An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.
2016-01-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
Sample Returns Missions in the Coming Decade
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil
2000-01-01
In the coming decade, several missions will attempt to return samples to Earth from varying parts of the solar system. These samples will provide invaluable insight into the conditions present during the early formation of the solar system, and possibly give clues to how life began on Earth. A description of five sample return missions is presented (Stardust, Genesis, Muses-C. Mars Sample Return, and Comet Nucleus Sample Return). An overview of each sample return mission is given, concentrating particularly on the technical challenges posed during the Earth entry, descent, and landing phase of the missions. Each mission faces unique challenges in the design of an Earth entry capsule. The design of the entry capsule must address the aerodynamic, heating, deceleration, landing, and recovery requirements for the safe return of samples to Earth.
An efficient approach for Mars Sample Return using emerging commercial capabilities
NASA Astrophysics Data System (ADS)
Gonzales, Andrew A.; Stoker, Carol R.
2016-06-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science (Squyres, 2011 [1]). This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as ;Red Dragon;, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit-an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities.
Gonzales, Andrew A; Stoker, Carol R
2016-06-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as "Red Dragon", onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth's biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022.
An Efficient Approach for Mars Sample Return Using Emerging Commercial Capabilities
Gonzales, Andrew A.; Stoker, Carol R.
2016-01-01
Mars Sample Return is the highest priority science mission for the next decade as recommended by the 2011 Decadal Survey of Planetary Science [1]. This article presents the results of a feasibility study for a Mars Sample Return mission that efficiently uses emerging commercial capabilities expected to be available in the near future. The motivation of our study was the recognition that emerging commercial capabilities might be used to perform Mars Sample Return with an Earth-direct architecture, and that this may offer a desirable simpler and lower cost approach. The objective of the study was to determine whether these capabilities can be used to optimize the number of mission systems and launches required to return the samples, with the goal of achieving the desired simplicity. All of the major element required for the Mars Sample Return mission are described. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships. The analysis shows the feasibility of a complete and closed Mars Sample Return mission design based on the following scenario: A SpaceX Falcon Heavy launch vehicle places a modified version of a SpaceX Dragon capsule, referred to as “Red Dragon”, onto a Trans Mars Injection trajectory. The capsule carries all the hardware needed to return to Earth Orbit samples collected by a prior mission, such as the planned NASA Mars 2020 sample collection rover. The payload includes a fully fueled Mars Ascent Vehicle; a fueled Earth Return Vehicle, support equipment, and a mechanism to transfer samples from the sample cache system onboard the rover to the Earth Return Vehicle. The Red Dragon descends to land on the surface of Mars using Supersonic Retropropulsion. After collected samples are transferred to the Earth Return Vehicle, the single-stage Mars Ascent Vehicle launches the Earth Return Vehicle from the surface of Mars to a Mars phasing orbit. After a brief phasing period, the Earth Return Vehicle performs a Trans Earth Injection burn. Once near Earth, the Earth Return Vehicle performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit - an Earth orbit, at lunar distance. A retrieval mission then performs a rendezvous with the Earth Return Vehicle, retrieves the sample container, and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of Martian materials into the Earth’s biosphere. The mission can start in any one of three Earth to Mars launch opportunities, beginning in 2022. PMID:27642199
NASA Astrophysics Data System (ADS)
DiGregorio, B. E.
2018-04-01
The only 100% guarantee of protecting Earth's biosphere from a hazardous back contamination event is to use the Moon as a sample return examination facility to qualify samples for eventual return to Earth.
COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.
2009-01-01
In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.
NASA Astrophysics Data System (ADS)
Sandford, S. A.; Chabot, N. L.; Dello Russo, N.; Leary, J. C.; Reynolds, E. L.; Weaver, H. A.; Wooden, D. H.
2017-07-01
CORSAIR (COmet Rendezvous, Sample Acquisition, Investigation, and Return) is a mission concept submitted in response to NASA's New Frontiers 4 call. CORSAIR's proposed mission is to return comet nucleus samples to Earth for detailed analysis.
NASA Technical Reports Server (NTRS)
Pugel, Betsy
2017-01-01
This presentation is a review of the timeline for Apollo's approach to Planetary Protection, then known as Planetary Quarantine. Return of samples from Apollo 11, 12 and 14 represented NASA's first attempts into conducting what is now known as Restricted Earth Return, where return of samples is undertaken by the Agency with the utmost care for the impact that the samples may have on Earth's environment due to the potential presence of microbial or other life forms that originate from the parent body (in this case, Earth's Moon).
NASA Astrophysics Data System (ADS)
DiGregorio, B. E.
2018-02-01
The only 100% guarantee of protecting our planet's biosphere from a back contamination event is to use the Moon as a sample return examination facility to qualify samples for eventual return to Earth.
STARDUST and HAYABUSA: Sample Return Missions to Small Bodies in the Solar System
NASA Technical Reports Server (NTRS)
Sandford, S. A.
2005-01-01
There are currently two active spacecraft missions designed to return samples to Earth from small bodies in our Solar System. STARDUST will return samples from the comet Wild 2, and HAYABUSA will return samples from the asteroid Itokawa. On January 3,2004, the STARDUST spacecraft made the closest ever flyby (236 km) of the nucleus of a comet - Comet Wild 2. During the flyby the spacecraft collected samples of dust from the coma of the comet. These samples will be returned to Earth on January 15,2006. After a brief preliminary examination to establish the nature of the returned samples, they will be made available to the general scientific community for study. The HAYABUSA spacecraft arrived at the Near Earth Asteroid Itokawa in September 2005 and is currently involved in taking remote sensing data from the asteroid. Several practice landings have been made and a sample collection landing will be made soon. The collected sample will be returned to Earth in June 2007. During my talk I will discuss the scientific goals of the STARDUST and HAYABUSA missions and provide an overview of their designs and flights to date. I will also show some of the exciting data returned by these spacecraft during their encounters with their target objects.
Mars Sample Return without Landing on the Surface
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Jones, Steven M.; Yen, A. S.
2000-01-01
Many in the science community want a Mars sample return in the near future, with the expectation that it will provide in-depth information, significantly beyond what we know from remote sensing, limited in-situ measurements, and work with Martian meteorites. Certainly, return of samples from the Moon resulted in major advances in our understanding of both the geologic history of our planetary satellite, and its relationship to Earth. Similar scientific insights would be expected from analyses of samples returned from Mars. Unfortunately, Mars-lander sample-return missions have been delayed, for the reason that NASA needs more time to review the complexities and risks associated with that type of mission. A traditional sample return entails a complex transfer-chain, including landing, collection, launch, rendezvous, and the return to Earth, as well as an evaluation of potential biological hazards involved with bringing pristine Martian organics to Earth. There are, however, means of returning scientifically-rich samples from Mars without landing on the surface. This paper discusses an approach for returning intact samples of surface dust, based on known instrument technology, without using an actual Martian lander.
OSIRIS-REx, Returning the Asteroid Sample
NASA Technical Reports Server (NTRS)
Ajluni, Thomas, M.; Everett, David F.; Linn, Timothy; Mink, Ronald; Willcockson, William; Wood, Joshua
2015-01-01
This paper addresses the technical aspects of the sample return system for the upcoming Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission. The overall mission design and current implementation are presented as an overview to establish a context for the technical description of the reentry and landing segment of the mission.The prime objective of the OSIRIS-REx mission is to sample a primitive, carbonaceous asteroid and to return that sample to Earth in pristine condition for detailed laboratory analysis. Targeting the near-Earth asteroid Bennu, the mission launches in September 2016 with an Earth reentry date of September 24, 2023.OSIRIS-REx will thoroughly characterize asteroid Bennu providing knowledge of the nature of near-Earth asteroids that is fundamental to understanding planet formation and the origin of life. The return to Earth of pristine samples with known geologic context will enable precise analyses that cannot be duplicated by spacecraft-based instruments, revolutionizing our understanding of the early Solar System. Bennu is both the most accessible carbonaceous asteroid and one of the most potentially Earth-hazardous asteroids known. Study of Bennu addresses multiple NASA objectives to understand the origin of the Solar System and the origin of life and will provide a greater understanding of both the hazards and resources in near-Earth space, serving as a precursor to future human missions to asteroids.This paper focuses on the technical aspects of the Sample Return Capsule (SRC) design and concept of operations, including trajectory design and reentry retrieval. Highlights of the mission are included below.The OSIRIS-REx spacecraft provides the essential functions for an asteroid characterization and sample return mission: attitude control propulsion power thermal control telecommunications command and data handling structural support to ensure successful rendezvous with Bennu characterization of Bennus properties delivery of the sampler to the surface, and return of the spacecraft to the vicinity of the Earth sample collection, performed by the Touch-and-Go Sample Acquisition Mechanism (TAGSAM), to acquire a regolith sample from the surface Earth re-entry and SRC recovery. Following sample collection, OSIRIS-REx drifts away from Bennu until the Asteroid Departure Maneuver is commanded on March 4, 2021, sending OSIRIS-REx on a ballistic return cruise to Earth. No additional large deterministic maneuvers are required to return the SRC to Earth. During the cruise, tracking and trajectory correction maneuvers (TCMs) are performed as necessary to precisely target the entry corridor. As OSIRIS-REx approaches Earth, the reentry plans are reviewed starting about a year before arrival, and preparations begin. The spacecraft is targeted away from the Earth until 7 days before entry. The final two trajectory correction maneuvers bring the spacecraft on target toward the Utah Test and Training Range (UTTR), with sufficient time for contingency resolution. The SRC releases 4 hours prior to atmospheric entry interface and, using the Stardust capsule heritage design, employs a traditional drogue and main parachute descent system for a soft touchdown.
Low Cost Mars Sample Return Utilizing Dragon Lander Project
NASA Technical Reports Server (NTRS)
Stoker, Carol R.
2014-01-01
We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.
Planetary sample rapid recovery and handling
NASA Technical Reports Server (NTRS)
1985-01-01
Methods for recovering and cost effectively handling planetary samples following return to the vicinity of Earth were designed for planetary mission planners. Three topics are addressed: (1) a rough cost estimate was produced for each of a series of options for the handling of planetary samples following their return to the vicinity of Earth; (2) the difficulty of quickly retrieving planetary samples from low circular and high elliptical Earth orbit is assessed; and (3) a conceptual design for a biological isolation and thermal control system for the returned sample and spacecraft is developed.
Mars rover sample return mission utilizing in situ production of the return propellants
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Nill, L.; Schubert, H.; Thill, B.; Warwick, R.
1993-01-01
This paper presents an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return trip. A key goal of the mission is to demonstrate the considerable benefits that can be realized through the use of indigenous resources and to test the viability of this approach as a precursor to manned missions to Mars. Two in situ propellant combinations, methane/oxygen and carbon monoxide/oxygen, are compared to imported terrestrial hydrogen/oxygen within a single mission architecture, using a single Earth launch vehicle. The mission is assumed to be launched from Earth in 2003. Upon reaching Mars, the landing vehicle aerobrakes, deploys a small satellite, and lands on the Martian surface. Once on the ground, the propellant production unit is activated, and the product gases are liquefied and stored in the empty tanks of the Earth Return Vehicle (ERV). Power for these activities is provided by a dynamic isotope power system. A semiautonomous rover, powered by the indigenous propellants, gathers between 25 and 30 kg of soil and rock samples which are loaded aboard the ERV for return to Earth. After a surface stay time of approximately 1.5 years, the ERV leaves Mars for the return voyage to Earth. When the vehicle reaches the vicinity of Earth, the sample return capsule detaches, and is captured and circularized in LEO via aerobraking maneuvers.
Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.
2012-01-01
The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies
Project Hyreus: Mars Sample Return Mission Utilizing in Situ Propellant Production
NASA Technical Reports Server (NTRS)
Bruckner, A. P.; Thill, Brian; Abrego, Anita; Koch, Amber; Kruse, Ross; Nicholson, Heather; Nill, Laurie; Schubert, Heidi; Schug, Eric; Smith, Brian
1993-01-01
Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.
Project Hyreus: Mars sample return mission utilizing in situ propellant production
NASA Technical Reports Server (NTRS)
Abrego, Anita; Bair, Chris; Hink, Anthony; Kim, Jae; Koch, Amber; Kruse, Ross; Ngo, Dung; Nicholson, Heather; Nill, Laurie; Perras, Craig
1993-01-01
Project Hyreus is an unmanned Mars sample return mission that utilizes propellants manufactured in situ from the Martian atmosphere for the return voyage. A key goal of the mission is to demonstrate the considerable benefits of using indigenous resources and to test the viability of this approach as a precursor to manned Mars missions. The techniques, materials, and equipment used in Project Hyreus represent those that are currently available or that could be developed and readied in time for the proposed launch date in 2003. Project Hyreus includes such features as a Mars-orbiting satellite equipped with ground-penetrating radar, a large rover capable of sample gathering and detailed surface investigations, and a planetary science array to perform on-site research before samples are returned to Earth. Project Hyreus calls for the Mars Landing Vehicle to land in the Mangala Valles region of Mars, where it will remain for approximately 1.5 years. Methane and oxygen propellant for the Earth return voyage will be produced using carbon dioxide from the Martian atmosphere and a small supply of hydrogen brought from Earth. This process is key to returning a large Martian sample to Earth with a single Earth launch.
Contemporary Impact Analysis Methodology for Planetary Sample Return Missions
NASA Technical Reports Server (NTRS)
Perino, Scott V.; Bayandor, Javid; Samareh, Jamshid A.; Armand, Sasan C.
2015-01-01
Development of an Earth entry vehicle and the methodology created to evaluate the vehicle's impact landing response when returning to Earth is reported. NASA's future Mars Sample Return Mission requires a robust vehicle to return Martian samples back to Earth for analysis. The Earth entry vehicle is a proposed solution to this Mars mission requirement. During Earth reentry, the vehicle slows within the atmosphere and then impacts the ground at its terminal velocity. To protect the Martian samples, a spherical energy absorber called an impact sphere is under development. The impact sphere is composed of hybrid composite and crushable foam elements that endure large plastic deformations during impact and cause a highly nonlinear vehicle response. The developed analysis methodology captures a range of complex structural interactions and much of the failure physics that occurs during impact. Numerical models were created and benchmarked against experimental tests conducted at NASA Langley Research Center. The postimpact structural damage assessment showed close correlation between simulation predictions and experimental results. Acceleration, velocity, displacement, damage modes, and failure mechanisms were all effectively captured. These investigations demonstrate that the Earth entry vehicle has great potential in facilitating future sample return missions.
Mars Sample Return Using Commercial Capabilities: ERV Trajectory and Capture Requirements
NASA Technical Reports Server (NTRS)
Faber, Nicolas F.; Foster, Cyrus James; Wilson, David; Gonzales, Andrew; Stoker, Carol R.
2013-01-01
Mars Sample Return was presented as the highest priority planetary science mission of the next decade [1]. Lemke et al. [2] present a Mars Sample Return mission concept in which the sample is returned directly from the surface of Mars to an Earth orbit. The sample is recovered in Earth Orbit instead of being transferred between spacecraft in Mars Orbit. This paper provides the details of this sample recovery in Earth orbit and presents as such a sub-element of the overall Mars sample return concept given in [2]. We start from the assumption that a Mars Ascent Vehicle (MAV), initially landed on Mars using a modified SpaceX Dragon capsule, has successfully delivered the sample, already contained within an Earth Return Vehicle (ERV), to a parking orbit around Mars. From the parking orbit, the ERV imparts sufficient Delta-V to inject itself into an earthbound trajectory and to be captured into an Earth orbit eventually. We take into account launch window and Delta-V considerations as well as the additional constraint of increased safety margins imposed by planetary protection regulations. We focus on how to overcome two distinct challenges of the sample return that are driven by the issues of planetary protection: (1) the design of an ERV trajectory meeting all the requirements including the need to avoid contamination of Earth's atmosphere; (2) the concept of operations for retrieving the Martian samples in Earth orbit in a safe way. We present an approach to retrieve the samples through a rendezvous between the ERV and a second SpaceX Dragon capsule. The ERV executes a trajectory that brings it from low Mars orbit (LMO) to a Moon-trailing Earth orbit at high inclination with respect to the Earth-Moon plane. After a first burn at Trans-Earth Injection (TEI), the trajectory uses a second burn at perigee during an Earth flyby maneuver to capture the ERV in Earth orbit. The ERV then uses a non-propulsive Moon flyby to come to a near-circular Moon-trailing orbit. To perform the Earth Orbit Rendezvous (EOR), a second Dragon capsule is then launched from Earth and a similar lunar flyby is performed to rendezvous with the ERV. The requirements for rendezvous, close proximity operations and capture of the sample canister are described. A concept of operations for sample retrieval is presented along with design specifications of the ERV, the required modifications to the Dragon capsule, as well as the hardware, software, sensors, actuators, and capture mechanisms used. In our concept, a container is mounted to the front hatch of Dragon, capable of accommodating the sample canister and sealing it from the rest of the capsule. The sample canister is captured using a robotic arm with a magnetic grappling mechanism. Dragon then performs a propulsive maneuver to return to Earth for a controlled re-entry while the ERV (sans sample container) is left in the Moon trailing orbit. Contingency cases and related mitigation strategies are also discussed, including the advantages and disadvantages of performing the ERV rendezvous with a crew.
GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Evans, C. A.; Bell, M. S.; Graff, T. G.
2011-01-01
In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth.
Benefits of in situ propellant utilization for a Mars sample return mission
NASA Technical Reports Server (NTRS)
Wadel, Mary F.
1993-01-01
Previous Mars rover sample return mission studies have shown a requirement for Titan 4 or STS Space Shuttle launch vehicles to complete a sample return from a single Mars site. These studies have either used terrestrial propellants or considered in situ production of methane and oxygen for the return portion of the mission. Using in situ propellants for the return vehicles reduces the Earth launch mass and allows for a smaller Earth launch vehicle, since the return propellant is not carried from Earth. Carbon monoxide and oxygen (CO/O2) and methane and oxygen (CH4/O2) were investigated as in situ propellants for a Mars sample return mission and the results were compared to a baseline study performed by the Jet Propulsion Laboratory using terrestrial propellants. Capability for increased sample return mass, use of an alternate launch vehicle, and an additional mini-rover as payload were included. CO/O2 and CH4/O2 were found to decrease the baseline Earth launch mass by 13.6 and 9.2 percent, respectively. This resulted in higher payload mass margins for the baseline Atlas 2AS launch vehicle. CO/O2 had the highest mass margin. And because of this, it was not only possible to increase the sample return mass and carry an additional mini-rover, but was also possible to use the smaller Atlas 2A launch vehicle.
Mars Earth Return Vehicle (MERV) Propulsion Options
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike;
2010-01-01
The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.
Sample Curation at a Lunar Outpost
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Lofgren, Gary E.; Treiman, A. H.; Lindstrom, Marilyn L.
2007-01-01
The six Apollo surface missions returned 2,196 individual rock and soil samples, with a total mass of 381.6 kg. Samples were collected based on visual examination by the astronauts and consultation with geologists in the science back room in Houston. The samples were photographed during collection, packaged in uniquely-identified containers, and transported to the Lunar Module. All samples collected on the Moon were returned to Earth. NASA's upcoming return to the Moon will be different. Astronauts will have extended stays at an out-post and will collect more samples than they will return. They will need curation and analysis facilities on the Moon in order to carefully select samples for return to Earth.
Mars Sample Return Architecture Overview
NASA Astrophysics Data System (ADS)
Edwards, C. D.; Vijendran, S.
2018-04-01
NASA and ESA are exploring potential concepts for a Sample Retrieval Lander and Earth Return Orbiter that could return samples planned to be collected and cached by the Mars 2020 rover mission. We provide an overview of the Mars Sample Return architecture.
Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David
2011-01-01
The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.
MSR ESA Earth Return Orbiter Mission Design Trades
NASA Astrophysics Data System (ADS)
Sanchez Perez, J. M.; Varga, G. I.; Huesing, J.; Beyer, F.
2018-04-01
The paper describes the work performed at ESOC in support of the Mars Sample Return ESA Earth Return Orbiter definition studies by exploring the trajectory optimization and mission design trade spaces of Mars return missions using electric and chemical propulsion.
NASA Curation Preparation for Ryugu Sample Returned by JAXA's Hayabusa2 Mission
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, Keiko; Righter, Kevin; Snead, Christopher J.; McCubbin, Francis M.; Pace, Lisa F.; Zeigler, Ryan A.; Evans, Cindy
2017-01-01
The NASA OSIRIS-REx and JAXA Hayabusa2 missions to near-Earth asteroids Bennu and Ryugu share similar mission goals of understanding the origins of primitive, organic-rich asteroids. Under an agreement between JAXA and NASA, there is an on-going and productive collaboration between science teams of Hayabusa2 and OSIRIS-REx missions. Under this agreement, a portion of each of the returned sample masses will be exchanged between the agencies and the scientific results of their study will be shared. NASA’s portion of the returned Hayabusa2 sample, consisting of 10% of the returned mass, will be jointly separated by NASA and JAXA. The sample will be legally and physically transferred to NASA’s dedicated Hayabusa2 curation facility at Johnson Space Center (JSC) no later than one year after the return of the Hayabusa2 sample to Earth (December 2020). The JSC Hayabusa2 curation cleanroom facility design has now been completed. In the same manner, JAXA will receive 0.5% of the total returned OSIRIS-REx sample (minimum required sample to return 60 g, maximum sample return capacity of 2 kg) from the rest of the specimen. No later than one year after the return of the OSIRIS-REx sample to Earth (September 2023), legal, physical, and permanent custody of this sample subset will be transferred to JAXA, and the sample subset will be brought to JAXA’s Extraterrestrial Sample Curation Center (ESCuC) at Institute of Space and Astronautical Science, Sagamihara City Japan.
Earth-return trajectory options for the 1985-86 Halley opportunity
NASA Technical Reports Server (NTRS)
Farquhar, R. W.; Dunham, D. W.
1982-01-01
A unique and useful family of ballistic trajectories to Halley's comet is described. The distinguishing feature of this family is that all of the trajectories return to the Earth's vicinity after the Halley intercept. It is shown that, in some cases, the original Earth-return path can be reshaped by Earth-swingby maneuvers to achieve additional small-body encounters. One mission profile includes flybys of the asteroid Geographos and comet Tempel-2 following the Halley intercept. Dual-flyby missions involving comets Encke and Borrelly and the asteroid Anteros are also discussed. Dust and gas samples are collected during the high-velocity (about 70 km/sec) flythrough of Halley, and then returned to a high-apogee Earth orbit. Aerobraking maneuvers are used to bring the sample-return spacecraft to a low-altitude circular orbit where it can be recovered by the Space Shuttle.
Comet nucleus and asteroid sample return missions
NASA Technical Reports Server (NTRS)
Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.
1992-01-01
During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.
A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Race, Margaret S.; DeVincenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.
2002-01-01
This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth: it is the final product of the Mars Sample Handling Protocol Workshop Series. convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed k r the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination.
Concept Study For A Near-term Mars Surface Sample Return Mission
NASA Astrophysics Data System (ADS)
Smith, M. F.; Thatcher, J.; Sallaberger, C.; Reedman, T.; Pillinger, C. T.; Sims, M. R.
The return of samples from the surface of Mars is a challenging problem. Present mission planning is for complex missions to return large, focused samples sometime in the next decade. There is, however, much scientific merit in returning a small sample of Martian regolith before the end of this decade at a fraction of the cost of the more ambitious missions. This paper sets out the key elements of this concept that builds on the work of the Beagle 2 project and space robotics work in Canada. The paper will expand the science case for returning a regolith sample that is only in the range of 50-250g but would nevertheless include plenty of interesting mate- rial as the regolith comprises soil grains from a wide variety of locations i.e. nearby rocks, sedimentary formations and materials moved by fluids, winds and impacts. It is possible that a fine core sample could also be extracted and returned. The mission concept is to send a lander sized at around 130kg on the 2007 or 2009 opportunity, immediately collect the sample from the surface, launch it to Mars orbit, collect it by the lander parent craft and make an immediate Earth return. Return to Earth orbit is envisaged rather than direct Earth re-entry. The lander concept is essen- tially a twice-size Beagle 2 carrying the sample collection and return capsule loading equipment plus the ascent vehicle. The return capsule is envisaged as no more than 1kg. An overall description of the mission along with methods for sample acquisition, or- bital rendezvous and capsule return will be outlined and the overall systems budgets presented. To demonstrate the near term feasibility of the mission, the use of existing Canadian and European technologies will be highlighted.
Synchronized Lunar Pole Impact Plume Sample Return Trajectory Design
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Foster, Cyrus; Colaprete, Tony
2016-01-01
The presented trajectory design enables two maneuverable spacecraft launched onto the same trans-lunar injection trajectory to coordinate a steep impact of a lunar pole and subsequent sample return of the ejecta plume to Earth. To demonstrate this concept, the impactor is assumed to use the LCROSS missions trajectory and spacecraft architecture, thus the permanently-shadowed Cabeus crater on the lunar south pole is assumed as the impact site. The sample-return spacecraft is assumed to be a CubeSat that requires a complimentary trajectory design that avoids lunar impact after passing through the ejecta plume to enable sample-return to Earth via atmospheric entry.
Sample Return Propulsion Technology Development Under NASA's ISPT Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Hahne, David; Pencil, Eric; Peterson, Todd; Munk, Michelle M.
2011-01-01
Abstract In 2009, the In-Space Propulsion Technology (ISPT) program was tasked to start development of propulsion technologies that would enable future sample return missions. Sample return missions can be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. As a result, ISPT s propulsion technology development needs are also broad, and include: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Multi-mission technologies for Earth Entry Vehicles (MMEEV), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The SRP area includes electric propulsion for sample return and low cost Discovery-class missions, and propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination. Initially the SRP effort will transition ongoing work on a High-Voltage Hall Accelerator (HIVHAC) thruster into developing a full HIVHAC system. SRP will also leverage recent lightweight propellant-tanks advancements and develop flight-qualified propellant tanks with direct applicability to the Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. ISPT s previous aerocapture efforts will merge with earlier Earth Entry Vehicles developments to form the starting point for the MMEEV effort. The first task under the Planetary Ascent Vehicles (PAV) effort is the development of a Mars Ascent Vehicle (MAV). The new MAV effort will leverage past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies. This paper will describe the state of ISPT project s propulsion technology development for future sample return missions.12
NASA Astrophysics Data System (ADS)
Rummel, J. D.; Conley, C. A.
2013-12-01
The 2013-2022 NRC Decadal Survey named its #1 Flagship priority as a large, capable Mars rover that would be the first of a three-mission, multi-decadal effort to return samples from Mars. More recently, NASA's Mars Program has stated that a Mars rover mission known as 'Mars 2020' would be flown to Mars (in 2020) to accomplish a subset of the goals specified by the NRC, and the recent report of the Mars 2020 Science Definition Team (SDT) has recommended that the mission accomplish broad and rigorous in situ science, including seeking biosignatures, acquiring a diverse set of samples intended to address a range of Mars science questions and storing them in a cache for potential return to Earth at a later time, and other engineering goals to constrain costs and support future human exploration. In some ways Mars 2020 will share planetary protection requirements with the Mars Science Laboratory mission that landed in 2012, which included landing site constraints based on the presence of a perennial heat source (the MMRTG) aboard the lander/rover. In a very significant way, however, the presence of a sample-cache and the potential that Mars 2020 will be the first mission in the chain that will return a sample from Mars to Earth. Thus Mars 2020 will face more stringent requirements aimed at keeping the mission from returning Earth contamination with the samples from Mars. Mars 2020 will be looking for biosignatures of ancient life, on Mars, but will also need to be concerned with the potential to detect extant biosignatures or life itself within the sample that is eventually returned. If returned samples are able to unlock wide-ranging questions about the geology, surface processes, and habitability of Mars that cannot be answered by study of meteorites or current mission data, then either the returned samples must be free enough of Earth organisms to be releasable from a quarantine facility or the planned work of sample scientists, including high- and low-T geochemistry, igneous and sedimentary petrology, mineral spectroscopy, and astrobiology, will have to be accomplished within a containment facility. The returned samples also need to be clean of Earth organisms to avoid the potential that Earth contamination will mask the potential for martian life to be detected, allowing only non-conclusive or false-negative results. The requirements placed on the Mars 2020 mission to address contamination control in a life-detection framework will be one of the many challenges faced in this potential first step in Mars sample return.
Arc Jet Testing of Carbon Phenolic for Mars Sample Return and Future NASA Missions
NASA Technical Reports Server (NTRS)
Laub, Bernard; Chen, Yih-Kanq; Skokova, Kristina; Delano, Chad
2004-01-01
The objective of the Mars Sample Return (MSR) Mission is to return a sample of MArtian soil to Earth. The Earth Entry Vehicle (EEV) brings te samples through the atmosphere to the ground.The program aims to: Model aerothermal environment during EEV flight; On the basis of results, select potential TPS materials for EEV forebody; Fabricate TPS materials; Test the materials in the arc jet environment representative of predicted flight environment;Evaluate material performance; Compare results of modeling predictions with test results.
Lunar far side sample return missions using the Soviet Luna system
NASA Technical Reports Server (NTRS)
Roberts, P. H., Jr.
1977-01-01
The paper assesses the feasibility of using the Soviet Lunar Sample Return vehicle in cooperation with the United States to return a sample of lunar soil from the far side of the moon. Analysis of the orbital mechanics of the Luna system shows how landing sites are restricted on the moon. The trajectory model is used to duplicate the 3 Luna missions flown to date and the results compared to actual Soviet data. The existence of suitable trajectories for the earth return trip is assessed, including landing dispersions at earth. Several possible areas of technical difficulty are identified.
Hayabusa: Navigation Challenges for Earth Return
NASA Technical Reports Server (NTRS)
Haw, Robert J.; Bhaskaran, S.; Strauss, W.; Sklyanskiy, E.; Graat, E. J.; Smith, J. J.; Menom, P.; Ardalan, S.; Ballard, C.; Williams, P.;
2011-01-01
Hayabusa was a JAXA sample-return mission to Itokawa navigated, in part, by JPL personnel. Hayabusa survived several near mission-ending failures at Itokawa yet returned to Earth with an asteroid regolith sample on June 13, 2010. This paper describes NASA/JPL's participation in the Hayabusa mission during the last 100 days of its mission, wherein JPL provided tracking data and orbit determination, plus verification of maneuver design and entry, descent and landing.
A Draft Test Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Rummel, John D.; Race, Margaret S.; DeVinenzi, Donald L.; Schad, P. Jackson; Stabekis, Pericles D.; Viso, Michel; Acevedo, Sara E.
2002-01-01
This document presents the first complete draft of a protocol for detecting possible biohazards in Mars samples returned to Earth; it is the final product of the Mars Sample Handling Protocol Workshop Series, convened in 2000-2001 by NASA's Planetary Protection Officer. The goal of the five-workshop Series vas to develop a comprehensive protocol by which returned martian sample materials could be assessed for the presence of any biological hazard(s) while safeguarding the purity of the samples from possible terrestrial contamination The reference numbers for the proceedings from the five individual Workshops.
NASA Technical Reports Server (NTRS)
Jordan, James F.; Miller, Sylvia L.
2000-01-01
The architecture of NASA's program of robotic Mars exploration missions received an intense scrutiny during the summer months of 1998. We present here the results of that scrutiny, and describe a list of Mars exploration missions which are now being proposed by the nation's space agency. The heart of the new program architecture consists of missions which will return samples of Martian rocks and soil back to Earth for analysis. A primary scientific goal for these missions is to understand Mars as a possible abode of past or present life. The current level of sophistication for detecting markers of biological processes and fossil or extant life forms is much higher in Earth-based laboratories than possible with remotely deployed instrumentation, and will remain so for at least the next decade. Hence, bringing Martian samples back to Earth is considered the best way to search for the desired evidence. A Mars sample return mission takes approximately three years to complete. Transit from Earth to Mars requires almost a single year. After a lapse of time of almost a year at Mars, during which orbital and surface operations can take place, and the correct return launch energy constraints are met, a Mars-to-Earth return flight can be initiated. This return leg also takes approximately one year. Opportunities to launch these 3-year sample return missions occur about every 2 years. The figure depicts schedules for flights to and from Mars for Earth launches in 2003, 2005, 2007 and 2009. Transits for less than 180 deg flight angle, measured from the sun, and more than 180 deg are both shown.
Near-Earth Asteroid Returned Sample (NEARS)
NASA Technical Reports Server (NTRS)
Shoemaker, Eugene M.; Cheng, Andrew F.
1994-01-01
The concept of the Near-Earth Asteroid Returned Sample (NEARS) mission is to return to Earth 10-100 g from each of four to six sites on a near-Earth asteroid and to perform global characterization of the asteroid and measure mass, volume, and density to ten percent. The target asteroid for the mission is 4660 Nereus, probably a primitive C-type asteroid, with the alternate target being 1989ML, an extremely accessible asteroid of unknown type. Launch dates will be 1998, 2000, 2002, and 2004 on the Delta II-7925 launch vehicle. The mission objectives are three-fold. (1) Provide first direct and detailed petrological, chemical, age, and isotopic characterization of a near-Earth asteroid and relate it to terrestrial, lunar, and meteoritic materials. (2) Sample the asteroid regolith and characterize any exotic fragments. (3) Identify heterogeneity in the asteroid's isotopic properties, age, and elemental chemistry.
The Mars Sample Return Project
NASA Technical Reports Server (NTRS)
O'Neil, W. J.; Cazaux, C.
2000-01-01
The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles. c 2000 American Institute of Aeronautics and Astronautics, Inc. Published by Elsevier Science Ltd.
Optimal design of near-Earth asteroid sample-return trajectories in the Sun-Earth-Moon system
NASA Astrophysics Data System (ADS)
He, Shengmao; Zhu, Zhengfan; Peng, Chao; Ma, Jian; Zhu, Xiaolong; Gao, Yang
2016-08-01
In the 6th edition of the Chinese Space Trajectory Design Competition held in 2014, a near-Earth asteroid sample-return trajectory design problem was released, in which the motion of the spacecraft is modeled in multi-body dynamics, considering the gravitational forces of the Sun, Earth, and Moon. It is proposed that an electric-propulsion spacecraft initially parking in a circular 200-km-altitude low Earth orbit is expected to rendezvous with an asteroid and carry as much sample as possible back to the Earth in a 10-year time frame. The team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences has reported a solution with an asteroid sample mass of 328 tons, which is ranked first in the competition. In this article, we will present our design and optimization methods, primarily including overall analysis, target selection, escape from and capture by the Earth-Moon system, and optimization of impulsive and low-thrust trajectories that are modeled in multi-body dynamics. The orbital resonance concept and lunar gravity assists are considered key techniques employed for trajectory design. The reported solution, preliminarily revealing the feasibility of returning a hundreds-of-tons asteroid or asteroid sample, envisions future space missions relating to near-Earth asteroid exploration.
Sample Return from Small Solar System Bodies
NASA Astrophysics Data System (ADS)
Orgel, L.; A'Hearn, M.; Bada, J.; Baross, J.; Chapman, C.; Drake, M.; Kerridge, J.; Race, M.; Sogin, M.; Squyres, S.
With plans for multiple sample return missions in the next decade, NASA requested guidance from the National Research Council's SSB on how to treat samples returned from solar system bodies such as planetary satellites, asteroids and comets. A special Task Group assessed the potential for a living entity to be included in return samples from various bodies as well as the potential for large scale effects if such an entity were inadvertently introduced into the Earth's biosphere. The Group also assessed differences among solar system bodies, identified investigations that could reduce uncertainty about the bodies, and considered risks of returned samples compared to natural influx of material to the Earth in the form of interplanetary dust particles, meteorites and other small impactors. The final report (NRC, 1998) provides a decision making framework for future missions and makes recommendations on how to handle samples from different planetary satellites and primitive solar system bodies
NASA Technical Reports Server (NTRS)
Moreau, Michael C.
2015-01-01
The OSIRIS-REx Mission launches in 2016 Arrives at Asteroid Bennu-2018 Returns a sample to Earth -2023 The mission, OSIRIS-REx, will visit an asteroid and return a sample from the early Solar System to help us understand how our Solar System formed.
Technology for return of planetary samples, 1977
NASA Technical Reports Server (NTRS)
1978-01-01
Recent progress on the development of a basic warning system (BWS) proposed to assess the biohazard of a Mars sample returned to earth, an earth orbiting spacecraft, or to a moon base was presented. The BWS package consists of terrestrial microorganisms representing major metabolic pathways. A vital processes component of the BWS will examine the effects of a Mars sample at terrestrial atmospheric conditions while a hardy organism component will examine the effects of a Mars sample under conditions approaching those of the Martian environment. Any deleterious insult on terrestrial metabolism effected by the Mars sample could be indicated long before the sample reached earth proximity.
An Integrated Tool for System Analysis of Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.
2012-01-01
The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.
The OSIRIS-REx Contamination Control and Witness Strategy
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Adelman, L.; Ajluni, T. M.; Andronikov, A. V.; Ballou, D. M.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Boynton, W. V.; Brucato, J. R.;
2015-01-01
The OSIRIS-REx mission (Origins, Spectral Interpretation, Resource Identification, and Security Regolith Explorer) is the third NASA New Frontiers mission. It is scheduled for launch in 2016. The primary objective of the mission is to return at least 60 g of "pristine" material from the B-type near- Earth asteroid (101955) Bennu, which is spectrally similar to organic-rich CI or CM meteorites [1]. The study of these samples will advance our understanding of materials available for the origin of life on Earth or elsewhere. The spacecraft will rendezvous with Bennu in 2018 and spend at least a year characterizing the asteroid before executing a maneuver to recover a sample of regolith in the touch-and-go sample acquisition mechanism (TAGSAM). The TAGSAM and sample is stowed in the sample return capsule (SRC) and returned to Earth in 2023.
Sample Return: What Happens to the Samples on Earth?
NASA Technical Reports Server (NTRS)
McNamara, Karen
2010-01-01
As space agencies throughout the world turn their attention toward human exploration of the Moon, Mars, and the solar system beyond, there has been an increase in the number of robotic sample return missions proposed as precursors to these human endeavors. In reality, however, we, as a global community, have very little experience with robotic sample return missions: 3 of the Russian Luna Missions successfully returned lunar material in the 1970s; 28 years later, in 2004, NASA s Genesis Mission returned material from the solar wind; and in 2006, NASA s Stardust Mission returned material from the Comet Wild2. [Note: The Japanese Hyabusa mission continues in space with the hope of returning material from the asteroid 25143 Itokawa.] We launch many spacecraft to LEO and return them to Earth. We also launch spacecraft beyond LEO to explore the planets, our solar system, and beyond. Some even land on these bodies. But these do not return. So as we begin to contemplate the sample return missions of the future, some common questions arise: "What really happens when the capsule returns?" "Where does it land?" "Who retrieves it and just how do they do that?" "Where does it go after that?" "How do the scientists get the samples?" "Do they keep them?" "Who is in charge?" The questions are nearly endless. The goal of this paper/presentation is to uncover many of the mysteries of the post-return phase of a mission - from the time the return body enters the atmosphere until the mission ends and the samples become part of a long term collection. The discussion will be based largely on the author s own experience with both the Genesis and Stardust missions. Of course, these two missions have a great deal in common, being funded by the same NASA Program (Discovery) and having similar team composition. The intent, however, is to use these missions as examples in order to highlight the general requirements and the challenges in defining and meeting those requirements for the final phase of sample return missions. The choices made by the Genesis and Stardust teams regarding recovery and sample handling will be discussed. These will be compared with the handling of returned lunar samples and the proposed handling of the Hyabusa samples as well. Finally, though none of these recent missions have been restricted within NASA s Planetary Protection Protocol, this is likely to change as missions venture farther from Earth. The implementation of Planetary Protection requirements will vary significantly based on mission scenario, however some of the potential implications of restricted Earth return will be considered.
Mars double-aeroflyby free returns
NASA Astrophysics Data System (ADS)
Jesick, Mark
2017-09-01
Mars double-flyby free-return trajectories that pass twice through the Martian atmosphere are documented. This class of trajectories is advantageous for potential Mars atmospheric sample return missions because of its low geocentric energy at departure and arrival, because it would enable two sample collections at unique locations during different Martian seasons, and because of its lack of deterministic maneuvers. Free return opportunities are documented over Earth departure dates ranging from 2015 through 2100, with viable missions available every Earth-Mars synodic period. After constraining the maximum lift-to-drag ratio to be less than one, the minimum observed Earth departure hyperbolic excess speed is 3.23 km/s, the minimum Earth atmospheric entry speed is 11.42 km/s, and the minimum round-trip flight time is 805 days. An algorithm using simplified dynamics is developed along with a method to derive an initial estimate for trajectories in a more realistic dynamic model. Multiple examples are presented, including free returns that pass outside and inside of Mars's appreciable atmosphere.
Sustainable Mars Sample Return
NASA Technical Reports Server (NTRS)
Alston, Christie; Hancock, Sean; Laub, Joshua; Perry, Christopher; Ash, Robert
2011-01-01
The proposed Mars sample return mission will be completed using natural Martian resources for the majority of its operations. The system uses the following technologies: In-Situ Propellant Production (ISPP), a methane-oxygen propelled Mars Ascent Vehicle (MAV), a carbon dioxide powered hopper, and a hydrogen fueled balloon system (large balloons and small weather balloons). The ISPP system will produce the hydrogen, methane, and oxygen using a Sabatier reactor. a water electrolysis cell, water extracted from the Martian surface, and carbon dioxide extracted from the Martian atmosphere. Indigenous hydrogen will fuel the balloon systems and locally-derived methane and oxygen will fuel the MAV for the return of a 50 kg sample to Earth. The ISPP system will have a production cycle of 800 days and the estimated overall mission length is 1355 days from Earth departure to return to low Earth orbit. Combining these advanced technologies will enable the proposed sample return mission to be executed with reduced initial launch mass and thus be more cost efficient. The successful completion of this mission will serve as the next step in the advancement of Mars exploration technology.
SOCCER: Comet Coma Sample Return Mission
NASA Technical Reports Server (NTRS)
Albee, A. L.; Uesugi, K. T.; Tsou, Peter
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. Sample Of Comet Coma Earth Return (SOCCER), a joint effort between NASA and the Institute of Space and Astronautical Science (ISAS) in Japan, has two primary science objectives: (1) the imaging of the comet nucleus and (2) the return to Earth of samples of volatile species and intact dust. This effort makes use of the unique strengths and capabilities of both countries in realizing this important quest for the return of samples from a comet. This paper presents an overview of SOCCER's science payloads, engineering flight system, and its mission operations.
Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements
NASA Technical Reports Server (NTRS)
Calaway, M. J.; McCubbin, F. M.; Allton, J. H.; Zeigler, R. A.; Pace, L. F.
2017-01-01
NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to traditional construction methods without compromising the preservation of the sample or Earth.
Earth Entry Vehicle Design for Sample Return Missions Using M-SAPE
NASA Technical Reports Server (NTRS)
Samareh, Jamshid
2015-01-01
Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle (EEV). The primary focus of this paper is the examination of EEV design space for relevant sample return missions. Mission requirements for EEV concepts can be divided into three major groups: entry conditions (e.g., velocity and flight path angle), payload (e.g., mass, volume, and g-load limit), and vehicle characteristics (e.g., thermal protection system, structural topology, and landing concepts). The impacts of these requirements on the EEV design have been studied with an integrated system analysis tool, and the results will be discussed in details. In addition, through sensitivities analyses, critical design drivers that have been identified will be reviewed.
Risk analysis of earth return options for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1988-01-01
Four options for return of a Mars surface sample to Earth were studied to estimate the risk of mission failure and the risk of a sample container breach that might result in the release of Martian life forms, should such exist, in the Earth's biosphere. The probabilities calculated refer only to the time period from the last midcourse correction burn to possession of the sample on Earth. Two extreme views characterize this subject. In one view, there is no life on Mars, therefore there is no significant risk and no serious effort is required to deal with back contamination. In the other view, public safety overrides any desire to return Martian samples, and any risk of damaging contamination greater than zero is unacceptable. Zero risk requires great expense to achieve and may prevent the mission as currently envisioned from taking place. The major conclusion is that risk of sample container breach can be reduced to a very low number within the framework of the mission as now envisioned, but significant expense and effort, above that currently planned is needed. There are benefits to the public that warrant some risk. Martian life, if it exists, will be a major discovery. If it does not, there is no risk.
21st century early mission concepts for Mars delivery and earth return
NASA Technical Reports Server (NTRS)
Cruz, Manuel I.; Ilgen, Marc R.
1990-01-01
In the 21st century, the early missions to Mars will entail unmanned Rover and Sample Return reconnaissance missions to be followed by manned exploration missions. High performance leverage technologies will be required to reach Mars and return to earth. This paper describes the mission concepts currently identified for these early Mars missions. These concepts include requirements and capabilities for Mars and earth aerocapture, Mars surface operations and ascent, and Mars and earth rendezvous. Although the focus is on the unmanned missions, synergism with the manned missions is also discussed.
NASA Technical Reports Server (NTRS)
Schonfeld, Julie E.
2015-01-01
Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.
A two-hypothesis approach to establishing a life detection/biohazard protocol for planetary samples
NASA Astrophysics Data System (ADS)
Conley, Catharine; Steele, Andrew
2016-07-01
The COSPAR policy on performing a biohazard assessment on samples brought from Mars to Earth is framed in the context of a concern for false-positive results. However, as noted during the 2012 Workshop for Life Detection in Samples from Mars (ref. Kminek et al., 2014), a more significant concern for planetary samples brought to Earth is false-negative results, because an undetected biohazard could increase risk to the Earth. This is the reason that stringent contamination control must be a high priority for all Category V Restricted Earth Return missions. A useful conceptual framework for addressing these concerns involves two complementary 'null' hypotheses: testing both of them, together, would allow statistical and community confidence to be developed regarding one or the other conclusion. As noted above, false negatives are of primary concern for safety of the Earth, so the 'Earth Safety null hypothesis' -- that must be disproved to assure low risk to the Earth from samples introduced by Category V Restricted Earth Return missions -- is 'There is native life in these samples.' False positives are of primary concern for Astrobiology, so the 'Astrobiology null hypothesis' -- that must be disproved in order to demonstrate the existence of extraterrestrial life is 'There is no life in these samples.' The presence of Earth contamination would render both of these hypotheses more difficult to disprove. Both these hypotheses can be tested following a strict science protocol; analyse, interprete, test the hypotheses and repeat. The science measurements undertaken are then done in an iterative fashion that responds to discovery with both hypotheses testable from interpretation of the scientific data. This is a robust, community involved activity that ensures maximum science return with minimal sample use.
The Antaeus Project - An orbital quarantine facility for analysis of planetary return samples
NASA Technical Reports Server (NTRS)
Sweet, H. C.; Bagby, J. R.; Devincenzi, D. L.
1983-01-01
A design is presented for an earth-orbiting facility for the analysis of planetary return samples under conditions of maximum protection against contamination but minimal damage to the sample. The design is keyed to a Mars sample return mission profile, returning 1 kg of documented subsamples, to be analyzed in low earth orbit by a small crew aided by automated procedures, tissue culture and microassay. The facility itself would consist of Spacelab shells, formed into five modules of different sizes with purposes of power supply, habitation, supplies and waste storage, the linking of the facility, and both quarantine and investigation of the samples. Three barriers are envisioned to protect the biosphere from any putative extraterrestrial organisms: sealed biological containment cabinets within the Laboratory Module, the Laboratory Module itself, and the conditions of space surrounding the facility.
The Suess-Urey mission (return of solar matter to Earth).
Rapp, D; Naderi, F; Neugebauer, M; Sevilla, D; Sweetnam, D; Burnett, D; Wiens, R; Smith, N; Clark, B; McComas, D; Stansbery, E
1996-01-01
The Suess-Urey (S-U) mission has been proposed as a NASA Discovery mission to return samples of matter from the Sun to the Earth for isotopic and chemical analyses in terrestrial laboratories to provide a major improvement in our knowledge of the average chemical and isotopic composition of the solar system. The S-U spacecraft and sample return capsule will be placed in a halo orbit around the L1 Sun-Earth libration point for two years to collect solar wind ions which implant into large passive collectors made of ultra-pure materials. Constant Spacecraft-Sun-Earth geometries enable simple spin stabilized attitude control, simple passive thermal control, and a fixed medium gain antenna. Low data requirements and the safety of a Sun-pointed spinner, result in extremely low mission operations costs.
Study of sample drilling techniques for Mars sample return missions
NASA Technical Reports Server (NTRS)
Mitchell, D. C.; Harris, P. T.
1980-01-01
To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.
Geology of Potential Landing Sites for Martian Sample Returns
NASA Technical Reports Server (NTRS)
Greeley, Ronald
2003-01-01
This project involved the analysis of potential landing sites on Mars. As originally proposed, the project focused on landing sites from which samples might be returned to Earth. However, as the project proceeded, the emphasis shifted to missions that would not include sample return, because the Mars Exploration Program had deferred sample returns to the next decade. Subsequently, this project focused on the study of potential landing sites for the Mars Exploration Rovers.
Aerobraking strategies for the sample of comet coma earth return mission
NASA Astrophysics Data System (ADS)
Abe, Takashi; Kawaguchi, Jun'ichiro; Uesugi, Kuninori; Yen, Chen-Wan L.
The results of a study to the validate the applicability of the aerobraking concept to the SOCCER (sample of comet coma earth return) mission using a six-DOF computer simulation of the aerobraking process are presented. The SOCCER spacecraft and the aerobraking scenario and power supply problem are briefly described. Results are presented for the spin effect, payload exposure problem, and sun angle effect.
Aerobraking strategies for the sample of comet coma earth return mission
NASA Technical Reports Server (NTRS)
Abe, Takashi; Kawaguchi, Jun'ichiro; Uesugi, Kuninori; Yen, Chen-Wan L.
1990-01-01
The results of a study to the validate the applicability of the aerobraking concept to the SOCCER (sample of comet coma earth return) mission using a six-DOF computer simulation of the aerobraking process are presented. The SOCCER spacecraft and the aerobraking scenario and power supply problem are briefly described. Results are presented for the spin effect, payload exposure problem, and sun angle effect.
A survey of rapid sample return needs from Space Station Freedom and potential return systems
NASA Technical Reports Server (NTRS)
Mccandless, Ronald S.; Siegel, Bette; Charlton, Kevin
1991-01-01
Results are presented of a survey conducted among potential users of the life sciences and material sciences facilities at the Space Station Freedom (SSF) to determine the need for a special rapid sample return (RSR) mission to bring the experimental samples from the Space Station Freedom (SSF) to earth between the Space Shuttle visits. The results of the survey show that, while some experimental objectives would benefit from the RSR capability, other available cost- and mission-effective means could be used instead of the RSR proposed. Potential vehicles for transporting samples from the SSF to earth are examined in the context of the survey results.
SPLAT: The Sample Probe for Landing And Testing
NASA Astrophysics Data System (ADS)
Gonyea, K.; Dendinger, T.; Fernandez, J.; Jaunzemis, A.
2014-06-01
A sample return mission from the ISS or low Earth orbit is developed. Vehicle can safely return small biological payloads with consideration of heating, aerodynamics and structural integrity of the vehicle.
Evaluating Core Quality for a Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Weiss, D. K.; Budney, C.; Shiraishi, L.; Klein, K.
2012-01-01
Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the EEV (Earth Entry Vehicle) performed a hard landing on Earth. Because of the foreseen damage to the stratigraphy of the cores, it is important to evaluate each core for rock quality. However, because no core sample return mission has yet been conducted to another planetary body, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the mechanical quality of any rock cores returned from Mars (or other planetary bodies). We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing).
Near-Earth Asteroid Sample Return Workshop
NASA Technical Reports Server (NTRS)
2000-01-01
This volume contains abstracts that have been accepted for presentation at the Near-Earth Asteroid Sample Return Workshop, 11-12 Dec 2000. The Steering Committee consisted of Derek Sears, Chair, Dan Britt, Don Brownlee, Andrew Cheng, Benton Clark, Leon Gefert, Steve Gorevan, Marilyn Lindstrom, Carle Pieters, Jeff Preble, Brian Wilcox, and Don Yeomans. Logistical, administrative, and publications support were provided by the Publications and Program Services Department of the Lunar and Planetary Institute.
77 FR 3102 - Procedures for Implementing the National Environmental Policy Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-23
... from solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons.../program which would return samples to Earth from solar system bodies (such as asteroids, comets, planets, dwarf planets, and planetary moons), which would likely receive a Restricted Earth Return categorization...
Phobos/Deimos sample return via solar sail.
Matloff, Gregory L; Taylor, Travis; Powell, Conley; Moton, Tryshanda
2005-12-01
A sample-return mission to the Martian satellites using a con-temporary solar sail for all post-Earth-escape propulsion is proposed. The 0.015 kg/m(2) areal mass-thickness sail unfurls after launch and injection onto a Mars-bound Hohmann-transfer ellipse. Structure and payload increase spacecraft areal mass thickness to 0.028 kg/m(2). During the Mars encounter, the sail functions as a parachute in the outer atmosphere of Mars to accomplish aerocapture. On-board thrusters or the sail maneuver the spacecraft into an orbit with periapsis near Mars and apoapsis near Phobos. The orbit is circularized for Phobos-rendezvous; surface samples are collected. The sail then raises the orbit for Deimos-rendezvous and sample collection. The sail next places the spacecraft on an Earth-bound Hohmann-transfer ellipse. During Earth encounter, the sail accomplishes Earth-aerocapture or partially decelerates the sample container for entry into the Earth's atmosphere. Mission mass budget is about 218 grams and mission duration is less than five years.
Phobos/Deimos Sample Return via Solar Sail
NASA Technical Reports Server (NTRS)
Matloff, Gregory L.; Taylor, Travis; Powell, Conley; Moton, Tryshanda
2004-01-01
Abstract A sample-return mission to the martian satellites using a contemporary solar sail for all post-Earth-escape propulsion is proposed. The 0.015 kg/sq m areal mass-thickness sail unfurls after launch and injection onto a Mars-bound Hohmann-transfer ellipse. Structure and pay!oad increase spacecraft areal mass thickness to 0.028 kg/sq m. During Mars-encounter, the sail functions parachute-like in Mars s outer atmosphere to accomplish aerocapture. On-board thrusters or the sail maneuver the spacecraft into an orbit with periapsis near Mars and apoapsis near Phobos. The orbit is circularized for Phobos-rendezvous; surface samples are collected. The sail then raises the orbit for Deimos-rendezvous and sample collection. The sail next places the spacecraft on an Earth-bound Hohmann-transfer ellipse. During Earth-encounter, the sail accomplishes Earth-aerocapture or partially decelerates the sample container for entry into Earth s atmosphere. Mission mass budget is about 218 grams and; mission duration is <5 years.
Asteroid Sample Return Mission Launches on This Week @NASA – September 9, 2016
2016-09-09
On Sept. 8, NASA launched the Origins, Spectral Interpretation, Resource Identification, Security - Regolith Explorer, or OSIRIS-REx mission from Cape Canaveral Air Force Station in Florida. OSIRIS-REx, the first U.S. mission to sample an asteroid, is scheduled to arrive at near-Earth asteroid Bennu in 2018. Mission plans call for the spacecraft to survey the asteroid, retrieve a small sample from its surface, and return the sample to Earth for study in 2023. Analysis of that sample is expected to reveal clues about the history of Bennu over the past 4.5 billion years, as well as clues about the evolution of our solar system. Also, Jeff Williams’ Record-Breaking Spaceflight Concludes, Next ISS Crew Prepares for Launch, Sample Return Robot Challenge, NASA X-Plane Gets its Wing, and Convergent Aeronautics Solutions Showcase!
Mars Rover Sample Return mission
NASA Technical Reports Server (NTRS)
Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan
1989-01-01
To gain a detailed understanding of the character of the planet Mars, it is necessary to send vehicle to the surface and return selected samples for intensive study in earth laboratories. Toward that end, studies have been underway for several years to determine the technically feasible means for exploring the surface and returning selected samples. This paper describes several MRSR mission concepts that have emerged from the most recent studies.
MOI to TEI : a Mars Sample Return strategy
NASA Technical Reports Server (NTRS)
Smith, Chad W.; Maddock, Robert W.
2006-01-01
This paper describes the issues and challenges related to the design of the rendezvous between the Earth Return Vehicle (ERV) and the Orbiting Sample (OS) for the Mars Sample Return (MSR) mission. In particular, attention will be focused on the strategy for 'optimizing' the intermediate segment of the rendezvous process, during which there are a great number of variables that must be considered and well understood.
Small D-type asteroids in the NEO population: new targets for space missions
NASA Astrophysics Data System (ADS)
Barucci, Maria Antonietta; Perna, D.; Popescu, M.; Fornasier, S.; Doressoundiram, A.; Lantz, C.; Merlin, F.; Fulchignoni, M.; Dotto, E.; Kanuchova, S.
2018-06-01
In the framework of the Near Earth Objects (NEOs) observational campaign carried out within the NEOShield-2 project, we identify nine new small D-type asteroids with estimated diameter less than 600 m. The link with meteorites for this class of asteroids is weak and the best fit obtained is with the Tagish Lake meteorite for seven of them. D-type asteroids are believed to contain the most pristine material of the Solar system and could have delivered the pre-biotic material to the Earth. Our results double the known sample of the D-types in the NEO population and triple the candidates of this class for a sample-return mission (at very low ΔV). Our finding increases considerably the number of targets for sample-return mission. A sample-return mission to a D-type asteroid will provide a major progress in understanding the early history of the Solar system and to investigate the origin of life on the Earth.
A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions
NASA Technical Reports Server (NTRS)
Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.
2000-01-01
A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.
A Review of New and Developing Technology to Significantly Improve Mars Sample-Return Missions
NASA Astrophysics Data System (ADS)
Carsey, F.; Brophy, J.; Gilmore, M.; Rodgers, D.; Wilcox, B.
2000-07-01
A JPL development activity was initiated in FY 1999 for the purpose of examining and evaluating technologies that could materially improve future (i.e., beyond the 2005 launch) Mars sample return missions. The scope of the technology review was comprehensive and end-to-end; the goal was to improve mass, cost, risk, and scientific return. A specific objective was to assess approaches to sample return with only one Earth launch. While the objective of the study was specifically for sample-return, in-situ missions can also benefit from using many of the technologies examined.
Reassessment of Planetary Protection Requirements for Mars Sample Return Missions
NASA Astrophysics Data System (ADS)
Smith, David; Race, Margaret; Farmer, Jack
In 2008, NASA asked the US National Research Council (NRC) to review the findings of the report, Mars Sample Return: Issues and Recommendations (National Academy Press, 1997), and to update its recommendations in the light of both current understanding of Mars's biolog-ical potential and ongoing improvements in biological, chemical, and physical sample-analysis capabilities and technologies. The committee established to address this request was tasked to pay particular attention to five topics. First, the likelihood that living entities may be included in samples returned from Mars. Second, scientific investigations that should be conducted to reduce uncertainty in the assessment of Mars' biological potential. Third, the possibility of large-scale effects on Earth's environment if any returned entity is released into the environment. Fourth, the status of technological measures that could be taken on a mission to prevent the inadvertent release of a returned sample into Earth's biosphere. Fifth, criteria for intentional sample release, taking note of current and anticipated regulatory frameworks. The paper outlines the recommendations contained in the committee's final report, Planetary Protection Requirements for Mars Sample Return Missions (The National Academies Press, 2009), with particular emphasis placed on the scientific, technical and policy changes since 1997 and indications as to how these changes modify the recommendations contained in the 1997 report.
Airborne Observation of the Hayabusa Sample Return Capsule Re-Entry
NASA Technical Reports Server (NTRS)
Grinstead, Jay H.; Jenniskens, Peter; Cassell, Alan M.; Albers, James; Winter, Michael W.
2011-01-01
NASA Ames Research Center and the SETI Institute collaborated on an effort to observe the Earth re-entry of the Japan Aerospace Exploration Agency's Hayabusa sample return capsule. Hayabusa was an asteroid exploration mission that retrieved a sample from the near-Earth asteroid Itokawa. Its sample return capsule re-entered over the Woomera Prohibited Area in southern Australia on June 13, 2010. Being only the third sample return mission following NASA's Genesis and Stardust missions, Hayabusa's return was a rare opportunity to collect aerothermal data from an atmospheric entry capsule returning at superorbital speeds. NASA deployed its DC-8 airborne laboratory and a team of international researchers to Australia for the re-entry. For approximately 70 seconds, spectroscopic and radiometric imaging instruments acquired images and spectra of the capsule, its wake, and destructive re-entry of the spacecraft bus. Once calibrated, spectra of the capsule will be interpreted to yield data for comparison with and validation of high fidelity and engineering simulation tools used for design and development of future atmospheric entry system technologies. A brief summary of the Hayabusa mission, the preflight preparations and observation mission planning, mission execution, and preliminary spectral data are documented.
OSIRIS-REx Flight Dynamics and Navigation Design
NASA Astrophysics Data System (ADS)
Williams, B.; Antreasian, P.; Carranza, E.; Jackman, C.; Leonard, J.; Nelson, D.; Page, B.; Stanbridge, D.; Wibben, D.; Williams, K.; Moreau, M.; Berry, K.; Getzandanner, K.; Liounis, A.; Mashiku, A.; Highsmith, D.; Sutter, B.; Lauretta, D. S.
2018-06-01
OSIRIS-REx is the first NASA mission to return a sample of an asteroid to Earth. Navigation and flight dynamics for the mission to acquire and return a sample of asteroid 101955 Bennu establish many firsts for space exploration. These include relatively small orbital maneuvers that are precise to ˜1 mm/s, close-up operations in a captured orbit about an asteroid that is small in size and mass, and planning and orbit phasing to revisit the same spot on Bennu in similar lighting conditions. After preliminary surveys and close approach flyovers of Bennu, the sample site will be scientifically characterized and selected. A robotic shock-absorbing arm with an attached sample collection head mounted on the main spacecraft bus acquires the sample, requiring navigation to Bennu's surface. A touch-and-go sample acquisition maneuver will result in the retrieval of at least 60 grams of regolith, and up to several kilograms. The flight activity concludes with a return cruise to Earth and delivery of the sample return capsule (SRC) for landing and sample recovery at the Utah Test and Training Range (UTTR).
Comet nucleus sample return mission
NASA Technical Reports Server (NTRS)
1983-01-01
A comet nucleus sample return mission in terms of its relevant science objectives, candidate mission concepts, key design/technology requirements, and programmatic issues is discussed. The primary objective was to collect a sample of undisturbed comet material from beneath the surface of an active comet and to preserve its chemical and, if possible, its physical integrity and return it to Earth in a minimally altered state. The secondary objectives are to: (1) characterize the comet to a level consistent with a rendezvous mission; (2) monitor the comet dynamics through perihelion and aphelion with a long lived lander; and (3) determine the subsurface properties of the nucleus in an area local to the sampled core. A set of candidate comets is discussed. The hazards which the spacecraft would encounter in the vicinity of the comet are also discussed. The encounter strategy, the sampling hardware, the thermal control of the pristine comet material during the return to Earth, and the flight performance of various spacecraft systems and the cost estimates of such a mission are presented.
NASA Technical Reports Server (NTRS)
Fries, M. D.; Allen, C. C.; Calaway, M. J.; Evans, C. A.; Stansbery, E. K.
2015-01-01
Curation of NASA's astromaterials sample collections is a demanding and evolving activity that supports valuable science from NASA missions for generations, long after the samples are returned to Earth. For example, NASA continues to loan hundreds of Apollo program samples to investigators every year and those samples are often analyzed using instruments that did not exist at the time of the Apollo missions themselves. The samples are curated in a manner that minimizes overall contamination, enabling clean, new high-sensitivity measurements and new science results over 40 years after their return to Earth. As our exploration of the Solar System progresses, upcoming and future NASA sample return missions will return new samples with stringent contamination control, sample environmental control, and Planetary Protection requirements. Therefore, an essential element of a healthy astromaterials curation program is a research and development (R&D) effort that characterizes and employs new technologies to maintain current collections and enable new missions - an Advanced Curation effort. JSC's Astromaterials Acquisition & Curation Office is continually performing Advanced Curation research, identifying and defining knowledge gaps about research, development, and validation/verification topics that are critical to support current and future NASA astromaterials sample collections. The following are highlighted knowledge gaps and research opportunities.
NASA Astrophysics Data System (ADS)
Wiesendanger, R.; Wurz, P.; Tulej, M.; Wacey, D.; Neubeck, A.; Grimaudo, V.; Riedo, A.; Moreno, P.; Cedeño-López, A.; Ivarsson, M.
2018-04-01
The University of Bern developed instrument prototypes that allow analysis of samples on Mars prior to bringing them back to Earth, allowing to maximize the scientific outcome of the returned samples. We will present the systems and first results.
Groundbreaking Mars Sample Return for Science and Human Exploration
NASA Technical Reports Server (NTRS)
Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan
2012-01-01
Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.
Overview of the Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Dillman, Robert; Corliss, James
2008-01-01
NASA's Mars Sample Return (MSR) project will bring Mars surface and atmosphere samples back to Earth for detailed examination. Langley Research Center's MSR Earth Entry Vehicle (EEV) is a core part of the mission, protecting the sample container during atmospheric entry, descent, and landing. Planetary protection requirements demand a higher reliability from the EEV than for any previous planetary entry vehicle. An overview of the EEV design and preliminary analysis is presented, with a follow-on discussion of recommended future design trade studies to be performed over the next several years in support of an MSR launch in 2018 or 2020. Planned topics include vehicle size for impact protection of a range of sample container sizes, outer mold line changes to achieve surface sterilization during re-entry, micrometeoroid protection, aerodynamic stability, thermal protection, and structural materials selection.
NASA Technical Reports Server (NTRS)
Leshin, L. A.; Yen, A.; Bomba, J.; Clark, B.; Epp, C.; Forney, L.; Gamber, T.; Graves, C.; Hupp, J.; Jones, S.
2002-01-01
The Sample Collection for Investigation of Mars (SCIM) mission is designed to: (1) make a 40 km pass through the Martian atmosphere; (2) collect dust and atmospheric gas; and (3) return the samples to Earth for analysis. Additional information is contained in the original extended abstract.
A Mars Sample Return Sample Handling System
NASA Technical Reports Server (NTRS)
Wilson, David; Stroker, Carol
2013-01-01
We present a sample handling system, a subsystem of the proposed Dragon landed Mars Sample Return (MSR) mission [1], that can return to Earth orbit a significant mass of frozen Mars samples potentially consisting of: rock cores, subsurface drilled rock and ice cuttings, pebble sized rocks, and soil scoops. The sample collection, storage, retrieval and packaging assumptions and concepts in this study are applicable for the NASA's MPPG MSR mission architecture options [2]. Our study assumes a predecessor rover mission collects samples for return to Earth to address questions on: past life, climate change, water history, age dating, understanding Mars interior evolution [3], and, human safety and in-situ resource utilization. Hence the rover will have "integrated priorities for rock sampling" [3] that cover collection of subaqueous or hydrothermal sediments, low-temperature fluidaltered rocks, unaltered igneous rocks, regolith and atmosphere samples. Samples could include: drilled rock cores, alluvial and fluvial deposits, subsurface ice and soils, clays, sulfates, salts including perchlorates, aeolian deposits, and concretions. Thus samples will have a broad range of bulk densities, and require for Earth based analysis where practical: in-situ characterization, management of degradation such as perchlorate deliquescence and volatile release, and contamination management. We propose to adopt a sample container with a set of cups each with a sample from a specific location. We considered two sample cups sizes: (1) a small cup sized for samples matching those submitted to in-situ characterization instruments, and, (2) a larger cup for 100 mm rock cores [4] and pebble sized rocks, thus providing diverse samples and optimizing the MSR sample mass payload fraction for a given payload volume. We minimize sample degradation by keeping them frozen in the MSR payload sample canister using Peltier chip cooling. The cups are sealed by interference fitted heat activated memory alloy caps [5] if the heating does not affect the sample, or by crimping caps similar to bottle capping. We prefer cap sealing surfaces be external to the cup rim to prevent sample dust inside the cups interfering with sealing, or, contamination of the sample by Teflon seal elements (if adopted). Finally the sample collection rover, or a Fetch rover, selects cups with best choice samples and loads them into a sample tray, before delivering it to the Earth Return Vehicle (ERV) in the MSR Dragon capsule as described in [1] (Fig 1). This ensures best use of the MSR payload mass allowance. A 3 meter long jointed robot arm is extended from the Dragon capsule's crew hatch, retrieves the sample tray and inserts it into the sample canister payload located on the ERV stage. The robot arm has capacity to obtain grab samples in the event of a rover failure. The sample canister has a robot arm capture casting to enable capture by crewed or robot spacecraft when it returns to Earth orbit
Advanced Navigation Strategies for an Asteroid Sample Return Mission
NASA Technical Reports Server (NTRS)
Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.
2011-01-01
The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.
Art Concepts - Mars Sample (Robot)
1987-06-09
S87-35313 (15 May 1987)--- This artist's rendering illustrates a Mars Sample Return mission under study at Jet Propulsion Laboratory (JPL) and the NASA Johnson Space Center (JSC). As currently envisioned, the spacecraft would be launched in the mid to late 1990's into Earth-orbit by a space shuttle, released from the shuttle's cargo bay and propelled toward Mars by an upper-stage engine. A lander (left background) would separate from an orbiting vehicle (upper right) and descend to the planet's surface. The lander's payload would include a robotic rover (foreground), which would spend a year moving about the Martian terrain collecting scientifically significant rock and soil samples. The rover would then return to the lander and transfer its samples to a small rocket that would carry them into orbit and rendezvous with the orbiter for a return to Earth. As depicted here the rover consists of three two-wheeled cabs, and is fitted with a stereo camera vision system and tool-equipped arms for sample collection. The Mars Sample Return studies are funded by NASA's Office of Space Science and Applications.
OSIRIS-REx Asteroid Sample-Return Mission
NASA Astrophysics Data System (ADS)
DellaGiustina, D. N.; Lauretta, D. S.
2016-12-01
Launching in September 2016, the primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission is to return a pristine sample of asteroid (101955) Bennu to Earth for sample analysis. Bennu is a carbonaceous primitive near-Earth object, and is expected to be rich in volatile and organic material leftover from the formation of the Solar System. OSIRIS-REx will return a minimum of 60 g of bulk surface material from this body using a novel "touch-and-go" sample acquisition mechanism. Analyses of these samples will provide unprecedented knowledge about presolar history, from the initial stages of planet formation to the origin of life. Before sample acquisition, OSIRIS-REx will perform global mapping of Bennu, detailing the asteroid's composition and texture, resolving surface features, revealing its geologic and dynamic history, and providing context for the returned samples. The mission will also document the sampling site in situ at sub-centimeter scales, as well as the asteroid sampling event. In addition, OSIRIS-REx will measure the Yarkovsky effect, a non-Keplerian force affecting the orbit of this potentially hazardous asteroid, and provide a ground truth data for the interpretation of telescopic observations of carbonaceous asteroids.
Multi-Mission System Analysis for Planetary Entry (M-SAPE) Version 1
NASA Technical Reports Server (NTRS)
Samareh, Jamshid; Glaab, Louis; Winski, Richard G.; Maddock, Robert W.; Emmett, Anjie L.; Munk, Michelle M.; Agrawal, Parul; Sepka, Steve; Aliaga, Jose; Zarchi, Kerry;
2014-01-01
This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
International Agreement on Planetary Protection
NASA Technical Reports Server (NTRS)
2000-01-01
The maintenance of a NASA policy, is consistent with international agreements. The planetary protection policy management in OSS, with Field Center support. The advice from internal and external advisory groups (NRC, NAC/Planetary Protection Task Force). The technology research and standards development in bioload characterization. The technology research and development in bioload reduction/sterilization. This presentation focuses on: forward contamination - research on the potential for Earth life to exist on other bodies, improved strategies for planetary navigation and collision avoidance, and improved procedures for sterile spacecraft assembly, cleaning and/or sterilization; and backward contamination - development of sample transfer and container sealing technologies for Earth return, improvement in sample return landing target assessment and navigation strategy, planning for sample hazard determination requirements and procedures, safety certification, (liaison to NEO Program Office for compositional data on small bodies), facility planning for sample recovery system, quarantine, and long-term curation of 4 returned samples.
A Passive Earth-Entry Capsule for Mars Sample Return
NASA Technical Reports Server (NTRS)
Mitcheltree, Robert A.; Kellas, Sotiris
1999-01-01
A combination of aerodynamic analysis and testing, aerothermodynamic analysis, structural analysis and testing, impact analysis and testing, thermal analysis, ground characterization tests, configuration packaging, and trajectory simulation are employed to determine the feasibility of an entirely passive Earth entry capsule for the Mars Sample Return mission. The design circumvents the potential failure modes of a parachute terminal descent system by replacing that system with passive energy absorbing material to cushion the Mars samples during ground impact. The suggested design utilizes a spherically blunted 45-degree half-angle cone forebody with an ablative heat shield. The primary structure is a hemispherical, composite sandwich enclosing carbon foam energy absorbing material. Though no demonstration test of the entire system is included, results of the tests and analysis presented indicate that the design is a viable option for the Mars Sample Return Mission.
NASA Technical Reports Server (NTRS)
Stansbery, EIleen K.; Latner, Alexis Glynn
2000-01-01
Extraterrestrial material eternally rains down on Earth. Meteorites flare in the night sky. Cosmic rays plow into Earth's atmosphere, creating invisible bursts of secondary particles. These processes began when the Earth formed in the primordial solar system and have continued ever since, indifferent to the exceedingly recent presence of human intelligence. For us to seek out stuff of other worlds, in contrast, takes a great deal of determined ingenuity. First we have to send a spacecraft somewhere else in the solar system. Indigenous material has to be collected and then brought back to Earth without exposure to conditions that might significantly alter it. The material must undergo meaningful scientific analysis. Most important, part of the material is preserved intact for future investigations. Beginning with bringing back Moon rocks, and now moving onward in the form of new missions to capture the hot thin solar wind and cold thin atmosphere of comets, extraterrestrial sample return takes place on the cutting edge of scientific technology. Sample return is also the fulcrum of an energetic debate about how to do planetary science missions. Scientists and engineers are debating whether to rely on remote sensing and in situ analysis, or to plan missions to undertake sample return. The latter is definitely more expensive on a per mission basis, and is usually technologically more challenging. But for an initially high investment of money and technology, bringing the stuff of other worlds back to Earth yields an incomparable return in scientific results.
Notes on Earth Atmospheric Entry for Mars Sample Return Missions
NASA Technical Reports Server (NTRS)
Rivell, Thomas
2006-01-01
The entry of sample return vehicles (SRVs) into the Earth's atmosphere is the subject of this document. The Earth entry environment for vehicles, or capsules, returning from the planet Mars is discussed along with the subjects of dynamics, aerodynamics, and heat transfer. The material presented is intended for engineers and scientists who do not have strong backgrounds in aerodynamics, aerothermodynamics and flight mechanics. The document is not intended to be comprehensive and some important topics are omitted. The topics considered in this document include basic principles of physics (fluid mechanics, dynamics and heat transfer), chemistry and engineering mechanics. These subjects include: a) fluid mechanics (aerodynamics, aerothermodynamics, compressible fluids, shock waves, boundary layers, and flow regimes from subsonic to hypervelocity; b) the Earth s atmosphere and gravity; c) thermal protection system design considerations; d) heat and mass transfer (convection, radiation, and ablation); e) flight mechanics (basic rigid body dynamics and stability); and f) flight- and ground-test requirements; and g) trajectory and flow simulation methods.
MarcoPolo-R: Mission and Spacecraft Design
NASA Astrophysics Data System (ADS)
Peacocke, L.; Kemble, S.; Chapuy, M.; Scheer, H.
2013-09-01
The MarcoPolo-R mission is a candidate for the European Space Agency's medium-class Cosmic Vision programme, with the aim to obtain a 100 g sample of asteroid surface material and return it safely to the Earth. Astrium is one of two industrial contractors currently studying the mission to Phase A level, and the team has been working on the mission and spacecraft design since January 2012. Asteroids are some of the most primitive bodies in our solar system and are key to understanding the formation of the Earth, Sun and other planetary bodies. A returned sample would allow extensive analyses in the large laboratory-sized instruments here on Earth that are not possible with in-situ instruments. This analysis would also increase our understanding of the composition and structure of asteroids, and aid in plans for asteroid deflection techniques. In addition, the mission would be a valuable precursor for missions such as Mars Sample Return, demonstrating a high speed Earth re-entry and hard landing of an entry capsule. Following extensive mission analysis of both the baseline asteroid target 1996 FG3 and alternatives, a particularly favourable trajectory was found to the asteroid 2008 EV5 resulting in a mission duration of 4.5 to 6 years. In October 2012, the MarcoPolo-R baseline target was changed to 2008 EV5 due to its extremely primitive nature, which may pre-date the Sun. This change has a number of advantages: reduced DeltaV requirements, an orbit with a more benign thermal environment, reduced communications distances, and a reduced complexity propulsion system - all of which simplify the spacecraft design significantly. The single spacecraft would launch between 2022 and 2024 on a Soyuz-Fregat launch vehicle from Kourou. Solar electric propulsion is necessary for the outward and return transfers due to the DeltaV requirements, to minimise propellant mass. Once rendezvous with the asteroid is achieved, an observation campaign will begin to characterise the asteroid properties and map the surface in detail. Five potential sampling sites will be selected and closely observed in a local characterisation phase, leading to a single preferred sampling site being identified. The baseline instruments are a Narrow Angle Camera, a Mid-Infrared Spectrometer, a Visible Near-Infrared Spectrometer, a Radio Science Experiment, and a Close-up Camera. For the sampling phase, the spacecraft will perform a touch-and-go manoeuvre. A boom with a sampling mechanism at the end will be deployed, and the spacecraft will descend using visual navigation to touch the asteroid for some seconds. The rotary brush sampling mechanism will be activated on touchdown to obtain a good quality sample comprising regolith dust and pebbles. Low touchdown velocities and collision avoidance are critical at this point to prevent damage to the spacecraft and solar arrays. The spacecraft will then move away, returning to a safe orbit, and the sample will be transferred to an Earth Re-entry Capsule. After a final post-sampling characterisation campaign, the spacecraft will perform the return transfer to Earth. The Earth Re-entry Capsule will be released to directly enter the Earth's atmosphere, and is designed to survive a hard landing with no parachute deceleration. Once recovered, the asteroid sample would be extracted in a sample curation facility in preparation for the full analysis campaign. This presentation will describe Astrium's MarcoPolo-R mission and spacecraft design, with a focus on the innovative aspects of the design.
NASA Astrophysics Data System (ADS)
Jenniskens, P.; Jordan, D.; Kontinos, D.; Wright, M.; Olejniczak, J.; Raiche, G.; Wercinski, P.; Schilling, E.; Taylor, M.; Rairden, R.; Stenbaek-Nielsen, H.; McHarg, M. G.; Abe, S.; Winter, M.
2006-08-01
In order for NASA's Stardust mission to return a comet sample to Earth, the probe was put in an orbit similar to that of Near Earth Asteroids. As a result, the reentry in Earth's atmosphere on January 15, 2006, was the fastest entry ever for a NASA spacecraft, with a speed of 12.8 km/s, similar to that of natural fireballs. A new thermal protection material, PICA, was used to protect the sample, a material that may have a future as thermal protection for the Crew Return Vehicle or for future planetary missions. An airborne and ground-based observing campaign, the "Stardust Hyperseed MAC", was organized to observe the reentry under good observing conditions, with spectroscopic and imaging techniques commonly used for meteor observations (http:// reentry.arc.nasa.gov). A spectacular video of the reentry was obtained. The spectroscopic observations measure how much light was generated in the shock wave, how that radiation added to heating the surface, how the PICA ablated as a function of altitude, and how the carbon reacted with the shock wave to form CN, a possible marker of prebiotic chemistry in natural meteors. In addition, the observations measured a transient signal of zinc and potassium early in the trajectory, from the ablation of a white paint layer that had been applied to the heat shield for thermal control. Implications for sample return and the exploration of atmospheres in future planetary missions will be discussed.
Asteroid exploration and utilization: The Hawking explorer
NASA Technical Reports Server (NTRS)
Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian
1991-01-01
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.
Asteroid exploration and utilization: The Hawking explorer
NASA Astrophysics Data System (ADS)
Carlson, Alan; Date, Medha; Duarte, Manny; Erian, Neil; Gafka, George; Kappler, Peter; Patano, Scott; Perez, Martin; Ponce, Edgar; Radovich, Brian
1991-12-01
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources which may exist on asteroids could have enormous potential for aiding and enhancing human space exploration as well as life on Earth. With the possibly limitless opportunities that exist, it is clear that asteroids are the next step for human existence in space. This report comprises the efforts of NEW WORLDS, Inc. to develop a comprehensive design for an asteroid exploration/sample return mission. This mission is a precursor to proof-of-concept missions that will investigate the validity of mining and materials processing on an asteroid. Project STONER (Systematic Transfer of Near Earth Resources) is based on two utilization scenarios: (1) moving an asteroid to an advantageous location for use by Earth; and (2) mining an asteroids and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plane for humans to utilize asteroid resources. The report concentrates specifically on the selection of the most promising asteroids for exploration and the development of an exploration scenario. Future utilization as well as subsystem requirements of an asteroid sample return probe are also addressed.
Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew; Merrill, Raymond G.; Qu, Min; Naasz, Bo J.
2014-01-01
The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.
Mars, Phobos, and Deimos Sample Return Enabled by ARRM Alternative Trade Study Spacecraft
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew; Naasz, Bo; Merill, Raymond G.; Qu, Min
2014-01-01
The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and/or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.
1998-12-04
In the Payload Hazardous Servicing Facility, the Stardust spacecraft is ready for the sample return capsule to be attached. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in the re-entry capsule to be jettisoned as it swings by Earth in January 2006. Stardust is scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999
Astrobiology Objectives for Mars Sample Return
NASA Astrophysics Data System (ADS)
Meyer, M. A.
2002-05-01
Astrobiology is the study of life in the Universe, and a major objective is to understand the past, present, and future biologic potential of Mars. The current Mars Exploration Program encompasses a series of missions for reconnaissance and in-situ analyses to define in time and space the degree of habitability on Mars. Determining whether life ever existed on Mars is a more demanding question as evidenced by controversies concerning the biogenicity of features in the Mars meteorite ALH84001 and in the earliest rocks on Earth. In-situ studies may find samples of extreme interest but resolution of the life question most probably would require a sample returned to Earth. A selected sample from Mars has the many advantages: State-of-the-art instruments, precision sample handling and processing, scrutiny by different investigators employing different techniques, and adaptation of approach to any surprises It is with a returned sample from Mars that Astrobiology has the most to gain in determining whether life did, does, or could exist on Mars.
OSIRIS-REx Touch-and-Go (TAG) Mission Design for Asteroid Sample Collection
NASA Technical Reports Server (NTRS)
May, Alexander; Sutter, Brian; Linn, Timothy; Bierhaus, Beau; Berry, Kevin; Mink, Ron
2014-01-01
The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission launching in September 2016 to rendezvous with the near-Earth asteroid Bennu in October 2018. After several months of proximity operations to characterize the asteroid, OSIRIS-REx flies a Touch-And-Go (TAG) trajectory to the asteroid's surface to collect at least 60 g of pristine regolith sample for Earth return. This paper provides mission and flight system overviews, with more details on the TAG mission design and key events that occur to safely and successfully collect the sample. An overview of the navigation performed relative to a chosen sample site, along with the maneuvers to reach the desired site is described. Safety monitoring during descent is performed with onboard sensors providing an option to abort, troubleshoot, and try again if necessary. Sample collection occurs using a collection device at the end of an articulating robotic arm during a brief five second contact period, while a constant force spring mechanism in the arm assists to rebound the spacecraft away from the surface. Finally, the sample is measured quantitatively utilizing the law of conservation of angular momentum, along with qualitative data from imagery of the sampling device. Upon sample mass verification, the arm places the sample into the Stardust-heritage Sample Return Capsule (SRC) for return to Earth in September 2023.
Mars Sample Return Using Solar Sail Propulsion
NASA Technical Reports Server (NTRS)
Johnson, Les; Macdonald, Malcolm; Mcinnes, Colin; Percy, Tom
2012-01-01
Many Mars Sample Return (MSR) architecture studies have been conducted over the years. A key element of them is the Earth Return Stage (ERS) whose objective is to obtain the sample from the Mars Ascent Vehicle (MAV) and return it safely to the surface of the Earth. ERS designs predominantly use chemical propulsion [1], incurring a significant launch mass penalty due to the low specific impulse of such systems coupled with the launch mass sensitivity to returned mass. It is proposed to use solar sail propulsion for the ERS, providing a high (effective) specific impulse propulsion system in the final stage of the multi-stage system. By doing so to the launch mass of the orbiter mission can be significantly reduced and hence potentially decreasing mission cost. Further, solar sailing offers a unique set of non-Keplerian low thrust trajectories that may enable modifications to the current approach to designing the Earth Entry Vehicle by potentially reducing the Earth arrival velocity. This modification will further decrease the mass of the orbiter system. Solar sail propulsion uses sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like surface made of a lightweight, reflective material. The continuous photonic pressure provides propellantless thrust to conduct orbital maneuvering and plane changes more efficiently than conventional chemical propulsion. Because the Sun supplies the necessary propulsive energy, solar sails require no onboard propellant, thus reducing system mass. This technology is currently at TRL 7/8 as demonstrated by the 2010 flight of the Japanese Aerospace Exploration Agency, JAXA, IKAROS mission. [2
A Draft Protocol for Detecting Possible Biohazards in Martian Samples Returned to Earth
NASA Technical Reports Server (NTRS)
Viso, M.; DeVincenzi, D. L.; Race, M. S.; Schad, P. J.; Stabekis, P. D.; Acevedo, S. E.; Rummel, J. D.
2002-01-01
In preparation for missions to Mars that will involve the return of samples, it is necessary to prepare for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but a specific protocol for handling and testing of returned -=1 samples from Mars remained to be developed. To refine the requirements for Mars sample hazard testing and to develop criteria for the subsequent release of sample materials from precautionary containment, NASA Planetary Protection Officer, working in collaboration with CNES, convened a series of workshops to produce a Protocol by which returned martian sample materials could be assessed for biological hazards and examined for evidence of life (extant or extinct), while safeguarding the samples from possible terrestrial contamination. The Draft Protocol was then reviewed by an Oversight and Review Committee formed specifically for that purpose and composed of senior scientists. In order to preserve the scientific value of returned martian samples under safe conditions, while avoiding false indications of life within the samples, the Sample Receiving Facility (SRF) is required to allow handling and processing of the Mars samples to prevent their terrestrial contamination while maintaining strict biological containment. It is anticipated that samples will be able to be shipped among appropriate containment facilities wherever necessary, under procedures developed in cooperation with international appropriate institutions. The SRF will need to provide different types of laboratory environments for carrying out, beyond sample description and curation, the various aspects of the protocol: Physical/Chemical analysis, Life Detection testing, and Biohazard testing. The main principle of these tests will be described and the criteria for release will be discussed, as well as the requirements for the SRF and its personnel.
NASA Technical Reports Server (NTRS)
Ross, A. J.; Herrin, J. S.; Alexander, L.; Downes, H.; Smith, C. L.; Jenniskens, P.
2011-01-01
Analysis of samples returned to terrestrial laboratories enables more precise measurements and a wider range of techniques to be utilized than can be achieved with either remote sensing or rover instruments. Furthermore, returning samples to Earth allows them to be stored and re-examined with future technology. Following the success of the Hayabusa mission, returning samples from asteroids should be a high priority for understanding of early solar system evolution, planetary formation and differentiation. Meteorite falls provide us with materials and insight into asteroidal compositions. Almahata Sitta (AS) was the first meteorite fall from a tracked asteroid (2008 TC3) [1] providing a rare opportunity to compare direct geochemical observations with remote sensing data. Although AS is predominantly ureilitic, multiple chondritic fragments have been associated with this fall [2,3]. This is not unique, with chondritic fragments being found in many howardite samples (as described in a companion abstract [4]) and in brecciated ureilites, some of which are known to represent ureilitic regolith [5-7]. The heterogeneity of ureilite samples, which are thought to all originate from a single asteroidal ureilite parent body (UPB) [5], gives us information about both internal and external asteroidal variations. This has implications both for the planning of potential sample return missions and the interpretation of material returned to Earth. This abstract focuses on multiple fragments of two meteorites: Almahata Sitta (AS); and Dar al Gani (DaG) 1047 (a highly brecciated ureilite, likely representative of ureilite asteroidal regolith).
Carbon Isotopic Measurements of Amino Acids in Stardust-Returned Samples
NASA Technical Reports Server (NTRS)
Elsila, Jamie
2009-01-01
NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here, we present the carbon isotopic ratios of glycine and e-aminocaproic acid (EACA), the two most abundant amino acids, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio mass spectrometry coupled with quadrupole mass spectrometry (GC-CAMS/IRMS).
Comet coma sample return instrument
NASA Technical Reports Server (NTRS)
Albee, A. L.; Brownlee, Don E.; Burnett, Donald S.; Tsou, Peter; Uesugi, K. T.
1994-01-01
The sample collection technology and instrument concept for the Sample of Comet Coma Earth Return Mission (SOCCER) are described. The scientific goals of this Flyby Sample Return are to return to coma dust and volatile samples from a known comet source, which will permit accurate elemental and isotopic measurements for thousands of individual solid particles and volatiles, detailed analysis of the dust structure, morphology, and mineralogy of the intact samples, and identification of the biogenic elements or compounds in the solid and volatile samples. Having these intact samples, morphologic, petrographic, and phase structural features can be determined. Information on dust particle size, shape, and density can be ascertained by analyzing penetration holes and tracks in the capture medium. Time and spatial data of dust capture will provide understanding of the flux dynamics of the coma and the jets. Additional information will include the identification of cosmic ray tracks in the cometary grains, which can provide a particle's process history and perhaps even the age of the comet. The measurements will be made with the same equipment used for studying micrometeorites for decades past; hence, the results can be directly compared without extrapolation or modification. The data will provide a powerful and direct technique for comparing the cometary samples with all known types of meteorites and interplanetary dust. This sample collection system will provide the first sample return from a specifically identified primitive body and will allow, for the first time, a direct method of matching meteoritic materials captured on Earth with known parent bodies.
Mars to earth optical communication link for the proposed Mars Sample Return mission roving vehicle
NASA Astrophysics Data System (ADS)
Sipes, Donald L., Jr.
The Mars Sample Return (MSR) mission planed for 1989 will deploy a rover from its landing craft to survey the Martian surface. During traversals of the rover from one site to the next in search of samples, three-dimensional images from a pair of video cameras will be transmitted to earth; the terrestrial operators will then send back high level direction commands to the rover. Attention is presently given to the effects of wind and dust on communications, the architecture of the optical communications package, and the identification of technological areas requiring further development for MSR incorporation.
Comet Odyssey: Comet Surface Sample Return
NASA Astrophysics Data System (ADS)
Weissman, Paul R.; Bradley, J.; Smythe, W. D.; Brophy, J. R.; Lisano, M. E.; Syvertson, M. L.; Cangahuala, L. A.; Liu, J.; Carlisle, G. L.
2010-10-01
Comet Odyssey is a proposed New Frontiers mission that would return the first samples from the surface of a cometary nucleus. Stardust demonstrated the tremendous power of analysis of returned samples in terrestrial laboratories versus what can be accomplished in situ with robotic missions. But Stardust collected only 1 milligram of coma dust, and the 6.1 km/s flyby speed heated samples up to 2000 K. Comet Odyssey would collect two independent 800 cc samples directly from the surface in a far more benign manner, preserving the primitive composition. Given a minimum surface density of 0.2 g/cm3, this would return two 160 g surface samples to Earth. Comet Odyssey employs solar-electric propulsion to rendezvous with the target comet. After 180 days of reconnaissance and site selection, the spacecraft performs a "touch-and-go” maneuver with surface contact lasting 3 seconds. A brush-wheel sampler on a remote arm collects up to 800 cc of sample. A duplicate second arm and sampler collects the second sample. The samples are placed in a return capsule and maintained at colder than -70 C during the return flight and at colder than -30 C during re-entry and for up to six hours after landing. The entire capsule is then refrigerated and transported to the Astromaterials Curatorial Facility at NASA/JSC for initial inspection and sample analysis by the Comet Odyssey team. Comet Odyssey's planned target was comet 9P/Tempel 1, with launch in December 2017 and comet arrival in June 2022. After a stay of 300 days at the comet, the spacecraft departs and arrives at Earth in May 2027. Comet Odyssey is a forerunner to a flagship Cryogenic Comet Sample Return mission that would return samples from deep below the nucleus surface, including volatile ices. This work was supported by internal funds from the Jet Propulsion Laboratory.
Planetary Protection for LIFE-Sample Return from Enceladus
NASA Astrophysics Data System (ADS)
Tsou, Peter; Yano, Hajime; Takano, Yoshinori; McKay, David; Takai, Ken; Anbar, Ariel; Baross, J.
Introduction: We are seeking a balanced approach to returning Enceladus plume samples to state-of-the-art terrestrial laboratories to search for signs of life. NASA, ESA, JAXA and other space agencies are seeking habitable worlds and life beyond Earth. Enceladus, an icy moon of Saturn, is the first known body in the Solar System besides Earth to emit liquid water from its interior. Enceladus is the most accessible body in our Solar System for a low cost flyby sample return mission to capture aqueous based samples, to determine its state of life development, and shed light on how life can originate on wet planets/moons. LIFE combines the unique capabilities of teams of international exploration expertise. These returned Enceladus plume samples will determine if this habitable body is in fact inhabited [McKay et al, 2014]. This paper describes an approach for the LIFE mission to capture and return samples from Enceladus while meeting NASA and COSPAR planetary protection requirements. Forward planetary protection requirements for spacecraft missions to icy solar system bodies have been defined, however planetary protection requirements specific to an Earth return of samples collected from Enceladus or other Outer Planet Icy Moons, have yet to be defined. Background: From the first half century of space exploration, we have returned samples only from the Moon, comet Wild 2, the Solar Wind and the asteroid Itokawa. The in-depth analyses of these samples in terrestrial laboratories have yielded detailed chemical information that could not have been obtained otherwise. While obtaining samples from Solar System bodies is trans-formative science, it is rarely performed due to cost and complexity. The discovery by Cassini of geysers on Enceladus and organic materials in the ejected plume indicates that there is an exceptional opportunity and strong scientific rationale for LIFE. The earliest low-cost possible flight opportunity is the next Discovery Mission [Tsou et al 2012]. Current Plan: At the 1st flyby of Enceladus at high plume altitude (~150 km), we would survey the status of the plume and jets by making in situ measurements of the gas and dust densities, compositions, and velocities. We would also collect solid ice/volatile samples based upon prior ground planning. The 2nd and final flyby (determined via optimal trajectory from the 1st flyby) will be conducted at low altitude (~20 km), and would perform in situ measurements and collect solid ice and volatile samples. During the 5 year return cruise, we would maintain the samples in their captured state (frozen) under desiccating conditions of low temperature and pressure. After a direct Earth reentry, we would transport the frozen samples from the sample return capsule into a sealed sample transport container, which would then be transported to a higher Biosafety Level (BSL) facility from JAMSTEC (Japan Agency for Marine-Earth Science and Technology) for sample return capsule de-integration and sample distribution. Planetary Protection: Several options for sample return have been conceived and some even demonstrated on previous flight missions (STARDUST, Genesis and Hayabusa). To date, a flight qualified sample containment system does not exist in the US, and it would be cost prohibitive to flight-qualify such a system for use by LIFE under a Discovery Program. Harsh sterilization of the samples would destroy valuable molecular information, defeating the very purpose of returning samples to assess the habitability of Enceladus. The LIFE team has found a viable approach by teaming with JAXA/ISAS. Their Hayabusa II sample containment is a third generation device that can be further improved to meet these NASA and COSPAR planetary protection requirements in an Integrated Sample Subsystem for LIFE. Another aspect of LIFE is the initial de-integration and certification of the returned samples in a higher BSL facility. JAMSTEC is the world’s leading oceanography organization. They are heading the International Marine Research Program in the world's oceans, seeking life and investigating life signatures and ongoing molecular evolution. Therefore, JAMSTEC is deeply interested in participating in a search for life in an ocean from another world via LIFE. Their experience in searching for and handling life in the oceans will be a great asset for LIFE. They are developing a higher BSL facility on their research ship Chikyu [Takano et al., 2014: cf. Sekine et al., 2014] for their marine research which can also accommodate LIFE's sample initial processing and possible preliminary examination period. References: McKay et al. Astrobiology submitted 2014. Tsou et al., Astrobiology 2012; Takano et al., Advances in Space Research, 2014; Sekine et al., Aerospace Technology Japan, 2014.
Aerothermodynamic environments for Mars entry, Mars return, and lunar return aerobraking missions
NASA Astrophysics Data System (ADS)
Rochelle, W. C.; Bouslog, S. A.; Ting, P. C.; Curry, D. M.
1990-06-01
The aeroheating environments to vehicles undergoing Mars aerocapture, earth aerocapture from Mars, and earth aerocapture from the moon are presented. An engineering approach for the analysis of various types of vehicles and trajectories was taken, rather than performing a benchmark computation for a specific point at a selected time point in a trajectory. The radiation into Mars using the Mars Rover Sample Return (MRSR) 2-ft nose radius bionic remains a small contributor of heating for 6 to 10 km/sec; however, at 12 km/sec it becomes comparable with the convection. For earth aerocapture, returning from Mars, peak radiation for the MRSR SRC is only 25 percent of the peak convection for the 12-km/sec trajectory. However, when large vehicles are considered with this trajectory, peak radiation can become 2 to 4 times higher than the peak convection. For both Mars entry and return, a partially ablative Thermal Protection System (TPS) would be required, but for Lunar Transfer Vehicle return an all-reusable TPS can be used.
NASA Astrophysics Data System (ADS)
Yano, Hajime; McKay, Christopher P.; Anbar, Ariel; Tsou, Peter
The recent report of possible water vapor plumes at Europa and Ceres, together with the well-known Enceladus plume containing water vapor, salt, ammonia, and organic molecules, suggests that sample return missions could evolve into a generic approach for outer Solar System exploration in the near future, especially for the benefit of astrobiology research. Sampling such plumes can be accomplished via fly-through mission designs, modeled after the successful Stardust mission to capture and return material from Comet Wild-2 and multiple, precise trajectory controls of the Cassini mission to fly through Enceladus’ plume. The proposed LIFE (Life Investigation For Enceladus) mission to Enceladus, which would sample organic molecules from the plume of that apparently habitable world, provides one example of the appealing scientific return of such missions. Beyond plumes, the upper atmosphere of Titan could also be sampled in this manner. The SCIM mission to Mars, also inspired by Stardust, would sample and return aerosol dust in the upper atmosphere of Mars and thus extends this concept even to other planetary bodies. Such missions share common design needs. In particular, they require large exposed sampler areas (or sampler arrays) that can be contained to the standards called for by international planetary protection protocols that COSPAR Planetary Protection Policy (PPP) recommends. Containment is also needed because these missions are driven by astrobiologically relevant science - including interest in organic molecules - which argues against heat sterilization that could destroy scientific value of samples. Sample containment is a daunting engineering challenge. Containment systems must be carefully designed to appropriate levels to satisfy the two top requirements: planetary protection policy and the preserving the scientific value of samples. Planning for Mars sample return tends to center on a hermetic seal specification (i.e., gas-tight against helium escape). While this is an ideal specification, it far exceeds the current PPP requirements for Category-V “restricted Earth return”, which typically center on a probability of escape of a biologically active particle (e.g., < 1 in 10 (6) chance of escape of particles > 50 nm diameter). Particles of this size (orders of magnitude larger than a helium atom) are not volatile and generally “sticky” toward surfaces; the mobility of viruses and biomolecules requires aerosolization. Thus, meeting the planetary protection challenge does not require hermetic seal. So far, only a handful of robotic missions accomplished deep space sample returns, i.e., Genesis, Stardust and Hayabusa. This year, Hayabusa-2 will be launched and OSIRIS-REx will follow in a few years. All of these missions are classified as “unrestricted Earth return” by the COSPAR PPP recommendation. Nevertheless, scientific requirements of organic contamination control have been implemented to all WBS regarding sampling mechanism and Earth return capsule of Hayabusa-2. While Genesis, Stardust and OSIRIS-REx capsules “breathe” terrestrial air as they re-enter Earth’s atmosphere, temporal “air-tight” design was already achieved by the Hayabusa-1 sample container using a double O-ring seal, and that for the Hayabusa-2 will retain noble gas and other released gas from returned solid samples using metal seal technology. After return, these gases can be collected through a filtered needle interface without opening the entire container lid. This expertise can be extended to meeting planetary protection requirements from “restricted return” targets. There are still some areas requiring new innovations, especially to assure contingency robustness in every phase of a return mission. These must be achieved by meeting both PPP and scientific requirements during initial design and WBS of the integrated sampling system including the Earth return capsule. It is also important to note that international communities in planetary protection, sample return science, and deep space engineering must meet to enable this game-changing opportunity of Outer Solar System exploration.
Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements
NASA Technical Reports Server (NTRS)
Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.; Jiang, Xun J.
2013-01-01
A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASAs science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of developing commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of an emerging commercially available capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).
Mars Sample Return: Mars Ascent Vehicle Mission and Technology Requirements
NASA Technical Reports Server (NTRS)
Bowles, Jeffrey V.; Huynh, Loc C.; Hawke, Veronica M.
2013-01-01
A Mars Sample Return mission is the highest priority science mission for the next decade recommended by the recent Decadal Survey of Planetary Science, the key community input process that guides NASA's science missions. A feasibility study was conducted of a potentially simple and low cost approach to Mars Sample Return mission enabled by the use of new commercial capabilities. Previous studies of MSR have shown that landing an all up sample return mission with a high mass capacity lander is a cost effective approach. The approach proposed is the use of a SpaceX Dragon capsule to land the launch vehicle system that would return samples to Earth. This paper describes the mission and technology requirements impact on the launch vehicle system design, referred to as the Mars Ascent Vehicle (MAV).
The NASA In-Space Propulsion Technology Project's Current Products and Future Directions
NASA Technical Reports Server (NTRS)
Anderson, David J.; Dankanich, John; Munk, Michelle M.; Pencil, Eric; Liou, Larry
2010-01-01
Since its inception in 2001, the objective of the In-Space Propulsion Technology (ISPT) project has been developing and delivering in-space propulsion technologies that enable or enhance NASA robotic science missions. These in-space propulsion technologies are applicable, and potentially enabling for future NASA flagship and sample return missions currently under consideration, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, applicability, and availability of in-space propulsion technologies that recently completed, or will be completing within the next year, their technology development and are ready for infusion into missions. The paper also describes the ISPT project s future focus on propulsion for sample return missions. The ISPT technologies completing their development are: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) aerocapture technologies which include thermal protection system (TPS) materials and structures, guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and atmospheric and aerothermal effect models. The future technology development areas for ISPT are: 1) Planetary Ascent Vehicles (PAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; 3) propulsion for Earth Return Vehicles (ERV) and transfer stages, and electric propulsion for sample return and low cost missions; 4) advanced propulsion technologies for sample return; and 5) Systems/Mission Analysis focused on sample return propulsion.
Contamination Knowledge Strategy for the Mars 2020 Sample-Collecting Rover
NASA Technical Reports Server (NTRS)
Farley, K. A.; Williford, K.; Beaty, D W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.;
2017-01-01
The Mars 2020 rover will collect carefully selected samples of rock and regolith as it explores a potentially habitable ancient environment on Mars. Using the drill, rock cores and regolith will be collected directly into ultraclean sample tubes that are hermetically sealed and, later, deposited on the surface of Mars for potential return to Earth by a subsequent mission. Thorough characterization of any contamination of the samples at the time of their analysis will be essential for achieving the objectives of Mars returned sample science (RSS). We refer to this characterization as contamination knowledge (CK), which is distinct from contamination control (CC). CC is the set of activities that limits the input of contaminating species into a sample, and is specified by requirement thresholds. CK consists of identifying and characterizing both potential and realized contamination to better inform scientific investigations of the returned samples. Based on lessons learned by other sample return missions with contamination-sensitive scientific objectives, CC needs to be "owned" by engineering, but CK needs to be "owned" by science. Contamination present at the time of sample analysis will reflect the sum of contributions from all contamination vectors up to that point in time. For this reason, understanding the integrated history of contamination may be crucial for deciphering potentially confusing contaminant-sensitive observations. Thus, CK collected during the Mars sample return (MSR) campaign must cover the time period from the initiation of hardware construction through analysis of returned samples in labs on Earth. Because of the disciplinary breadth of the scientific objectives of MSR, CK must include a broad spectrum of contaminants covering inorganic (i.e., major, minor, and trace elements), organic, and biological molecules and materials.
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart; Bao, Xiaoqi; Lindsey, Cameron; Kutzer, Thomas; Salazar, Eduardo
2018-03-01
The return of samples back to Earth in future missions would require protection of our planet from the risk of bringing uncontrolled biological materials back with the samples. This protection would require "breaking the chain of contact (BTC)", where any returned material reaching Earth for further analysis would have to be sealed inside a container with extremely high confidence. Therefore, the acquired samples would need to be contained while destroying any potential biological materials that may contaminate the external surface of the container. A novel process that could be used to contain returning samples has been developed and demonstrated in a quarter scale size. The process consists of brazing using non-contact induction heating that synchronously separates, seams, seals and sterilizes (S4) the container. The use of brazing involves melting at temperatures higher than 500°C and this level of heating assures sterilization of the exposed areas since all carbon bonds (namely, organic materials) are broken at this temperature. The mechanism consists of a double wall container with inner and outer shells having Earth-clean interior surfaces. The process consists of two-steps, Step-1: the double wall container halves are fabricated and brazed (equivalent to production on Earth); and Step-2 is the S4 process and it is the equivalent to the execution on-orbit around Mars. In a potential future mission, the double wall container would be split into two halves and prepared on Earth. The potential on-orbit execution would consist of inserting the orbiting sample (OS) container into one of the halves and then mated to the other half and brazed. The latest results of this effort will be described and discussed in this manuscript.
Planetary protection issues in advance of human exploration of Mars
NASA Technical Reports Server (NTRS)
Mckay, Christopher P.; Davis, Wanda L.
1989-01-01
The major planetary quarantine issues associated with human exploration of Mars, which is viewed as being more likely to harbor indigenous life than is the moon, are discussed. Special attention is given to the environmental impact of human missions to Mars due to contamination and mechanical disturbances of the local environment, the contamination issues associated with the return of humans, and the planetary quarantine strategy for a human base. It is emphasized that, in addition to the question of indigenous life, there may be some concern of returning to earth the earth microorganisms that have spent some time in the Martian environment. It is suggested that, due to the fact that a robot system can be subjected to more stringent controls and protective treatments than a mission involving humans, a robotic sample return mission can help to eliminate many planetary-quarantine concerns about returning samples.
Sampling strategies on Mars: Remote and not-so-remote observations from a surface rover
NASA Technical Reports Server (NTRS)
Singer, R. B.
1988-01-01
The mobility and speed of a semi-autonomous Mars rover are of necessity limited by the need to think and stay out of trouble. This consideration makes it essential that the rover's travels be carefully directed to likely targets of interest for sampling and in situ study. Short range remote sensing conducted from the rover, based on existing technology, can provide significant information about the chemistry and mineralogy of surrounding rocks and soils in support of sampling efforts. These observations are of course of direct scientific importance as well. Because of the small number of samples actually to be returned to Earth, it is also important that candidate samples be analyzed aboard the rover so that diversity can be maximized. It is essential to perform certain types of analyses, such as those involving volatiles, prior to the thermal and physical shocks of the return trip to Earth. In addition, whatever measurements can be made of nonreturned samples will be important to enlarge the context of the detailed analyses to be performed later on the few returned samples. Some considerations related to these objectives are discussed.
NASA Technical Reports Server (NTRS)
Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph
2015-01-01
The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.
NASA Technical Reports Server (NTRS)
1981-01-01
The purpose of the Orbiting Quarantine Facility is to provide maximum protection of the terrestrial biosphere by ensuring that the returned Martian samples are safe to bring to Earth. The protocol designed to detect the presence of biologically active agents in the Martian soil is described. The protocol determines one of two things about the sample: (1) that it is free from nonterrestrial life forms and can be sent to a terrestrial containment facility where extensive chemical, biochemical, geological, and physical investigations can be conducted; or (2) that it exhibits "biological effects" of the type that dictate second order testing. The quarantine protocol is designed to be conducted on a small portion of the returned sample, leaving the bulk of the sample undisturbed for study on Earth.
1999-01-11
In the Payload Hazardous Servicing Facility, workers look over the solar panels on the Stardust spacecraft that are deployed for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
1999-01-11
In the Payload Hazardous Servicing Facility, workers adjust the solar panels of the Stardustspacecraft before performing lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
1999-01-11
Workers in the Payload Hazardous Servicing Facility deploy a solar panel on the Stardust spacecraft before performing lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
1999-01-11
In the Payload Hazardous Servicing Facility, a worker (left) conducts lighting tests on the fully extended solar panels of the Stardustspacecraft. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
1999-01-05
The first stage of a Boeing Delta II rocket is in position on the mobile tower (at right) at Launch Complex 17. At left is the launch tower. The rocket will carry the Stardust spacecraft into space for a close encounter with the comet Wild 2 in January 2004. Using a medium called aerogel, it will capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a Sample Return Capsule to be jettisoned as Stardust swings by Earth in January 2006. Stardust is scheduled to be launched on Feb. 6, 1999
NASA Technical Reports Server (NTRS)
Nakamura-Messenger, Keiko; Messenger, Scott; Keller, Lindsay; Righter, Kevin
2014-01-01
Scientists at ARES are preparing to curate and analyze samples from the first U.S. mission to return samples from an asteroid. The Origins-Spectral Interpretation- Resource Identification-Security-Regolith Explorer, or OSIRIS-REx, was selected by NASA as the third mission in its New Frontiers Program. The robotic spacecraft will launch in 2016 and rendezvous with the near-Earth asteroid Bennu, in 2020. A robotic arm will collect at least 60 grams of material from the surface of the asteroid to be returned to Earth in 2023 for worldwide distribution by the NASA Astromaterials Curation Facility at ARES.
NASA's Asteroid Redirect Mission (ARM)
NASA Technical Reports Server (NTRS)
Abell, P. A.; Mazanek, D. D.; Reeves, D. M.; Chodas, P. W.; Gates, M. M.; Johnson, L. N.; Ticker, R. L.
2017-01-01
Mission Description and Objectives: NASA's Asteroid Redirect Mission (ARM) consists of two mission segments: 1) the Asteroid Redirect Robotic Mission (ARRM), a robotic mission to visit a large (greater than approximately 100 meters diameter) near-Earth asteroid (NEA), collect a multi-ton boulder from its surface along with regolith samples, and return the asteroidal material to a stable orbit around the Moon; and 2) the Asteroid Redirect Crewed Mission (ARCM), in which astronauts will explore and investigate the boulder and return to Earth with samples. The ARRM is currently planned to launch at the end of 2021 and the ARCM is scheduled for late 2026.
Development and Testing of Harpoon-Based Approaches for Collecting Comet Samples
NASA Technical Reports Server (NTRS)
Purves, Lloyd (Compiler); Nuth, Joseph (Compiler); Amatucci, Edward (Compiler); Wegel, Donald; Smith, Walter; Church, Joseph; Leary, James; Kee, Lake; Hill, Stuart; Grebenstein, Markus;
2017-01-01
Comets, having bright tails visible to the unassisted human eye, are considered to have been known about since pre-historic times. In fact 3,000-year old written records of comet sightings have been identified. In comparison, asteroids, being so dim that telescopes are required for observation, were not discovered until 1801. Yet, despite their later discovery, a space mission returned the first samples of an asteroid in 2010 and two more asteroid sample return missions have already been launched. By contrast no comet sample return mission has ever been funded, despite the fact that comets in certain ways are far more scientifically interesting than asteroids. Why is this? The basic answer is the greater difficulty, and consequently higher cost, of a comet sample return mission. Comets typically are in highly elliptical heliocentric orbits which require much more time and propulsion for Space Craft (SC) to reach from Earth and then return to Earth as compared to many asteroids which are in Earth-like orbits. It is also harder for a SC to maneuver safely near a comet given the generally longer communications distances and the challenge of navigating in the comet's, when the comet is close to perihelion, which turns out to be one of the most interesting times for a SC to get close to the comet surface. Due to the science value of better understanding the sublimation of volatiles near the comet surface, other contributions to higher cost as desire to get sample material from both the comet surface and a little below, to preserve the stratigraphy of the sample, and to return the sample in a storage state where it does not undergo undesirable alterations, such as aqueous. In response to these challenges of comet sample return missions, the NASA Goddard Space Flight Center (GFSC) has worked for about a decade (2006 to this time) to develop and test approaches for comet sample return that would enable such a mission to be scientifically valuable, while having acceptably low risk and an affordable cost. A harpoon-based approach for gathering comet samples appears to offer the most effective way of accomplishing this goal. As described below, with a decade of development, analysis, testing and refinement, the harpoon approach has evolved from a promising concept to a practical element of a realistic comet sample return mission. Note that the following material includes references to videos, all of which are contained in different sections of the video supplement identified in the references. Each video will be identified as "SS##", where "SS" means the supplement section and "##" will be the number of the section.
In situ propellant production - A new potential for round-trip spacecraft
NASA Technical Reports Server (NTRS)
Stancati, M. L.; Niehoff, J. C.; Wells, W. C.; Ash, R. L.
1979-01-01
In situ propellant production (ISPP) greatly reduces the Earth escape requirements for some roundtrip missions, particularly Mars Sample Return. ISPP systems are described which produce oxygen or oxygen and methane from available atmospheric and surface materials. With ISPP, a 1 kg sample can be returned direct from Mars using a single Shuttle launch. Mars entry can be either direct or from orbit. Comet and asteroid sample return is also accomplished within a single Shuttle launch. Launch requirements for round-trip missions to Ganymede and Callisto are reduced by 15 to 40%.
Carbon Isotopic Ratios of Amino Acids in Stardust-Returned Samples
NASA Technical Reports Server (NTRS)
Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.
2009-01-01
NASA's Stardust spacecraft returned to Earth samples from comet 81P/Wild 2 in January 2006. Preliminary examinations revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds could not be identified. Here. we present the carbon isotopic ratios of glycine and E-aminocaproic acid (EACH), the two most abundant amino acids observed, in Stardust-returned foil samples measured by gas chromatography-combustion-isotope ratio crass spectrometry coupled with quadrupole mass spectrometry (GC-QMS/IRMS).
Mars Sample Return Landed with Red Dragon
NASA Technical Reports Server (NTRS)
Stoker, Carol R.; Lemke, Lawrence G.
2013-01-01
A Mars Sample Return (MSR) mission is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. However, an affordable program to carry this out has not been defined. This paper describes a study that examined use of emerging commercial capabilities to land the sample return elements, with the goal of reducing mission cost. A team at NASA Ames examined the feasibility of the following scenario for MSR: A Falcon Heavy launcher injects a SpaceX Dragon crew capsule and trunk onto a Trans Mars Injection trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV) and Sample Collection and Storage hardware. The Dragon descends to land on the surface of Mars using SuperSonic Retro Propulsion (SSRP) as described by Braun and Manning [IEEEAC paper 0076, 2005]. Samples are acquired and deliverd to the MAV by a prelanded asset, possibly the proposed 2020 rover. After samples are obtained and stored in the ERV, the MAV launches the sample-containing ERV from the surface of Mars. We examined cases where the ERV is delivered to either low Mars orbit (LMO), C3 = 0 (Mars escape), or an intermediate energy state. The ERV then provides the rest of the energy (delta V) required to perform trans-Earth injection (TEI), cruise, and insertion into a Moon-trailing Earth Orbit (MTEO). A later mission, possibly a crewed Dragon launched by a Falcon Heavy (not part of the current study) retrieves the sample container, packages the sample, and performs a controlled Earth re-entry to prevent Mars materials from accidentally contaminating Earth. The key analysis methods used in the study employed a set of parametric mass estimating relationships (MERs) and standard aerospace analysis software codes modified for the MAV class of launch vehicle to determine the range of performance parameters that produced converged spacecraft designs capable of meeting mission requirements. Subsystems modeled in this study included structures, power system, propulsion system, nose fairing, thermal insulation, actuation devices, and GN&C. Best practice application of loads and design margins for all resources were used. Both storable and cryogenic propellant systems were examined. The landed mass and lander capsule size provide boundary conditions for the MAV design and packaging. We estimated the maximum mass the Dragon capsule is capable of landing. This and the volume capability to store the MAV was deduced from publically available data from SpaceX as well as our own engineering and aerodynamic estimates. Minimum gross-liftoff mass (GLOM) for the MAV were obtained for configurations that used pump-fed storable bi-propellant rocket engines for both the MAV and the ERV stage. The GLOM required fits within our internal estimate of the mass that Dragon can land at low elevation/optimal seasons on Mars. Based on the analysis, we show that a single Mars launch sample return mission is feasible using current commercial capabilities to deliver the return spacecraft assets.
High-Grading Lunar Samples for Return to Earth
NASA Technical Reports Server (NTRS)
Allen, Carlton; Sellar, Glenn; Nunez, Jorge; Winterhalter, Daniel; Farmer, Jack
2009-01-01
Astronauts on long-duration lunar missions will need the capability to "high-grade" their samples to select the highest value samples for transport to Earth and to leave others on the Moon. We are supporting studies to defile the "necessary and sufficient" measurements and techniques for highgrading samples at a lunar outpost. A glovebox, dedicated to testing instruments and techniques for high-grading samples, is in operation at the JSC Lunar Experiment Laboratory.
Rockballer Sample Acquisition Tool
NASA Technical Reports Server (NTRS)
Giersch, Louis R.; Cook, Brant T.
2013-01-01
It would be desirable to acquire rock and/or ice samples that extend below the surface of the parent rock or ice in extraterrestrial environments such as the Moon, Mars, comets, and asteroids. Such samples would allow measurements to be made further back into the geologic history of the rock, providing critical insight into the history of the local environment and the solar system. Such samples could also be necessary for sample return mission architectures that would acquire samples from extraterrestrial environments for return to Earth for more detailed scientific investigation.
NASA Astrophysics Data System (ADS)
Brucato, John Robert
2016-07-01
A mature European planetary exploration program and evolving sample return mission plans gathers the interest of a wider scientific community. The interest is generated from studying extraterrestrial samples in the laborato-ry providing new opportunities to address fundamental issues on the origin and evolution of the Solar System, on the primordial cosmochemistry, and on the nature of the building blocks of terrestrial planets and on the origin of life. Major space agencies are currently planning for missions that will collect samples from a variety of Solar Sys-tem environments, from primitive (carbonaceous) small bodies, from the Moon, Mars and its moons and, final-ly, from icy moons of the outer planets. A dedicated sample return curation facility is seen as an essential re-quirement for the receiving, assessment, characterization and secure preservation of the collected extraterrestrial samples and potentially their safe distribution to the scientific community. EURO-CARES is a European Commission study funded under the Horizon-2020 program. The strategic objec-tive of EURO-CARES is to create a roadmap for the implementation of a European Extraterrestrial Sample Cu-ration Facility. The facility has to provide safe storage and handling of extraterrestrial samples and has to enable the preliminary characterization in order to achieve the required effectiveness and collaborative outcomes for the whole international scientific community. For example, samples returned from Mars could pose a threat on the Earth's biosphere if any living extraterrestrial organism are present in the samples. Thus planetary protection is an essential aspect of all Mars sample return missions that will affect the retrival and transport from the point of return, sample handling, infrastructure methodology and management of a future curation facility. Analysis of the state of the art of Planetary Protection technology shows there are considerable possibilities to define and develop technical and scientific features in a sample return mission and the infrastructural, procedur-al and legal issues that consequently rely on a curation facility. This specialist facility will be designed with con-sideration drawn from highcontainment laboratories and cleanroom facilities to protect the Earth from contami-nation with potential Martian organisms and the samples from Earth contaminations. This kind of integrated facility does not currently exist and this emphasises the need for an innovative design approach with an integrat-ed and multidisciplinary design to enable the ultimate science goals of such exploration. The issues of how the Planetary Protection considerations impact on the system technologies and scientific meaurements, with a final aim to prioritize outstanding technology needs is presented in the framework of sam-ple return study missions and the Horizon-2020 EURO-CARES project.
Sample Transport for a European Sample Curation Facility
NASA Astrophysics Data System (ADS)
Berthoud, L.; Vrublevskis, J. B.; Bennett, A.; Pottage, T.; Bridges, J. C.; Holt, J. M. C.; Dirri, F.; Longobardo, A.; Palomba, E.; Russell, S.; Smith, C.
2018-04-01
This work has looked at the recovery of Mars Sample Return capsule once it arrives on Earth. It covers possible landing sites, planetary protection requirements, and transportation from the landing site to a European Sample Curation Facility.
Asteroid exploration and utilization
NASA Technical Reports Server (NTRS)
Radovich, Brian M.; Carlson, Alan E.; Date, Medha D.; Duarte, Manny G.; Erian, Neil F.; Gafka, George K.; Kappler, Peter H.; Patano, Scott J.; Perez, Martin; Ponce, Edgar
1992-01-01
The Earth is nearing depletion of its natural resources at a time when human beings are rapidly expanding the frontiers of space. The resources possessed by asteroids have enormous potential for aiding and enhancing human space exploration as well as life on Earth. Project STONER (Systematic Transfer of Near Earth Resources) is based on mining an asteroid and transporting raw materials back to Earth. The asteroid explorer/sample return mission is designed in the context of both scenarios and is the first phase of a long range plan for humans to utilize asteroid resources. Project STONER is divided into two parts: asteroid selection and explorer spacecraft design. The spacecraft design team is responsible for the selection and integration of the subsystems: GNC, communications, automation, propulsion, power, structures, thermal systems, scientific instruments, and mechanisms used on the surface to retrieve and store asteroid regolith. The sample return mission scenario consists of eight primary phases that are critical to the mission.
SpaceX Dragon returns on This Week @NASA- October 31, 2014
2014-10-31
The SpaceX Dragon cargo capsule was recently detached from the International Space Station for its return to Earth, just over a month after delivering about 5,000 pounds of supplies and experiments to the ISS. Dragon safely returned to Earth with more than 3,200 pounds of NASA cargo and science samples – completing the company’s fourth resupply mission to the station. Also, Destination Station ISS Tech Forum, Orbital Sciences investigating accident, Russian supply ships to and from the ISS, Next ISS crew trains in Russia, Wind tunnel tests of SLS model and more!
Status and Mission Applicability of NASA's In-Space Propulsion Technology Project
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Dankanich, John; Pencil, Eric; Liou, Larry
2009-01-01
The In-Space Propulsion Technology (ISPT) project develops propulsion technologies that will enable or enhance NASA robotic science missions. Since 2001, the ISPT project developed and delivered products to assist technology infusion and quantify mission applicability and benefits through mission analysis and tools. These in-space propulsion technologies are applicable, and potentially enabling for flagship destinations currently under evaluation, as well as having broad applicability to future Discovery and New Frontiers mission solicitations. This paper provides status of the technology development, near-term mission benefits, applicability, and availability of in-space propulsion technologies in the areas of advanced chemical thrusters, electric propulsion, aerocapture, and systems analysis tools. The current chemical propulsion investment is on the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance for lower cost. Investments in electric propulsion technologies focused on completing NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system, and the High Voltage Hall Accelerator (HiVHAC) thruster, which is a mid-term product specifically designed for a low-cost electric propulsion option. Aerocapture investments developed a family of thermal protections system materials and structures; guidance, navigation, and control models of blunt-body rigid aeroshells; atmospheric models for Earth, Titan, Mars and Venus; and models for aerothermal effects. In 2009 ISPT started the development of propulsion technologies that would enable future sample return missions. The paper describes the ISPT project's future focus on propulsion for sample return missions. The future technology development areas for ISPT is: Planetary Ascent Vehicles (PAV), with a Mars Ascent Vehicle (MAV) being the initial development focus; multi-mission technologies for Earth Entry Vehicles (MMEEV) needed for sample return missions from many different destinations; propulsion for Earth Return Vehicles (ERV), transfer stages to the destination, and Electric Propulsion for sample return and low cost missions; and Systems/Mission Analysis focused on sample return propulsion. The ISPT project is funded by NASA's Science Mission Directorate (SMD).
Mars sample collection and preservation
NASA Technical Reports Server (NTRS)
Blanchard, Douglas P.
1988-01-01
The intensive exploration of Mars is a major step in the systematic exploration of the solar system. Mars, earth, and Venus provide valuable contrasts in planetary evolution. Mars exploration has progressed through the stages of exploration and is now ready for a sample-return mission. About 5 kg of intelligently selected samples will be returned from Mars. A variety of samples are wanted. This requires accurate landing in areas of high interest, surface mobility and analytical capability, a variety of sampling tools, and stringent preservation and isolation measures.
Mars Sample Handling Protocol Workshop Series: Workshop 2
NASA Technical Reports Server (NTRS)
Rummel, John D. (Editor); Acevedo, Sara E. (Editor); Kovacs, Gregory T. A. (Editor); Race, Margaret S. (Editor); DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
Numerous NASA reports and studies have identified Planetary Protection (PP) as an important part of any Mars sample return mission. The mission architecture, hardware, on-board experiments, and related activities must be designed in ways that prevent both forward- and back-contamination and also ensure maximal return of scientific information. A key element of any PP effort for sample return missions is the development of guidelines for containment and analysis of returned sample(s). As part of that effort, NASA and the Space Studies Board (SSB) of the National Research Council (NRC) have each assembled experts from a wide range of scientific fields to identify and discuss issues pertinent to sample return. In 1997, the SSB released its report on recommendations for handling and testing of returned Mars samples. In particular, the NRC recommended that: a) samples returned from Mars by spacecraft should be contained and treated as potentially hazardous until proven otherwise, and b) rigorous physical, chemical, and biological analyses [should] confirm that there is no indication of the presence of any exogenous biological entity. Also in 1997, a Mars Sample Quarantine Protocol workshop was convened at NASA Ames Research Center to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent 'uncontrolled release' of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. In 1999, a study by NASA's Mars Sample Handling and Requirements Panel (MSHARP) addressed three other specific areas in anticipation of returning samples from Mars: 1) sample collection and transport back to Earth; 2) certification of the samples as non-hazardous; and 3) sample receiving, curation, and distribution. To further refine the requirements for sample hazard testing and the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened an additional series of workshops beginning in March 2000. The overall objective of these workshops was to develop comprehensive protocols to assess whether the returned materials contain any biological hazards, and to safeguard the purity of the samples from possible terrestrial contamination. This document is the report of the second Workshop in the Series. The information herein will ultimately be integrated into a final document reporting the proceedings of the entire Workshop Series along with additional information and recommendations.
NASA Technical Reports Server (NTRS)
2000-01-01
This paper presents, in viewgraph form, the 2005 Earth-Mars Round Trip. The contents include: 1) Lander; 2) Mars Sample Return Project; 3) Rover; 4) Rover Size Comparison; 5) Mars Ascent Vehicle; 6) Return Orbiter; 7) A New Mars Surveyor Program Architecture; 8) Definition Study Summary Result; 9) Mars Surveyor Proposed Architecture 2003, 2005 Opportunities; 10) Mars Micromissions Using Ariane 5; 11) Potential International Partnerships; 12) Proposed Integrated Architecture; and 13) Mars Exploration Program Report of the Architecture Team.
Technology for return of planetary samples
NASA Technical Reports Server (NTRS)
1975-01-01
The problem of returning a Mars sample to Earth was considered. The model ecosystem concept was advanced as the most reliable, sensitive method for assessing the biohazard from the Mars sample before it is permitted on Earth. Two approaches to ecosystem development were studied. In the first approach, the Mars sample would be introduced into the ecosystem and exposed to conditions which are as similar to the Martian environment as the constitutent terrestrial organisms can tolerate. In the second approach, the Mars sample would be tested to determine its effects on important terrestrial cellular functions. In addition, efforts were directed toward establishing design considerations for a Mars Planetary Receiving Laboratory. The problems encountered with the Lunar Receiving Laboratory were evaluated in this context. A questionnaire was developed to obtain information regarding important experiments to be conducted in the Planetary Receiving Laboratory.
1999-01-11
Bright white light (left) and blue light (upper right) appear on the solar panels of the Stardust spacecraft during lighting tests in the Payload Hazardous Servicing Facility. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
Advanced Navigation Strategies For Asteroid Sample Return Missions
NASA Technical Reports Server (NTRS)
Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.
2010-01-01
Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.
1999-01-11
In the Payload Hazardous Servicing Facility, workers get ready to rotate the Stardust spacecraft before deploying the solar panels (at left and right) for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
1999-01-11
In the Payload Hazardous Servicing Facility, workers raise the Stardust spacecraft from its workstand to move it to another area for lighting tests on the solar panels. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006
1999-01-11
Workers in the Payload Hazardous Servicing Facility watch as the Stardust spacecraft is rotated and lowered before deploying the solar panels for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (seen on top of the spacecraft) to be jettisoned as it swings by Earth in January 2006
1999-01-11
In the Payload Hazardous Servicing Facility, a worker looks over the solar panels of the Stardust spacecraft before it undergoes lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule (its white cap is seen on the left) to be jettisoned as it swings by Earth in January 2006
Mission analysis for the Martian Moons Explorer (MMX) mission
NASA Astrophysics Data System (ADS)
Campagnola, Stefano; Yam, Chit Hong; Tsuda, Yuichi; Ogawa, Naoko; Kawakatsu, Yasuhiro
2018-05-01
Mars Moon eXplorer (MMX) is JAXA's next candidate flagship mission to be launched in the early 2020s. MMX will explore the Martian moons and return a sample from Phobos. This paper presents the mission analysis work, focusing on the transfer legs and comparing several architectures, such as hybrid options with chemical and electric propulsion modules. The selected baseline is a chemical-propulsion Phobos sample return, which is discussed in detail with the launch- and return-window analysis. The trajectories are optimized with the jTOP software, using planetary ephemerides for Mars and the Earth; Earth re-entry constraints are modeled with simple analytical equations. Finally, we introduce an analytical approximation of the three-burn capture strategy used in the Mars system. The approximation can be used together with a Lambert solver to quickly determine the transfer Δ v costs.
Genesis Failure Investigation Report
NASA Technical Reports Server (NTRS)
Klein, John
2004-01-01
The-Genesis mission to collect solar-wind samples and return them to Earth for detailed analysis proceeded successfully for 3.5 years. During reentry on September 8, 2004, a failure in the entry, descent and landing sequence resulted in a crash landing of the Genesis sample return capsule. This document describes the findings of the avionics sub-team that supported the accident investigation of the JPL Failure Review Board.
The OSIRIS-REx Asteroid Sample Return Mission
NASA Technical Reports Server (NTRS)
Beshore, Edward; Lauretta, Dante; Boynton, William; Shinohara, Chriss; Sutter, Brian; Everett, David; Gal-Edd, Jonathan S.; Mink, Ronald G.; Moreau, Michael; Dworkin, Jason
2015-01-01
Interpretation, Resource Identification, Security, Regolith EXplorer) spacecraft will depart for asteroid (101955) Bennu, and when it does, humanity will turn an important corner in the exploration of the Solar System. After arriving at the asteroid in the Fall of 2018, it will undertake a program of observations designed to select a site suitable for retrieving a sample that will be returned to the Earth in 2023..
Osiris-Rex and Hayabusa2 Sample Cleanroom Design and Construction Planning at NASA-JSC
NASA Technical Reports Server (NTRS)
Righter, Kevin; Pace, Lisa F.; Messenger, Keiko
2018-01-01
Final Paper and not the abstract is attached. The OSIRIS-REx asteroid sample return mission launched to asteroid Bennu September 8, 2016. The spacecraft will arrive at Bennu in late 2019, orbit and map the asteroid, and perform a touch and go (TAG) sampling maneuver in July 2020. After confirma-tion of successful sample stowage, the spacecraft will return to Earth, and the sample return capsule (SRC) will land in Utah in September 2023. Samples will be recovered from Utah and then transported and stored in a new sample cleanroom at NASA Johnson Space Center in Houston. All curation-specific ex-amination and documentation activities related to Ben-nu samples will be conducted in the dedicated OSIRIS-REx sample cleanroom to be built at NASA-JSC.
Illustration of Launching Samples Home from Mars
NASA Technical Reports Server (NTRS)
2005-01-01
One crucial step in a Mars sample return mission would be to launch the collected sample away from the surface of Mars. This artist's concept depicts a Mars ascent vehicle for starting a sample of Mars rocks on their trip to Earth.NASA Technical Reports Server (NTRS)
Gehrke, Charles W.; Ponnamperuma, Cyril; Kuo, Kenneth C.; Stalling, David L.; Zumwalt, Robert W.
1988-01-01
The Mars Sample Return mission will provide us with a unique source of material from our solar system; material which could advance our knowledge of the processes of chemical evolution. As has been pointed out, Mars geological investigations based on the Viking datasets have shown that primordial Mars was in many biologically important ways similar to the primordial Earth; the presence of surface liquid water, moderate surface temperatures, and atmosphere of carbon dioxide and nitrogen, and high geothermal heat flow. Indeed, it would seem that conditions on Earth and Mars were fundamentally similar during the first one billion years or so. As has been pointed out, Mars may well contain the best preserved record of the events that transpired on the early planets. Examination of that early record will involve searching for many things, from microfossils to isotopic abundance data. We propose an investigation of the returned Mars samples for biologically important organic compounds, with emphases on amino acids, the purine and pyrimidine bases, and nucleosides.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, Horst Uwe; Kuhrt, Ekkehard; A'Hearn, Michael; Altwegg, Kathrin; Betrand, Regis; Busemann, Henner; Capria, Maria Teresa; Colangeli, Luigi
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA s Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three samples of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
Triple F - A Comet Nucleus Sample Return Mission
NASA Technical Reports Server (NTRS)
Kueppers, Michael; Keller, H. U.; Kuehrt, E.; A'Hearn, M. F.; Altwegg, K.; Bertrand, R.; Busemann, H.; Capria, M. T.; Colangeli, L.; Davidsson, B.;
2008-01-01
The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50 cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-andgo sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS.
NASA Astrophysics Data System (ADS)
Yano, H.
2013-12-01
Three decades ago, Japan's deep space exploration started with Sakigake and Suisei, twin flyby probes to P/Halley. Since then, the Solar System small bodies have been one of focused destinations to the Japanese solar system studies even today. Only one year after the Halley armada launch, the very first meeting was held for an asteroid sample return mission at ISAS, which after 25 years, materialized as the successful Earth return of Hayabusa , an engineering verification mission for sample return from surfaces of an NEO for the first time in the history. Launched in 2003 and returned in 2010, Hayabusa became the first to visit a sub-km, rubble-pile potentially hazardous asteroid in near Earth space. Its returned samples solved S-type asteroid - ordinary chondrite paradox by proving space weathering evidences in sub-micron scale. Between the Halley missions and Hayabusa, SOCCER concept by M-V rocket was jointly studied between ISAS and NASA; yet it was not realized due to insufficient delta-V for intact capture by decelerating flyby/encounter velocity to a cometary coma. The SOCCER later became reality as Stardust, NASA Discovery mission for cometary coma dust sample return in1999-2006. Japan has collected the second largest collection of the Antarctic meteorites and micrometeorites of the world and asteromaterial scientists are eager to collaborate with space missions. Also Japan enjoyed a long history of collaborations between professional astronomers and high-end amateur observers in the area of observational studies of asteroids, comets and meteors. Having these academic foundations, Japan has an emphasis on programmatic approach to sample returns of Solar System small bodies in future prospects. The immediate follow-on to Hayabusa is Hayabusa-2 mission to sample return with an artificial impactor from 1999 JU3, a C-type NEO in 2014-2020. Following successful demonstration of deep space solar sail technique by IKAROS in 2010-2013, the solar power sail is a deep space probe with hybrid propulsion of solar photon sail and ion engine system that will enable Japan to reach out deep interplanetary space beyond the main asteroid belt. Since 2002, Japanese scientists and engineers have been investigating the solar power sail mission to Jupiter Trojans and interdisciplinary cruising science, such as infrared observation of zodiacal light due to cosmic dust, which at the same time hit a large cross section of the solar sail membrane dust detector, concentrating inside the main asteroid belt. Now the mission design has extended from cruising and fly-by only to rendezvous and sample return options from Jupiter Trojan asteroids. Major scientific goal of Jupiter Trojan exploration is to constrain its origin between two competing hypothesis such as remnants of building blocks the Jovian system as the classic model and the second generation captured EKBOs as the planetary migration models, in which several theories are in deep discussion. Also important is to better understand mixing process of material and structure of the early Solar System just beyond snow line. The current plan involves its launch and both solar photon and IES accelerations combined with Earth and Jupiter gravity assists in 2020's, detailed rendezvous investigation of a few 10-km sized D-type asteroid among Jupiter Trojans in early 2030's and an optional sample return of its surface materials to the Earth in late 2030's.
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Gage, Peter; Wright, Michael J.
2017-01-01
Mars Sample Return is our Grand Challenge for the coming decade. TPS (Thermal Protection System) nominal performance is not the key challenge. The main difficulty for designers is the need to verify unprecedented reliability for the entry system: current guidelines for prevention of backward contamination require that the probability of spores larger than 1 micron diameter escaping into the Earth environment be lower than 1 million for the entire system, and the allocation to TPS would be more stringent than that. For reference, the reliability allocation for Orion TPS is closer to 11000, and the demonstrated reliability for previous human Earth return systems was closer to 1100. Improving reliability by more than 3 orders of magnitude is a grand challenge indeed. The TPS community must embrace the possibility of new architectures that are focused on reliability above thermal performance and mass efficiency. MSR (Mars Sample Return) EEV (Earth Entry Vehicle) will be hit with MMOD (Micrometeoroid and Orbital Debris) prior to reentry. A chute-less aero-shell design which allows for self-righting shape was baselined in prior MSR studies, with the assumption that a passive system will maximize EEV robustness. Hence the aero-shell along with the TPS has to take ground impact and not break apart. System verification will require testing to establish ablative performance and thermal failure but also testing of damage from MMOD, and structural performance at ground impact. Mission requirements will demand analysis, testing and verification that are focused on establishing reliability of the design. In this proposed talk, we will focus on the grand challenge of MSR EEV TPS and the need for innovative approaches to address challenges in modeling, testing, manufacturing and verification.
The global topography of Bennu: altimetry, photoclinometry, and processing
NASA Astrophysics Data System (ADS)
Perry, M. E.; Barnouin, O. S.; Daly, M. G.; Seabrook, J.; Palmer, E. E.; Gaskell, R. W.; Craft, K. L.; Roberts, J. H.; Philpott, L.; Asad, M. Al; Johnson, C. L.; Nair, A. H.; Espiritu, R. C.; Nolan, M. C.; Lauretta, D. S.
2017-09-01
The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission will spend two years observing (101955) Bennu and will then return pristine samples of carbonaceous material from the asteroid [1]. Launched in September 2016, OSIRISREx arrives at Bennu in August 2018, acquires a sample in July 2020, and returns the sample to Earth in September 2023. The instruments onboard OSIRIS-REx will measure the physical and chemical properties of this B-class asteroid, a subclass within the larger group of C-complex asteroids that might be organic-rich. At approximately 500m in average diameter [2], Bennu is sufficiently large to retain substantial regolith and as an Apollo asteroid with a low inclination (6°), it is one of the most accessible primitive near-Earth asteroid.
NASA Technical Reports Server (NTRS)
Allen, Carlton C.; Beaty, David W.
2010-01-01
Sample return from Mars has been advocated by numerous scientific advisory panels for over 30 years, most prominently beginning with the National Research Council s [1] strategy for the exploration of the inner solar system, and most recently by the Mars Exploration Program Analysis Group (MEPAG s) Next Decade Science Analysis Group [2]. Analysis of samples here on Earth would have enormous advantages over in situ analyses in producing the data quality needed to address many of the complex scientific questions the community has posed about Mars. Instead of a small, predetermined set of analytical techniques, state of the art preparative and instrumental resources of the entire scientific community could be applied to the samples. The analytical emphasis could shift as the meaning of each result becomes better appreciated. These arguments apply both to igneous rocks and to layered sedimentary materials, either of which could contain water and other volatile constituents. In 2009 MEPAG formed the Mid-Range Rover Science Analysis Group (MRR-SAG) to formulate a mission concept that would address two general objectives: (1) conduct high-priority in situ science and (2) make concrete steps towards the potential return of samples to Earth. This analysis resulted in a mission concept named the Mars Astrobiology Explorer-Cacher (MAX-C), which was envisioned for launch in the 2018 opportunity. After extensive discussion, this group concluded that by far the most definitive contribution to sample return by this mission would be to collect and cache, in an accessible location, a suite of compelling samples that could potentially be recovered and returned by a subsequent mission. This would have the effect of separating two of the essential functions of MSR, the acquisition of the sample collection and its delivery to martian orbit, into two missions.
NASA Technical Reports Server (NTRS)
Tsou, P.; Albee, A.
1985-01-01
The results of a joint JPL/CSFC feasability study of a low-cost comet sample return flyby mission are presented. It is shown that the mission could be undertaken using current earth orbiter spacecraft technology in conjunction with pathfinder or beacon spacrcraft. Detailed scenarios of missions to the comets Honda-Mrkos-Pajdusakova (HMP), comet Kopff, and comet Giacobini-Zinner (GZ) are given, and some crossectional diagrams of the spacecraft designs are provided.
Entry Dispersion Analysis for the Stardust Comet Sample Return Capsule
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil
1997-01-01
Stardust will be the first mission to return samples from beyond the Earth-Moon system. The sample return capsule, which is passively controlled during the fastest Earth entry ever, will land by parachute in Utah. The present study analyzes the entry, descent, and landing of the returning sample capsule. The effects of two aerodynamic instabilities are revealed (one in the high altitude free molecular regime and the other in the transonic/subsonic flow regime). These instabilities could lead to unacceptably large excursions in the angle-of-attack near peak heating and main parachute deployment, respectively. To reduce the excursions resulting from the high altitude instability, the entry spin rate of the capsule is increased. To stabilize the excursions from the transonic/subsonic instability, a drogue chute with deployment triggered by an accelerometer and timer is added prior to main parachute deployment. A Monte Carlo dispersion analysis of the modified entry (from which the impact of off-nominal conditions during the entry is ascertained) shows that the capsule attitude excursions near peak heating and drogue chute deployment are within Stardust program limits. Additionally, the size of the resulting 3-sigma landing ellipse is 83.5 km in downrange by 29.2 km in crossrange, which is within the Utah Test and Training Range boundaries.
NASA Astrophysics Data System (ADS)
Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio
2017-04-01
The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.
Aerothermodynamic Environment Definition for the Genesis Sample Return Capsule
NASA Technical Reports Server (NTRS)
Cheatwood, F. McNeil; Merski, N. Ronald, Jr.; Riley, Christopher J.; Mitcheltree, Robert A.
2001-01-01
NASA's Genesis sample return mission will be the first to return material from beyond the Earth-Moon system. NASA Langley Research Center supported this mission with aerothermodynamic analyses of the sample return capsule. This paper provides an overview of that effort. The capsule is attached through its forebody to the spacecraft bus. When the attachment is severed prior to Earth entry, forebody cavities remain. The presence of these cavities could dramatically increase the heating environment in their vicinity and downstream. A combination of computational fluid dynamics calculations and wind tunnel phosphor thermography tests were employed to address this issue. These results quantify the heating environment in and around the cavities, and were a factor in the decision to switch forebody heat shield materials. A transition map is developed which predicts that the flow aft of the penetrations will still be laminar at the peak heating point of the trajectory. As the vehicle continues along the trajectory to the peak dynamic pressure point, fully turbulent flow aft of the penetrations could occur. The integrated heat load calculations show that a heat shield sized to the stagnation point levels will be adequate for the predicted environment aft of the penetrations.
Probabilistic Design of a Mars Sample Return Earth Entry Vehicle Thermal Protection System
NASA Technical Reports Server (NTRS)
Dec, John A.; Mitcheltree, Robert A.
2002-01-01
The driving requirement for design of a Mars Sample Return mission is to assure containment of the returned samples. Designing to, and demonstrating compliance with, such a requirement requires physics based tools that establish the relationship between engineer's sizing margins and probabilities of failure. The traditional method of determining margins on ablative thermal protection systems, while conservative, provides little insight into the actual probability of an over-temperature during flight. The objective of this paper is to describe a new methodology for establishing margins on sizing the thermal protection system (TPS). Results of this Monte Carlo approach are compared with traditional methods.
Mars Sample Return - Launch and Detection Strategies for Orbital Rendezvous
NASA Technical Reports Server (NTRS)
Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.
2011-01-01
This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/cache rover in 2018, an orbiter with an Earth return vehicle in 2022, and a fetch rover and ascent vehicle in 2024. Strategies are presented to launch the sample into a coplanar orbit with the Orbiter which facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits exist at 457 and 572 km which provide multiple launch opportunities with similar geometries for detection and rendezvous.
Mars Sample Return: Launch and Detection Strategies for Orbital Rendezvous
NASA Technical Reports Server (NTRS)
Woolley, Ryan C.; Mattingly, Richard L.; Riedel, Joseph E.; Sturm, Erick J.
2011-01-01
This study sets forth conceptual mission design strategies for the ascent and rendezvous phase of the proposed NASA/ESA joint Mars Sample Return Campaign. The current notional mission architecture calls for the launch of an acquisition/ caching rover in 2018, an Earth return orbiter in 2022, and a fetch rover with ascent vehicle in 2024. Strategies are presented to launch the sample into a nearly coplanar orbit with the Orbiter which would facilitate robust optical detection, orbit determination, and rendezvous. Repeating ground track orbits existat 457 and 572 km which would provide multiple launch opportunities with similar geometries for detection and rendezvous.
NASA Astrophysics Data System (ADS)
Takano, Yoshinori; Yano, Hajime; Sekine, Yasuhito; Funase, Ryu; Takai, Ken
2014-04-01
Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth.
Genesis Solar-Wind Sample Return Mission: The Materials
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Burnett, D. S.; Wiens, R. C.; Woolum, D.
2003-01-01
The Genesis spacecraft has two primary instruments which passively collect solar wind. The first is the collector arrays , a set of panels, each of which can deploy separately to sample the different kinds of solar wind (regimes). The second is the concentrator, an electrostatic mirror which will concentrate ions of mass 4 through mass 25 by about a factor of 20 by focusing them onto a 6 cm diameter target. When not deployed, these instruments fit into a compact canister. After a two year exposure time, the deployed instruments can be folded up, sealed into the canister, and returned to earth for laboratory analysis. Both the collector arrays and the concentrator will contain suites of ultra-high purity target materials, each of which is tailored to enable the analysis of a different family of elements. This abstract is meant to give a brief overview of the Genesis mission, insight into what materials were chosen for flight and why, as well as head s up information as to what will be available to planetary scientist for analysis when the solar-wind samples return to Earth in 2003. Earth. The elemental and isotopic abundances of the solar wind will be analyzed in state-of-the-art laboratories, and a portion of the sample will be archived for the use of future generations of planetary scientists. Technical information about the mission can be found at www.gps.caltech.edu/genesis.
OSIRIS-REx Asterod Sample Return Mission
NASA Technical Reports Server (NTRS)
Nakamura-Messinger, Keiki; Connolly, Harold C. Jr.; Messenger, Scott; Lauretta, Dante S.
2017-01-01
OSIRIS-REx is NASA's third New Frontiers Program mission, following New Horizons that completed a flyby of Pluto in 2015 and the Juno mission to Jupiter that has just begun science operations. The OSIRIS-REx mission's primary objective is to collect pristine surface samples of a carbonaceous asteroid and return to Earth for analysis. Carbonaceous asteroids and comets are 'primitive' bodies that preserved remnants of the Solar System starting materials and through their study scientists can learn about the origin and the earliest evolution of the Solar System. The OSIRIS-REx spacecraft was successfully launched on September 8, 2016, beginning its seven year journey to asteroid 101955 Bennu. The robotic arm will collect 60-2000 grams of material from the surface of Bennu and will return to Earth in 2023 for worldwide distribution by the Astromaterials Curation Facility at NASA Johnson Space Center. The name OSIRIS-REx embodies the mission objectives (1) Origins: Return and analyze a sample of a carbonaceous asteroid, (2) Spectral Interpretation: Provide ground-truth for remote observation of asteroids, (3) Resource Identification: Determine the mineral and chemical makeup of a near-Earth asteroid (4) Security: Measure the non-gravitational that changes asteroidal orbits and (5) Regolith Explorer: Determine the properties of the material covering an asteroid surface. Asteroid Bennu may preserve remnants of stardust, interstellar materials and the first solids to form in the Solar System and the molecular precursors to the origin of life and the Earth's oceans. Bennu is a potentially hazardous asteroid, with an approximately 1 in 2700 chance of impacting the Earth late in the 22nd century. OSIRIS-REx collects from Bennu will help formulate the types of operations and identify mission activities that astronauts will perform during their expeditions. Such information is crucial in preparing for humanity's next steps beyond low Earthy orbit and on to deep space destinations.
Planning Considerations Related to Collecting and Analyzing Samples of the Martian Soils
NASA Technical Reports Server (NTRS)
Liu, Yang; Mellon, Mike T.; Ming, Douglas W.; Morris, Richard V.; Noble, Sarah K.; Sullivan, Robert J.; Taylor, Lawrence A.; Beaty, David W.
2014-01-01
The Mars Sample Return (MSR) End-to-End International Science Analysis Group (E2E-iSAG [1]) established scientific objectives associ-ated with Mars returned-sample science that require the return and investigation of one or more soil samples. Soil is defined here as loose, unconsolidated materials with no implication for the presence or absence of or-ganic components. The proposed Mars 2020 (M-2020) rover is likely to collect and cache soil in addition to rock samples [2], which could be followed by future sample retrieval and return missions. Here we discuss key scientific consid-erations for sampling and caching soil samples on the proposed M-2020 rover, as well as the state in which samples would need to be preserved when received by analysts on Earth. We are seeking feedback on these draft plans as input to mission requirement formulation. A related planning exercise on rocks is reported in an accompanying abstract [3].
The Apollo Lunar Sample Image Collection: Digital Archiving and Online Access
NASA Technical Reports Server (NTRS)
Todd, Nancy S.; Lofgren, Gary E.; Stefanov, William L.; Garcia, Patricia A.
2014-01-01
The primary goal of the Apollo Program was to land human beings on the Moon and bring them safely back to Earth. This goal was achieved during six missions - Apollo 11, 12, 14, 15, 16, and 17 - that took place between 1969 and 1972. Among the many noteworthy engineering and scientific accomplishments of these missions, perhaps the most important in terms of scientific impact was the return of 382 kg (842 lb.) of lunar rocks, core samples, pebbles, sand, and dust from the lunar surface to Earth. Returned samples were curated at JSC (then known as the Manned Spacecraft Center) and, as part of the original processing, high-quality photographs were taken of each sample. The top, bottom, and sides of each rock sample were photographed, along with 16 stereo image pairs taken at 45-degree intervals. Photographs were also taken whenever a sample was subdivided and when thin sections were made. This collection of lunar sample images consists of roughly 36,000 photographs; all six Apollo missions are represented.
Evaluation of sample preservation methods for space mission
NASA Technical Reports Server (NTRS)
Schubert, W.; Rohatgi, N.; Kazarians, G.
2002-01-01
For interplanetary spacecraft that will travel to destinations where future life detection experiments may be conducted or samples are to be returned to earth, we should archive and preserve relevant samples from the spacecraft and cleanrooms for evaluation at a future date.
NASA Technical Reports Server (NTRS)
Bada, Jeffrey L.; McDonald, Gene D.
1996-01-01
Understanding the events that led to the origin of life on Earth is complicated by the lack of geological evidence from the period around four billion years (4 Gyr) ago when the transition from prebiotic chemistry to biochemistry is believed to be occurred. Although erosion and plate tectonics have since erased the terrestrial geological record from the time of the origin of life, there is possibility that information about this period of Earth history may still be preserved on Mars. A major goal of the NASA Space Exploration Program is to search for evidence of abiotic chemistry and extinct or extant life on Mars. During the next decade, spacecraft will orbit Mars, land on the surface, and return with surface samples for analysis. The question is what compounds should we search for, either directly on the planet or in samples returned to Earth, that will answer unambiguously whether abiotic and/or biotic organic molecules are present.
NASA Astrophysics Data System (ADS)
Yano, Hajime; Takano, Yoshinori; Sekine, Yasuhito; Takai, Ken; Funase, Ryu; Fujishima, Kosuke; Shibuya, Takazo
2016-07-01
Planetary protection is considered to be one of the most crucial challenges to enable sample return missions from "Ocean Worlds", internal oceans of icy satellites as potential deep habitat such as Enceladus and Europa, due to the risk of backward contamination of bringing back potential biology-related matters or at most, possible extraterrestrial living signatures to the Earth. Here we propose an innovative technological solution for both life detection and planetary protection of such returned samples, namely by conducting all major life signature searches, which are also a critical path of quarantine processes of planetary protection, inside the Earth return capsule, prior to open the canister and expose to the terrestrial environment. We plan to test the latest sample capture and recovery methods of preparing multiple aliquot chambers in the sample return capsule. Each aliquot chamber will trap, for instance, plume particles and ambient volatiles during the spacecraft flying through Enceladus plumes so that respective analyses can be performed focusing on volatiles and minerals (i.e., habitability for life), organics (i.e., ingredients for life), biosignatures (i.e., activity of life) and for archiving the samples for future investigations at the same time. In-situ analysis will be conducted under complete containment through an optical interface port that allows pre-installed fiber optic cables to perform non-contact measurements and capillary tubing for extraction/injection of gas and liquids through metal barriers to be punctuated inside a controlled environment. Once primary investigations are completed, the interior of the capsule will be sterilized by gamma rays and UV irradiation. Post-sterilized aliquot chambers will be further analyzed under enclosed and ultraclean environment at BAL 2-3 facilities, rather than BSL4. We consider that this is an unique solution that can cope with severe requirements set for the Category-V sample returns for astrobiology-driven missions.
The elephant graveyard - A planet-wide Mars sample return
NASA Astrophysics Data System (ADS)
Heinsheimer, T. F.; Corn, Barbara
1991-10-01
A method is presented for collecting documented Martian samples from the surface of the entire planet based partly on research done for a 1994 Mars balloon mission. Smart balloons are employed to collect samples from difficult terrains, fly 100-200 km with the sample to more manageable terrains, and are retrieved by a rover mission for return to earth. Elements of the sample-return method are described in detail with attention given to the projected rates of success for each portion of the technology. The SNAKE, Canniballoon, and 'Brilliant Ants' concepts are described in terms of level of development, function within the mission, and technological requirements. Substantial research presently exists in the areas of deployment, on-site sample assessment, pick-up, and designs for the ballons and ground-traversing guideropes.
Phobos Sample Return: Next Approach
NASA Astrophysics Data System (ADS)
Zelenyi, Lev; Martynov, Maxim; Zakharov, Alexander; Korablev, Oleg; Ivanov, Alexey; Karabadzak, George
The Martian moons still remain a mystery after numerous studies by Mars orbiting spacecraft. Their study cover three major topics related to (1) Solar system in general (formation and evolution, origin of planetary satellites, origin and evolution of life); (2) small bodies (captured asteroid, or remnants of Mars formation, or reaccreted Mars ejecta); (3) Mars (formation and evolution of Mars; Mars ejecta at the satellites). As reviewed by Galimov [2010] most of the above questions require the sample return from the Martian moon, while some (e.g. the characterization of the organic matter) could be also answered by in situ experiments. There is the possibility to obtain the sample of Mars material by sampling Phobos: following to Chappaz et al. [2012] a 200-g sample could contain 10-7 g of Mars surface material launched during the past 1 mln years, or 5*10-5 g of Mars material launched during the past 10 mln years, or 5*1010 individual particles from Mars, quantities suitable for accurate laboratory analyses. The studies of Phobos have been of high priority in the Russian program on planetary research for many years. Phobos-88 mission consisted of two spacecraft (Phobos-1, Phobos-2) and aimed the approach to Phobos at 50 m and remote studies, and also the release of small landers (long-living stations DAS). This mission implemented the program incompletely. It was returned information about the Martian environment and atmosphere. The next profect Phobos Sample Return (Phobos-Grunt) initially planned in early 2000 has been delayed several times owing to budget difficulties; the spacecraft failed to leave NEO in 2011. The recovery of the science goals of this mission and the delivery of the samples of Phobos to Earth remain of highest priority for Russian scientific community. The next Phobos SR mission named Boomerang was postponed following the ExoMars cooperation, but is considered the next in the line of planetary exploration, suitable for launch around 2022. A possible scenario of the Boomerang mission includes the approach to Deimos prior to the landing of Phobos. The needed excess ΔV w.r.t. simple scenario (elliptical orbit à near-Phobos orbit) amounts to 0.67 km s-1 (1.6 vs 0.93 km s-1). The Boomerang mission basically repeats the Phobos-SR (2011) architecture, where the transfer-orbiting spacecraft lands on the Phobos surface and a small return vehicle launches the return capsule to Earth. We consider the Boomerang mission as an important step in Mars exploration and a direct precursor of Mars Sample Return. The following elements of the Boomerang mission might be directly employed, or serve as the prototypes for the Mars Sample return in future: Return vehicle, Earth descent module, Transfer-orbital spacecraft. We urge the development of this project for its high science value and recognize its elements as potential national contribution to an international Mars Sample Return project. Galimov E.M., Phobos sample return mission: scientific substantiation, Solar System Res., v.44, No.1, pp5-14, 2010. Chappaz L., H.J. Melosh, M. Vaguero, and K.C. Howell, Material transfer from the surface of Mars to Phobos and Deimos, 43rd Lunar and planetary Science Conference, paper 1422, 2012.
Development of Sample Handling and Analytical Expertise For the Stardust Comet Sample Return
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J; Bajt, S; Brennan, S
NASA's Stardust mission returned to Earth in January 2006 with ''fresh'' cometary particles from a young Jupiter family comet. The cometary particles were sampled during the spacecraft flyby of comet 81P/Wild-2 in January 2004, when they impacted low-density silica aerogel tiles and aluminum foils on the sample tray assembly at approximately 6.1 km/s. This LDRD project has developed extraction and sample recovery methodologies to maximize the scientific information that can be obtained from the analysis of natural and man-made nano-materials of relevance to the LLNL programs.
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Lemke, Lawrence G.; Stoker, Carol R.; Faber, Nicolas T.; Race, Margaret S.
2014-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for an MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV), an Earth Return Vehicle (ERV), and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Super Sonic Retro Propulsion (SSRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars. The MAV uses a storable liquid bi-propellant propulsion system to deliver the ERV to a Mars phasing orbit. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Upon arrival at Earth, the ERV performs Earth and lunar swing-bys and is placed into a lunar trailing circular orbit - an Earth orbit, at lunar distance. A later mission, using Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft makes a controlled Earth re-entry preventing any unintended release of pristine martian materials into the Earth's biosphere. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX, published analyses from other sources, as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the effect of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, shows no significant stressors. A useful payload mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report options for the MAV and ERV, including propulsion systems, crewed versus robotic retrieval mission, as well as direct Earth entry. International planetary protection policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. We also describe preliminary compliance measures that will be the subject of future work. This work shows that emerging commercial capabilities as well as new methodologies can be used to efficiently support an important planetary science objective. The work also has applications for human exploration missions that use propulsive EDL techniques
Stardust Entry: Landing and Population Hazards in Mission Planning and Operations
NASA Technical Reports Server (NTRS)
Desai, P.; Wawrzyniak, G.
2006-01-01
The 385 kg Stardust mission was launched on Feb 7, 1999 on a mission to collect samples from the tail of comet Wild 2 and from interplanetary space. Stardust returned to Earth in the early morning of January 15, 2006. The sample return capsule landed in the Utah Test and Training Range (UTTR) southwest of Salt Lake City. Because Stardust was landing on Earth, hazard analysis was required by the National Aeronautics and Space Administration, UTTR, and the Stardust Project to ensure the safe return of the landing capsule along with the safety of people, ground assets, and aircraft. This paper focuses on the requirements affecting safe return of the capsule and safety of people on the ground by investigating parameters such as probability of impacting on UTTR, casualty expectation, and probability of casualty. This paper introduces the methods for the calculation of these requirements and shows how they affected mission planning, site selection, and mission operations. By analyzing these requirements before and during entry it allowed for the selection of a robust landing point that met all of the requirements during the actual landing event.
NASA Technical Reports Server (NTRS)
Hochstein, L. I.; Kvenvolden, K. A.; Philpott, D. E.
1974-01-01
The loss of biological, organic geochemical, and morphological science information that may occur should a Mars surface sample be sterilized prior to return to earth is examined. Results of experimental studies are summarized.
Recommended Maximum Temperature For Mars Returned Samples
NASA Technical Reports Server (NTRS)
Beaty, D. W.; McSween, H. Y.; Czaja, A. D.; Goreva, Y. S.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Hays, L. E.
2016-01-01
The Returned Sample Science Board (RSSB) was established in 2015 by NASA to provide expertise from the planetary sample community to the Mars 2020 Project. The RSSB's first task was to address the effect of heating during acquisition and storage of samples on scientific investigations that could be expected to be conducted if the samples are returned to Earth. Sample heating may cause changes that could ad-versely affect scientific investigations. Previous studies of temperature requirements for returned mar-tian samples fall within a wide range (-73 to 50 degrees Centigrade) and, for mission concepts that have a life detection component, the recommended threshold was less than or equal to -20 degrees Centigrade. The RSSB was asked by the Mars 2020 project to determine whether or not a temperature requirement was needed within the range of 30 to 70 degrees Centigrade. There are eight expected temperature regimes to which the samples could be exposed, from the moment that they are drilled until they are placed into a temperature-controlled environment on Earth. Two of those - heating during sample acquisition (drilling) and heating while cached on the Martian surface - potentially subject samples to the highest temperatures. The RSSB focused on the upper temperature limit that Mars samples should be allowed to reach. We considered 11 scientific investigations where thermal excursions may have an adverse effect on the science outcome. Those are: (T-1) organic geochemistry, (T-2) stable isotope geochemistry, (T-3) prevention of mineral hydration/dehydration and phase transformation, (T-4) retention of water, (T-5) characterization of amorphous materials, (T-6) putative Martian organisms, (T-7) oxidation/reduction reactions, (T-8) (sup 4) He thermochronometry, (T-9) radiometric dating using fission, cosmic-ray or solar-flare tracks, (T-10) analyses of trapped gasses, and (T-11) magnetic studies.
Cleanroom Robotics: Appropriate Technology for a Sample Receiving Facility?
NASA Technical Reports Server (NTRS)
Bell, M. S.; Allen, C. C.
2005-01-01
NASA is currently pursuing a vigorous program that will collect samples from a variety of solar system environments. The Mars Exploration Program is expected to launch spacecraft that are designed to collect samples of martian soil, rocks, and atmosphere and return them to Earth, perhaps as early as 2016. International treaty obligations mandate that NASA conduct such a program in a manner that avoids cross-contamination both Earth and Mars. Because of this requirement, Mars sample curation will require a high degree biosafety, combined with extremely low levels inorganic, organic, and biological contamination.
It's Time to Develop a New "Draft Test Protocol" for a Mars Sample Return Mission (or Two…).
Rummel, John D; Kminek, Gerhard
2018-04-01
The last time NASA envisioned a sample return mission from Mars, the development of a protocol to support the analysis of the samples in a containment facility resulted in a "Draft Test Protocol" that outlined required preparations "for the safe receiving, handling, testing, distributing, and archiving of martian materials here on Earth" (Rummel et al., 2002 ). This document comprised a specific protocol to be used to conduct a biohazard test for a returned martian sample, following the recommendations of the Space Studies Board of the US National Academy of Sciences. Given the planned launch of a sample-collecting and sample-caching rover (Mars 2020) in 2 years' time, and with a sample return planned for the end of the next decade, it is time to revisit the Draft Test Protocol to develop a sample analysis and biohazard test plan to meet the needs of these future missions. Key Words: Biohazard detection-Mars sample analysis-Sample receiving facility-Protocol-New analytical techniques-Robotic sample handling. Astrobiology 18, 377-380.
An unmanned mission to Mars with sample collection and in-situ resource utilization
NASA Technical Reports Server (NTRS)
1994-01-01
The design for the Mars Analysis and Return Vehicle with In-Situ Resource Utilization (MARVIN) project is outlined. The MARVIN mission is designed to collect samples of the Martian environment; to produce fuel from local Martian resources; and to use the fuel produced to return the samples to earth. It uses only existing technologies. Exploratory Technologies' mission-design efforts have focused on methods of orbit determination, sample collection, fuel production, power, communications, control, and structural design. Lambert Targeting provided Delta-V's, launch dates, and travel times. The landing site is the Tharsis Plateau, to the southeast of Olympus Mons, chosen for its substantial scientific value. Samples of soil, dust, and atmosphere are collected with lander-based collection devices: the soil sample, with a robotic arm similar to those used in the Viking missions; the atmospheric sample, from a bleed line to the compressor in the fuel-production facility; a dust sample, from the dust-collection container in the fuel-production facility; and a redundant dust sample, with a with a passive filter system, which relies upon neither a power source nor other collection methods. The sample-return capsule (SRC) houses these samples, which are triply contained to prevent contamination. Proven technology can be used to produce methane and oxygen for fuel with relative ease at the landing site: the Sabatier reactor produces methane and water by combining carbon dioxide and hydrogen (brought from earth); the Reverse Water-Gas Shift unit combines carbon dioxide and hydrogen to form carbon monoxide and water; a water-electrolysis unit splits the water into hydrogen and oxygen. The Mars-lander vehicle (MLV) transports the equipment from earth to Mars. The Mars-ascent vehicle (MAV) contains the SRC and the engine, which is the same for both the MLV and the MAV. All equipment that is unnecessary for the Mars-Earth trajectory remains on Mars. This report presents detailed sizing information, for which a spreadsheet has been developed. The trends suggest possibilities for expansion, and suggestions for future work in these areas are offered.
An unmanned mission to Mars with sample collection and in-situ resource utilization
NASA Astrophysics Data System (ADS)
1994-05-01
The design for the Mars Analysis and Return Vehicle with In-Situ Resource Utilization (MARVIN) project is outlined. The MARVIN mission is designed to collect samples of the Martian environment; to produce fuel from local Martian resources; and to use the fuel produced to return the samples to earth. It uses only existing technologies. Exploratory Technologies' mission-design efforts have focused on methods of orbit determination, sample collection, fuel production, power, communications, control, and structural design. Lambert Targeting provided Delta-V's, launch dates, and travel times. The landing site is the Tharsis Plateau, to the southeast of Olympus Mons, chosen for its substantial scientific value. Samples of soil, dust, and atmosphere are collected with lander-based collection devices: the soil sample, with a robotic arm similar to those used in the Viking missions; the atmospheric sample, from a bleed line to the compressor in the fuel-production facility; a dust sample, from the dust-collection container in the fuel-production facility; and a redundant dust sample, with a with a passive filter system, which relies upon neither a power source nor other collection methods. The sample-return capsule (SRC) houses these samples, which are triply contained to prevent contamination. Proven technology can be used to produce methane and oxygen for fuel with relative ease at the landing site: the Sabatier reactor produces methane and water by combining carbon dioxide and hydrogen (brought from earth); the Reverse Water-Gas Shift unit combines carbon dioxide and hydrogen to form carbon monoxide and water; a water-electrolysis unit splits the water into hydrogen and oxygen. The Mars-lander vehicle (MLV) transports the equipment from earth to Mars. The Mars-ascent vehicle (MAV) contains the SRC and the engine, which is the same for both the MLV and the MAV. All equipment that is unnecessary for the Mars-Earth trajectory remains on Mars. This report presents detailed sizing information, for which a spreadsheet has been developed. The trends suggest possibilities for expansion, and suggestions for future work in these areas are offered.
Venus Surface Sample Return: A Weighty High-Pressure Challenge
NASA Technical Reports Server (NTRS)
Sweetser, Ted; Cameron, Jonathon; Chen, Gun-Shing; Cutts, Jim; Gershman, Bob; Gilmore, Martha S.; Hall, Jeffrey L.; Kerzhanovich, Viktor; McRonald, Angus; Nilsen, Erik
1999-01-01
A mission to return a sample to Earth from the surface of Venus faces a multitude of multidisciplinary challenges. In addition to the complications inherent in any sample return mission, Venus presents the additional difficulties of a deep gravity well essentially equivalent to Earth's and a hot-house atmosphere which generates extremes of high temperature, density, and pressure unmatched at any other known surface in the solar system. The Jet Propulsion Laboratory of the California Institute of Technology recently conducted a study to develop an architecture for such a mission; a major goal of this study was to identify technology developments which would need to be pursued in order to make such a mission feasible at a cost much less than estimated in previous. The final design of this mission is years away but the study results presented here show our current mission architecture as it applies to a particular mission opportunity, give a summary of the engineering and science trades which were made in the process of developing it, and identify the main technology development efforts needed.
Reentry Capsule for Sample Return from Asteroids in the Planetary Exploration Missions
NASA Astrophysics Data System (ADS)
Inatani, Yoshifumi
2018-04-01
For carrying sample from the bodies of interplanetary space, a wide range of knowledge of reentry technology is needed. HAYABUSA(MUSES-C) was an asteroid explorer returned to the earth after the 7 years of voyage, and its capsule reenters into the Earth’s atmosphere, which was a good example of reentry technology implemented to the flight vehicle. It performed a safe reentry flight and recovery. For the design of the capsule, many considerations were made due to its higher entry velocity and higher aerodynamic heating than those of normal reentry from the low earth orbit. Taking into account the required functions throughout the orbital flight, reentry flight, and descent/recovery phase, the capsule was deigned, tested, manufactured and flight demonstrated finally. The paper presents the concept of the design and qualification approach of the small space capsule of the asteroid sample and return mission. And presented are how the reentry flight was performed and a brief overview of the post flight analysis primarily for these design validation purposes and for the better understanding of the flight results.
Advanced Curation of Current and Future Extraterrestrial Samples
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2013-01-01
Curation of extraterrestrial samples is the critical interface between sample return missions and the international research community. Curation includes documentation, preservation, preparation, and distribution of samples. The current collections of extraterrestrial samples include: Lunar rocks / soils collected by the Apollo astronauts Meteorites, including samples of asteroids, the Moon, and Mars "Cosmic dust" (asteroid and comet particles) collected by high-altitude aircraft Solar wind atoms collected by the Genesis spacecraft Comet particles collected by the Stardust spacecraft Interstellar dust collected by the Stardust spacecraft Asteroid particles collected by the Hayabusa spacecraft These samples were formed in environments strikingly different from that on Earth. Terrestrial contamination can destroy much of the scientific significance of many extraterrestrial materials. In order to preserve the research value of these precious samples, contamination must be minimized, understood, and documented. In addition the samples must be preserved - as far as possible - from physical and chemical alteration. In 2011 NASA selected the OSIRIS-REx mission, designed to return samples from the primitive asteroid 1999 RQ36 (Bennu). JAXA will sample C-class asteroid 1999 JU3 with the Hayabusa-2 mission. ESA is considering the near-Earth asteroid sample return mission Marco Polo-R. The Decadal Survey listed the first lander in a Mars sample return campaign as its highest priority flagship-class mission, with sample return from the South Pole-Aitken basin and the surface of a comet among additional top priorities. The latest NASA budget proposal includes a mission to capture a 5-10 m asteroid and return it to the vicinity of the Moon as a target for future sampling. Samples, tools, containers, and contamination witness materials from any of these missions carry unique requirements for acquisition and curation. Some of these requirements represent significant advances over methods currently used. New analytical and screening techniques will increase the value of current sample collections. Improved web-based tools will make information on all samples more accessible to researchers and the public. Advanced curation of current and future extraterrestrial samples includes: Contamination Control - inorganic / organic Temperature of preservation - subfreezing / cryogenic Non-destructive preliminary examination - X-ray tomography / XRF mapping / Raman mapping Microscopic samples - handling / sectioning / transport Special samples - unopened lunar cores Informatics - online catalogs / community-based characterization.
NASA Technical Reports Server (NTRS)
McConnell, Joshua B.
2000-01-01
The scientific exploration of Mars will require the collection and return of subterranean samples to Earth for examination. This necessitates the use of some type of device or devices that possesses the ability to effectively penetrate the Martian surface, collect suitable samples and return them to the surface in a manner consistent with imposed scientific constraints. The first opportunity for such a device will occur on the 2003 and 2005 Mars Sample Return missions, being performed by NASA. This paper reviews the work completed on the compilation of a database containing viable penetrating and sampling devices, the performance of a system level trade study comparing selected devices to a set of prescribed parameters and the employment of a metric for the evaluation and ranking of the traded penetration and sampling devices, with respect to possible usage on the 03 and 05 sample return missions. The trade study performed is based on a select set of scientific, engineering, programmatic and socio-political criterion. The use of a metric for the various penetration and sampling devices will act to expedite current and future device selection.
Integrated science and engineering for the OSIRIS-REx asteroid sample return mission
NASA Astrophysics Data System (ADS)
Lauretta, D.
2014-07-01
Introduction: The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission will survey near-Earth asteroid (101955) Bennu to understand its physical, mineralogical, and chemical properties, assess its resource potential, refine the impact hazard, and return a sample of this body to the Earth [1]. This mission is scheduled for launch in 2016 and will rendezvous with the asteroid in 2018. Sample return to the Earth follows in 2023. The OSIRIS-REx mission has the challenge of visiting asteroid Bennu, characterizing it at global and local scales, then selecting the best site on the asteroid surface to acquire a sample for return to the Earth. Minimizing the risk of exploring an unknown world requires a tight integration of science and engineering to inform flight system and mission design. Defining the Asteroid Environment: We have performed an extensive astronomical campaign in support of OSIRIS-REx. Lightcurve and phase function observations were obtained with UA Observatories telescopes located in southeastern Arizona during the 2005--2006 and 2011--2012 apparitions [2]. We observed Bennu using the 12.6-cm radar at the Arecibo Observatory in 1999, 2005, and 2011 and the 3.5-cm radar at the Goldstone tracking station in 1999 and 2005 [3]. We conducted near-infrared measurements using the NASA Infrared Telescope Facility at the Mauna Kea Observatory in Hawaii in September 2005 [4]. Additional spectral observations were obtained in July 2011 and May 2012 with the Magellan 6.5-m telescope [5]. We used the Spitzer space telescope to observe Bennu in May 2007 [6]. The extensive knowledge gained as a result of our telescopic characterization of Bennu was critical in the selection of this object as the OSIRIS-REx mission target. In addition, we use these data, combined with models of the asteroid, to constrain over 100 different asteroid parameters covering orbital, bulk, rotational, radar, photometric, spectroscopic, thermal, regolith, and asteroid environmental properties. We have captured this information in a mission configuration-controlled document called the Design Reference Asteroid. This information is used across the project to establish the environmental requirements for the flight system and for overall mission design. Maintaining a Pristine Sample: OSIRIS-REx is driven by the top-level science objective to return >60 g of pristine, carbonaceous regolith from asteroid Bennu. We define a "pristine sample" to mean that no foreign material introduced into the sample hampers our scientific analysis. Basically, we know that some contamination will take place --- we just have to document it so that we can subtract it from our analysis of the returned sample. Engineering contamination requirements specify cleanliness in terms of particle counts and thin- films residues --- scientists define it in terms of bulk elemental and organic abundances. After initial discussions with our Contamination Engineers, we agreed on known, albeit challenging, particle and thin-film contamination levels for the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) and the Sample Return Capsule. These levels are achieved using established cleaning procedures while minimizing interferences for sample analysis. Selecting a Sample Site: The Sample Site Selection decision is based on four key data products: Deliverability, Safety, Sampleability, and Science Value Maps. Deliverability quantifies the probability that the Flight Dynamics team can deliver the spacecraft to the desired location on the asteroid surface. Safety maps assess candidate sites against the capabilities of the spacecraft. Sampleability requires an assessment of the asteroid surface properties vs. TAGSAM capabilities. Scientific value maximizes the probability that the collected sample contains organics and volatiles and can be placed in a geological context definitive enough to determine sample history. Science and engineering teams work collaboratively to produce these key decision-making maps.
A Sample Return Container with Hermetic Seal
NASA Technical Reports Server (NTRS)
Kong, Kin Yuen; Rafeek, Shaheed; Sadick, Shazad; Porter, Christopher C.
2000-01-01
A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers and then hermetically seal samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the sampler's featured drill tip for interfacing, transfer-ring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses a few isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The drill based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. Again, the sampler provides all sealing actuation. This sample return container and co-engineered sample acquisition system are being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program.
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, B. A.
2016-01-01
Geochronology is a fundamental measurement for planetary samples, providing the ability to establish an absolute chronology for geological events, including crystallization history, magmatic evolution, and alteration events, and providing global and solar system context for such events. The capability for in situ geochronology will open up the ability for geochronology to be accomplished as part of lander or rover complement, on multiple samples rather than just those returned. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The K-Ar radiometric dating approach to in situ dating has been validated by the Curiosity rover on Mars as well as several laboratories on Earth. Several independent projects developing in situ rock dating for planetary samples, based on the K-Ar method, are giving promising results. Among them, the Potassium (K)-Argon Laser Experiment (KArLE) at MSFC is based on techniques already in use for in planetary exploration, specifically, Laser-induced Breakdown Spectroscopy (LIBS, used on the Curiosity Chemcam), mass spectroscopy (used on multiple planetary missions, including Curiosity, ExoMars, and Rosetta), and optical imaging (used on most missions).
NASA Technical Reports Server (NTRS)
Weaver, W. L.; Norton, H. N.; Darnell, W. L.
1975-01-01
Mission concepts were investigated for automated return to Earth of a Mars surface sample adequate for detailed analyses in scientific laboratories. The minimum sample mass sufficient to meet scientific requirements was determined. Types of materials and supporting measurements for essential analyses are reported. A baseline trajectory profile was selected for its low energy requirements and relatively simple implementation, and trajectory profile design data were developed for 1979 and 1981 launch opportunities. Efficient spacecraft systems were conceived by utilizing existing technology where possible. Systems concepts emphasized the 1979 launch opportunity, and the applicability of results to other opportunities was assessed. It was shown that the baseline missions (return through Mars parking orbit) and some comparison missions (return after sample transfer in Mars orbit) can be accomplished by using a single Titan III E/Centaur as the launch vehicle. All missions investigated can be accomplished by use of Space Shuttle/Centaur vehicles.
Deep Space Gateway "Recycler" Mission
NASA Astrophysics Data System (ADS)
Graham, L.; Fries, M.; Hamilton, J.; Landis, R.; John, K.; O'Hara, W.
2018-02-01
Use of the Deep Space Gateway provides a hub for a reusable planetary sample return vehicle for missions to gather star dust as well as samples from various parts of the solar system including main belt asteroids, near-Earth asteroids, and Mars moon.
Conceptual Design of a Communications Relay Satellite for a Lunar Sample Return Mission
NASA Technical Reports Server (NTRS)
Brunner, Christopher W.
2005-01-01
In 2003, NASA solicited proposals for a robotic exploration of the lunar surface. Submissions were requested for a lunar sample return mission from the South Pole-Aitken Basin. The basin is of interest because it is thought to contain some of the oldest accessible rocks on the lunar surface. A mission is under study that will land a spacecraft in the basin, collect a sample of rock fragments, and return the sample to Earth. Because the Aitken Basin is on the far side of the Moon, the lander will require a communications relay satellite (CRS) to maintain contact with the Earth during its surface operation. Design of the CRS's orbit is therefore critical. This paper describes a mission design which includes potential transfer and mission orbits, required changes in velocity, orbital parameters, and mission dates. Several different low lunar polar orbits are examined to compare their availability to the lander versus the distance over which they must communicate. In addition, polar orbits are compared to a halo orbit about the Earth-Moon L2 point, which would permit continuous communication at a cost of increased fuel requirements and longer transmission distances. This thesis also examines some general parameters of the spacecraft systems for the mission under study. Mission requirements for the lander dictate the eventual choice of mission orbit. This mission could be the first step in a period of renewed lunar exploration and eventual human landings.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.
OSIRIS-REx: Sample Return from Asteroid (101955) Bennu
NASA Astrophysics Data System (ADS)
Lauretta, D. S.; Balram-Knutson, S. S.; Beshore, E.; Boynton, W. V.; Drouet d'Aubigny, C.; DellaGiustina, D. N.; Enos, H. L.; Golish, D. R.; Hergenrother, C. W.; Howell, E. S.; Bennett, C. A.; Morton, E. T.; Nolan, M. C.; Rizk, B.; Roper, H. L.; Bartels, A. E.; Bos, B. J.; Dworkin, J. P.; Highsmith, D. E.; Lorenz, D. A.; Lim, L. F.; Mink, R.; Moreau, M. C.; Nuth, J. A.; Reuter, D. C.; Simon, A. A.; Bierhaus, E. B.; Bryan, B. H.; Ballouz, R.; Barnouin, O. S.; Binzel, R. P.; Bottke, W. F.; Hamilton, V. E.; Walsh, K. J.; Chesley, S. R.; Christensen, P. R.; Clark, B. E.; Connolly, H. C.; Crombie, M. K.; Daly, M. G.; Emery, J. P.; McCoy, T. J.; McMahon, J. W.; Scheeres, D. J.; Messenger, S.; Nakamura-Messenger, K.; Righter, K.; Sandford, S. A.
2017-10-01
In May of 2011, NASA selected the Origins, Spectral Interpretation, Resource Identification, and Security- Regolith Explorer (OSIRIS-REx) asteroid sample return mission as the third mission in the New Frontiers program. The other two New Frontiers missions are New Horizons, which explored Pluto during a flyby in July 2015 and is on its way for a flyby of Kuiper Belt object 2014 MU69 on January 1, 2019, and Juno, an orbiting mission that is studying the origin, evolution, and internal structure of Jupiter. The spacecraft departed for near-Earth asteroid (101955) Bennu aboard an United Launch Alliance Atlas V 411 evolved expendable launch vehicle at 7:05 p.m. EDT on September 8, 2016, on a seven-year journey to return samples from Bennu. The spacecraft is on an outbound-cruise trajectory that will result in a rendezvous with Bennu in November 2018. The science instruments on the spacecraft will survey Bennu to measure its physical, geological, and chemical properties, and the team will use these data to select a site on the surface to collect at least 60 g of asteroid regolith. The team will also analyze the remote-sensing data to perform a detailed study of the sample site for context, assess Bennu's resource potential, refine estimates of its impact probability with Earth, and provide ground-truth data for the extensive astronomical data set collected on this asteroid. The spacecraft will leave Bennu in 2021 and return the sample to the Utah Test and Training Range (UTTR) on September 24, 2023.
NASA Technical Reports Server (NTRS)
1986-01-01
In 1982, the NASA Solar System Exploration Committee (SSEC) published a report on a Core Program of planetary missions, representing the minimum-level program that could be carried out in a cost effective manner, and would yield a continuing return of basic scientific results. This is the second part of the SSEC report, describing missions of the highest scientific merit that lie outside the scope of the previously recommended Core Program because of their cost and technical challenge. These missions include the autonomous operation of a mobile scientific rover on the surface of Mars, the automated collection and return of samples from that planet, the return to Earth of samples from asteroids and comets, projects needed to lay the groundwork for the eventual utilization of near-Earth resources, outer planet missions, observation programs for extra-solar planets, and technological developments essential to make these missions possible.
STARDUST: An Incredulous Dream to Incredible Return
NASA Technical Reports Server (NTRS)
Tsou, Peter
2006-01-01
This viewgraph presentation reviews the Stardust mission. The goal of the mission was to return to Earth a very small part of a comet for study. The success of the mission gave us a small part of a comet to use for research into questions such as the cometary origin of water and life on earth and the formation of the solar system. The slides review the challenges, the strategy, the laboratory experiments, the instrument development, the characteristics of Aerogel, the Stardust trajectory, pictures of the samples and a listing of the firsts that were accomplished during the Stardust project.
1999-01-27
In the Payload Hazardous Servicing Facility, the Stardust spacecraft waits to be encased in a protective canister for its move to Launch Pad 17-A, Cape Canaveral Air Station, for launch preparations. Stardust is targeted for liftoff on Feb. 6 aboard a Boeing Delta II rocket for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Robotic Mars Sample Return: Risk Assessment and Analysis Report
NASA Technical Reports Server (NTRS)
Lalk, Thomas R.; Spence, Cliff A.
2003-01-01
A comparison of the risk associated with two alternative scenarios for a robotic Mars sample return mission was conducted. Two alternative mission scenarios were identified, the Jet Propulsion Lab (JPL) reference Mission and a mission proposed by Johnson Space Center (JSC). The JPL mission was characterized by two landers and an orbiter, and a Mars orbit rendezvous to retrieve the samples. The JSC mission (Direct/SEP) involves a solar electric propulsion (SEP) return to earth followed by a rendezvous with the space shuttle in earth orbit. A qualitative risk assessment to identify and characterize the risks, and a risk analysis to quantify the risks were conducted on these missions. Technical descriptions of the competing scenarios were developed in conjunction with NASA engineers and the sequence of events for each candidate mission was developed. Risk distributions associated with individual and combinations of events were consolidated using event tree analysis in conjunction with Monte Carlo techniques to develop probabilities of mission success for each of the various alternatives. The results were the probability of success of various end states for each candidate scenario. These end states ranged from complete success through various levels of partial success to complete failure. Overall probability of success for the Direct/SEP mission was determined to be 66% for the return of at least one sample and 58% for the JPL mission for the return of at least one sample cache. Values were also determined for intermediate events and end states as well as for the probability of violation of planetary protection. Overall mission planetary protection event probabilities of occurrence were determined to be 0.002% and 1.3% for the Direct/SEP and JPL Reference missions respectively.
NEA Multi-Chamber Sample Return Container with Hermetic Sealing
NASA Technical Reports Server (NTRS)
Rafeek, Shaheed; Kong, Kin Yuen; Sadick, Shazad; Porter, Christopher C.
2000-01-01
A sample return container is being developed by Honeybee Robotics to receive samples from a derivative of the Champollion/ST4 Sample Acquisition and Transfer Mechanism or other samplers such as the 'Touch and Go' Surface Sampler (TGSS), and then hermetically seal the samples for a sample return mission. The container is enclosed in a phase change material (PCM) chamber to prevent phase change during return and re-entry to earth. This container is designed to operate passively with no motors and actuators. Using the rotation axis of the TGSS sampler for interfacing, transferring and sealing samples, the container consumes no electrical power and therefore minimizes sample temperature change. The circular container houses multiple isolated canisters, which will be sealed individually for samples acquired from different sites or depths. The TGSS based sampler indexes each canister to the sample transfer position, below the index interface for sample transfer. After sample transfer is completed, the sampler indexes a seal carrier, which lines up seals with the openings of the canisters. The sampler moves to the sealing interface and seals the sample canisters one by one. The sealing interface can be designed to work with C-seals, knife edge seals and cup seals. This sample return container is being developed by Honeybee Robotics in collaboration with the JPL Exploration Technology program. A breadboard system of the sample return container has been recently completed and tested. Additional information is contained in the original extended abstract.
The solar panels of the spacecraft Stardust are deployed before undergoing lighting test in the PHSF
NASA Technical Reports Server (NTRS)
1999-01-01
In the Payload Hazardous Servicing Facility, workers look over the solar panels on the Stardust spacecraft that are deployed for lighting tests. Stardust is scheduled to be launched aboard a Boeing Delta II rocket from Launch Pad 17A, Cape Canaveral Air Station, on Feb. 6, 1999, for a rendezvous with the comet Wild 2 in January 2004. Stardust will use a substance called aerogel to capture comet particles flying off the nucleus of the comet, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a sample return capsule to be jettisoned as it swings by Earth in January 2006.
1969-11-26
S69-60294 (26 Nov. 1969) --- One of the first views of the Apollo 12 lunar rocks is this photograph of the open sample return container. The large rock is approximately 7 1/2 inches across and is larger than any rock brought back to Earth by the crew of the Apollo 11 lunar landing mission. Two of the rocks in the first container are crystalline and generally lighter in color than those returned on the first lunar landing. The rocks in this box are medium charcoal brown/gray in color.
Mars sample return mission architectures utilizing low thrust propulsion
NASA Astrophysics Data System (ADS)
Derz, Uwe; Seboldt, Wolfgang
2012-08-01
The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that case the lander is transported piggyback by the electrically propelled orbiter.
1996-03-24
Astronaut Michael Clifford places a liquid nitrogen Dewar containing frozen protein solutions aboard Russia's space station Mir during a visit by the Space Shuttle (STS-76). The protein samples were flash-frozen on Earth and will be allowed to thaw and crystallize in the microgravity environment on Mir Space Station. A later crew will return the Dewar to Earth for sample analysis. Dr. Alexander McPherson of the University of California at Riverside is the principal investigator. Photo credit: NASA/Johnson Space Center.
1996-09-20
Astronaut Tom Akers places a liquid nitrogen Dewar containing frozen protein solutions aboard Russia's space Station Mir during a visit by the Space Shuttle (STS-79). The protein samples were flash-frozen on Earth and will be allowed to thaw and crystallize in the microgravity environment on Mir Space Station. A later crew will return the Dewar to Earth for sample analysis. Dr. Alexander McPherson of the University of California at Riverside is the principal investigator. Photo credit: NASA/Johnson Space Center.
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Gage, Peter; Ellerby, Don; Mahzari, Milad; Peterson, Keith; Stackpoole, Mairead; Young, Zion
2016-01-01
This oral presentation will be given at the 13th International Planetary Probe Workshop on June 14th, 2016 and will cover the drivers for reliability and the challenges faced in selecting and designing the thermal protection system (TPS). In addition, an assessment is made on new emerging TPS related technologies that could help with designs to meet the planetary protection requirements to prevent backward (Earth) contamination by biohazardous samples.
A Sample Handling System for Mars Sample Return - Design and Status
NASA Astrophysics Data System (ADS)
Allouis, E.; Renouf, I.; Deridder, M.; Vrancken, D.; Gelmi, R.; Re, E.
2009-04-01
A mission to return atmosphere and soil samples form the Mars is highly desired by planetary scientists from around the world and space agencies are starting preparation for the launch of a sample return mission in the 2020 timeframe. Such a mission would return approximately 500 grams of atmosphere, rock and soil samples to Earth by 2025. Development of a wide range of new technology will be critical to the successful implementation of such a challenging mission. Technical developments required to realise the mission include guided atmospheric entry, soft landing, sample handling robotics, biological sealing, Mars atmospheric ascent sample rendezvous & capture and Earth return. The European Space Agency has been performing system definition studies along with numerous technology development studies under the framework of the Aurora programme. Within the scope of these activities Astrium has been responsible for defining an overall sample handling architecture in collaboration with European partners (sample acquisition and sample capture, Galileo Avionica; sample containment and automated bio-sealing, Verhaert). Our work has focused on the definition and development of the robotic systems required to move the sample through the transfer chain. This paper presents the Astrium team's high level design for the surface transfer system and the orbiter transfer system. The surface transfer system is envisaged to use two robotic arms of different sizes to allow flexible operations and to enable sample transfer over relatively large distances (~2 to 3 metres): The first to deploy/retract the Drill Assembly used for sample collection, the second for the transfer of the Sample Container (the vessel containing all the collected samples) from the Drill Assembly to the Mars Ascent Vehicle (MAV). The sample transfer actuator also features a complex end-effector for handling the Sample Container. The orbiter transfer system will transfer the Sample Container from the capture mechanism through a bio-sealing system to the Earth Return Capsule (ERC) and has distinctly different requirements from the surface transfer system. The operations required to transfer the samples to the ERC are clearly defined and make use of mechanisms specifically designed for the job rather than robotic arms. Though it is mechanical rather than robotic, the design of the orbiter transfer system is very complex in comparison to most previous missions to fulfil all the scientific and technological requirements. Further mechanisms will be required to lock the samples into the ERC and to close the door at the rear of the ERC through which the samples have been inserted. Having performed this overall definition study, Astrium is now leading the next step of the development of the MSR sample handling: the Mars Surface Sample Transfer and Manipulation project (MSSTM). Organised in two phases, the project will re-evaluate in phase 1 the output of the previous study in the light of new inputs (e.g. addition of a rover) and investigate further the architectures and systems involved in the sample transfer chain while identifying the critical technologies. The second phase of the project will concentrate on the prototyping of a number of these key technologies with the goal of providing an end-to end validation of the surface sample transfer concept.
NASA Technical Reports Server (NTRS)
Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)
2002-01-01
Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.
NASA Technical Reports Server (NTRS)
Shevaleyevskiy, I. D.; Chupakhin, M. S.
1974-01-01
Methodological and analytical capabilities associated with spark mass spectrometry and X-ray spectroscopy are presented for the determination of the elemental composition of samples of lunar regolith returned to the earth by Apollo 11 and Apollo 12. Using X-ray spectroscopy, the main constituents of samples of lunar surface material were determined, and using mass spectrometry -- the main admixtures. The principal difference of Apollo 11 samples from Apollo 12 samples was found for elements contained in microconcentrations. This is especially true of rare earth elements.
NASA Technical Reports Server (NTRS)
Badescu, Mircea; Bonitz, Robert; Kulczycki, Erick; Aisen, Norman; Dandino, Charles M.; Cantrell, Brett S.; Gallagher, William; Shevin, Jesse; Ganino, Anthony; Haddad, Nicolas;
2013-01-01
The 2011 Decadal Survey for planetary science released by the National Research Council of the National Academies identified Comet Surface Sample Return (CSSR) as one of five high priority potential New Frontiers-class missions in the next decade. The main objectives of the research described in this publication are: develop a concept for an end-to-end system for collecting and storing a comet sample to be returned to Earth; design, fabricate and test a prototype Dynamic Acquisition and Retrieval Tool (DART) capable of collecting 500 cc sample in a canister and eject the canister with a predetermined speed; identify a set of simulants with physical properties at room temperature that suitably match the physical properties of the comet surface as it would be sampled. We propose the use of a dart that would be launched from the spacecraft to impact and penetrate the comet surface. After collecting the sample, the sample canister would be ejected at a speed greater than the comet's escape velocity and captured by the spacecraft, packaged into a return capsule and returned to Earth. The dart would be composed of an inner tube or sample canister, an outer tube, a decelerator, a means of capturing and retaining the sample, and a mechanism to eject the canister with the sample for later rendezvous with the spacecraft. One of the significant unknowns is the physical properties of the comet surface. Based on new findings from the recent Deep Impact comet encounter mission, we have limited our search of solutions for sampling materials to materials with 10 to 100 kPa shear strength in loose or consolidated form. As the possible range of values for the comet surface temperature is also significantly different than room temperature and testing at conditions other than the room temperature can become resource intensive, we sought sample simulants with physical properties at room temperature similar to the expected physical properties of the comet surface material. The chosen DART configuration, the efforts to identify a test simulant and the properties of these simulants, and the results of the preliminary testing will be described in this paper.
MARCO POLO: near earth object sample return mission
NASA Astrophysics Data System (ADS)
Barucci, M. A.; Yoshikawa, M.; Michel, P.; Kawagushi, J.; Yano, H.; Brucato, J. R.; Franchi, I. A.; Dotto, E.; Fulchignoni, M.; Ulamec, S.
2009-03-01
MARCO POLO is a joint European-Japanese sample return mission to a Near-Earth Object. This Euro-Asian mission will go to a primitive Near-Earth Object (NEO), which we anticipate will contain primitive materials without any known meteorite analogue, scientifically characterize it at multiple scales, and bring samples back to Earth for detailed scientific investigation. Small bodies, as primitive leftover building blocks of the Solar System formation process, offer important clues to the chemical mixture from which the planets formed some 4.6 billion years ago. Current exobiological scenarios for the origin of Life invoke an exogenous delivery of organic matter to the early Earth: it has been proposed that primitive bodies could have brought these complex organic molecules capable of triggering the pre-biotic synthesis of biochemical compounds. Moreover, collisions of NEOs with the Earth pose a finite hazard to life. For all these reasons, the exploration of such objects is particularly interesting and urgent. The scientific objectives of MARCO POLO will therefore contribute to a better understanding of the origin and evolution of the Solar System, the Earth, and possibly Life itself. Moreover, MARCO POLO provides important information on the volatile-rich (e.g. water) nature of primitive NEOs, which may be particularly important for future space resource utilization as well as providing critical information for the security of Earth. MARCO POLO is a proposal offering several options, leading to great flexibility in the actual implementation. The baseline mission scenario is based on a launch with a Soyuz-type launcher and consists of a Mother Spacecraft (MSC) carrying a possible Lander named SIFNOS, small hoppers, sampling devices, a re-entry capsule and scientific payloads. The MSC leaves Earth orbit, cruises toward the target with ion engines, rendezvous with the target, conducts a global characterization of the target to select a sampling site, and delivers small hoppers (MINERVA type, JAXA) and SIFNOS. The latter, if added, will perform a soft landing, anchor to the target surface, and make various in situ measurements of surface/subsurface materials near the sampling site. Two surface samples will be collected by the MSC using “touch and go” manoeuvres. Two complementary sample collection devices will be used in this phase: one developed by ESA and another provided by JAXA, mounted on a retractable extension arm. After the completion of the sampling and ascent of the MSC, the arm will be retracted to transfer the sample containers into the MSC. The MSC will then make its journey back to Earth and release the re-entry capsule into the Earth’s atmosphere.
Mars rover sample return: An exobiology science scenario
NASA Technical Reports Server (NTRS)
Rosenthal, D. A.; Sims, M. H.; Schwartz, Deborah E.; Nedell, S. S.; Mckay, Christopher P.; Mancinelli, Rocco L.
1988-01-01
A mission designed to collect and return samples from Mars will provide information regarding its composition, history, and evolution. At the same time, a sample return mission generates a technical challenge. Sophisticated, semi-autonomous, robotic spacecraft systems must be developed in order to carry out complex operations at the surface of a very distant planet. An interdisciplinary effort was conducted to consider how much a Mars mission can be realistically structured to maximize the planetary science return. The focus was to concentrate on a particular set of scientific objectives (exobiology), to determine the instrumentation and analyses required to search for biological signatures, and to evaluate what analyses and decision making can be effectively performed by the rover in order to minimize the overhead of constant communication between Mars and the Earth. Investigations were also begun in the area of machine vision to determine whether layered sedimentary structures can be recognized autonomously, and preliminary results are encouraging.
NASA Astrophysics Data System (ADS)
Shkolyar, S.; Farmer, J.; Alerstam, E.; Maruyama, Y.; Blacksberg, J.
2013-12-01
Mars sample return has been identified as a top priority in the planetary science decadal survey. A Mars sample selection and caching mission would be the likely first step in this endeavor. Such a mission would aim to select and prioritize for return to Earth aqueously formed geological samples present at a selected site on Mars, based upon their potential for biosignature capture and preservation. If evidence of past life exists and is found, it is likely to come via the identification of fossilized carbonaceous matter of biological origin (kerogen) found in the selected samples analyzed in laboratories after return to Earth. Raman spectroscopy is considered one of the primary techniques for analyzing materials in situ and selecting the most promising samples for Earth return. We have previously performed a pilot study to better understand the complexities of identifying kerogen using Raman spectroscopy. For the study, we examined a variety of Mars analog materials representing a broad range of mineral compositions and kerogen maturities. The study revealed that kerogen identification in many of the most promising lithologies is often impeded by background fluorescence that originates from long (>10 ns to ms) and short (<1 ns) lifetime fluorophores in both the mineral matrixes and preserved organic matter in the samples. This work explores the potential for time-gated Raman spectroscopy to enable clear kerogen and mineral identifications in such samples. The JPL time-resolved Raman system uses time gating to reduce background fluorescence. It uses a custom-built SPAD (single photon avalanche diode) detector, featuring a 1-ns time-gate, and electronically variable gate delay. Results for a range of fluorescent samples show that the JPL system reduces fluorescence, allowing the identification of both kerogen and mineral components more successfully than with conventional Raman systems. In some of the most challenging samples, the detection of organic matter is hindered by a combination of short lifetime fluorescence and weak Raman scattering coming from preserved kerogen grains. Fluorescence Lifetime Imaging Microscopy (FLIM) measurements were also performed to characterize the lifetimes of both components in the samples and to inform future system improvements such as shorter time gating. Here, we will discuss the results, along with identified challenges to the consistent and reliable in situ identification of kerogen in samples on Mars.
Paloma: In-Situ Measurement of the Isotopic Composition of Mars Atmosphere
NASA Astrophysics Data System (ADS)
Jambon, A.; Quemerais, E.; Chassiefiere, E.; Berthelier, J. J.; Agrinier, P.; Cartigny, P.; Javoy, M.; Moreira, M.; Sabroux, J. -C.; Sarda, P.; Pineau, J. -F.
2000-07-01
Scientific objectives for an atmospheric analysis of Mars are presented in the DREAM project. Among the information presently available most are fragmentary or limited in their precision for both major element (H, C, O, N) and noble gas isotopes. These data are necessary for the understanding and modelling of Mars atmospheric formation and evolution, and consequently for other planets, particularly the Earth. To fulfill the above requirements, two approaches can be envisonned: 1) analysis of a returned sample (DREAM project) or 2) in situ analysis, e.g. PALOMA project presented here. Among the advantages of in situ analysis, we notice: the minimal terrestrial contamination, the unlimited availability of gas to be analyzed and the possibility of multiple analyses (replicates, daynight... ). Difficulties specific to in situ analyses are of a very different kind to those of returned samples. In situ analysis could also be viewed as a preparation to future analysis of returned samples. Finally, some of the measurements will not be possible on Earth: for instance, radon and its short lived decay products, will provide complementary information to 4-He analysis and can only be obtained in situ, independently of analytical capabilities.
Robotic sampling system for an unmanned Mars mission
NASA Technical Reports Server (NTRS)
Chun, Wendell
1989-01-01
A major robotics opportunity for NASA will be the Mars Rover/Sample Return Mission which could be launched as early as the 1990s. The exploratory portion of this mission will include two autonomous subsystems: the rover vehicle and a sample handling system. The sample handling system is the key to the process of collecting Martian soils. This system could include a core drill, a general-purpose manipulator, tools, containers, a return canister, certification hardware and a labeling system. Integrated into a functional package, the sample handling system is analogous to a complex robotic workcell. Discussed here are the different components of the system, their interfaces, forseeable problem areas and many options based on the scientific goals of the mission. The various interfaces in the sample handling process (component to component and handling system to rover) will be a major engineering effort. Two critical evaluation criteria that will be imposed on the system are flexibility and reliability. It needs to be flexible enough to adapt to different scenarios and environments and acquire the most desirable specimens for return to Earth. Scientists may decide to change the distribution and ratio of core samples to rock samples in the canister. The long distance and duration of this planetary mission places a reliability burden on the hardware. The communication time delay between Earth and Mars minimizes operator interaction (teleoperation, supervisory modes) with the sample handler. An intelligent system will be required to plan the actions, make sample choices, interpret sensor inputs, and query unknown surroundings. A combination of autonomous functions and supervised movements will be integrated into the sample handling system.
The Mars Sample Return Lab(s) - Lessons from the Past and Implications for the Future
NASA Technical Reports Server (NTRS)
Allen, Carlton
2012-01-01
It has been widely understood for many years that an essential component of a Mars Sample Return mission is a Sample Receiving Facility (SRF). The purpose of such a facility would be to take delivery of the flight hardware that lands on Earth, open the spacecraft and extract the sample container and samples, and conduct an agreed upon test protocol, while ensuring strict containment and contamination control of the samples while in the SRF. Any samples that are found to be non-hazardous (or are rendered non-hazardous by sterilization) would then be transferred to long-term curation. Although the general concept of an SRF is relatively straightforward, there has been considerable discussion about implementation planning.
Luna 16 - Some Li, K, Rb, Sr, Ba, rare-earth, Zr, and Hf concentrations.
NASA Technical Reports Server (NTRS)
Philpotts, J. A.; Schnetzler, C. C.; Schuhmann, S.; Thomas , H. H.; Bottino, M. L.
1972-01-01
Concentrations of Li, K, Rb, Sr, Na, rare-earths, Zr and Hf have been determined for some Luna 16 core materials by mass-spectrometric isotope-dilution. Two regolith fines samples from different depths in the core, and four rock-chips, including both igneous rocks and breccias, have similar trace-element concentrations. The Luna 16 materials have general lunar trace-element characteristics but differ from other returned lunar samples in a manner that suggests the presence of excess feldspar. Unless the Luna 16 igneous rocks are fused soils, they appear to represent either partial plagioclase cumulates or the least differentiated igneous material yet returned from the moon. The similarity in trace-element concentrations of the igneous rocks and the fines would then suggest largely local derivation of the Luna 16 regolith.
OSIRIS-REx Asteroid Sample Return Mission Image Analysis
NASA Astrophysics Data System (ADS)
Chevres Fernandez, Lee Roger; Bos, Brent
2018-01-01
NASA’s Origins Spectral Interpretation Resource Identification Security-Regolith Explorer (OSIRIS-REx) mission constitutes the “first-of-its-kind” project to thoroughly characterize a near-Earth asteroid. The selected asteroid is (101955) 1999 RQ36 (a.k.a. Bennu). The mission launched in September 2016, and the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. The spacecraft that will travel to, and collect a sample from, Bennu has five integrated instruments from national and international partners. NASA's OSIRIS-REx asteroid sample return mission spacecraft includes the Touch-And-Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample and document asteroid sample stowage. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Analysis of spacecraft imagery acquired by the TAGCAMS during cruise to the target asteroid Bennu was performed using custom codes developed in MATLAB. Assessment of the TAGCAMS in-flight performance using flight imagery was done to characterize camera performance. One specific area of investigation that was targeted was bad pixel mapping. A recent phase of the mission, known as the Earth Gravity Assist (EGA) maneuver, provided images that were used for the detection and confirmation of “questionable” pixels, possibly under responsive, using image segmentation analysis. Ongoing work on point spread function morphology and camera linearity and responsivity will also be used for calibration purposes and further analysis in preparation for proximity operations around Bennu. Said analyses will provide a broader understanding regarding the functionality of the camera system, which will in turn aid in the fly-down to the asteroid, as it will allow the pick of a suitable landing and sample location.
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Faber, Nicholas T.; Race, Margaret S.
2013-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This paper presents an overview of a feasibility study for a MSR mission. The objective of the study was to determine whether emerging commercial capabilities can be used to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost. The major element required for the MSR mission are described and include an integration of the emerging commercial capabilities with small spacecraft design techniques; new utilizations of traditional aerospace technologies; and recent technological developments. We report the feasibility of a complete and closed MSR mission design using the following scenario that covers three synodic launch opportunities, beginning with the 2022 opportunity: A Falcon Heavy injects a SpaceX Red Dragon capsule and trunk onto a Trans Mars Injection (TMI) trajectory. The capsule is modified to carry all the hardware needed to return samples collected on Mars including a Mars Ascent Vehicle (MAV); an Earth Return Vehicle (ERV); and hardware to transfer a sample collected in a previously landed rover mission to the ERV. The Red Dragon descends to land on the surface of Mars using Supersonic Retro Propulsion (SRP). After previously collected samples are transferred to the ERV, the single-stage MAV launches the ERV from the surface of Mars to a Mars phasing orbit. The MAV uses a storable liquid, pump fed bi-propellant propulsion system. After a brief phasing period, the ERV, which also uses a storable bi-propellant system, performs a Trans Earth Injection (TEI) burn. Once near Earth the ERV performs Earth and lunar swing-bys and is placed into a Lunar Trailing Orbit (LTO0 - an Earth orbit, at lunar distance. A later mission, using a Dragon and launched by a Falcon Heavy, performs a rendezvous with the ERV in the lunar trailing orbit, retrieves the sample container and breaks the chain of contact with Mars by transferring the sample into a sterile and secure container. With the sample contained, the retrieving spacecraft, makes a controlled Earth re-entry preventing any unintended release of pristine Martian materials into the Earth's biosphere. Other capsule type vehicles and associated launchers may be applicable. The analysis methods employed standard and specialized aerospace engineering tools. Mission system elements were analyzed with either direct techniques or by using parametric mass estimating relationships (MERs). The architecture was iterated until overall mission convergence was achieved on at least one path. Subsystems analyzed in this study include support structures, power system, nose fairing, thermal insulation, actuation devices, MAV exhaust venting, and GN&C. Best practice application of loads, mass growth contingencies, and resource margins were used. For Falcon Heavy capabilities and Dragon subsystems we utilized publically available data from SpaceX; published analyses from other sources; as well as our own engineering and aerodynamic estimates. Earth Launch mass is under 11 mt, which is within the estimated capability of a Falcon Heavy, with margin. Total entry masses between 7 and 10 mt were considered with closure occurring between 9 and 10 mt. Propellant mass fractions for each major phase of the EDL - Entry, Terminal Descent, and Hazard Avoidance - have been derived. An assessment of the entry conditions on the thermal protection system (TPS), currently in use for Dragon missions, has been made. And shows no significant stressors. A useful mass of 2.0 mt is provided and includes mass growth allowances for the MAV, the ERV, and mission unique equipment. We also report on alternate propellant options for the MAV and options for the ERV, including propulsion systems; crewed versus robotic retrieval mission; as well as direct Earth entry. International Planetary Protection Policies as well as verifiable means of compliance will have a large impact on any MSR mission design. We identify areas within our architecture where such impacts occur. This work shows that emerging commercial capabilities can be used to effectively integrated into a mission to achieve an important planetary science objective.
NASA Astrophysics Data System (ADS)
Debus, A.
In the framework of Mars exploration, particularly for missions dedicated to the search for life or for traces of ancient forms of life, NASA and CNES have decided to join their efforts in order to build a Mars sample return mission. Taking into account article IX of the OUTER SPACE TREATY (Treaty on principles governing the activities of states in the exploration and use of outer space, including the Moon and other celestial, referenced 610 UNTS 205 - resolution 2222(XXI) of December 1966, ratified in London / Washington January 27, 1967) and in order to comply with the COSPAR planetary protection recommendations, a common planetary protection program has to be established. Mars in-situ experimentations are limited by the size and the mass of the instruments necessary to perform exobiology investigations and, consequently, it appears that the best way to conduct such experiments is to bring back Mars samples to Earth. A sample return mission enables the use of a very large number of instruments and analysis protocols, giving exobiologists the best chance to find living entities or organic compounds related to life. Such a mission is complicated from a planetary protection point of view, it combines constraints for the protection of both the Mars environment as well as Earth, including the preservation of samples to ensure the validity of exobiological experiments.
2018-04-30
iss055e043245 (April 30, 2018) --- NASA astronaut Ricky Arnold transfers frozen biological samples from science freezers aboard the International Space Station to science freezers inside the SpaceX Dragon resupply ship. The research samples were returned to Earth aboard Dragon for retrieval by SpaceX engineers and analysis by NASA scientists.
Space X First Entry Sample Analysis
NASA Technical Reports Server (NTRS)
James, John T.
2012-01-01
The toxicological assessment of one sample collected on May 26, 2012 and returned to earth on May 31, 2012 was analyzed for pollutants that had offgassed into the Dragon capsule by the time of first entry operations performed by the ISS crew. The components identified in the first-entry sample and their contributions to the total T-value are shown.
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.;
2010-01-01
In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.
An integrated and accessible sample data library for Mars sample return science
NASA Astrophysics Data System (ADS)
Tuite, M. L., Jr.; Williford, K. H.
2015-12-01
Over the course of the next decade or more, many thousands of geological samples will be collected and analyzed in a variety of ways by researchers at the Jet Propulsion Laboratory (California Institute of Technology) in order to facilitate discovery and contextualize observations made of Mars rocks both in situ and here on Earth if samples are eventually returned. Integration of data from multiple analyses of samples including petrography, thin section and SEM imaging, isotope and organic geochemistry, XRF, XRD, and Raman spectrometry is a challenge and a potential obstacle to discoveries that require supporting lines of evidence. We report the development of a web-accessible repository, the Sample Data Library (SDL) for the sample-based data that are generated by the laboratories and instruments that comprise JPL's Center for Analysis of Returned Samples (CARS) in order to facilitate collaborative interpretation of potential biosignatures in Mars-analog geological samples. The SDL is constructed using low-cost, open-standards-based Amazon Web Services (AWS), including web-accessible storage, relational data base services, and a virtual web server. The data structure is sample-centered with a shared registry for assigning unique identifiers to all samples including International Geo-Sample Numbers. Both raw and derived data produced by instruments and post-processing workflows are automatically uploaded to online storage and linked via the unique identifiers. Through the web interface, users are able to find all the analyses associated with a single sample or search across features shared by multiple samples, sample localities, and analysis types. Planned features include more sophisticated search and analytical interfaces as well as data discoverability through NSF's EarthCube program.
Lunar Samples: Apollo Collection Tools, Curation Handling, Surveyor III and Soviet Luna Samples
NASA Technical Reports Server (NTRS)
Allton, J.H.
2009-01-01
The 6 Apollo missions that landed on the lunar surface returned 2196 samples comprised of 382 kg. The 58 samples weighing 21.5 kg collected on Apollo 11 expanded to 741 samples weighing 110.5 kg by the time of Apollo 17. The main goal on Apollo 11 was to obtain some material and return it safely to Earth. As we gained experience, the sampling tools and a more specific sampling strategy evolved. A summary of the sample types returned is shown in Table 1. By year 1989, some statistics on allocation by sample type were compiled [2]. The "scientific interest index" is based on the assumption that the more allocations per gram of sample, the higher the scientific interest. It is basically a reflection of the amount of diversity within a given sample type. Samples were also set aside for biohazard testing. The samples set aside and used for biohazard testing were represen-tative, as opposed to diverse. They tended to be larger and be comprised of less scientifically valuable mate-rial, such as dust and debris in the bottom of sample containers.
Detection of microbes in the subsurface
NASA Technical Reports Server (NTRS)
White, David C.; Tunlid, Anders
1989-01-01
The search for evidence of microbial life in the deep subsurface of Earth has implications for the Mars Rover Sampling Return Missions program. If suitably protected environments can be found on Mars then the instrumentation to detect biomarkers could be used to examine the molecular details. Finding a lipid in Martian soil would represent possibly the simplest test for extant or extinct life. A device that could do a rapid extraction possibly using the supercritical fluid technology under development now with a detection of the carbon content would clearly indicate a sample to be returned.
Development and Test Plans for the MSR EEV
NASA Technical Reports Server (NTRS)
Dillman, Robert; Laub, Bernard; Kellas, Sotiris; Schoenenberger, Mark
2005-01-01
The goal of the proposed Mars Sample Return mission is to bring samples from the surface of Mars back to Earth for thorough examination and analysis. The Earth Entry Vehicle is the passive entry body designed to protect the sample container from entry heating and deceleration loads during descent through the Earth s atmosphere to a recoverable location on the surface. This paper summarizes the entry vehicle design and outlines the subsystem development and testing currently planned in preparation for an entry vehicle flight test in 2010 and mission launch in 2013. Planned efforts are discussed for the areas of the thermal protection system, vehicle trajectory, aerodynamics and aerothermodynamics, impact energy absorption, structure and mechanisms, and the entry vehicle flight test.
Earth recovery mode analysis for a Martian sample return mission
NASA Technical Reports Server (NTRS)
Green, J. P.
1978-01-01
The analysis has concerned itself with evaluating alternative methods of recovering a sample module from a trans-earth trajectory originating in the vicinity of Mars. The major modes evaluated are: (1) direct atmospheric entry from trans-earth trajectory; (2) earth orbit insertion by retropropulsion; and (3) atmospheric braking to a capture orbit. In addition, the question of guided vs. unguided entry vehicles was considered, as well as alternative methods of recovery after orbit insertion for modes (2) and (3). A summary of results and conclusions is presented. Analytical results for aerodynamic and propulsive maneuvering vehicles are discussed. System performance requirements and alternatives for inertial systems implementation are also discussed. Orbital recovery operations and further studies required to resolve the recovery mode issue are described.
Planetary Sample Caching System Design Options
NASA Technical Reports Server (NTRS)
Collins, Curtis; Younse, Paulo; Backes, Paul
2009-01-01
Potential Mars Sample Return missions would aspire to collect small core and regolith samples using a rover with a sample acquisition tool and sample caching system. Samples would need to be stored in individual sealed tubes in a canister that could be transfered to a Mars ascent vehicle and returned to Earth. A sample handling, encapsulation and containerization system (SHEC) has been developed as part of an integrated system for acquiring and storing core samples for application to future potential MSR and other potential sample return missions. Requirements and design options for the SHEC system were studied and a recommended design concept developed. Two families of solutions were explored: 1)transfer of a raw sample from the tool to the SHEC subsystem and 2)transfer of a tube containing the sample to the SHEC subsystem. The recommended design utilizes sample tool bit change out as the mechanism for transferring tubes to and samples in tubes from the tool. The SHEC subsystem design, called the Bit Changeout Caching(BiCC) design, is intended for operations on a MER class rover.
NASA Technical Reports Server (NTRS)
Sandford, S. A.; Aleon, J.; Alexander, C. M. O'D.; Araki, T.; Bajt, S.; Baratta, G. A.; Borg, J.; Bradley J. P.; Brownlee, D. E.; Brucato, J. R.;
2007-01-01
STARDUST is the first mission designed to bring samples back to Earth from a known comet. The captured samples were successfully returned to Earth on 15 Jan 2006, after which they were subjected to a preliminary examination by a number of teams of scientists from around the world. This abstract describes the efforts of the Organics Preliminary Examination Team (PET). More detailed discussions of specific analyses of the samples can be found in other papers presented at this meeting by individual members of the Organics PET (see the author list above for team members). The studied Wild 2 gas and dust samples were collected by impact onto aerogel tiles and Al foils when the spacecraft flew through the coma of 81P/Wild 2 on 2 Jan 2004 at a relative velocity of approx.6.1 kilometers per second. After recovery of the Sample Return Capsule (SRC) on 15 Jan 2006, the aerogel collector trays were removed in a clean room at JSC. After documentation of the collection, selected aerogel tiles and aluminum foils were removed and aerogel and cometary samples extracted for study.
Is Mars Sample Return Required Prior to Sending Humans to Mars?
NASA Technical Reports Server (NTRS)
Carr, Michael; Abell, Paul; Allwood, Abigail; Baker, John; Barnes, Jeff; Bass, Deborah; Beaty, David; Boston, Penny; Brinkerhoff, Will; Budney, Charles;
2012-01-01
Prior to potentially sending humans to the surface of Mars, it is fundamentally important to return samples from Mars. Analysis in Earth's extensive scientific laboratories would significantly reduce the risk of human Mars exploration and would also support the science and engineering decisions relating to the Mars human flight architecture. The importance of measurements of any returned Mars samples range from critical to desirable, and in all cases these samples will would enhance our understanding of the Martian environment before potentially sending humans to that alien locale. For example, Mars sample return (MSR) could yield information that would enable human exploration related to 1) enabling forward and back planetary protection, 2) characterizing properties of Martian materials relevant for in situ resource utilization (ISRU), 3) assessing any toxicity of Martian materials with respect to human health and performance, and 4) identifying information related to engineering surface hazards such as the corrosive effect of the Martian environment. In addition, MSR would be engineering 'proof of concept' for a potential round trip human mission to the planet, and a potential model for international Mars exploration.
Planetary protection and the search for life beneath the surface of Mars
NASA Technical Reports Server (NTRS)
Mancinelli, Rocco L.
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Planetary protection and the search for life beneath the surface of Mars.
Mancinelli, Rocco L
2003-01-01
The search for traces of extinct and extant life on Mars will be extended to beneath the surface of the planet. Current data from Mars missions suggesting the presence of liquid water early in Mars' history and mathematical modeling of the fate of water on Mars imply that liquid water may exist deep beneath the surface of Mars. This leads to the hypothesis that life may exist deep beneath the Martian surface. One possible scenario to look for life on Mars involves a series of unmanned missions culminating with a manned mission drilling deep into the Martian subsurface (approximately 3Km), collecting samples, and conducting preliminary analyses to select samples for return to earth. This mission must address both forward and back contamination issues, and falls under planetary protection category V. Planetary protection issues to be addressed include provisions stating that the inevitable deposition of earth microbes by humans should be minimized and localized, and that earth microbes and organic material must not contaminate the Martian subsurface. This requires that the drilling equipment be sterilized prior to use. Further, the collection, containment and retrieval of the sample must be conducted such that the crew is protected and that any materials returning to earth are contained (i.e., physically and biologically isolated) and the chain of connection with Mars is broken. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
1999-01-22
The cover is removed from the Stardust spacecraft in the Payload Hazardous Servicing Facility prior to a media presentation. Stardust is targeted for launch on Feb. 6 aboard a Boeing Delta II rocket from Launch Pad 17-A, Cape Canaveral Air Station. The spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule (the white-topped, blunt-nosed cone seen on the top of the spacecraft) to be jettisoned as Stardust swings by Earth in January 2006
1999-01-26
In the Payload Hazardous Servicing Facility, workers help guide the overhead crane lifting the Stardust spacecraft. Stardust is being moved in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre-solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006
Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.
Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen
2015-06-26
Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nguyen, Ann
2017-01-01
Comets and asteroids may have contributed much of the Earth's water and organic matter. The Earth accretes approximately 4x10(exp 7) Kg of dust and meteorites from these sources every year. The least altered meteorites contain complex assemblages of organic compounds and abundant hydrated minerals. These carbonaceous chondrite meteorites probably derive from asteroids that underwent hydrothermal processing within the first few million years after their accretion. Meteorite organics show isotopic and chemical signatures of low-T ion-molecule and grain-surface chemistry and photolysis of icy grains that occurred in cold molecular clouds and the outer protoplanetary disk. These signatures have been overprinted by aqueously mediated chemistry in asteroid parent bodies, forming amino acids and other prebiotic molecules. Comets are much richer in organic matter but it is less well characterized. Comet dust collected in the stratosphere shows larger H and N isotopic anomalies than most meteorites, suggesting better preservation of primordial organics. Rosetta studies of comet 67P coma dust find complex organic matter that may be related to the macromolecular material that dominates the organic inventory of primitive meteorites. The exogenous organic material accreting on Earth throughout its history is made up of thousands of molecular species formed in diverse processes ranging from circumstellar outflows to chemistry at near absolute zero in dark cloud cores and the formative environment within minor planets. NASA and JAXA are currently flying sample return missions to primitive, potentially organic-rich asteroids. The OSIRIS-REx and Hayabusa2 missions will map their target asteroids, Bennu and Ryugu, in detail and return regolith samples to Earth. Laboratory analyses of these pristine asteroid samples will provide unprecedented views of asteroidal organic matter relatively free of terrestrial contamination within well determined geological context. Studies of extraterrestrial materials and returned samples are essential to understand the origins of Solar System organic material and the roles of comets and asteroids to providing the starting materials for the emergence of life.
Aladdin: Exploration and Sample Return from the Moons of Mars
NASA Technical Reports Server (NTRS)
Pieters, C.; Cheng, A.; Clark, B.; Murchie, S.; Mustard, J.; Zolensky, M.; Papike, J.
2000-01-01
Aladdin is a remote sensing and sample return mission focused on the two small moons of Mars, Phobos and Deimos. Understanding the moons of Mars will help us to understand the early history of Mars itself. Aladdin's primary objective is to acquire well documented, representative samples from both moons and return them to Earth for detailed analyses. Samples arrive at Earth within three years of launch. Aladdin addresses several of NASA's highest priority science objectives: the origin and evolution of the Martian system (one of two silicate planets with satellites) and the composition and nature of small bodies (the building blocks of the solar system). The Aladdin mission has been selected as a finalist in both the 1997 and 1999 Discovery competitions based on the high quality of science it would accomplish. The equivalent of Aladdin's Phase A development has been successfully completed, yielding a high degree of technical maturity. Aladdin uses an innovative flyby sample acquisition method, which has been validated experimentally and does not require soft landing or anchoring. An initial phasing orbit at Mars reduces mission propulsion requirements, enabling Aladdin to use proven, low-risk chemical propulsion with good mass margin. This phasing orbit is followed by a five month elliptical mission during which there are redundant opportunities for acquisition of samples and characterization of their geologic context using remote sensing. The Aladdin mission is a partnership between Brown University, the Johns Hopkins University Applied Physics Laboratory, Lockheed Martin Astronautics, and NASA Johnson Space Center.
LUNAR SAMPLES - APOLLO XVI - JSC
1975-03-18
S75-23543 (April 1972) --- This Apollo 16 lunar sample (moon rock) was collected by astronaut John W. Young, commander of the mission, about 15 meters southwest of the landing site. This rock weighs 128 grams when returned to Earth. The sample is a polymict breccia. This rock, like all lunar highland breccias, is very old, about 3,900,000,000 years older than 99.99% of all Earth surface rocks, according to scientists. Scientific research is being conducted on the balance of this sample at NASA's Johnson Space Center and at other research centers in the United States and certain foreign nations under a continuing program of investigation involving lunar samples collected during the Apollo program.
2012-04-26
ISS030-E-257690 (26 April 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 30 flight engineer, prepares for IMMUNE venous blood sample draws in the Columbus laboratory of the International Space Station. Following the blood draws, the samples were temporarily stowed in the Minus Eighty Laboratory Freezer for ISS 1 (MELFI-1) and later packed together with saliva samples on the Soyuz TMA-22 for return to Earth for analysis.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Members of the Mountaineers team from West Virginia University celebrate after their robot returned to the starting platform after picking up the sample during a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Building on the Cornerstone: Destinations for Nearside Sample Return
NASA Technical Reports Server (NTRS)
Lawrence, S. J.; Jolliff, B. L.; Draper, D.; Stopar, J. D.; Petro, N. E.; Cohen, B. A.; Speyerer, E. J.; Gruener, J. E.
2016-01-01
Discoveries from LRO (Lunar Reconnaissance Orbiter) have transformed our knowledge of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. Compelling science questions and critical resources make the Moon a key destination for future human and robotic exploration. Lunar surface exploration, including rovers and other landed missions, must be part of a balanced planetary science and exploration portfolio. Among the highest planetary exploration priorities is the collection of new samples and their return to Earth for more comprehensive analysis than can be done in-situ. The Moon is the closest and most accessible location to address key science questions through targeted sample return. The Moon is the only other planet from which we have contextualized samples, yet critical issues need to be addressed: we lack important details of the Moon's early and recent geologic history, the full compositional and age ranges of its crust, and its bulk composition.
Selecting and Certifying a Landing Site for Moonrise in South Pole-Aitken Basin
NASA Technical Reports Server (NTRS)
Jolliff, B.; Watkins, R.; Petro, N.; Moriarty, D.; Lawrence, S.; Head, J.; Pieters, C.; Hagerty, J.; Fergason, R.; Hare, T.;
2017-01-01
MoonRise is a New Frontiers mission concept to land in the South Pole-Aitken (SPA) basin, collect samples, and return the samples to Earth for detailed mineral, chemical, petrologic, geochronologic, and physical properties analyses to address science questions relevant to the early evolution of the Solar System and the Moon. Science associated with this mission concept is described elsewhere; here we discuss selection of sites within SPA to address science objectives using recent scientific studies (orbital spectroscopy, gravity, topography), and the use of new data (LRO) to certify safe landing sites for a robotic sample return mission such as MoonRise.
NASA Astrophysics Data System (ADS)
Connolly, Harold C.; Lauretta, Dante S.; Walsh, Kevin J.; Tachibana, Shogo; Bottke, William F.
2015-01-01
The data from the analysis of samples returned by Hayabusa from asteroid 25143 Itokawa are used to constrain the preaccretion history, the geological activity that occurred after accretion, and the dynamical history of the asteroid from the main belt to near-Earth space. We synthesize existing data to pose hypotheses to be tested by dynamical modeling and the analyses of future samples returned by Hayabusa 2 and OSIRIS-REx. Specifically, we argue that the Yarkosky-O'Keefe-Radzievskii-Paddack (YORP) effect may be responsible for producing geologically high-energy environments on Itokawa and other asteroids that process regolith and essentially affect regolith gardening.
NASA Astrophysics Data System (ADS)
Sotin, Christophe
2000-07-01
Every four or five years, the French scientific community is invited by the French space agency (CNES) to define the scientific priorities of the forthcoming years. The last workshop took place in March 98 in Arcachon, France. During this three-day workshop, it was clear that the study of Mars was very attractive for everyone because it is a planet very close to the Earth and its study should allow us to better understand the chemical and physical processes which drive the evolution of a planet by comparing the evolution of the two planets. For example, the study of Mars should help to understand the relationship between mantle convection and plate tectonics, the way magnetic dynamo works, and which conditions allowed life to emerge and evolve on Earth. The Southern Hemisphere of planet Mars is very old and it should have recorded some clues on the planetary evolution during the first billion years, a period for which very little is known for the Earth because both plate tectonics and weathering have erased the geological record. The international scientific community defined the architecture of Mars exploration program more than ten years ago. After the scientific discoveries made (and to come) with orbiters and landers, it appeared obvious that the next steps to be prepared are the delivery of networks on the surface and the study of samples returned from Mars. Scientific objectives related to network science include the determination of the different shells which compose the planet, the search for water in the subsurface, the record of atmospheric parameters both in time and space. Those related to the study of samples include the understanding of the differentiation of the planet and the fate of volatiles (including H2O) thanks to very accurate isotopic measurements which can be performed in laboratories, the search for minerals which can prove that life once existed on Mars, the search for present life on Mars (bacteria). Viking landers successfully landed on the surface of Mars in the mid seventies. Mars Pathfinder showed that rovers could be delivered at the surface of the planet and move around a lander. If it seems feasible that such a lander can grab samples and return them to the lander, a technical challenge is to launch successfully a rocket from the surface of Mars, put in orbit the samples, collect the sample in orbit and bring them back to the surface of the Earth. Such a technical challenge in addition to the amount of scientific information which will be returned, makes the Mars Sample Return mission a very exciting mission at the turn of the millenium. Following the Arcachon meeting, CNES made the decision to support strongly Mars exploration. This program includes three major aspects: (1) strong participation in the ESA Mars Express mission, (2) development of network science in collaboration with European partners, and (3) participation in the NASA-lead Mars Sample Return mission. In addition, participation in micromissions is foreseen to increase the scientific return with low-cost missions.
Tsou, Peter; Brownlee, Donald E; McKay, Christopher P; Anbar, Ariel D; Yano, Hajime; Altwegg, Kathrin; Beegle, Luther W; Dissly, Richard; Strange, Nathan J; Kanik, Isik
2012-08-01
Life Investigation For Enceladus (LIFE) presents a low-cost sample return mission to Enceladus, a body with high astrobiological potential. There is ample evidence that liquid water exists under ice coverage in the form of active geysers in the "tiger stripes" area of the southern Enceladus hemisphere. This active plume consists of gas and ice particles and enables the sampling of fresh materials from the interior that may originate from a liquid water source. The particles consist mostly of water ice and are 1-10 μ in diameter. The plume composition shows H(2)O, CO(2), CH(4), NH(3), Ar, and evidence that more complex organic species might be present. Since life on Earth exists whenever liquid water, organics, and energy coexist, understanding the chemical components of the emanating ice particles could indicate whether life is potentially present on Enceladus. The icy worlds of the outer planets are testing grounds for some of the theories for the origin of life on Earth. The LIFE mission concept is envisioned in two parts: first, to orbit Saturn (in order to achieve lower sampling speeds, approaching 2 km/s, and thus enable a softer sample collection impact than Stardust, and to make possible multiple flybys of Enceladus); second, to sample Enceladus' plume, the E ring of Saturn, and the Titan upper atmosphere. With new findings from these samples, NASA could provide detailed chemical and isotopic and, potentially, biological compositional context of the plume. Since the duration of the Enceladus plume is unpredictable, it is imperative that these samples are captured at the earliest flight opportunity. If LIFE is launched before 2019, it could take advantage of a Jupiter gravity assist, which would thus reduce mission lifetimes and launch vehicle costs. The LIFE concept offers science returns comparable to those of a Flagship mission but at the measurably lower sample return costs of a Discovery-class mission.
Curating NASA's Astromaterials Collections: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Zeigler, Ryan
2015-01-01
Planning for the curation of samples from future sample return missions must begin during the initial planning stages of a mission. Waiting until the samples have been returned to Earth, or even when you begin to physically build the spacecraft is too late. A lack of proper planning could lead to irreversible contamination of the samples, which in turn would compromise the scientific integrity of the mission. For example, even though the Apollo missions first returned samples in 1969, planning for the curation facility began in the early 1960s, and construction of the Lunar Receiving Laboratory was completed in 1967. In addition to designing the receiving facility and laboratory that the samples will be characterized and stored in, there are many aspects of contamination that must be addressed during the planning and building of the spacecraft: planetary protection (both outbound and inbound); cataloging, documenting, and preserving the materials used to build spacecraft (also known as coupons); near real-time monitoring of the environment in which the spacecraft is being built using witness plates for critical aspects of contamination (known as contamination control); and long term monitoring and preservation of the environment in which the spacecraft is being built for most aspects of potential contamination through the use of witness plates (known as contamination knowledge). The OSIRIS REx asteroid sample return mission, currently being built, is dealing with all of these aspects of contamination in order to ensure they return the best preserved sample possible. Coupons and witness plates from OSIRIS REx are currently being studied and stored (for future studies) at the Johnson Space Center. Similarly, planning for the clean room facility at Johnson Space Center to house the OSIRIS-REx samples is well advanced, and construction of the facility should begin in early 2017 (despite a nominal 2023 return date for OSIRIS-REx samples). Similar development is being done, in concert with JAXA, for the return of Hayabusa 2 samples (nominally in 2020). We are also actively developing advanced techniques like cold curation and organically clean curation in anticipation of future sample return missions such as comet nucleus sample return and Mars sample return.
NASA Technical Reports Server (NTRS)
Dolgin, B.; Yarbrough, C.; Carson, J.; Troy, R.
2000-01-01
The proposed Mars Sample Transfer Chain Architecture provides Planetary Protection Officers with clean samples that are required for the eventual release from confinement of the returned Martian samples. At the same time, absolute cleanliness and sterility requirement is not placed of any part of the Lander (including the deep drill), Mars Assent Vehicle (MAV), any part of the Orbiting Sample container (OS), Rover mobility platform, any part of the Minicorer, Robotic arm (including instrument sensors), and most of the caching equipment on the Rover. The removal of the strict requirements in excess of the Category IVa cleanliness (Pathfinder clean) is expected to lead to significant cost savings. The proposed architecture assumes that crosscontamination renders all surfaces in the vicinity of the rover(s) and the lander(s) contaminated. Thus, no accessible surface of Martian rocks and soil is Earth contamination free. As a result of the latter, only subsurface samples (either rock or soil) can be and will be collected for eventual return to Earth. Uncontaminated samples can be collected from a Category IVa clean platform. Both subsurface soil and rock samples can be maintained clean if they are collected by devices that are self-contained and clean and sterile inside only. The top layer of the sample is removed in a manner that does not contaminate the collection tools. Biobarrier (e.g., aluminum foil) covering the moving parts of these devices may be used as the only self removing bio-blanket that is required. The samples never leave the collection tools. The lids are placed on these tools inside the collection device. These single use tools with the lid and the sample inside are brought to Earth in the OS. The lids have to be designed impenetrable to the Earth organisms. The latter is a well established art.
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Martinez, James E.
2017-01-01
Water-rich carbonaceous chondrites contain evidence of aqueous alteration in the early solar system. To see this one must look carefully at the meteorites, and see past the later alteration which has generally obscured mineral textures. We suggest that these materials will dominate, be detectable, and be sampled on the surfaces of C-class asteroids, initially by the Hayabusa2 spacecraft. Thus, hydrous samples returned by this mission will help to reveal the source of water on earth.
NASA Technical Reports Server (NTRS)
Perino, Scott; Bayandor, Javid; Siddens, Aaron
2012-01-01
The anticipated NASA Mars Sample Return Mission (MSR) requires a simple and reliable method in which to return collected Martian samples back to earth for scientific analysis. The Multi-Mission Earth Entry Vehicle (MMEEV) is NASA's proposed solution to this MSR requirement. Key aspects of the MMEEV are its reliable and passive operation, energy absorbing foam-composite structure, and modular impact sphere (IS) design. To aid in the development of an EEV design that can be modified for various missions requirements, two fully parametric finite element models were developed. The first model was developed in an explicit finite element code and was designed to evaluate the impact response of the vehicle and payload during the final stage of the vehicle's return to earth. The second model was developed in an explicit code and was designed to evaluate the static and dynamic structural response of the vehicle during launch and reentry. In contrast to most other FE models, built through a Graphical User Interface (GUI) pre-processor, the current model was developed using a coding technique that allows the analyst to quickly change nearly all aspects of the model including: geometric dimensions, material properties, load and boundary conditions, mesh properties, and analysis controls. Using the developed design tool, a full range of proposed designs can quickly be analyzed numerically and thus the design trade space for the EEV can be fully understood. An engineer can then quickly reach the best design for a specific mission and also adapt and optimize the general design for different missions.
Four Interstellar Dust Candidates from the Stardust Interstellar Dust Collector
NASA Technical Reports Server (NTRS)
Westphal, A. J.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.;
2011-01-01
In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approx. 0.1 sq m in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 sq m/day. The Stardust Interstellar Preliminary Examination (ISPE) is a consortium-based project to characterize the collection using nondestructive techniques. The goals and restrictions of the ISPE are described . A summary of analytical techniques is described.
NASA needs a long-term sample return strategy
NASA Astrophysics Data System (ADS)
Agee, C.
Sample return missions, as demonstrated by Apollo, can have a huge payoff for plan- etary science. Beyond NASAAfs current Discovery missions, Stardust and Genesis, there are no future U.S. sample return missions on the books. At this juncture, it would be desirable for NASA to develop a coherent, long-term strategy for sample return missions to prime targets such as Mars, Venus, and other solar system bodies. The roster of missions planned for this decade in NASAAfs Mars Program no longer includes a sample return. Arguments against an early Mars sample return (MSR) in- clude the high cost, high risk, and not knowing the Agright placeAh on the Martian surface to sample. On the other hand, answering many of the key scientific questions about Mars, including the search for life, may require sample return. In lieu of MSR, NASA plans, out to 2009, a mix of orbital and landed missions that will perform re- mote and in-situ science at Mars. One approach to MSR that may lead to success in the opportunities beyond 2009 is a series of simple missions where large rovers and complex instruments are replaced by robust Mars ascent vehicles and lander-based sampling techniques. AgMobilityAh and Agsample diversityAh in these early reconnaissance sample return missions are accomplished by sending each mission to a distinctly different location based on our understanding of Martian geology prior to launch. The expected wealth of knowledge from these simple sample return missions will help guide Mars exploration beyond 2020. Venus sample return (VSR) should also be a high priority in NASAAfs exploration of the solar system. Our understanding of the Venusian surface is fragmentary at best and the mineralogy in unknown. We have no verified meteorites from Venus and thus radiometric ages of the crust do not exist. Venusian science best done on Earth from a VSR would include (1) precise isotopic measurements of atmospheric gases, soil, and rock, (2) age dating of rock, (3) trace element chemistry of soil and rock, (4) charac- terization of very small phases, (5) characterization of complex weathering products, (6) detailed rock mineralogy and petrology.
Circumlunar Free-Return Cycler Orbits for a Manned Earth-Moon Space Station
NASA Technical Reports Server (NTRS)
Genova, Anthony L.; Aldrin, Buzz
2015-01-01
Multiple free-return circumlunar cycler orbits were designed to allow regular travel between the Earth and Moon by a manned space station. The presented cycler orbits contain circumlunar free-return "figure-8" segments and yield lunar encounters every month. Smaller space "taxi" vehicles can rendezvous with (and depart from) the cycling Earth-Moon space station to enter lunar orbit (and/or land on the lunar surface), return to Earth, or reach destinations including Earth-Moon L1 and L2 halo orbits, near-Earth objects (NEOs), Venus, and Mars. To assess the practicality of the selected orbits, relevant cycler characteristics (including (Delta)V maintenance requirements) are presented and compared.
2010-03-25
Luna 16 was the first robotic mission to land on the Moon on basaltic plains of Mare Fecunditatis and return a sample to the Earth. It was launched by the Soviet Union on 12 September 1970. This image was taken by NASA Lunar Reconnaissance Orbiter.
Seeking Signs of Life Preserved in Martian Silica
NASA Astrophysics Data System (ADS)
Ruff, S. W.; Farmer, J. D.; Van Kranendonk, M. J.; Campbell, K. A.; Djokic, T.; Damer, B.; Deamer, D. W.
2018-04-01
Hot spring nodular silica deposits on Earth, which resemble those discovered with the Spirit rover, preserve concentrated organics and fine-scale structures that could be searched for on Mars with the Mars 2020 rover and in returned samples.
Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits
NASA Astrophysics Data System (ADS)
Genova, A. L.; Dunham, D. W.; Hardgrove, C.
2018-02-01
Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Plume Collection Strategies for Icy World Sample Return
NASA Technical Reports Server (NTRS)
Neveu, M.; Glavin, D. P.; Tsou, P.; Anbar, A. D.; Williams, P.
2015-01-01
Three icy worlds in the solar system display evidence of pluming activity. Water vapor and ice particles emanate from cracks near the south pole of Saturn's moon Enceladus. The plume gas contains simple hydrocarbons that could be fragments of larger, more complex organics. More recently, observations using the Hubble and Herschel space telescopes have hinted at transient water vapor plumes at Jupiter's moon Europa and the dwarf planet Ceres. Plume materials may be ejected directly from possible sub-surface oceans, at least on Enceladus. In such oceans, liquid water, organics, and energy may co-exist, making these environments habitable. The venting of habitable ocean material into space provides a unique opportunity to capture this material during a relatively simple flyby mission and return it to Earth. Plume collection strategies should enable investigations of evidence for life in the returned samples via laboratory analyses of the structure, distribution, isotopic composition, and chirality of the chemical components (including biomolecules) of plume materials. Here, we discuss approaches for the collection of dust and volatiles during flybys through Enceladus' plume, based on Cassini results and lessons learned from the Stardust comet sample return mission. We also highlight areas where sample collector and containment technology development and testing may be needed for future plume sample return missions.
Development of Chemical and Mechanical Cleaning Procedures for Genesis Solar Wind Samples
NASA Technical Reports Server (NTRS)
Schmeling, M.; Jurewicz, A. J. G.; Gonzalez, C.; Allums, K. K.; Allton, J. H.
2018-01-01
The Genesis mission was the only mission returning pristine solar material to Earth since the Apollo program. Unfortunately, the return of the spacecraft on September 8, 2004 resulted in a crash landing shattering the solar wind collectors into smaller fragments and exposing them to desert soil and other debris. Thorough surface cleaning is required for almost all fragments to allow for subsequent analysis of solar wind material embedded within. However, each collector fragment calls for an individual cleaning approach, as contamination not only varies by collector material but also by sample itself.
Adventures in near-Earth object exploration.
Asphaug, Erik
2006-06-02
Asteroids, because of the hazard they pose to Earth, are compelling targets for robotic and human space exploration. Yet because of their exotic low-gravity environment, simply landing on an asteroid appears to be much more challenging than we had appreciated 5 or 10 years ago. Thanks to a bold new mission from Japan that has made the first asteroid sample return attempt, this goal is now within our reach.
NASA Technical Reports Server (NTRS)
Messenger, S.; Connolly, H. C., Jr.; Lauretta, D. S.; Bottke, W. F.
2014-01-01
The NASA New Frontiers Mission OSRIS-REx will return surface regolith samples from near-Earth asteroid 101955 Bennu in September 2023. This target is classified as a B-type asteroid and is spectrally similar to CI and CM chondrite meteorites [1]. The returned samples are thus expected to contain primitive ancient Solar System materials that formed in planetary, nebular, interstellar, and circumstellar environments. Laboratory studies of primitive astromaterials have yielded detailed constraints on the origins, properties, and evolutionary histories of a wide range of Solar System bodies. Yet, the parent bodies of meteorites and cosmic dust are generally unknown, genetic and evolutionary relationships among asteroids and comets are unsettled, and links between laboratory and remote observations remain tenuous. The OSIRIS-REx mission will offer the opportunity to coordinate detailed laboratory analyses of asteroidal materials with known and well characterized geological context from which the samples originated. A primary goal of the OSIRIS-REx mission will be to provide detailed constraints on the origin and geological and dynamical history of Bennu through coordinated analytical studies of the returned samples. These microanalytical studies will be placed in geological context through an extensive orbital remote sensing campaign that will characterize the global geological features and chemical diversity of Bennu. The first views of the asteroid surface and of the returned samples will undoubtedly bring remarkable surprises. However, a wealth of laboratory studies of meteorites and spacecraft encounters with primitive bodies provides a useful framework to formulate priority scientific questions and effective analytical approaches well before the samples are returned. Here we summarize our approach to unraveling the geological history of Bennu through returned sample analyses.
NASA's Asteroid Redirect Mission: The Boulder Capture Option
NASA Technical Reports Server (NTRS)
Abell, Paul A.; Nuth, J.; Mazanek, D.; Merrill, R.; Reeves, D.; Naasz, B.
2014-01-01
NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (approximately 4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (approximately 1-5 m) via robotic manipulators from the surface of a larger (approximately 100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa's target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA's OSIRIS REx and JAXA's Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA's ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA's physical characteristics and reduces mission risk. This increases the return on investment for NASA's future activities with respect to science, human exploration, resource utilization, and planetary defense
NASA’s Asteroid Redirect Mission: The Boulder Capture Option
NASA Astrophysics Data System (ADS)
Abell, Paul; Nuth, Joseph A.; Mazanek, Dan D.; Merrill, Raymond G.; Reeves, David M.; Naasz, Bo J.
2014-11-01
NASA is examining two options for the Asteroid Redirect Mission (ARM), which will return asteroid material to a Lunar Distant Retrograde Orbit (LDRO) using a robotic solar-electric-propulsion spacecraft, called the Asteroid Redirect Vehicle (ARV). Once the ARV places the asteroid material into the LDRO, a piloted mission will rendezvous and dock with the ARV. After docking, astronauts will conduct two extravehicular activities (EVAs) to inspect and sample the asteroid material before returning to Earth. One option involves capturing an entire small (˜4-10 m diameter) near-Earth asteroid (NEA) inside a large inflatable bag. However, NASA is examining another option that entails retrieving a boulder (˜1-5 m) via robotic manipulators from the surface of a larger (˜100+ m) pre-characterized NEA. This option can leverage robotic mission data to help ensure success by targeting previously (or soon to be) well-characterized NEAs. For example, the data from the Hayabusa mission has been utilized to develop detailed mission designs that assess options and risks associated with proximity and surface operations. Hayabusa’s target NEA, Itokawa, has been identified as a valid target and is known to possess hundreds of appropriately sized boulders on its surface. Further robotic characterization of additional NEAs (e.g., Bennu and 1999 JU3) by NASA’s OSIRIS REx and JAXA’s Hayabusa 2 missions is planned to begin in 2018. The boulder option is an extremely large sample-return mission with the prospect of bringing back many tons of well-characterized asteroid material to the Earth-Moon system. The candidate boulder from the target NEA can be selected based on inputs from the world-wide science community, ensuring that the most scientifically interesting boulder be returned for subsequent sampling. This boulder option for NASA’s ARM can leverage knowledge of previously characterized NEAs from prior robotic missions, which provides more certainty of the target NEA’s physical characteristics and reduces mission risk. This increases the return on investment for NASA’s future activities with respect to science, human exploration, resource utilization, and planetary defense.
The case for planetary sample return missions. 2. History of Mars.
Gooding, J L; Carr, M H; McKay, C P
1989-08-01
Principal science goals for exploration of Mars are to establish the chemical, isotopic, and physical state of Martian material, the nature of major surface-forming processes and their time scales, and the past and present biological potential of the planet. Many of those goals can only be met by detailed analyses of atmospheric gases and carefully selected samples of fresh rocks, weathered rocks, soils, sediments, and ices. The high-fidelity mineral separations, complex chemical treatments, and ultrasensitive instrument systems required for key measurements, as well as the need to adapt analytical strategies to unanticipated results, point to Earth-based laboratory analyses on returned Martian samples as the best means for meeting the stated objectives.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
NASA Technical Reports Server (NTRS)
Lauretta, D. S.; Barucci, M. A.; Bierhaus, E. B.; Brucato, J. R.; Campins, H.; Christensen, P. R.; Clark, B. C.; Connolly, H. C.; Dotto, E.; Dworkin, J. P.;
2012-01-01
NASA selected the OSIRIS-REx Asteroid Sample Return Mission as the third New Frontiers mission in May 2011 [I]. The mission name is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will characterize near-Earth asteroid (101955) 1999 RQ36, which is both the most accessible carbonaceous asteroid [2,3] and one of the most potentially hazardous asteroids known [4]. The primary objective of the mission is to return a pristine sample from this bod, to advance our understanding of the generation, evolution, and maturation of regolith on small bodies.
Common In-Situ Consumable Production Plant for Robotic Mars Exploration
NASA Technical Reports Server (NTRS)
Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.
2000-01-01
Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.
Common In-Situ Consumable Production Plant for Robotic Mars Exploration
NASA Astrophysics Data System (ADS)
Sanders, G. B.; Trevathan, J. R.; Peters, T. A.; Baird, R. S.
2000-07-01
Utilization of extraterrestrial resources, or In-Situ Resource Utilization (ISRU), is viewed by the Human Exploration and Development of Space (HEDS) Enterprise as an enabling technology for the exploration and commercial development of space. A key subset of ISRU which has significant cost, mass, and risk reduction benefits for robotic and human exploration, and which requires a minimum of infrastructure, is In-Situ Consumable Production (ISCP). ISCP involves acquiring, manufacturing, and storing mission consumables from in situ resources, such as propellants, fuel cell reagents, and gases for crew and life support, inflation, science and pneumatic equipment. One of the four long-term goals for the Space Science Enterprise (SSE) is to 'pursue space science programs that enable and are enabled by future human exploration beyond low-Earth orbit - a goal exploiting the synergy with the human exploration of space'. Adequate power and propulsion capabilities are critical for both robotic and human exploration missions. Minimizing the mass and volume of these systems can reduce mission cost or enhance the mission by enabling the incorporation of new science or mission-relevant equipment. Studies have shown that in-situ production of oxygen and methane propellants can enhance sample return missions by enabling larger samples to be returned to Earth or by performing Direct Earth Return (DER) sample return missions instead of requiring a Mars Orbit Rendezvous (MOR). Recent NASA and Department of Energy (DOE) work on oxygen and hydrocarbon-based fuel cell power systems shows the potential of using fuel cell power systems instead of solar arrays and batteries for future rovers and science equipment. The development and use of a common oxygen/methane ISCP plant for propulsion and power generation can extend and enhance the scientific exploration of Mars while supporting the development and demonstration of critical technologies and systems for the human exploration of Mars.
A Search for Viable Venus and Jupiter Sample Return Mission Trajectories for the Next Decade
NASA Technical Reports Server (NTRS)
Leong, Jason N.; Papadopoulos, Periklis
2005-01-01
Planetary exploration using unmanned spacecraft capable of returning geologic or atmospheric samples have been discussed as a means of gathering scientific data for several years. Both NASA and ESA performed initial studies for Sample Return Missions (SRMs) in the late 1990 s, but most suggested a launch before the year 2010. The GENESIS and STARDUST spacecraft are the only current examples of the SRM concept with the Mars SRM expected around 2015. A feasibility study looking at SRM trajectories to Venus and Jupiter, for a spacecraft departing the Earth between the years 2011 through 2020 was conducted for a university project. The objective of the study was to evaluate SRMs to planets other than Mars, which has already gained significant attention in the scientific community. This paper is a synopsis of the study s mission trajectory concept and the conclusions to the viability of such a mission with today s technology.
The OSIRIS-REx Sample Return Mission from Asteroid Bennu
NASA Astrophysics Data System (ADS)
Lauretta, Dante; Clark, Benton
2016-07-01
The primary objective of the Origins, Spectral Interpretation, Resource Identification, and Security‒Regolith Explorer (OSIRIS-REx) mission is to return and analyze a sample of pristine regolith from asteroid 101955 Bennu, a primitive carbonaceous asteroid and also a potentially hazardous near-Earth object. Returned samples are expected to contain primitive ancient Solar System materials formed in planetary, nebular, interstellar, and circumstellar environments. In addition, the OSIRIS-REx mission will obtain valuable information on sample context by imaging the sample site; characterize its global geology; map global chemistry and mineralogy; investigate dynamic history by measuring the Yarkovsky effect; and advance asteroid astronomy by characterizing surface properties for direct comparison with ground-based telescopic observations of the entire asteroid population. Following launch in September 2016, the spacecraft will encounter Bennu in August 2018, then embark on a systematic study of geophysical and morphological characteristics of this ~500-meter-diameter object, including a systematic search for satellites and plumes. For determination of context, composition, and sampleability of various candidate sites, advanced instruments for remote global observations include OVIRS (visible to mid-IR spectrometric mapper), OTES (mid- to far-IR mineral and thermal emission mapper), OLA (mapping laser altimeter), and a suite of scientific cameras (OCAMS) with sub-cm pixel size from low-altitude Reconnaissance passes. A unique sample acquisition mechanism (SAM) capable of collecting up to one liter of regolith under ideal conditions (abundant small particulates < 2 cm) is expected to obtain at least 60 g of bulk regolith as well as surface grains on contact pads for analysis upon return to Earth. Using touch-and-go (TAG), a few seconds of contact is adequate for the gas-driven collection technique to acquire sample. This TAGSAM system has been developed and extensively tested in ground tests, and also on reduced-gravity airplane flights, to evaluate collection efficiency for various surfaces. Special cleaning techniques and contamination monitoring with in-flight witness plates are employed to assure a pristine sample. In September 2023, the entire TAGSAM end-effector stowed inside a Stardust-heritage Sample Return Capsule (SRC) will land on the Utah Test and Training Range (UTTR). The samples will then be transported to the NASA Johnson Space Center (JSC) curatorial facility for analysis and distribution to laboratories worldwide.
A preliminary study of Mars rover/sample return missions
NASA Technical Reports Server (NTRS)
1987-01-01
The Solar System Exploration Committee (SSEC) of the NASA Advisory Council recommends that a Mars Sample Return mission be undertaken before the year 2000. Comprehensive studies of a Mars Sample Return mission have been ongoing since 1984. The initial focus of these studies was an integrated mission concept with the surface rover and sample return vehicle elements delivered to Mars on a single launch and landed together. This approach, to be carried out as a unilateral U.S. initiative, is still a high priority goal in an Augmented Program of exploration, as the SSEC recommendation clearly states. With this background of a well-understood mission concept, NASA decided to focus its 1986 study effort on a potential opportunity not previously examined; namely, a Mars Rover/Sample Return (MRSR) mission which would involve a significant aspect of international cooperation. As envisioned, responsibility for the various mission operations and hardware elements would be divided in a logical manner with clearly defined and acceptable interfaces. The U.S. and its international partner would carry out separately launched but coordinated missions with the overall goal of accomplishing in situ science and returning several kilograms of surface samples from Mars. Important considerations for implementation of such a plan are minimum technology transfer, maximum sharing of scientific results, and independent credibility of each mission role. Under the guidance and oversight of a Mars Exploration Strategy Advisory Group organized by NASA, a study team was formed in the fall of 1986 to develop a preliminary definition of a flight-separable, cooperative mission. The selected concept assumes that the U.S. would undertake the rover mission with its sample collection operations and our international partner would return the samples to Earth. Although the inverse of these roles is also possible, this study report focuses on the rover functions of MRSR because rover operations have not been studied in as much detail as the sample return functions of the mission.
The International Space Station Urine Monitoring System (UMS)
NASA Technical Reports Server (NTRS)
Feeback, Daniel L.; Cibuzar, Branelle R.; Milstead, Jeffery R.; Pietrzyk,, Robert A.; Clark, Mark S.F.
2009-01-01
A device capable of making in-flight volume measurements of single void urine samples, the Urine Monitoring System (UMS), was developed and flown on seven U.S. Space Shuttle missions. This device provided volume data for each urine void from multiple crewmembers and allowed samples of each to be taken and returned to Earth for post-flight analysis. There were a number of design flaws in the original instrument including the presence of liquid carry-over producing invalid "actual" micturition volumes and cross-contamination between successive users from residual urine in "dead" spots". Additionally, high or low volume voids could not be accurately measured, the on-orbit calibration and nominal use sequence was time intensive, and the unit had to be returned and disassembled to retrieve the volume data. These problems have been resolved in a new version, the International Space Station (ISS) UMS, that has been designed to provide real-time in-flight volume data with accuracy and precision equivalent to measurements made on Earth and the ability to provide urine samples that are unadulterated by the device. Originally conceived to be interfaced with a U.S.-built Waste Collection System (WCS), the unit now has been modified to interface with the Russian-supplied Sanitary Hygiene Device (ASY). The ISS UMS provides significant advantages over the current method of collecting urine samples into Urine Collection Devices (UCDs), from which samples are removed and returned to Earth for analyses. A significant future advantage of the UMS is that it can provide an interface to analytical instrumentation that will allow real-time measurement of urine bioanalytes allowing monitoring of crewmember health status during flight and the ability to provide medical interventions based on the results of these measurements. Currently, the ISS UMS is scheduled to launch along with Node-3 on STS-130 (20A) in December 2009. UMS will be installed and scientific/functional verification completed prior to placing the instrument into operation. Samples collected during the verification sequence will be returned for analyses on STS-131 (19A) currently scheduled for launch in March 2010. The presence of a UMS on ISS will provide the capability to conduct additional collaborative human life science investigations among the ISS International Partners.
Genesis: Removing Contamination from Sample Collectors
NASA Technical Reports Server (NTRS)
Lauer, H. V.; McNamara, K. M.; Westphal, Andrew; Butterworth, A. L.; Burnett, D. S.; Jurewicz, A.; Woolum, D.; Allton, J. H.
2005-01-01
The Genesis mission returned to Earth on September 8, 2004, experiencing a non-nominal reentry. The parachutes which were supposed to slow and stabilize the capsule throughout the return failed to deploy, causing the capsule to impact the desert floor at a speed of nearly 200 MPH. Both the science canister and the major components of the SRC were returned before nightfall on September 8 to the prestaged cleanroom at UTTR , avoiding prolonged exposure or pending weather changes which might further contaminate the samples. The majority of the contaminants introduced as a result of the anomalous landing were in the form of particulates, including UTTR dust and soil, carbon-carbon heat shield material, and shattered collector dust (primarily silicon and germanium). Additional information is included in the original extended abstract.
Application of Solar Electric Propulsion to a Comet Surface Sample Return Mission
NASA Technical Reports Server (NTRS)
Cupples, Mike; Coverstone, Victoria; Woo, Byoungsam
2004-01-01
Current NSTAR (planned for the Discovery Mission: Dawn) and NASA's Evolutionary Xenon Thruster based propulsion systems were compared for a comet surface sample return mission to Tempe1 1. Mission and systems analyses were conducted over a range of array power for each propulsion system with an array of 12 kW EOL at 1 AU chosen for a baseline. Engine configurations investigated for NSTAR included 4 operational engines with 1 spare and 5 operational engines with 1 spare. The NEXT configuration investigated included 2 operational engines plus 1 spare, with performance estimated for high thrust and high Isp throttling modes. Figures of merit for this comparison include Solar Electric Propulsion dry mass, average engine throughput, and net non-propulsion payload returned to Earth flyby.
Harpoon-based sample Acquisition System
NASA Astrophysics Data System (ADS)
Bernal, Javier; Nuth, Joseph; Wegel, Donald
2012-02-01
Acquiring information about the composition of comets, asteroids, and other near Earth objects is very important because they may contain the primordial ooze of the solar system and the origins of life on Earth. Sending a spacecraft is the obvious answer, but once it gets there it needs to collect and analyze samples. Conceptually, a drill or a shovel would work, but both require something extra to anchor it to the comet, adding to the cost and complexity of the spacecraft. Since comets and asteroids are very low gravity objects, drilling becomes a problem. If you do not provide a grappling mechanism, the drill would push the spacecraft off the surface. Harpoons have been proposed as grappling mechanisms in the past and are currently flying on missions such as ROSETTA. We propose to use a hollow, core sampling harpoon, to act as the anchoring mechanism as well as the sample collecting device. By combining these two functions, mass is reduced, more samples can be collected and the spacecraft can carry more propellant. Although challenging, returning the collected samples to Earth allows them to be analyzed in laboratories with much greater detail than possible on a spacecraft. Also, bringing the samples back to Earth allows future generations to study them.
A feasibility study of unmanned rendezvous and docking in Mars orbit: Midterm review
NASA Technical Reports Server (NTRS)
1974-01-01
The ascent, rendezvous, docking and sample transfer operations in a potential MSSR mission that uses the Mars orbital rendezvous mode are considered. In order that the design choices made for these operations remain compatible with the rest of the mission, the impact on the Earth launch, Mars landing and orbiting and Earth return phase are also being assessed. The selection and description of a preliminary baseline concept are presented.
Why we need asteroid sample return mission?
NASA Astrophysics Data System (ADS)
Barucci, Maria Antonietta
2016-07-01
Small bodies retain evidence of the primordial solar nebula and the earliest solar system processes that shaped their evolution. They may also contain pre-solar material as well as complex organic molecules, which could have a major role to the development of life on Earth. For these reasons, asteroids and comets have been targets of interest for missions for over three decades. However, our knowledge of these bodies is still very limited, and each asteroid or comet visited by space mission has revealed unexpected scientific results, e.g. the structure and nature of comet 67P/Churyumov-Gerasimenko (67P/C-G) visited by the Rosetta mission. Only in the laboratory can instruments with the necessary precision and sensitivity be applied to individual components of the complex mixture of materials that forms a small body regolith, to determine their precise chemical and isotopic composition. Such measurements are vital for revealing the evidence of stellar, interstellar medium, pre-solar nebula and parent body processes that are retained in primitive material, unaltered by atmospheric entry or terrestrial contamination. For those reasons, sample return missions are considered a high priority by a number of the leading space agencies. Abundant within the inner Solar System and the main impactors on terrestrial planets, small bodies may have been the principal contributors of the water and organic material essential to create life on Earth. Small bodies can therefore be considered to be equivalent to DNA for unravelling our solar system's history, offering us a unique window to investigate both the formation of planets and the origin of life. A sample return mission to a primitive Near-Earth Asteroid (NEA) has been study at ESA from 2008 in the framework of ESA's Cosmic Vision (CV) programme, with the objective to answer to the fundamental CV questions "How does the Solar System work?" and "What are the conditions for life and planetary formations?". The returned material will allow us to study in terrestrial laboratories some of the most primitive materials available to investigate early solar system formation processes, to explore initial stages of habitable planet formation, to identify and characterize the organics and volatiles in a primitive asteroid. The ideal easy target body for such mission is a D type NEA. D types are the most abundant asteroids beyond the outer edge of the main belt. It is likely that they formed much further out in the Solar System, possibly as far as the transneptunian objects, and were subsequently captured in their present locations following the migration of the gas giants. Spectral features indicate that these bodies are organic rich, contain fine anhydrous minerals but also may be volatile rich and appear to be the most primitive rocky material present in the solar system. In addition to addressing the major science goals, sample return mission from a NEA also involved innovative European technologies. The key sample return capabilities, i.e. asteroid navigation, touch and go, sampling mechanism and the re-entry capsule have reached at ESA a validation status to enter implementation phase. The development of sample return technology represents in Europe a crucial element for planetary science and for the space technology development.
X-Ray Computed Tomography: The First Step in Mars Sample Return Processing
NASA Technical Reports Server (NTRS)
Welzenbach, L. C.; Fries, M. D.; Grady, M. M.; Greenwood, R. C.; McCubbin, F. M.; Zeigler, R. A.; Smith, C. L.; Steele, A.
2017-01-01
The Mars 2020 rover mission will collect and cache samples from the martian surface for possible retrieval and subsequent return to Earth. If the samples are returned, that mission would likely present an opportunity to analyze returned Mars samples within a geologic context on Mars. In addition, it may provide definitive information about the existence of past or present life on Mars. Mars sample return presents unique challenges for the collection, containment, transport, curation and processing of samples [1] Foremost in the processing of returned samples are the closely paired considerations of life detection and Planetary Protection. In order to achieve Mars Sample Return (MSR) science goals, reliable analyses will depend on overcoming some challenging signal/noise-related issues where sparse martian organic compounds must be reliably analyzed against the contamination background. While reliable analyses will depend on initial clean acquisition and robust documentation of all aspects of developing and managing the cache [2], there needs to be a reliable sample handling and analysis procedure that accounts for a variety of materials which may or may not contain evidence of past or present martian life. A recent report [3] suggests that a defined set of measurements should be made to effectively inform both science and Planetary Protection, when applied in the context of the two competing null hypotheses: 1) that there is no detectable life in the samples; or 2) that there is martian life in the samples. The defined measurements would include a phased approach that would be accepted by the community to preserve the bulk of the material, but provide unambiguous science data that can be used and interpreted by various disciplines. Fore-most is the concern that the initial steps would ensure the pristine nature of the samples. Preliminary, non-invasive techniques such as computed X-ray tomography (XCT) have been suggested as the first method to interrogate and characterize the cached samples without altering the materials [1,2]. A recent report [4] indicates that XCT may minimally alter samples for some techniques, and work is needed to quantify these effects, maximizing science return from XCT initial analysis while minimizing effects.
Searching for life in the universe: lessons from the earth
NASA Technical Reports Server (NTRS)
Nealson, K. H.
2001-01-01
Space programs will soon allow us to search for life in situ on Mars and to return samples for analysis. A major focal point is to search for evidence of present or past life in these samples, evidence that, if found, would have far-reaching consequences for both science and religion. A search strategy will consider the entire gamut of life on our own planet, using that information to frame a search that would recognize life even if it were fundamentally different from that we know on Earth. We discuss here how the lessons learned from the study of life on Earth can be used to allow us to develop a general strategy for the search for life in the Universe.
Searching for life in the universe: lessons from the earth.
Nealson, K H
2001-12-01
Space programs will soon allow us to search for life in situ on Mars and to return samples for analysis. A major focal point is to search for evidence of present or past life in these samples, evidence that, if found, would have far-reaching consequences for both science and religion. A search strategy will consider the entire gamut of life on our own planet, using that information to frame a search that would recognize life even if it were fundamentally different from that we know on Earth. We discuss here how the lessons learned from the study of life on Earth can be used to allow us to develop a general strategy for the search for life in the Universe.
Quantitative Planetary Protection for Sample Return from Ocean Worlds
NASA Astrophysics Data System (ADS)
Neveu, Marc; Takano, Yoshinori; Porco, Carolyn; McKay, Christopher P.; Glavin, Daniel; Anbar, Ariel; Sherwood, Brent; Yano, Hajime
2016-07-01
Volcanism on ocean worlds [1,2] facilitates ocean sample return missions, enabling uniquely flexible, sensitive, and specific laboratory analyses on Earth to study how far chemistry has evolved in presumably habitable oceans [3,4]. Such mission concepts have yet to quantitatively address planetary protection (PP) for ocean worlds [3,4]. These harbor liquid water [5,6], metabolically useful energy [7], and organic matter to support life [8]. Ocean temperatures may not exceed the limit for life as we know it [9,10], they are shielded from exogenic radiation by kilometers of ice, and their material has likely not been naturally exchanged with Earth [11]. The above factors would place sample return missions in Cat. V - Restricted Earth Return [12,13]. Forward PP requirements for Europa [13] and other ocean worlds [14] require that the probability of "introduction of a single viable terrestrial microorganism into a liquid-water environment" be lower than 10 ^{-4}. This probability should be estimated from (F1) "bioburden at launch," (F2) "cruise survival for contaminating organisms," (F3) "organism survival in the radiation environment adjacent to the target," (F4) "the probability of encountering […] the target," (F5) "the probability of surviving landing/impact on the target," (F6) "mechanisms and timescales of transport to the subsurface," and (F7) "survival […] after subsurface transfer" [13,14]. The compliance of specific designs of known cost could be evaluated from measurements of molecular contaminants as robust and universal proxies for microbial particulates [15] (F1); known microbial radiation tolerance [16] and planetary radiation budgets [17] (F2-F3); trajectory design (F4); projected impact velocities [18] (F5); ice transport timescales [19] (F6), and biomass growth rates in ice [20] (F7). In contrast, current backward PP requirements are only qualitative. Current policy [13,15] prohibits "destructive impact upon return," and requires that (B1) "unless the sample [undergoes] sterilization […], the sample container must be sealed [via] fail-safe containment with a method for verification of its operation before Earth return;" (B2) "for unsterilized samples, […] containment […] shall be maintained until [sample transfer to] an appropriate receiving facility;" (B3) "a method to 'break the chain of contact' with the target" be specified; (B4) "no uncontained hardware that contacted the target […] shall be returned to Earth;" (B5) "reviews and approval of the continuation of the flight mission shall be required [prior to] launch from Earth; leaving the target for return to Earth; and commitment to Earth reentry;" and (B6) "life detection and biohazard testing, or a proven sterilization process, shall be [a] precondition for the controlled distribution of […] the sample." These provisions and their means of evaluation could be quantified. A maximum leakage rate could be specified for particles above 10 nm (the size of prions, the smallest known pathogens [21]) (B1-B2), even for terminal velocity impact, whether unintended or otherwise (minimizing the risk of failure of reentry system elements, but requiring preservation of the samples and of sensors monitoring their thermal and structural integrity). For leak detection, He is commonly used [22], but its van-der-Waals radius of 0.14 nm could place too stringent a constraint for containment of pathogens over 70 times larger. To meet (B3)-(B4), uncontained parts in contact with ocean world material could be jettisoned prior to reentry with maximum probabilities of Earth/Moon impact, or of microbial survival upon reentry. (B6) could require either life detection prior to or after opening the sealed container [16,23-25], or sterilization [26]. Further guidance on (1) evaluating the 10 ^{-4} probability of forward contamination, (2) possibly extending this probability to ocean worlds other than Europa, (3) quantifying backward PP requirements, and (4) assessing the compliance of specific designs, would be a crucial step towards ocean world sample return missions, which are uniquely poised to inform us about the likelihood of life on other worlds. A possible path to setting policy could involve tasking experts (including COSPAR PP Panel members) to recommend quantitative means of evaluating provisions (F1)-(F7) and (B1)-(B6), and whether to include (B3)-(B5) in the COSPAR PP Policy [13]. The ongoing European Planetary Protection of Outer Solar System effort, seeking to "provide science and policy recommendations for the definition, improvement, and implementation of an adequate [PP] policy for outer solar system bodies" [27], may achieve this task. References: [1] Porco et al. (2006) Science 311, 1393. [2] Roth et al. (2014) Science 343, 171. [3] Tsou et al. (2012) Astrobiol 12, 730. [4] McKay et al. (2014) Astrobiol 14, 352. [5] Kivelson et al. (2000) Science 289, 1340. [6] Thomas et al. (2016) Icarus 264, 37. [7] Hsu et al. (2015) Nature 519, 207. [8] Waite et al. (2009) Nature 460, 487. [9] Takai et al. (2008) PNAS 105, 10949. [10] Sekine et al. (2015) Nature Comm 6, 8604. [11] Worth et al. (2013) Astrobiol 13, 1155. [12] Space Studies Board (1998) doi: 10.17226/6281. [13] Kminek and Rummel (2015) Space Res Today 193, 7. [14] NASA NPR 8020.12D (2011). [15] Summons et al. (2014) Astrobiol 14, 969. [16] Mileikowsky et al. (2000) Icarus 145, 391. [17] Hand et al. (2007) Astrobiol 7, 1006. [18] Nicholson (2009) Trends Microbiol 17, 243. [19] Showman and Han (2005) Icarus 177, 425. [20] Price and Sowers (2004) PNAS 101, 4631. [21] Silveira et al. (2005) Nature 437, 257. [22] Younse et al. (2012) doi: 10.1109/AERO.2012.6187048. [23,24] Yano et al. (2016a,b) 41 ^{st COSPAR Sci. Assy.} (this volume). [25] Takano et al. (2014) Adv Space Res 53, 1135. [26] Daspit et al. (1975) Acta Astro 2, 649. [27] INAF (retrieved 2/19/2016) PPOSS. http://www.inaf.it/it/sedi/sede-centrale-nuova/direzione-scientifica/relazioni-internazionali/pposs.
The Stardust spacecraft is moved in the PHSF to mate it with the 3rd stage of a Delta II rocket
NASA Technical Reports Server (NTRS)
1999-01-01
In the Payload Hazardous Servicing Facility, workers help guide the overhead crane lifting the Stardust spacecraft. Stardust is being moved in order to mate it with the third stage of a Boeing Delta II rocket. Targeted for launch Feb. 6 from Launch Pad 17-A, Cape Canaveral Air Station, aboard the Delta II rocket, the spacecraft is destined for a close encounter with the comet Wild 2 in January 2004. Using a silicon-based substance called aerogel, Stardust will capture comet particles flying off the nucleus of the comet. The spacecraft also will bring back samples of interstellar dust. These materials consist of ancient pre- solar interstellar grains and other remnants left over from the formation of the solar system. Scientists expect their analysis to provide important insights into the evolution of the sun and planets and possibly into the origin of life itself. The collected samples will return to Earth in a sample return capsule to be jettisoned as Stardust swings by Earth in January 2006.
NASA Astrophysics Data System (ADS)
Crucian, B.; Zwart, S.; Smith, S. M.; Simonsen, L. C.; Williams, T.; Antonsen, E.
2018-02-01
Biomarkers will be assessed in biological samples (saliva, blood, urine, feces) collected from crewmembers and returned to Earth at various intervals, mirroring (where feasible) collection timepoints used on the International Space Station (ISS).
NASA Astrophysics Data System (ADS)
Rummel, J. D.; Race, M. S.
2016-12-01
Enceladus and Europa are bodies with icy/watery environments and potential habitable conditions for life, making both of great interest in astrobiological studies of chemical evolution and /or origin of life. They are also of significant planetary protection concern for spacecraft missions because of the potential for harmful contamination during exploration. At a 2015 COSPAR colloquium in Bern Switzerland, international scientists identified an urgent need to establish planetary protection requirements for missions proposing to return samples to Earth from Saturn's moon Enceladus. Deliberations at the meeting resulted in recommended policy updates for both forward and back contamination requirements for missions to Europa and Enceladus, including missions sampling plumes originating from those bodies. These recently recommended COSPAR policy revisions and biological contamination requirements will be applied to future missions to Europa and Encealadus, particularly noticeable in those with plans for in situ life detection and sample return capabilities. Included in the COSPAR policy are requirementsto `break the chain of contact' with Europa or Enceladus, to keep pristine returned materials contained, and to complete required biohazard analyses, testing and/or sterilization upon return to Earth. Subsequent to the Bern meeting, additional discussions of Planetary Protection of Outer Solar System bodies (PPOSS) are underway in a 3-year study coordinated by the European Science Foundation and involving multiple international partners, including Japan, China and Russia, along with a US observer. This presentation will provide science and policy updates for those whose research or activities will involve icy moon missions and exploration.
Implementing planetary protection requirements for sample return missions.
Rummel, J D
2000-01-01
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR. c2001 COSPAR Published by Elsevier Science Ltd. All rights reserved.
Phobos spectral clustering: first results using the MRO-CRISM 0.4-2.5 micron dataset
NASA Astrophysics Data System (ADS)
Pajola, M.; Roush, T. L.; Marzo, G. A.; Simioni, E.
2016-12-01
Whether Phobos is a captured asteroid or it formed in situ around Mars, is still an outstanding question within the scientific community. The proposed Japanese Mars Moon eXploration (MMX) sample return mission has the chief scientific objective to solve this conundrum, reaching Phobos in early 2020s and returning Phobos samples to Earth few years later. Nonetheless, well before surface samples are returned to Earth, there are important spectral datasets that can be mined in order to constrain Phobos' surface properties and address implications regarding Phobos' origin. One of these is the MRO-CRISM multispectral observations of Phobos. The MRO-CRISM visible and infrared observations (0.4-2.5 micron) are here corrected for incidence and emission angles of the observation. Unlike previous studies of the MRO-CRISM data that selected specific regions for analyses, we apply a statistical technique that identifies different clusters based on a K-means partitioning algorithm. Selecting specific wavelength ranges of Phobos' reflectance spectra permits identification of possible mineralogical compounds and the spatial distribution of these on the surface of Phobos. This work paves the way to a deeper analysis of the available dataset regarding Phobos, potentially identifying regions of interest on the surface of Phobos that may warrant more detailed investigation by the MXX mission as potential sampling areas. Acknowledgments: M. Pajola was supported for this research by an appointment to the NASA Postdoctoral Program at the Ames Research Center administered by USRA.
Are Samples Obtained after Return to Earth Reflective of Spaceflight or Increased Gravity?
NASA Technical Reports Server (NTRS)
Wade, C. R.; Holton, E.; Baer, L.; Moran, M.
2001-01-01
Upon return to Earth, following space flight, living systems are immediately exposed to an increase in gravity of 1G. It has been difficult to differentiate between changes that are residuals of the acclimation to space flight from those resulting from acute exposure to an increase in =gravity upon re-entry. We compared previously reported changes observed in male Sprague-Dawley rats upon return to Earth to those induced by centrifugation, because both paradigms result in an increase of 1G. With both treatments there was a reduction in body mass, due to reduced food intake and increased urine output. The decrease in food intake was initially greater with centrifugation. The magnitudes of the changes in food intake and urine output were similar in both treatments. However, the slightly greater initial loss in body mass with centrifugation was due to a decrease in water intake not seen after space flight. The absence of pronounced differences between these treatments suggest the responses observed after landing are not residuals of adaptation to the space flight environment, but the result of adaptation to an increase in the level of gravity.
2009-06-24
ISS020-E-14200 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
2009-06-24
ISS020-E-014193 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
2009-06-24
ISS020-E-14196 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
Round-Trip Solar Electric Propulsion Missions for Mars Sample Return
NASA Technical Reports Server (NTRS)
Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.
2014-01-01
Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
The team Mountaineers robot is seen after picking up the sample during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
A team KuuKulgur robot approaches the sample as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Hayabusa Reentry and Recovery of Its Capsule -Quick Report
NASA Astrophysics Data System (ADS)
Kawaguchi, Junichiro; Yoshikawa, Makoto; Kuninaka, Hitoshi
The Hayabusa spacecraft successfully returned to the Earth and re-entered into the atmosphere for sample recovery after also the successful touching-downs to NEO Itokawa in 2005. The reentry occurred on June 13th, and took place in Woomera Prohibited Area (WPA) of Australia. This paper presents how the reentry and recovery operations were performed, and also reports the current status about the sample curation activity. The Hayabusa mission aims at demonstrating key technologies requisite for future real Sample and Return missions. However, the spacecraft adopted the actual Sample and Return flight sequence and was designed to make a world's first round trip to an extra terrestrial object with touching-down and lifting-off. It is the spacecraft propelled by the ion engines aboard for interplanetary cruise. The Hayabusa spacecraft launched in May of 2003 reached NEO Itokawa in September of 2005 via Earth gravity assist in May of 2004. It stayed there for about two and a half months, and performed detailed scientific observation and mapping and determination of the shape. In November of 2005, the spacecraft made two touching-downs and lifting-offs having attempted collection of surface sample. At the second opportunity, the spacecraft directed shooting a projectile. But, due to the programming problem, presumably the projectile was not shot. However, the spacecraft may have captured some small amount of sample particles in a catcher aboard, when the spacecraft made actual touches down to the surface. The spacecraft suffered from fuel leak in December of 2005, and the communication resumed after seven weeks of hiatus. And the ion engines all faced their life by November of 2009, and the project team devised an alternative drive configuration and successfully coped with the difficulty. Despite many hardships, the spacecraft has been operated for return cruise, and it made a reentry for sample recovery this June. The sample catcher was retrieved at WPA and transported back to the curation facility of JAXA. Currently the curators have examined analyzed the catcher recovered. This presentation quickly reports recent status of the spacecraft, capsule and sample analysis.
TPS design for aerobraking at Earth and Mars
NASA Astrophysics Data System (ADS)
Williams, S. D.; Gietzel, M. M.; Rochelle, W. C.; Curry, D. M.
1991-08-01
An investigation was made to determine the feasibility of using an aerobrake system for manned and unmanned missions to Mars, and to Earth from Mars and lunar orbits. A preliminary thermal protection system (TPS) was examined for five unmanned small nose radius, straight bi-conic vehicles and a scaled up Aeroassist Flight Experiment (AFE) vehicle aerocapturing at Mars. Analyses were also conducted for the scaled up AFE and an unmanned Sample Return Cannister (SRC) returning from Mars and aerocapturing into Earth orbit. Also analyzed were three different classes of lunar transfer vehicles (LTV's): an expendable scaled up modified Apollo Command Module (CM), a raked cone (modified AFT), and three large nose radius domed cylinders. The LTV's would be used to transport personnel and supplies between Earth and the moon in order to establish a manned base on the lunar surface. The TPS for all vehicles analyzed is shown to have an advantage over an all-propulsive velocity reduction for orbit insertion. Results indicate that TPS weight penalties of less than 28 percent can be achieved using current material technology, and slightly less than the most favorable LTV using advanced material technology.
Samples from Differentiated Asteroids; Regolithic Achondrites
NASA Technical Reports Server (NTRS)
Herrin J. S.; Ross, A. J.; Cartwright, J. A.; Ross, D. K.; Zolensky, Michael E.; Jenniskens, P.
2011-01-01
Differentiated and partially differentiated asteroids preserve a glimpse of planet formation frozen in time from the early solar system and thus are attractive targets for future exploration. Samples of such asteroids arrive to Earth in the form of achondrite meteorites. Many achondrites, particularly those thought to be most representative of asteroidal regolith, contain a diverse assortment of materials both indigenous and exogenous to the original igneous parent body intermixed at microscopic scales. Remote sensing spacecraft and landers would have difficulty deciphering individual components at these spatial scales, potentially leading to confusing results. Sample return would thus be much more informative than a robotic probe. In this and a companion abstract [1] we consider two regolithic achondrite types, howardites and (polymict) ureilites, in order to evaluate what materials might occur in samples returned from surfaces of differentiated asteroids and what sampling strategies might be prudent.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Investigation of Phase Transition-Based Tethered Systems for Small Body Sample Capture
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Scharf, Daniel; Mukherjee, Rudranarayan
2009-01-01
This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.
NASA Technical Reports Server (NTRS)
Cerimele, Christopher J. (Inventor); Ried, Robert C. (Inventor); Peterson, Wayne L. (Inventor); Zupp, George A., Jr. (Inventor); Stagnaro, Michael J. (Inventor); Ross, Brian P. (Inventor)
1991-01-01
A return vehicle is disclosed for use in returning a crew to Earth from low earth orbit in a safe and relatively cost effective manner. The return vehicle comprises a cylindrically-shaped crew compartment attached to the large diameter of a conical heat shield having a spherically rounded nose. On-board inertial navigation and cold gas control systems are used together with a de-orbit propulsion system to effect a landing near a preferred site on the surface of the Earth. State vectors and attitude data are loaded from the attached orbiting craft just prior to separation of the return vehicle.
Hayabusa Re-Entry: Trajectory Analysis and Observation Mission Design
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Winter, Michael W.; Allen, Gary A.; Grinstead, Jay H.; Antimisiaris, Manny E.; Albers, James; Jenniskens, Peter
2011-01-01
On June 13th, 2010, the Hayabusa sample return capsule successfully re-entered Earth s atmosphere over the Woomera Prohibited Area in southern Australia in its quest to return fragments from the asteroid 1998 SF36 Itokawa . The sample return capsule entered at a super-orbital velocity of 12.04 km/sec (inertial), making it the second fastest human-made object to traverse the atmosphere. The NASA DC-8 airborne observatory was utilized as an instrument platform to record the luminous portion of the sample return capsule re-entry (60 sec) with a variety of on-board spectroscopic imaging instruments. The predicted sample return capsule s entry state information at 200 km altitude was propagated through the atmosphere to generate aerothermodynamic and trajectory data used for initial observation flight path design and planning. The DC- 8 flight path was designed by considering safety, optimal sample return capsule viewing geometry and aircraft capabilities in concert with key aerothermodynamic events along the predicted trajectory. Subsequent entry state vector updates provided by the Deep Space Network team at NASA s Jet Propulsion Laboratory were analyzed after the planned trajectory correction maneuvers to further refine the DC-8 observation flight path. Primary and alternate observation flight paths were generated during the mission planning phase which required coordination with Australian authorities for pre-mission approval. The final observation flight path was chosen based upon trade-offs between optimal viewing requirements, ground based observer locations (to facilitate post-flight trajectory reconstruction), predicted weather in the Woomera Prohibited Area and constraints imposed by flight path filing deadlines. To facilitate sample return capsule tracking by the instrument operators, a series of two racetrack flight path patterns were performed prior to the observation leg so the instruments could be pointed towards the region in the star background where the sample return capsule was expected to become visible. An overview of the design methodologies and trade-offs used in the Hayabusa re-entry observation campaign are presented.
1969-07-09
In this photograph, laboratory technician Bart Ruark visually inspects a Japanese Qail confined within a class III cabinet in the Intervertebrae, Aves, and Fish Laboratory of the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.
1969-07-09
In this photograph, a laboratory technician handles a portion of the more than 20 different plant lines that were used within the Lunar Receiving Laboratory, Building 37 of the Manned Spacecraft Center (MSC) in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.
Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle
NASA Technical Reports Server (NTRS)
Henline, William D.; Tauber, Michael E.
1994-01-01
A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.
NASA Astrophysics Data System (ADS)
Okazaki, Ryuji; Sawada, Hirotaka; Yamanouchi, Shinji; Tachibana, Shogo; Miura, Yayoi N.; Sakamoto, Kanako; Takano, Yoshinori; Abe, Masanao; Itoh, Shoichi; Yamada, Keita; Yabuta, Hikaru; Okamoto, Chisato; Yano, Hajime; Noguchi, Takaaki; Nakamura, Tomoki; Nagao, Keisuke
2017-07-01
The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU3). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
Sample Return Mission to the South Pole Aitken Basin
NASA Astrophysics Data System (ADS)
Duke, M. B.; Clark, B. C.; Gamber, T.; Lucey, P. G.; Ryder, G.; Taylor, G. J.
1999-01-01
The South Pole Aitken Basin (SPA) is the largest and oldest observed feature on the Moon. Compositional and topographic data from Galileo, Clementine, and Lunar Prospector have demonstrated that SPA represents a distinctive major lunar terrane, which has not been sampled either by sample return missions (Apollo, Luna) or by lunar meteorites. The floor of SPA is characterized by mafic compositions enriched in Fe, Ti, and Th in comparison to its surroundings. This composition may represent melt rocks from the SPA event, which would be mixtures of the preexisting crust and mantle rocks. However, the Fe content is higher than expected, and the large Apollo basin, within SPA, exposes deeper material with lower iron content. Some of the Fe enrichment may represent mare and cryptomare deposits. No model adequately accounts for all of the characteristics of the SPA and disagreements are fundamental. Is mantle material exposed or contained as fragments in melt rock and breccias? If impact melt is present, did the vast sheet differentiate? Was the initial mantle and crust compositionally different from other regions of the Moon? Was the impact event somehow peculiar, (e.g., a low-velocity impact)? The precise time of formation of the SPA is unknown, being limited only by the initial differentiation of the Moon and the age of the Imbrium event, believed to be 3.9 b.y. The questions raised by the SPA can be addressed only with detailed sample analysis. Analysis of the melt rocks, fragments in breccias, and basalts of SPA can address several highly significant problems for the Moon and the history of the solar system. The time of formation of SPA, based on analysis of melt rocks formed in the event. would put limits on the period of intense bombardment of the Moon, which has been inferred by some to include a "terminal cataclysm." If close to 3.9 Ga, the presumed age of the Imbrium Basin, the SPA date would confirm the lunar cataclysm. This episode, if it occurred, would have affected all of the planets of the inner solar system, and in particular, could have been critical to the history of life on Earth. If the SPA is significantly older, a more orderly cratering history may be inferred. Secondly, melt-rock compositions and clasts in melt rocks or breccias may yield evidence of the composition of the lunar mantle, which could have been penetrated by the impact or exposed by the rebound process that occurred after the impact. Thirdly, study of mare and cryptomare basalts could yield further constraints on the age of SPA and the thermal history of the crust and mantle in that region. The integration of these data may allow inferences to be made on the nature of the impacting body. Secondary science objectives in samples from the SPA could include analysis of the regolith for the latitudinal effects of solar wind irradiation, which should be reduced from its equatorial values; possible remnant magnetization of very old basalts; and evidence for Imbrium Basin ejecta and KREEP materials. If a sampling site is chosen close enough to the poles, it is possible that indirect evidence of polar-ice deposits may be found in the form of oxidized or hydrated regolith constituents. A sample return mission to the Moon may be possible within the constraints of NASA's Discovery Program. Recent progress in the development of sample return canisters for Genesis, Stardust, and Mars Sample Return missions suggests that a small capsule can be returned directly to the ground without a parachute, thus reducing its mass and complexity. Return of a 1-kg sample from the lunar surface would appear to be compatible with a Delta 11 class launch from Earth, or possibly with a piggyback opportunity on a commercial launch to GEO. A total mission price tag on the order of 100 million would be a goal. Target date would be late 2002. Samples would be returned to the curatorial facility at the Johnson Space Center for description and allocation for investigations. Concentration of milligram-to gram-sized rocklets is a very effective strategy for sample studies of the lunar regolith. A rake accomplished this type of sampling in the Apollo missions. For the SPA sample return mission, either a small rover or an arm on a lander would deliver regolith to a sieving mechanism that retains fragments in the 1-10 mm size range. Approximately 10% of the mass of Apollo 16 regolith samples, which were from possibly similar highland terrain, consisted of fragments in the size range. To return 1 kg of rock fragments, about 5 x 103 cubic cm of regolith would have to be sampled. Warren et al. suggested 7-10 mm as the optimum size for individual samples, which would require more regolith to be sieved. This mission would represent the first lander mission to the lunar farside and, as such, would require that a communication link be established with the Earth. A growing number of assets at the Sun-Earth L-1 libration point may provide access to a viable communication link, avoiding the need for a communications orbiter. The mission need only be designed to last through a single lunar day, which could make it relatively straightforward; if a rover is chosen as the implementation for sampling, it may be possible to keep the rover alive for longer. This would be a cost/benefit tradeoff to be determined as part of the mission analysis. Issues on which the lunar sample community should make input include: identification of additional scientific problems that can be addressed by samples from SPA; choice of landing site to maximize the probability of addressing the first-order problems; sample size and the distribution between regolith and rocklet samples; details of sample collection (range from lander, depth, avoidance of contamination from lander); and environmental control constraints on samples (maximum temperatures, acceptable leak rates on Earth). Additional information is contained in the original
NASA Astrophysics Data System (ADS)
Race, Margaret
As citizens and decision makers of the future, today's students need to understand the nature of science and the implications of scientific discoveries and activities in a broad societal context. Astrobiology provides an opportunity to introduce students to real world decision-making involving cutting edge, multidisciplinary research topics that involve Earth, the solar system and beyond. Although textbooks and curricular materials may take years to develop, teachers can easily bring the latest astrobiological discoveries and hypotheses into the classroom in the form of case studies to complement science classes. For example, using basic biological, geological and chemical information from Earth and other planets, students can discuss the same questions that experts consider when planning a Mars Sample Return mission. How would you recognize extraterrestrial life? What would be the impact of bringing martian life to Earth? How should martian samples be handled and tested to determine whether they pose hazards to Earth's biota and ecosystems? If truly martian life exists, what are the implications for future human missions or colonies on the planet? What are the ethical and societal implications of discovering extraterrestrial life, whether in the solar system or beyond? What difference world it make if the extraterrestrial life is microbial and simple vs. intelligent and advanced? By integrating basic science concepts, up-to-date research findings, and information about laws, societal concerns, and public decision making, students can experience first-hand the kind of questions and challenges we're likely to face in the years ahead.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Burton, A. S.; Callahan, M. P.; Elsila, J. E.; Stern, J. C.; Dworkin, J. P.
2012-01-01
A key goal in the search for evidence of extinct or extant life on Mars will be the identification of chemical biosignatures including complex organic molecules common to all life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, and nucleobases, which serve as the structural basis of information storage in DNA and RNA. However, many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1]. Therefore, an important challenge in the search for evidence of life on Mars will be distinguishing between abiotic chemistry of either meteoritic or martian origin from any chemical biosignatures from an extinct or extant martian biota. Although current robotic missions to Mars, including the 2011 Mars Science Laboratory (MSL) and the planned 2018 ExoMars rovers, will have the analytical capability needed to identify these key classes of organic molecules if present [2,3], return of a diverse suite of martian samples to Earth would allow for much more intensive laboratory studies using a broad array of extraction protocols and state-of-theart analytical techniques for bulk and spatially resolved characterization, molecular detection, and isotopic and enantiomeric compositions that may be required for unambiguous confirmation of martian life. Here we will describe current state-of-the-art laboratory analytical techniques that have been used to characterize the abundance and distribution of amino acids and nucleobases in meteorites, Apollo samples, and comet- exposed materials returned by the Stardust mission with an emphasis on their molecular characteristics that can be used to distinguish abiotic chemistry from biochemistry as we know it. The study of organic compounds in carbonaceous meteorites is highly relevant to Mars sample return analysis, since exogenous organic matter should have accumulated in the martian regolith over the last several billion years and the analytical techniques previously developed for the study of extraterrestrial materials can be applied to martian samples.
NASA Technical Reports Server (NTRS)
Drake, Bret G.
2013-01-01
The first three human missions to Mars should be to three different geographic sites. Maximize mobility to extend the reach of human exploration beyond the landing site. Maximize the amount of time that the astronauts spend exploring the planet. Provide subsurface access. Return a minimum of 250 kg of samples to Earth.
Stardust Returns to Earth Artist Concept
2005-11-03
Artist rendering of NASA’s Stardust returning to Earth. Stardust is the first U.S. space mission dedicated to the exploration of a comet, and the first robotic mission designed to return extraterrestrial material from outside the orbit of the Moon.
Lunar volcanism in space and time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Head, J.W. III
1976-05-01
Data obtained from lunar orbit and earth-based observations were used to extend the detailed characterizations derived from Apollo and Luna sample return missions to other parts of the moon. Lunar mare and highland volcanism are described including the distribution, volcanic features, the relation of mare morphologic features to the style of volcanic eruption, the characteristics and ages of other mare deposits, and sample results. (JFP)
Low encounter speed comet COMA sample return missions
NASA Technical Reports Server (NTRS)
Tsou, P.; Yen, C. W.; Albee, A. L.
1994-01-01
Comets, being considered the most primitive bodies in the solar system, command the highest priority among solar-system objects for studying solar nebula evolution and the evolution of life through biogenic elements and compounds. The study of comets, and more especially, of material from them, provides an understanding of the physical, chemical, and mineralogical processes operative in the formation and earliest development of the solar systems. These return samples will provide valuable information on comets and serve as a rosetta stone for the analytical studies conducted on interplanetary dust particles over the past two decades, and will provide much needed extraterrestrial samples for the planetary materials community since the Apollo program. Lander sample return missions require rather complex spacecraft, intricate operations, and costly propulsion systems. By contrast, it is possible to take a highly simplified approach for sample capture and return in the case of a comet. In the past, we have considered Earth free-return trajectory to the comet, in which passive collectors intercept dust and volatiles from the cometary coma. However, standard short period cometary free-return trajectories results in the comet to the spacecraft encounter speeds in the range of 10 km/s. At these speeds the kinetic energy of the capture process can render significant modification of dust structure, change of solid phase as well as the lost of volatiles components. This paper presents a class of new missions with trajectories with significant reduction of encounter speeds by incorporating gravity assists and deep space maneuvering. Low encounter speed cometary flyby sample return will enable a marked increase in the value of the return science. Acquiring thousands of samples from a known comet and thousands of images of a comet nucleus would be space firsts. Applying new approach in flight mechanics to generate a new class of low encounter speed cometary sample return trajectories opens new possibilities in science. A systematic search of trajectories for the first decade of the twenty-first century will be made. The target encounter speed is for less than 7 km/s to short period comets.
Impact Test and Simulation of Energy Absorbing Concepts for Earth Entry Vehicles
NASA Technical Reports Server (NTRS)
Billings, Marcus D.; Fasanella, Edwin L.; Kellas, Sotiris
2001-01-01
Nonlinear dynamic finite element simulations have been performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite- epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEV's cellular structure. Comparisons of analytical predictions using MSC,Dytran with test results obtained from impact tests performed at NASA Langley Research Center were made for three impact velocities ranging from 32 to 40 m/s. Acceleration and deformation results compared well with the test results. These finite element models will be useful for parametric studies of off-nominal impact conditions.
Lunar placement of Mars quarantine facility
NASA Technical Reports Server (NTRS)
Davidson, James E.; Mitchell, W. F.
1988-01-01
Advanced mission scenarios are currently being contemplated that would call for the retrieval of surface samples from Mars, from a comet, and from other places in the solar system. An important consideration for all of these sample return missions is quarantine. Quarantine facilities on the Moon offer unique advantages over other locations. The Moon offers gravity, distance, and vacuum. It is sufficiently near the Earth to allow rapid resupply and easy communication. It is sufficiently distant to lessen the psychological impact of a quarantine facility on Earth's human inhabitants. Finally, the Moon is airless, and seems to be devoid of life. It is, therefore, more suited to contamination control efforts.
NASA Technical Reports Server (NTRS)
Cook, Jamie Elisla
2009-01-01
NASA's Stardust spacecraft returned samples from comet 81P/Wild 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary- vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a coetary amino acid.
Numerical simulations of regolith sampling processes
NASA Astrophysics Data System (ADS)
Schäfer, Christoph M.; Scherrer, Samuel; Buchwald, Robert; Maindl, Thomas I.; Speith, Roland; Kley, Wilhelm
2017-07-01
We present recent improvements in the simulation of regolith sampling processes in microgravity using the numerical particle method smooth particle hydrodynamics (SPH). We use an elastic-plastic soil constitutive model for large deformation and failure flows for dynamical behaviour of regolith. In the context of projected small body (asteroid or small moons) sample return missions, we investigate the efficiency and feasibility of a particular material sampling method: Brushes sweep material from the asteroid's surface into a collecting tray. We analyze the influence of different material parameters of regolith such as cohesion and angle of internal friction on the sampling rate. Furthermore, we study the sampling process in two environments by varying the surface gravity (Earth's and Phobos') and we apply different rotation rates for the brushes. We find good agreement of our sampling simulations on Earth with experiments and provide estimations for the influence of the material properties on the collecting rate.
SpaceX Dragon before Departure
2016-05-11
ISS047e109559 (05/11/2016) --- The SpaceX Dragon is seen berthed to the Earth-facing side of the station’s Harmony module shortly before departure. The vehicle was ultimately released by Expedition 47 robotic arm operator Tim Peake of ESA (European Space Agency) at 9:18 a.m. EDT. Dragon returned to Earth carrying more than 3,700 pounds of NASA cargo and science samples from human research, biology and biotechnology studies, physical science investigations and education activities sponsored by NASA and the U.S. national laboratory.
2016-05-11
ISS047e114046 (05/11/2016) --- The SpaceX Dragon is seen ready to be released from the International Space Station for its journey back to the Earth. The vehicle was ultimately released by Expedition 47 robotic arm operator Tim Peake of ESA (European Space Agency) on May 11, 2016. Dragon returned to Earth carrying more than 3,700 pounds of NASA cargo and science samples from human research, biology and biotechnology studies, physical science investigations and education activities sponsored by NASA and the U.S. national laboratory.
1998-11-12
In the Payload Hazardous Service Facility, the Stardust spacecraft sits wrapped in plastic covering. Built by Lockheed Martin Astronautics near Denver, Colo., for the Jet Propulsion Laboratory (JPL) and NASA, the spacecraft Stardust will use a unique medium called aerogel to capture comet particles and interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
1998-12-02
In the Payload Hazardous Servicing Facility, workers install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006
Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.
Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank
2008-01-25
The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
A sample can be seen on the competition field as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2017-09-26
iss053e047057 (Sept. 26, 2017) --- Flight Engineer Joe Acaba installs botany gear for the Veggie facility to demonstrate plant growth in space for the Veg-03 experiment. The botany study uses the Veggie plant growth facility to cultivate cabbage, lettuce and mizuna, which are harvested on-orbit with samples returned to Earth for testing.
Sample Return Science by Hayabusa Near-Earth Asteroid Mission
NASA Technical Reports Server (NTRS)
Fujiwara, A.; Abe, M.; Kato, M.; Kushiro, I.; Mukai, T.; Okada, T.; Saito, J.; Sasaki, S.; Yano, H.; Yeomans, D.
2004-01-01
Assigning the material species to each asteroid spectral type and finding out the corresponding meteorite category is crucial to make the global material map in the whole asteroid belt and to understand the evolution of the asteroid belt. Recent direct observations by spacecrafts are revealing new intriguing aspects of asteroids which cannot be obtained solely from ground-based observations or meteorite studies. However identification of the real material species constituting asteroids and their corresponding meteorite analogs are still ambiguous. Space weathering makes difficult to identify the true material, and there is still a great gap between the remote sensing data on the global surface and the local microscopic data from meteorites. Sample return from asteroids are inevitable to solve these problems. For this purpose sample return missions to asteroids belonging to various spectral classes are required. The HAYABUSA spacecraft (prelaunch name is MUSESC) launched last year is the first attempt on this concept. This report presents outline of the mission with special stress on its science.
Geolab Results from Three Years of Analog Mission Tests
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Bell, M. S.; Calaway, M. J.
2013-01-01
GeoLab is a prototype glovebox for geological sample examination that was, until November 2012, fully integrated into NASA's Deep Space Habitat Analog Testbed [1,2]. GeoLab allowed us to test science operations related to contained sample examination during simulated exploration missions. The facility, shown in Figure 1 and described elsewhere [1-4], was designed for fostering the development of both instrument technology and operational concepts for sample handling and examination during future missions [3-5]. Even though we recently deintegrated the glovebox from the Deep Space Habitat (Fig. 2), it continues to provide a high-fidelity workspace for testing instruments that could be used for sample characterization. As a testbed, GeoLab supports the development of future science operations that will enhance the early scientific returns from exploration missions, and will help ensure selection of the best samples for Earth return.
Curating NASA's future extraterrestrial sample collections: How do we achieve maximum proficiency?
NASA Astrophysics Data System (ADS)
McCubbin, Francis; Evans, Cynthia; Allton, Judith; Fries, Marc; Righter, Kevin; Zolensky, Michael; Zeigler, Ryan
2016-07-01
Introduction: The Astromaterials Acquisition and Curation Office (henceforth referred to herein as NASA Curation Office) at NASA Johnson Space Center (JSC) is responsible for curating all of NASA's extraterrestrial samples. Under the governing document, NASA Policy Directive (NPD) 7100.10E "Curation of Extraterrestrial Materials", JSC is charged with "The curation of all extraterrestrial material under NASA control, including future NASA missions." The Directive goes on to define Curation as including "…documentation, preservation, preparation, and distribution of samples for research, education, and public outreach." Here we describe some of the ongoing efforts to ensure that the future activities of the NASA Curation Office are working to-wards a state of maximum proficiency. Founding Principle: Curatorial activities began at JSC (Manned Spacecraft Center before 1973) as soon as design and construction planning for the Lunar Receiving Laboratory (LRL) began in 1964 [1], not with the return of the Apollo samples in 1969, nor with the completion of the LRL in 1967. This practice has since proven that curation begins as soon as a sample return mission is conceived, and this founding principle continues to return dividends today [e.g., 2]. The Next Decade: Part of the curation process is planning for the future, and we refer to these planning efforts as "advanced curation" [3]. Advanced Curation is tasked with developing procedures, technology, and data sets necessary for curating new types of collections as envisioned by NASA exploration goals. We are (and have been) planning for future curation, including cold curation, extended curation of ices and volatiles, curation of samples with special chemical considerations such as perchlorate-rich samples, curation of organically- and biologically-sensitive samples, and the use of minimally invasive analytical techniques (e.g., micro-CT, [4]) to characterize samples. These efforts will be useful for Mars Sample Return, Lunar South Pole-Aitken Basin Sample Return, and Comet Surface Sample Return, all of which were named in the NRC Planetary Science Decadal Survey 2013-2022. We are fully committed to pushing the boundaries of curation protocol as humans continue to push the boundaries of space exploration and sample return. However, to improve our ability to curate astromaterials collections of the future and to provide maximum protection to any returned samples, it is imperative that curation involvement commences at the time of mission conception. When curation involvement is at the ground floor of mission planning, it provides a mechanism by which the samples can be protected against project-level decisions that could undermine the scientific value of the re-turned samples. A notable example of one of the bene-fits of early curation involvement in mission planning is in the acquisition of contamination knowledge (CK). CK capture strategies are designed during the initial planning stages of a sample return mission, and they are to be implemented during all phases of the mission from assembly, test, and launch operations (ATLO), through cruise and mission operations, to the point of preliminary examination after Earth return. CK is captured by witness materials and coupons exposed to the contamination environment in the assembly labs and on the space craft during launch, cruise, and operations. These materials, along with any procedural blanks and returned flight-hardware, represent our CK capture for the returned samples and serves as a baseline from which analytical results can be vetted. Collection of CK is a critical part of being able to conduct and interpret data from organic geochemistry and biochemistry investigations of returned samples. The CK samples from a given mission are treated as part of the sample collection of that mission, hence they are part of the permanent archive that is maintained by the NASA curation Office. We are in the midst of collecting witness plates and coupons for the OSIRIS-REx mission, and we are in the planning stages for similar activities for the Mars 2020 rover mission, which is going to be the first step in a multi-stage campaign to return martian samples to Earth. Concluding Remarks: The return of every extraterrestrial sample is a scientific investment, and the CK samples and any procedural blanks represent an insurance policy against imperfections in the sample-collection and sample-return process. The curation facilities and personnel are the primary managers of that investment, and the scientific community, at large, is the beneficiary. The NASA Curation Office at JSC has the assigned task of maintaining the long-term integrity of all of NASA's astromaterials and ensuring that the samples are distributed for scientific study in a fair, timely, and responsible manner. It is only through this openness and global collaboration in the study of astromaterials that the return on our scientific investments can be maximized. For information on requesting samples and becoming part of the global study of astromaterials, please visit curator.jsc.nasa.gov References: [1] Mangus, S. & Larsen, W. (2004) NASA/CR-2004-208938, NASA, Washington, DC. [2] Allen, C. et al., (2011) Chemie Der Erde-Geochemistry, 71, 1-20. [3] McCubbin, F.M. et al., (2016) 47th LPSC #2668. [4] Zeigler, R.A. et al., (2014) 45th LPSC #2665.
Osiris-REx Spacecraft Current Status and Forward Plans
NASA Technical Reports Server (NTRS)
Messenger, Scott; Lauretta, Dante S.; Connolly, Harold C., Jr.
2017-01-01
The NASA New Frontiers OSIRIS-REx spacecraft executed a flawless launch on September 8, 2016 to begin its 23-month journey to near-Earth asteroid (101955). The primary objective of the OSIRIS-REx mission is to collect and return to Earth a pristine sample of regolith from the asteroid surface. The sampling event will occur after a two-year period of remote sensing that will ensure a high probability of successful sampling of a region on the asteroid surface having high science value and within well-defined geological context. The OSIRIS-REx instrument payload includes three high-resolution cameras (OCAMS), a visible and near-infrared spectrometer (OVIRS), a thermal imaging spectrometer (OTES), an X-ray imaging spectrometer (REXIS), and a laser altimeter (OLA). As the spacecraft follows its nominal outbound-cruise trajectory, the propulsion, power, communications, and science instruments have undergone basic functional tests, with no major issues. Outbound cruise science investigations include a search for Earth Trojan asteroids as the spacecraft approaches the Sun-Earth L4 Lagrangian point in February 2017. Additional instrument checkouts and calibrations will be carried out during the Earth gravity assist maneuver in September 2017. During the Earth-moon flyby, visual and spectral images will be acquired to validate instrument command sequences planned for Bennu remote sensing. The asteroid Bennu remote sensing campaign will yield high resolution maps of the temperature and thermal inertia, distributions of major minerals and concentrations of organic matter across the asteroid surface. A high resolution 3d shape model including local surface slopes and a high-resolution gravity field will also be determined. Together, these data will be used to generate four separate maps that will be used to select the sampling site(s). The Safety map will identify hazardous and safe operational regions on the asteroid surface. The Deliverability map will quantify the accuracy with which the navigation team can deliver the spacecraft to and from specific sites on the asteroid surface. The Sampleability map quantifies the regolith properties, providing an estimation of how much material would be sampled at different points on the surface. The final Science Value map synthesizes the chemical, mineralogical, and geological, observations to identify the areas of the asteroid surface with the highest science value. Here, priority is given to organic, water-rich regions that have been minimally altered by surface processes. Asteroid surface samples will be acquired with a touch-and-go sample acquisition system (TAGSAM) that uses high purity pressurized N2 gas to mobilize regolith into a stainless steel canister. Although the mission requirement is to collect at least 60 g of material, tests of the TAGSAM routinely exceeded 300 g of simulant in micro-gravity tests. After acquiring the sample, the spacecraft will depart Bennu in 2021 to begin its return journey, with the sample return capsule landing at the Utah Test and Training Range on September 23, 2023. The OSIRIS-REx science team will carry out a series of detailed chemical, mineralogical, isotopic, and spectral studies that will be used to determine the origin and history of Bennu and to relate high spatial resolution sample studies to the global geological context from remote sensing. The outline of the sample analysis plan is described in a companion abstract.
A core handling device for the Mars Sample Return Mission
NASA Technical Reports Server (NTRS)
Gwynne, Owen
1989-01-01
A core handling device for use on Mars is being designed. To provide a context for the design study, it was assumed that a Mars Rover/Sample Return (MRSR) Mission would have the following characteristics: a year or more in length; visits by the rover to 50 or more sites; 100 or more meter-long cores being drilled by the rover; and the capability of returning about 5 kg of Mars regolith to Earth. These characteristics lead to the belief that in order to bring back a variegated set of samples that can address the range of scientific objetives for a MRSR mission to Mars there needs to be considerable analysis done on board the rover. Furthermore, the discrepancy between the amount of sample gathered and the amount to be returned suggests that there needs to be some method of choosing the optimal set of samples. This type of analysis will require pristine material-unaltered by the drilling process. Since the core drill thermally and mechanically alters the outer diameter (about 10 pct) of the core sample, this outer area cannot be used. The primary function of the core handling device is to extract subsamples from the core and to position these subsamples, and the core itself if needed, with respect to the various analytical instruments that can be used to perform these analyses.
International cooperation for Mars exploration and sample return
NASA Technical Reports Server (NTRS)
Levy, Eugene H.; Boynton, William V.; Cameron, A. G. W.; Carr, Michael H.; Kitchell, Jennifer H.; Mazur, Peter; Pace, Norman R.; Prinn, Ronald G.; Solomon, Sean C.; Wasserburg, Gerald J.
1990-01-01
The National Research Council's Space Studies Board has previously recommended that the next major phase of Mars exploration for the United States involve detailed in situ investigations of the surface of Mars and the return to earth for laboratory analysis of selected Martian surface samples. More recently, the European space science community has expressed general interest in the concept of cooperative Mars exploration and sample return. The USSR has now announced plans for a program of Mars exploration incorporating international cooperation. If the opportunity becomes available to participate in Mars exploration, interest is likely to emerge on the part of a number of other countries, such as Japan and Canada. The Space Studies Board's Committee on Cooperative Mars Exploration and Sample Return was asked by the National Aeronautics and Space Administration (NASA) to examine and report on the question of how Mars sample return missions might best be structured for effective implementation by NASA along with international partners. The committee examined alternatives ranging from scientific missions in which the United States would take a substantial lead, with international participation playing only an ancillary role, to missions in which international cooperation would be a basic part of the approach, with the international partners taking on comparably large mission responsibilities. On the basis of scientific strategies developed earlier by the Space Studies Board, the committee considered the scientific and technical basis of such collaboration and the most mutually beneficial arrangements for constructing successful cooperative missions, particularly with the USSR.
NASA Technical Reports Server (NTRS)
Guinn, Joseph R.; Kerridge, Stuart J.; Wilson, Roby S.
2012-01-01
Mars sample return is a major scientific goal of the 2011 US National Research Council Decadal Survey for Planetary Science. Toward achievement of this goal, recent architecture studies have focused on several mission concept options for the 2018/2020 Mars launch opportunities. Mars orbiters play multiple roles in these architectures such as: relay, landing site identification/selection/certification, collection of on-going or new measurements to fill knowledge gaps, and in-orbit collection and transportation of samples from Mars to Earth. This paper reviews orbiter concepts that combine these roles and describes a novel family of relay orbits optimized for surface operations support. Additionally, these roles provide an intersection of objectives for long term NASA science, human exploration, technology development and international collaboration.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
The University of California Santa Cruz Rover Team prepares their rover for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Worcester Polytechnic Institute (WPI) President Laurie Leshin, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
David Miller, NASA Chief Technologist, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The Oregon State University Mars Rover Team's robot is seen during level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
Jerry Waechter of team Middleman from Dunedin, Florida, works on their robot named Ro-Bear during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Middleman is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
A team KuuKulgur robot is seen as it begins the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The team Mountaineers robot is seen as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Members of the Oregon State University Mars Rover Team prepare their robot to attempt the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
The team Survey robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
All four of team KuuKulgur's robots are seen as they attempt the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Spectators watch as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Team Middleman's robot, Ro-Bear, is seen as it starts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Two of team KuuKulgur's robots are seen as they attempt a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Members of team Survey follow their robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The entrance to Institute Park is seen during the level one challenge as during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Sam Ortega, NASA Centennial Challenges Program Manager, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
James Leopore, of team Fetch, from Alexandria, Virginia, speaks with judges as he prepares for the NASA 2014 Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Fetch is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The Mountaineers team from West Virginia University, watches as their robot attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
The team Survey robot is seen as it conducts a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Team Survey's robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Benefits of Nuclear Electric Propulsion for Outer Planet Exploration
NASA Technical Reports Server (NTRS)
Kos, Larry; Johnson, Les; Jones, Jonathan; Trausch, Ann; Eberle, Bill; Woodcock, Gordon; Brady, Hugh J. (Technical Monitor)
2002-01-01
Nuclear electric propulsion (NEP) offers significant benefits to missions for outer planet exploration. Reaching outer planet destinations, especially beyond Jupiter, is a struggle against time and distance. For relatively near missions, such as a Europa lander, conventional chemical propulsion and NEP offer similar performance and capabilities. For challenging missions such as a Pluto orbiter, neither chemical nor solar electric propulsion are capable while NEP offers acceptable performance. Three missions are compared in this paper: Europa lander, Pluto orbiter, and Titan sample return, illustrating how performance of conventional and advanced propulsion systems vary with increasing difficulty. The paper presents parametric trajectory performance data for NEP. Preliminary mass/performance estimates are provided for a Europa lander and a Titan sample return system, to derive net payloads for NEP. The NEP system delivers payloads and ascent/descent spacecraft to orbit around the target body, and for sample return, delivers the sample carrier system from Titan orbit to an Earth transfer trajectory. A representative scientific payload 500 kg was assumed, typical for a robotic mission. The resulting NEP systems are 100-kWe class, with specific impulse from 6000 to 9000 seconds.
Lessons Learned in the Decommissioning of the Stardust Spacecraft
NASA Technical Reports Server (NTRS)
Larson, Timothy W.
2012-01-01
The Stardust spacecraft completed its prime mission in 2006, returning samples from the coma of comet Wild 2 to earth in the sample return capsule. Still healthy, and in a heliocentric orbit, the Stardust spacecraft was repurposed for a new mission - Stardust NExT. This new mission would take the veteran spacecraft to a 2011 encounter with comet Tempel 1, providing a new look at the comet visited in 2005 by the Deep Impact mission. This extended mission for Stardust would push it to the limits of its fuel reserves, prompting several studies aimed at determining the actual remaining fuel on board. The results were used to plan mission events within the constraints of this dwindling resource. The team tracked fuel consumption and adjusted the mission plans to stay within the fuel budget. This effort intensified toward the end of the mission, when a final assessment showed even less remaining fuel than previously predicted, triggering a delay in the start of comet imaging during the approach phase. The flyby of comet Tempel 1 produced spectacular up close views of this comet, imaging previously seen areas as well as new territory, and providing clear views of the location of the 2005 impact. The spacecraft was decommissioned about a month after the flyby, revealing that the fuel tank was now empty after having flown successfully for 12 years, returned comet dust samples to earth, and flown by an asteroid and two comets.
NASA Technical Reports Server (NTRS)
Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug
2000-01-01
The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases liberated from heated soil samples; (2) Identification of the asteroid soil mineralogy to aid in the selection process for returned samples; (3) Existence of oxygen in the asteroid soil and the potential for in-situ resource utilization (ISRU); and (4) Existence of water and other volatiles in the asteroid soil. Additional information is contained in the original extended abstract.
Development of a figure-of-merit for space missions
NASA Technical Reports Server (NTRS)
Preiss, Bruce; Pan, Thomas; Ramohalli, Kumar
1991-01-01
The concept of a quantitative figure-of-merit (FOM) to evaluate different and competing options for space missions is further developed. Over six hundred individual factors are considered. These range from mission orbital mechanics to in-situ resource utilization (ISRU/ISMU) plants. The program utilizes a commercial software package for synthesis and visual display; the details are completely developed in-house. Historical FOM's are derived for successful space missions such as the Surveyor, Voyager, Apollo, etc. A cost FOM is also mentioned. The bulk of this work is devoted to one specific example of Mars Sample Return (MSR). The program is flexible enough to accommodate a variety of evolving technologies. Initial results show that the FOM for sample return is a function of the mass returned to LEO, and that missions utilizing ISRU/ISMU are far more cost effective than those that rely on all earth-transported resources.
NASA Technical Reports Server (NTRS)
Alexander, W. M.; Tanner, William G.; Mcdonald, R. A.; Schaub, G. E.; Stephenson, Stepheni L.; Mcdonnell, J. A. M.; Maag, Carl R.
1994-01-01
The return of a pristine sample from a comet would lead to greater understanding of cometary structures, as well as offering insights into exobiology. The paper presented at the Discovery Program Workshop outlined a set of measurements for what was identified as a SOCCER-like interplanetary mission. Several experiments comprised the total instrumentation. This paper presents a summary of CCSR with an overview of three of the four major instruments. Details of the major dust dynamics experiment including trajectory are given in this paper. The instrument proposed here offers the opportunity for the return of cometary dust particles gathered in situ. The capture process has been employed aboard the space shuttle with successful results in returning samples to Earth for laboratory analysis. In addition, the sensors will measure the charge, mass, velocity, and size of cometary dust grains during the encounter. This data will help our understanding of dusty plasmas.
NASA Astrophysics Data System (ADS)
Ashley, J. W.; Tait, A. W.; Velbel, M. A.; Boston, P. J.; Carrier, B. L.; Cohen, B. A.; Schröder, C.; Bland, P.
2017-12-01
Exogenic rocks (meteorites) found on Mars 1) have unweathered counterparts on Earth; 2) weather differently than indigenous rocks; and 3) may be ideal habitats for putative microorganisms and subsequent biosignature preservation. These attributes show the potential of meteorites for addressing hypothesis-driven science. They raise the question of whether chondritic meteorites, of sufficient weathering intensity, might be considered as candidates for sample return in a potential future mission. Pursuant to this discussion are the following questions. A) Is there anything to be learned from the laboratory study of a martian chondrite that cannot be learned from indigenous materials; and if so, B) is the science value high enough to justify recovery? If both A and B answer affirmatively, then C) what are the engineering constraints for sample collection for Mars 2020 and potential follow-on missions; and finally D) what is the likelihood of finding a favorable sample? Observations relevant to these questions include: i) Since 2005, 24 candidate and confirmed meteorites have been identified on Mars at three rover landing sites, demonstrating their ubiquity and setting expectations for future finds. All have been heavily altered by a variety of physical and chemical processes. While the majority of these are irons (not suitable for recovery), several are weathered stony meteorites. ii) Exogenic reference materials provide the only chemical/isotope standards on Mars, permitting quantification of alteration rates if residence ages can be attained; and possibly enabling the removal of Late Amazonian weathering overprints from other returned samples. iii) Recent studies have established the habitability of chondritic meteorites with terrestrial microorganisms, recommending their consideration when exploring astrobiological questions. High reactivity, organic content, and permeability show stony meteorites to be more attractive for colonization and subsequent biosignature preservation than Earth rocks. iv) Compressive strengths of most ordinary chondrites are within the range of rocks being tested for the Mars 2020 drill bits, provided that sufficient size, stability, and flatness of a target can be achieved. Alternatively, the regolith collection bit could be employed for unconsolidated material.
Sampling Mars: Analytical requirements and work to do in advance
NASA Technical Reports Server (NTRS)
Koeberl, Christian
1988-01-01
Sending a mission to Mars to collect samples and return them to the Earth for analysis is without doubt one of the most exciting and important tasks for planetary science in the near future. Many scientifically important questions are associated with the knowledge of the composition and structure of Martian samples. Amongst the most exciting questions is the clarification of the SNC problem- to prove or disprove a possible Martian origin of these meteorites. Since SNC meteorites have been used to infer the chemistry of the planet Mars, and its evolution (including the accretion history), it would be important to know if the whole story is true. But before addressing possible scientific results, we have to deal with the analytical requirements, and with possible pre-return work. It is unlikely to expect that a possible Mars sample return mission will bring back anything close to the amount returned by the Apollo missions. It will be more like the amount returned by the Luna missions, or at least in that order of magnitude. This requires very careful sample selection, and very precise analytical techniques. These techniques should be able to use minimal sample sizes and on the other hand optimize the scientific output. The possibility to work with extremely small samples should not obstruct another problem: possible sampling errors. As we know from terrestrial geochemical studies, sampling procedures are quite complicated and elaborate to ensure avoiding sampling errors. The significance of analyzing a milligram or submilligram sized sample and putting that in relationship with the genesis of whole planetary crusts has to be viewed with care. This leaves a dilemma on one hand, to minimize the sample size as far as possible in order to have the possibility of returning as many different samples as possible, and on the other hand to take a sample large enough to be representative. Whole rock samples are very useful, but should not exceed the 20 to 50 g range, except in cases of extreme inhomogeneity, because for larger samples the information tends to become redundant. Soil samples should be in the 2 to 10 g range, permitting the splitting of the returned samples for studies in different laboratories with variety of techniques.
NASA Astrophysics Data System (ADS)
Tang, Gao; Jiang, FanHuag; Li, JunFeng
2015-11-01
Near-Earth asteroids have gained a lot of interest and the development in low-thrust propulsion technology makes complex deep space exploration missions possible. A mission from low-Earth orbit using low-thrust electric propulsion system to rendezvous with near-Earth asteroid and bring sample back is investigated. By dividing the mission into five segments, the complex mission is solved separately. Then different methods are used to find optimal trajectories for every segment. Multiple revolutions around the Earth and multiple Moon gravity assists are used to decrease the fuel consumption to escape from the Earth. To avoid possible numerical difficulty of indirect methods, a direct method to parameterize the switching moment and direction of thrust vector is proposed. To maximize the mass of sample, optimal control theory and homotopic approach are applied to find the optimal trajectory. Direct methods of finding proper time to brake the spacecraft using Moon gravity assist are also proposed. Practical techniques including both direct and indirect methods are investigated to optimize trajectories for different segments and they can be easily extended to other missions and more precise dynamic model.
Mars Sample Handling Protocol Workshop Series: Workshop 4
NASA Technical Reports Server (NTRS)
Race Margaret S. (Editor); DeVincenzi, Donald L. (Editor); Rummel, John D. (Editor); Acevedo, Sara E. (Editor)
2001-01-01
In preparation for missions to Mars that will involve the return of samples to Earth, it will be necessary to prepare for the receiving, handling, testing, distributing, and archiving of martian materials here on Earth. Previous groups and committees have studied selected aspects of sample return activities, but specific detailed protocols for the handling and testing of returned samples must still be developed. To further refine the requirements for sample hazard testing and to develop the criteria for subsequent release of sample materials from quarantine, the NASA Planetary Protection Officer convened a series of workshops in 2000-2001. The overall objective of the Workshop Series was to produce a Draft Protocol by which returned martian sample materials can be assessed for biological hazards and examined for evidence of life (extant or extinct) while safeguarding the purity of the samples from possible terrestrial contamination. This report also provides a record of the proceedings of Workshop 4, the final Workshop of the Series, which was held in Arlington, Virginia, June 5-7, 2001. During Workshop 4, the sub-groups were provided with a draft of the protocol compiled in May 2001 from the work done at prior Workshops in the Series. Then eight sub-groups were formed to discuss the following assigned topics: Review and Assess the Draft Protocol for Physical/Chemical Testing Review and Assess the Draft Protocol for Life Detection Testing Review and Assess the Draft Protocol for Biohazard Testing Environmental and Health/Monitoring and Safety Issues Requirements of the Draft Protocol for Facilities and Equipment Contingency Planning for Different Outcomes of the Draft Protocol Personnel Management Considerations in Implementation of the Draft Protocol Draft Protocol Implementation Process and Update Concepts This report provides the first complete presentation of the Draft Protocol for Mars Sample Handling to meet planetary protection needs. This Draft Protocol, which was compiled from deliberations and recommendations from earlier Workshops in the Series, represents a consensus that emerged from the discussions of all the sub-groups assembled over the course of the five Workshops of the Series. These discussions converged on a conceptual approach to sample handling, as well as on specific analytical requirements. Discussions also identified important issues requiring attention, as well as research and development needed for protocol implementation.
NASA Astrophysics Data System (ADS)
Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew
2018-04-01
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.
1999-06-29
Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Investigation of Alternative Return Strategies for Orion Trans-earth Injection Design Options
NASA Technical Reports Server (NTRS)
Marchand, Belinda G.; Scarritt, Sara K.; Howell, Kathleen C.; Weeks, Michael W.
2010-01-01
The purpose of this study is to investigate alternative return strategies for the Orion trans-Earth injection (TEI) phase. A dynamical systems analysis approach considers the structure of the stable and unstable Sun perturbed Earth-Moon manifolds near the Earth-Moon interface region. A hybrid approach, then, combines the results from this analysis with classical two-body methods in a targeting process that seeks to expand the window of return opportunities in a precision entry scenario. The resulting startup arcs can be used, for instance, to enhance the block set of solutions available onboard during an autonomous targeting process.
Shkolyar, Svetlana; Eshelman, Evan J; Farmer, Jack D; Hamilton, David; Daly, Michael G; Youngbull, Cody
2018-04-01
The Mars 2020 mission will analyze samples in situ and identify any that could have preserved biosignatures in ancient habitable environments for later return to Earth. Highest priority targeted samples include aqueously formed sedimentary lithologies. On Earth, such lithologies can contain fossil biosignatures as aromatic carbon (kerogen). In this study, we analyzed nonextracted kerogen in a diverse suite of natural, complex samples using colocated UV excitation (266 nm) time-gated (UV-TG) Raman and laser-induced fluorescence spectroscopies. We interrogated kerogen and its host matrix in samples to (1) explore the capabilities of UV-TG Raman and fluorescence spectroscopies for detecting kerogen in high-priority targets in the search for possible biosignatures on Mars; (2) assess the effectiveness of time gating and UV laser wavelength in reducing fluorescence in Raman spectra; and (3) identify sample-specific issues that could challenge rover-based identifications of kerogen using UV-TG Raman spectroscopy. We found that ungated UV Raman spectroscopy is suited to identify diagnostic kerogen Raman bands without interfering fluorescence and that UV fluorescence spectroscopy is suited to identify kerogen. These results highlight the value of combining colocated Raman and fluorescence spectroscopies, similar to those obtainable by SHERLOC on Mars 2020, to strengthen the confidence of kerogen detection as a potential biosignature in complex natural samples. Key Words: Raman spectroscopy-Laser-induced fluorescence spectroscopy-Mars Sample Return-Mars 2020 mission-Kerogen-Biosignatures. Astrobiology 18, 431-453.
78 FR 55762 - National Environmental Policy Act; Mars 2020 Mission
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-11
... set of soil and rock samples that could be returned to Earth in the future, and test new technology to... include the use of one multi-mission radioisotope thermoelectric generator (MMRTG) for rover electrical... would use the proven design and technology developed for the Mars Science Laboratory mission and rover...
Yamato: Bringing the Moon to the Earth ... Again
NASA Technical Reports Server (NTRS)
Lam, King; Martinelli, Scott; Patel, Neal; Powell, David; Smith, Brandon
2008-01-01
The Yamato mission to the lunar South Pole-Aitken Basin returns samples that enable dating of lunar formation and the lunar bombardment period. The design of the Yamato mission is based on a systems engineering process which takes an advanced consideration of cost and mission risk to give the mission a high probability of success.
2013-10-05
ISS037-E-010721 (5 Oct. 2013) --- A specimen of human blood or a body fluid like saliva and urine is stowed by astronaut Michael Hopkins onboard the International Space Station on Oct. 5, 2013. The objects of post-mission research by scientists on the ground, all the various aforementioned biological samples have to be frozen until the return to Earth.
Lunar exploration: opening a window into the history and evolution of the inner Solar System.
Crawford, Ian A; Joy, Katherine H
2014-09-13
The lunar geological record contains a rich archive of the history of the inner Solar System, including information relevant to understanding the origin and evolution of the Earth-Moon system, the geological evolution of rocky planets, and our local cosmic environment. This paper provides a brief review of lunar exploration to-date and describes how future exploration initiatives will further advance our understanding of the origin and evolution of the Moon, the Earth-Moon system and of the Solar System more generally. It is concluded that further advances will require the placing of new scientific instruments on, and the return of additional samples from, the lunar surface. Some of these scientific objectives can be achieved robotically, for example by in situ geochemical and geophysical measurements and through carefully targeted sample return missions. However, in the longer term, we argue that lunar science would greatly benefit from renewed human operations on the surface of the Moon, such as would be facilitated by implementing the recently proposed Global Exploration Roadmap. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Cometary Amino Acids from the STARDUST Mission
NASA Technical Reports Server (NTRS)
Cook, Jamie Elsila
2009-01-01
NASA's Stardust spacecraft returned samples from comet 81 P/WiId 2 to Earth in January 2006. Examinations of the organic compounds in cometary samples can reveal information about the prebiotic organic inventory present on the early Earth and within the early Solar System, which may have contributed to the origin of life. Preliminary studies of Stardust material revealed the presence of a suite of organic compounds including several amines and amino acids, but the origin of these compounds (cometary vs. terrestrial contamination) could not be identified. We have recently measured the carbon isotopic ratios of these amino acids to determine their origin, leading to the first detection of a cometary amino acid.
OSIRIS-REx Contamination Control Strategy and Implementation
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.;
2017-01-01
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This manuscript describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at Level 100 A/2 and less than 180 nanograms per square centimeter of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication between scientists, engineers, managers, and technicians.
OSIRIS-REx Contamination Control Strategy and Implementation
NASA Astrophysics Data System (ADS)
Dworkin, J. P.; Adelman, L. A.; Ajluni, T.; Andronikov, A. V.; Aponte, J. C.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.; Burton, A. S.; Callahan, M. P.; Castro-Wallace, S. L.; Clark, B. C.; Clemett, S. J.; Connolly, H. C.; Cutlip, W. E.; Daly, S. M.; Elliott, V. E.; Elsila, J. E.; Enos, H. L.; Everett, D. F.; Franchi, I. A.; Glavin, D. P.; Graham, H. V.; Hendershot, J. E.; Harris, J. W.; Hill, S. L.; Hildebrand, A. R.; Jayne, G. O.; Jenkens, R. W.; Johnson, K. S.; Kirsch, J. S.; Lauretta, D. S.; Lewis, A. S.; Loiacono, J. J.; Lorentson, C. C.; Marshall, J. R.; Martin, M. G.; Matthias, L. L.; McLain, H. L.; Messenger, S. R.; Mink, R. G.; Moore, J. L.; Nakamura-Messenger, K.; Nuth, J. A.; Owens, C. V.; Parish, C. L.; Perkins, B. D.; Pryzby, M. S.; Reigle, C. A.; Righter, K.; Rizk, B.; Russell, J. F.; Sandford, S. A.; Schepis, J. P.; Songer, J.; Sovinski, M. F.; Stahl, S. E.; Thomas-Keprta, K.; Vellinga, J. M.; Walker, M. S.
2018-02-01
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Kenneth Stafford, Assistant Director of Robotics Engineering and Director of the Robotics Resource Center at the Worcester Polytechnic Institute (WPI), verifies the location of the target sample during the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
OSIRIS-REx Contamination Control Strategy and Implementation
NASA Technical Reports Server (NTRS)
Dworkin, J. P.; Adelman, L. A.; Ajluni, T. M.; Andronikov, A. V.; Aponte, J. S.; Bartels, A. E.; Beshore, E.; Bierhaus, E. B.; Brucato, J. R.; Bryan, B. H.;
2017-01-01
OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and less than 180 ng/cm(exp 2) of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.
NASA Technical Reports Server (NTRS)
McNamara, K. M.
2005-01-01
The Genesis mission returned to Earth on September 8, 2004 after a nearly flawless three-year mission to collect solar matter. The intent was to deploy a drogue chute and parafoil high over the Utah desert and to catch the fragile payload capsule in mid-air by helicopter. The capsule would then be opened in a clean-room constructed for that purpose at UTTR, and a nitrogen purge was to be installed before transporting the science canister to JSC. Unfortunately, both chutes failed to deploy, causing the capsule to fall to the desert floor at a speed of nearly 200 MPH. Still, Genesis represents a milestone in the US space program, comprising the first sample return since the Apollo Missions as well as the first return of materials exposed to the space environment outside of low Earth orbit and beyond the Earth s magnetosphere for an extended period. We have no other comparable materials in all of our collections on Earth. The goal of the Genesis Mission was to collect a representative sample of the composition of the solar wind and thus, the solar nebula from which our solar system originated. This was done by allowing the naturally accelerated species to implant shallowly in the surfaces of ultra-pure, ultra-clean collector materials. These collectors included single crystal silicon (FZ and CZ), sapphire, silicon carbide; those materials coated with aluminum, silicon, diamond like carbon, and gold; and isotopically enriched polycrystalline diamond and amorphous carbon. The majority of these materials were distributed on five collector arrays. Three of the materials were housed in an electrostatic concentrator designed to increase the flux of low-mass ions. There was also a two-inch diameter bulk metallic glass collector and a gold foil, polished aluminum, and molybdenum coated platinum foil collector. An excellent review of the Genesis collector materials is offered in reference [1].
1969-07-09
In this photograph, technicians are transferring mice from a support germ free isolator, through a hypochlorite dunk tank, into the class III cabinetry in the Germ-free and Conventional Animal Laboratories of the Lunar Receiving Laboratory, building 37, of the Manned Spacecraft Center in Houston, Texas. This laboratory was part of the overall physical, chemical, and biological test program of the Apollo 11 returned lunar samples. Aboard the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle, the Apollo 11 mission launched from The Kennedy Space Center, Florida on July 16, 1969 and safely returned to Earth on July 24, 1969. The 3-man crew aboard the flight consisted of astronauts Neil A. Armstrong, commander; Edwin Aldrin, Lunar Module (LM) pilot; and Michael Collins, Command Module (CM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. In 2 1/2 hours, the crew collected 47 pounds of lunar surface material which was returned to Earth for analysis.
Mid-Air Retrieval of Heavy, Earth-Returning Space Systems
NASA Technical Reports Server (NTRS)
Kelly, John W.; Brierly, Gregory T.; Cruz, Josue; Lowry, Allen; Fogleman, Lynn; Johnson, Brian; Peterson, Kristina; Gibson, Ian; Neave, Matthew D.; Streetman, Brett;
2016-01-01
This subject technology has the potential to reduce cost for many Earth returning missions, both Government and commercial, including reentry vehicles, launch assets, and scientific experiments using balloons.
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Strategic Map for Enceladus Plume Biosignature Sample Return Missions
NASA Astrophysics Data System (ADS)
Sherwood, Brent; Yano, Hajime
The discovery of jets emitting salty water from the interior of Saturn’s small moon Enceladus is one of the most astounding results of the Cassini mission to date. The measured presence of organic species in the resulting plume, the finding that the jet activity is valved by tidal stretching at apochrone, and the modeled lifetime of E-ring particles, all indicate that the textbook conditions for habitability are met at Enceladus today: liquid water, biologically available elements, and source of energy, longevity of conducive conditions. Enceladus may be the best place in our solar system to search for direct evidence of biomarkers, and the plume provides a way to sample for and even return them to Earth for detailed analysis. It is straightforward to imagine a Stardust-like, fly-through, plume particle and gas collection and return mission for Enceladus. An international team (LIFE, Life Investigation For Enceladus) has dedicated itself to pursuing such a flight project. Concept engineering and evaluation indicate that the associated technical, programmatic, regulatory, and cost issues are quite unlike the Stardust precedent however, not least because of such a mission’s Category-V, Restricted Earth Return, classification. The paper presents a strategic framework that systematically integrates the cultivation of science advocacy, resolution of diverse stakeholder issues, development of verifiable and affordable technical solutions, validation of cost estimation methods, alignment with other candidate astrobiology missions, complementarity of international agency goals, and finally the identification of appropriate research and flight-mission opportunities. Resolving and using this map is essential if we are to know the astrobiological state of Enceladus in our lifetime.
A Method for Choosing the Best Samples for Mars Sample Return
Gordon, Peter R.
2018-01-01
Abstract Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words: Mars—Astrobiology—Search for Mars' organics—Infrared spectroscopy—Planetary habitability and biosignatures. Astrobiology 18, 556–570. PMID:29443541
A Method for Choosing the Best Samples for Mars Sample Return.
Gordon, Peter R; Sephton, Mark A
2018-05-01
Success of a future Mars Sample Return mission will depend on the correct choice of samples. Pyrolysis-FTIR can be employed as a triage instrument for Mars Sample Return. The technique can thermally dissociate minerals and organic matter for detection. Identification of certain mineral types can determine the habitability of the depositional environment, past or present, while detection of organic matter may suggest past or present habitation. In Mars' history, the Theiikian era represents an attractive target for life search missions and the acquisition of samples. The acidic and increasingly dry Theiikian may have been habitable and followed a lengthy neutral and wet period in Mars' history during which life could have originated and proliferated to achieve relatively abundant levels of biomass with a wide distribution. Moreover, the sulfate minerals produced in the Theiikian are also known to be good preservers of organic matter. We have used pyrolysis-FTIR and samples from a Mars analog ferrous acid stream with a thriving ecosystem to test the triage concept. Pyrolysis-FTIR identified those samples with the greatest probability of habitability and habitation. A three-tier scoring system was developed based on the detection of (i) organic signals, (ii) carbon dioxide and water, and (iii) sulfur dioxide. The presence of each component was given a score of A, B, or C depending on whether the substance had been detected, tentatively detected, or not detected, respectively. Single-step (for greatest possible sensitivity) or multistep (for more diagnostic data) pyrolysis-FTIR methods informed the assignments. The system allowed the highest-priority samples to be categorized as AAA (or A*AA if the organic signal was complex), while the lowest-priority samples could be categorized as CCC. Our methods provide a mechanism with which to rank samples and identify those that should take the highest priority for return to Earth during a Mars Sample Return mission. Key Words: Mars-Astrobiology-Search for Mars' organics-Infrared spectroscopy-Planetary habitability and biosignatures. Astrobiology 18, 556-570.
Sampling Strategy and Curation Plan of "Hayabusa" Asteroid Sample Return Mission
NASA Technical Reports Server (NTRS)
Yano, H.; Fujiwara, A.; Abe, M.; Hasegawa, S.; Kushiro, I.; Zolensky, M. E.
2004-01-01
On the 9th May 2003 JST, Japanese spacecraft MUSES-C was successfully launched from Uchinoura. The spacecraft was directly inserted to interplanetary trajectory and renamed as Hayabusa , or "Falcon" to be the world s first sample return spacecraft to a near Earth asteroid (NEA). The NEA (25143)Itokawa (formerly known as "1998SF36") is its mission target. Its orbital and physical characteristics were well observed; the size is (490 +/- 100)x (250 +/- 55)x(180 +/- 50) m with about 12-hour rotation period. It has a red-sloped S(IV)-type spectrum with strong 1- and 2-micron absorption bands, analogous to ordinary LL chondrites with space weathering effect. Assuming its bulk density, the surface gravity level of Itokawa is in the order of 10 micro-G with its escape velocity = approx. 20 cm/s.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Team AERO, from the Worcester Polytechnic Institute (WPI) transports their robot to the competition field for the level one of the competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Robots that will be competing in the Level one competition are seen as they sit in impound prior to the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Ahti Heinla, left, and Sulo Kallas, right, from Estonia, prepare team KuuKulgur's robot for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate, speaks at the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Jascha Little of team Survey is seen as he follows the teams robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The University of California Santa Cruz Rover Team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
The University of California Santa Cruz Rover Team's robot is seen prior to starting it's second attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The Oregon State University Mars Rover Team poses for a picture with their robot following their attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Sam Ortega, NASA program manager for Centennial Challenges, is interviewed by a member of the media before the start of level two competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Jim Rothrock, left, and Carrie Johnson, right, of the Wunderkammer Laboratory team pose for a picture with their robot after attempting the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
The Oregon State University Mars Rover Team follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-11
Jerry Waechter of team Middleman from Dunedin, Florida, speaks about his team's robot, Ro-Bear, as it makes it attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
The Oregon State University Mars Rover Team, from Corvallis, Oregon, follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
OSIRIS-REx Solar Array Illumination Test
2016-08-05
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power-producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
OSIRIS-REx Solar Array Illumination Test
2016-08-05
Inside the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida, illumination testing is underway on the power -producing solar arrays for the agency’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-Rex will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
1998-12-02
In the Payload Hazardous Servicing Facility, workers adjust a science panel they are installing on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006
1998-12-02
In the Payload Hazardous Servicing Facility, workers get ready to install a science panel on the spacecraft Stardust. Scheduled to be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, on Feb. 6, 1999, Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule to be jettisoned as it swings by Earth in January 2006
1998-11-16
In the Payload Hazardous Servicing Facility, workers begin removing the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
2016-09-07
The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
The United Launch Alliance Atlas V rocket arrives at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth. Photo credit: NASA/Kim Shiflett
2017-12-08
The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Interfacing with USSTRATCOM and UTTR during Stardust Earth Return
NASA Technical Reports Server (NTRS)
Jefferson, David C.; Baird, Darren T.; Cangahuala, Laureano A.; Lewis, George D.
2006-01-01
The Stardust Sample Return Capsule separated from the main spacecraft four hours prior to atmospheric entry. Between this time and the time at which the SRC touched down at the Utah Test and Training Range, two organizations external to JPL were involved in tracking the Sample Return Capsule. Orbit determination for the Stardust spacecraft during deep space cruise, the encounters of asteroid Annefrank and comet Wild 2, and the final approach to Earth used X-band radio metric Doppler and range data obtained through the Deep Space Network. The SRC lacked the electronics needed for coherently transponded radio metric tracking, so the DSN was not able to track the SRC after it separated from the main spacecraft. Although the expected delivery accuracy at atmospheric entry was well within the capability needed to target the SRC to the desired ground location, it was still desirable to obtain direct knowledge of the SRC trajectory in case of anomalies. For this reason U.S. Strategic Command was engaged to track the SRC between separation and atmospheric entry. Once the SRC entered the atmosphere, ground sensors at UTTR were tasked to acquire the descending SRC and maintain track during the descent in order to determine the landing location, to which the ground recovery team was then directed. This paper discusses organizational interfaces, data products, and delivery schedules, and the actual tracking operations are described.
A Sustainable Architecture for Lunar Resource Prospecting from an EML-based Exploration Platform
NASA Astrophysics Data System (ADS)
Klaus, K.; Post, K.; Lawrence, S. J.
2012-12-01
Introduction - We present a point of departure architecture for prospecting for Lunar Resources from an Exploration Platform at the Earth - Moon Lagrange points. Included in our study are launch vehicle, cis-lunar transportation architecture, habitat requirements and utilization, lander/rover concepts and sample return. Different transfer design techniques can be explored by mission designers, testing various propulsive systems, maneuvers, rendezvous, and other in-space and surface operations. Understanding the availability of high and low energy trajectory transfer options opens up the possibility of exploring the human and logistics support mission design space and deriving solutions never before contemplated. For sample return missions from the lunar surface, low-energy transfers could be utilized between EML platform and the surface as well as return of samples to EML-based spacecraft. Human Habitation at the Exploration Platform - Telerobotic and telepresence capabilities are considered by the agency to be "grand challenges" for space technology. While human visits to the lunar surface provide optimal opportunities for field geologic exploration, on-orbit telerobotics may provide attractive early opportunities for geologic exploration, resource prospecting, and other precursor activities in advance of human exploration campaigns and ISRU processing. The Exploration Platform provides a perfect port for a small lander which could be refueled and used for multiple missions including sample return. The EVA and robotic capabilities of the EML Exploration Platform allow the lander to be serviced both internally and externally, based on operational requirements. The placement of the platform at an EML point allows the lander to access any site on the lunar surface, thus providing the global lunar surface access that is commonly understood to be required in order to enable a robust lunar exploration program. Designing the sample return lander for low-energy trajectories would reduce the overall mass and potentially increase the sample return mass. The Initial Lunar Mission -Building upon Apollo sample investigations, the recent results of the LRO/LCROSS, international missions such as Chandrayaan-1, and legacy missions including Lunar Prospector, and Clementine, among the most important science and exploration goals is surface prospecting for lunar resources and to provide ground truth for orbital observations. Being able to constrain resource production potential will allow us to estimate the prospect for reducing the size of payloads launched from Earth required for Solar System exploration. Flight opportunities for something like the NASA RESOLVE instrument suite to areas of high science and exploration interest could be used to refine and improve future Exploration architectures, reducing the outlays required for cis-lunar operations. Summary - EML points are excellent for placement of a semi-permanent human-tended Exploration Platform both in the near term, while providing important infrastructure and deep-space experience that will be built upon to gradually increase long-term operational capabilities.
NASA Technical Reports Server (NTRS)
Glavin, D. P.; Conrad, P.; Dworkin, J. P.; Eigenbrode, J.; Mahaffy, P. R.
2011-01-01
The search for evidence of life on Mars and elsewhere will continue to be one of the primary goals of NASA s robotic exploration program over the next decade. NASA and ESA are currently planning a series of robotic missions to Mars with the goal of understanding its climate, resources, and potential for harboring past or present life. One key goal will be the search for chemical biomarkers including complex organic compounds important in life on Earth. These include amino acids, the monomer building blocks of proteins and enzymes, nucleobases and sugars which form the backbone of DNA and RNA, and lipids, the structural components of cell membranes. Many of these organic compounds can also be formed abiotically as demonstrated by their prevalence in carbonaceous meteorites [1], though, their molecular characteristics may distinguish a biological source [2]. It is possible that in situ instruments may reveal such characteristics, however, return of the right sample (i.e. one with biosignatures or having a high probability of biosignatures) to Earth would allow for more intensive laboratory studies using a broad array of powerful instrumentation for bulk characterization, molecular detection, isotopic and enantiomeric compositions, and spatially resolved chemistry that may be required for confirmation of extant or extinct Martian life. Here we will discuss the current analytical capabilities and strategies for the detection of organics on the Mars Science Laboratory (MSL) using the Sample Analysis at Mars (SAM) instrument suite and how sample return missions from Mars and other targets of astrobiological interest will help advance our understanding of chemical biosignatures in the solar system.
Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13
NASA Technical Reports Server (NTRS)
Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.
2007-01-01
The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.
NASA Technical Reports Server (NTRS)
Snead, C. J.; McCubbin, F. M.; Nakamura-Messenger, K.; Righter, K.
2018-01-01
The Astromaterials Acquisition and Curation office at NASA Johnson Space Center has established an Advanced Curation program that is tasked with developing procedures, technologies, and data sets necessary for the curation of future astromaterials collections as envisioned by NASA exploration goals. One particular objective of the Advanced Curation program is the development of new methods for the collection, storage, handling and characterization of small (less than 100 micrometer) particles. Astromaterials Curation currently maintains four small particle collections: Cosmic Dust that has been collected in Earth's stratosphere by ER2 and WB-57 aircraft, Comet 81P/Wild 2 dust returned by NASA's Stardust spacecraft, interstellar dust that was returned by Stardust, and asteroid Itokawa particles that were returned by the JAXA's Hayabusa spacecraft. NASA Curation is currently preparing for the anticipated return of two new astromaterials collections - asteroid Ryugu regolith to be collected by Hayabusa2 spacecraft in 2021 (samples will be provided by JAXA as part of an international agreement), and asteroid Bennu regolith to be collected by the OSIRIS-REx spacecraft and returned in 2023. A substantial portion of these returned samples are expected to consist of small particle components, and mission requirements necessitate the development of new processing tools and methods in order to maximize the scientific yield from these valuable acquisitions. Here we describe initial progress towards the development of applicable sample handling methods for the successful curation of future small particle collections.
Electrical and computer architecture of an autonomous Mars sample return rover prototype
NASA Astrophysics Data System (ADS)
Leslie, Caleb Thomas
Space truly is the final frontier. As man looks to explore beyond the confines of our planet, we use the lessons learned from traveling to the Moon and orbiting in the International Space Station, and we set our sights upon Mars. For decades, Martian probes consisting of orbiters, landers, and even robotic rovers have been sent to study Mars. Their discoveries have yielded a wealth of new scientific knowledge regarding the Martian environment and the secrets it holds. Armed with this knowledge, NASA and others have begun preparations to send humans to Mars with the ultimate goal of colonization and permanent human habitation. The ultimate success of any long term manned mission to Mars will require in situ resource utilization techniques and technologies to both support their stay and make a return trip to Earth viable. A sample return mission to Mars will play a pivotal role in developing these necessary technologies to ensure such an endeavor to be a successful one. This thesis describes an electrical and computer architecture for autonomous robotic applications. The architecture is one that is modular, scalable, and adaptable. These traits are achieved by maximizing commonality and reusability within modules that can be added, removed, or reconfigured within the system. This architecture, called the Modular Architecture for Autonomous Robotic Systems (MAARS), was implemented on the University of Alabama's Collection and Extraction Rover for Extraterrestrial Samples (CERES). The CERES rover competed in the 2016 NASA Sample Return Robot Challenge where robots were tasked with autonomously finding, collecting, and returning samples to the landing site.
Biological Sterilization of Returned Mars Samples
NASA Technical Reports Server (NTRS)
Allen, C. C.; Albert, F. G.; Combie, J.; Bodnar, R. J.; Hamilton, V. E.; Jolliff, B. L.; Kuebler, K.; Wang, A.; Lindstrom, D. J.; Morris, P. A.
1999-01-01
Martian rock and soil, collected by robotic spacecraft, will be returned to terrestrial laboratories early in the next century. Current plans call for the samples to be immediately placed into biological containment and tested for signs of present or past life and biological hazards. It is recommended that "Controlled distribution of unsterilized materials from Mars should occur only if rigorous analyses determine that the materials do not constitute a biological hazard. If any portion of the sample is removed from containment prior to completion of these analyses it should first be sterilized." While sterilization of Mars samples may not be required, an acceptable method must be available before the samples are returned to Earth. The sterilization method should be capable of destroying a wide range of organisms with minimal effects on the geologic samples. A variety of biological sterilization techniques and materials are currently in use, including dry heat, high pressure steam, gases, plasmas and ionizing radiation. Gamma radiation is routinely used to inactivate viruses and destroy bacteria in medical research. Many commercial sterilizers use Co-60 , which emits gamma photons of 1.17 and 1.33 MeV. Absorbed doses of approximately 1 Mrad (10(exp 8) ergs/g) destroy most bacteria. This study investigates the effects of lethal doses of Co-60 gamma radiation on materials similar to those anticipated to be returned from Mars. The goals are to determine the gamma dose required to kill microorganisms in rock and soil samples and to determine the effects of gamma sterilization on the samples' isotopic, chemical and physical properties. Additional information is contained in the original extended abstract.
NASA Astrophysics Data System (ADS)
Kawaguchi, J.; Mori, O.; Shirasawa, Y.; Yoshikawa, M.
2014-07-01
The science and engineering communities in the world are seeking what comes next. Especially for asteroids and comets, as those objects lie in relatively far area in our solar system, and new engineering solutions are essential to explore them. JAXA has studied the next-step mission since 2000, a solar-power sail demonstrator combining the use of photon propulsion with electric propulsion, ion thruster, targeting the untrodden challenge for the sample return attempt from a Trojan asteroid around the libration points in the Sun-Jupiter system. The Ikaros spacecraft was literally developed and launched as a preliminary technology demonstration. The mission will perform in-situ measurement and on-site analysis of the samples in addition to the sample return to the Earth, and will also deploy a small lander on the surface for collecting surface samples and convey them to the mother spacecraft. From a scientific point of view, there is an enormous reward in the most primitive samples containing information about the ancient solar system and also about the origin of life in our solar system. JAXA presently looks for international partners to develop and build the lander. The presentation will elaborate the current mission scenario as well as what we think the international collaboration will be.
Servicing and Deployment of National Resources in Sun-Earth Libration Point Orbits
NASA Technical Reports Server (NTRS)
Folta, David C.; Beckman, Mark; Mar, Greg C.; Mesarch, Michael; Cooley, Steven; Leete, Steven J.
2002-01-01
Spacecraft travel between the Sun-Earth system, the Earth-Moon system, and beyond has received extensive attention recently. The existence of a connection between unstable regions enables mission designers to envision scenarios of multiple spacecraft traveling cheaply from system to system, rendezvousing, servicing, and refueling along the way. This paper presents examples of transfers between the Sun-Earth and Earth-Moon systems using a true ephemeris and perturbation model. It shows the (Delta)V costs associated with these transfers, including the costs to reach the staging region from the Earth. It explores both impulsive and low thrust transfer trajectories. Additionally, analysis that looks specifically at the use of nuclear power in libration point orbits and the issues associated with them such as inadvertent Earth return is addressed. Statistical analysis of Earth returns and the design of biased orbits to prevent any possible return are discussed. Lastly, the idea of rendezvous between spacecraft in libration point orbits using impulsive maneuvers is addressed.
Passive vs. Parachute System Architecture for Robotic Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Maddock, Robert W.; Henning, Allen B.; Samareh, Jamshid A.
2016-01-01
The Multi-Mission Earth Entry Vehicle (MMEEV) is a flexible vehicle concept based on the Mars Sample Return (MSR) EEV design which can be used in the preliminary sample return mission study phase to parametrically investigate any trade space of interest to determine the best entry vehicle design approach for that particular mission concept. In addition to the trade space dimensions often considered (e.g. entry conditions, payload size and mass, vehicle size, etc.), the MMEEV trade space considers whether it might be more beneficial for the vehicle to utilize a parachute system during descent/landing or to be fully passive (i.e. not use a parachute). In order to evaluate this trade space dimension, a simplified parachute system model has been developed based on inputs such as vehicle size/mass, payload size/mass and landing requirements. This model works in conjunction with analytical approximations of a mission trade space dataset provided by the MMEEV System Analysis for Planetary EDL (M-SAPE) tool to help quantify the differences between an active (with parachute) and a passive (no parachute) vehicle concept.
Human Lunar Destiny: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Fletcher, David
2002-01-01
This paper offers conceptual strategy and rationale for returning astronauts to the moon. NASA's historic Apollo program enabled humans to make the first expeditionary voyages to the moon and to gather and return samples back to the earth for further study. To continue exploration of the moon within the next ten to fifteen years, one possible mission concept for returning astronauts using existing launch vehicle infrastructure is presented. During these early lunar missions, expeditionary trips are made to geographical destinations and permanent outposts are established at the lunar south pole. As these missions continue, mining operations begin in an effort to learn how to live off the land. Over time, a burgeoning economy based on mining and scientific activity emerges with the formation of more accommodating settlements and surface infrastructure assets. As lunar activity advances, surface infrastructure assets grow and become more complex, lunar settlements and outposts are established across the globe, travel to and from the moon becomes common place, and commerce between earth and the moon develops and flourishes. Colonization and development of the moon is completed with the construction of underground cities and the establishment of a full range of political, religious, educational, and recreational institutions with a diverse population from all nations of the world. Finally, rationale for diversifying concentrations of humanity throughout earth's neighborhood and the greater solar system is presented.
Thermal History of Near-Earth Asteroids: Implications for OSIRIS-REx Asteroid Sample Return
NASA Astrophysics Data System (ADS)
Springmann, Alessondra; Lauretta, Dante S.
2016-10-01
The connection between orbital and temperature history of small Solar System bodies has only been studied through modeling. The upcoming OSIRIS-REx asteroid sample return mission provides an opportunity to connect thermal modeling predictions with laboratory studies of meteorites to predict past heating and thus dynamical histories of bodies such as OSIRIS-REx mission target asteroid (101955) Bennu. Bennu is a desirable target for asteroid sample return due to its inferred primitive nature, likely 4.5 Gyr old, with chemistry and mineralogy established in the first 10 Myr of solar system history (Lauretta et al. 2015). Delbo & Michel (2011) studied connections between the temperature and orbital history of Bennu. Their results suggest that the surface of Bennu (assuming no regolith turnover) has a 50% probability of being heated to 500 K in the past. Further, the Delbo & Michel simulations show that the temperature within the asteroid below the top layer of regolith could remain at temperatures ~100 K below that of the surface. The Touch-And-Go Sample Acquisition Mechanism on OSIRIS-REx could access both the surface and near surface regolith, collecting primitive asteroid material for study in Earth-based laboratories in 2023. To quantify the effects of thermal metamorphism on the Bennu regolith, laboratory heating experiments on carbonaceous chondrite meteorites with compositions likely similar to that of Bennu were conducted from 300-1200 K. These experiments show mobilization and volatilization of a suite of labile elements (sulfur, mercury, arsenic, tellurium, selenium, antimony, and cadmium) at temperatures that could be reached by asteroids that cross Mercury's orbit. We are able to quantify element loss with temperature for several carbonaceous chondrites and use these results to constrain past orbital histories of Bennu. When OSIRIS-REx samples arrive for analysis we will be able to measure labile element loss in the material, determine maximum past temperature of the samples, and predict the past orbital and thermal history of Bennu.
Mineral remains of early life on Earth? On Mars?
Iberall, Robbins E.; Iberall, A.S.
1991-01-01
The oldest sedimentary rocks on Earth, the 3.8-Ga Isua Iron-Formation in southwestern Greenland, are metamorphosed past the point where organic-walled fossils would remain. Acid residues and thin sections of these rocks reveal ferric microstructures that have filamentous, hollow rod, and spherical shapes not characteristic of crystalline minerals. Instead, they resemble ferric-coated remains of bacteria. Because there are no earlier sedimentary rocks to study on Earth, it may be necessary to expand the search elsewhere in the solar system for clues to any biotic precursors or other types of early life. A study of morphologies of iron oxide minerals collected in the southern highlands during a Mars sample return mission may therefore help to fill in important gaps in the history of Earth's earliest biosphere. -from Authors
Maraia Capsule Flight Testing and Results for Entry, Descent, and Landing
NASA Technical Reports Server (NTRS)
Sostaric, Ronald R.; Strahan, Alan L.
2016-01-01
The Maraia concept is a modest size (150 lb., 30" diameter) capsule that has been proposed as an ISS based, mostly autonomous earth return capability to function either as an Entry, Descent, and Landing (EDL) technology test platform or as a small on-demand sample return vehicle. A flight test program has been completed including high altitude balloon testing of the proposed capsule shape, with the purpose of investigating aerodynamics and stability during the latter portion of the entry flight regime, along with demonstrating a potential recovery system. This paper includes description, objectives, and results from the test program.
2008-01-08
Artist Paul Henry Ramirez captured symbolically the Stardust mission in this peice titled "Stardust". The Stardust mission in January of 2006 completed a seven-year, 2.8 billion mile journey to fly by a comet and return samples to Earth. The material is a first sample of pristine cometary material which will increase human understanding of interstellar dust. Stardust, 2007. Acrylic Micaceous Iron Oxide, Aluminum and crystal, hologram glitter Mylar 20" round canvas. Copyrighted: For more information contact Curator, NASA Art Program.
Alterations in hematologic indices during long-duration spaceflight.
Kunz, Hawley; Quiriarte, Heather; Simpson, Richard J; Ploutz-Snyder, Robert; McMonigal, Kathleen; Sams, Clarence; Crucian, Brian
2017-01-01
Although a state of anemia is perceived to be associated with spaceflight, to date a peripheral blood hematologic assessment of red blood cell (RBC) indices has not been performed during long-duration space missions. This investigation collected whole blood samples from astronauts participating in up to 6-months orbital spaceflight, and returned those samples (ambient storage) to Earth for analysis. As samples were always collected near undock of a returning vehicle, the delay from collection to analysis never exceeded 48 h. As a subset of a larger immunologic investigation, a complete blood count was performed. A parallel stability study of the effect of a 48 h delay on these parameters assisted interpretation of the in-flight data. We report that the RBC and hemoglobin were significantly elevated during flight, both parameters deemed stable through the delay of sample return. Although the stability data showed hematocrit to be mildly elevated at +48 h, there was an in-flight increase in hematocrit that was ~3-fold higher in magnitude than the anticipated increase due to the delay in processing. While susceptible to the possible influence of dehydration or plasma volume alterations, these results suggest astronauts do not develop persistent anemia during spaceflight.
A quarantine protocol for analysis of returned extraterrestrial samples
NASA Technical Reports Server (NTRS)
Bagby, J. R.; Sweet, H. C.; Devincenzi, D. L.
1983-01-01
A protocol is presented for the analysis at an earth-orbiting quarantine facility of return samples of extraterrestrial material that might contain (nonterrestrial) life forms. The protocol consists of a series of tests designed to determine whether the sample, conceptualized as a 1-kg sample of Martian soil, is free from nonterrestrial biologically active agents and so may safely be sent to a terrestrial containment facility, or it exhibits biological activity requiring further (second-order) testing outside the biosphere. The first-order testing procedure seeks to detect the presence of any replicating organisms or toxic substances through a series of experiments including gas sampling, analysis of radioactivity, stereomicroscopic inspection, chemical analysis, microscopic examination, the search for metabolic products under growth conditions, microbiologicl assays, and the challenge of cultured cells with any agents found or with the extraterrestrial material as is. Detailed plans for the second-order testing would be developed in response to the actual data received from primary testing.
Penetrator role in Mars sample strategy
NASA Technical Reports Server (NTRS)
Boynton, William; Dwornik, Steve; Eckstrom, William; Roalstad, David A.
1988-01-01
The application of the penetrator to a Mars Return Sample Mission (MRSM) has direct advantages to meet science objectives and mission safety. Based on engineering data and work currently conducted at Ball Aerospace Systems Division, the concept of penetrators as scientific instruments is entirely practical. The primary utilization of a penetrator for MRSM would be to optimize the selection of the sample site location and to help in selection of the actual sample to be returned to Earth. It is recognized that the amount of sample to be returned is very limited, therefore the selection of the sample site is critical to the success of the mission. The following mission scenario is proposed. The site selection of a sample to be acquired will be performed by science working groups. A decision will be reached and a set of target priorities established based on data to give geochemical, geophysical and geological information. The first task of a penetrator will be to collect data at up to 4 to 6 possible landing sites. The penetrator can include geophysical, geochemical, geological and engineering instruments to confirm that scientific data requirements at that site will be met. This in situ near real-time data, collected prior to final targeting of the lander, will insure that the sample site is both scientifically valuable and also that it is reachable within limits of the capability of the lander.
Planning for the Paleomagnetic Investigations of Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Weiss, B. P.; Beaty, D. W.; McSween, H. Y., Jr.; Czaja, A. D.; Goreva, Y.; Hausrath, E.; Herd, C. D. K.; Humayun, M.; McCubbin, F. M.; McLennan, S. M.; Pratt, L. M.; Sephton, M. A.; Steele, A.; Hays, L. E.; Meyer, M. A.
2016-12-01
The red planet is a magnetic planet. Mars' iron-rich surface is strongly magnetized, likely dating back to the Noachian period when the surface may have been habitable. Paleomagnetic measurements of returned samples could transform our understanding of the Martian dynamo and its connection to climatic and planetary thermal evolution. Because the original orientations of Martian meteorites are unknown, all Mars paleomagnetic studies to date have only been able to measure the paleointensity of the Martian field. Paleomagnetic studies from returned Martian bedrock samples would provide unprecedented geologic context and the first paleodirectional information on Martian fields. The Mars 2020 rover mission seeks to accomplish the first leg by preparing for the potential return of 31 1 cm-diameter cores of Martian rocks. The Returned Sample Science Board (RSSB) has been tasked to advise the Mars 2020 mission in how to best select and preserve samples optimized for paleomagnetic measurements. A recent community-based study (Weiss et al., 2014) produced a ranked list of key paleomagnetism science objectives, which included: 1) Determine the intensity of the Martian dynamo 2) Characterize the dynamo reversal frequency with magnetostratigraphy 3) Constrain the effects of heating and aqueous alteration on the samples 4) Constrain the history of Martian tectonics Guided by these objectives, the RSSB has proposed four key sample quality criteria to the Mars 2020 mission: (a) no exposure to fields >200 mT, (b) no exposure to temperatures >100 °C, (c) no exposure to pressures >0.1 GPa, and (d) acquisition of samples that are absolutely oriented with respect to bedrock with a half-cone uncertainty of <5°. Our measurements of a Mars 2020 prototype drill have found that criteria (a-c) should be met by the drilling process. Furthermore, the core plate strike and dip will be measured to better than 5° for intact drill cores; we are working with the mission to establish ways to determine the core's angular orientation with respect to rotation around the drill hole axis. The next stage of our work is to establish whether and how these sample criteria would be maintained throughout the potential downstream missions that would return the samples to Earth.
Entry Trajectory Issues for the Stardust Sample Return Capsule
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Mitcheltree, Robert A.; Cheatwood, F. McNeil
1999-01-01
The Stardust mission was successfully launched on February 7, 1999. It will be the first mission to return samples from a comet. The sample return capsule, which is passively controlled during the fastest Earth entry ever, will land by parachute in Utah. The present study describes the analysis of the entry, descent, and landing of the returning sample capsule utilizing the final, launch configuration capsule mass properties. The effects of two aerodynamic instabilities are revealed (one in the high altitude free molecular regime and the other in the transonic/subsonic flow regime). These instabilities could lead to unacceptably large excursions in the angle-of-attack near peak heating and main parachute deployment, respectively. To reduce the excursions resulting from the high altitude instability, the entry spin rate of the capsule is increased. To stabilize the excursions from the transonic/subsonic instability, a drogue chute with deployment triggered by a gravity-switch and timer is added prior to main parachute deployment. A Monte Carlo dispersion analysis of the modified entry (from which the impact of off-nominal conditions during the entry is ascertained) predicts that the capsule attitude excursions near peak heating and drogue chute deployment are within Stardust mission limits. Additionally, the size of the resulting 3-sigma landing ellipse is 60.8 km in downrange by 19.9 km in crossrange, which is within the Utah Test and Training Range boundaries.
Planetary protection, legal ambiguity and the decision making process for Mars sample return
NASA Technical Reports Server (NTRS)
Race, M. S.
1996-01-01
As scientists and mission planners develop planetary protection requirements for future Mars sample return missions, they must recognize the socio-political context in which decisions about the mission will be made and pay careful attention to public concerns about potential back contamination of Earth. To the extent that planetary protection questions are unresolved or unaddressed at the time of an actual mission, they offer convenient footholds for public challenges in both legal and decision making realms, over which NASA will have little direct control. In this paper, two particular non-scientific areas of special concern are discussed in detail: 1) legal issues and 2) the decision making process. Understanding these areas is critical for addressing legitimate public concerns as well as for fulfilling procedural requirements regardless whether sample return evokes public controversy. Legal issues with the potential to complicate future missions include: procedural review under National Environmental Policy Act (NEPA); uncertainty about institutional control and authority; conflicting regulations and overlapping jurisdictions; questions about international treaty obligations and large scale impacts; uncertanities about the nature of the organism; and constitutional and regulatory concerns about quarantine, public health and safety. In light of these important legal issues, it is critical that NASA consider the role and timing of public involvement in the decision making process as a way of anticipating problem areas and preparing for legitimate public questions and challenges to sample return missions.
2009-06-07
ISS020-E-007383 (FOR RELEASE 21 JULY 2009) --- A moon rock brought to Earth by Apollo 11, humans? first landing on the moon in July 1969, is shown as it floats aboard the International Space Station. Part of Earth and a section of a station solar panel can be seen through the window. The 3.6 billion year-old lunar sample was flown to the station aboard Space Shuttle mission STS-119 in April 2009 in honor of the July 2009 40th anniversary of the historic first moon landing. The rock, lunar sample 10072, was flown to the station to serve as a symbol of the nation?s resolve to continue the exploration of space. It will be returned on shuttle mission STS-128 to be publicly displayed.
14 CFR 1214.203 - Optional reflight guarantee.
Code of Federal Regulations, 2011 CFR
2011-01-01
... deployment attempt is unsuccessful and if the payload returns safely to earth or a second payload is provided... is unsuccessful through no fault of the user, and if the payload returns safely to earth or a second...
Student Pave Way for First Microgravity Experiments on International Space Station
NASA Technical Reports Server (NTRS)
1999-01-01
Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
NASA Astrophysics Data System (ADS)
Watanabe, Sei-ichiro; Tsuda, Yuichi; Yoshikawa, Makoto; Tanaka, Satoshi; Saiki, Takanao; Nakazawa, Satoru
2017-07-01
The Hayabusa2 mission journeys to C-type near-Earth asteroid (162173) Ryugu (1999 JU3) to observe and explore the 900 m-sized object, as well as return samples collected from the surface layer. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on December 3, 2014 by an H-IIA launch vehicle and performed an Earth swing-by on December 3, 2015 to set it on a course toward its target Ryugu. Hayabusa2 aims at increasing our knowledge of the early history and transfer processes of the solar system through deciphering memories recorded on Ryugu, especially about the origin of water and organic materials transferred to the Earth's region. Hayabusa2 carries four remote-sensing instruments, a telescopic optical camera with seven colors (ONC-T), a laser altimeter (LIDAR), a near-infrared spectrometer covering the 3-μm absorption band (NIRS3), and a thermal infrared imager (TIR). It also has three small rovers of MINERVA-II and a small lander MASCOT (Mobile Asteroid Surface Scout) developed by German Aerospace Center (DLR) in cooperation with French space agency CNES. MASCOT has a wide angle imager (MasCam), a 6-band thermal radiator (MARA), a 3-axis magnetometer (MasMag), and a hyperspectral infrared microscope (MicrOmega). Further, Hayabusa2 has a sampling device (SMP), and impact experiment devices which consist of a small carry-on impactor (SCI) and a deployable camera (DCAM3). The interdisciplinary research using the data from these onboard and lander's instruments and the analyses of returned samples are the key to success of the mission.
The OSIRIS-REx Asteroid Sample Return Mission Operations Design
NASA Technical Reports Server (NTRS)
Gal-Edd, Jonathan S.; Cheuvront, Allan
2015-01-01
OSIRIS-REx is an acronym that captures the scientific objectives: Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer. OSIRIS-REx will thoroughly characterize near-Earth asteroid Bennu (Previously known as 1019551999 RQ36). The OSIRIS-REx Asteroid Sample Return Mission delivers its science using five instruments and radio science along with the Touch-And-Go Sample Acquisition Mechanism (TAGSAM). All of the instruments and data analysis techniques have direct heritage from flown planetary missions. The OSIRIS-REx mission employs a methodical, phased approach to ensure success in meeting the mission's science requirements. OSIRIS-REx launches in September 2016, with a backup launch period occurring one year later. Sampling occurs in 2019. The departure burn from Bennu occurs in March 2021. On September 24, 2023, the Sample Return Capsule (SRC) lands at the Utah Test and Training Range (UTTR). Stardust heritage procedures are followed to transport the SRC to Johnson Space Center, where the samples are removed and delivered to the OSIRIS-REx curation facility. After a six-month preliminary examination period the mission will produce a catalog of the returned sample, allowing the worldwide community to request samples for detailed analysis. Traveling and returning a sample from an Asteroid that has not been explored before requires unique operations consideration. The Design Reference Mission (DRM) ties together spacecraft, instrument and operations scenarios. Asteroid Touch and Go (TAG) has various options varying from ground only to fully automated (natural feature tracking). Spacecraft constraints such as thermo and high gain antenna pointing impact the timeline. The mission is sensitive to navigation errors, so a late command update has been implemented. The project implemented lessons learned from other "small body" missions. The key lesson learned was 'expect the unexpected' and implement planning tools early in the lifecycle. This paper summarizes the ground and spacecraft design as presented at OSIRIS-REx Critical Design Review(CDR) held April 2014.
MEPAG Recommendations for a 2018 Mars Sample Return Caching Lander - Sample Types, Number, and Sizes
NASA Technical Reports Server (NTRS)
Allen, Carlton C.
2011-01-01
The return to Earth of geological and atmospheric samples from the surface of Mars is among the highest priority objectives of planetary science. The MEPAG Mars Sample Return (MSR) End-to-End International Science Analysis Group (MEPAG E2E-iSAG) was chartered to propose scientific objectives and priorities for returned sample science, and to map out the implications of these priorities, including for the proposed joint ESA-NASA 2018 mission that would be tasked with the crucial job of collecting and caching the samples. The E2E-iSAG identified four overarching scientific aims that relate to understanding: (A) the potential for life and its pre-biotic context, (B) the geologic processes that have affected the martian surface, (C) planetary evolution of Mars and its atmosphere, (D) potential for future human exploration. The types of samples deemed most likely to achieve the science objectives are, in priority order: (1A). Subaqueous or hydrothermal sediments (1B). Hydrothermally altered rocks or low temperature fluid-altered rocks (equal priority) (2). Unaltered igneous rocks (3). Regolith, including airfall dust (4). Present-day atmosphere and samples of sedimentary-igneous rocks containing ancient trapped atmosphere Collection of geologically well-characterized sample suites would add considerable value to interpretations of all collected rocks. To achieve this, the total number of rock samples should be about 30-40. In order to evaluate the size of individual samples required to meet the science objectives, the E2E-iSAG reviewed the analytical methods that would likely be applied to the returned samples by preliminary examination teams, for planetary protection (i.e., life detection, biohazard assessment) and, after distribution, by individual investigators. It was concluded that sample size should be sufficient to perform all high-priority analyses in triplicate. In keeping with long-established curatorial practice of extraterrestrial material, at least 40% by mass of each sample should be preserved to support future scientific investigations. Samples of 15-16 grams are considered optimal. The total mass of returned rocks, soils, blanks and standards should be approximately 500 grams. Atmospheric gas samples should be the equivalent of 50 cubic cm at 20 times Mars ambient atmospheric pressure.
Mars Sample Quarantine Protocol Workshop
NASA Technical Reports Server (NTRS)
DeVincenzi, Donald L. (Editor); Bagby, John (Editor); Race, Margaret (Editor); Rummel, John (Editor)
1999-01-01
The Mars Sample Quarantine Protocol (QP) Workshop was convened to deal with three specific aspects of the initial handling of a returned Mars sample: 1) biocontainment, to prevent uncontrolled release of sample material into the terrestrial environment; 2) life detection, to examine the sample for evidence of live organisms; and 3) biohazard testing, to determine if the sample poses any threat to terrestrial life forms and the Earth's biosphere. During the first part of the Workshop, several tutorials were presented on topics related to the workshop in order to give all participants a common basis in the technical areas necessary to achieve the objectives of the Workshop.
Spacecraft Conceptual Design for Returning Entire Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Brophy, John R.; Oleson, Steve
2012-01-01
In situ resource utilization (ISRU) in general, and asteroid mining in particular are ideas that have been around for a long time, and for good reason. It is clear that ultimately human exploration beyond low-Earth orbit will have to utilize the material resources available in space. Historically, the lack of sufficiently capable in-space transportation has been one of the key impediments to the harvesting of near-Earth asteroid resources. With the advent of high-power (or order 40 kW) solar electric propulsion systems, that impediment is being removed. High-power solar electric propulsion (SEP) would be enabling for the exploitation of asteroid resources. The design of a 40-kW end-of-life SEP system is presented that could rendezvous with, capture, and subsequently transport a 1,000-metric-ton near-Earth asteroid back to cislunar space. The conceptual spacecraft design was developed by the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team at the Glenn Research Center in collaboration with the Keck Institute for Space Studies (KISS) team assembled to investigate the feasibility of an asteroid retrieval mission. Returning such an object to cislunar space would enable astronaut crews to inspect, sample, dissect, and ultimately determine how to extract the desired materials from the asteroid. This process could jump-start the entire ISRU industry.
NASA Astrophysics Data System (ADS)
Martel, L. M. V.
2009-12-01
The Need for Lunar Samples and Simulants: Where Engineering and Science Meet sums up one of the sessions attracting attention at the annual meeting of the Lunar Exploration Analysis Group (LEAG), held November 16-19, 2009 in Houston, Texas. Speakers addressed the question of how the Apollo lunar samples can be used to facilitate NASA's return to the Moon while preserving the collection for scientific investigation. Here is a summary of the LEAG presentations of Dr. Gary Lofgren, Lunar Curator at the NASA Johnson Space Center in Houston, Texas, and Dr. Meenakshi (Mini) Wadhwa, Professor at Arizona State University and Chair of NASA's advisory committee called CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials). Lofgren gave a status report of the collection of rocks and regolith returned to Earth by the Apollo astronauts from six different landing sites on the Moon in 1969-1972. Wadhwa explained the role of CAPTEM in lunar sample allocation.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-12
Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-10
A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
On the applicability of lunar breccias for paleomagnetic interpretations.
NASA Technical Reports Server (NTRS)
Gose, W. A.; Pearce, G. W.; Strangway, D. W.; Larson, E. E.
1972-01-01
The weak but definite remanent magnetization of returned lunar samples is discussed. In general, the breccias have the possibility of carrying a significant viscous remanent magnetism (VRM) when exposed to magnetic fields. The two samples studied appear to exemplify two limiting cases which can be clearly related to the iron distribution present. The VRM measured in the laboratory must have been acquired by the samples since their return to earth because the time decay proceeds at such a rate that any viscous remanence will disappear in less than half a year. In spite of the viscous effects there seems to be little question that some breccias carry a recognizable stable remanent magnetism which is very much like that found in the igneous rocks, both in stability and intensity. It is concluded that it is possible to use some of the breccias to reconstruct the history of the lunar magnetic field.
The Gulliver mission: Sample return from Deimos
NASA Astrophysics Data System (ADS)
Britt, D.
The Martian moon Deimos has been accumulating material ejected from the Martian surface ever since the earliest periods of Martian history, over 4.4 Gyrs ago. Analysis of Martian ejecta, material accumulation, capture cross-section, regolith overturn, and Deimos's albedo suggest that Mars material may make up as much as 5-10% of Deimos's regolith. The Martian material on Deimos would be dominated by ejecta from the ancient crust of Mars, delivered during the Noachian Period of basin-forming impacts and heavy bombardment. Deimos is essentially a repository of samples from ancient Mars, which would include the full range of Martian crustal and upper mantle material from the early differentiation and crustal-forming epoch as well as samples from the era of high volatile flux, thick atmosphere, and possible surface water. The Gulliver Mission proposes to directly collect up to 10 kilograms of Deimos regolith and return it to Earth. This sample will contain up to 1000 grams of Martian material. Because of stochastic processes of regolith mixing over 4.4 Gyrs, the rock fragments, grains, and pebble-sized materials will likely sample the diversity of the Martian ancient surface. In addition to Martian ejecta, 90% of the Deimos sample will be spectral type D asteroidal material, thought to be highly primitive and originate in the outer asteroid belt. In essence, Gulliver represents two shortcuts, to Mars sample return and to the outer asteroid belt.
Trajectory Design and Orbital Dynamics of Deep Space Exploration
NASA Astrophysics Data System (ADS)
Zhao, Y. H.
2013-05-01
The term of deep space exploration is used for the exploration in which a probe, unlike an earth satellite, escapes from the Earth's gravitation field, and conducts the exploration of celestial bodies within or away from the solar system. As the progress of aerospace science and technology, the exploration of the Moon and other planets of the solar system has attracted more and more attention throughout the world since late 1990s. China also accelerated its progress of the lunar exploration in recent years. Its first lunar-orbiting spacecraft, Chang'e 1, was successfully launched on 2007 October 24. It then achieved the goals of accurate maneuver and lunar orbiting, acquired a large amount of scientific data and a full lunar image, and finally impacted the Moon under control. On 2010 October 1, China launched Chang'e 2 with success, which obtained a full lunar image with a higher resolution and a high-definition image of the Sinus Iridum, and completed multiple extended missions such as orbiting the Lagrangian point L2, laying the groundwork for future deep space exploration. As the first phase of the three main operational phases (orbiting, landing, return) of the Chinese Lunar Exploration Program, the successful launches and flights of Chang'e 1 and Chang'e 2 are excellent applications of the orbit design of both the Earth-Moon transfer orbit and the circumlunar orbit, yet not involving the design of the entire trajectory consisting of the Earth-Moon transfer orbit, the circumlunar orbit, and the return orbit, which is produced particularly for sample return spacecraft. This paper studies the entire orbit design of the lunar sample return spacecraft which would be employed in both the third phase of the lunar exploration program and the human lunar landing program, analyzes the dynamic characteristics of the orbit, and works out the launch windows based on specific conditions. The results are universally applicable, and could serve as the basis of the orbit design of the lunar sample return spacecraft. Meanwhile, China's independent Mars exploration is in progress. In this context, this paper also carries out comprehensive related researches, such as the orbit design and computation of the Earth-Mars transfer orbit, the selection of its launch window, and mid-course trajectory correction maneuver (TCM), etc. It conducts calculations and dynamic analysis for Hohmann transfer orbit in accurate dynamic model, providing basis for the selection and design of the transfer orbit in China's Mars exploration. On the basis of orbit dynamics theory of the small bodies including detectors in the solar system, all the works concerned about trajectory design in this paper are worked out in a complete and reasonable dynamic model, that is why the results have some referential value for the trajectory design in the deep space exploration. The major innovations in this paper are as follows: (1) This paper studies different types of the Earth-Moon transfer orbit on the basis of orbit dynamics theory of small bodies in the solar system, and provides the theoretical basis of the orbit type selection in practical missions; (2) This paper works on the orbit dynamics of the free return orbit, which intends to guarantee the safety of the astronauts in the human landing moon exploration, and carries out the free return orbit calculated in the real dynamic model; (3) This paper shows the characteristics of the reentry angle of the Moon-Earth transfer orbit. With the conditions of the landing range of our country taken into account, our works carry out the constraints of the reentry angle and the latitude of the explorer at reentry time, and provide the basis of orbit type choice for practical applications; (4) Based on the error transition matrix of the small bodies' motion, this paper analyzes the attributes of the error propagation of the Earth-Moon transfer orbit, on the basis of which it proposes the timing methods as well as the equation for the determination of the velocity increment for TCMs; (5) Based on the IAU2000 Mars orientation model, this paper studies the precession part of the change of Mars gravitation, which lays the foundation for further study of its influence on the Mars orbiter's orbit of precession. This paper proposes the analytical solution of the corresponding coordinate additional perturbations; (6) This paper studies the characteristics of the Earth-Mars transfer orbit in the real dynamic model, and puts forward the according theoretical analysis; (7) The theoretical analysis of the error propagation of the Earth-Mars transfer orbit is performed on the basis of error transition matrix, thereafter the determination of time and the calculation of velocity increment for TCMs are given. By comparing the results of different methods, it proves that the linear method of TCM calculation is the most timesaving one among all applicable methods for a certain accuracy requirement; (8) All the numerical simulations in the production of this paper are carried out by programs written on my own, which could apply to other relevant missions.
Science Enabling Exploration: Using LRO to Prepare for Future Missions
NASA Technical Reports Server (NTRS)
Lawrence, S. J.; Jolliff, B. L.; Stopar, J. D.; Speyerer, E. J.; Petro, N. E.
2016-01-01
Discoveries from LRO have transformed our understanding of the Moon, but LRO's instruments were originally designed to collect the measurements required to enable future lunar surface exploration. A high lunar exploration priority is the collection of new samples and their return to Earth for comprehensive analysis. The importance of sample return from South Pole-Aitken is well-established [Jolliff et al., this conference], but there are numerous other locations where sample return will yield important advances in planetary science. Using new LRO data, we have defined an achievability envelope based on the physical characteristics of successful lunar landing sites. Those results were then used to define 1km x 1km regions of interest where sample return could be executed, including: the basalt flows in Oceanus Procellarum (22.1N, 53.9W), the Gruithuisen Domes (36.1N, 39.7W), the Dewar cryptomare (2.2S, 166.8E), the Aristarchus pyroclastic deposit (24.8N, 48.5W), the Sulpicius Gallus formation (19.9N, 10.3E), the Sinus Aestuum pyroclastic deposit (5.2N, 9.2W), the Compton-Belkovich volcanic complex (61.5N, 99.9E), the Ina Irregular Mare Patch (18.7N, 5.3E), and the Marius Hills volcanic complex (13.4N, 55.9W). All of these locations represent safe landing sites where sample returns are needed to advance our understanding of the evolution of the lunar interior and the timescales of lunar volcanism. If LRO is still active when any future mission reaches the surface, LRO's capability to rapidly place surface activities into broader geologic context will provide operational advantages. LRO remains a unique strategic asset that continues to address the needs of future missions.
The Exploration of Near-Earth Objects
NASA Astrophysics Data System (ADS)
1998-01-01
Near-Earth objects (NEOs) are asteroids and comets with orbits that intersect or pass near that of our planet. About 400 NEOs are currently known, but the entire population contains perhaps 3000 objects with diameters larger than 1 km. These objects, thought to be similar in many ways to the ancient planetesimal swarms that accreted to form the planets, are interesting and highly accessible targets for scientific research. They carry records of the solar system's birth and the geologic evolution of small bodies in the interplanetary region. Because collisions of NEOs with Earth pose a finite hazard to life, the exploration of these objects is particularly urgent. Devising appropriate risk-avoidance strategies requires quantitative characterization of NEOS. They may also serve as resources for use by future human exploration missions. The scientific goals of a focused NEO exploration program are to determine their orbital distribution, physical characteristics, composition, and origin. Physical characteristics, such as size, shape, and spin properties, have been measured for approximately 80 NEOs using observations at infrared, radar, and visible wavelengths. Mineralogical compositions of a comparable number of NEOs have been inferred from visible and near-infrared spectroscopy. The formation and geologic histories of NEOs and related main-belt asteroids are currently inferred from studies of meteorites and from Galileo and Near-Earth Asteroid Rendezvous spacecraft flybys of three main-belt asteroids. Some progress has also been made in associating specific types of meteorites with main-belt asteroids, which probably are the parent bodies of most NEOs. The levels of discovery of NEOs in the future will certainly increase because of the application of new detection systems. The rate of discovery may increase by an order of magnitude, allowing the majority of Earth-crossing asteroids and comets with diameters greater than 1 km to he discovered in the next decade. A small fraction of NEOs are particularly accessible for exploration by spacecraft. To identify the exploration targets of highest scientific interest, the orbits and classification of a large number of NEOs should be determined by telescopic observations. Desired characterization would also include measurements of size, mass, shape, surface composition and heterogeneity, gas and dust emission, and rotation. Laboratory studies of meteorites can focus NEO exploration objectives and quantify the information obtained from telescopes. Once high-priority targets have been identified, various kinds of spacecraft missions (flyby, rendezvous, and sample return) can be designed. Some currently operational (Near-Earth Asteroid Rendezvous [NEAR]) or planned (Deep Space 1) U.S. missions are of the first two types, and other planned U.S. and Japanese spacecraft missions will return samples. Rendezvous missions with sample return are particularly desirable from a scientific perspective because of the very great differences in the analytical capabilities that can be brought to bear in orbit and in the laboratory setting. Although it would be difficult to justify human exploration of NEOs on the basis of cost-benefit analysis of scientific results alone, a strong case can be made for starting with NEOs if the decision to carry out human exploration beyond low Earth orbit is made for other reasons. Some NEOs are especially attractive targets for astronaut missions because of their orbital accessibility and short flight duration. Because they represent deep space exploration at an intermediate level of technical challenge, these missions would also serve as stepping stones for human missions to Mars. Human exploration of NEOs would provide significant advances in observational and sampling capabilities. With respect to ground based telescopic studies, the recommended baseline is that NASA and other appropriate agencies suupport research programs for interpreting the spectra of near-Earth objects (NEOs), continue and coordinate currently supported surveys to discover and determine the orbits of NEOs and develop policies for the public disclosure of results relating to potential hazards. Augmentation to this baseline program include in priority order: (1) provide routine or priority access to existiing ground-based optical and infrared telescopes and radar facilities for characterization of NEOs during favorable encounters; or (2) provide expanded, dedicated telescope access for characterization of NEOs. Appropriate augmentations to existing programs include the following: (1) Develop technological advances in spacecraft capabilities, including nonchemical propulsion and autonomous navigation systems, low-power and low-mass anlaytical instrumentation for remote and in situ studies, and multiple penetrators and other sampling and sample-handling systems to allow low-cost rendezvous and sample return missions; and (2) study technical requirements for human expeditions to NEOs. Although studies evaluating the risk of asteroid collisions with Earth and the means of averting them are desirable, they are beyond the scope of this report.
Magnetobraking: Use of tether electrodynamic drag for Earth return from Mars
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1994-01-01
It has often been proposed that a vehicle returning from Mars will use aerobraking in the Earth's atmosphere to dissipate hyperbolic excess velocity to capture into Earth orbit. Here a different system for dissipating excess velocity without expenditure of reaction mass, magnetobraking, is proposed. Magnetobraking uses the force on an electrodynamic tether in the Earth's magnetic field to produce thrust. An electrodynamic tether is deployed from the spacecraft as it approaches the Earth. The Earth's magnetic field produces a force on electrical current in the tether. If the tether is oriented perpendicularly to the Earth's magnetic field and to the direction of motion of the spacecraft, force produced by the Earth's magnetic field can be used to either brake or accelerate the spacecraft without expenditure of reaction mass. The peak acceleration on the Mars return is 0.007 m/sq sec, and the amount of braking possible is dependent on the density and current-carrying capacity of the tether, but is independent of length. A superconducting tether is required. The required critical current is shown to be within the range of superconducting technology now available in the laboratory.
1999-07-27
A Memphis student working at the University of Alabama in Huntsville prepares samples for the first protein crystal growth experiments plarned to be performed aboard the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
1999-07-27
Memphis students working at the University of Alabama in Huntsville prepare samples for the first protein crystal growth experiments plarned to be performed aboard the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)
Martian oxidation processes and selection of ancient sedimentary samples for bio-organic analysis
NASA Technical Reports Server (NTRS)
Oro, J.
1988-01-01
The results obtained by the Viking Missions concerning organic and biological analysis are summarized and it is indicated that these results do not preclude the existence in buried or protected regions of the planet, organic molecules or fossil life. The use of automated instruments is suggested for the analyses of samples obtained from certain regions of the planet, as a preliminary step before they are selected, retrieved, and returned to Earth for more complete analysis.
NASA Technical Reports Server (NTRS)
Faris, Grant B.; Bryant, Larry W.
2010-01-01
Mission Operations Assurance (MOA) started at the Jet Propulsion Laboratory (JPL) with the Magellan and Galileo missions of the late 80's. It continued to develop and received a significant impetus with the failures of two successive missions to Mars in the late 90's. MOA continued to evolve with each successive project at JPL achieving its current maturity with the Stardust sample return to Earth.
VEG-03 Consmption Harvest no. 1
2018-03-11
iss055e001536 (March 8, 2018) --- Expedition 55 Commander Anton Shkaplerov eats a piece of lettuce harvested as part of the ongoing space crop study VEG-03. The botany experiment uses the Veggie plant growth facility to cultivate a type of cabbage, lettuce and mizuna which are harvested on-orbit with some samples consumed by astronauts and others returned to Earth for testing.
VEG-03 Consumption Harvest no. 1
2018-03-08
iss055e001193 (March 8, 2018) --- NASA astronaut Scott Tingle eats a piece of lettuce harvested as part of the ongoing space crop study VEG-03. The botany experiment uses the Veggie plant growth facility to cultivate a type of cabbage, lettuce and mizuna which are harvested on-orbit with some samples consumed by astronauts and others returned to Earth for testing.
2015-02-27
ISS042E290579 (02/27/2015) --- On Feb. 27 2015, a series of CubeSats, small experimental satellites, were deployed via a special device mounted on the Japanese Experiment Module (JEM) Remote Manipulator System (JEMRMS). Deployed satellites included twelve Dove sats, one TechEdSat-4, one GEARRSat, one LambdaSat, one MicroMas. These satellites perform a variety of functions from capturing new Earth imagery, to using microwave scanners to create 3D images of hurricanes, to even developing new methods for returning science samples back to Earth from space. The small satellites were deployed through the first week in March.
NASA/ESMD Analogue Mission Plans
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.
2007-01-01
A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.
Orientale and South Pole-Aitken basins on the Moon: Preliminary Galileo imaging results
NASA Technical Reports Server (NTRS)
Head, J.; Fischer, E.; Murchie, S.; Pieters, C.; Plutchak, J.; Sunshine, J.; Belton, M.; Carr, M.; Chapman, C.; Davies, M.
1991-01-01
During the Earth-Moon flyby the Galileo Solid State Imaging System obtained new information on the landscape and physical geology of the Moon. Multicolor Galileo images of the Moon reveal variations in color properties of the lunar surface. Using returned lunar samples as a key, the color differences can be interpreted in terms of variations in the mineral makeup of the lunar rocks and soil. The combined results of Apollo landings and multicolor images from Galileo allow extrapolation of surface composition to areas distant from the landing sites, including the far side invisible from Earth.
1998-11-16
In the Payload Hazardous Servicing Facility, workers place one of the Stardust solar panels on a stand. The panels are being removed for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule to be jettisoned from Stardust as it swings by Earth in January 2006
1998-11-16
In the Payload Hazardous Servicing Facility, workers remove one of the Stardust solar panels for testing. The spacecraft Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. The collected samples will return to Earth in a re-entry capsule (seen on top, next to the solar panel) to be jettisoned from Stardust as it swings by Earth in January 2006
1998-11-16
In the Payload Hazardous Servicing Facility, workers remove the Stardust solar panels for testing. The spacecraft Stardust will use a unique medium called aerogel to capture comet particles flying off the nucleus of comet Wild 2 in January 2004, plus collect interstellar dust for later analysis. Stardust will be launched aboard a Boeing Delta 7426 rocket from Complex 17, Cape Canaveral Air Station, targeted for Feb. 6, 1999. The collected samples will return to Earth in a re-entry capsule (seen at the top of the spacecraft in this photo) to be jettisoned from Stardust as it swings by Earth in January 2006
2016-09-07
A United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
After leaving the Vertical Integration Facility, a United Launch Alliance Atlas V rocket is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
In a view from above, a United Launch Alliance Atlas V rocket begins to roll out of the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
A United Launch Alliance Atlas V rocket rolls out of the Vertical Integration Facility on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
A United Launch Alliance Atlas V rocket has left the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
The United Launch Alliance Atlas V rocket has made the trek from the Vertical Integration Facility to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
2016-09-07
A United Launch Alliance Atlas V rocket rolled out of the Vertical Integration Facility and is on its way to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. This will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-ANG01_0001-OSIRIS_REx_Launch_Broadcast_UCS_3_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GEB01_0001-OSIRIS_REx_Launch_Broadcast_Van_1_People_Cutaways_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-CSH01_0001-OSIRIS_REx_Launch_Broadcast_Van_2_NASA_Causeway_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GMM01_0003-OSIRIS_REx_Launch_Broadcast_Ground_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GMM01_0002-OSIRIS_REx_Launch_Broadcast_VIF_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-GMM01_0001-OSIRIS_REx_Launch_Broadcast_VAB_Roof_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
KSC-20160908-RV-ULA01_0001-OSIRIS_REx_Launch_Broadcast_Rocket_Cam_Ascent_ISO-3126827
2016-09-08
Liftoff of OSIRIS-A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 41 at Cape Canaveral Air Force Station carrying NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft on the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. Liftoff was at 7:05 p.m. EDT. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A.
2009-01-01
Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the Japanese Hyabusa Mission to Itokawa. Also due to their close proximity to Earth, NEOs constitute the most likely set of celestial objects that will impact us in the relatively near future.
Overview and Updated Status of the Asteroid Redirect Mission (ARM)
NASA Astrophysics Data System (ADS)
Abell, Paul; Mazanek, Daniel D.; Reeves, David M.; Chodas, Paul; Gates, Michele; Johnson, Lindley N.; Ticker, Ronald
2016-10-01
The National Aeronautics and Space Administration (NASA) is developing a mission to visit a large near-Earth asteroid (NEA), collect a multi-ton boulder and regolith samples from its surface, demonstrate a planetary defense technique known as the enhanced gravity tractor, and return the asteroidal material to a stable orbit around the Moon. Once returned to cislunar space in the mid-2020s, astronauts will explore the boulder and return to Earth with samples. This Asteroid Redirect Mission (ARM) is part of NASA's plan to advance the technologies, capabilities, and spaceflight experience needed for a human mission to the Martian system in the 2030s and other destinations, as well as provide other broader benefits. Subsequent human and robotic missions to the asteroidal material would also be facilitated by its return to cislunar space. Although ARM is primarily a capability demonstration mission (i.e., technologies and associated operations), there exist significant opportunities to advance our knowledge of small bodies in the synergistic areas of science, planetary defense, asteroidal resources and in-situ resource utilization (ISRU), and capability and technology demonstrations. Current plans are for the robotic mission to be launched in late 2021 with the crewed mission segment conducted using an Orion capsule via a Space Launch System rocket in 2026. In order to maximize the knowledge return from the mission, NASA is providing accommodations for payloads to be carried on the robotic segment of the mission and also organizing an ARM Investigation Team. The Investigation Team will be comprised of scientists, technologists, and other qualified and interested individuals from US industry, government, academia, and international institutions to help plan the implementation and execution of ARM. The presentation will provide a mission overview and the most recent update concerning the robotic and crewed segments of ARM, including the mission requirements, and potential NEA targets. Details about the mission operations for each segment will also be provided along with a discussion of the potential opportunities associated with the mission.
Radiation from lightning return strokes over a finitely conducting earth
NASA Technical Reports Server (NTRS)
Le Vine, D. M.; Gesell, L.; Kao, Michael
1986-01-01
The effects of the conductivity of the earth on radiation from lightning return strokes are examined theoretically using a piecewise linear transmission line model for the return stroke. First, calculations are made of the electric field radiated during the return stroke, and then this electric field is used to compute the response of conventional AM radio receivers and electric field change systems during the return stroke. The calculations apply to the entire transient waveform (they are not restricted to the initial portions of the return stroke) and yield fast field changes and RF radiation in agreement with measurements made during real lightning. This research was motivated by measurements indicating that a time delay exists between the time of arrival of the fast electric field change and the RF radiation from first return strokes. The time delay is on the order of 20 microsec for frequencies in the HF-UHF range for lightning in Florida. The time delay is obtained theoretically in this paper. It occurs when both the effects of attenuation due to conductivity of the earth, and the finite velocity of propagation of the current pulse up the return stroke channel, are taken into account in the model.
2017-12-08
This is an artist's concept of the young Earth being bombarded by asteroids. Scientists think these impacts could have delivered significant amounts of organic matter and water to Earth. Image Credit: NASA's Goddard Space Flight Center Conceptual Image Lab The Origins Spectral Interpretation Resource Identification Security -- Regolith Explorer spacecraft (OSIRIS-REx) will travel to a near-Earth asteroid, called Bennu, and bring a sample back to Earth for study. The mission will help scientists investigate how planets formed and how life began, as well as improve our understanding of asteroids that could impact Earth. OSIRIS-REx is scheduled for launch in late 2016. As planned, the spacecraft will reach its asteroid target in 2018 and return a sample to Earth in 2023. Watch the full video: youtu.be/gtUgarROs08 Learn more about NASA’s OSIRIS-REx mission and the making of Bennu’s Journey: www.nasa.gov/content/goddard/bennus-journey/ More information on the OSIRIS-REx mission is available at: www.nasa.gov/mission_pages/osiris-rex/index.html www.asteroidmission.org NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Pharmaceuticals Exposed to the Space Environment: Problems and Prospects
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Myers, Jerry G.
2016-01-01
The NASA Human Research Program (HRP) Health Countermeasures Element maintains ongoing efforts to inform detailed risks, gaps, and further questions associated with the use of pharmaceuticals in space. Most recently, the Pharmacology Risk Report, released in 2010, illustrates the problems associated with maintaining pharmaceutical efficacy. Since the report, one key publication includes evaluation of pharmaceutical products stored on the International Space Station (ISS). This study shows that selected pharmaceuticals on ISS have a shorter shelf-life in space than corresponding terrestrial controls. The HRP Human Research Roadmap for planetary exploration identifies the risk of ineffective or toxic medications due to long-term storage during missions to Mars. The roadmap also identifies the need to understand and predict how pharmaceuticals will behave when exposed to radiation for long durations. Terrestrial studies of returned samples offer a start for predictive modeling. This paper shows that pharmaceuticals returned to Earth for post-flight analyses are amenable to a Weibull distribution analysis in order to support probabilistic risk assessment modeling. The paper also considers the prospect of passive payloads of key pharmaceuticals on sample return missions outside of Earth's magnetic field to gather additional statistics. Ongoing work in radiation chemistry suggests possible mitigation strategies where future work could be done at cryogenic temperatures to explore methods for preserving the strength of pharmaceuticals in the space radiation environment, perhaps one day leading to an architecture where pharmaceuticals are cached on the Martian surface and preserved cryogenically.