder (pin) has shown the formation of vortical structures, namely the horseshoe and arch-type vortex. These vortical structures may have substantial effects in controlling flow separation over airfoils. In the present experiments, the flow field associated with a low aspect ratio cylinder as it interacts with a laminar boundary layer under static and dynamic conditions was investigated through a parametric study over a flat plate. As a result of the pin being actuated in the wall-normal direction, the structures formed in the wake of the pin were seen to be a strong function of actuation amplitude, driving frequency, and aspect ratio of the cylinder. The study was conducted at a Reynolds number of 1875, based on the local boundary layer thickness, with a free stream velocity of 10 m/s. SPIV data were collected for two aspect ratios of 0.75 and 1.125, actuation amplitudes of 6.7% and 16.7%, and driving frequencies of 175 Hz and 350 Hz. Results indicate that the presence and interactions between vortical structures are altered in comparison to the static case and suggest increased large-scale mixing when the pin is driven at the shedding frequency (350 Hz). Supported by the Boeing Company.

  5. Anomalous Buckling Characteristics of Laminated Metal-Matrix Composite Plates with Central Square Holes

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    1998-01-01

    Compressive buckling analysis was performed on metal-matrix composite (MMC) plates with central square holes. The MMC plates have varying aspect ratios and hole sizes and are supported under different boundary conditions. The finite-element structural analysis method was used to study the effects of plate boundary conditions, plate aspect ratio, hole size, and the composite stacking sequence on the compressive buckling strengths of the perforated MMC plates. Studies show that by increasing the hole sizes, compressive buckling strengths of the perforated MMC plates could be considerably increased under certain boundary conditions and aspect ratios ("anomalous" buckling behavior); and that the plate buckling mode could be symmetrical or antisymmetrical, depending on the plate boundary conditions, aspect ratio, and the hole size. For same-sized plates with same-sized holes, the compressive buckling strengths of the perforated MMC plates with [90/0/0/90]2 lamination could be as much as 10 percent higher or lower than those of the [45/- 45/- 45/45]2 laminations, depending on the plate boundary conditions, plate aspect ratios, and the hole size. Clamping the plate edges induces far stronger "anomalous" buckling behavior (enhancing compressive buckling strengths at increasing hole sizes) of the perforated MMC plates than simply supporting the plate edges.

  6. Bulk purification and deposition methods for selective enrichment in high aspect ratio single-walled carbon nanotubes.

    PubMed

    Bhatt, Nidhi P; Vichchulada, Pornnipa; Lay, Marcus D

    2012-06-06

    Aqueous batch processing methods for the concurrent purification of single-walled carbon nanotube (SWNT) soot and enrichment in high aspect ratio nanotubes are essential to their use in a wide variety of electronic, structural, and mechanical applications. This manuscript presents a new route to the bulk purification and enrichment of unbundled SWNTs having average lengths in excess of 2 μm. Iterative centrifugation cycles at low centripetal force not only removed amorphous C and catalyst nanoparticles but also allowed the enhanced buoyancy of surfactant encapsulated, unbundled, high aspect ratio SWNTs to be used to isolate them in the supernatant. UV-vis-NIR and Raman spectroscopy were used to verify the removal of residual impurities from as-produced (AP-grade) arc discharge soot and the simultaneous enrichment in unbundled, undamaged, high aspect ratio SWNTs. The laminar flow deposition process (LFD) used to form two-dimensional networks of SWNTs prevented bundle formation during network growth. Additionally, it further enhanced the quality of deposits by taking advantage of the inverse relationship between the translational diffusion coefficient and length for suspended nanoparticles. This resulted in preferential deposition of pristine, unbundled, high aspect ratio SWNTs over residual impurities, as observed by Raman spectroscopy and atomic force microscopy (AFM).

  7. A new hybrid double divisor ratio spectra method for the analysis of ternary mixtures

    NASA Astrophysics Data System (ADS)

    Youssef, Rasha M.; Maher, Hadir M.

    2008-10-01

    A new spectrophotometric method was developed for the simultaneous determination of ternary mixtures, without prior separation steps. This method is based on convolution of the double divisor ratio spectra, obtained by dividing the absorption spectrum of the ternary mixture by a standard spectrum of two of the three compounds in the mixture, using combined trigonometric Fourier functions. The magnitude of the Fourier function coefficients, at either maximum or minimum points, is related to the concentration of each drug in the mixture. The mathematical explanation of the procedure is illustrated. The method was applied for the assay of a model mixture consisting of isoniazid (ISN), rifampicin (RIF) and pyrazinamide (PYZ) in synthetic mixtures, commercial tablets and human urine samples. The developed method was compared with the double divisor ratio spectra derivative method (DDRD) and derivative ratio spectra-zero-crossing method (DRSZ). Linearity, validation, accuracy, precision, limits of detection, limits of quantitation, and other aspects of analytical validation are included in the text.

  8. Wakes behind surface-mounted obstacles: Impact of aspect ratio, incident angle, and surface roughness

    NASA Astrophysics Data System (ADS)

    Tobin, Nicolas; Chamorro, Leonardo P.

    2018-03-01

    The so-called wake-moment coefficient C˜h and lateral wake deflection of three-dimensional windbreaks are explored in the near and far wake. Wind-tunnel experiments were performed to study the functional dependence of C˜h with windbreak aspect ratio, incidence angle, and the ratio of the windbreak height and surface roughness (h /z0 ). Supported with the data, we also propose basic models for the wake deflection of the windbreak in the near and far fields. The near-wake model is based on momentum conservation considering the drag on the windbreak, whereas the far-wake counterpart is based on existing models for wakes behind surface-mounted obstacles. Results show that C˜h does not change with windbreak aspect ratios of 10 or greater; however, it may be lower for an aspect ratio of 5. C˜h is found to change roughly with the cosine of the incidence angle, and to depend strongly on h /z0 . The data broadly support the proposed wake-deflection models, though better predictions could be made with improved knowledge of the windbreak drag coefficient.

  9. Response of human bone marrow-derived MSCs on triphasic Ca-P substrate with various HA/TCP ratio.

    PubMed

    Bajpai, Indu; Kim, Duk Yeon; Kyong-Jin, Jung; Song, In-Hwan; Kim, Sukyoung

    2017-01-01

    Calcium phosphates (Ca-P) are used commonly as artificial bone substitutes to control the biodegradation rate of an implant in the body fluid. This study examined the in vitro proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) on triphasic Ca-P samples. For this aspect, hydroxyapatite (HA), dicalcium phosphate dehydrate (DCPD), and calcium hydroxide (Ca(OH) 2 ) were mixed at various ratios, cold compacted, and sintered at 1250°C in air. X-ray diffraction showed that the β-tricalcium phosphate (TCP) to α-TCP phase transformation increased with increasing DCPD/HA ratio. The micro-hardness deceased with increasing TCP content, whereas the mean grain size and porosity increased with increasing TCP concentration. To evaluate the in vitro degree of adhesion and proliferation on the HA/TCP samples, human BMSCs were incubated on the HA/TCP samples and analyzed by a cells proliferation assay, expression of the extracellular matrix (ECM) genes, such as α-smooth muscle actin (α-SMA) and fibronectin (FN), and FITC-phalloidin fluorescent staining. In terms of the interactions of human BMSCs with the triphasic Ca-P samples, H50T50 (Ca/P = 1.59) markedly enhanced cell spreading, proliferation, FN, and α-SMA compared with H100T0 (Ca/P = 1.67). Interestingly, these results show that among the five HA/TCP samples, H50T50 is the optimal Ca-P composition for in vitro cell proliferation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 72-80, 2017. © 2015 Wiley Periodicals, Inc.

  10. Optimization of Orifice Geometry for Cross-Flow Mixing in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Sowa, W. A.; Kroll, J. T.; Samuelsen, G. S.; Holdeman, J. D.

    1994-01-01

    Mixing of gaseous jets in a cross-flow has significant applications in engineering, one example of which is the dilution zone of a gas turbine combustor. Despite years of study, the design of jet injection in combustors is largely based on practical experience. A series of experiments was undertaken to delineate the optimal mixer orifice geometry. A cross-flow to core-flow momentum-flux ratio of 40 and a mass flow ratio of 2.5 were selected as representative of an advanced design. An experimental test matrix was designed around three variables: the number of orifices, the orifice aspect ratio (long-to-short dimension), and the orifice angle. A regression analysis was performed on the data to arrive at an interpolating equation that predicted the mixing performance of orifice geometry combinations within the range of the test matrix parameters. Results indicate that mixture uniformity is a non-linear function of the number of orifices, the orifice aspect ratio, and the orifice angle. Optimum mixing occurs when the asymptotic mean jet trajectories are in the range of 0.35 less than r/R less than 0.5 (where r = 0 is at the mixer wall) at z/R = 1.0. At the optimum number of orifices, the difference between shallow-angled slots with large aspect ratios and round holes is minimal and either approach will lead to good mixing performance. At the optimum number of orifices, it appears possible to have two local optimums where one corresponds to an aspect ratio of 1.0 and the other to a high aspect ratio.

  11. Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and Cryo-TEM.

    PubMed

    Phan, Stephanie; Hawley, Adrian; Mulet, Xavier; Waddington, Lynne; Prestidge, Clive A; Boyd, Ben J

    2013-12-01

    The purpose of this study was to investigate the colloidal structures formed on digestion of medium chain triglyceride (MCT) with a specific objective of identifying and characterizing a previously reported vesicular phase, which has been linked to supersaturation and anomalous digestion kinetics, and to evaluate the influence of lipid mass and enzyme inhibition on self assembled structure. MCT was digested in vitro and nanostructure was monitored in real time using synchrotron small angle X-ray scattering (sSAXS), and morphology was studied using cryogenic transmission electron microscopy (cryo-TEM). Formation of the putative vesicular phase formed on digestion of MCT was confirmed and its structural attributes were determined. Vesicle formation was dependent on lipid mass and bile salt concentration. The use of enzyme inhibitor for offline analysis of lipolysis samples did influence structural aspects of the digestion medium when compared to real time evaluation. The formation of a vesicular phase was directly linked to the kinetics of lipid digestion. Vesicle formation is linked to lipid mass, or more specifically the ratio of lipid to bile salts present in the digestion mixture. Inhibition of lipase to halt digestion during sampling for offline analysis must be done with caution as structural aspects were shown to differ for the MCT digests with and without inhibitor present.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Tushar, E-mail: tushar@barc.gov.in; Kashyap, Yogesh; Shukla, Mayank

    Associated particle technique (APT) for detection of explosives is well established but has been implemented mostly for fixed portal systems. In certain situations, a portable system is required where the suspect object cannot be moved from site. This paper discusses the development of a portable APT system in single-sided geometry which can be transported to site and requires only one-sided access to the object. The system comprised D-T neutron source and bismuth germanate (BGO) detectors fixed on a portable module. Different aspects of the system have been discussed such as background contribution, time selection, and elemental signatures. The system wasmore » used to detect benign samples and explosive simulants under laboratory condition. The elemental ratios obtained by analyzing the gamma spectra show good match with the theoretical ratios.« less

  13. High aspect ratio AFM Probe processing by helium-ion-beam induced deposition.

    PubMed

    Onishi, Keiko; Guo, Hongxuan; Nagano, Syoko; Fujita, Daisuke

    2014-11-01

    A Scanning Helium Ion Microscope (SHIM) is a high resolution surface observation instrument similar to a Scanning Electron Microscope (SEM) since both instruments employ finely focused particle beams of ions or electrons [1]. The apparent difference is that SHIMs can be used not only for a sub-nanometer scale resolution microscopic research, but also for the applications of very fine fabrication and direct lithography of surfaces at the nanoscale dimensions. On the other hand, atomic force microscope (AFM) is another type of high resolution microscopy which can measure a three-dimensional surface morphology by tracing a fine probe with a sharp tip apex on a specimen's surface.In order to measure highly uneven and concavo-convex surfaces by AFM, the probe of a high aspect ratio with a sharp tip is much more necessary than the probe of a general quadrangular pyramid shape. In this paper we report the manufacture of the probe tip of the high aspect ratio by ion-beam induced gas deposition using a nanoscale helium ion beam of SHIM.Gas of platinum organic compound was injected into the sample surface neighborhood in the vacuum chamber of SHIM. The decomposition of the gas and the precipitation of the involved metal brought up a platinum nano-object in a pillar shape on the normal commercial AFM probe tip. A SHIM system (Carl Zeiss, Orion Plus) equipped with the gas injection system (OmniProbe, OmniGIS) was used for the research. While the vacuum being kept to work, we injected platinum organic compound ((CH3)3(CH3C5H4)Pt) into the sample neighborhood and irradiated the helium ion beam with the shape of a point on the apex of the AFM probe tip. It is found that we can control the length of the Pt nano-pillar by irradiation time of the helium ion beam. The AFM probe which brought up a Pt nano-pillar is shown in Figure 1. It is revealed that a high-aspect-ratio Pt nano-pillar of ∼40nm diameter and up to ∼2000 nm length can be grown. In addition, for possible heating by the helium ion beam, it was observed that an original probe shape was transformed. AFM measurement of a reference sample (pitch 100-500 nm, depth 100 nm) of the lines and spaces was performed using the above probes. The conventional probes which did not bring up platinum was not able to get into the ditch enough. Therefore it was found that a salient was big and a reentrant was shallow. On the other hand, the probe which brought up platinum was able to enter enough to the depths of the ditch.jmicro;63/suppl_1/i30-a/DFU075F1F1DFU075F1Fig.1.SHIM image of the AFM probe with the Pt nano-pillar fabricated by ion-beam induced deposition. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Silica Nanofiber Combat Hemostat (SINCH)

    DTIC Science & Technology

    2008-10-13

    1.5mg 0.6 65 205 High aspect ratio silica fibers (30um x 60nm) 9mg 0.63 58.9 140 Kaolin (TEG control) 0.2mg n/a 59.8 155 TiO2 high aspect ratio...high surface area to volume ratio and thus the material is difficult to handle in an uncontrolled environment. It is easily dispersed and is not easy

  15. The comparison of landslide ratio-based and general logistic regression landslide susceptibility models in the Chishan watershed after 2009 Typhoon Morakot

    NASA Astrophysics Data System (ADS)

    WU, Chunhung

    2015-04-01

    The research built the original logistic regression landslide susceptibility model (abbreviated as or-LRLSM) and landslide ratio-based ogistic regression landslide susceptibility model (abbreviated as lr-LRLSM), compared the performance and explained the error source of two models. The research assumes that the performance of the logistic regression model can be better if the distribution of landslide ratio and weighted value of each variable is similar. Landslide ratio is the ratio of landslide area to total area in the specific area and an useful index to evaluate the seriousness of landslide disaster in Taiwan. The research adopted the landside inventory induced by 2009 Typhoon Morakot in the Chishan watershed, which was the most serious disaster event in the last decade, in Taiwan. The research adopted the 20 m grid as the basic unit in building the LRLSM, and six variables, including elevation, slope, aspect, geological formation, accumulated rainfall, and bank erosion, were included in the two models. The six variables were divided as continuous variables, including elevation, slope, and accumulated rainfall, and categorical variables, including aspect, geological formation and bank erosion in building the or-LRLSM, while all variables, which were classified based on landslide ratio, were categorical variables in building the lr-LRLSM. Because the count of whole basic unit in the Chishan watershed was too much to calculate by using commercial software, the research took random sampling instead of the whole basic units. The research adopted equal proportions of landslide unit and not landslide unit in logistic regression analysis. The research took 10 times random sampling and selected the group with the best Cox & Snell R2 value and Nagelkerker R2 value as the database for the following analysis. Based on the best result from 10 random sampling groups, the or-LRLSM (lr-LRLSM) is significant at the 1% level with Cox & Snell R2 = 0.190 (0.196) and Nagelkerke R2 = 0.253 (0.260). The unit with the landslide susceptibility value > 0.5 (≦ 0.5) will be classified as a predicted landslide unit (not landslide unit). The AUC, i.e. the area under the relative operating characteristic curve, of or-LRLSM in the Chishan watershed is 0.72, while that of lr-LRLSM is 0.77. Furthermore, the average correct ratio of lr-LRLSM (73.3%) is better than that of or-LRLSM (68.3%). The research analyzed in detail the error sources from the two models. In continuous variables, using the landslide ratio-based classification in building the lr-LRLSM can let the distribution of weighted value more similar to distribution of landslide ratio in the range of continuous variable than that in building the or-LRLSM. In categorical variables, the meaning of using the landslide ratio-based classification in building the lr-LRLSM is to gather the parameters with approximate landslide ratio together. The mean correct ratio in continuous variables (categorical variables) by using the lr-LRLSM is better than that in or-LRLSM by 0.6 ~ 2.6% (1.7% ~ 6.0%). Building the landslide susceptibility model by using landslide ratio-based classification is practical and of better performance than that by using the original logistic regression.

  16. A (very) Simple Model for the Aspect Ratio of High-Order River Basins

    NASA Astrophysics Data System (ADS)

    Shelef, E.

    2017-12-01

    The structure of river networks dictates the distribution of elevation, water, and sediments across Earth's surface. Despite its intricate shape, the structure of high-order river networks displays some surprising regularities such as the consistent aspect ratio (i.e., basin's width over length) of river basins along linear mountain fronts. This ratio controls the spacing between high-order channels as well as the spacing between the depositional bodies they form. It is generally independent of tectonic and climatic conditions and is often attributed to the initial topography over which the network was formed. This study shows that a simple, cross-like channel model explains this ratio via a requirement for equal elevation gain between the outlets and drainage-divides of adjacent channels at topographic steady state. This model also explains the dependence of aspect ratio on channel concavity and the location of the widest point on a drainage divide.

  17. Laser velocimeter and total pressure measurements in circular-to-rectangular transition ducts

    NASA Technical Reports Server (NTRS)

    Patrick, William P.; Mccormick, Duane C.

    1988-01-01

    A comprehensive set of total pressure and three-component laser velocimetry (LV) data were obtained within two circular-to-rectangular transition ducts at low subsonic speeds. This set of reference data was acquired for use in identifying secondary flow mechanisms and for assessing the accuracy of computational procedures for calculating such flows. Data were obtained at the inlet and exit planes of an aspect ratio three duct having a length-to-diameter ratio of one (AR310) and an aspect ratio six duct having a length-to-diameter ratio of three (AR630). Each duct was unseparated throughout its transition section. It is therefore concluded that secondary flows can play an important part in the fluid dynamics of transition ducts and needs to be addressed in computational analysis. The strength of the secondary flows depends on both the aspect ratio and relative axial duct length.

  18. Relation between self-organized criticality and grain aspect ratio in granular piles

    NASA Astrophysics Data System (ADS)

    Denisov, D. V.; Villanueva, Y. Y.; Lőrincz, K. A.; May, S.; Wijngaarden, R. J.

    2012-05-01

    We investigate experimentally whether self-organized criticality (SOC) occurs in granular piles composed of different grains, namely, rice, lentils, quinoa, and mung beans. These four grains were selected to have different aspect ratios, from oblong to oblate. As a function of aspect ratio, we determined the growth (β) and roughness (α) exponents, the avalanche fractal dimension (D), the avalanche size distribution exponent (τ), the critical angle (γ), and its fluctuation. At superficial inspection, three types of grains seem to have power-law-distributed avalanches with a well-defined τ. However, only rice is truly SOC if we take three criteria into account: a power-law-shaped avalanche size distribution, finite size scaling, and a universal scaling relation relating characteristic exponents. We study SOC as a spatiotemporal fractal; in particular, we study the spatial structure of criticality from local observation of the slope angle. From the fluctuation of the slope angle we conclude that greater fluctuation (and thus bigger avalanches) happen in piles consisting of grains with larger aspect ratio.

  19. Dimensional and compositional dependent analysis of plasmonic bimetallic nanorods

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Singh Sekhon, Jagmeet; Verma, S. S.

    2015-11-01

    The individual noble metal nanoparticles (NPs) are combined to form alloys with improved optical response, cost effectiveness and better stability. The selection of noble metal alloy NPs for their better use in plasmonic applications is being made on the bases of surface plasmon resonance peak position, its intensity and full width at half maxima (FWHM). Presently, the effect of metal composition (x), aspect ratio (R), size and metal type on the longitudinal plasmon resonance (LPR) of noble metal Ag-Au alloy nanorods (NRs) has been studied by applying modified Gans theory including finite wavelength effects and found that the LPR shifts towards the longer wavelength region with increase in aspect ratio and size of the NR. Moreover, a linear relationship which is in good agreement to the experimental results between the plasmon resonance and aspect ratio has been obtained. The aspect ratio and NR width-dependent absorption efficiency and FWHM have also been calculated. Further, a negligible effect of metal composition and its type is found on the LPR.

  20. Multiscale modeling for SiO2 atomic layer deposition for high-aspect-ratio hole patterns

    NASA Astrophysics Data System (ADS)

    Miyano, Yumiko; Narasaki, Ryota; Ichikawa, Takashi; Fukumoto, Atsushi; Aiso, Fumiki; Tamaoki, Naoki

    2018-06-01

    A multiscale simulation model is developed for optimizing the parameters of SiO2 plasma-enhanced atomic layer deposition of high-aspect-ratio hole patterns in three-dimensional (3D) stacked memory. This model takes into account the diffusion of a precursor in a reactor, that in holes, and the adsorption onto the wafer. It is found that the change in the aperture ratio of the holes on the wafer affects the concentration of the precursor near the top of the wafer surface, hence the deposition profile in the hole. The simulation results reproduced well the experimental results of the deposition thickness for the various hole aperture ratios. By this multiscale simulation, we can predict the deposition profile in a high-aspect-ratio hole pattern in 3D stacked memory. The atomic layer deposition parameters for conformal deposition such as precursor feeding time and partial pressure of precursor for wafers with various hole aperture ratios can be estimated.

  1. Revealing the nanoparticles aspect ratio in the glass-metal nanocomposites irradiated with femtosecond laser

    PubMed Central

    Chervinskii, S.; Drevinskas, R.; Karpov, D. V.; Beresna, M.; Lipovskii, A. A.; Svirko, Yu. P.; Kazansky, P. G.

    2015-01-01

    We studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.5 at the laser fluence of 0.6 J/cm2. The developed approach can be employed to control the anisotropy of the glass-metal composites. PMID:26348691

  2. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent round-to-rectangular high-aspect ratio nozzles were designed for acoustics measurements. The nozzles have exit area aspect ratios of 8:1, 12:1, and 16:1. With septa inserts, these nozzles will mimic an array of distributed propulsion system nozzles, as found on hybrid wing-body aircraft concepts. Analyses were performed for the three nozzle designs and showed that the flow through the nozzles was free of separated flow and shocks. The exit flow was mostly uniform with the exception of a pair of vortices at each span-wise end of the nozzle.

  3. On-demand drawing of high aspect-ratio, microsphere-tipped elastomeric micropillars

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Kim, Jaeyoun

    2017-08-01

    High aspect-ratio elastomeric micropillars are widely used in a plethora of applications, such as functional surfaces, actuators, and sensors. Their fabrication at arbitrary positions on non-planar substrates, however, has rarely been reported. Here we demonstrate a new technique for facile fabrication of high aspect-ratio, microsphere-tipped elastomeric micropillars on structures with uncommon geometries. As a proof-of-concept exemplary application, a fiber optic contact sensor is realized by integrating a micropillar onto the end facet of an optical fiber. Overall, both the fabrication technique and the resulting outcomes of this work will add new tools to the toolbox of soft-MEMS and softrobotics.

  4. Jet-Surface Interaction - High Aspect Ratio Nozzle Test: Test Summary

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2016-01-01

    The Jet-Surface Interaction High Aspect Ratio Nozzle Test was conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center in the fall of 2015. There were four primary goals specified for this test: (1) extend the current noise database for rectangular nozzles to higher aspect ratios, (2) verify data previously acquired at small-scale with data from a larger model, (3) acquired jet-surface interaction noise data suitable for creating verifying empirical noise models and (4) investigate the effect of nozzle septa on the jet-mixing and jet-surface interaction noise. These slides give a summary of the test with representative results for each goal.

  5. Acoustic properties associated with rectangular geometry supersonic nozzles

    NASA Technical Reports Server (NTRS)

    Seiner, J. M.; Manning, J. C.; Ponton, M. K.

    1986-01-01

    Acoustic property experiments have been conducted to ascertain the behavior of rectangular geometry supersonic nozzles whose throat aspect ratios vary over a 2.0-7.6 range, and whose three partial sidewall geometries range from full to 75-percent cutback. The tests employed unheated air at static conditions for nozzle Mach numbers of 1.35-1.66. It is found that sonic fatigue failures are possible at certain partial sidewall geometries and high nozzle aspect ratios. Unlike axisymmetric supersonic nozzles, shock noise dominates both the rear and forward arc for throat aspect ratio cases greater than 5.6. Jet screech frequency was adequately predicted with a simple vortex sheel model.

  6. Investigation of TESCOM Driveshaft Assembly Failure

    DTIC Science & Technology

    1998-10-01

    ratio, two-stage axial -flow compressor with a corrected tip speed of 1250 ft/sec at design . The flowpath casing diameter downstream of the inlet... Design of a 1250 ft/sec. Low-Aspect-Ratio, Single-Stage Axial -Flow Compressor , AFAPL-TR-79-2096, Air Force Aero Propulsion Laboratory, Wright...The TESCOM compressor described in this report is a 2.5-stage, low aspect ratio, axial -flow compressor . The performance objectives of this compressor

  7. Critical aspect ratio for tungsten fibers in copper-nickel matrix composites

    NASA Technical Reports Server (NTRS)

    Jech, R. W.

    1975-01-01

    Stress-rupture and tensile tests were conducted at 816 C (1500 F) to determine the effect of matrix composition on the minimum fiber length to diameter ratio (critical aspect ratio) below which fibers in a tungsten fiber/copper-nickel alloy matrix composite could not be stressed to their ultimate load carrying capability. This study was intended to simulate some of the conditions that might be encountered with materials combinations used in high-temperature composites. The critical aspect ratio for stress-rupture was found to be greater than for short-time tension, and it increased as the time to rupture increased. The increase was relatively slight, and calculated fiber lengths for long service appear to be well within practical size limits for effective reinforcement and ease of fabrication of potential gas turbine components.

  8. Wind-tunnel investigation of several high aspect-ratio supercritical wing configurations on a wide-body-type fuselage

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.

    1977-01-01

    An investigation was conducted in the Langley 8-foot transonic pressure tunnel on two aspect-ratio 11.95 supercritical wings that were tested in combination with a representative wide-body-type fuselage. The two supercritical wings have identical planforms for equal sweep angles and differ only in thickness. Each wing was tested at quarter-chord sweep angles of 27 deg and 30 deg. At the higher sweep angle, the aspect ratio is reduced to 11.36. At 27 deg of quarter-chord sweep, the thicker supercritical wing (SCW-1) has maximum streamwise thickness-to-chord ratios of 0.16 at the wing-fuselage juncture, 0.14 at the planform break station, and 0.12 at the tip. The thinner wing (SCW-2) has maximum streamwise thickness-to-chord ratios of 0.144, 0.12, and 0.10 at the same stations respectively. Tests were also conducted on the thinner supercritical wing at the 27 deg sweep angle with a 15.24 cm (6.0 in.) shorter span which results in an aspect ratio of 10.25. For comparison, data were obtained on a current wide-body transport wing (AR=7) that was tested on the same fuselage used with the supercritical wings.

  9. Properties of microcement mortar with nano particles

    NASA Astrophysics Data System (ADS)

    Alimeneti, Narasimha Reddy

    Carbon nanotubes (CNT) and Carbon nanofibers (CNF) are one of the toughest and stiffest materials in the world presently with extreme properties yet to be discovered in terms of elastic modulus and tensile strength. Due to the advanced properties of these materials they are being used in almost all fields of science at nanolevel and are being used in construction industry recently for improvement of material properties. Microcement is fine ground cement which as half the particle size of ordinary Portland cement. In this research the behavior of cement mortar of micro cement with the addition of nanoparticles is studied. Due to high aspect ratio and strong van der Waal forces between the particles of CNT and CNF, they agglomerate and form bundles when mixed with water, sonication method is used to mix nanoparticles with few drops of surfactant and super plasticizer. Mechanical properties such as compressive strength and flexural strength with CNT and CNF composites are examined and compared with control samples. 0.1% and 0.05 % of nanoparticles (both CNT and CNF) by the weight of cement are used in this research and 0.8% of super plasticizer by weight of cement was also used along with 0.4, 0.45 and 0.50 water cement ratios for making specimens for compression test. The compressive strength results are not satisfactory as there was no constant increase in strength with all the composites, however strength of few nanocomposites increased by a good percentage. 0.5 water cement ratio cement mortar had compressive strength of 7.15 ksi (49.3 MPa), whereas sample with 0.1% CNT showed 8.38 ksi (57.8 MPa) with 17% increase in strength after 28 days. Same trend was followed by 0.4 water cement ratio as the compressive strength of control sample was 8.89 ksi (61.3 MPa), with 0.05% of CNT strength increased to 10.90 ksi (75.2 MPa) with 23% increase in strength. 0.4 water cement ratio was used for flexural tests including 0.1%, 0.05% of CNT and 0.1%, 0.05% of CNF with 0.008 ratio of super plasticizer. Results showed that there was a significant increase in strength initially but gradually decreased as the time increase and showed decreased strength at 28 days when compared to control samples. Flow cone results are quite satisfying as the flow is significantly increased with the addition of nanoparticles. Time of efflux of control sample is 16.22 sec whereas for specimen with CNT had a time of efflux 12.67 sec and sample with CNF showed 13.65 seconds. Setting time test was carried on 0.4 water cement ratio. Composites with nanoparticles exhibited faster setting when compared to its control sample. Bleeding was not observed with the nanoparticles in the cement mortar. Shrinkage test was conducted on sample with 0.4 water cement ratio with 0.05% of CNT and CNF. Shrinkage was very small in the samples with nanoparticles.

  10. Public Data Set: H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison; Oak Ridge Associated Universities] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-09-30

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'H-mode Plasmas at Very Low Aspect Ratio on the Pegasus Toroidal Experiment,' Nucl. Fusion 57, 022018 (2017).

  11. Detection of third and sixth cranial nerve palsies with a novel method for eye tracking while watching a short film clip

    PubMed Central

    Samadani, Uzma; Farooq, Sameer; Ritlop, Robert; Warren, Floyd; Reyes, Marleen; Lamm, Elizabeth; Alex, Anastasia; Nehrbass, Elena; Kolecki, Radek; Jureller, Michael; Schneider, Julia; Chen, Agnes; Shi, Chen; Mendhiratta, Neil; Huang, Jason H.; Qian, Meng; Kwak, Roy; Mikheev, Artem; Rusinek, Henry; George, Ajax; Fergus, Robert; Kondziolka, Douglas; Huang, Paul P.; Smith, R. Theodore

    2015-01-01

    OBJECT Automated eye movement tracking may provide clues to nervous system function at many levels. Spatial calibration of the eye tracking device requires the subject to have relatively intact ocular motility that implies function of cranial nerves (CNs) III (oculomotor), IV (trochlear), and VI (abducent) and their associated nuclei, along with the multiple regions of the brain imparting cognition and volition. The authors have developed a technique for eye tracking that uses temporal rather than spatial calibration, enabling detection of impaired ability to move the pupil relative to normal (neurologically healthy) control volunteers. This work was performed to demonstrate that this technique may detect CN palsies related to brain compression and to provide insight into how the technique may be of value for evaluating neuropathological conditions associated with CN palsy, such as hydrocephalus or acute mass effect. METHODS The authors recorded subjects’ eye movements by using an Eyelink 1000 eye tracker sampling at 500 Hz over 200 seconds while the subject viewed a music video playing inside an aperture on a computer monitor. The aperture moved in a rectangular pattern over a fixed time period. This technique was used to assess ocular motility in 157 neurologically healthy control subjects and 12 patients with either clinical CN III or VI palsy confirmed by neuro-ophthalmological examination, or surgically treatable pathological conditions potentially impacting these nerves. The authors compared the ratio of vertical to horizontal eye movement (height/width defined as aspect ratio) in normal and test subjects. RESULTS In 157 normal controls, the aspect ratio (height/width) for the left eye had a mean value ± SD of 1.0117 ± 0.0706. For the right eye, the aspect ratio had a mean of 1.0077 ± 0.0679 in these 157 subjects. There was no difference between sexes or ages. A patient with known CN VI palsy had a significantly increased aspect ratio (1.39), whereas 2 patients with known CN III palsy had significantly decreased ratios of 0.19 and 0.06, respectively. Three patients with surgically treatable pathological conditions impacting CN VI, such as infratentorial mass effect or hydrocephalus, had significantly increased ratios (1.84, 1.44, and 1.34, respectively) relative to normal controls, and 6 patients with supratentorial mass effect had significantly decreased ratios (0.27, 0.53, 0.62, 0.45, 0.49, and 0.41, respectively). These alterations in eye tracking all reverted to normal ranges after surgical treatment of underlying pathological conditions in these 9 neurosurgical cases. CONCLUSIONS This proof of concept series of cases suggests that the use of eye tracking to detect CN palsy while the patient watches television or its equivalent represents a new capacity for this technology. It may provide a new tool for the assessment of multiple CNS functions that can potentially be useful in the assessment of awake patients with elevated intracranial pressure from hydrocephalus or trauma. PMID:25495739

  12. Detection of third and sixth cranial nerve palsies with a novel method for eye tracking while watching a short film clip.

    PubMed

    Samadani, Uzma; Farooq, Sameer; Ritlop, Robert; Warren, Floyd; Reyes, Marleen; Lamm, Elizabeth; Alex, Anastasia; Nehrbass, Elena; Kolecki, Radek; Jureller, Michael; Schneider, Julia; Chen, Agnes; Shi, Chen; Mendhiratta, Neil; Huang, Jason H; Qian, Meng; Kwak, Roy; Mikheev, Artem; Rusinek, Henry; George, Ajax; Fergus, Robert; Kondziolka, Douglas; Huang, Paul P; Smith, R Theodore

    2015-03-01

    Automated eye movement tracking may provide clues to nervous system function at many levels. Spatial calibration of the eye tracking device requires the subject to have relatively intact ocular motility that implies function of cranial nerves (CNs) III (oculomotor), IV (trochlear), and VI (abducent) and their associated nuclei, along with the multiple regions of the brain imparting cognition and volition. The authors have developed a technique for eye tracking that uses temporal rather than spatial calibration, enabling detection of impaired ability to move the pupil relative to normal (neurologically healthy) control volunteers. This work was performed to demonstrate that this technique may detect CN palsies related to brain compression and to provide insight into how the technique may be of value for evaluating neuropathological conditions associated with CN palsy, such as hydrocephalus or acute mass effect. The authors recorded subjects' eye movements by using an Eyelink 1000 eye tracker sampling at 500 Hz over 200 seconds while the subject viewed a music video playing inside an aperture on a computer monitor. The aperture moved in a rectangular pattern over a fixed time period. This technique was used to assess ocular motility in 157 neurologically healthy control subjects and 12 patients with either clinical CN III or VI palsy confirmed by neuro-ophthalmological examination, or surgically treatable pathological conditions potentially impacting these nerves. The authors compared the ratio of vertical to horizontal eye movement (height/width defined as aspect ratio) in normal and test subjects. In 157 normal controls, the aspect ratio (height/width) for the left eye had a mean value ± SD of 1.0117 ± 0.0706. For the right eye, the aspect ratio had a mean of 1.0077 ± 0.0679 in these 157 subjects. There was no difference between sexes or ages. A patient with known CN VI palsy had a significantly increased aspect ratio (1.39), whereas 2 patients with known CN III palsy had significantly decreased ratios of 0.19 and 0.06, respectively. Three patients with surgically treatable pathological conditions impacting CN VI, such as infratentorial mass effect or hydrocephalus, had significantly increased ratios (1.84, 1.44, and 1.34, respectively) relative to normal controls, and 6 patients with supratentorial mass effect had significantly decreased ratios (0.27, 0.53, 0.62, 0.45, 0.49, and 0.41, respectively). These alterations in eye tracking all reverted to normal ranges after surgical treatment of underlying pathological conditions in these 9 neurosurgical cases. This proof of concept series of cases suggests that the use of eye tracking to detect CN palsy while the patient watches television or its equivalent represents a new capacity for this technology. It may provide a new tool for the assessment of multiple CNS functions that can potentially be useful in the assessment of awake patients with elevated intracranial pressure from hydrocephalus or trauma.

  13. Facile Synthesis of Silver Nanowires with Different Aspect Ratios and Used as High-Performance Flexible Transparent Electrodes

    NASA Astrophysics Data System (ADS)

    Xue, Qingwen; Yao, Weijing; Liu, Jun; Tian, Qingyong; Liu, Li; Li, Mengxiao; Lu, Qiang; Peng, Rui; Wu, Wei

    2017-08-01

    Silver nanowires (Ag NWs) are the promising materials to fabricate flexible transparent electrodes, aiming to replace indium tin oxide (ITO) in the next generation of flexible electronics. Herein, a feasible polyvinylpyrrolidone (PVP)-mediated polyol synthesis of Ag NWs with different aspect ratios is demonstrated and high-quality Ag NWs transparent electrodes (NTEs) are fabricated without high-temperature thermal sintering. When employing the mixture of PVP with different average molecular weight as the capping agent, the diameters of Ag NWs can be tailored and Ag NWs with different aspect ratios varying from ca. 30 to ca. 1000 are obtained. Using these as-synthesized Ag NWs, the uniform Ag NWs films are fabricated by repeated spin coating. When the aspect ratios exceed 500, the optoelectronic performance of Ag NWs films improve remarkably and match up to those of ITO films. Moreover, an optimal Ag NTEs with low sheet resistance of 11.4 Ω/sq and a high parallel transmittance of 91.6% at 550 nm are achieved when the aspect ratios reach almost 1000. In addition, the sheet resistance of Ag NWs films does not show great variation after 400 cycles of bending test, suggesting an excellent flexibility. The proposed approach to fabricate highly flexible and high-performance Ag NTEs would be useful to the development of flexible devices.

  14. Cause and Cure - Deterioration in Accuracy of CFD Simulations with Use of High-Aspect-Ratio Triangular/Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD researchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where simplex elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identifies the reason behind the difficulties in use of such high-aspect ratio simplex elements is formulated using two different approaches and presented here. Drawing insights from the analysis, a potential solution to avoid that pitfall is also provided as part of this work. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, how the gradient evaluation procedures of the CESE framework can be effectively used to produce accurate and stable results on such high-aspect ratio simplex meshes is also showcased.

  15. A novel fabrication method for suspended high-aspect-ratio microstructures

    NASA Astrophysics Data System (ADS)

    Yang, Yao-Joe; Kuo, Wen-Cheng

    2005-11-01

    Suspended high-aspect-ratio structures (suspended HARS) are widely used for MEMS devices such as micro-gyroscopes, micro-accelerometers, optical switches and so on. Various fabrication methods, such as SOI, SCREAM, AIM, SBM and BELST processes, were proposed to fabricate HARS. However, these methods focus on the fabrication of suspended microstructures with relatively small widths of trench opening (e.g. less than 10 µm). In this paper, we propose a novel process for fabricating very high-aspect-ratio suspended structures with large widths of trench opening using photoresist as an etching mask. By enhancing the microtrenching effect, we can easily release the suspended structure without thoroughly removing the floor polymer inside the trenches for the cases with a relatively small trench aspect ratio. All the process steps can be integrated into a single-run single-mask ICP-RIE process, which effectively reduces the process complexity and fabrication cost. We also discuss the phenomenon of corner erosion, which results in the undesired etching of silicon structures during the structure-releasing step. By using the proposed process, 100 µm thick suspended structures with the trench aspect ratio of about 20 are demonstrated. Also, the proposed process can be used to fabricate devices for applications which require large in-plane displacement. This paper was orally presented in the Transducers'05, Seoul, Korea (paper ID: 3B1.3).

  16. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  17. Experimental investigation of the effect orifice shape and fluid pressure has on high aspect ratio cross-sectional jet behaviour.

    PubMed

    Wakes, S J; Holdø, A E; Meares, A J

    2002-01-04

    Prevention of major disasters such as Piper Alpha is a concern of oil and gas companies when commissioning a new offshore superstructure. Safety studies are undertaken to identify potential major hazards, risks to personnel and that sufficient precautions have been employed to minimise these. Such an assessment will also include the consideration of the protection from gas leaks such as the optimum positions of gas leak detectors and startup safety procedures after a leak. This requires a comprehensive knowledge of the behaviour of the leaking hydrocarbons as they emerge from the leak into the area of concern. Such leaks are most likely to emanate from a high aspect ratio cross-sectional curved slot in a pipeline. This paper challenges the conventional view that it is sufficient to model such leaks as axisymmetric jets. This paper is therefore concerned with an experimental study carried out on a series of more realistic high aspect ratio cross-sectional jets issuing from a flange orifice. Both high quality photographs in both planes of the jets and some quantitative pressure data is examined for a high aspect ratio cross-sectional jet of air at pressures up to 4.136bar. The effect of changing aspect ratio, fluid pressure and orifice shape will be discussed and put into context with regard to how this relates to offshore analysis studies.

  18. Flexural strength and behaviour of SFRSCC ribbed slab under four point bending

    NASA Astrophysics Data System (ADS)

    Ahmad, Hazrina; Hashim, Mohd Hisbany Mohd; Bakar, Afidah Abu; Hamzah, Siti Hawa; Rahman, Fadhillah Abdul

    2017-11-01

    An experimental investigation was carried out to study the ultimate strength and behaviour of SFRSCC ribbed slab under four point bending. Comparison was been made between ribbed slab that was fully reinforced with steel fibres (SFWS) with conventionally reinforced concrete ribbed slab (CS and CRC). The volume fraction of the 35 mm hooked end steel fibres used in the mix was 1% (80 kg/m3) with the aspect ratio of 65. Three full scale slab samples with the dimension of 2.8 x 1.2 m with 0.2 m thickness was constructed for the purpose of this study. The slab samples was loaded until failure in a four point bending test. As a whole, based on the results, it can be concluded that the performance of the steel fiber reinforced samples (SFWS) was found to be almost equivalent to the conventionally reinforced concrete ribbed slab sample (CRC).

  19. Capture envelopes of rectangular hoods in cross drafts.

    PubMed

    Huang, R F; Sir, S Y; Chen, Y K; Yeh, W Y; Chen, C W; Chen, C C

    2001-01-01

    The suction fields of the rectangular hoods of various aspect ratios varying from 0.1 to 10 that are subject to the influence of cross drafts were experimentally studied in an apparatus consisting of a hood model/wind tunnel assembly. The velocity field on the symmetry plane was measured with a two-component laser Doppler anemometer. Being under the influence of cross draft, the suction field presents a characteristic capture envelope, which is described by a dividing streamline. The characteristics of the capture envelope were found to be determined by the cross-draft to hood-suction velocity ratio R and the hood-opening aspect ratio AR. The flow characteristics of the hoods with aspect ratios less than unity were dramatically different from those with aspect ratios greater than one. If areas of the hood openings had the same values, the hydraulic-diameter normalized characteristic length scales of the capture zone of the square hood were as same as those of the circular hood. When the diameter of a circular hood was equal to the width of a square hood, the physical dimensions of the capture zones created by these two hoods coincided with each other.

  20. Stability Characteristics of Two Missiles of Fineness Ratios 12 and 18 with Six Rectangular Fins of Very Low Aspect Ratio Over a Mach Number Range of 1.4 to 3.2

    NASA Technical Reports Server (NTRS)

    Henning, Allen B.

    1959-01-01

    Two rocket-propelled missiles have been test flown by the Langley Pilotless Aircraft Research Division in order to study the stability characteristics of a body with six rectangular fins of very low aspect ratio. The fins, which had exposed aspect ratios of approximately o.o4 and 0.02 per fin, were mounted on bodies of fineness ratios of 12 and 18, respectively. Each body had a nose with a fineness ratio of 3.5 and a cylindrical afterbody. The body and the fin chord of the model having a fineness ratio of 12 were extended the length of 6 body diameters to produce the model with a fineness ratio of 18. The missiles were disturbed in flight by pulse rockets in order to obtain the stability data. The tests were performed over a Mach number range of 1.4 to 3.2 and a Reynolds number range of 2 x 10(exp 6) to 21 x l0(exp 6). The results of these tests indicate that these configurations with the long rectangular fins of very low aspect ratio showed little induced roll" with the missile of highest fineness ratio and longest fin chord exhibiting the least amount. Extending the body and fin chord of the shorter missile six body diameters and thereby increasing the fin area approximately 115 percent increased the lift-curve slope based on body cross-sectional area approximately 40 to 55 percent, increased the dynamic stability by a substantial amount, and increased the drag from 14 to 33 percent throughout the comparable Mach number range. The center-of-pressure location of both missiles remained constant over the Mach number range.

  1. Integration of Stable Isotope and other Mass Spectral Data for Microbial Forensics

    NASA Astrophysics Data System (ADS)

    Kreuzer-Martin, H. W.; Jarman, K. H.

    2008-12-01

    The nascent field of microbial forensics requires the development of diverse signatures as indicators of various aspects of the production environment of microorganisms. We have characterized isotopic relationships between Bacillus subtilis ATCC 6051 spores and their growth environment, using as a database the carbon, nitrogen, oxygen and hydrogen stable isotope ratios of a total of 247 separate cultures of spores produced on a total of 32 different culture media. We have analyzed variation within individual samples, between cultures produced in tandem, and between cultures produced in the same medium but at different times in the context of using stable isotope ratios as a signature for sample matching. We have correlated the stable isotope ratios of carbon, nitrogen, oxygen, and hydrogen of growth medium nutrients or water and spores and show examples of how these relationships can be used to exclude nutrient or water samples as possible growth substrates for specific cultures. The power of stable isotope ratio data can be greatly enhanced by combining it with orthogonal datasets that speak to different aspects of an organism's production environment. We developed a Bayesian network that follows the causal relationship from culture medium recipe to spore elemental content as measured by secondary ion mass spectrometry (SIMS), carbon and nitrogen stable isotope ratios, and to the presence of residual agar by electrospray ionization MS (ESI-MS). The network was developed and tested on data from three replicate cultures of B. subtilis ATCC 49760 in broth and agar-containing versions of four different nutrient media. To test the network, data from SIMS analyses of B. subtilis 49760 produced in a different medium, from approximately 200 ESI MS analyses of B. thuringensis ATCC 58890 and B. anthracis Sterne grown in five additional media, and the stable isotope data from the 247 cultures of B. subtilis 6051 spores were used. This network was able to characterize Bacillus spores grown under multiple culture conditions with an error rate of less than 0.07 in characterizing carbon and nitrogen source, addition of metals, and presence of agar, and an error rate of 0.19 in characterizing the culture medium recipe. The integration of multiple analytical techniques allowed us to maximize the amount of information obtained from unknown source microorganisms. The Bayesian network approach allowed us to combine scientific understanding with well established statistical methodologies to characterize a microbe's growth environment without the need for reference signatures. Similar approaches could be applied to data from other scientific disciplines, as well as to other problems of attribution.

  2. Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26 respectively, and with design pressure ratio of 2.05

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Reid, L.

    1980-01-01

    The overall and blade-element performances of a low-aspect-ratio transonic compressor stage are presented over the stable operating flow range for speeds from 50 to 100 percent of design. At design speed the rotor and stage achieved peak efficiencies of 0.876 and 0.840 at pressure ratios of 2.056 and 2.000, respectively. The stage stall margin at design speed was 10 percent.

  3. Two dimensional fall of granular columns controlled by slow horizontal withdrawal of a retaining wall

    NASA Astrophysics Data System (ADS)

    Mériaux, Catherine

    2006-09-01

    This paper describes a series of experiments designed to investigate the fall of granular columns in a quasi-static regime. Columns made of alternatively green and red sand layers were initially laid out in a box and then released when a retaining wall was set in slow motion with constant speed. The dependence of the dynamics of the fall on the initial aspect ratio of the columns, the velocity of the wall, and the material properties was investigated within the quasi-static regime. A change in the behavior of the columns was identified to be a function of the aspect ratio (height/length) of the initial sand column. Columns of high aspect ratio first subsided before sliding along failure planes, while columns of small aspect ratio were only observed to slide along failure planes. The transition between these two characteristic falls occurred regardless of the material and the velocity of the wall in the context of the quasi-static regime. When the final height and length of the piles were analyzed, we found power-law relations of the ratio of initial to final height and final run-out to initial length with the aspect ratio of the column. The dissipation of energy is also shown to increase with the run-out length of the pile until it reaches a plateau. Finally, we find that the structure of the slip planes that develop in our experiments are not well described by the failure of Coulomb's wedges for twin retaining rough walls.

  4. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry

    NASA Astrophysics Data System (ADS)

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-01

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  5. Virial coefficients of anisotropic hard solids of revolution: The detailed influence of the particle geometry.

    PubMed

    Herold, Elisabeth; Hellmann, Robert; Wagner, Joachim

    2017-11-28

    We provide analytical expressions for the second virial coefficients of differently shaped hard solids of revolution in dependence on their aspect ratio. The second virial coefficients of convex hard solids, which are the orientational averages of the mutual excluded volume, are derived from volume, surface, and mean radii of curvature employing the Isihara-Hadwiger theorem. Virial coefficients of both prolate and oblate hard solids of revolution are investigated in dependence on their aspect ratio. The influence of one- and two-dimensional removable singularities of the surface curvature to the mutual excluded volume is analyzed. The virial coefficients of infinitely thin oblate and infinitely long prolate particles are compared, and analytical expressions for their ratios are derived. Beyond their dependence on the aspect ratio, the second virial coefficients are influenced by the detailed geometry of the particles.

  6. Design of planar microcoil-based NMR probe ensuring high SNR

    NASA Astrophysics Data System (ADS)

    Ali, Zishan; Poenar, D. P.; Aditya, Sheel

    2017-09-01

    A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF) generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR) of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η ) are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.

  7. Morbidity and mortality of vermiculite miners and millers exposed to tremolite-actinolite: Part I. Exposure estimates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amandus, H.E.; Wheeler, R.; Jankovic, J.

    1987-01-01

    The vermiculite ore and concentrate of a mine and mill near Libby, Montana, was found to be contaminated with fibrous tremolite-actinolite. Of 599 fibers (length greater than 5 microns and width greater than 0.45 micron) counted in eight airborne membrane filter samples, 96% had an aspect ratio greater than 10 and 16% had an aspect ratio greater than 50. Additionally, 73% of the fibers were longer than 10 microns, 36% were longer than 20 microns, and 10% were longer than 40 microns. Estimates of exposure before 1964 in the dry mill were 168 fibers/cc for working areas, 182 fibers/cc formore » sweepers, 88 fibers/cc for skipping, and 13 fibers/cc for the quality control laboratory. In 1964-1971, exposure estimates for these areas were 33, 36, 17, and 3 fibers/cc, respectively. Estimates of exposures in the mine before 1971 ranged from 9-23 fibers/cc for drillers and were less than 2 fibers/cc for nondrilling jobs. All 8-hr TWA job exposure estimates decreased from 1972-1976, and from 1977-1982 were less than 1 fiber/cc.« less

  8. Measuring pair-wise molecular interactions in a complex mixture

    NASA Astrophysics Data System (ADS)

    Chakraborty, Krishnendu; Varma, Manoj M.; Venkatapathi, Murugesan

    2016-03-01

    Complex biological samples such as serum contain thousands of proteins and other molecules spanning up to 13 orders of magnitude in concentration. Present measurement techniques do not permit the analysis of all pair-wise interactions between the components of such a complex mixture to a given target molecule. In this work we explore the use of nanoparticle tags which encode the identity of the molecule to obtain the statistical distribution of pair-wise interactions using their Localized Surface Plasmon Resonance (LSPR) signals. The nanoparticle tags are chosen such that the binding between two molecules conjugated to the respective nanoparticle tags can be recognized by the coupling of their LSPR signals. This numerical simulation is done by DDA to investigate this approach using a reduced system consisting of three nanoparticles (a gold ellipsoid with aspect ratio 2.5 and short axis 16 nm, and two silver ellipsoids with aspect ratios 3 and 2 and short axes 8 nm and 10 nm respectively) and the set of all possible dimers formed between them. Incident light was circularly polarized and all possible particle and dimer orientations were considered. We observed that minimum peak separation between two spectra is 5 nm while maximum is 184nm.

  9. A high aspect ratio SU-8 fabrication technique for hollow microneedles for transdermal drug delivery and blood extraction

    NASA Astrophysics Data System (ADS)

    Chaudhri, Buddhadev Paul; Ceyssens, Frederik; De Moor, Piet; Van Hoof, Chris; Puers, Robert

    2010-06-01

    Protein drugs, e.g. hormonal drugs, cannot be delivered orally to a patient as they get digested in the gastro-intestinal (GI) tract. Thus, it is imperative that these kinds of drugs are delivered transdermally through the skin. To provide for real-time feedback as well as to test independently for various substances in the blood, we also need a blood sampling system. Microneedles can perform both these functions. Further, microneedles made of silicon or metal have the risk of breaking inside the skin thereby leading to complications. SU-8, being approved of as being biocompatible by the Food and Drug Agency (FDA) of the United States, is an attractive alternative because firstly it is a polymer material, thereby reducing the chances of breakages inside the skin, and secondly it is a negative photoresist, thereby leading to ease of fabrication. Thus, here we present very tall (around 1600 µm) SU-8 polymer-based hollow microneedles fabricated by a simple and repeatable process, which are a very good candidate for transdermal drug delivery as well as blood extraction. The paper elaborates on the details that allow the fabrication of such extreme aspect ratios (>100).

  10. The morbidity and mortality of vermiculite miners and millers exposed to tremolite-actinolite: Part I. Exposure estimates.

    PubMed

    Amandus, H E; Wheeler, R; Jankovic, J; Tucker, J

    1987-01-01

    The vermiculite ore and concentrate of a mine and mill near Libby, Montana, was found to be contaminated with fibrous tremolite-actinolite. Of 599 fibers (length greater than 5 microns and width greater than 0.45 micron) counted in eight airborne membrane filter samples, 96% had an aspect ratio greater than 10 and 16% had an aspect ratio greater than 50. Additionally, 73% of the fibers were longer than 10 microns, 36% were longer than 20 microns, and 10% were longer than 40 microns. Estimates of exposure before 1964 in the dry mill were 168 fibers/cc for working areas, 182 fibers/cc for sweepers, 88 fibers/cc for skipping, and 13 fibers/cc for the quality control laboratory. In 1964-1971, exposure estimates for these areas were 33, 36, 17, and 3 fibers/cc, respectively. Estimates of exposures in the mine before 1971 ranged from 9-23 fibers/cc for drillers and were less than 2 fibers/cc for nondrilling jobs. All 8-hr TWA job exposure estimates decreased from 1972-1976, and from 1977-1982 were less than 1 fiber/cc.

  11. Gold nanorods-enhanced rhodamine B-permanganate chemiluminescence and its analytical application.

    PubMed

    Hassanzadeh, Javad; Amjadi, Mohammad; Manzoori, Jamshid L; Sorouraddin, Mohammad Hossein

    2013-04-15

    A novel enhanced chemiluminescence system was developed by applying gold nanorods (Au NRs) as catalysts in rhodamine B-permanganate reaction. Au NRs with three different aspect ratios were synthesized by seed mediated growth method and characterized by UV-Vis spectra and transmission electron microscopy. It was demonstrated that Au NRs have much higher catalytic effect than spherical nanoparticles on rhodamine B-permanganate chemiluminescence reaction. Among various sizes of Au NRs, those with average aspect ratio of 3.0 were found to have the most remarkable catalytic activity. As an analytical application of the new chemiluminescence system, albumin as a model protein was quantified based on its interaction with NRs. Albumin binds to Au NRs active surfaces and inhibits their catalytic action and therefore decreases the intensity of chemiluminescence. This diminution effect is linearly related to the concentration of the human and bovine serum albumin over the ranges of 0.45-90 and 0.75-123 nmol L(-1), respectively with the corresponding limits of detection of 0.18 and 0.30 nmol L(-1). The method was successfully applied to the determination of albumin in human and bovine serum samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Strong-Field Emission From High Aspect Ratio Si Emitter Arrays

    NASA Astrophysics Data System (ADS)

    Keathley, Phillip; Swanwick, Michael; Sell, Alexander; Putnam, William; Guerrera, Stephen; Velásquez-García, Luis; Kärtner, Franz

    2013-03-01

    We discuss photoelectron emission from an arrays of high aspect ratio, sharp Si emitters both experimentally and theoretically. The structures are prepared from highly doped single-crystal silicon having a pencil-like shape with end radii of curvature of around 10 nm. The tips were illuminated at a grazing incidence of roughly 84deg.with a laser pulse having a center wavelength of 800 nm, and a pulse duration of 35 fs from a regenerative amplifier system. Native oxide coated Si tips were characterized using a time of flight (TOF) electron energy spectrometer. An annealing process was observed, resulting in a red shift of the energy spectra along with an increased electron yield. Total current yield from samples having the oxide stripped were also studied. Apeak total emission of 0.68 pC/bunch, corresponding to around 1.5x103 electrons/tip/pulse was observed at a DC bias of 70 V. Both spectral and current characterization results are consistent with a stong-field photoemission process at the surface of the tip apex. This work was funded by Defense Advanced Research Projects Agency (DARPA)/Microsystems Technology Office and the Space and Naval Warfare Systems Center (SPAWAR) under contract N66001-11-1-4192.

  13. Insight into the Effects of Reinforcement Shape on Achieving Continuous Martensite Transformation in Phase Transforming Matrix Composites

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Ren, Junqiang; Wang, Xiaofei; Zong, Hongxiang; Cui, Lishan; Ding, Xiangdong

    2017-12-01

    A continuous martensite transformation is indispensable for achieving large linear superelasticity and low modulus in phase transforming metal-based composites. However, determining how to accurately condition the residual martensite in a shape memory alloy matrix though the reinforcement shape to achieve continuous martensite transformation has been a challenge. Here, we take the finite element method to perform a comparative study of the effects of nanoinclusion shape on the interaction and martensite phase transformation in this new composite. Two typical samples are compared: one reinforced by metallic nanowires and the other by nanoparticles. We find that the residual martensite within the shape memory alloy matrix after a pretreatment can be tailored by the reinforcement shape. In particular, our results show that the shape memory alloy matrix can retain enough residual martensite phases to achieve continuous martensite transformation in the subsequent loading when the aspect ratio of nanoreinforcement is larger than 20. In contrast, the composites reinforced with spherical or low aspect ratio reinforcement show a typical nonlinear superelasticity as a result of a low stress transfer-induced discontinuous martensite transformation within the shape memory alloy matrix.

  14. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, M. K.; Velpula, P. K.; Colombier, J. P.

    2014-01-13

    We report single-shot, high aspect ratio nanovoid fabrication in bulk fused silica using zeroth order chirp-controlled ultrafast laser Bessel beams. We identify a unique laser pulse length and energy dependence of the physical characteristics of machined structures over which nanovoids of diameter in the range 200–400 nm and aspect ratios exceeding 1000 can be fabricated. A mechanism based on the axial energy deposition of nonlinear ultrashort Bessel beams and subsequent material densification or rarefaction in fused silica is proposed, intricating the non-diffractive nature with the diffusing character of laser-generated free carriers. Fluid flow through nanochannel is also demonstrated.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.P. Ku and A.H. Boozer

    Characteristics of modular coils for quasi-axisymmetric stellarators that are related to the plasma aspect ratio, number of field periods and rotational transform have been examined systematically. It is observed that, for a given plasma aspect ratio, the coil complexity tends to increase with the increased number of field periods. For a given number of field periods, the toroidal excursion of coil winding is reduced as the plasma aspect ratio is increased. It is also clear that the larger the coil-plasma separation is, the more complex the coils become. It is further demonstrated that it is possible to use other typesmore » of coils to complement modular coils to improve both the physics and the modular coil characteristics.« less

  16. Neoclassical toroidal viscosity in perturbed equilibria with general tokamak geometry

    NASA Astrophysics Data System (ADS)

    Logan, Nikolas C.; Park, Jong-Kyu; Kim, Kimin; Wang, Zhirui; Berkery, John W.

    2013-12-01

    This paper presents a calculation of neoclassical toroidal viscous torque independent of large-aspect-ratio expansions across kinetic regimes. The Perturbed Equilibrium Nonambipolar Transport (PENT) code was developed for this purpose, and is compared to previous combined regime models as well as regime specific limits and a drift kinetic δf guiding center code. It is shown that retaining general expressions, without circular large-aspect-ratio or other orbit approximations, can be important at experimentally relevant aspect ratio and shaping. The superbanana plateau, a kinetic resonance effect recently recognized for its relevance to ITER, is recovered by the PENT calculations and shown to require highly accurate treatment of geometric effects.

  17. Preliminary analysis of the span-distributed-load concept for cargo aircraft design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1975-01-01

    A simplified computer analysis of the span-distributed-load airplane (in which payload is placed within the wing structure) has shown that the span-distributed-load concept has high potential for application to future air cargo transport design. Significant increases in payload fraction over current wide-bodied freighters are shown for gross weights in excess of 0.5 Gg (1,000,000 lb). A cruise-matching calculation shows that the trend toward higher aspect ratio improves overall efficiency; that is, less thrust and fuel are required. The optimal aspect ratio probably is not determined by structural limitations. Terminal-area constraints and increasing design-payload density, however, tend to limit aspect ratio.

  18. Stability and control characteristics of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49

    NASA Technical Reports Server (NTRS)

    Schuldenfrei, Marvin; Comisarow, Paul; Goodson, Kenneth W

    1947-01-01

    Tests were made of an airplane model having a 45.1 degree swept-back wing with aspect ratio 2.50 and taper ratio 0.42 and a 42.8 degree swept-back horizontal tail with aspect ratio 3.87 and taper ratio 0.49 to determine its low-speed stability and control characteristics. The test Reynolds number was 2.87 x 10(6) based on a mean aerodynamic chord of 2.47 feet except for some of the aileron tests which were made at a Reynolds number of 2.05 x 10(6). With the horizontal tail located near the fuselage juncture on the vertical tail, model results indicated static longitudinal instability above a lift coefficient that was 0.15 below the lift coefficient at which stall occurred. Static longitudinal stability, however, was manifested throughout the life range with the horizontal tail located near the top of the vertical tail. The use of 10 degrees negative dihedral on the wing had little effect on the static longitudinal stability characteristics. Preliminary tests of the complete model revealed an undesirable flat spot in the yawing-moment curves at low angles of attack, the directional stability being neutral for yaw angles of plus-or-minus 2 degrees. This undesirable characteristic was improved by replacing the thick original vertical tail with a thin vertical tail and by flattening the top of the dorsal fairing.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batchelor, D.B.; Carreras, B.A.; Hirshman, S.P.

    Significant progress has been made in the development of new modest-size compact stellarator devices that could test optimization principles for the design of a more attractive reactor. These are 3 and 4 field period low-aspect-ratio quasi-omnigenous (QO) stellarators based on an optimization method that targets improved confinement, stability, ease of coil design, low-aspect-ratio, and low bootstrap current.

  20. Public Data Set: High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak

    DOE Data Explorer

    Thome, Kathreen E. [University of Wisconsin-Madison] (ORCID:0000000248013922); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bodner, Grant M. [University of Wisconsin-Madison] (ORCID:0000000324979172); Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Kriete, David M. [University of Wisconsin-Madison] (ORCID:0000000236572911); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2016-04-27

    This data set contains openly-documented, machine readable digital research data corresponding to figures published in K.E. Thome et al., 'High Confinement Mode and Edge Localized Mode Characteristics in a Near-Unity Aspect Ratio Tokamak,' Phys. Rev. Lett. 116, 175001 (2016).

  1. Chordwise load distribution of a simple rectangular wing

    NASA Technical Reports Server (NTRS)

    Wieghardt, Karl

    1940-01-01

    The chordwise distribution theory was taken over from the theory of the infinite wing. Since in this work a series expansion in b/t was used, the computation converges only for large aspect ratios. In this paper a useful approximate solution will be found also for wings with large chord - i.e., small aspect ratio.

  2. DEM simulation of flow of dumbbells on a rough inclined plane

    NASA Astrophysics Data System (ADS)

    Mandal, Sandip; Khakhar, Devang

    2015-11-01

    The rheology of non-spherical granular materials such as food grains, sugar cubes, sand, pharmaceutical pills, among others, is not understood well. We study the flow of non-spherical dumbbells of different aspect ratios on a rough inclined plane by using soft sphere DEM simulations. The dumbbells are generated by fusing two spheres together and a linear spring dashpot model along with Coulombic friction is employed to calculate inter-particle forces. At steady state, a uni-directional shear flow is obtained which allows for a detailed study of the rheology. The effect of aspect ratio and inclination angle on mean velocity, volume fraction, shear rate, shear stress, pressure and viscosity profiles is examined. The effect of aspect ratio on probability distribution of angles, made by the major axes of the dumbbells with the flow direction, average angle and order parameter is analyzed. The dense flow rheology is well explained by Bagnold's law and the constitutive laws of JFP model. The dependencies of first and second normal stress differences on aspect ratio are studied. The probability distributions of translational and rotational velocity are analyzed.

  3. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography

    NASA Astrophysics Data System (ADS)

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-01

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  4. Optical levitation of a non-spherical particle in a loosely focused Gaussian beam.

    PubMed

    Chang, Cheong Bong; Huang, Wei-Xi; Lee, Kyung Heon; Sung, Hyung Jin

    2012-10-08

    The optical force on a non-spherical particle subjected to a loosely focused laser beam was calculated using the dynamic ray tracing method. Ellipsoidal particles with different aspect ratios, inclination angles, and positions were modeled, and the effects of these parameters on the optical force were examined. The vertical component of the optical force parallel to the laser beam axis decreased as the aspect ratio decreased, whereas the ellipsoid with a small aspect ratio and a large inclination angle experienced a large vertical optical force. The ellipsoids were pulled toward or repelled away from the laser beam axis, depending on the inclination angle, and they experienced a torque near the focal point. The behavior of the ellipsoids in a viscous fluid was examined by analyzing a dynamic simulation based on the penalty immersed boundary method. As the ellipsoids levitated along the direction of the laser beam propagation, they moved horizontally with rotation. Except for the ellipsoid with a small aspect ratio and a zero inclination angle near the focal point, the ellipsoids rotated until the major axis aligned with the laser beam axis.

  5. Reversible creation of nanostructures between identical or different species of materials

    NASA Astrophysics Data System (ADS)

    Jang, Hyun-Ik; Ko, Sungho; Park, Junyong; Lee, Dong-Eon; Jeon, Seokwoo; Ahn, Chi Won; Yoo, Kwang Soo; Park, Jae Hong

    2012-07-01

    In this study, accurate nanostructures with various aspect ratios are created on several types of material. This work is highly applicable to the energy, optical, and nano-bio fields, for example. A silicon (Si) nano-mold is preserved using the method described, and target nanostructures are replicated reversibly and unlimitedly to or from various hard and soft materials. It is also verified that various materials can be applied to the substrates. The results confirm that the target nanostructures are successfully created in precise straight line structures and circle structures with various aspect ratios, including extremely high aspect ratios of 1:18. It is suggested that the optimal replicating and demolding process of nanostructures with high aspect ratios, which are the most problematic, could be controlled by means of the surface energy between the functional materials. Relevant numerical and analytical studies are also performed. It is possible to expand the applicability of the nanostructured mold by adopting various backing materials, including rounded substrates. The scope of the applications is extended further by transferring the nanostructures between different species of materials including metallic materials as well as identical species.

  6. Mechanisms underlying the perceived angular velocity of a rigidly rotating object.

    PubMed

    Caplovitz, G P; Hsieh, P-J; Tse, P U

    2006-09-01

    The perceived angular velocity of an ellipse undergoing a constant rate of rotation will vary as its aspect ratio is changed. Specifically, a "fat" ellipse with a low aspect ratio will in general be perceived to rotate more slowly than a "thin" ellipse with a higher aspect ratio. Here we investigate this illusory underestimation of angular velocity in the domain where ellipses appear to be rotating rigidly. We characterize the relationship between aspect ratio and perceived angular velocity under luminance and non-luminance-defined conditions. The data are consistent with two hypotheses concerning the construction of rotational motion percepts. The first hypothesis is that perceived angular velocity is determined by low-level component-motion (i.e., motion-energy) signals computed along the ellipse's contour. The second hypothesis is that relative maxima of positive contour curvature are treated as non-component, form-based "trackable features" (TFs) that contribute to the visual system's construction of the motion percept. Our data suggest that perceived angular velocity is driven largely by component signals, but is modulated by the motion signals of trackable features, such as corners and regions of high contour curvature.

  7. Instability of low viscosity elliptic jets with varying aspect ratio

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varun

    2011-11-01

    In this work an analytical description of capillary instability of liquid elliptic jets with varying aspect ratio is presented. Linear stability analysis in the long wave approximation with negligible gravitational effects is employed. Elliptic cylindrical coordinate system is used and perturbation velocity potential substituted in the Laplace equation to yield Mathieu and Modified Mathieu differential equations. The dispersion relation for elliptical orifices of any aspect ratio is derived and validated for axisymmetric disturbances with m = 0, in the limit of aspect ratio, μ = 1 , i.e. the case of a circular jet. As Mathieu functions and Modified Mathieu function solutions converge to Bessel's functions in this limit the Rayleigh-Plateau instability criterion is met. Also, stability of solutions corresponding to asymmetric disturbances for the kink mode, m = 1 and flute modes corresponding to m >= 2 is discussed. Experimental data from earlier works is used to compare observations made for elliptical orifices with μ ≠ 1 . This novel approach aims at generalizing the results pertaining to cylindrical jets with circular cross section leading to better understanding of breakup in liquid jets of various geometries.

  8. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels

    PubMed Central

    Nivedita, Nivedita; Ligrani, Phillip; Papautsky, Ian

    2017-01-01

    A wide range of microfluidic cell-sorting devices has emerged in recent years, based on both passive and active methods of separation. Curvilinear channel geometries are often used in these systems due to presence of secondary flows, which can provide high throughput and sorting efficiency. Most of these devices are designed on the assumption of two counter rotating Dean vortices present in the curved rectangular channels and existing in the state of steady rotation and amplitude. In this work, we investigate these secondary flows in low aspect ratio spiral rectangular microchannels and define their development with respect to the channel aspect ratio and Dean number. This work is the first to experimentally and numerically investigate Dean flows in microchannels for Re > 100, and show presence of secondary Dean vortices beyond a critical Dean number. We further demonstrate the impact of these multiple vortices on particle and cell focusing. Ultimately, this work offers new insights into secondary flow instabilities for low-aspect ratio, spiral microchannels, with improved flow models for design of more precise and efficient microfluidic devices for applications such as cell sorting and micromixing. PMID:28281579

  9. Selective hierarchical patterning of silicon nanostructures via soft nanostencil lithography.

    PubMed

    Du, Ke; Ding, Junjun; Wathuthanthri, Ishan; Choi, Chang-Hwan

    2017-11-17

    It is challenging to hierarchically pattern high-aspect-ratio nanostructures on microstructures using conventional lithographic techniques, where photoresist (PR) film is not able to uniformly cover on the microstructures as the aspect ratio increases. Such non-uniformity causes poor definition of nanopatterns over the microstructures. Nanostencil lithography can provide an alternative means to hierarchically construct nanostructures on microstructures via direct deposition or plasma etching through a free-standing nanoporous membrane. In this work, we demonstrate the multiscale hierarchical fabrication of high-aspect-ratio nanostructures on microstructures of silicon using a free-standing nanostencil, which is a nanoporous membrane consisting of metal (Cr), PR, and anti-reflective coating. The nanostencil membrane is used as a deposition mask to define Cr nanodot patterns on the predefined silicon microstructures. Then, deep reactive ion etching is used to hierarchically create nanostructures on the microstructures using the Cr nanodots as an etch mask. With simple modification of the main fabrication processes, high-aspect-ratio nanopillars are selectively defined only on top of the microstructures, on bottom, or on both top and bottom.

  10. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    PubMed

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  11. The hydrodynamic principle for the caudal fin shape of small aquatic animals

    NASA Astrophysics Data System (ADS)

    Lee, Jeongsu; Park, Yong-Jai; Cho, Kyu-Jin; Kim, Ho-Young

    2014-11-01

    The shape of caudal fins of small aquatic animals is completely different from that of large cruising animals like dolphin and tuna which have high aspect-ratio lunate tail. To unveil the physical principle behind natural selection of caudal fins of small aquatic animals, here we investigate the hydrodynamics of an angularly reciprocating plate as a model for the caudal fin oscillation. We find that the thrust production of a reciprocating plate at high Strouhal numbers is dominated by generation of two distinct vortical structures associated with the acceleration and deceleration of the plate regardless of their shape. Based on our observations, we construct a scaling law to predict the thrust of the flapping plate, which agrees well with the experimental data. We then seek the optimal aspect ratio to maximize thrust and efficiency of a flapping plate for fixed flapping frequency and amplitude. Thrust is maximized for the aspect ratio of approximately 0.7. We also theoretically explain the power law behaviors of the thrust and efficiency as a function of the aspect ratio.

  12. On the structure of cellular solutions in Rayleigh-Benard-Marangoni flows in small-aspect-ratio containers

    NASA Technical Reports Server (NTRS)

    Dijkstra, Henk A.

    1992-01-01

    Multiple steady flow patterns occur in surface-tension/buoyancy-driven convection in a liquid layer heated from below (Rayleigh-Benard-Marangoni flows). Techniques of numerical bifurcation theory are used to study the multiplicity and stability of two-dimensional steady flow patterns (rolls) in rectangular small-aspect-ratio containers as the aspect ratio is varied. For pure Marangoni flows at moderate Biot and Prandtl number, the transitions occurring when paths of codimension 1 singularities intersect determine to a large extent the multiplicity of stable patterns. These transitions also lead, for example, to Hopf bifurcations and stable periodic flows for a small range in aspect ratio. The influence of the type of lateral walls on the multiplicity of steady states is considered. 'No-slip' lateral walls lead to hysteresis effects and typically restrict the number of stable flow patterns (with respect to 'slippery' sidewalls) through the occurrence of saddle node bifurcations. In this way 'no-slip' sidewalls induce a selection of certain patterns, which typically have the largest Nusselt number, through secondary bifurcation.

  13. Palaeodemography of the Atapuerca-SH Middle Pleistocene hominid sample.

    PubMed

    Bermúdez de Castro, J M; Nicolás, M E

    1997-01-01

    We report here on the palaeodemographic analysis of the hominid sample recovered to date from the Sima de los Huesos (SH) Middle Pleistocene cave site in the Sierra de Atapuerca (Burgos, Spain). The analysis of the mandibular, maxillary, and dental remains has made it possible to estimate that a minimum of 32 individuals, who probably belonged to the same biological population, are represented in the current SH human hypodigm. The remains of nine-individuals are assigned to males, and nine to females, suggesting that a 1:1 sex ratio characterizes this hominid sample. The survivorship curve shows a low representation of infants and children, a high mortality among the adolescents and prime-age adults, and a low older adult mortality. Longevity was probably no greater than 40 years. This mortality pattern (adolescents and adults); which in some aspects resembles that observed in Neandertals, is quite different from those reported for recent foraging human groups. The adult age-at-death distribution of the SH hominid sample appears to be neither the consequence of underaging the older adults, nor of differential preservation or of the recognition of skeletal remains. Thus if we accept that they had a life history pattern similar to that of modern humans there would appear to be a clear contradiction between the demographic distribution and the demographic viability of the population represented by the SH hominid fossils. The possible representational bias of the SH hominid sample, as well as some aspects of the reproductive biology of the Pleistocene populations are also discussed.

  14. A comparative study of different aspects of manipulating ratio spectra applied for ternary mixtures: Derivative spectrophotometry versus wavelet transform

    NASA Astrophysics Data System (ADS)

    Salem, Hesham; Lotfy, Hayam M.; Hassan, Nagiba Y.; El-Zeiny, Mohamed B.; Saleh, Sarah S.

    2015-01-01

    This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision.

  15. A comparative study of different aspects of manipulating ratio spectra applied for ternary mixtures: derivative spectrophotometry versus wavelet transform.

    PubMed

    Salem, Hesham; Lotfy, Hayam M; Hassan, Nagiba Y; El-Zeiny, Mohamed B; Saleh, Sarah S

    2015-01-25

    This work represents a comparative study of different aspects of manipulating ratio spectra, which are: double divisor ratio spectra derivative (DR-DD), area under curve of derivative ratio (DR-AUC) and its novel approach, namely area under the curve correction method (AUCCM) applied for overlapped spectra; successive derivative of ratio spectra (SDR) and continuous wavelet transform (CWT) methods. The proposed methods represent different aspects of manipulating ratio spectra of the ternary mixture of Ofloxacin (OFX), Prednisolone acetate (PA) and Tetryzoline HCl (TZH) combined in eye drops in the presence of benzalkonium chloride as a preservative. The proposed methods were checked using laboratory-prepared mixtures and were successfully applied for the analysis of pharmaceutical formulation containing the cited drugs. The proposed methods were validated according to the ICH guidelines. A comparative study was conducted between those methods regarding simplicity, limitation and sensitivity. The obtained results were statistically compared with those obtained from the reported HPLC method, showing no significant difference with respect to accuracy and precision. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. The Effect of Orifice Eccentricity on Instability of Liquid Jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-11-01

    The hydrodynamic instability of inviscid jets issuing from elliptic orifices is studied. A linear stability analysis is presented for liquid jets that includes the effect of the surrounding gas and an explicit dispersion equation is derived for waves on an infinite uniform jet column. Elliptic configuration has two extreme cases; round jet when ratio of minor to major axis is unity and plane sheet when this ratio approaches zero. Dispersion equation of elliptic jet is approximated for large and small aspect ratios considering asymptotic of the dispersion equation. In case of aspect ratio equal to one, the dispersion equation is analogous to one of the circular jets derived by Yang. In case of aspect ratio approaches zero, the behavior of waves is qualitatively similar to that of long waves on a two dimensional liquid jets and the varicose and sinuous modes are predicted. The growth rate of initial disturbances for various azimuthal modes has been presented in a wide range of disturbances. PhD Candidate.

  17. Features in visual search combine linearly

    PubMed Central

    Pramod, R. T.; Arun, S. P.

    2014-01-01

    Single features such as line orientation and length are known to guide visual search, but relatively little is known about how multiple features combine in search. To address this question, we investigated how search for targets differing in multiple features (intensity, length, orientation) from the distracters is related to searches for targets differing in each of the individual features. We tested race models (based on reaction times) and co-activation models (based on reciprocal of reaction times) for their ability to predict multiple feature searches. Multiple feature searches were best accounted for by a co-activation model in which feature information combined linearly (r = 0.95). This result agrees with the classic finding that these features are separable i.e., subjective dissimilarity ratings sum linearly. We then replicated the classical finding that the length and width of a rectangle are integral features—in other words, they combine nonlinearly in visual search. However, to our surprise, upon including aspect ratio as an additional feature, length and width combined linearly and this model outperformed all other models. Thus, length and width of a rectangle became separable when considered together with aspect ratio. This finding predicts that searches involving shapes with identical aspect ratio should be more difficult than searches where shapes differ in aspect ratio. We confirmed this prediction on a variety of shapes. We conclude that features in visual search co-activate linearly and demonstrate for the first time that aspect ratio is a novel feature that guides visual search. PMID:24715328

  18. High- β equilibrium and ballooning stability of the low aspect ratio CNT stellarator

    DOE PAGES

    Hammond, K. C.; Lazerson, S. A.; Volpe, F. A.

    2017-04-07

    In the paper, the existence and ballooning-stability of low aspect ratio stellarator equilibria is predicted for the Columbia Neutral Torus (CNT) with the aid of 3D numerical tools. In addition to having a low aspect ratio, CNT is characterized by a low magnetic field and small plasma volume. Also, highly overdense plasmas were recently heated in CNT by means of microwaves. These characteristics suggest that CNT might attain relatively high values of plasma beta and thus be of use in the experimental study of stellarator stability to high-beta instabilities such as ballooning modes. As a first step in that direction,more » here the ballooning stability limit is found numerically. Depending on the particular magnetic configuration we expect volume-averaged β limits in the range 0.9%–3.0%, and possibly higher, and observe indications of a second region of ballooning stability. As the aspect ratio is reduced, stability is found to increase in some configurations and decrease in others. Energy-balance estimates using stellarator scaling laws indicate that the lower β limit may be attainable with overdense heating at powers of 40 to 100 kW. The present study serves the additional purpose of testing VMEC and other stellarator codes at high values of β and at low aspect ratios. For this reason, the study was carried out both for free boundary, for maximum fidelity to experiment, as well as with a fixed boundary, as a numerical test.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.K.; Yoo, M.H.

    The aspect of elastic strain for a deformation twin with a pure shear strain is studied through Eshelby's inclusion theory. Beta-Sn, TiO[sub 2], and TiAl of tetragonal structures are considered. As the aspect ratio of a twin approaches zero, its elastic strain energy vanishes since the stress components coupled with the twin shear strain vanish, suggesting that the twin habit plane cannot be determined solely from the shear energy viewpoint, for any twin mode would provide a vanishingly small strain energy for a thin twin. The application of Johnson and Cahn's shape bifurcation theory predicts that the transition from amore » circular to an elliptic shape would occur when the linear dimension of a lenticular twin is only in the order of 10 nm, indicating that most twins with a substantial aspect ratio should be influenced by growth kinetics. Under an applied stress. The extreme condition of the free energy change usually occurs when the resolved shear stress becomes extreme in the direction of the twin shear strain, thus following the relationship of Schmid's law. The analysis of the matrix stress field immediately outside a twin plate shows a biomodal stress distribution around the lateral tip of the lenticular plate. The locations of stress concentrations depend on both the twin aspect ratio and the elastic anisotropy. The locations of stress concentrations depend on both the twin aspect ratio and the elastic anisotropy. As the twin aspect ratio approaches zero, however, the two exterior stress concentrations merge together at the lateral tip of the lenticular plate, yielding a maximum stress value in the order of [mu]g, where [mu] and g are shear modulus and twin shear strain, respectively.« less

  20. Effect of coolant flow ejection on aerodynamic performance of low-aspect-ratio vanes. 2: Performance with coolant flow ejection at temperature ratios up to 2

    NASA Technical Reports Server (NTRS)

    Hass, J. E.; Kofskey, M. G.

    1977-01-01

    The aerodynamic performance of a 0.5 aspect ratio turbine vane configuration with coolant flow ejection was experimentally determined in a full annular cascade. The vanes were tested at a nominal mean section ideal critical velocity ratio of 0.890 over a range of primary to coolant total temperature ratio from 1.0 to 2.08 and a range of coolant to primary total pressure ratio from 1.0 to 1.4 which corresponded to coolant flows from 3.0 to 10.7 percent of the primary flow. The variations in primary and thermodynamic efficiency and exit flow conditions with circumferential and radial position were obtained.

  1. Characterization of waviness in wind turbine blades using air coupled ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakrapani, Sunil Kishore; Dayal, Vinay; Hsu, David K.

    2011-06-23

    Waviness in glass fiber reinforced composite is of great interest in composite research, since it results in the loss of stiffness. Several NDE techniques have been used previously to detect waviness. This work is concerned with waves normal to the plies in a composite. Air-coupled ultrasonics was used to detect waviness in thick composites used in the manufacturing of wind turbine blades. Composite samples with different wave aspect ratios were studied. Different wavy samples were characterized, and a three step process was developed to make sure the technique is field implementable. This gives us a better understanding of the effectmore » of waviness in thick composites, and how it affects the life and performance of the composite.« less

  2. New generation of α-MnO2 nanowires @PDMS composite as a hydrogen gas sensor

    NASA Astrophysics Data System (ADS)

    Hamidi, Seyedeh Mehri; Mosivand, Alireza; Mahboubi, Mina; Arabi, Hadi; Azad, Narin; Jamal, Murtada Riyadh

    2018-03-01

    New hydrogen gas sensor has been prepared by α-MnO2 nanowires in polydimethylsiloxane matrix. For this purpose, the high aspect ratio α-MnO2 nanowires has been prepared by the aid of hydrothermal method and then dispersed into poly-dimethyl siloxane polymer media. For gas sensing, the samples have been exposed under different gas concentrations from 0 to 5%. The sensor responses have been examined by normalized ellipsometric parameter with respect to the chamber filled with N2 Gas. Our results indicate linear behavior of resonance wavelength in ellipsometric parameter as a function of gas concentrations which can open a new insight for the sample's capability to hydrogen gas sensing applications.

  3. EXAFS analysis of cations distribution in structure of Co1-xNixFe2O4 nanoparticles obtained by hydrothermal method in aloe vera extract solution

    NASA Astrophysics Data System (ADS)

    Wongpratat, Unchista; Maensiri, Santi; Swatsitang, Ekaphan

    2016-09-01

    Effect of cations distribution upon EXAFS analysis on magnetic properties of Co1-xNixFe2O4 (x = 0, 0.25, 0.50, 0.75 and 1.0) nanoparticles prepared by the hydrothermal method in aloe vera extract solution were studied. XRD analysis confirmed a pure phase of cubic spinel ferrite of all samples. Changes in lattice parameter and particle size depended on the Ni content with partial substitution and site distributions of Co2+, Ni2+ ions of different ionic radii at both tetrahedral and octahedral sites in the crystal structure. Particle sizes of samples estimated by TEM images were found to be in the range of 10.87-62.50 nm. The VSM results at room temperature indicated the ferrimagnetic behavior of all samples. Superparamagnetic behavior was observed in NiFe2O4 sample. The coercivity (Hc) and remanance (Mr) values were related to the particle sizes of samples. The saturation magnetization (Ms) was increased by a factor of 1.4 to a value of 57.57 emu/g, whereas the coercivity (Hc) was decreased by a factor of 20 to a value of 63.15 Oe for a sample with x = 0.75. In addition to the cations distribution, the increase of aspect ratio (surface to volume ratio) due to the decrease of particle size could significantly affect the magnetic properties of the materials.

  4. Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.

    PubMed

    Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

    2007-12-20

    We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as 10 in the retrieval approach. Remarkably, the measured spectra could also be accurately fitted when employing an aspect ratio of 1 in the retrieval. The so-deduced ice particle number concentrations, however, exceeded the true values, determined with an optical particle counter, by more than 1 order of magnitude. Thus, the shape-induced spectral changes between the extinction spectra of platelike ice crystals of aspect ratio 10 and compactly shaped particles of aspect ratio 1 can be efficiently balanced by deforming the true number size distribution of the ice cloud. As a result of this severe size/shape ambiguity in the spectral analysis, we consider it indispensable to cross-check the infrared retrieval results of wavelength-sized ice particles with independent reference measurements of either the number size distribution or the particle morphology.

  5. Ownership of dwelling affects the sex ratio at birth in Uganda.

    PubMed

    Wallner, Bernard; Fieder, Martin; Seidler, Horst

    2012-01-01

    Socio-economic conditions can affect the secondary sex ratio in humans. Mothers under good environmental conditions are predicted to increase the birth rates of sons according to the Trivers-Willard hypothesis (TWH). This study analyzed the effects of ownership and non-ownership of dwellings on the sex ratio at birth (SRB) on a Ugandan sample. Our investigation included 438,640 mothers aged between 12 and 54 years. The overall average SRB was 0.5008. Mothers who live in owned dwellings gave increased births to sons (0.5019) compared to those who live in non-owned dwellings (0.458). Multivariate statistics revealed the strongest effects of dwelling ownership when controlling for demographic and social variables such as marital status, type of marriage, mothers' age, mothers' education, parity and others. The results are discussed in the framework of recent plausible models dealing with the adjustment of the sex ratio. We conclude that the aspect of dwelling status could represent an important socio-economic parameter in relation to SRB variations in humans if further studies are able to analyze it between different countries in a comparative way.

  6. Shear-induced migration and orientation of rigid fibers

    NASA Astrophysics Data System (ADS)

    Butler, Jason; Strednak, Scott; Shaikh, Saif; Guazzelli, Elisabeth

    2017-11-01

    The spatial and orientation distributions are measured for a suspension of fibers during pressure-driven flow. The fibers are rigid and non-colloidal, and two aspect ratios (length to diameter ratios) of 12 and 24 were tested; the suspending fluid is viscous, Newtonian, and density matched to the particles. As with the migration of spheres in parabolic flows, the fibers migrate toward the centerline of the channel if the concentration is sufficiently high. Migration is not observed for concentrations below a volume fraction of 0.035 for aspect ratio 24 and 0.07 for aspect ratio 12. The orientation distribution of the fibers is spatially dependent. Fibers near the center of the channel align closely with the flow direction, but fibers near the wall are observed to preferentially align in the vorticity (perpendicular to the flow and gradient) direction. National Science Foundation (Grants #1511787 and #1362060).

  7. Epitaxy of GaN in high aspect ratio nanoscale holes over silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Wang, Anqi; Ji, Qingbin; Hu, Xiaodong; Xie, Yahong; Sun, Ying; Cheng, Zhiyuan

    2017-12-01

    Dislocation filtering in gallium nitride (GaN) by epitaxial growth through patterned nanoscale holes is studied. GaN grown from extremely high aspect ratio holes by metalorganic chemical vapor deposition is examined by transmission electron microscopy and high-resolution transmission electron microscopy. This selective area epitaxial growth method with a reduced epitaxy area and an increased depth to width ratio of holes leads to effective filtering of dislocations within the hole and improves the quality of GaN significantly.

  8. Aspects of the history of 66095 based on trace elements in clasts and whole rock

    NASA Technical Reports Server (NTRS)

    Jovanovic, S.; Reed, G. W., Jr.

    1982-01-01

    Halogens, P, U and Na are reported in anorthositic and basaltic clasts and matrix from rusty rock 66095. Large fractions of Cl and Br associated with the separated phases from 66095 are soluble in H2O. Up to two orders of magnitude variation in concentrations of these elements in the breccia components and varying H2O-soluble Cl/Br ratios indicate different sources of volatiles. An approximately constant ratio of the H2O- to 0.1 M HNO3-soluble Br in the various components suggests no appreciable alteration in the original distributions of this element in the breccia forming processes. Up to 50% or more of the phosphorus and of the non-H2O-soluble Cl was dissolved from most of the breccia components by 0.1 M HNO3. Clast and matrix residues from the leaching steps contain, in most cases, the Cl/P2O5 ratio found in 66095 whole rock and in a number of other Apollo 16 samples. Evidence that phosphates are the major P-phases in the breccia is based on the 0.1 M acid solubility of Cl and P in the matrix sample and on elemental concentrations which are consistent with those of KREEP.

  9. Anticorrosion Coatings Based on Assemblies of Superhydrophobic Particles Impregnated with Conductive Oil

    DTIC Science & Technology

    2016-05-13

    silver nanowires synthesized in our group using sol-gel techniques...been demonstrated (Figure 12). The electrical resistance of the coatings should further be decreased Figure 14. High aspect ratio silver nanowires ...the coatings is to use a conductive polymer matrix and disperse high aspect ratio silver nanowires into the coating formulations. The electrical

  10. Highly Manufacturable Deep (Sub-Millimeter) Etching Enabled High Aspect Ratio Complex Geometry Lego-Like Silicon Electronics.

    PubMed

    Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa

    2017-04-01

    A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Magnus wind turbine. 3. Calculated characteristics of the windwheel

    NASA Astrophysics Data System (ADS)

    Bychkov, N. M.

    2008-06-01

    On the basis of experimental data for a windwheel with large-aspect-ratio (up to 14) cylinders, a method making it possible to determine optimal parameters and main characteristics of a windwheel (power, highspeed) is proposed. Effects due to number of cylinders, their aspect ratio and speed of rotation, stream velocity, and generator load are analysed.

  12. Public Data Set: Continuous, Edge Localized Ion Heating During Non-Solenoidal Plasma Startup and Sustainment in a Low Aspect Ratio Tokamak

    DOE Data Explorer

    Burke, Marcus G. [University of Wisconsin-Madison] (ORCID:0000000176193724); Barr, Jayson L. [University of Wisconsin-Madison] (ORCID:0000000177685931); Bongard, Michael W. [University of Wisconsin-Madison] (ORCID:0000000231609746); Fonck, Raymond J. [University of Wisconsin-Madison] (ORCID:0000000294386762); Hinson, Edward T. [University of Wisconsin-Madison] (ORCID:000000019713140X); Perry, Justin M. [University of Wisconsin-Madison] (ORCID:0000000171228609); Reusch, Joshua A. [University of Wisconsin-Madison] (ORCID:0000000284249422); Schlossberg, David J. [University of Wisconsin-Madison] (ORCID:0000000287139448)

    2017-05-16

    This public data set contains openly-documented, machine readable digital research data corresponding to figures published in M.G. Burke et. al., 'Continuous, Edge Localized Ion Heating During Non-Solenoidal Plasma Startup and Sustainment in a Low Aspect Ratio Tokamak,' Nucl. Fusion 57, 076010 (2017).

  13. The Effects of High-lift Devices on the Low-speed Stability of a Tapered 37.5 Degree Sweptback Wing of Aspect Ratio 3 in Straight and Rolling Flow

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Lichtenstein, Jacob H

    1948-01-01

    Contains results of tunnel tests to determine effects of various combinations of split flaps, slats, and nose slats on the stability characteristics of a tapered 37.5 degree sweptback wing of aspect ratio 3 in straight and rolling flow.

  14. Shedding of dual structures in the wake of a surface-mounted low aspect ratio cone

    NASA Astrophysics Data System (ADS)

    Chen, Zixiang; Martinuzzi, Robert J.

    2018-04-01

    The periodic shedding of vortex pairs in the turbulent wake of a surface-mounted right cone of aspect ratio 0.867 protruding a thin turbulent boundary layer is investigated experimentally. A phase-averaged volumetric velocity field is reconstructed from planar stereoscopic particle image velocimetry. During a typical (phase-averaged) shedding cycle, counter-rotating base vortices alternately form. These are tilted and stretched to merge with stream-wise tip vortices. The merged structure sheds and is convected downstream. A synthesis of earlier observations suggests that a similar shedding process exists for other low aspect ratio tapered geometries and is more complex than the shedding patterns observed for cantilevered cylinders, despite similarities of the mean flow field structure.

  15. Cross-sectional aspect ratio modulated electronic properties in Si/Ge core/shell nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Nuo; Lu, Ning; Yao, Yong-Xin

    2013-02-28

    Electronic structures of (4, n) and (m, 4) (the NW has m layers parallel to the {1 1 1} facet and n layers parallel to {1 1 0}) Si/Ge core/shell nanowires (NWs) along the [1 1 2] direction with cross-sectional aspect ratio (m/n) from 0.36 to 2.25 are studied by first-principles calculations. An indirect to direct band gap transition is observed as m/n decreases, and the critical values of m/n and diameter for the transition are also estimated. The size of the band gap also depends on the aspect ratio. These results suggest that m/n plays an important role inmore » modulating the electronic properties of the NWs.« less

  16. Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Fredrickson, E.; Belova, E.; Cheng, C. Z.; Gates, D.; Kaye, S.; White, R.

    2003-04-01

    New observations of sub-cyclotron frequency instability in low aspect ratio plasmas in national spherical torus experiments are reported. The frequencies of observed instabilities correlate with the characteristic Alfvén velocity of the plasma. A theory of localized compressional Alfvén eigenmodes (CAE) and global shear Alfvén eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAEs/GAEs are driven by the velocity space gradient of energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAEs, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instability ions are presented.

  17. A Wind-Tunnel Investigation of the Development of Lift on Wings in Accelerated Longitudinal Motion

    NASA Technical Reports Server (NTRS)

    Turner, Thomas R.

    1960-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the development of lift on a wing during a simulated constant-acceleration catapult take-off. The investigation included models of a two-dimensional wing, an unswept wing having an aspect ratio of 6, a 35 deg. swept wing having an aspect ratio of 3.05, and a 60 deg. delta wing having an aspect ratio of 2.31. All the wings investigated developed at least 90 percent of their steady-state lift in the first 7 chord lengths of travel. The development of lift was essentially independent of the acceleration when based on chord lengths traveled, and was in qualitative agreement with theory.

  18. Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes

    NASA Astrophysics Data System (ADS)

    Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan

    2013-01-01

    Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef

  19. "Ideal" tearing and the transition to fast reconnection in the weakly collisional MHD and EMHD regimes

    NASA Astrophysics Data System (ADS)

    Del Sarto, Daniele; Pucci, Fulvia; Tenerani, Anna; Velli, Marco

    2016-03-01

    This paper discusses the transition to fast growth of the tearing instability in thin current sheets in the collisionless limit where electron inertia drives the reconnection process. It has been previously suggested that in resistive MHD there is a natural maximum aspect ratio (ratio of sheet length and breadth to thickness) which may be reached for current sheets with a macroscopic length L, the limit being provided by the fact that the tearing mode growth time becomes of the same order as the Alfvén time calculated on the macroscopic scale. For current sheets with a smaller aspect ratio than critical the normalized growth rate tends to zero with increasing Lundquist number S, while for current sheets with an aspect ratio greater than critical the growth rate diverges with S. Here we carry out a similar analysis but with electron inertia as the term violating magnetic flux conservation: previously found scalings of critical current sheet aspect ratios with the Lundquist number are generalized to include the dependence on the ratio de2/L2, where de is the electron skin depth, and it is shown that there are limiting scalings which, as in the resistive case, result in reconnecting modes growing on ideal time scales. Finite Larmor radius effects are then included, and the rescaling argument at the basis of "ideal" reconnection is proposed to explain secondary fast reconnection regimes naturally appearing in numerical simulations of current sheet evolution.

  20. Jet-Surface Interaction: High Aspect Ratio Nozzle Test, Nozzle Design and Preliminary Data

    NASA Technical Reports Server (NTRS)

    Brown, Clifford; Dippold, Vance

    2015-01-01

    The Jet-Surface Interaction High Aspect Ratio (JSI-HAR) nozzle test is part of an ongoing effort to measure and predict the noise created when an aircraft engine exhausts close to an airframe surface. The JSI-HAR test is focused on parameters derived from the Turbo-electric Distributed Propulsion (TeDP) concept aircraft which include a high-aspect ratio mailslot exhaust nozzle, internal septa, and an aft deck. The size and mass flow rate limits of the test rig also limited the test nozzle to a 16:1 aspect ratio, half the approximately 32:1 on the TeDP concept. Also, unlike the aircraft, the test nozzle must transition from a single round duct on the High Flow Jet Exit Rig, located in the AeroAcoustic Propulsion Laboratory at the NASA Glenn Research Center, to the rectangular shape at the nozzle exit. A parametric nozzle design method was developed to design three low noise round-to-rectangular transitions, with 8:1, 12:1, and 16: aspect ratios, that minimizes flow separations and shocks while providing a flat flow profile at the nozzle exit. These designs validated using the WIND-US CFD code. A preliminary analysis of the test data shows that the actual flow profile is close to that predicted and that the noise results appear consistent with data from previous, smaller scale, tests. The JSI-HAR test is ongoing through October 2015. The results shown in the presentation are intended to provide an overview of the test and a first look at the preliminary results.

  1. High-Aspect-Ratio Ridge Structures Induced by Plastic Deformation as a Novel Microfabrication Technique.

    PubMed

    Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua

    2016-09-14

    Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.

  2. Dependence of the dayside magnetopause reconnection rate on local conditions

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Kistler, Lynn M.; Mouikis, Christopher G.; Petrinec, Steven M.

    2015-08-01

    We estimate the reconnection rates for eight dayside magnetopause reconnection events observed by the Cluster spacecraft and compare them with the predictions of the Cassak-Shay Formula (Rcs) Cassak and Shay (2007). The measured reconnection rate is determined by calculating the product of the inflow velocity and magnetic field in the magnetosheath inflow region. The predicted reconnection rate is calculated using the plasma parameters on both sides of the current layer, including the contributions of magnetosheath H+, magnetospheric hot H+ and O+, and magnetospheric cold ions. The measured reconnection rates show clear correlations with Rcs with an aspect ratio of 0.07. The O+ and cold ions can contribute up to ~30% of the mass density, which may reduce the reconnection rate for individual events. However, the variation of the reconnection rate is dominated by the variation of the magnetosheath parameters. In addition, we calculated the predicted reconnection rate using only magnetosheath parameters (Rsh). The correlation of the measured rate with Rsh was better than the correlation with Rcs, with an aspect ratio of 0.09. This might indicate deviations from the Cassak-Shay theory caused by the asymmetric reconnection structure and kinetic effects of different inflow populations. A better aspect ratio is expected to be between the ones determined using Rcs and Rsh. The aspect ratio does not show a clear dependence on the O+ concentration, likely because the O+ contribution is too small in these events. The aspect ratio also does not show a clear correlation with density asymmetry or guide field.

  3. Design and Analyses of High Aspect Ratio Nozzles for Distributed Propulsion Acoustic Measurements

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2016-01-01

    A series of three convergent, round-to-rectangular high aspect ratio (HAR) nozzles were designed for acoustic testing at the NASA Glenn Research Center Nozzle Acoustic Test Rig (NATR). The HAR nozzles had exit area aspect ratios of 8:1, 12:1, and 16:1. The nozzles were designed to mimic a distributed propulsion system array with a slot nozzle. The nozzle designs were screened using Reynolds-Averaged Navier-Stokes (RANS) simulations. In addition to meeting the geometric constraints required for testing in the NATR, the HAR nozzles were designed to be free of flow features that would produce unwanted noise (e.g., flow separations) and to have uniform flow at the nozzle exit. Multiple methods were used to generate HAR nozzle designs. The final HAR nozzle designs were generated in segments using a computer code that parameterized each segment. RANS screening simulations showed that intermediate nozzle designs suffered flow separation, a normal shockwave at the nozzle exit (caused by an aerodynamic throat produced by boundary layer growth), and non-uniform flow at the nozzle exit. The RANS simulations showed that the final HAR nozzle designs were free of flow separations, but were not entirely successful at producing a fully uniform flow at the nozzle exit. The final designs suffered a pair of counter-rotating vortices along the outboard walls of the nozzle. The 16:1 aspect ratio HAR nozzle had the least uniform flow at the exit plane; the 8:1 aspect ratio HAR nozzles had a fairly uniform flow at the nozzle exit plane.

  4. Matrix elasticity regulates the optimal cardiac myocyte shape for contractility

    PubMed Central

    McCain, Megan L.; Yuan, Hongyan; Pasqualini, Francesco S.; Campbell, Patrick H.

    2014-01-01

    Concentric hypertrophy is characterized by ventricular wall thickening, fibrosis, and decreased myocyte length-to-width aspect ratio. Ventricular thickening is considered compensatory because it reduces wall stress, but the functional consequences of cell shape remodeling in this pathological setting are unknown. We hypothesized that decreases in myocyte aspect ratio allow myocytes to maximize contractility when the extracellular matrix becomes stiffer due to conditions such as fibrosis. To test this, we engineered neonatal rat ventricular myocytes into rectangles mimicking the 2-D profiles of healthy and hypertrophied myocytes on hydrogels with moderate (13 kPa) and high (90 kPa) elastic moduli. Actin alignment was unaffected by matrix elasticity, but sarcomere content was typically higher on stiff gels. Microtubule polymerization was higher on stiff gels, implying increased intracellular elastic modulus. On moderate gels, myocytes with moderate aspect ratios (∼7:1) generated the most peak systolic work compared with other cell shapes. However, on stiffer gels, low aspect ratios (∼2:1) generated the most peak systolic work. To compare the relative contributions of intracellular vs. extracellular elasticity to contractility, we developed an analytical model and used our experimental data to fit unknown parameters. Our model predicted that matrix elasticity dominates over intracellular elasticity, suggesting that the extracellular matrix may potentially be a more effective therapeutic target than microtubules. Our data and model suggest that myocytes with lower aspect ratios have a functional advantage when the elasticity of the extracellular matrix decreases due to conditions such as fibrosis, highlighting the role of the extracellular matrix in cardiac disease. PMID:24682394

  5. Theoretical-Numerical Study of Feasibility of Use of Winglets on Low Aspect Ration Wings at Subsonic and Transonic Mach Numbers to Reduce Drag

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Liaw, Paul; Cerney, Michael J.

    1988-01-01

    A numerical design study was conducted to assess the drag reduction potential of winglets installed on a series of low aspect ratio wings at a design point of M=0.8, C sub L=0.3. Wing-winglet and wing-alone design geometries were obtained for wings of aspect ratios between 1.75 and 2.67, having leading edge sweep angles between 45 and 60 deg. Winglet length was fixed at 15% of wing semispan. To assess the relative performance between wing-winglet and wing-alone configurations, the PPW nonlinear extended small disturbance potential flow code was utilized. This model has proven to yield plausible transonic flow field simulations for the series of low aspect ratio configurations selected. Predicted decreases in pressure drag coefficient for the wing-winglet configurations relative to the corresponding wing-alone planform are about 15% at the design point. Predicted decreases in wing-winglet total drag coefficient are about 12%, relative to the corresponding wing-alone design. Longer winglets (25% of the wing semispan) yielded decreases in the pressure drag of up to 22% and total drag of up to 16.4%. These predicted drag coefficient reductions are comparable to reductions already demonstrated by actual winglet designs installed on higher aspect ratio transport type aircraft.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni

    Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less

  7. Graphene Microcapsule Arrays for Combinatorial Electron Microscopy and Spectroscopy in Liquids

    DOE PAGES

    Yulaev, Alexander; Guo, Hongxuan; Strelcov, Evgheni; ...

    2017-04-27

    Atomic-scale thickness, molecular impermeability, low atomic number, and mechanical strength make graphene an ideal electron-transparent membrane for material characterization in liquids and gases with scanning electron microscopy and spectroscopy. Here in this paper, we present a novel sample platform made of an array of thousands of identical isolated graphene-capped microchannels with high aspect ratio. A combination of a global wide field of view with high resolution local imaging of the array allows for high throughput in situ studies as well as for combinatorial screening of solutions, liquid interfaces, and immersed samples. We demonstrate the capabilities of this platform by studyingmore » a pure water sample in comparison with alkali halide solutions, a model electrochemical plating process, and beam-induced crystal growth in liquid electrolyte. Spectroscopic characterization of liquid interfaces and immersed objects with Auger and X-ray fluorescence analysis through the graphene membrane are also demonstrated.« less

  8. Depth estimation of laser glass drilling based on optical differential measurements of acoustic response

    NASA Astrophysics Data System (ADS)

    Gorodesky, Niv; Ozana, Nisan; Berg, Yuval; Dolev, Omer; Danan, Yossef; Kotler, Zvi; Zalevsky, Zeev

    2016-09-01

    We present the first steps of a device suitable for characterization of complex 3D micro-structures. This method is based on an optical approach allowing extraction and separation of high frequency ultrasonic sound waves induced to the analyzed samples. Rapid, non-destructive characterization of 3D micro-structures are limited in terms of geometrical features and optical properties of the sample. We suggest a method which is based on temporal tracking of secondary speckle patterns generated when illuminating a sample with a laser probe while applying known periodic vibration using an ultrasound transmitter. In this paper we investigated lasers drilled through glass vias. The large aspect ratios of the vias possess a challenge for traditional microscopy techniques in analyzing depth and taper profiles of the vias. The correlation of the amplitude vibrations to the vias depths is experimentally demonstrated.

  9. Study of blade aspect ratio on a compressor front stage aerodynamic and mechanical design report

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Lee, D.; Snow, D. W.

    1979-01-01

    A single stage compressor was designed with the intent of demonstrating that, for a tip speed and hub-tip ratio typical of an advanced core compressor front stage, the use of low aspect ratio can permit high levels of blade loading to be achieved at an acceptable level of efficiency. The design pressure ratio is 1.8 at an adiabatic efficiency of 88.5 percent. Both rotor and stator have multiple-circular-arc airfoil sections. Variable IGV and stator vanes permit low speed matching adjustments. The design incorporates an inlet duct representative of an engine transition duct between fan and high pressure compressor.

  10. Study of blade aspect ratio on a compressor front stage

    NASA Technical Reports Server (NTRS)

    Behlke, R. F.; Brooky, J. D.; Canal, E., Jr.

    1980-01-01

    A single stage, low aspect ratio, compressor with a 442.0 m/sec (1450 ft/sec) tip speed and a 0.597 hub/tip ratio typical of an advanced core compressor front stage was tested. The test stage incorporated an inlet duct which was representative of an engine transition duct between fan and high pressure compressors. At design speed, the rotor stator stage achieved a peak adiabatic efficiency of 86.6 percent at a flow of 44.35 kg/sec (97.8 lbm/sec) and a pressure ratio of 1.8. Surge margin was 12.5 percent from the peak stage efficiency point.

  11. SIP Shear Walls: Cyclic Performance of High-Aspect-Ratio Segments and Perforated Walls

    Treesearch

    Vladimir Kochkin; Douglas R. Rammer; Kevin Kauffman; Thomas Wiliamson; Robert J. Ross

    2015-01-01

    Increasing stringency of energy codes and the growing market demand for more energy efficient buildings gives structural insulated panel (SIP) construction an opportunity to increase its use in commercial and residential buildings. However, shear wall aspect ratio limitations and lack of knowledge on how to design SIPs with window and door openings are barriers to the...

  12. Strain-gage bridge calibration and flight loads measurements on a low-aspect-ratio thin wing

    NASA Technical Reports Server (NTRS)

    Peele, E. L.; Eckstrom, C. V.

    1975-01-01

    Strain-gage bridges were used to make in-flight measurements of bending moment, shear, and torque loads on a low-aspect-ratio, thin, swept wing having a full depth honeycomb sandwich type structure. Standard regression analysis techniques were employed in the calibration of the strain bridges. Comparison of the measured loads with theoretical loads are included.

  13. Initial Circulation and Peak Vorticity Behavior of Vortices Shed from Airfoil Vortex Generators

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.; Biesiadny, Tom (Technical Monitor)

    2001-01-01

    An extensive parametric study of vortices shed from airfoil vortex generators has been conducted to determine the dependence of initial vortex circulation and peak vorticity on elements of the airfoil geometry and impinging flow conditions. These elements include the airfoil angle of attack, chord length, span, aspect ratio, local boundary layer thickness, and free stream Mach number. In addition, the influence of airfoil-to-airfoil spacing on the circulation and peak vorticity has been examined for pairs of co-rotating and counter-rotating vortices. The vortex generators were symmetric airfoils having a NACA-0012 cross-sectional profile. These airfoils were mounted either in isolation, or in pairs, on the surface of a straight pipe. The turbulent boundary layer thickness to pipe radius ratio was about 17 percent. The circulation and peak vorticity data were derived from cross-plane velocity measurements acquired with a seven-hole probe at one chord-length downstream of the airfoil trailing edge location. The circulation is observed to be proportional to the free-stream Mach number, the angle-of-attack, and the span-to-boundary layer thickness ratio. With these parameters held constant, the circulation is observed to fall off in monotonic fashion with increasing airfoil aspect ratio. The peak vorticity is also observed to be proportional to the free-stream Mach number, the airfoil angle-of-attack, and the span-to-boundary layer thickness ratio. Unlike circulation, however, the peak vorticity is observed to increase with increasing aspect ratio, reaching a peak value at an aspect ratio of about 2.0 before falling off again at higher values of aspect ratio. Co-rotating vortices shed from closely spaced pairs of airfoils have values of circulation and peak vorticity under those values found for vortices shed from isolated airfoils of the same geometry. Conversely, counter-rotating vortices show enhanced values of circulation and peak vorticity when compared to values obtained in isolation. The circulation may be accurately modeled with an expression based on Prandtl's relationship between finite airfoil circulation and airfoil geometry. A correlation for the peak vorticity has been derived from a conservation relationship equating the moment at the airfoil tip to the rate of angular momentum production of the shed vortex, modeled as a Lamb (ideal viscous) vortex. This technique provides excellent qualitative agreement to the observed behavior of peak vorticity for low aspect ratio airfoils typically used as vortex generators.

  14. Reusable High Aspect Ratio 3-D Nickel Shadow Mask

    PubMed Central

    Shandhi, M.M.H.; Leber, M.; Hogan, A.; Warren, D.J.; Bhandari, R.; Negi, S.

    2017-01-01

    Shadow Mask technology has been used over the years for resistless patterning and to pattern on unconventional surfaces, fragile substrate and biomaterial. In this work, we are presenting a novel method to fabricate high aspect ratio (15:1) three-dimensional (3D) Nickel (Ni) shadow mask with vertical pattern length and width of 1.2 mm and 40 μm respectively. The Ni shadow mask is 1.5 mm tall and 100 μm wide at the base. The aspect ratio of the shadow mask is 15. Ni shadow mask is mechanically robust and hence easy to handle. It is also reusable and used to pattern the sidewalls of unconventional and complex 3D geometries such as microneedles or neural electrodes (such as the Utah array). The standard Utah array has 100 active sites at the tip of the shaft. Using the proposed high aspect ratio Ni shadow mask, the Utah array can accommodate 300 active sites, 200 of which will be along and around the shaft. The robust Ni shadow mask is fabricated using laser patterning and electroplating techniques. The use of Ni 3D shadow mask will lower the fabrication cost, complexity and time for patterning out-of-plane structures. PMID:29056835

  15. Optimization study of normal conductor tokamak for commercial neutron source

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Sakai, R.; Okamoto, A.

    2017-05-01

    The optimum conceptual design of tokamak with normal conductor coils was studied for minimizing the cost for producing a given neutron flux by using a system code, PEC. It is assumed that the fusion neutrons are used for burning transuranics from the fission reactor spent fuel in the blanket and a fraction of the generated electric power is circulated to opearate the tokamak with moderate plasma fusion gain. The plasma performance was assumed to be moderate ones; {β\\text{N}}~∼ ~3{--}4 in the aspect ratio A~=~2{--}3 and {{H}98y2}~=~1 . The circulating power is an important factor affecting the cost. Though decreasing the aspect ratio is useful to raise the plasma beta and decrease the toroidal field, the maximum field in the coil starts to rise in the very low aspect ratio range and then the circulating power increases with decrease in the plasma aspect ratio A below A~∼ ~2 , while the construction cost increases with A . As a result, the cost per neutron has its minimum around A~∼ ~2.2 , namely, between ST and the conventional tokamak. The average circulating power fraction is expected to be ~51%.

  16. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  17. Transverse mixing of ellipsoidal particles in a rotating drum

    NASA Astrophysics Data System (ADS)

    He, Siyuan; Gan, Jieqing; Pinson, David; Zhou, Zongyan

    2017-06-01

    Rotating drums are widely used in industry for mixing, milling, coating and drying processes. In the past decades, mixing of granular materials in rotating drums has been extensively investigated, but most of the studies are based on spherical particles. Particle shape has an influence on the flow behaviour and thus mixing behaviour, though the shape effect has as-yet received limited study. In this work, discrete element method (DEM) is employed to study the transverse mixing of ellipsoidal particles in a rotating drum. The effects of aspect ratio and rotating speed on mixing quality and mixing rate are investigated. The results show that mixing index increases exponentially with time for both spheres and ellipsoids. Particles with various aspect ratios are able to reach well-mixed states after sufficient revolutions in the rolling or cascading regime. Ellipsoids show higher mixing rate when rotational speed is set between 25 and 40 rpm. The relationship between mixing rate and aspect ratio of ellipsoids is established, demonstrating that, particles with aspect ratios of 0.5 and 2.0 achieve the highest mixing rates. Increasing rotating speed from 15 rpm to 40 rpm does not necessarily increase the mixing speed of spheres, while monotonous increase is observed for ellipsoids.

  18. Fabrication of high aspect ratio nanopillars and micro/nano combined structures with hydrophobic surface characteristics by injection molding

    NASA Astrophysics Data System (ADS)

    Zhou, Mingyong; Xiong, Xiang; Jiang, Bingyan; Weng, Can

    2018-01-01

    Polymer products with micro/nano-structures have excellent mechanical and optical properties, chemical resistance, and other advantages. Injection molding is one of the most potential techniques to fabricate polymer products with micro/nano-structures artificially in large numbers. In this study, a surface approach to fabricate high aspect ratio nanopillars and micro/nano combined structures was presented. Mold insert with micropillar arrays and nanopillars on its surface was prepared by combing anodic aluminum oxide (AAO) template and etched plate. Anti-sticking modification was done on the template to realize a better demolding quality. The influences of mold temperature and polymer material on the final replication quality were investigated. The results showed that the final replication quality of high aspect ratio nanopillars was greatly improved as compared with the unprocessed template. Polymer with low elongation at break was not suitable to fabricate structures with high aspect ratio via injection molding. For polypropylene surface, the experimental results of static contact angles were almost consistent with Cassie-Baxter equation. When the mold temperature reached 178 °C, hair-like polycarbonate nanopillars were observed, resulting in an excellent hydrophobic characteristic.

  19. Accuracy of Gradient Reconstruction on Grids with High Aspect Ratio

    NASA Technical Reports Server (NTRS)

    Thomas, James

    2008-01-01

    Gradient approximation methods commonly used in unstructured-grid finite-volume schemes intended for solutions of high Reynolds number flow equations are studied comprehensively. The accuracy of gradients within cells and within faces is evaluated systematically for both node-centered and cell-centered formulations. Computational and analytical evaluations are made on a series of high-aspect-ratio grids with different primal elements, including quadrilateral, triangular, and mixed element grids, with and without random perturbations to the mesh. Both rectangular and cylindrical geometries are considered; the latter serves to study the effects of geometric curvature. The study shows that the accuracy of gradient reconstruction on high-aspect-ratio grids is determined by a combination of the grid and the solution. The contributors to the error are identified and approaches to reduce errors are given, including the addition of higher-order terms in the direction of larger mesh spacing. A parameter GAMMA characterizing accuracy on curved high-aspect-ratio grids is discussed and an approximate-mapped-least-square method using a commonly-available distance function is presented; the method provides accurate gradient reconstruction on general grids. The study is intended to be a reference guide accompanying the construction of accurate and efficient methods for high Reynolds number applications

  20. Amplitude-independent flaw length determination using differential eddy current

    NASA Astrophysics Data System (ADS)

    Shell, E.

    2013-01-01

    Military engine component manufacturers typically specify the eddy current (EC) inspection requirements as a crack length or depth with the assumption that the cracks in both the test specimens and inspected component are of a similar fixed aspect ratio. However, differential EC response amplitude is dependent on the area of the crack face, not the length or depth. Additionally, due to complex stresses, in-service cracks do not always grow in the assumed manner. It would be advantageous to use more of the information contained in the EC data to better determine the full profile of cracks independent of the fixed aspect ratio amplitude response curve. A specimen with narrow width notches is used to mimic cracks of varying aspect ratios in a controllable manner. The specimen notches have aspect ratios that vary from 1:1 to 10:1. Analysis routines have been developed using the shape of the EC response signals that can determine the length of a surface flaw of common orientations without use of the amplitude of the signal or any supporting traditional probability of detection basis. Combined with the relationship between signal amplitude and area, the depth of the flaw can also be calculated.

  1. State of the art in bile analysis in forensic toxicology.

    PubMed

    Bévalot, F; Cartiser, N; Bottinelli, C; Guitton, J; Fanton, L

    2016-02-01

    In forensic toxicology, alternative matrices to blood are useful in case of limited, unavailable or unusable blood sample, suspected postmortem redistribution or long drug intake-to-sampling interval. The present article provides an update on the state of knowledge for the use of bile in forensic toxicology, through a review of the Medline literature from 1970 to May 2015. Bile physiology and technical aspects of analysis (sampling, storage, sample preparation and analytical methods) are reported, to highlight specificities and consequences from an analytical and interpretative point of view. A table summarizes cause of death and quantification in bile and blood of 133 compounds from more than 200 case reports, providing a useful tool for forensic physicians and toxicologists involved in interpreting bile analysis. Qualitative and quantitative interpretation is discussed. As bile/blood concentration ratios are high for numerous molecules or metabolites, bile is a matrix of choice for screening when blood concentrations are low or non-detectable: e.g., cases of weak exposure or long intake-to-death interval. Quantitative applications have been little investigated, but small molecules with low bile/blood concentration ratios seem to be good candidates for quantitative bile-based interpretation. Further experimental data on the mechanism and properties of biliary extraction of xenobiotics of forensic interest are required to improve quantitative interpretation. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

    2014-06-01

    The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking volume mixing ratios are under investigation.

  3. Effect of coolant flow ejection on aerodynamic performance of low-aspect-ratio vanes. 1: Performance with coolant ejection holes plugged

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1976-01-01

    The aerodynamic performance of a low aspect ratio turbine vane designed with coolant flow ejection holes on the vane surfaces was experimentally determined in a full-annular cascade with the coolant ejection holes plugged. The purpose was to establish a baseline for comparison with tests where flow is ejected from the vane surfaces. The vanes were tested over a mean-section ideal critical velocity ratio range of 0.64 to 0.98. This ideal critical velocity ratio corresponds to the vane inlet total to vane aftermixed static pressure ratio at the mean section. The variations in vane efficiency and aftermixed flow conditions with circumferential and radial position were obtained.

  4. Progress in nanoscale dry processes for fabrication of high-aspect-ratio features: How can we control critical dimension uniformity at the bottom?

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Karahashi, Kazuhiro; Ishijima, Tatsuo; Cho, Sung Il; Elliott, Simon; Hausmann, Dennis; Mocuta, Dan; Wilson, Aaron; Kinoshita, Keizo

    2018-06-01

    In this review, we discuss the progress of emerging dry processes for nanoscale fabrication of high-aspect-ratio features, including emerging design technology for manufacturability. Experts in the fields of plasma processing have contributed to addressing the increasingly challenging demands of nanoscale deposition and etching technologies for high-aspect-ratio features. The discussion of our atomic-scale understanding of physicochemical reactions involving ion bombardment and neutral transport presents the major challenges shared across the plasma science and technology community. Focus is placed on advances in fabrication technology that control surface reactions on three-dimensional features, as well as state-of-the-art techniques used in semiconductor manufacturing with a brief summary of future challenges.

  5. Effect of sweep and aspect ratio on the longitudinal aerodynamics of a spanloader wing in and out of ground effect. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kjelgaard, S. O.; Paulson, J. W., Jr.

    1981-01-01

    A wind tunnel investigation was conducted in the Langley 4 by 7 meter tunnel to determine the effects of leading edge sweep, aspect ratio, flap deflection, and elevon deflection on the longitudinal aerodynamic characteristics of a span distributed load advanced cargo aircraft (spanloader). Model configurations consisted of leading edge sweeps of 0, 15, 30 and 45 deg and aspect ratios of approximately 2, 4, 6, and 8. Data were obtained for angles of attack of -8 to 18 deg out of ground effect and at angles of attack of -2, 0, and 2 deg in ground effect at Mach number equal 0.14. Flap and elevon deflections ranged from -20 to 20 deg. The data are represented in tabulated form.

  6. Computational design of low aspect ratio wing-winglets for transonic wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Brown, Christopher K.

    1989-01-01

    A computational design has been performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three planforms has been selected to be constructed as a wind tunnel model for testing in the NASA LaRC 7 x 10 High Speed Wind Tunnel. A design point of M = 0.8, CL approx = 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. This report summarizes the design process and the predicted transonic performance for each configuration.

  7. Breathing Bright Solitons in a Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Chong, Gui-Shu; Hai, Wen-Hua; Xie, Qiong-Tao

    2003-12-01

    A Bose-Einstein condensate with time varying scattering length in time-dependent harmonic trap is analytically investigated and soliton-like solutions of the Gross-Pitaeviskii equation are obtained to describe single soliton, bisoliton and N-soliton properties of the matter wave. The influences of the geometrical property and modulate frequency of trapping potential on soliton behaviour are discussed. When the trap potential has a very small trap aspect ratio or oscillates with a high frequency, the matter wave preserves its shape nearly like a soliton train in propagation, while the breathing behaviour, which displays the periodic collapse and revival of the matter wave, is found for a relatively large aspect ratio or slow varying potential. Meanwhile mass centre of the matter wave translates and/or oscillates for different trap aspect ratio and trap frequencies.

  8. Single-photon-multi-layer-interference lithography for high-aspect-ratio and three-dimensional SU-8 micro-/nanostructures.

    PubMed

    Ghosh, Siddharth; Ananthasuresh, G K

    2016-01-04

    We report microstructures of SU-8 photo-sensitive polymer with high-aspect-ratio, which is defined as the ratio of height to in-plane feature size. The highest aspect ratio achieved in this work exceeds 250. A multi-layer and single-photon lithography approach is used in this work to expose SU-8 photoresist of thickness up to 100 μm. Here, multi-layer and time-lapsed writing is the key concept that enables nanometer localised controlled photo-induced polymerisation. We use a converging monochromatic laser beam of 405 nm wavelength with a controllable aperture. The reflection of the converging optics from the silicon substrate underneath is responsible for a trapezoidal edge profile of SU-8 microstructure. The reflection induced interfered point-spread-function and multi-layer-single-photon exposure helps to achieve sub-wavelength feature sizes. We obtained a 75 nm tip diameter on a pyramid shaped microstructure. The converging beam profile determines the number of multiple optical focal planes along the depth of field. These focal planes are scanned and exposed non-concurrently with varying energy dosage. It is notable that an un-automated height axis control is sufficient for this method. All of these contribute to realising super-high-aspect-ratio and 3D micro-/nanostructures using SU-8. Finally, we also address the critical problems of photoresist-based micro-/nanofabrication and their solutions.

  9. Noise of Embedded High Aspect Ratio Nozzles

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2011-01-01

    A family of high aspect ratio nozzles were designed to provide a parametric database of canonical embedded propulsion concepts. Nozzle throat geometries with aspect ratios of 2:1, 4:1, and 8:1 were chosen, all with convergent nozzle areas. The transition from the typical round duct to the rectangular nozzle was designed very carefully to produce a flow at the nozzle exit that was uniform and free from swirl. Once the basic rectangular nozzles were designed, external features common to embedded propulsion systems were added: extended lower lip (a.k.a. bevel, aft deck), differing sidewalls, and chevrons. For the latter detailed Reynolds-averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) simulations were made to predict the thrust performance and to optimize parameters such as bevel length, and chevron penetration and azimuthal curvature. Seventeen of these nozzles were fabricated at a scale providing a 2.13 inch diameter equivalent area throat." ! The seventeen nozzles were tested for far-field noise and a few data were presented here on the effect of aspect ratio, bevel length, and chevron count and penetration. The sound field of the 2:1 aspect ratio rectangular jet was very nearly axisymmetric, but the 4:1 and 8:1 were not, the noise on their minor axes being louder than the major axes. Adding bevel length increased the noise of these nozzles, especially on their minor axes, both toward the long and short sides of the beveled nozzle. Chevrons were only added to the 2:1 rectangular jet. Adding 4 chevrons per wide side produced some decrease at aft angles, but increased the high frequency noise at right angles to the jet flow. This trend increased with increasing chevron penetration. Doubling the number of chevrons while maintaining their penetration decreased these effects. Empirical models of the parametric effect of these nozzles were constructed and quantify the trends stated above." Because it is the objective of the Supersonics Project that future design work be done more by physics-based computations and less by experiments, several codes under development were evaluated against these test cases. Preliminary results show that the RANS-based code JeNo predicts the spectral directivity of the low aspect ratio jets well, but has no capability to predict the non-axisymmetry. An effort to address this limitations, used in the RANS-based code of Leib and Goldstein, overpredicted the impact of aspect ratio. The broadband shock noise code RISN, also limited to axisymmetric assumptions, did a good job of predicting the spectral directivity of underexpanded 2:1 cold jet case but was not as successful on high aspect ratio jets, particularly when they are hot. All results are preliminary because the underlying CFD has not been validated yet. An effort using a Large Eddy Simulation code by Stanford University predicted noise that agreed with experiments to within a few dB.

  10. Comparative study of soft thermal printing and lamination of dry thick photoresist films for the uniform fabrication of polymer MOEMS on small-sized samples

    NASA Astrophysics Data System (ADS)

    Abada, S.; Salvi, L.; Courson, R.; Daran, E.; Reig, B.; Doucet, J. B.; Camps, T.; Bardinal, V.

    2017-05-01

    A method called ‘soft thermal printing’ (STP) was developed to ensure the optimal transfer of 50 µm-thick dry epoxy resist films (DF-1050) on small-sized samples. The aim was the uniform fabrication of high aspect ratio polymer-based MOEMS (micro-optical-electrical-mechanical system) on small and/or fragile samples, such as GaAs. The printing conditions were optimized, and the resulting thickness uniformity profiles were compared to those obtained via lamination and SU-8 standard spin-coating. Under the best conditions tested, STP and lamination produced similar results, with a maximum deviation to the central thickness of 3% along the sample surface, compared to greater than 40% for SU-8 spin-coating. Both methods were successfully applied to the collective fabrication of DF1050-based MOEMS designed for the dynamic focusing of VCSELs (vertical-cavity surface-emitting lasers). Similar, efficient electro-thermo-mechanical behaviour was obtained in both cases.

  11. Cause and Cure - Deterioration in Accuracy of CFD Simulations With Use of High-Aspect-Ratio Triangular Tetrahedral Grids

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Chang, Chau-Lyan; Venkatachari, Balaji Shankar

    2017-01-01

    Traditionally high-aspect ratio triangular/tetrahedral meshes are avoided by CFD re-searchers in the vicinity of a solid wall, as it is known to reduce the accuracy of gradient computations in those regions and also cause numerical instability. Although for certain complex geometries, the use of high-aspect ratio triangular/tetrahedral elements in the vicinity of a solid wall can be replaced by quadrilateral/prismatic elements, ability to use triangular/tetrahedral elements in such regions without any degradation in accuracy can be beneficial from a mesh generation point of view. The benefits also carry over to numerical frameworks such as the space-time conservation element and solution element (CESE), where triangular/tetrahedral elements are the mandatory building blocks. With the requirement of the CESE method in mind, a rigorous mathematical framework that clearly identities the reason behind the difficulties in use of such high-aspect ratio triangular/tetrahedral elements is presented here. As will be shown, it turns out that the degree of accuracy deterioration of gradient computation involving a triangular element is hinged on the value of its shape factor Gamma def = sq sin Alpha1 + sq sin Alpha2 + sq sin Alpha3, where Alpha1; Alpha2 and Alpha3 are the internal angles of the element. In fact, it is shown that the degree of accuracy deterioration increases monotonically as the value of Gamma decreases monotonically from its maximal value 9/4 (attained by an equilateral triangle only) to a value much less than 1 (associated with a highly obtuse triangle). By taking advantage of the fact that a high-aspect ratio triangle is not necessarily highly obtuse, and in fact it can have a shape factor whose value is close to the maximal value 9/4, a potential solution to avoid accuracy deterioration of gradient computation associated with a high-aspect ratio triangular grid is given. Also a brief discussion on the extension of the current mathematical framework to the tetrahedral-grid case along with some of the practical results of this extension is also provided. Furthermore, through the use of numerical simulations of practical viscous problems involving high-Reynolds number flows, the effectiveness of the gradient evaluation procedures within the CESE framework (that have their basis on the analysis presented here) to produce accurate and stable results on such high-aspect ratio meshes is also showcased.

  12. Aspects of the palynology of the Chinle Formation (Upper Triassic), Colorado Plateau, Arizona, Utah, and New Mexico

    USGS Publications Warehouse

    Scott, Richard A.

    1982-01-01

    This study deals with 16 palynological samples from Arizona, New Mexico, and Utah, that represent six members of the Chinle Formation of Late Triassic age. The samples, in ascending sequence, show a gradual change in the spore-bisaccate ratio from a preponderance of spores to numerical dominance of bisaccate pollen grains. This change is interpreted to indicate a climatic trend toward increasing aridity. The trend is thought to represent the decreasing energy phase of the oldest of three depositional cycles posited by Lupe (1977, 1979). The late Karnian age indicated for the Chinle Formation by pollen and spores is based on material from the lower part of the formation, leaving open the possibility that the upper part of the Chinle may be younger.

  13. Multi-level modeling of aspects associated with poor mental health in a sample of prehospital emergency professionals.

    PubMed

    Arial, Marc; Wild, Pascal; Benoit, Damien; Chouaniere, Dominique; Danuser, Brigitta

    2011-11-01

    The goal of this paper is to investigate the respective influence of work characteristics, the effort-reward ratio, and overcommitment on the poor mental health of out-of-hospital care providers. 333 out-of-hospital care providers answered a questionnaire that included queries on mental health (GHQ-12), demographics, health-related information and work characteristics, questions from the Effort-Reward Imbalance Questionnaire, and items about overcommitment. A two-level multiple regression was performed between mental health (the dependent variable) and the effort-reward ratio, the overcommitment score, weekly number of interventions, percentage of non-prehospital transport of patients out of total missions, gender, and age. Participants were first-level units, and ambulance services were second-level units. We also shadowed ambulance personnel for a total of 416 hr. With cutoff points of 2/3 and 3/4 positive answers on the GHQ-12, the percentages of potential cases with poor mental health were 20% and 15%, respectively. The effort-reward ratio was associated with poor mental health (P < 0.001), irrespective of age or gender. Overcommitment was associated with poor mental health; this association was stronger in women (β = 0.054) than in men (β = 0.020). The percentage of prehospital missions out of total missions was only associated with poor mental health at the individual level. Emergency medical services should pay attention to the way employees perceive their efforts and the rewarding aspects of their work: an imbalance of those aspects is associated with poor mental health. Low perceived esteem appeared particularly associated with poor mental health. This suggests that supervisors of emergency medical services should enhance the value of their employees' work. Employees with overcommitment should also receive appropriate consideration. Preventive measures should target individual perceptions of effort and reward in order to improve mental health in prehospital care providers. Copyright © 2011 Wiley Periodicals, Inc.

  14. Soil geochemistry controls fire severity: A soil approach to improved understanding of forest fire consequences in southwest Montana.

    NASA Astrophysics Data System (ADS)

    Callahan, R.; Hartshorn, T.

    2014-12-01

    Fire severity can be defined using satellite imagery to ratio mid (~2.2 um) to near (~0.8 um) infrared reflectance values. We examined how lithology and topography affected burn severity, and how post-fire soils data could be used to ground-truth burn severity at two sites in southwestern Montana. A burned area reflectance classification (BARC), lithology, and terrain attributes were used to predict burn severity for the Millie Fire, which was triggered two years ago by lightning and burned ~4,000 ha. Burn severity showed a strong dependence on lithology: the ratio of areas with high burn severity vs. low or moderate burn severities was 2.9 for gneiss (vs. 0.3 for volcanics). The high-severity burn area for the gneiss was larger than the volcanics, despite the latter lithology covering ~270% greater area (~2,600 ha). Aspect and elevation also influenced burn severity with lower severity at higher elevations (2,600-3,000 m) and higher severity at lower elevations (1,800-2,400 m). Southern and western aspects burned more severely than northern and eastern aspects. To clarify whether post-fire soil geochemical changes might predict ground-based estimates of fire severity, a lab experiment was carried out . We expected residual enrichment of trace metal concentrations, as soil organic matter (SOM) was combusted, which we quantified as loss on ignition (LOI). To test this approach, burned and unburned soils were sampled from the ~6000 ha Beartrap 2 fire, which also burned two years. We simulated differing fire severities on unburned soil using a muffle furnace factorially (duration [5, 15, 30, 45, or 60 minutes] x temperature [50, 100, 200, 300, 400, or 500ºC]). Consistent with expectations, unburned samples had a lower mean (±1SD) concentrations for 23 of 30 elements than field-burned samples. For example, barium concentrations ([Ba]) in unburned samples were (708±37μg/g), 16% lower than field-burned [Ba] (841±7 μg/g). Simulated burning yielded smaller [Ba] (732±9 μg/g). Of the 30 trace metals examined, barium explained the greatest fraction of variance in post-burn LOI (R2 =0.79); gallium explained slightly less variance (R2=0.67). Our results document the promise of post-burn soil geochemistry to indicate soil burn severity, which could complement vegetation-based and remotely sensed indices.

  15. Thermosolutal convection in high-aspect-ratio enclosures

    NASA Technical Reports Server (NTRS)

    Wang, L. W.; Chen, C. T.

    1988-01-01

    Convection in high-aspect-ratio rectangular enclosures with combined horizontal temperature and concentration gradients is studied experimentally. An electrochemical system is employed to impose the concentration gradients. The solutal buoyancy force either opposes or augments the thermal buoyancy force. Due to a large difference between the thermal and solutal diffusion rates the flow possesses double-diffusive characteristics. Various complex flow patterns are observed with different experimental conditions.

  16. Microwave dynamics of high aspect ratio superconducting nanowires studied using self-resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santavicca, Daniel F., E-mail: daniel.santavicca@unf.edu; Adams, Jesse K.; Grant, Lierd E.

    2016-06-21

    We study the microwave impedance of extremely high aspect ratio (length/width ≈ 5000) superconducting niobium nitride nanowires. The nanowires are fabricated in a compact meander geometry that is in series with the center conductor of a 50 Ω coplanar waveguide transmission line. The transmission coefficient of the sample is measured up to 20 GHz. At high frequency, a peak in the transmission coefficient is seen. Numerical simulations show that this is a half-wave resonance along the length of the nanowire, where the nanowire acts as a high impedance, slow wave transmission line. This resonance sets the upper frequency limit for these nanowires asmore » inductive elements. Fitting simulations to the measured resonance enables a precise determination of the nanowire's complex sheet impedance at the resonance frequency. The real part is a measure of dissipation, while the imaginary part is dominated by kinetic inductance. We characterize the dependence of the sheet resistance and sheet inductance on both temperature and current and compare the results to recent theoretical predictions for disordered superconductors. These results can aid in the understanding of high frequency devices based on superconducting nanowires. They may also lead to the development of novel superconducting devices such as ultra-compact resonators and slow-wave structures.« less

  17. A constitutive relation for the viscous flow of an oriented fiber assembly

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Hearle, J. W. S.; Beaussart, A. J.; Sastry, A. M.; Okine, R. K.

    1991-01-01

    A constitutive relation for an equivalent, homogeneous fluid is developed for the anisotropic viscous flow of an oriented assembly of discontinuous fibers suspended in a viscous fluid. The anisotropic viscous compliance matrix can be expressed in terms of three constants by assuming the equivalent fluid to be incompressible and the microstructure to have axial symmetry (transversely isotropic). By means of a micromechanics analysis, the three terms of the constitutive relation are expressed in terms of the viscosity of the matrix fluid, the fiber aspect ratio, and the fiber volume fraction. A comparison of the viscosity terms reveals that the elongational viscosity in the fiber direction varies as the square of the fiber aspect ratio and a complex function of the fiber volume fraction. Furthermore, the ratio of the axial elongational viscosity to the transverse elongational viscosity and both axial and transverse shear viscosities was shown to be 10 exp 4 - 10 exp 6 for fiber aspect ratio of 100-1000, except at extreme values of the fiber volume fraction.

  18. Optical properties of anisotropic 3D nanoparticles arrays

    NASA Astrophysics Data System (ADS)

    Santiago, E. Y.; Esquivel-Sirvent, R.

    2017-07-01

    The optical properties of 3D periodic arrays of spheroidal Au nanoparticles are calculated using a Bruggeman effective medium approximation. The optical response of the supra-crystal depends on the volume fraction of the nanoparticles and their aspect or size ratio (major/minor axis). All the nanoparticles have the same orientation, and this defines an anisotropic dielectric function of the crystal. As a function of the filling fraction, while keeping the size ratio fixed, the maximum in the extinction spectra along the major and minor axes does not show a significant change. However, for a fixed filling fraction, varying the aspect ratio of the particles induces a shift of several hundred of nanometers in the maximum of the extinction spectra along the major axis and almost no changes along the minor axis. Depending on the aspect ratio and the filling fraction, we show that the supra-crystal has three regimes with different values of an effective plasma frequency. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  19. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    PubMed Central

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in this occupational setting needs to be confirmed in similar settings and demonstrates the need to obtain information on the durability and associated health effects of these fibers. PMID:19126624

  20. Simulation of enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung bifurcation.

    PubMed

    Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H

    2013-02-01

    Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.

  1. Effects of aspect ratio and concentration on rheology of epoxy suspensions containing model plate-like nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, K. L.; Takahara, A.; Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395

    2015-12-15

    Hexagonal 2-dimensional α-zirconium phosphate crystals were prepared with lateral diameters ranging from 110 nm to 1.5 μm to investigate the effect of particle size on suspension rheology. The nanoplatelets were exfoliated to individual sheets with monodisperse thickness and dispersed in a Newtonian epoxy fluid. The steady shear response of dilute and semi-dilute suspensions was measured and compared to expressions obtained from theory for infinitely dilute suspensions. For suspensions containing the smaller nanoplatelets, aspect ratio ∼160, the low shear rate viscosity and transition to shear thinning behavior were well described by theory for loadings up to 0.5 vol. %. The agreementmore » was improved by assuming a moderate polydispersity in lateral diameter, ∼30%–50%, which is consistent with experimental observation. For the higher aspect ratio nanoplatelets, good agreement between theory and experiment was observed only at high shear rates. At lower shear rate, theory consistently over-predicted viscosity, which was attributed to a progressive shift to non-isotropic initial conditions with increasing particle size. The results suggest that at a fixed Peclet number, there is an increasing tendency for the nanoplatelets to form transient, local stacks as particle size increases. The largest particles, aspect ratio ∼2200, showed unusual shear thinning and thickening behaviors that were attributed to particle flexibility. The findings demonstrate the surprising utility of theory for infinitely dilute suspensions to interpret, and in some cases quantitatively describe, the non-Newtonian viscosity of real suspensions containing high aspect ratio plate-like particles. A simple framework is proposed to interpret deviations from ideal behavior based on the local and collective behavior of the suspended nanoplatelets.« less

  2. Advanced technique for ultra-thin residue inspection with sub-10nm thickness using high-energy back-scattered electrons

    NASA Astrophysics Data System (ADS)

    Han, Jin-Hee

    2018-03-01

    Recently the aspect ratio of capacitor and via hole of memory semiconductor device has been dramatically increasing in order to store more information in a limited area. A small amount of remained residues after etch process on the bottom of the high aspect ratio structure can make a critical failure in device operation. Back-scattered electrons (BSE) are mainly used for inspecting the defect located at the bottom of the high aspect ratio structure or analyzing the overlay of the multi-layer structure because these electrons have a high linearity with the direction of emission and a high kinetic energy above 50eV. However, there is a limitation on that it cannot detect ultra-thin residue material having a thickness of several nanometers because the surface sensitivity is extremely low. We studied the characteristics of BSE spectra using Monte Carlo simulations for several cases which the high aspect ratio structures have extreme microscopic residues. Based on the assumption that most of the electrons emitted without energy loss are localized on the surface, we selected the detection energy window which has a range of 20eV below the maximum energy of the BSE. This window section is named as the high-energy BSE region. As a result of comparing the detection sensitivity of the conventional and the high-energy BSE detection mode, we found that the detection sensitivity for the residuals which have 2nm thickness is improved by more than 10 times in the high-energy BSE mode. This BSE technology is a new inspection method that can greatly be improved the inspection sensitivity for the ultra-thin residual material presented in the high aspect ratio structure, and its application will be expanded.

  3. Animal Board Invited Review: Comparing conventional and organic livestock production systems on different aspects of sustainability.

    PubMed

    van Wagenberg, C P A; de Haas, Y; Hogeveen, H; van Krimpen, M M; Meuwissen, M P M; van Middelaar, C E; Rodenburg, T B

    2017-10-01

    To sustainably contribute to food security of a growing and richer world population, livestock production systems are challenged to increase production levels while reducing environmental impact, being economically viable, and socially responsible. Knowledge about the sustainability performance of current livestock production systems may help to formulate strategies for future systems. Our study provides a systematic overview of differences between conventional and organic livestock production systems on a broad range of sustainability aspects and animal species available in peer-reviewed literature. Systems were compared on economy, productivity, environmental impact, animal welfare and public health. The review was limited to dairy cattle, beef cattle, pigs, broilers and laying hens, and to Europe, North America and New Zealand. Results per indicators are presented as in the articles without performing additional calculations. Out of 4171 initial search hits, 179 articles were analysed. Studies varied widely in indicators, research design, sample size and location and context. Quite some studies used small samples. No study analysed all aspects of sustainability simultaneously. Conventional systems had lower labour requirements per unit product, lower income risk per animal, higher production per animal per time unit, higher reproduction numbers, lower feed conversion ratio, lower land use, generally lower acidification and eutrophication potential per unit product, equal or better udder health for cows and equal or lower microbiological contamination. Organic systems had higher income per animal or full time employee, lower impact on biodiversity, lower eutrophication and acidification potential per unit land, equal or lower likelihood of antibiotic resistance in bacteria and higher beneficial fatty acid levels in cow milk. For most sustainability aspects, sometimes conventional and sometimes organic systems performed better, except for productivity, which was consistently higher in conventional systems. For many aspects and animal species, more data are needed to conclude on a difference between organic and conventional livestock production systems.

  4. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing.

    PubMed

    Phillips, Nathan; Knowles, Kevin; Bomphrey, Richard J

    2015-10-09

    Insect wing shapes are diverse and a renowned source of inspiration for the new generation of autonomous flapping vehicles, yet the aerodynamic consequences of varying geometry is not well understood. One of the most defining and aerodynamically significant measures of wing shape is the aspect ratio, defined as the ratio of wing length (R) to mean wing chord (c). We investigated the impact of aspect ratio, AR, on the induced flow field around a flapping wing using a robotic device. Rigid rectangular wings ranging from AR = 1.5 to 7.5 were flapped with insect-like kinematics in air with a constant Reynolds number (Re) of 1400, and a dimensionless stroke amplitude of 6.5c (number of chords traversed by the wingtip). Pseudo-volumetric, ensemble-averaged, flow fields around the wings were captured using particle image velocimetry at 11 instances throughout simulated downstrokes. Results confirmed the presence of a high-lift, separated flow field with a leading-edge vortex (LEV), and revealed that the conical, primary LEV grows in size and strength with increasing AR. In each case, the LEV had an arch-shaped axis with its outboard end originating from a focus-sink singularity on the wing surface near the tip. LEV detachment was observed for AR > 1.5 around mid-stroke at ~70% span, and initiated sooner over higher aspect ratio wings. At AR > 3 the larger, stronger vortex persisted under the wing surface well into the next half-stroke leading to a reduction in lift. Circulatory lift attributable to the LEV increased with AR up to AR = 6. Higher aspect ratios generated proportionally less lift distally because of LEV breakdown, and also less lift closer to the wing root due to the previous LEV's continuing presence under the wing. In nature, insect wings go no higher than AR ~ 5, likely in part due to architectural and physiological constraints but also because of the reducing aerodynamic benefits of high AR wings.

  5. Turbulence and Air Exchange in a Two-Dimensional Urban Street Canyon Between Gable Roof Buildings

    NASA Astrophysics Data System (ADS)

    Garau, Michela; Badas, Maria Grazia; Ferrari, Simone; Seoni, Alessandro; Querzoli, Giorgio

    2018-04-01

    We experimentally investigate the effect of a typical building covering: the gable roof, on the flow and air exchange in urban canyons. In general, the morphology of the urban canopy is very varied and complex, depending on a large number of factors, such as building arrangement, or the morphology of the terrain. Therefore we focus on a simple, prototypal shape, the two-dimensional canyon, with the aim of elucidating some fundamental phenomena driving the street-canyon ventilation. Experiments are performed in a water channel, over an array of identical prismatic obstacles representing an idealized urban canopy. The aspect ratio, i.e. canyon-width to building-height ratio, ranges from 1 to 6. Gable roof buildings with 1:1 pitch are compared with flat roofed buildings. Velocity is measured using a particle-image-velocimetry technique with flow dynamics discussed in terms of mean flow and second- and third-order statistical moments of the velocity. The ventilation is interpreted by means of a simple well-mixed box model and the outflow rate and mean residence time are computed. Results show that gable roofs tend to delay the transition from the skimming-flow to the wake-interference regime and promote the development of a deeper and more turbulent roughness layer. The presence of a gable roof significantly increases the momentum flux, especially for high packing density. The air exchange is improved compared to the flat roof buildings, and the beneficial effect is more significant for narrow canyons. Accordingly, for unit aspect ratio gable roofs reduce the mean residence time by a factor of 0.37 compared to flat roofs, whereas the decrease is only by a factor of 0.9 at the largest aspect ratio. Data analysis indicates that, for flat roof buildings, the mean residence time increases by 30% when the aspect ratio is decreased from 6 to 2, whereas this parameter is only weakly dependent on aspect ratio in the case of gable roofs.

  6. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOEpatents

    Li, Ting [Ventura, CA

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  7. The experimental research on electrodischarge drilling of high aspect ratio holes in Inconel 718

    NASA Astrophysics Data System (ADS)

    Lipiec, Piotr; Machno, Magdalena; Skoczypiec, Sebastian

    2018-05-01

    In recent years the drilling operations become important area of electrodischarge machining (EDM) application. This especially concerns drilling of, small (D< 1mm), cylindrical and high-aspect ratio (L/D > 10) holes in difficult-to-cut materials (i.e. nickel or titanium alloys). Drilling of such a holes is significantly beyond mechanical drilling capabilities. Therefore electrodischarge machining is good and cost efficient alternative for such application. EDM gives possibility to drill accurate, burr free and high aspect ratio holes and is applicable to machine wide range of conductive materials, irrespective of their hardness and toughness. However it is worth to underline its main disadvantages such as: significant tool wear, low material removal rate and poor surface integrity. The last one is especially important in reliable applications in aircraft or medical industry.

  8. Investigation of impingement region and wall jets formed by the interaction of high aspect ratio lift jets and a ground plane

    NASA Technical Reports Server (NTRS)

    Kotansky, D. R.; Glaze, L. W.

    1978-01-01

    Flow characteristics of impinging jets emanating from rectangular exit area converging nozzles of exit area aspect ratio four, six, and eight were investigated. Azimuthal distributions of wall jet radial momentum flux in the ground plane were strongly directional and sensitive to rectangular nozzle exit area aspect ratio, jet impingement angle, and height above ground, H/D. Effects of jet exit velocity profile nonuniformities were also investigated. Data from the single nozzle rectangular jet impringement investigations were incorporated into an existing VTOL aircraft ground flow field computer program. It is suggested that this program together with the Douglas Neumann program modified for V/STOL applications may be used for the analysis and prediction of flow fields and resulting forces and moments on multijet V/STOL aircraft hovering in ground effect.

  9. Resonant frequency analysis of Timoshenko nanowires with surface stress for different boundary conditions

    NASA Astrophysics Data System (ADS)

    He, Qilu; Lilley, Carmen M.

    2012-10-01

    The influence of both surface and shear effects on the resonant frequency of nanowires (NWs) was studied by incorporating the Young-Laplace equation with the Timoshenko beam theory. Face-centered-cubic metal NWs were studied. A dimensional analysis of the resonant frequencies for fixed-fixed gold (100) NWs were compared to molecular dynamic simulations. Silver NWs with diameters from 10 nm-500 nm were modeled as a cantilever, simply supported and fixed-fixed system for aspect ratios from 2.5-20 to identify the shear, surface, and size effects on the resonant frequencies. The shear effect was found to have a larger significance than surface effects when the aspect ratios were small (i.e., <5) regardless of size for the diameters modeled. Finally, as the aspect ratio grows, the surface effect becomes significant for the smaller diameter NWs.

  10. Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Brown, Christopher K.

    1988-01-01

    A computational design has been performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three planforms has been selected to be constructed as a wind tunnel model for testing in the NASA LaRC 7 x 10 High Speed Wind Tunnel. A design point of M = 0.8, CL approx = 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. This report summarizes the design process and the predicted transonic performance for each configuration.

  11. Direct Observation of Two Phase Flow Generated by an Alumina Seeded Grain in High Aspect Ratio Channels

    DTIC Science & Technology

    2010-06-01

    1999 Submitted in partial fulfillment of the requirements for the degrees of MECHANICAL ENGINEER and MASTERS OF SCIENCE IN MECHANICAL...Advisor Dr. Anthony Gannon Second Reader Dr. Knox Milsaps Chairman, Department of Mechanical and Aerospace Engineering iv THIS...within high aspect ratio regions of advanced propellant grain designs and how this behavior affects flow through the combustion chamber and impacts

  12. High aspect ratio nanoholes in glass generated by femtosecond laser pulses with picosecond intervals

    NASA Astrophysics Data System (ADS)

    Ahn, Sanghoon; Choi, Jiyeon; Noh, Jiwhan; Cho, Sung-Hak

    2018-02-01

    Because of its potential uses, high aspect ratio nanostructures have been interested for last few decades. In order to generate nanostructures, various techniques have been attempted. Femtosecond laser ablation is one of techniques for generating nanostructures inside a transparent material. For generating nanostructures by femtosecond laser ablation, previous studies have been attempted beam shaping such as Bessel beam and temporal tailored beam. Both methods suppress electron excitation at near surface and initiate interference of photons at certain depth. Recent researches indicate that shape of nanostructures is related with temporal change of electron density and number of self-trapped excitons. In this study, we try to use the temporal change of electron density induced by femtosecond laser pulse for generating high aspect ratio nanoholes. In order to reveal the effect of temporal change of electron density, secondary pulses are irradiated from 100 to 1000 ps after the irradiation of first pulse. Our result shows that diameter of nanoholes is increasing and depth of nanoholes is decreasing as pulse to pulse interval is getting longer. With manipulating of pulse to pulse interval, we could generate high aspect ratio nanoholes with diameter of 250-350 nm and depth of 4∼6 μm inside a glass.

  13. Evaluation of a Candidate Trace Contaminant Control Subsystem Architecture: The High Velocity, Low Aspect Ratio (HVLA) Adsorption Process

    NASA Technical Reports Server (NTRS)

    Kayatin, Matthew J.; Perry, Jay L.

    2017-01-01

    Traditional gas-phase trace contaminant control adsorption process flow is constrained as required to maintain high contaminant single-pass adsorption efficiency. Specifically, the bed superficial velocity is controlled to limit the adsorption mass-transfer zone length relative to the physical adsorption bed; this is aided by traditional high-aspect ratio bed design. Through operation in this manner, most contaminants, including those with relatively high potential energy are readily adsorbed. A consequence of this operational approach, however, is a limited available operational flow margin. By considering a paradigm shift in adsorption architecture design and operations, in which flows of high superficial velocity are treated by low-aspect ratio sorbent beds, the range of well-adsorbed contaminants becomes limited, but the process flow is increased such that contaminant leaks or emerging contaminants of interest may be effectively controlled. To this end, the high velocity, low aspect ratio (HVLA) adsorption process architecture was demonstrated against a trace contaminant load representative of the International Space Station atmosphere. Two HVLA concept packaging designs (linear flow and radial flow) were tested. The performance of each design was evaluated and compared against computer simulation. Utilizing the HVLA process, long and sustained control of heavy organic contaminants was demonstrated.

  14. Front propagation in a regular vortex lattice: Dependence on the vortex structure.

    PubMed

    Beauvier, E; Bodea, S; Pocheau, A

    2017-11-01

    We investigate the dependence on the vortex structure of the propagation of fronts in stirred flows. For this, we consider a regular set of vortices whose structure is changed by varying both their boundary conditions and their aspect ratios. These configurations are investigated experimentally in autocatalytic solutions stirred by electroconvective flows and numerically from kinematic simulations based on the determination of the dominant Fourier mode of the vortex stream function in each of them. For free lateral boundary conditions, i.e., in an extended vortex lattice, it is found that both the flow structure and the front propagation negligibly depend on vortex aspect ratios. For rigid lateral boundary conditions, i.e., in a vortex chain, vortices involve a slight dependence on their aspect ratios which surprisingly yields a noticeable decrease of the enhancement of front velocity by flow advection. These different behaviors reveal a sensitivity of the mean front velocity on the flow subscales. It emphasizes the intrinsic multiscale nature of front propagation in stirred flows and the need to take into account not only the intensity of vortex flows but also their inner structure to determine front propagation at a large scale. Differences between experiments and simulations suggest the occurrence of secondary flows in vortex chains at large velocity and large aspect ratios.

  15. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Li, Jian-jun; Zhang, Ning; Wang, Jingyuan; Yang, Chun-yu; Zhu, Jian; Zhao, Jun-wu

    2016-02-01

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity.

  16. High-aspect ratio magnetic nanocomposite polymer cilium

    NASA Astrophysics Data System (ADS)

    Rahbar, M.; Tseng, H. Y.; Gray, B. L.

    2014-03-01

    This paper presents a new fabrication technique to achieve ultra high-aspect ratio artificial cilia micro-patterned from flexible highly magnetic rare earth nanoparticle-doped polymers. We have developed a simple, inexpensive and scalable fabrication method to create cilia structures that can be actuated by miniature electromagnets, that are suitable to be used for lab-on-a chip (LOC) and micro-total-analysis-system (μ-TAS) applications such as mixers and flow-control elements. The magnetic cilia are fabricated and magnetically polarized directly in microfluidic channels or reaction chambers, allowing for easy integration with complex microfluidic systems. These cilia structures can be combined on a single chip with other microfluidic components employing the same permanently magnetic nano-composite polymer (MNCP), such as valves or pumps. Rare earth permanent magnetic powder, (Nd0.7Ce0.3)10.5Fe83.9B5.6, is used to dope polydimethylsiloxane (PDMS), resulting in a highly flexible M-NCP of much higher magnetization and remanence [1] than ferromagnetic polymers typically employed in magnetic microfluidics. Sacrificial poly(ethylene-glycol) (PEG) is used to mold the highly magnetic polymer into ultra high-aspect ratio artificial cilia. Cilia structures with aspect ratio exceeding 8:0.13 can be easily fabricated using this technique and are actuated using miniature electromagnets to achieve a high range of motion/vibration.

  17. Turbulent boundary layer over roughness transition with variation in spanwise roughness length scale

    NASA Astrophysics Data System (ADS)

    Westerweel, Jerry; Tomas, Jasper; Eisma, Jerke; Pourquie, Mathieu; Elsinga, Gerrit; Jonker, Harm

    2016-11-01

    Both large-eddy simulations (LES) and water-tunnel experiments, using simultaneous stereoscopic PIV and LIF were done to investigate pollutant dispersion in a region where the surface changes from rural to urban roughness. This consists of rectangular obstacles where we vary the spanwise aspect ratio of the obstacles. A line source of passive tracer was placed upstream of the roughness transition. The objectives of the study are: (i) to determine the influence of the aspect ratio on the roughness-transition flow, and (ii) to determine the dominant mechanisms of pollutant removal from street canyons in the transition region. It is found that for a spanwise aspect ratio of 2 the drag induced by the roughness is largest of all considered cases, which is caused by a large-scale secondary flow. In the roughness transition the vertical advective pollutant flux is the main ventilation mechanism in the first three streets. Furthermore, by means of linear stochastic estimation the mean flow structure is identied that is responsible for exchange of the fluid between the roughness obstacles and the outer part of the boundary layer. Furthermore, it is found that the vertical length scale of this structure increases with increasing aspect ratio of the obstacles in the roughness region.

  18. Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes.

    PubMed

    Shen, Nan; Keppeler, Miriam; Stiaszny, Barbara; Hain, Holger; Maglia, Filippo; Srinivasan, Madhavi

    2017-01-01

    α-Fe 2 O 3 nanomaterials with an elongated nanorod morphology exhibiting superior electrochemical performance were obtained through hydrothermal synthesis assisted by diamine derivatives as shape-controlling agents (SCAs) for application as anodes in lithium-ion batteries (LIBs). The physicochemical characteristics were investigated via XRD and FESEM, revealing well-crystallized α-Fe 2 O 3 with adjustable nanorod lengths between 240 and 400 nm and aspect ratios in the range from 2.6 to 5.7. The electrochemical performance was evaluated by cyclic voltammetry and charge-discharge measurements. A SCA test series, including ethylenediamine, 1,2-diaminopropane, 2,3-diaminobutane, and N -methylethylenediamine, was implemented in terms of the impact on the nanorod aspect ratio. Varied substituents on the vicinal diamine structure were examined towards an optimized reaction center in terms of electron density and steric hindrance. Possible interaction mechanisms of the diamine derivatives with ferric species and the correlation between the aspect ratio and electrochemical performance are discussed. Intermediate-sized α-Fe 2 O 3 nanorods with length/aspect ratios of ≈240 nm/≈2.6 and ≈280 nm/≈3.0 were found to have excellent electrochemical characteristics with reversible discharge capacities of 1086 and 1072 mAh g -1 at 0.1 C after 50 cycles.

  19. Electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes: FFT-impedance spectroscopy of the growth process and magnetic properties.

    PubMed

    Gerngross, Mark-Daniel; Carstensen, Jürgen; Föll, Helmut

    2014-01-01

    The electrochemical growth of Co nanowires in ultra-high aspect ratio InP membranes has been investigated by fast Fourier transform-impedance spectroscopy (FFT-IS) in the frequency range from 75 Hz to 18.5 kHz. The impedance data could be fitted very well using an electric circuit equivalent model with a series resistance connected in series to a simple resistor-capacitor (RC) element and a Maxwell element. Based on the impedance data, the Co deposition in ultra-high aspect ratio InP membranes can be divided into two different Co deposition processes. The corresponding share of each process on the overall Co deposition can be determined directly from the transfer resistances of the two processes. The impedance data clearly show the beneficial impact of boric acid on the Co deposition and also indicate a diffusion limitation of boric acid in ultra-high aspect ratio InP membranes. The grown Co nanowires are polycrystalline with a very small grain size. They show a narrow hysteresis loop with a preferential orientation of the easy magnetization direction along the long nanowire axis due to the arising shape anisotropy of the Co nanowires.

  20. Microdevice arrays of high aspect ratio poly(dimethylsiloxane) pillars for the investigation of multicellular tumour spheroid mechanical properties.

    PubMed

    Aoun, Laurène; Weiss, Pierre; Laborde, Adrian; Ducommun, Bernard; Lobjois, Valérie; Vieu, Christophe

    2014-07-07

    We report the design, fabrication and evaluation of an array of microdevices composed of high aspect ratio PDMS pillars, dedicated to the study of tumour spheroid mechanical properties. The principle of the microdevice is to confine a spheroid within a circle of micropillars acting as peripheral flexible force sensors. We present a technological process for fabricating high aspect ratio micropillars (300 μm high) with tunable feature dimensions (diameter and spacing) enabling production of flexible PDMS pillars with a height comparable to spheroid sizes. This represents an upscale of 10 along the vertical direction in comparison to more conventional PDMS pillar force sensors devoted to single cell studies, while maintaining their force sensitivity in the same order of magnitude. We present a method for keeping these very high aspect ratio PDMS pillars stable and straight in liquid solution. We demonstrate that microfabricated devices are biocompatible and adapted to long-term spheroid growth. Finally, we show that the spheroid interaction with the micropillars' surface is dependent on PDMS cellular adhesiveness. Time-lapse recordings of growth-induced micropillars' bending coupled with a software program to automatically detect and analyse micropillar displacements are presented. The use of these microdevices as force microsensors opens new prospects in the fields of tissue mechanics and pharmacological drug screening.

  1. The NASA supercritical-wing technology

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Patterson, J. C., Jr.

    1978-01-01

    A number of high aspect ratio supercritical wings in combination with a representative wide body type fuselage were tested in the Langley 8 foot transonic pressure tunnel. The wing parameters investigated include aspect ratio, sweep, thickness to chord ratio, and camber. Subsequent to these initial series of tests, a particular wing configuration was selected for further study and development. Tests on the selected wing involved the incorporation of a larger inboard trailing edge extension, an inboard leading edge extension, and flow through nacelles. Range factors for the various supercritical wing configurations are compared with those for a reference wide body transport configuration.

  2. Comparison of the Modified Biot-Gassmann Theory and the Kuster-Toksoz Theory in Predicting Elastic Velocities of Sediments

    USGS Publications Warehouse

    Lee, Myung W.

    2008-01-01

    Elastic velocities of water-saturated sandstones depend primarily on porosity, effective pressure, and the degree of consolidation. If the dry-frame moduli are known, from either measurements or theoretical calculations, the effect of pore water on velocities can be modeled using the Gassmann theory. Kuster and Toksoz developed a theory based on wave-scattering theory for a variety of inclusion shapes, which provides a means for calculating dry- or wet-frame moduli. In the Kuster-Toksoz theory, elastic wave velocities through different sediments can be predicted by using different aspect ratios of the sediment's pore space. Elastic velocities increase as the pore aspect ratio increases (larger pore aspect ratio describes a more spherical pore). On the basis of the velocity ratio, which is assumed to be a function of (1-0)n, and the Biot-Gassmann theory, Lee developed a semi-empirical equation for predicting elastic velocities, which is referred to as the modified Biot-Gassmann theory of Lee. In this formulation, the exponent n, which depends on the effective pressure and the degree of consolidation, controls elastic velocities; as n increases, elastic velocities decrease. Computationally, the role of exponent n in the modified Biot-Gassmann theory by Lee is similar to the role of pore aspect ratios in the Kuster-Toksoz theory. For consolidated sediments, either theory predicts accurate velocities. However, for unconsolidated sediments, the modified Biot-Gassmann theory by Lee performs better than the Kuster-Toksoz theory, particularly in predicting S-wave velocities.

  3. Aspect ratio dependence of the enhancement of fluorescence intensity by gold nanobipyramids for cancer cell imaging and photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Shimiao; Mi, Lan; Liu, Jun

    2018-07-01

    Enhancement of dye fluorescence intensity was studied by modifying the aspect ratio of gold nanobipyramids (AuBPs) from 3.2 to 6.6. The emission fluorescence intensity of sulfonated aluminum phthalocyanine (AlPcS) was strongly dependent on the aspect ratio of AuBPs. Furthermore, we found that the energy transfer from excited AlPcS to AuBPs was a key determinant of the efficacy of metal-enhanced fluorescence. By means of AuBPs with a higher aspect ratio, such that the surface plasmon resonance band does not overlap with the energy level of excited AlPcS, metal-enhanced fluorescence of various AlPcS–AuBP conjugates was determined, and the maximal enhancement factor was found to be 14. The enhanced fluorescence intensity of AlPcS conjugated with AuBPs indicates promising plasmonic properties. An apoptosis assay of HeLa cells revealed that AlPcS–AuBPs, when used as a drug, can enhance the effectiveness of photodynamic therapy (PDT). Furthermore, AuBPs with the longitudinal absorption peak wavelength of 1050 nm had optimal proapoptotic effects. HeLa cells treated with AlPcS–AuBPs (ratio 0.42 µM to 0.01 nM) had viability as low as 29.31% after 32 J cm‑2 ultraviolet light exposure, indicating the strong potential of AlPcS–AuBPs to improve the efficacy of PDT.

  4. Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.

    PubMed

    Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R

    2017-10-25

    In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c  = [Formula: see text], supporting previous theoretical predictions.

  5. Kinetics of the crust thickness development of bread during baking.

    PubMed

    Soleimani Pour-Damanab, Alireza; Jafary, A; Rafiee, Sh

    2014-11-01

    The development of crust thickness of bread during baking is an important aspect of bread quality and shelf-life. Computer vision system was used for measuring the crust thickness via colorimetric properties of bread surface during baking process. Crust thickness had a negative and positive relationship with Lightness (L (*) ) and total color change (E (*) ) of bread surface, respectively. A linear negative trend was found between crust thickness and moisture ratio of bread samples. A simple mathematical model was proposed to predict the development of crust thickness of bread during baking, where the crust thickness was depended on moisture ratio that was described by the Page moisture losing model. The independent variables of the model were baking conditions, i.e. oven temperature and air velocity, and baking time. Consequently, the proposed model had well prediction ability, as the mean absolute estimation error of the model was 7.93 %.

  6. Orthodontic treatment need for adolescents in the Campania region: the malocclusion impact on self-concept

    PubMed Central

    Perillo, Letizia; Esposito, Maria; Caprioglio, Alberto; Attanasio, Stefania; Santini, Annamaria Chiara; Carotenuto, Marco

    2014-01-01

    Background Dental malocclusions can be considered not only as an oral health problem, because they are linked to quality of life perception. Many factors related to malocclusion have strong influences on the perception of facial esthetics (eg, anterior tooth alignment, tooth shape and position, lip thickness, symmetric gingival or tooth contour, lip profile, and overjet). Many reports have shown that the perception of facial esthetics can influence psychological development from early childhood to adulthood. The aim of this study is to investigate the effect of dental malocclusion on self-esteem in a sample of adolescents. Materials and methods The study population was composed of 516 orthodontically untreated subjects (256 males) mean ages 13.75±1.977 years recruited from schools in the Campania region of Italy between January 2011 and July 2011. To evaluate the self-esteem grade in our population, all subjects filled out the Multidimensional Self Concept Scale questionnaire and attended an orthodontic clinical evaluation to estimate dental occlusal aspects. Results Pearson’s analysis shows the relationship in our sample between some occlusal characteristics (crossbite and dental crowding) and aspects of self-concept evaluation (social, competence, academic, physical, and global score) of the Multidimensional Self Concept Scale questionnaire. Moreover, logistic regression analysis shows the potential role of dental crowding (odds ratio 5.359; 95% confidence interval 3.492–8.225) and crossbite (odds ratio 6.153; 95% confidence interval 3.545–10.678) as risk factors for development of global self-concept score abnormalities. Conclusion Our findings confirm the relationship between psychosocial well-being, self-esteem, and dental malocclusion among adolescents. PMID:24672229

  7. Quantification of Cardiac Biomarkers using Label-free and Multiplexed Gold Nanorod Bioprobes for Myocardial Infarction Diagnosis

    PubMed Central

    Tang, Liang; Casas, Justin

    2014-01-01

    Gold nanorod (GNR) is an attractive optical transducer for label-free biosensing owing to the localized surface plasmon resonance (LSPR) which is highly sensitive to the dielectric constant of the surrounding medium modulated by biological bindings. By adjusting the nanorod aspect ratio (length to width ratio), desired absorption wavelength can be continuously tuned from 600 to 1,100 nm. Here we demonstrated a linear relationship between the aspect ratio and the LSPR peak wavelength. Taking advantage of this tunability feature, we developed a multiplexed GNR sensor by combining nanorods with distinct LSPR wavelengths. Specifically, GNRs of AR 2.1 and 4.2 exhibiting longitudinal plasmonic band of 640 and 830 nm respectively were functionalized with specific antibody. Concentrations of multiple analytes were measured by correlating to the spectral shift at the distinct plasmon band maxima upon specific binding. The practical use of this mixed bioprobes for simultaneous quantification of cardiac biomarkers (myoglobin and cardiac troponin I) in the clinically significant sensing range was described. The LSPR red shift magnitude is linearly proportional to the increase in the target analyte concentration (R2 = 0.98). The calibration curve can clearly differentiate varying biomarker amounts with a high specificity. For multiplexed biosensing, the plasmon shift at the dedicated peak wavelength can be specifically correlated with spiked biomarker for simultaneous detection in the sample mixture. This technology can be further transformed onto miniaturized biochips based on the nanosized optical transducer to allow point-of-care blood testing for risk stratifications of cardiac patients in clinical settings. PMID:24858675

  8. Experimental parametric study of a biomimetic fish robot actuated by piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Wiguna, T.; Park, Hoon C.; Heo, S.; Goo, Nam S.

    2007-04-01

    This paper presents an experiment and parametric study of a biomimetic fish robot actuated by the Lightweight Piezocomposite Actuator (LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF (Body and Caudal Fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, stiffness, area, and aspect ratio. It is found that a high aspect ratio caudal fin contributes to high swimming speed. The robotic fish propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for a 300 V p-p input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot is examined by calculating Strouhal number, Froude number, Reynolds number, and power consumption.

  9. The Acceptance of Universalism: The Importance of Selected Aspects of School Structure.

    ERIC Educational Resources Information Center

    Martin, Robert A.

    This report describes a study that investigated empirically the relationships between selected aspects of the organizational structure of elementary schools and the extent to which students endorsed the norm of universalism. Four aspects of structure were studied: degree of departmentalization, school enrollment, student-teacher ratio, and extent…

  10. Cooperative simulation of lithography and topography for three-dimensional high-aspect-ratio etching

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takashi; Yagisawa, Takashi; Furukawa, Shinichi; Taguchi, Takafumi; Nojima, Shigeki; Murakami, Sadatoshi; Tamaoki, Naoki

    2018-06-01

    A topography simulation of high-aspect-ratio etching considering transports of ions and neutrals is performed, and the mechanism of reactive ion etching (RIE) residues in three-dimensional corner patterns is revealed. Limited ion flux and CF2 diffusion from the wide space of the corner is found to have an effect on the RIE residues. Cooperative simulation of lithography and topography is used to solve the RIE residue problem.

  11. A Guide for Estimation of Aeroacoustic Loads on Flight Vehicle Surfaces

    DTIC Science & Technology

    1977-02-01

    Nozzle aspect ratio correction of one-third octave band sound pressure levels of USB noise . 122 31. Impingement angle correction of one-third octave...breech weapons ....................... 175 IX •: •-•,..i .•,z. •... LIST OF FIGURES (Cont.) page Figure 61. Rectangular cavity ...and a nozzle aspect ratio of 4.0, and without a deflector. Obtain the corrected one-third octave band level SPL from the baseline level, from " b

  12. Experimental Investigation of a Preloaded Spring-tab Flutter Model

    NASA Technical Reports Server (NTRS)

    Smith, N H; Clevenson, S A; Barmby, J G

    1947-01-01

    An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.

  13. The impact of domain aspect ratio on the inverse cascade in rotationally constrained convection.

    NASA Astrophysics Data System (ADS)

    Julien, K. A.; Plumley, M.; Knobloch, E.

    2017-12-01

    Rotationally constrained convective flows are characterized as buoyantly unstable flows with a primary geostrophic balance (i.e. a pointwise balance between the Coriolis and pressure gradient forces). Such flows are known to occur within planetary and stellar interiors and also within isolated regions of the worlds oceans. Rapidly rotating Rayleigh-B'enard convection represents the simplest paradigm for investigations. Recent numerical studies, performed in square domains, have discovered the existence of a strong non-local inverse energy cascade that results in a box filling dipole vortex upon which geostrophic turbulent convection resides. Utilizing the non-hydrostatic quasi-geostrophic equations, the effect of domain aspect ratio on the inverse energy cascade is explored. As the domain aspect ratio becomes anisotropy it is demonstrated that the large-scale states evolve from vortical dipoles to jets. Properties of these jets will be presented and discussed.

  14. The impact of domain aspect ratio on the inverse cascade in rotationally constrained convection

    NASA Astrophysics Data System (ADS)

    Julien, Keith; Knobloch, Edgar; Plumley, Meredith

    2017-11-01

    Rotationally constrained convective flows are characterized as buoyantly unstable flows with a primary geostrophic balance (i.e. a pointwise balance between the Coriolis and pressure gradient forces). Such flows are known to occur within planetary and stellar interiors and also within isolated regions of the worlds oceans. Rapidly rotating Rayleigh-Benard convection represents the simplest paradigm for investigations. Recent numerical studies, performed in square domains, have discovered the existence of a strong non-local inverse energy cascade that results in a box filling dipole vortex upon which geostrophic turbulent convection resides. Utilizing the non-hydrostatic quasi-geostrophic equations, the effect of domain aspect ratio on the inverse energy cascade is explored. As the domain aspect ratio becomes anisotropy it is demonstrated that the large-scale states evolve from vortical dipoles to jets. Properties of these jets will be presented and discussed.

  15. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ting

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE processmore » is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.« less

  16. Mode instability in a Yb-doped stretched core fiber

    NASA Astrophysics Data System (ADS)

    Xia, N.; Yoo, S.

    2017-02-01

    In this work we present the theoretical study of transverse mode instability (TMI) in ytterbium (Yb)-doped rectangular core fibers with different core aspect ratios using the fast Fourier transform (FFT) beam propagation method (BPM). As expected, the rectangular core fiber with larger aspect ratio (AR.) offers more efficient heat dissipation than a circular core fiber. However, it is found that the rectangular core fiber does not benefit from the better heat dissipation to suppress the TMI when compared to the circular core counterpart. The temperature building in the rectangular core fiber decreases by up to 24.6% with a 10:1 aspect ratio core, while threshold pump power drops by up to 38.3% when compared with a circular core fiber with the same core area. Our study reveals that a smaller effective refractive index difference between modes and a weaker gain saturation effect compensate the thermal advantage from more efficient heat dissipation.

  17. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.

    PubMed

    Li, Z P; Xu, Z M; Qu, X P; Wang, S B; Peng, J; Mei, L H

    2017-03-03

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  18. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  19. Aspect ratio effects on limited scrape-off layer plasma turbulence

    NASA Astrophysics Data System (ADS)

    Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo

    2014-02-01

    The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.

  20. Self-organisation of semi-flexible rod-like particles

    NASA Astrophysics Data System (ADS)

    de Braaf, Bart; Oshima Menegon, Mariana; Paquay, Stefan; van der Schoot, Paul

    2017-12-01

    We report on a comprehensive computer simulation study of the liquid-crystal phase behaviour of purely repulsive, semi-flexible rod-like particles. For the four aspect ratios we consider, the particles form five distinct phases depending on their packing fraction and bending flexibility: the isotropic, nematic, smectic A, smectic B, and crystal phase. Upon increasing the particle bending flexibility, the various phase transitions shift to larger packing fractions. Increasing the aspect ratio achieves the opposite effect. We find two different ways in which the layer thickness of the particles in the smectic A phase may respond to an increase in concentration. The layer thickness may either decrease or increase depending on the aspect ratio and flexibility. For the smectic B and the crystalline phases, increasing the concentration always decreases the layer thickness. Finally, we find that the layer spacing jumps to a larger value on transitioning from the smectic A phase to the smectic B phase.

  1. Configuration design studies and wind tunnel tests of an energy efficient transport with a high-aspect-ratio supercritical wing

    NASA Technical Reports Server (NTRS)

    Henne, P. A.; Dahlin, J. A.; Peavey, C. C.; Gerren, D. S.

    1982-01-01

    The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded.

  2. Semikinematic mount for spatially constrained high aspect ratio spacecraft fold mirrors

    NASA Astrophysics Data System (ADS)

    Sahu, Rupali; Arora, Hemant; Munjal, Bhawdeep Singh

    2017-12-01

    An attempt has been made to propose a passive flexure-based semikinematic optimized mounting design for mirror fixing devices (MFDs) to mount spacecraft mirrors made of brittle materials, especially for high aspect ratio mirrors with low available space for mounting in satellites. The traditionally used tangent cantilever spiders occupy a lot of space and are suitable only for small mirrors. Similarly, the efficiency of flexural bipods is lost if not placed 120 deg apart, which is not possible in high aspect ratio mirrors. Two mounting configurations, one with collinear MFDs and the other with staggered MFDs, have been studied. An optimization problem is set up with dimensions of the proposed design as design variables and constraints imposed on structural performance of the mirror assembly. Investigations indicate that both configurations have potential applications in spacecrafts as they have provided feasible results and have satisfactory optical performance as well.

  3. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    NASA Astrophysics Data System (ADS)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  4. Monte Carlo simulations of nanoscale focused neon ion beam sputtering.

    PubMed

    Timilsina, Rajendra; Rack, Philip D

    2013-12-13

    A Monte Carlo simulation is developed to model the physical sputtering of aluminum and tungsten emulating nanoscale focused helium and neon ion beam etching from the gas field ion microscope. Neon beams with different beam energies (0.5-30 keV) and a constant beam diameter (Gaussian with full-width-at-half-maximum of 1 nm) were simulated to elucidate the nanostructure evolution during the physical sputtering of nanoscale high aspect ratio features. The aspect ratio and sputter yield vary with the ion species and beam energy for a constant beam diameter and are related to the distribution of the nuclear energy loss. Neon ions have a larger sputter yield than the helium ions due to their larger mass and consequently larger nuclear energy loss relative to helium. Quantitative information such as the sputtering yields, the energy-dependent aspect ratios and resolution-limiting effects are discussed.

  5. Inertial focusing dynamics in spiral microchannels

    PubMed Central

    Martel, Joseph M.; Toner, Mehmet

    2012-01-01

    This report details a comprehensive study of inertial focusing dynamics and particle behavior in low aspect ratio (h/w ∼ 1/1 to 1/8) spiral microchannels. A continuum of particle streak behavior is shown with longitudinal, cross-sectional, and velocity resolution, yielding a large analyzed parameter space. The dataset is then summarized and compared to prior results from both straight microchannels and other low aspect ratio spiral microchannel designs. Breakdown of focusing into a primary and secondary fluorescent streak is observed in the lowest aspect ratio channels at high average downstream velocities. Streak movement away from the theoretically predicted near inner wall equilibrium position towards the center of the channel at high average downstream velocities is also detailed as a precursor to breakdown. State diagrams detail the overall performance of each device including values of the required channel lengths and the range of velocities over which quality focusing can be achieved. PMID:22454556

  6. Corrosion-Fatigue Crack Growth in Plates: A Model Based on the Paris Law

    PubMed Central

    Toribio, Jesús; Matos, Juan-Carlos; González, Beatriz

    2017-01-01

    In this paper, a Paris law-based model is presented whereby crack propagation occurs under cyclic loading in air (fatigue) and in an aggressive environment (corrosion-fatigue) for the case of corner cracks (with a wide range of aspect ratios in the matter of the initial cracks) in finite-thickness plates of 316L austenitic stainless steel subjected to tension, bending, or combined (tension + bending) loading. Results show that the cracks tend during their growth towards a preferential propagation path, exhibiting aspect ratios slightly lower than unity only for the case of very shallow cracks, and diminishing as the crack grows (increasing the relative crack depth)—more intensely in the case of bending than in the case of tension (the mixed loading tension/bending representing an intermediate case). In addition, the crack aspect ratios during fatigue propagation evolution are lower in fatigue (in air) than in corrosion-fatigue (in aggressive environment). PMID:28772798

  7. Method for nanomachining high aspect ratio structures

    DOEpatents

    Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.

    2004-11-09

    A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.

  8. High β produced by neutral beam injection in the START (Small Tight Aspect Ratio Tokamak) spherical tokamak

    NASA Astrophysics Data System (ADS)

    Sykes, Alan

    1997-05-01

    The world's first high-power auxiliary heating experiments in a tight aspect ratio (or spherical) tokamak have been performed on the Small Tight Aspect Ratio Tokomak (START) device [Sykes et al., Nucl. Fusion 32, 694 (1992)] at Culham Laboratory, using the 40 keV, 0.5 MW Neutral Beam Injector loaned by the Oak Ridge National Laboratory. Injection has been mainly of hydrogen into hydrogen or deuterium target plasmas, with a one-day campaign to explore D→D operation. In each case injection provides a combination of higher density operation and effective heating of both ions and electrons. The highest β values achieved to date in START are volume average βT˜11.5% and central beta βO˜50%. Already high, these values are expected to increase further with the use of higher beam power.

  9. Depolarized haze of nano-porous AAO film via porosity and aspect control

    NASA Astrophysics Data System (ADS)

    Tseng, Chun-Wei; Lin, Yung-Hsiang; Cheng, Chih-Hsien; Lin, Gong-Ru

    2018-01-01

    Multiple scattering induced haze and depolarization effects of nano-porous AAO films controlled by detuning the porosity and aspect ratio of the nano holes are investigated. The nano-porous AAO film with its porosity increasing from 12.6% to 19.3% enhances the scattering of the incident laser beam with its maximal scattering angle enlarged from 5° to 8° under TM-mode incidence and from 6° to 10° under TE-mode incidence. Because of multiple scattering within the porous holes of the AAO, the depolarization on the reflected beam by transferring its electric field from horizontal to the vertical such that the polarization ratio is degraded with a randomized haze. The porosity of AAO surface broadens from 12.6% to 19.3% when increasing the bias voltage from 40 to 60 V during the second-step of the electro-chemical anodization process, which essentially adjusts the polarization ratio under TM-mode and TE-mode incidences raise from 0.31 to 0.35 and from 0.32 to 0.48, respectively. The depolarized haze of the nano-porous AAO film is correlated with its porosity and aspect ratio controlled by the pore size and etched depth of the AAO. Under TM-mode incidence, the simulated polarization ratio increases from 0.35 to 0.38, which correlates well with experimental results. In contrast, the experiment result slightly deviates from the theoretical prediction as the TE-mode field interacts more surface area than the TM-mode field does. Such a nano-porous AAO exhibits tunable depolarized haze via the control porosity and aspect ratio, which is particularly suitable to serve as the catalytic buffer for synthesizing the hydrophobic and hazed solar energy converters.

  10. Researching on resonance characteristics influenced by the structure parameters of 1-3-2 piezocomposites plate.

    PubMed

    Li, Li; Qin, Lei; Wang, Li-Kun; Wan, Yuan-Yuan; Sun, Bai-Sheng

    2008-05-01

    The 1-3-2 composite is made of 1-3 composite and ceramic base. Its effective properties are calculated based on the linear piezoelectric theory and uniform field theory. The influence of piezoelectric phase volume fraction and composite aspect (thickness/width) on resonance characteristic of square 1-3-2 piezoelectric composite plate has been researched. In addition, some 1-3-2 composite samples were fabricated by dice-fill technology. The resonance frequency of samples was investigated. The results show that the experiment agrees well with the calculation. The pure thickness resonance mode of 1-3-2 composite will be gained when the volume fraction of ceramic bottom is less than 30%; that of ceramic rods is in the range of 30 approximately 80% and the ratio of thickness to width is less than 0.35.

  11. In situ curing of sliding SU-8 droplet over a microcontact printed pattern for tunable fabrication of a polydimethylsiloxane nanoslit.

    PubMed

    Kim, Chang-Beom; Chun, Honggu; Chung, JaeHun; Lee, Kwang Ho; Lee, Jeong Hoon; Song, Ki-Bong; Lee, Sang-Hoon

    2011-09-15

    A tunable process for polydimethylsiloxane (PDMS) nanoslit fabrication is developed for nanofluidic applications. A microcontact printing (μCP) of a laterally spreading self-assembled hexadecanethiol (HDT) layer, combined with in situ curing of a sliding SU-8 droplet, enables precise and independent tuning of a nanoslit-mold width and height using a single μCP master mold. The SU-8 nanoslit-mold is replicated using a hard-soft composite PDMS to prevent channel collapse at low (<0.2) aspect ratio (height over width). The fluidic characteristics as well as dimensions of nanoslits fabricated with various conditions are analyzed using a fluorescein sample and AFM images. Finally, concentration polarization-based sample preconcentration is successfully demonstrated at the nanoslit boundary where an electric double-layer is overlapped.

  12. Body piercing and tattoos: a survey on young adults' knowledge of the risks and practices in body art.

    PubMed

    Quaranta, Alessia; Napoli, Christian; Fasano, Fabrizio; Montagna, Claudio; Caggiano, Giuseppina; Montagna, Maria Teresa

    2011-10-07

    The practice of tattooing and piercing has expanded in western society. In order to verify young adults' knowledge of the risk and practices related to body art, an investigation was conducted among freshmen of the University of Bari in the region of Apulia, Italy. The study was carried out in the Academic Year 2009-2010 through an anonymous self-administered written questionnaire distributed to 1.656 freshmen enrolled in 17 Degree Courses. Of the 1.598 students included in the analysis, 78.3% believe it is risky to undergo piercing/tattoo practices. AIDS was indicated as a possible infection by 60.3% of freshmen, hepatitis C by 38.2%, tetanus by 34.3% and hepatitis B by 33.7% of the sample. 28.1% of freshmen were not aware that there are also non-infectious complications. 29% of the sample had at least one piercing or tattoo (this percentage does not include earlobe piercing in women). Of those with body art, the decision to undergo body art was made autonomously in 57.9% of the participants. 56.3% of freshmen undergoing body art had taken less than a month to decide. With regard to the reasons that led the sample to undergo body art, 28.4% were unable to explain it, 23.8% answered to improve their aesthetic aspect, 18.4% to distinguish themselves from others, 12.3% for fashion; 17.1% for other reasons. 25.4% of the sample declared that they had a piercing (79.8% female vs 20.2% male; ratio M/F 1:4.0). The average age for a first piercing was 15.3 years (range 10-27; SD ± 2.9). 9.6% of the sample declared that they have a tattoo (69.9% female vs 30.1% male; ratio M/F 1:2.3). The average age for a first tattoo was 17.5 years (range 10-26, SD ± 2.4). Most of the freshmen knew about AIDS-related risks but not other potential risks. Body art is fairly common among young adults (especially women). The decision is often not shared with the family and is undertaken mostly without a specific reason or for the improvement of aesthetic aspect. Information about freshmen's knowledge, attitudes and practices could help in effective planning of health promotion strategies.

  13. Effect of ultrasonic treatment and temperature on nanocrystalline TiO 2

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Ryu, H. W.; Moon, J. H.; Kim, J.

    Nanocrystalline TiO 2 particles were precipitated from the ethanol solution of titanium isopropoxide (Ti(O- iPr) 4) and H 2O 2 by refluxing at 80 °C for 48 h. The obtained particles were filtered and dried at 100 °C for 12 h. The dried powder itself, the sample with heating at 400 °C, and the sample with ultrasonically treating were prepared to investigate the effects of post treatments on materials characteristics and electrochemical properties of nanocrystalline TiO 2. The X-ray diffraction patterns of all of the samples were fitted well to the anatase phase. The field emission-TEM image of as-prepared sample shows a uniform spherical morphology with 5 nm particle size and the sample heated at 400 °C shows slightly increased particle size of about 10 nm while maintaining spherical shape. The sample treated with ultrasonic for 5 h or more at room temperature shows high aspect ratio particle shape with an average diameter of 5 nm and a length of 20 nm. According to the results of the electrochemical testing, as-prepared sample, the sample heated at 400 °C for 3 h, and the sample treated with ultrasonic show initial capacities of 270, 310 and 340 mAh g -1, respectively.

  14. Influence of Pore-Fluid Pressure on Elastic Wave Velocity and Electrical Conductivity in Water-Saturated Rocks

    NASA Astrophysics Data System (ADS)

    Higuchi, A.; Watanabe, T.

    2013-12-01

    Pore-fluid pressure in seismogenic zones can play a key role in the occurrence of earthquakes (e.g., Sibson, 2009). Its evaluation via geophysical observations can lead to a good understanding of seismic activities. The evaluation requires a thorough understanding of the influence of the pore-fluid pressure on geophysical observables like seismic velocity and electrical conductivity. We have studied the influence of pore-fluid pressure on elastic wave velocity and electrical conductivity in water-saturated rocks. Fine grained (100-500μm) biotite granite (Aji, Kagawa pref., Japan) was used as rock samples. The density is 2.658-2.668 g/cm3, and the porosity 0.68-0.87%. The sample is composed of 52.8% plagioclase, 36.0% Quartz, 3.0% K-feldspar, 8.2% biotite. SEM images show that a lot of grain boundaries are open. Few intracrystalline cracks were observed. Following the method proposed by David and Zimmerman (2012), the distribution function of crack aspect ratio was evaluated from the pressure dependence of compressional and shear wave velocities in a dry sample. Cylindrical sample has dimensions of 25 mm in diameter and 30 mm in length, and saturated with 0.01 mol/l KCl aqueous solution. Compressional and shear wave velocities were measured with the pulse transmission technique (PZT transducers, f=2 MHz), and electrical conductivity the two-electrode method (Ag-AgCl electrodes, f=1 Hz-100 kHz). Simultaneous measurements of velocities and conductivity were made using a 200 MPa hydrostatic pressure vessel, in which confining and pore-fluid pressures can be separately controlled. The pore-fluid is electrically insulated from the metal work of the pressure vessel by using a newly designed plastic device (Watanabe and Higuchi, 2013). The confining pressure was progressively increased up to 25 MPa, while the pore-fluid pressure was kept at 0.1 MPa. It took five days or longer for the electrical conductivity to become stationary after increasing the confining pressure. Elastic wave velocities and electrical conductivity showed reproducibly contrasting changes for a small increase in the confining pressure. The elastic wave velocities increased only by 5% as the confining pressure increased from 0.1 MPa to 25 MPa, while the electrical conductivity decreased by an order of magnitude. Based on the SEM examinations, open grain boundaries work as cracks. The changes in elastic wave velocities and electrical conductivity must be caused by the closure of open grain boundaries. Most (˜80%) of the decrease in electrical conductivity occurred below the confining pressure of 5 MPa. As the confining pressure increased from 0.1 MPa to 5 MPa, cracks with the aspect ratio smaller than 7.5×10-5 were closed. The decrease in porosity was only 0.0005%. Such a small change in porosity caused a large change in electrical conductivity. The connectivity of fluid was maintained at the confining pressure of 25 MPa by cracks with the aspect ratio larger than 3.7×10-4. Simultaneous measurements have provided us a lot of information on the microstructure of fluid-bearing rocks.

  15. Determining Plane-Sweep Sampling Points in Image Space Using the Cross-Ratio for Image-Based Depth Estimation

    NASA Astrophysics Data System (ADS)

    Ruf, B.; Erdnuess, B.; Weinmann, M.

    2017-08-01

    With the emergence of small consumer Unmanned Aerial Vehicles (UAVs), the importance and interest of image-based depth estimation and model generation from aerial images has greatly increased in the photogrammetric society. In our work, we focus on algorithms that allow an online image-based dense depth estimation from video sequences, which enables the direct and live structural analysis of the depicted scene. Therefore, we use a multi-view plane-sweep algorithm with a semi-global matching (SGM) optimization which is parallelized for general purpose computation on a GPU (GPGPU), reaching sufficient performance to keep up with the key-frames of input sequences. One important aspect to reach good performance is the way to sample the scene space, creating plane hypotheses. A small step size between consecutive planes, which is needed to reconstruct details in the near vicinity of the camera may lead to ambiguities in distant regions, due to the perspective projection of the camera. Furthermore, an equidistant sampling with a small step size produces a large number of plane hypotheses, leading to high computational effort. To overcome these problems, we present a novel methodology to directly determine the sampling points of plane-sweep algorithms in image space. The use of the perspective invariant cross-ratio allows us to derive the location of the sampling planes directly from the image data. With this, we efficiently sample the scene space, achieving higher sampling density in areas which are close to the camera and a lower density in distant regions. We evaluate our approach on a synthetic benchmark dataset for quantitative evaluation and on a real-image dataset consisting of aerial imagery. The experiments reveal that an inverse sampling achieves equal and better results than a linear sampling, with less sampling points and thus less runtime. Our algorithm allows an online computation of depth maps for subsequences of five frames, provided that the relative poses between all frames are given.

  16. THEORETICAL AND EXPERIMENTAL ASPECTS OF ISOTOPIC FRACTIONATION.

    USGS Publications Warehouse

    O'Neil, James R.

    1986-01-01

    Essential to the interpretation of natural variations of light stable isotope ratios is knowledge of the magnitude and temperature dependence of isotopic fractionation factors between the common minerals and fluids. These fractionation factors are obtained in three ways: (1) Semi-empirical calculations using spectroscopic data and the methods of statistical mechanics. (2) Laboratory calibration studies. (3) Measurements of natural samples whose formation conditions are well-known or highly constrained. In this chapter methods (1) and (2) are evaluated and a review is given of the present state of knowledge of the theory of isotopic fractionation and the fraction that influence the isotopic properties of minerals.

  17. Quantifying the effect of 3D spatial resolution on the accuracy of microstructural distributions

    NASA Astrophysics Data System (ADS)

    Loughnane, Gregory; Groeber, Michael; Uchic, Michael; Riley, Matthew; Shah, Megna; Srinivasan, Raghavan; Grandhi, Ramana

    The choice of spatial resolution for experimentally-collected 3D microstructural data is often governed by general rules of thumb. For example, serial section experiments often strive to collect at least ten sections through the average feature-of-interest. However, the desire to collect high resolution data in 3D is greatly tempered by the exponential growth in collection times and data storage requirements. This paper explores the use of systematic down-sampling of synthetically-generated grain microstructures to examine the effect of resolution on the calculated distributions of microstructural descriptors such as grain size, number of nearest neighbors, aspect ratio, and Ω3.

  18. Holes generation in glass using large spot femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Berg, Yuval; Kotler, Zvi; Shacham-Diamand, Yosi

    2018-03-01

    We demonstrate high-throughput, symmetrical, holes generation in fused silica glass using a large spot size, femtosecond IR-laser irradiation which modifies the glass properties and yields an enhanced chemical etching rate. The process relies on a balanced interplay between the nonlinear Kerr effect and multiphoton absorption in the glass which translates into symmetrical glass modification and increased etching rate. The use of a large laser spot size makes it possible to process thick glasses at high speeds over a large area. We have demonstrated such fabricated holes with an aspect ratio of 1:10 in a 1 mm thick glass samples.

  19. Finite micro-tab system for load control on a wind turbine

    NASA Astrophysics Data System (ADS)

    Bach, A. B.; Lennie, M.; Pechlivanoglou, G.; Nayeri, C. N.; Paschereit, C. O.

    2014-06-01

    Finite micro-tabs have been investigated experimentally to evaluate the potential for load control on wind turbines. Two dimensional full span, as well as multiple finite tabs of various aspect ratios have been studied on an AH93W174 airfoil at different chord wise positions. A force balance was used to measure the aerodynamic loads. Furthermore, the wake vortex system consisting of the Karman vortex street as well as the tab tip vortices was analyzed with a 12-hole probe and hot wire anemometry. Finally, conventional oil paint as well as a quantitative digital flow analysis technique called SMARTviz were used to visualize the flow around the finite tab configurations. Results have shown that the devices are an effective solution to alleviate the airfoils overall load. The influence of the tab height, tab position as well as the finite tab aspect ratio on the lift and lift to drag ratio have been evaluated. It could be shown, that the lift difference can either be varied by changing the tab height as well as by altering the aspect ratio of the finite tabs. The drag of a two-dimensional flap is directly associated with the vortex street, while in the case of the finite tab, the solidity ratio of the tabs has the strongest effect on the drag. Therefore, the application of a finite tab system showed to improve the lift to drag ratio.

  20. SAMPLING OF CONTAMINATED SITES

    EPA Science Inventory

    A critical aspect of characterization of the amount and species of contamination of a hazardous waste site is the sampling plan developed for that site. f the sampling plan is not thoroughly conceptualized before sampling takes place, then certain critical aspects of the limits o...

  1. Influence of chromatic aberrations on space charge ion optics.

    PubMed

    Whealton, J H; Tsai, C C

    1978-04-01

    By solution to the Poisson-Vlasov equation the influence of fluctuations (chromatic aberrations) on ion optics is shown for various accelerator designs : (1) cylindrical bore triode with various aspect ratios, (2) pseudo-Pierce shaped electrode triode at various aspect ratios, (3) insulated coating emission electrode triode for various preacceleration potentials, and (4) cylindrical bore tetrodes for various field distributions. Fluctuation levels of 20% can be very important in limiting the ion optics in certain cases.

  2. Microdevice having interior cavity with high aspect ratio surface features and associated methods of manufacture and use

    DOEpatents

    Morales, Alfredo M.

    2002-01-01

    A microdevice having interior cavity with high aspect ratio features and ultrasmooth surfaces, and associated method of manufacture and use is described. An LIGA-produced shaped bit is used to contour polish the surface of a sacrificial mandrel. The contoured sacrificial mandrel is subsequently coated with a structural material and the mandrel removed to produce microdevices having micrometer-sized surface features and sub-micrometer RMS surface roughness.

  3. Fast prototyping of high-aspect ratio, high-resolution x-ray masks by gas-assisted focused ion beam

    NASA Technical Reports Server (NTRS)

    Hartley, F.; Malek, C.; Neogi, J.

    2001-01-01

    The capacity of chemically-assisted focused ion beam (fib) etching systems to undertake direct and highly anisotropic erosion of thin and thick gold (or other high atomic number [Z])coatings on x-ray mask membranes/substrates provides new levels of precision, flexibility, simplification and rapidity in the manufacture of mask absorber patterns, allowing the fast prototyping of high aspect ratio, high-resolution masks for deep x-ray lithography.

  4. Fabrication of very high aspect ratio metal nanowires by a self-propulsion mechanism.

    PubMed

    Sharabani, Rona; Reuveni, Saada; Noy, Gilad; Shapira, Eyal; Sadeh, Shira; Selzer, Yoram

    2008-04-01

    A novel synthesis method of very high aspect ratio metal nanowires is described. The synthesis utilizes a nanoporous membrane as a template and self-electrophoresis as a directed force that continuously push formed nanowires out of the pores in a rate that is identical to the rate of their elongation. As a result, while the pores of membranes are only 6 microm long, the formed nanowires could be more than 100 microm long.

  5. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  6. Inertia-gravity wave radiation from the elliptical vortex in the f-plane shallow water system

    NASA Astrophysics Data System (ADS)

    Sugimoto, Norihiko

    2017-04-01

    Inertia-gravity wave (IGW) radiation from the elliptical vortex is investigated in the f-plane shallow water system. The far field of IGW is analytically derived for the case of an almost circular Kirchhoff vortex with a small aspect ratio. Cyclone-anticyclone asymmetry appears at finite values of the Rossby number (Ro) caused by the source originating in the Coriolis acceleration. While the intensity of IGWs from the cyclone monotonically decreases as f increases, that from the anticyclone increases as f increases for relatively smaller f and has a local maximum at intermediate f. A numerical experiment is conducted on a model using a spectral method in an unbounded domain. The numerical results agree quite well with the analytical ones for elliptical vortices with small aspect ratios, implying that the derived analytical forms are useful for the verification of the numerical model. For elliptical vortices with larger aspect ratios, however, significant deviation from the analytical estimates appears. The intensity of IGWs radiated in the numerical simulation is larger than that estimated analytically. The reason is that the source of IGWs is amplified during the time evolution because the shape of the vortex changes from ideal ellipse to elongated with filaments. Nevertheless, cyclone-anticyclone asymmetry similar to the analytical estimate appears in all the range of aspect ratios, suggesting that this asymmetry is a robust feature.

  7. Invariant Imbedded T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    NASA Technical Reports Server (NTRS)

    Pelissier, Craig; Kuo, Kwo-Sen; Clune, Thomas; Adams, Ian; Munchak, Stephen

    2017-01-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM IITM+SOV software to the community under an open source license.

  8. Effect of the cross sectional aspect ratio on the flow past a twisted cylinder

    NASA Astrophysics Data System (ADS)

    Jung, Jae Hwan; Yoon, Hyun Sik

    2013-11-01

    The cross-flow around twisted cylinders of cross sectional aspect ratio (A/B) from 1 to 2.25 is investigated at a subcritical Reynolds number (Re) of 3000 using large eddy simulation (LES). The flow past a corresponding smooth and wavy cylinder is also calculated for comparison and validation against experimental data. The effect of twisted surface assessed in terms of the mean drag and root-mean-square (RMS) value of fluctuating lift. The shear layer of the twisted cylinder covering the recirculation region is more elongated than those of the smooth and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the smooth and the wavy cylinder. The maximum drag reduction of up to 13% compared with a smooth cylinder is obtained at a certain cross sectional aspect ratio. The fluctuating lift coefficient of the twisted cylinder is also significantly suppressed. We found that the cross sectional cross sectional aspect ratio (A/B) plays an essential role in determining the vortical structures behind the twisted cylinder which has a significant effect on the reduction of the fluctuating lift and suppression of flow-induced vibration. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP (No. 2011-0030013).

  9. Fabrication of Silicon Nanobelts and Nanopillars by Soft Lithography for Hydrophobic and Hydrophilic Photonic Surfaces.

    PubMed

    Baquedano, Estela; Martinez, Ramses V; Llorens, José M; Postigo, Pablo A

    2017-05-11

    Soft lithography allows for the simple and low-cost fabrication of nanopatterns with different shapes and sizes over large areas. However, the resolution and the aspect ratio of the nanostructures fabricated by soft lithography are limited by the depth and the physical properties of the stamp. In this work, silicon nanobelts and nanostructures were achieved by combining soft nanolithography patterning with optimized reactive ion etching (RIE) in silicon. Using polymethylmethacrylate (PMMA) nanopatterned layers with thicknesses ranging between 14 and 50 nm, we obtained silicon nanobelts in areas of square centimeters with aspect ratios up to ~1.6 and linewidths of 225 nm. The soft lithographic process was assisted by a thin film of SiO x (less than 15 nm) used as a hard mask and RIE. This simple patterning method was also used to fabricate 2D nanostructures (nanopillars) with aspect ratios of ~2.7 and diameters of ~200 nm. We demonstrate that large areas patterned with silicon nanobelts exhibit a high reflectivity peak in the ultraviolet C (UVC) spectral region (280 nm) where some aminoacids and peptides have a strong absorption. We also demonstrated how to tailor the aspect ratio and the wettability of these photonic surfaces (contact angles ranging from 8.1 to 96.2°) by changing the RIE power applied during the fabrication process.

  10. Experimental Study of Buoyant-Thermocapillary Convection in a Rectangular Cavity

    NASA Technical Reports Server (NTRS)

    Braunsfurth, Manfred G.; Homsy, George M.

    1996-01-01

    The problem of buoyant-thermocapillary convection in cavities is governed by a relatively large number of nondimensional parameters, and there is consequently a large number of different types of flow that can be found in this system. Previous results give disjoint glimpses of a wide variety of qualitatively and quantitatively different results in widely different parts of parameter space. In this study, we report experiments on the primary and secondary instabilities in a geometry with equal aspect ratios in the range from 1 to 8 in both the direction along and perpendicular to the applied temperature gradient. We thus complement previous work which mostly involved either fluid layers of large extent in both directions, or consisted of investigations of strictly two-dimensional disturbances. We observe the primary transition from an essentially two-dimensional flow to steady three-dimensional longitudinal rolls. The critical Marangoni number is found to depend on the aspect ratios of the system, and varies from 4.6 x 10(exp 5) at aspect ratio 2.0 to 5.5 x 10(exp 4) at aspect ratio 3.5. Further, we have investigated the stability of the three-dimensional flow at larger Marangoni numbers, and find a novel oscillatory flow at critical Marangoni numbers of the order of 6 x 10(exp 5). We suggest possible mechanisms which give rise to the oscillation, and find that it is expected to be a relaxation type oscillation.

  11. Fabrication of high aspect ratio tungsten nanostructures on ultrathin c-Si membranes for extreme UV applications

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Le Drogoff, B.; Constancias, C.; Delprat, S.; Gautier, E.; Chaker, M.; Margot, J.

    2016-01-01

    In this work, we demonstrate a full process for fabricating high aspect ratio diffraction optics for extreme ultraviolet lithography. The transmissive optics consists in nanometer scale tungsten patterns standing on flat, ultrathin (100 nm) and highly transparent (>85% at 13.5 nm) silicon membranes (diameter of 1 mm). These tungsten patterns were achieved using an innovative pseudo-Bosch etching process based on an inductively coupled plasma ignited in a mixture of SF6 and C4F8. Circular ultra-thin Si membranes were fabricated through a state-of-the-art method using direct-bonding with thermal difference. The silicon membranes were sputter-coated with a few hundred nanometers (100-300 nm) of stress-controlled tungsten and a very thin layer of chromium. Nanoscale features were written in a thin resist layer by electron beam lithography and transferred onto tungsten by plasma etching of both the chromium hard mask and the tungsten layer. This etching process results in highly anisotropic tungsten features at room temperature. The homogeneity and the aspect ratio of the advanced pattern transfer on the membranes were characterized with scanning electron microscopy after focus ion beam milling. An aspect ratio of about 6 for 35 nm size pattern is successfully obtained on a 1 mm diameter 100 nm thick Si membrane. The whole fabrication process is fully compatible with standard industrial semiconductor technology.

  12. Invariant Imbedding T-Matrix Method for Axial Symmetric Hydrometeors with Extreme Aspect Ratios

    NASA Astrophysics Data System (ADS)

    Pelissier, C.; Clune, T.; Kuo, K. S.; Munchak, S. J.; Adams, I. S.

    2017-12-01

    The single-scattering properties (SSPs) of hydrometeors are the fundamental quantities for physics-based precipitation retrievals. Thus, efficient computation of their electromagnetic scattering is of great value. Whereas the semi-analytical T-Matrix methods are likely the most efficient for nonspherical hydrometeors with axial symmetry, they are not suitable for arbitrarily shaped hydrometeors absent of any significant symmetry, for which volume integral methods such as those based on Discrete Dipole Approximation (DDA) are required. Currently the two leading T-matrix methods are the Extended Boundary Condition Method (EBCM) and the Invariant Imbedding T-matrix Method incorporating Lorentz-Mie Separation of Variables (IITM+SOV). EBCM is known to outperform IITM+SOV for hydrometeors with modest aspect ratios. However, in cases when aspect ratios become extreme, such as needle-like particles with large height to diameter values, EBCM fails to converge. Such hydrometeors with extreme aspect ratios are known to be present in solid precipitation and their SSPs are required to model the radiative responses accurately. In these cases, IITM+SOV is shown to converge. An efficient, parallelized C++ implementation for both EBCM and IITM+SOV has been developed to conduct a performance comparison between EBCM, IITM+SOV, and DDSCAT (a popular implementation of DDA). We present the comparison results and discuss details. Our intent is to release the combined ECBM & IITM+SOV software to the community under an open source license.

  13. Channel geometric scales effect on performance and optimization for serpentine proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Youcef, Kerkoub; Ahmed, Benzaoui; Ziari, Yasmina; Fadila, Haddad

    2017-02-01

    A three dimensional computational fluid dynamics model is proposed in this paper to investigate the effect of flow field design and dimensions of bipolar plates on performance of serpentine proton exchange membrane fuel cell (PEMFC). A complete fuel cell of 25 cm2 with 25 channels have been used. The aim of the work is to investigate the effect of flow channels and ribs scales on overall performance of PEM fuel cell. Therefore, geometric aspect ratio parameter defined as (width of flow channel/width of rib) is used. Influences of the ribs and openings current collector scales have been studied and analyzed in order to find the optimum ratio between them to enhance the production of courant density of PEM fuel cell. Six kind of serpentine designs have been used in this paper included different aspect ratio varying from 0.25 to 2.33 while the active surface area and number of channels are keeping constant. Aspect ratio 0.25 corresponding of (0.4 mm channel width/ 1.6mm ribs width), and Aspect ratio2.33 corresponding of (0.6 mm channel width/ 1.4mm ribs width. The results show that the best flow field designs (giving the maximum density of current) are which there dimensions of channels width is minimal and ribs width is maximal (Γ≈0.25). Also decreasing width of channels enhance the pressure drop inside the PEM fuel cell, this causes an increase of gazes velocity and enhance convection process, therefore more power generation.

  14. Detecting spatial structures in throughfall data: the effect of extent, sample size, sampling design, and variogram estimation method

    NASA Astrophysics Data System (ADS)

    Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander

    2016-04-01

    In the last three decades, an increasing number of studies analyzed spatial patterns in throughfall to investigate the consequences of rainfall redistribution for biogeochemical and hydrological processes in forests. In the majority of cases, variograms were used to characterize the spatial properties of the throughfall data. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and an appropriate layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation methods on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with heavy outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling), and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the numbers recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous throughfall studies relied on method-of-moments variogram estimation and sample sizes << 200, our current knowledge about throughfall spatial variability stands on shaky ground.

  15. Detecting spatial structures in throughfall data: The effect of extent, sample size, sampling design, and variogram estimation method

    NASA Astrophysics Data System (ADS)

    Voss, Sebastian; Zimmermann, Beate; Zimmermann, Alexander

    2016-09-01

    In the last decades, an increasing number of studies analyzed spatial patterns in throughfall by means of variograms. The estimation of the variogram from sample data requires an appropriate sampling scheme: most importantly, a large sample and a layout of sampling locations that often has to serve both variogram estimation and geostatistical prediction. While some recommendations on these aspects exist, they focus on Gaussian data and high ratios of the variogram range to the extent of the study area. However, many hydrological data, and throughfall data in particular, do not follow a Gaussian distribution. In this study, we examined the effect of extent, sample size, sampling design, and calculation method on variogram estimation of throughfall data. For our investigation, we first generated non-Gaussian random fields based on throughfall data with large outliers. Subsequently, we sampled the fields with three extents (plots with edge lengths of 25 m, 50 m, and 100 m), four common sampling designs (two grid-based layouts, transect and random sampling) and five sample sizes (50, 100, 150, 200, 400). We then estimated the variogram parameters by method-of-moments (non-robust and robust estimators) and residual maximum likelihood. Our key findings are threefold. First, the choice of the extent has a substantial influence on the estimation of the variogram. A comparatively small ratio of the extent to the correlation length is beneficial for variogram estimation. Second, a combination of a minimum sample size of 150, a design that ensures the sampling of small distances and variogram estimation by residual maximum likelihood offers a good compromise between accuracy and efficiency. Third, studies relying on method-of-moments based variogram estimation may have to employ at least 200 sampling points for reliable variogram estimates. These suggested sample sizes exceed the number recommended by studies dealing with Gaussian data by up to 100 %. Given that most previous throughfall studies relied on method-of-moments variogram estimation and sample sizes ≪200, currently available data are prone to large uncertainties.

  16. Probing the properties of extragalactic SNRs

    NASA Astrophysics Data System (ADS)

    Leonidaki, Ioanna

    2016-06-01

    The investigation of extragalactic SNRs gives us the advantage of surmounting the challenges we are usually confronted with when observing Galactic SNRs, most notably Galactic extinction and distance uncertainties. At the same time, by obtaining larger samples of SNRs, we are allowed to cover a wider range of environments and ISM parameters than our Galaxy, providing us a more complete and representative picture of SNR populations. I will outline the recent progress on extragalactic surveys of SNR populations focusing on the optical, radio, and X-ray bands. Multi-wavelength surveys can provide several key aspects of the physical processes taking place during the evolution of SNRs while at the same time can overcome possible selection effects that are inherent from monochromatic surveys. I will discuss the properties derived in each band (e.g. line ratios, luminosities, densities, temperatures) and their connection in order to yield information on various aspects of their behaviour and evolution. For example their interplay with the surrounding medium, their correlation with star formation activity, their luminosity distributions and their dependence on galaxy types.

  17. [Tooth decay: epidemiological and therapeutic aspects in dental service of University Teaching Hospital Yalgado Ouedraogo and Municipal Centre of Oral Health].

    PubMed

    Ouedraogo, Y; Kabore, W A D; Konsem, T; Fall, M; Millogo, M; Ouattara, S; Ouedraogo, D

    2015-12-01

    In order to improve the prevention and treatment of dental caries in Burkina Faso, we conducted a study on the epidemiological and therapeutic aspects of dental caries in the dental services of University Teaching Hospital Yalgado Ouedraogo and in the Municipal Centre of Oral Health of Ouagadougou. A prospective and descriptive study from October, 15th 2012 to January, 15th 2013 was conducted on a sample of 191 patients. The variables recorded were: patient's identity, age, sex, area of residence, food mode, socioeconomic level, reason for consultation, oral hygiene, DMFT index, degree of tissue damage, the topography of the carious lesions and the applied therapy. Caries prevalence was 93.19% more female consultations, with sex ratio at 0.77. The average age was 31 years for a sample often engaged in trade and the informal sector. Carious lesions were usually limited to less than 4 teeth. The main motivation for the consultation was pain at 82.20%. The use of preventive care is quite low in our population. Extractions still occupy an important part of treatment. We need to improve oral hygiene and show to patients the necessity of routine visits to the dentist every year for early treatment.

  18. Isolation and properties of cellulose nanofibrils from coconut palm petioles by different mechanical process.

    PubMed

    Xu, Changyan; Zhu, Sailing; Xing, Cheng; Li, Dagang; Zhu, Nanfeng; Zhou, Handong

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity.

  19. Isolation and Properties of Cellulose Nanofibrils from Coconut Palm Petioles by Different Mechanical Process

    PubMed Central

    Li, Dagang; Zhu, Nanfeng

    2015-01-01

    In this study, cellulose nanofibrils (CNFs) were successfully isolated from coconut palm petiole residues falling off naturally with chemical pretreatments and mechanical treatments by a grinder and a homogenizor. FTIR spectra analysis showed that most of hemicellulose and lignin were removed from the fiber after chemical pretreatments. The compositions of CNFS indicated that high purity of nanofibrils with cellulose contain more than 95% was obtained. X-ray diffractogram demonstrated that chemical pretreatments significantly increased the crystallinity of CNFs from 38.00% to 70.36%; however, 10-15 times of grinding operation followed by homogenizing treatment after the chemical pretreatments did not significantly improve the crystallinity of CNFs. On the contrary, further grinding operation could destroy crystalline regions of the cellulose. SEM image indicated that high quality of CNFs could be isolated from coconut palm petiole residues with chemical treatments in combination of 15 times of grinding followed by 10 times of homogenization and the aspect ratio of the obtained CNFs ranged from 320 to 640. The result of TGA-DTG revealed that the chemical-mechanical treatments improved thermal stability of fiber samples, and the CNFs with 15 grinding passing times had the best thermal stability. This work suggests that the CNFs can be successfully extracted from coconut palm petiole residues and it may be a potential feedstock for nanofiber reinforced composites due to its high aspect ratio and crystallinity. PMID:25875280

  20. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    PubMed

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  1. Tip Characterization Method using Multi-feature Characterizer for CD-AFM

    PubMed Central

    Orji, Ndubuisi G.; Itoh, Hiroshi; Wang, Chumei; Dixson, Ronald G.; Walecki, Peter S.; Schmidt, Sebastian W.; Irmer, Bernd

    2016-01-01

    In atomic force microscopy (AFM) metrology, the tip is a key source of uncertainty. Images taken with an AFM show a change in feature width and shape that depends on tip geometry. This geometric dilation is more pronounced when measuring features with high aspect ratios, and makes it difficult to obtain absolute dimensions. In order to accurately measure nanoscale features using an AFM, the tip dimensions should be known with a high degree of precision. We evaluate a new AFM tip characterizer, and apply it to critical dimension AFM (CD-AFM) tips used for high aspect ratio features. The characterizer is made up of comb-shaped lines and spaces, and includes a series of gratings that could be used as an integrated nanoscale length reference. We also demonstrate a simulation method that could be used to specify what range of tip sizes and shapes the characterizer can measure. Our experiments show that for non re-entrant features, the results obtained with this characterizer are consistent to 1 nm with the results obtained by using widely accepted but slower methods that are common practice in CD-AFM metrology. A validation of the integrated length standard using displacement interferometry indicates a uniformity of better than 0.75%, suggesting that the sample could be used as highly accurate and SI traceable lateral scale for the whole evaluation process. PMID:26720439

  2. Microfluidic active mixers employing ultra-high aspect-ratio rare-earth magnetic nano-composite polymer artificial cilia

    NASA Astrophysics Data System (ADS)

    Rahbar, Mona; Shannon, Lesley; Gray, Bonnie L.

    2014-02-01

    We present a new micromixer based on highly magnetic, flexible, high aspect-ratio, artificial cilia that are fabricated as individual micromixer elements or in arrays for improved mixing performance. These new cilia enable high efficiency, fast mixing in a microchamber, and are controlled by small electromagnetic fields. The artificial cilia are fabricated using a new micromolding process for nano-composite polymers. Cilia fibers with aspect-ratios as high as 8:0.13 demonstrate the fabrication technique's capability in creating ultra-high aspect-ratio microstructures. Cilia, which are realized in polydimethylsiloxane doped with rare-earth magnetic powder, are magnetized to produce permanent magnetic structures with bidirectional deflection capabilities, making them highly suitable as mixers controlled by electromagnetic fields. Due to the high magnetization level of the polarized nano-composite polymer, we are able to use miniature electromagnets providing relatively small magnetic fields of 1.1 to 7 mT to actuate the cilia microstructures over a very wide motion range. Mixing performances of a single cilium, as well as different arrays of multiple cilia ranging from 2 to 8 per reaction chamber, are characterized and compared with passive diffusion mixing performance. The mixer cilia are actuated at different amplitudes and frequencies to optimize mixing performance. We demonstrate that more than 85% of the total volume of the reaction chamber is fully mixed after 3.5 min using a single cilium mixer at 7 mT compared with only 20% of the total volume mixed with passive diffusion. The time to achieve over 85% mixing is further reduced to 70 s using an array of eight cilia microstructures. The novel microfabrication technique and use of rare-earth permanently-magnetizable nano-composite polymers in mixer applications has not been reported elsewhere by other researchers. We further demonstrate improved mixing over other cilia micromixers as enabled by the high aspect-ratio, high flexibility, and magnetic properties of our cilia micromixer elements.

  3. Alternative method for variable aspect ratio vias using a vortex mask

    NASA Astrophysics Data System (ADS)

    Schepis, Anthony R.; Levinson, Zac; Burbine, Andrew; Smith, Bruce W.

    2014-03-01

    Historically IC (integrated circuit) device scaling has bridged the gap between technology nodes. Device size reduction is enabled by increased pattern density, enhancing functionality and effectively reducing cost per chip. Exemplifying this trend are aggressive reductions in memory cell sizes that have resulted in systems with diminishing area between bit/word lines. This affords an even greater challenge in the patterning of contact level features that are inherently difficult to resolve because of their relatively small area and complex aerial image. To accommodate these trends, semiconductor device design has shifted toward the implementation of elliptical contact features. This empowers designers to maximize the use of free device space, preserving contact area and effectively reducing the via dimension just along a single axis. It is therefore critical to provide methods that enhance the resolving capacity of varying aspect ratio vias for implementation in electronic design systems. Vortex masks, characterized by their helically induced propagation of light and consequent dark core, afford great potential for the patterning of such features when coupled with a high resolution negative tone resist system. This study investigates the integration of a vortex mask in a 193nm immersion (193i) lithography system and qualifies its ability to augment aspect ratio through feature density using aerial image vector simulation. It was found that vortex fabricated vias provide a distinct resolution advantage over traditionally patterned contact features employing a 6% attenuated phase shift mask (APM). 1:1 features were resolvable at 110nm pitch with a 38nm critical dimension (CD) and 110nm depth of focus (DOF) at 10% exposure latitude (EL). Furthermore, iterative source-mask optimization was executed as means to augment aspect ratio. By employing mask asymmetries and directionally biased sources aspect ratios ranging between 1:1 and 2:1 were achievable, however, this range is ultimately dictated by pitch employed.

  4. Excellent field emission properties of vertically oriented CuO nanowire films

    NASA Astrophysics Data System (ADS)

    Feng, Long; Yan, Hui; Li, Heng; Zhang, Rukang; Li, Zhe; Chi, Rui; Yang, Shuaiyu; Ma, Yaya; Fu, Bin; Liu, Jiwen

    2018-04-01

    Oriented CuO nanowire films were synthesized on a large scale using simple method of direct heating copper grids in air. The field emission properties of the sample can be enhanced by improving the aspect ratio of the nanowires just through a facile method of controlling the synthesis conditions. Although the density of the nanowires is large enough, the screen effect is not an important factor in this field emission process because few nanowires sticking out above the rest. Benefiting from the unique geometrical and structural features, the CuO nanowire samples show excellent field emission (FE) properties. The FE measurements of CuO nanowire films illustrate that the sample synthesized at 500 °C for 8 h has a comparatively low turn-on field of 0.68 V/μm, a low threshold field of 1.1 V/μm, and a large field enhancement factor β of 16782 (a record high value for CuO nanostructures, to the best of our knowledge), indicating that the samples are promising candidates for field emission applications.

  5. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  6. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Mildner, D. F. R.

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  7. Hydroxyapatite degradation and biocompatibility

    NASA Astrophysics Data System (ADS)

    Wang, Haibo

    Hydroxyapatite (HA) is widely used as a bioactive ceramics since it forms a chemical bonding to bone. The disadvantage of this material is its poor mechanical properties. HA can be degraded in body, which is the reason for its bioactivity, but too fast degradation rate could cause negative effects, such as macrophage present, particle generation, and even implant clinical failure. HA degradation rate will be greatly changed under many conditions: purity, HA form (i.e. bulk form, porous form, coating, or HA/polymer composites), microstructure, implant site, body conditions, etc. Although much work has been done in HA properties and application areas, the HA degradation behavior and mechanism under these different conditions are still not clear. In this research, three aspects of HA degradation have been studied: (1) Two very common impurities---Tri-Calcium Phosphate (TCP) and Calcium Oxide and their influences on HA degradation in vitro and in vivo, (2) influence of HA/polymer composite form on HA degradation, (3) HA material particle generation and related mechanism. From the in vitro and in vivo tests on bulk HA disks with various Ca/P ratios, HA degradation can clearly be found. The degradation level is different in different Ca/P ratio samples as well as in different test environments. In same test environment, non-stoichiometric HA samples have higher degradation rate than stoichiometric HA. HA/PMMA composite design successfully intensifies HA degradation both in vitro and in vivo. Grain boundary damage can be found on in vivo test samples, which has not been clearly seen on bulk HA degraded surface. HA particle generation is found in in vitro and in vivo HA/PMMA composite surface and in vivo bulk HA surface. Sintering temperature and time does affect HA grain size, and this affect HA degradation rate. Intergranular fracture is found in a several micron zone close to the Ca/P ratio 1.62 and 1.67 sample degraded surfaces. At Ca/P ratio greater than 1.667, after HA degradation in water, solution pH increases because of CaO presence.

  8. Financial trends of leading US oil companies: 1968-1985: Discussion paper No. 017R

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowell, E.

    1986-10-01

    This study presents a compilation of principal categories of financial data for a sample of leading US based oil companies for the years 1968 through 1985. The categories contained in the compilation are annual financial inflows and outflows, profitability measures and financial position. The period selected exhibits trends prior to and since the Arab oil embargo of 1973/1974. The study is organized into two sections. The first contains a discussion of: (1) the major components of the companies' aggregate primary financial statements; (2) period and subperiod trends of selected items (e.g., revenues, net income, cash flow, capital expenditures); and (3)more » analytical relationships among financial items, as well as their trends (e.g., various measures of profitability, proportion of cash flow allocated to capital expenditures, liquidity ratios, dividend payout ratios). Because of the interrelationship of the primary financial statements, discussion of some items may be subsumed under more than one content heading; thus, net income is covered not only under that heading, but also in connection with profitability, sources of funds and capital expenditures. Where appropriate, data for the sample of companies under study are compared to oil company aggregates developed by other organizations. Similarly, selected comparisons are made in financial data between oil and non-oil companies. The second section of the paper contains comprehensive tables setting forth the data and ratios on which the discussion is based. The purposes of this paper are: (1) to serve as a financial reference source for the API sample of companies (see Appendix A); (2) to present this material for a meaningful historical period; and (3) to elucidate key aspects of oil company financial performance. 6 figs., 6 tabs.« less

  9. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    NASA Astrophysics Data System (ADS)

    Kallinikos, N.; Isliker, H.; Vlahos, L.; Meletlidou, E.

    2014-06-01

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  10. Integrable perturbed magnetic fields in toroidal geometry: An exact analytical flux surface label for large aspect ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallinikos, N.; Isliker, H.; Vlahos, L.

    2014-06-15

    An analytical description of magnetic islands is presented for the typical case of a single perturbation mode introduced to tokamak plasma equilibrium in the large aspect ratio approximation. Following the Hamiltonian structure directly in terms of toroidal coordinates, the well known integrability of this system is exploited, laying out a precise and practical way for determining the island topology features, as required in various applications, through an analytical and exact flux surface label.

  11. Transonic steady- and unsteady-pressure measurements on a high-aspect-ratio supercritical-wing model with oscillating control surfaces

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Ricketts, R. H.; Cazier, F. W., Jr.

    1980-01-01

    A supercritical wing with an aspect ratio of 10.76 and with two trailing-edge oscillating control surfaces is described. The semispan wing is instrumented with 252 static orifices and 164 in situ dynamic-pressure gages for studying the effects of control-surface position and motion on steady- and unsteady-pressures at transonic speeds. Results from initial tests conducted in the Langley Transonic Dynamics Tunnel at two Reynolds numbers are presented in tabular form.

  12. Ultraviolet and near-infrared femtosecond temporal pulse shaping with a new high-aspect-ratio one-dimensional micromirror array.

    PubMed

    Weber, Stefan M; Extermann, Jérôme; Bonacina, Luigi; Noell, Wilfried; Kiselev, Denis; Waldis, Severin; de Rooij, Nico F; Wolf, Jean-Pierre

    2010-09-15

    We demonstrate the capabilities of a new optical microelectromechanical systems device that we specifically developed for broadband femtosecond pulse shaping. It consists of a one-dimensional array of 100 independently addressable, high-aspect-ratio micromirrors with up to 3 μm stroke. We apply linear and quadratic phase modulations demonstrating the temporal compression of 800 and 400 nm pulses. Because of the device's surface flatness, stroke, and stroke resolution, phase shaping over an unprecedented bandwidth is attainable.

  13. Transonic low aspect ratio wing-winglet designs

    NASA Technical Reports Server (NTRS)

    Kuhlman, John M.; Cerney, Michael J.; Liaw, Paul

    1988-01-01

    A numerical design study has been conducted to ascertain the potential of winglets as a drag-reducing measure at high subsonic Mach numbers for low aspect ratio wings. The four variants of the winglet concept studied are a 'detuned' winglet with decreased incidence at the wing-winglet juncture; a steerable winglet; more gradual pressure recovery at the wing and winglet trailing edges; and the application of supercritical airfoil technology. A further study is conducted to assess the accuracy of the numerical code's predicted pressure drag values.

  14. Flight loads measurements obtained from calibrated strain-gage bridges mounted externally on the skin of a low-aspect-ratio wing

    NASA Technical Reports Server (NTRS)

    Eckstrom, C. V.

    1976-01-01

    Flight-test measurements of wingloads (shear, bending moment, and torque) were obtained by means of strain-gage bridges mounted on the exterior surface of a low-aspect-ratio, thin, swept wing which had a structural skin, full-depth honeycomb core, sandwich construction. Details concerning the strain-gage bridges, the calibration procedures used, and the flight-test results are presented along with some pressure measurements and theoretical calculations for comparison purposes.

  15. Growth of high-aspect ratio horizontally-aligned ZnO nanowire arrays.

    PubMed

    Soman, Pranav; Darnell, Max; Feldman, Marc D; Chen, Shaochen

    2011-08-01

    A method of fabricating horizontally-aligned zinc-oxide (ZnO) nanowire (NW) arrays with full control over the width and length is demonstrated. SEM images reveal the hexagonal structure typical of zinc oxide NWs. Arrays of high-aspect ratio horizontal ZnO NWs are fabricated by making use of the lateral overgrowth from dot patterns created by electron beam lithography (EBL). An array of patterned wires are lifted off and transferred to a flexible PDMS substrate with possible applications in several key nanotechnology areas.

  16. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    NASA Astrophysics Data System (ADS)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  17. Phenotyping of lumbosacral stenosis in Labrador retrievers using computed tomography.

    PubMed

    Mukherjee, Meenakshi; Jones, Jeryl C; Holásková, Ida; Raylman, Raymond; Meade, Jean

    2017-09-01

    Deep phenotyping tools for characterizing preclinical morphological conditions are important for supporting genetic research studies. Objectives of this retrospective, cross-sectional, methods comparison study were to describe and compare qualitative and quantitative deep phenotypic characteristics of lumbosacral stenosis in Labrador retrievers using computed tomography (CT). Lumbosacral CT scans and medical records were retrieved from data archives at three veterinary hospitals. Using previously published qualitative CT diagnostic criteria, a board-certified veterinary radiologist assigned dogs as either lumbosacral stenosis positive or lumbosacral stenosis negative at six vertebral locations. A second observer independently measured vertebral canal area, vertebral fat area, and vertebral body area; and calculated ratios of vertebral canal area/vertebral body area and vertebral fat area/vertebral body area (fat area ratio) at all six locations. Twenty-five dogs were sampled (lumbosacral stenosis negative, 11 dogs; lumbosacral stenosis positive, 14 dogs). Of the six locations, cranial L6 was the most affected by lumbosacral stenosis (33%). Five of six dogs (83%) with clinical signs of lumbosacral pain were lumbosacral stenosis positive at two or more levels. All four quantitative variables were significantly smaller at the cranial aspects of the L6 and L7 vertebral foramina than at the caudal aspects (P < 0.0001). Fat area ratio was a significant predictor of lumbosacral stenosis positive status at all six locations with cranial L6 having the greatest predictive value (R 2 = 0.43) and range of predictive probability (25-90%). Findings from the current study supported the use of CT as a deep phenotyping tool for future research studies of lumbosacral stenosis in Labrador retrievers. © 2017 American College of Veterinary Radiology.

  18. Aerodynamic and heat transfer analysis of the low aspect ratio turbine

    NASA Astrophysics Data System (ADS)

    Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.

    1987-06-01

    The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.

  19. Thermal stability and specular reflection behaviour of CoNbZr-based bottom spin valves with nano-oxide layer

    NASA Astrophysics Data System (ADS)

    Kim, Jong Soo; Lee, Seong-Rae

    2004-06-01

    The thermal stability and specularity aspects of a CoNbZr-based bottom spin valve (SV) employing a nano-oxide layer (NOL) were investigated. The magnetoresistance (MR) ratio of the as-deposited CoNbZr-based bottom SV increased by 62% (from 6.3 to 10.2%) with incorporation of the NOL. The enhancement of the MR ratio was considered to be due to the specular effect ( increased from 0.722 to 1.363 cm) of the NOL. The MR ratio of a Ta-based bottom SV decreased by about 45% (from 6.9 to 3.8%) when the samples were annealed at 300 °C for 240 min. By contrast, the MR ratio of the CoNbZr-based bottom SV with NOL increase d by 14 % (from 10.2 to 11.7%). The root mean square roughness value of the CoNbZr layer (0.07 nm) was superior to that of the Ta layer (0.43 nm). Although Mn in IrMn diffused out to the surface through the active layers resulting in the formation of Mn oxide at the surface in the CoNbZr-based bottom SV, no trace of Mn was found in the active layers and no significant degradation occurred.

  20. Comparative study on DuPont analysis and DEA models for measuring stock performance using financial ratio

    NASA Astrophysics Data System (ADS)

    Arsad, Roslah; Shaari, Siti Nabilah Mohd; Isa, Zaidi

    2017-11-01

    Determining stock performance using financial ratio is challenging for many investors and researchers. Financial ratio can indicate the strengths and weaknesses of a company's stock performance. There are five categories of financial ratios namely liquidity, efficiency, leverage, profitability and market ratios. It is important to interpret the ratio correctly for proper financial decision making. The purpose of this study is to compare the performance of listed companies in Bursa Malaysia using Data Envelopment Analysis (DEA) and DuPont analysis Models. The study is conducted in 2015 involving 116 consumer products companies listed in Bursa Malaysia. The estimation method of Data Envelopment Analysis computes the efficiency scores and ranks the companies accordingly. The Alirezaee and Afsharian's method of analysis based Charnes, Cooper and Rhodes (CCR) where Constant Return to Scale (CRS) is employed. The DuPont analysis is a traditional tool for measuring the operating performance of companies. In this study, DuPont analysis is used to evaluate three different aspects such as profitability, efficiency of assets utilization and financial leverage. Return on Equity (ROE) is also calculated in DuPont analysis. This study finds that both analysis models provide different rankings of the selected samples. Hypothesis testing based on Pearson's correlation, indicates that there is no correlation between rankings produced by DEA and DuPont analysis. The DEA ranking model proposed by Alirezaee and Asharian is unstable. The method cannot provide complete ranking because the values of Balance Index is equal and zero.

  1. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres.

    PubMed

    Osmond-McLeod, Megan J; Poland, Craig A; Murphy, Fiona; Waddington, Lynne; Morris, Howard; Hawkins, Stephen C; Clark, Steve; Aitken, Rob; McCall, Maxine J; Donaldson, Ken

    2011-05-13

    It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. © 2011 Osmond-McLeod et al; licensee BioMed Central Ltd.

  2. Durability and inflammogenic impact of carbon nanotubes compared with asbestos fibres

    PubMed Central

    2011-01-01

    Background It has been suggested that carbon nanotubes might conform to the fibre pathogenicity paradigm that explains the toxicities of asbestos and other fibres on a continuum based on length, aspect ratio and biopersistence. Some types of carbon nanotubes satisfy the first two aspects of the fibre paradigm but only recently has their biopersistence begun to be investigated. Biopersistence is complex and requires in vivo testing and analysis. However durability, the chemical mimicking of the process of fibre dissolution using in vitro treatment, is closely related to biopersistence and more readily determined. Here, we describe an experimental process to determine the durability of four types of carbon nanotubes in simulated biological fluid (Gambles solution), and their subsequent pathogenicity in vivo using a mouse model sensitive to inflammogenic effects of fibres. The in vitro and in vivo results were compared with well-characterised glass wool and asbestos fibre controls. Results After incubation for up to 24 weeks in Gambles solution, our control fibres were recovered at percentages consistent with their known in vitro durabilities and/or in vivo persistence, and three out of the four types of carbon nanotubes tested (single-walled (CNTSW) and multi-walled (CNTTANG2, CNTSPIN)) showed no, or minimal, loss of mass or change in fibre length or morphology when examined by electron microscopy. However, the fourth type [multi-walled (CNTLONG1)] lost 30% of its original mass within the first three weeks of incubation, after which there was no further loss. Electron microscopy of CNTLONG1 samples incubated for 10 weeks confirmed that the proportion of long fibres had decreased compared to samples briefly exposed to the Gambles solution. This loss of mass and fibre shortening was accompanied by a loss of pathogenicity when injected into the peritoneal cavities of C57Bl/6 mice compared to fibres incubated briefly. CNTSW did not elicit an inflammogenic effect in the peritoneal cavity assay used here. Conclusions These results support the view that carbon nanotubes are generally durable but may be subject to bio-modification in a sample-specific manner. They also suggest that pristine carbon nanotubes, either individually or in rope-like aggregates of sufficient length and aspect ratio, can induce asbestos-like responses in mice, but that the effect may be mitigated for certain types that are less durable in biological systems. Results indicate that durable carbon nanotubes that are either short or form tightly bundled aggregates with no isolated long fibres are less inflammogenic in fibre-specific assays. PMID:21569450

  3. Age estimation of living Indian individuals based on aspartic acid racemization from tooth biopsy specimen

    PubMed Central

    Rastogi, Manu; Logani, Ajay; Shah, Naseem; Kumar, Abhishek; Arora, Saurabh

    2017-01-01

    Background: Age estimation in living individuals is imperative to amicably settle civil and criminal disputes. A biochemical method based on amino acid racemization was evaluated for age estimation of living Indian individuals. Design: Caries-free maxillary/mandibular premolar teeth (n = 90) were collected from participants with age proof documents and divided into predefined nine age groups. Materials and Methods: Dentine biopsy from the labial aspect of the tooth crown was taken with an indigenously developed microtrephine. The samples were processed and subjected to gas chromatography. Dextrorotatory:levorotatory ratios were calculated, and a regression equation was formulated. Results: Across all age groups, an error of 0 ± 4 years between protein racemization age and chronological age was observed. Conclusion: Aspartic acid racemization from dentine biopsy samples could be a viable and accurate technique for age estimation of living individuals who have attained a state of skeletal maturity. PMID:29263613

  4. Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.

    1991-01-01

    Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.

  5. High-aspect-ratio microstructures with versatile slanting angles on silicon by uniform metal-assisted chemical etching

    NASA Astrophysics Data System (ADS)

    Li, Liyi; Zhang, Cheng; Tuan, Chia-Chi; Chen, Yun; Wong, C.-P.

    2018-05-01

    High-aspect-ratio (HAR) microstructures on silicon (Si) play key roles in photonics and electromechanical devices. However, it has been challenging to fabricate HAR microstructures with slanting profiles. Here we report successful fabrication of uniform HAR microstructures with controllable slanting angles on (1 0 0)-Si by slanted uniform metal-assisted chemical etching (SUMaCE). The trenches have width of 2 µm, aspect ratio greater than 20:1 and high geometric uniformity. The slanting angles can be adjusted between 2-70° with respect to the Si surface normal. The results support a fundamental hypothesis that under the UMaCE condition, the preferred etching direction is along the normal of the thin film catalysts, regardless of the relative orientation of the catalyst to Si substrates or the crystalline orientation of the substrates. The SUMaCE method paves the way to HAR 3D microfabrication with arbitrary slanting profiles inside Si.

  6. Attenuation of pressure dips underneath piles of spherocylinders.

    PubMed

    Zhao, Haiyang; An, Xizhong; Gou, Dazhao; Zhao, Bo; Yang, Runyu

    2018-05-30

    The discrete element method (DEM) was used to simulate the piling of rod-like (elongated sphero-cylindrical) particles, mainly focusing on the effect of particle shape on the structural and force properties of the piles. In this work, rod-like particles of different aspect ratios were discharged on a flat surface to form wedge-shaped piles. The surface properties of the piles were characterized in terms of angle of repose and stress at the bottom of the piles. The results showed that the rise of the angle of repose became slower with the increase of particle aspect ratio. The pressure dip underneath the piles reached the maximum when the particle aspect ratio was around 1.6, beyond which the pressure dip phenomenon became attenuated. Both the pressure dip and the shear stress dip were quantitatively examined. The structure and forces inside the piles were further analyzed to understand the change in pressure dip, indicating that "bridging" or "arching" structures within the piles were the cause of the pressure dip.

  7. Hydrodynamic characteristics over a range of speeds up to 80 feet per second of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion

    NASA Technical Reports Server (NTRS)

    Vaughan, Victor L , Jr; Ramsen, John A

    1957-01-01

    Results of an investigation of the hydrodynamic characteristics over an extended speed range of a rectangular modified flat plate having an aspect ratio of 0.25 and operating at several depths of submersion are presented. Comparisons between these data and data over a lower speed range on a similar aspect-ratio-0.25 flat plate but having one-half the thickness are presented. These comparisons show no significant differences at the low speeds. At high speeds and high angles of attack, where extensive cavitation was present, the lift coefficients were lower than would have been indicated by the results of the previous investigations and the present investigation at the lower angles of attack. A brief discussion and comparison of ventilation are presented which shows two types of planing bubble formation and the effect of increasing the thickness of the model on the ventilation boundary.

  8. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer P.; Sullivan, John P.

    2012-12-01

    In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.

  9. Turbulent thermal superstructures in Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Stevens, Richard J. A. M.; Blass, Alexander; Zhu, Xiaojue; Verzicco, Roberto; Lohse, Detlef

    2018-04-01

    We report the observation of superstructures, i.e., very large-scale and long living coherent structures in highly turbulent Rayleigh-Bénard convection up to Rayleigh Ra=109 . We perform direct numerical simulations in horizontally periodic domains with aspect ratios up to Γ =128 . In the considered Ra number regime the thermal superstructures have a horizontal extend of six to seven times the height of the domain and their size is independent of Ra. Many laboratory experiments and numerical simulations have focused on small aspect ratio cells in order to achieve the highest possible Ra. However, here we show that for very high Ra integral quantities such as the Nusselt number and volume averaged Reynolds number only converge to the large aspect ratio limit around Γ ≈4 , while horizontally averaged statistics such as standard deviation and kurtosis converge around Γ ≈8 , the integral scale converges around Γ ≈32 , and the peak position of the temperature variance and turbulent kinetic energy spectra only converge around Γ ≈64 .

  10. Program to develop a performance and heat load prediction system for multistage turbines

    NASA Technical Reports Server (NTRS)

    Sharma, OM

    1994-01-01

    Flows in low-aspect ratio turbines, such as the SSME fuel turbine, are three dimensional and highly unsteady due to the relative motion of adjacent airfoil rows and the circumferential and spanwise gradients in total pressure and temperature, The systems used to design these machines, however, are based on the assumption that the flow is steady. The codes utilized in these design systems are calibrated against turbine rig and engine data through the use of empirical correlations and experience factors. For high aspect ratio turbines, these codes yield reasonably accurate estimates of flow and temperature distributions. However, future design trends will see lower aspect ratio (reduced number of parts) and higher inlet temperature which will result in increased three dimensionality and flow unsteadiness in turbines. Analysis of recently acquired data indicate that temperature streaks and secondary flows generated in combustors and up-stream airfoils can have a large impact on the time-averaged temperature and angle distributions in downstream airfoil rows.

  11. Microchannel contacting of crystalline silicon solar cells

    DOE PAGES

    Bullock, James; Ota, Hiroki; Wang, Hanchen; ...

    2017-08-22

    There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less

  12. Method for fabricating high aspect ratio structures in perovskite material

    DOEpatents

    Karapetrov, Goran T.; Kwok, Wai-Kwong; Crabtree, George W.; Iavarone, Maria

    2003-10-28

    A method of fabricating high aspect ratio ceramic structures in which a selected portion of perovskite or perovskite-like crystalline material is exposed to a high energy ion beam for a time sufficient to cause the crystalline material contacted by the ion beam to have substantially parallel columnar defects. Then selected portions of the material having substantially parallel columnar defects are etched leaving material with and without substantially parallel columnar defects in a predetermined shape having high aspect ratios of not less than 2 to 1. Etching is accomplished by optical or PMMA lithography. There is also disclosed a structure of a ceramic which is superconducting at a temperature in the range of from about 10.degree. K. to about 90.degree. K. with substantially parallel columnar defects in which the smallest lateral dimension of the structure is less than about 5 microns, and the thickness of the structure is greater than 2 times the smallest lateral dimension of the structure.

  13. Microchannel contacting of crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bullock, James; Ota, Hiroki; Wang, Hanchen

    There is tremendous interest in reducing losses caused by the metal contacts in silicon photovoltaics, particularly the optical and resistive losses of the front metal grid. One commonly sought-after goal is the creation of high aspect-ratio metal fingers which provide an optically narrow and low resistance pathway to the external circuit. Currently, the most widely used metal contact deposition techniques are limited to widths and aspect-ratios of ~40 μm and ~0.5, respectively. In this study, we introduce the use of a micropatterned polydimethylsiloxane encapsulation layer to form narrow (~20 μm) microchannels, with aspect-ratios up to 8, on the surface ofmore » solar cells. We demonstrate that low temperature metal pastes, electroless plating and atomic layer deposition can all be used within the microchannels. Further, we fabricate proof-of-concept structures including simple planar silicon heterojunction and homojunction solar cells. While preliminary in both design and efficiency, these results demonstrate the potential of this approach and its compatibility with current solar cell architectures.« less

  14. Femtosecond laser patterning of biological materials

    NASA Astrophysics Data System (ADS)

    Grigoropoulos, Costas P.; Jeon, Hojeong; Hidai, Hirofumi; Hwang, David J.

    2011-03-01

    This paper aims at presenting a review of work at the Laser Thermal Laboratory on the microscopic laser modification of biological materials using ultrafast laser pulses. We have devised a new method for fabricating high aspect ratio patterns of varying height by using two-photon polymerization process in order to study contact guidance and directed growth of biological cells. Studies using NIH-3T3 and MDCK cells indicate that cell morphology on fiber scaffolds is influenced by the pattern of actin microfilament bundles. Cells experienced different strength of contact guidance depending on the ridge height. Cell morphology and motility was investigated on micronscale anisotropic cross patterns and parallel line patterns having different aspect ratios. A significant effect on cell alignment and directionality of migration was observed. Cell morphology and motility were influenced by the aspect ratio of the cross pattern, the grid size, and the ridge height. Cell contractility was examined microscopically in order to measure contractile forces generated by individual cells on self-standing fiber scaffolds.

  15. Anisotropic localized surface plasmon resonances in CuS nanoplates prepared by size-selective precipitation

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Yamada, Kaoru; Hirose, Tatsunori; Kuzuya, Toshihiro

    2018-05-01

    CuS nanoplates were synthesized by a colloidal method and separated into four fractions of nanoplates with different aspect ratios by a size-selective precipitation. In addition to a strong near infrared absorption band ascribed to the in-plane mode of the localized surface plasmon resonance (LSPR), we found a weak absorption band on the high frequency tail of the in-plane LSPR band. The frequency of the weak absorption band was almost constant and independent of the aspect ratio, while the in-plane LSPR band exhibited a strong aspect ratio dependence. These characteristics suggested that the weak absorption band is ascribed to the out-of-plane LSPR. Although the out-of-plane LSPR was expected to be difficult to observe for CuS nanoplates due to its low intensity and overlap with the strong in-plane resonance, we could successfully identify the out-of-plane mode by reducing the width of the size distribution and spectral broadening caused thereby.

  16. Anisotropy, size, and aspect ratio effects on micropillar compression of Al-SiC nanolaminate composites

    DOE PAGES

    Mayer, C. R.; Yang, L. W.; Singh, S. S.; ...

    2016-05-20

    Metal-ceramic nanolaminate composites show promise as high strength and toughness materials. Micropillar compression was used to characterize the mechanical behavior of AlSiC multilayers in different orientations including loading at 0°, 45° and 90° with respect to the direction of the layers. The 0° orientation showed the highest strength while the 45° orientation showed the lowest strength. Each orientation showed unique deformation behavior. Effects of pillar size and aspect ratio were also studied. Higher compressive strengths were observed in smaller pillars for all orientations. This effect was shown to be due to a lower probability of flaws using Weibull statistics. Additionally,more » changes in the aspect ratio was shown to have no significant effect on the behavior except an increase in the strain to failure in the 0° orientation. In conclusion, finite element analysis (FEA) was used to simulate and understand the effect of these parameters on the deformation behavior.« less

  17. Habit control of deuterated potassium dihydrogen phosphate crystal for laser applications

    NASA Astrophysics Data System (ADS)

    Guzman, L. A.; Suzuki, M.; Fujimoto, Y.; Fujioka, K.

    2016-03-01

    In this study we investigate the habit of partially deuterated potassium dihydrogen phosphate (DKDP) crystals in the presence of Al3+ ions. We have grown single DKDP crystals in (50wt% and 80wt%) partially deuterated solutions and in solutions doped with Al3+ ions (2 ppm) by the point-seed rapid growth technique at controlled supercooling (ΔT=10°C). The growth length of each crystal face was measured and the aspect ratio was calculated. We found that crystals grown in partially deuterated solutions are similar in aspect ratio, while, crystals grown in deuterated solutions doped with Al3+ ions showed a relative change in aspect ratio, the crystal increased in size in the pyramidal direction (vertical axis direction). Crystal characteristics were also analyzed by X-ray diffraction, FTIR and Raman spectroscopy. We have speculated that the relative habit modification is due to a probably adsorption and inclusions of Al3+ ions in the prismatic section of the crystal.

  18. Self-assembled growth of MnSi~1.7 nanowires with a single orientation and a large aspect ratio on Si(110) surfaces

    PubMed Central

    2013-01-01

    MnSi~1.7 nanowires (NWs) with a single orientation and a large aspect ratio have been formed on a Si(110) surface with the molecular beam epitaxy method by a delicate control of growth parameters, such as temperature, deposition rate, and deposition time. Scanning tunneling microscopy (STM) was employed to study the influence of these parameters on the growth of NWs. The supply of free Si atoms per unit time during the silicide reaction plays a critical role in the growth kinetics of the NWs. High growth temperature and low deposition rate are favorable for the formation of NWs with a large aspect ratio. The orientation relationship between the NWs and the reconstruction rows of the Si(110) surface suggests that the NWs grow along the 11¯0 direction of the silicon substrate. High-resolution STM and backscattered electron scanning electron microscopy images indicate that the NWs are composed of MnSi~1.7. PMID:23339353

  19. Magnetization reversal dynamics in Co nanowires with competing magnetic anisotropies

    NASA Astrophysics Data System (ADS)

    Pal, Semanti; Saha, Susmita; Polley, Debanjan; Barman, Anjan

    2011-12-01

    We present the magnetization reversal dynamics of Co nanowires with competing magnetic anisotropies. The aspect ratio ( R) of the nanowires is varied between 2.5 and 60, and we observe a cross-over of the directions of the magnetic easy and hard axes at R=6.8. Micromagnetic simulations qualitatively reproduce the observed cross-over and give detailed insight into the reversal mechanisms associated with the cross-over. The reversal mechanism for a field applied along the long axis of the nanowire exhibits a quasi-coherent rotation mode and a corkscrew-like mode, respectively, above and below the cross-over, with the formation of a Bloch domain near the cross-over region. For a field applied along the short axis, the reversal occurs by nucleation and propagation of reversed domains from the two ends of the nanowires for very high values of the aspect ratio down to the cross-over region, but it transforms into quasi-coherent rotation mode for smaller aspect ratios (below the cross-over region).

  20. High aspect ratio nano-fabrication of photonic crystal structures on glass wafers using chrome as hard mask.

    PubMed

    Hossain, Md Nazmul; Justice, John; Lovera, Pierre; McCarthy, Brendan; O'Riordan, Alan; Corbett, Brian

    2014-09-05

    Wafer-scale nano-fabrication of silicon nitride (Si x N y ) photonic crystal (PhC) structures on glass (quartz) substrates is demonstrated using a thin (30 nm) chromium (Cr) layer as the hard mask for transferring the electron beam lithography (EBL) defined resist patterns. The use of the thin Cr layer not only solves the charging effect during the EBL on the insulating substrate, but also facilitates high aspect ratio PhCs by acting as a hard mask while deep etching into the Si x N y . A very high aspect ratio of 10:1 on a 60 nm wide grating structure has been achieved while preserving the quality of the flat top of the narrow lines. The presented nano-fabrication method provides PhC structures necessary for a high quality optical response. Finally, we fabricated a refractive index based PhC sensor which shows a sensitivity of 185 nm per RIU.

  1. Jamming of three-dimensional prolate granular materials.

    PubMed

    Desmond, K; Franklin, Scott V

    2006-03-01

    We have found that the ability of long thin rods to jam into a solidlike state in response to a local perturbation depends upon both the particle aspect ratio and the container size. The dynamic phase diagram in this parameter space reveals a broad transition region separating granular stick-slip and solidlike behavior. In this transition region the pile displays both solid and stick-slip behavior. We measure the force on a small object pulled through the pile, and find the fluctuation spectra to have power law tails with an exponent characteristic of the region. The exponent varies from beta=-2 in the stick-slip region to beta=-1 in the solid region. These values reflect the different origins--granular rearrangements vs dry friction--of the fluctuations. Finally, the packing fraction shows only a slight dependence on container size, but depends on aspect ratio in a manner predicted by mean-field theory and implies an aspect-ratio-independent contact number of =5.25 +/- 0.03.

  2. Synthesis and crystal structures of gold nanowires with Gemini surfactants as directing agents.

    PubMed

    Xu, Feng; Hou, Hao; Gao, Zhinong

    2014-12-15

    The preparation of crystalline gold nanowires (NWs) by using gemini surfactants as directing agents through a three-step seed-mediated method is reported. Unlike the nanorods with relatively low aspect ratios (typically below 20) obtained by using cetyltrimethylammonium bromide as a directing agent, the NWs obtained in this investigation can reach up to 4.4 μm, and the largest aspect ratio is calculated to be 210. For this, each of seven different gemini surfactants are utilized as directing agents, and the length and/or aspect ratio of the NWs can be tuned by varying the hydrocarbon chain lengths of the gemini surfactants. Both single and twinned crystalline structures are elucidated by selected-area electron diffraction and high-resolution transmission electron microscopy studies. The use of gemini surfactants not only advances the synthesis of gold nanostructures, but improves the understanding of the growth mechanism for seed-mediated growth. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. The Divine Ratio and Golden Rectangles.

    ERIC Educational Resources Information Center

    Cooper, Martin

    1982-01-01

    The material examines aspects of Fibonacci and Lucas sequences, the generation of the Divine Ratio, and the nature of this ratio in golden rectangles, triangles, and figures made up of golden triangles. It is noted Lucas sequence is formed like Fibonacci but has one and three as the first elements. (Author/MP)

  4. Heat Transfer in Conical Corner and Short Superelliptical Transition Ducts

    NASA Technical Reports Server (NTRS)

    Poinsatte, Philip; Thurman, Douglas; Hippensteele, Steven

    2008-01-01

    Local surface heat transfer measurements were experimentally mapped using a transient liquid-crystal heat-transfer technique on the surface of two circular-to-rectangular transition ducts. One has a transition cross section defined by conical corners (Duct 1) and the other by an elliptical equation with changing coefficients (Duct 2). Duct 1 has a length-to-diameter ratio of 0.75 and an exit plane aspect ratio of 1.5. Duct 2 has a length-to-diameter ratio of 1.0 and an exit plane aspect ratio of 2.9. Test results are reported for various inlet-diameter-based Reynolds numbers ranging from 0.45 106 to 2.39 106 and two freestream turbulence intensities of about 1 percent, which is typical of wind tunnels, and up to 16 percent, which may be more typical of real engine conditions.

  5. The ratio of effective building height to street width governs dispersion of local vehicle emissions

    NASA Astrophysics Data System (ADS)

    Schulte, Nico; Tan, Si; Venkatram, Akula

    2015-07-01

    Analysis of data collected in street canyons located in Hanover, Germany and Los Angeles, USA, suggests that street-level concentrations of vehicle-related pollutants can be estimated with a model that assumes that vertical turbulent transport of emissions dominates the governing processes. The dispersion model relates surface concentrations to traffic flow rate, the effective aspect ratio of the street, and roof level turbulence. The dispersion model indicates that magnification of concentrations relative to those in the absence of buildings is most sensitive to the aspect ratio of the street, which is the ratio of the effective height of the buildings on the street to the width of the street. This result can be useful in the design of transit oriented developments that increase building density to reduce emissions from transportation.

  6. Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse.

    PubMed

    Salamone, J D; Correa, M; Mingote, S; Weber, S M

    2003-04-01

    For several decades, it has been suggested that dopamine (DA), especially in nucleus accumbens, mediates the primary reinforcing characteristics of natural stimuli such as food, as well as drugs of abuse. Yet, several fundamental aspects of primary food reinforcement, motivation, and appetite are left intact after interference with accumbens DA transmission. Recent studies have shown that accumbens DA is involved in responsiveness to conditioned stimuli and activational aspects of motivation. In concurrent choice tasks, accumbens DA depletions cause animals to reallocate their choice behavior in the direction of instrumental behaviors that involve less effort. Also, an emerging body of evidence has demonstrated that the effects of accumbens DA depletions on instrumental food-seeking behavior can vary greatly depending upon the task. For example, some schedules of reinforcement are insensitive to the effects of DA depletions, whereas others are highly sensitive (e.g., large fixed ratios). Accumbens DA depletions slow the rate of operant responding, blunt the rate-facilitating effects of moderate-sized ratios, and enhance the rate-suppressing effects of very large ratios (i.e., produce ratio strain). Accumbens DA may be important for enabling rats to overcome behavioral constraints, such as work-related response costs, and may be critical for the behavioral organization and conditioning processes that enable animals to engage in vigorous responses, such as barrier climbing, or to emit large numbers of responses in ratio schedules in the absence of primary reinforcement. The involvement of accumbens DA in activational aspects of motivation has implications for energy-related disorders in psychiatry, as well as aspects of drug-seeking behavior.

  7. Parametric effect on the mixing of the combination of a hydrogen porthole with an air porthole in transverse gaseous injection flow fields

    NASA Astrophysics Data System (ADS)

    Li, Lang-quan; Huang, Wei; Yan, Li; Li, Shi-bin

    2017-10-01

    The dual transverse injection system with a front hydrogen porthole and a rear air porthole arranged in tandem is proposed, and this is a realistic approach for mixing enhancement and penetration improvement of transverse injection in a scramjet combustor. The influence of this dual transverse injection system on mixing characteristics has been evaluated numerically based on grid independency analysis and code validation. The numerical approach employed in the current study has been validated against the available experimental data in the open literature, and the predicted wall static pressure distributions show reasonable agreement with the experimental data for the cases with different jet-to-crossflow pressure ratios. The obtained results predicted by the three-dimensional Reynolds-average Navier - Stokes (RANS) equations coupled with the two equation k-ω shear stress transport (SST) turbulence model show that the air pothole has an great impact on penetration depth and mixing efficiency, and the effect of air jet on flow field varies with different values of the aspect ratio. The air porthole with larger aspect ratio can increase the fuel penetration depth. However, when the aspect ratio is relatively small, the fuel penetration depth decreases, and even smaller than that of the single injection system. At the same time, the air pothole has a highly remarkable improvement on mixing efficiency, especially in the near field. The smaller the aspect ratio of the air porthole is, the higher the mixing efficiency in the near field is. This is due to its larger circulation in the near field. The dual injection system owns more losses of stagnation pressure than the single injection system.

  8. Pure axial flow of viscoelastic fluids in rectangular microchannels under combined effects of electro-osmosis and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Reshadi, Milad; Saidi, Mohammad Hassan; Ebrahimi, Abbas

    2018-02-01

    This paper presents an analysis of the combined electro-osmotic and pressure-driven axial flows of viscoelastic fluids in a rectangular microchannel with arbitrary aspect ratios. The rheological behavior of the fluid is described by the complete form of Phan-Thien-Tanner (PTT) model with the Gordon-Schowalter convected derivative which covers the upper convected Maxwell, Johnson-Segalman and FENE-P models. Our numerical simulation is based on the computation of 2D Poisson-Boltzmann, Cauchy momentum and PTT constitutive equations. The solution of these governing nonlinear coupled set of equations is obtained by using the second-order central finite difference method in a non-uniform grid system and is verified against 1D analytical solution of the velocity profile with less than 0.06% relative error. Also, a parametric study is carried out to investigate the effect of channel aspect ratio (width to height), wall zeta potential and the Debye-Hückel parameter on 2D velocity profile, volumetric flow rate and the Poiseuille number in the mixed EO/PD flows of viscoelastic fluids with different Weissenberg numbers. Our results show that, for low channel aspect ratios, the previous 1D analytical models underestimate the velocity profile at the channel half-width centerline in the case of favorable pressure gradients and overestimate it in the case of adverse pressure gradients. The results reveal that the inapplicability of the Debye-Hückel approximation at high zeta potentials is more significant for higher Weissenberg number fluids. Also, it is found that, under the specified values of electrokinetic parameters, there is a threshold for velocity scale ratio in which the Poiseuille number is approximately independent of channel aspect ratio.

  9. Impact of graphic format on perception of change in biological data: implications for health monitoring in conditions such as asthma.

    PubMed

    Jansen, Jesse; McCaffery, Kirsten J; Hayen, Andrew; Ma, David; Reddel, Helen K

    2012-03-01

    Variation in graphic format can substantially influence interpretation of data. Despite a large body of literature on the optimal design of graphs, little attention has been paid to the format of charts for health monitoring. This study assessed the effect of aspect ratio (x:y ratio) and interconnecting lines on visual identification of change in biological data, such as during asthma exacerbations. Eighty volunteers viewed 72 sets of six consecutive blocks of unidentified biological data, recording if each block of data was increasing, decreasing, or the same as the previous block. Three chart aspect ratios were examined (A, 5.2:1; B, 3.0:1; C, 1.1:1), with or without lines between data points. Datasets from lung function monitoring by asthma patients included a mild/moderate/severe fall ('exacerbation') or no exacerbation. False negative (missing true exacerbations) and false positive (identifying non-existent exacerbations) responses were calculated. 84% of exacerbation blocks were correctly identified. There was a significant interaction between exacerbation severity and aspect ratio (p=0.0048). The most compressed chart (C) had the fewest false negative responses. Moderate falls were missed in 24%, 12%, and 5% of trials on charts A, B, and C, respectively (C vs A: adjusted relative risk 0.19 (95% CI 0.12 to 0.30)). False positive responses were infrequent (A, 2.5%; B, 3.8%; C, 8.3%), increasing slightly if data points were joined with lines (4.3% vs 5.1%, p=0.004) . Compressed charts can improve the visual detection of change in biological data by up to 80%. The aspect ratio of charts should be standardised to facilitate clinical pattern recognition.

  10. Convective heat transfer in a high aspect ratio minichannel heated on one side

    DOE PAGES

    Forrest, Eric C.; Hu, Lin -Wen; Buongiorno, Jacopo; ...

    2015-10-21

    Experimental results are presented for single-phase heat transfer in a narrow rectangular minichannel heated on one side. The aspect ratio and gap thickness of the test channel were 29:1 and 1.96 mm, respectively. Friction pressure drop and Nusselt numbers are reported for the transition and fully turbulent flow regimes, with Prandtl numbers ranging from 2.2 to 5.4. Turbulent friction pressure drop for the high aspect ratio channel is well-correlated by the Blasius solution when a modified Reynolds number, based upon a laminar equivalent diameter, is utilized. The critical Reynolds number for the channel falls between 3500 and 4000, with Nusseltmore » numbers in the transition regime being reasonably predicted by Gnielinski's correlation. The dependence of the heat transfer coefficient on the Prandtl number is larger than that predicted by circular tube correlations, and is likely a result of the asymmetric heating. The problem of asymmetric heating condition is approached theoretically using a boundary layer analysis with a two-region wall layer model, similar to that originally proposed by Prandtl. The analysis clarifies the influence of asymmetric heating on the Nusselt number and correctly predicts the experimentally observed trend with Prandtl number. Furthermore, a semi-analytic correlation is derived from the analysis that accounts for the effect of aspect ratio and asymmetric heating, and is shown to predict the experimental results of this study with a mean absolute error (MAE) of less than 5% for 4000 < Re < 70,000.« less

  11. Gas Barrier Behavior of Polystyrene-Clay Nanocomposites

    NASA Astrophysics Data System (ADS)

    Nazarenko, Sergei; Meneghetti, Paulo; Photinon, Kanokorn; Qutubuddin, Syed

    2004-03-01

    Polystyrene (PS)/clay nanocomposites were synthesized via in-situ polymerization using montmorillonite functionalized with a zwitterionic surfactant, octadecyldimethyl betaine (C18DMB), or with a polymerizable cationic surfactant, vinylbenzyldimethyldodecylammonium chloride (VDAC). The co-polymerization of VDAC with the styrene monomer resulted in exfoliated nanocomposites for PS/VDAC as characterized by x-ray diffraction (XRD) while intercalated structure was observed for PS/C18DMB. Oxygen barrier of PS/clay nanocomposites were studied and compared with conventional PS composite of untreated MMT. The improvement of oxygen barrier was more significant for intercalated than for exfoliated system. Nielsen model, which assumes that the filler particles are dispersed uniformly in the polymer, was applied to the data. The aspect ratio determined from the model was 43 for PS/C18DMB, nearly four times higher than for PS/VDAC. These results appear contradictory to the morphology characterized by XRD since for exfoliated nanocomposite the aspect ratio ideally would be around 100 or 200. Transmission Electron Microscope (TEM) was used to explain and correlate the actual nano-structural morphology to the barrier performance. In the case of PS/C18DMB, some of the clay layers form a staircase-like arrangement resulting in a high aspect ratio which creates a more tortuous path for the gas diffusing molecule to transverse the nanocomposite film. For PS/VDAC, the nano-layers were dispersed individually but arranged themselves in domains of low aspect ratio reducing the tortuosity effect.

  12. Water entry of cylindrical bodies with various aspect ratios

    NASA Astrophysics Data System (ADS)

    Kim, Nayoung; Park, Hyungmin

    2017-11-01

    We experimentally investigate the water entry of cylindrical bodies with different aspect ratio (1.0-8.0), focusing on the deformation of free surface and resulting phenomena over and under the surface. The experiment is performed using a high-speed imaging (upto 10000 fps) and PIV. The head and tail of bodies are hemispherical and the nose part is additionally roughened with a sandpaper to see the effect of roughness as well. The release height is also adjusted to change the impact velocity at the free surface (Reynolds number is order of 105). For smooth surface (without cavity formation), a thin liquid film rises up the body after impacting, gathers at the pole and forms a jet over the free surfaces. The jet is created in the form of a thick and thin jet. The thin jet is produced by a water film riding up the surface of an object, and a thick jet is produced by rising water from underwater as the object sinks. However, as the aspect ratio increases, the liquid film does not fully ride up the body and cannot close, so there is an empty space below the free surface. With roughness (with cavity), the liquid film is detached from the body and splash/dome is formed above the free surface. The splash height and its collapsing time decrease with increasing the aspect ratio. Supported by Grants (MPSS-CG-2016-02, NRF-2017R1A4A1015523) of the Korea government.

  13. Modeling and characterization of dielectrophoretically structured piezoelectric composites using piezoceramic particle inclusions with high aspect ratios

    NASA Astrophysics Data System (ADS)

    van den Ende, D. A.; Maier, R. A.; van Neer, P. L. M. J.; van der Zwaag, S.; Randall, C. A.; Groen, W. A.

    2013-01-01

    In this work, the piezoelectric properties at high electric fields of dielectrophoretically aligned PZT—polymer composites containing high aspect ratio particles (such as short fibers) are presented. Polarization and strain as a function of electric field are evaluated. The properties of the composites are compared to those of PZT-polymer composites with equiaxed particles, continuous PZT fiber-polymer composites, and bulk PZT ceramics. From high-field polarization and strain measurements, the effective field dependent permittivity and piezoelectric charge constant in the poling direction are determined for dielectrophoresis structured PZT-polymer composites, continuous PZT fiber-polymer composites, and bulk PZT ceramics. The changes in dielectric properties of the inclusions and the matrix at high fields influence the dielectric and piezoelectric properties of the composites. It is found that the permittivity and piezoelectric charge constants increase towards a maximum at an applied field of around 2.5-5 kV/mm. The electric field at which the maximum occurs depends on the aspect ratio and degree of alignment of the inclusions. Experimental values of d33 at low and high applied fields are compared to a model describing the composites as a continuous polymer matrix containing PZT particles of various aspect ratios arranged into chains. Thickness mode coupling factors were determined from measured impedance data using fitted equivalent circuit model simulations. The relatively high piezoelectric strain constants, voltage constants, and thickness coupling factors indicate that such aligned short fiber composites could be useful as flexible large area transducers.

  14. Investigation of precipitate refinement in Mg alloys by an analytical composite failure model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tabei, Ali; Li, Dongsheng; Lavender, Curt A.

    2015-10-01

    An analytical model is developed to simulate precipitate refinement in second phase strengthened magnesium alloys. The model is developed based on determination of the stress fields inside elliptical precipitates embedded in a rate dependent inelastic matrix. The stress fields are utilized to determine the failure mode that governs the refinement behavior. Using an AZ31 Mg alloy as an example, the effects the applied load, aspect ratio and orientation of the particle is studied on the macroscopic failure of a single α-Mg17Al12 precipitate. Additionally, a temperature dependent version of the corresponding constitutive law is used to incorporate the effects of temperature.more » In plane strain compression, an extensional failure mode always fragments the precipitates. The critical strain rate at which the precipitates start to fail strongly depends on the orientation of the precipitate with respect to loading direction. The results show that the higher the aspect ratio is, the easier the precipitate fractures. Precipitate shape is another factor influencing the failure response. In contrast to elliptical precipitates with high aspect ratio, spherical precipitates are strongly resistant to sectioning. In pure shear loading, in addition to the extensional mode of precipitate failure, a shearing mode may get activated depending on orientation and aspect ratio of the precipitate. The effect of temperature in relation to strain rate was also verified for plane strain compression and pure shear loading cases.« less

  15. Flow structure, heat transfer and pressure drop in varying aspect ratio two-pass rectangular smooth channels

    NASA Astrophysics Data System (ADS)

    Siddique, Waseem; El-Gabry, Lamyaa; Shevchuk, Igor V.; Hushmandi, Narmin B.; Fransson, Torsten H.

    2012-05-01

    Two-pass channels are used for internal cooling in a number of engineering systems e.g., gas turbines. Fluid travelling through the curved path, experiences pressure and centrifugal forces, that result in pressure driven secondary motion. This motion helps in moving the cold high momentum fluid from the channel core to the side walls and plays a significant role in the heat transfer in the channel bend and outlet pass. The present study investigates using Computational Fluid Dynamics (CFD), the flow structure, heat transfer enhancement and pressure drop in a smooth channel with varying aspect ratio channel at different divider-to-tip wall distances. Numerical simulations are performed in two-pass smooth channel with aspect ratio Win/H = 1:3 at inlet pass and Wout/H = 1:1 at outlet pass for a variety of divider-to-tip wall distances. The results show that with a decrease in aspect ratio of inlet pass of the channel, pressure loss decreases. The divider-to-tip wall distance (Wel) not only influences the pressure drop, but also the heat transfer enhancement at the bend and outlet pass. With an increase in the divider-to-tip wall distance, the areas of enhanced heat transfer shifts from side walls of outlet pass towards the inlet pass. To compromise between heat transfer and pressure drop in the channel, Wel/H = 0.88 is found to be optimum for the channel under study.

  16. Gender differences in the anatomy of the distal femur.

    PubMed

    Gillespie, R J; Levine, A; Fitzgerald, S J; Kolaczko, J; DeMaio, M; Marcus, R E; Cooperman, D R

    2011-03-01

    Recently, gender-specific designs of total knee replacement have been developed to accommodate anatomical differences between males and females. We examined a group of male and female distal femora matched for age and height, to determine if there was a difference in the aspect ratio (mediolateral distance versus anteroposterior distance) and the height of the anterior flange between the genders. The Hamann-Todd Collection provided 1207 skeletally mature cadaver femora. The femoral length, the anteroposterior height, height of the lateral and medial flanges and the mediolateral width were measured in all the specimens. The mechanical axis of the femur, the cut articular width and the aspect ratio were assessed. Statistical analysis of the effect of gender upon the aspect ratio and the lateral and medial flanges was undertaken, controlling for age, height and race. The mean aspect ratio of male femora was 1.21 (SD 0.07) and of female femora it was 1.16 (SD 0.06) (p < 0.001). There was no significant difference between male and female specimens in the mean size of the lateral flange (6.57 mm (SD 2.57) and 7.02 mm (SD 2.36), respectively; p = 0.099) or of the medial flange (3.03 mm (SD 2.47) and 3.56 mm (SD 2.32), respectively; p = 0.67). Future work in the design of knee prostheses should take into account the overall variability of the anatomy of the distal femur.

  17. Postemplacement dynamics of basaltic intrusions in the continental crust

    NASA Astrophysics Data System (ADS)

    Roman, A.; Jaupart, C.

    2017-02-01

    Laboratory experiments document the postemplacement behavior of mafic intrusions that spread at a density interface and founder as they become denser than their surroundings due to cooling and crystallization. All else being equal, the larger the intrusion volume, the farther the intrusion can spread and the smaller its aspect ratio is. The final aspect ratio is a function of a single dimensionless number analogous to the Rayleigh number of thermal convection. Once it is denser than its surroundings, the intrusion becomes unstable and may founder in two different regimes. At aspect ratios larger than about 0.4, the "teardrop" regime is such that the intrusion thickens in a central region, developing the shapes of a funnel and a pendant drop. At lower aspect ratios, another regime is observed, with thickening of the intrusion at the leading edge and thinning in a central region. The thick outer ring in turn becomes unstable into a set of teardrops and leads to an irregular horizontal outline. In one variant called the "jellyfish" regime, the thin central region develops a number of downwellings and upwellings in a Rayleigh-Taylor-like pattern. These instabilities may get arrested due to cooling as the intrusion and encasing rocks become too strong to deform. One would then be left with a funnel-shaped residual body or a wide irregular one with thick peripheral lobes and a thinner central region. These different patterns can be recognized in upper crustal mafic intrusions.

  18. Image Quality Modeling and Characterization of Nyquist Sampled Framing Systems with Operational Considerations for Remote Sensing

    NASA Astrophysics Data System (ADS)

    Garma, Rey Jan D.

    The trade between detector and optics performance is often conveyed through the Q metric, which is defined as the ratio of detector sampling frequency and optical cutoff frequency. Historically sensors have operated at Q ≈ 1, which introduces aliasing but increases the system modulation transfer function (MTF) and signal-to-noise ratio (SNR). Though mathematically suboptimal, such designs have been operationally ideal when considering system parameters such as pointing stability and detector performance. Substantial advances in read noise and quantum efficiency of modern detectors may compensate for the negative aspects associated with balancing detector/optics performance, presenting an opportunity to revisit the potential for implementing Nyquist-sampled (Q ≈ 2) sensors. A digital image chain simulation is developed and validated against a laboratory testbed using objective and subjective assessments. Objective assessments are accomplished by comparison of the modeled MTF and measurements from slant-edge photographs. Subjective assessments are carried out by performing a psychophysical study where subjects are asked to rate simulation and testbed imagery against a DeltaNIIRS scale with the aid of a marker set. Using the validated model, additional test cases are simulated to study the effects of increased detector sampling on image quality with operational considerations. First, a factorial experiment using Q-sampling, pointing stability, integration time, and detector performance is conducted to measure the main effects and interactions of each on the response variable, DeltaNIIRS. To assess the fidelity of current models, variants of the General Image Quality Equation (GIQE) are evaluated against subject-provided ratings and two modified GIQE versions are proposed. Finally, using the validated simulation and modified IQE, trades are conducted to ascertain the feasibility of implementing Q ≈ 2 designs in future systems.

  19. Understanding Copper Isotope Behavior in the High Temperature Magmatic-Hydrothermal Porphyry Environment

    NASA Astrophysics Data System (ADS)

    Gregory, Melissa J.; Mathur, Ryan

    2017-11-01

    Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.

  20. Breast Cancer Research at NASA

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA's Marshall Space Flight Center (MSFC) is sponsoring research with Bioreactors, rotating wall vessels designed to grow tissue samples in space, to understand how breast cancer works. This ground-based work studies the growth and assembly of human mammary epithelial cells (HMEC) from breast cancer susceptible tissue. Radiation can make the cells cancerous, thus allowing better comparisons of healthy vs. tunourous tissues. Here, two High-Aspect Ratio Vessels turn at about 12 rmp to keep breast tissue constructs suspended inside the culture media. Syringes allow scientists to pull for analysis during growth sequences. The tube in the center is a water bubbler that dehumidifies the air to prevent evaporation of the media and thus the appearance of destructive bubbles in the bioreactor.

Top